
University of South Florida University of South Florida 

Digital Commons @ University of Digital Commons @ University of 

South Florida South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

March 2024 

Effects of Unobservable Bus States on Detection and Localization Effects of Unobservable Bus States on Detection and Localization 

of False Data Injection Attacks in Smart Grids of False Data Injection Attacks in Smart Grids 

Moheb Abdelmalak 
University of South Florida 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Scholar Commons Citation Scholar Commons Citation 
Abdelmalak, Moheb, "Effects of Unobservable Bus States on Detection and Localization of False Data 
Injection Attacks in Smart Grids" (2024). USF Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/10145 

This Thesis is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital 
Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and 
Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact digitalcommons@usf.edu. 

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F10145&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usf.edu%2Fetd%2F10145&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu


 

 

 

 

 

Effects of Unobservable Bus States on Detection and Localization of False Data Injection Attacks  

 

in Smart Grids 

 

 

 

by 

 

 

 

Moheb Abdelmalak 

 

 

 

 

A thesis submitted in partial fulfillment               

of the requirements for the degree of 

Master of Science  

 Department of Electrical Engineering 

College of Engineering 
University of South Florida 

 

 

 

Major Professor: Mia Naeini, Ph.D.  

Ismail Uysal, Ph.D. 

Nasir Ghani, Ph.D. 

 

 

Date of Approval: 

March 12, 2024 

 

 

 

Keywords: State Estimation, PMU Placement, Machine Learning, Recurrent Neural Networks, 

Time Series 

 

Copyright © 2024, Moheb Abdelmalak 



 

 

 

 

 

Dedication 

 

To my beloved small family—Bebo, Fofo, and Caty—who surround me with love and 

support… 

To my grandfather, Shehata, whose lessons continue to guide me and whose memory I 

hold dear…



 

 

 

 

 
Acknowledgments 

 

First and foremost, my deepest gratitude goes to my thesis advisor, Dr. Mia Naeini, for her 

unparalleled patience, guidance, and dedication. Her ability to navigate calmly through my 

research, providing steady support and constructive feedback, has been invaluable. Dr. Naeini’s 

exceptional commitment is evident in the generous amount of time she dedicates to supporting her 

students, always making herself available to address our concerns and guide us through challenges. 

This level of dedication, coupled with her patience, has not only facilitated my academic growth 

but also deeply influenced my approach to problem-solving and learning. Her unwavering support 

and the importance she places on being there for her students have influenced me tremendously. I 

am eternally grateful to work under her supervision. 

I also wish to express my sincere thanks to Dr. Ismail Uysal, my TA supervisor. His 

teachings have extended beyond the academic realm, imparting lessons on professionalism, the 

importance of going the extra mile, and the value of humility and support. It has been an honor 

both to learn from and work alongside him. 

Special thanks go to Dr. Nasir Ghani for his valuable insights and for serving on my thesis 

committee. His extensive experience in my field of study has greatly enriched this work. 

I am also indebted to the faculty of the Department of Electrical Engineering, especially 

Dr. Yasin Yilmaz, for his generous sharing of knowledge, and Dr. Zhixin Miao, for his advice and 

support throughout my Master's journey. 

Additionally, I would like to extend my gratitude to the members of Dr. Naeini's group: 

Hamed, for his considerable efforts and support throughout my learning journey; Naeem, Soumav, 



and Reza. Despite the brevity of our time together, the knowledge and insights I gained from each 

of them during our group meetings and discussions have been invaluable. 

My heartfelt appreciation extends to my friends in the United States who supported me at 

the beginning of my journey—Nader, Islam, Faisal, Abdulrahim, Abdulaziz, Verina, Nevine, 

Mark, Tony, Manal, and Ali, along with many others too numerous to mention—. Your support 

made navigating life in this new country possible. 

Finally, I am profoundly thankful to the U.S. State Department and the Fulbright Student 

Program for the opportunity and experience they offered me to study at the University of South 

Florida. 

And lastly, I am grateful to God, who has guided every step of my journey. 

 



i  

 

 

 

 

 

Table of Contents 

 
List of Tables ................................................................................................................................. iv 

 

List of Figures ................................................................................................................................. v 

 

Abstract .......................................................................................................................................... ix 

 

Chapter 1: Introduction ................................................................................................................... 1 

1.1 The Revolution of Smart Grids ..................................................................................... 1 

1.2 Monitoring and Situational Awareness in Smart Grids ................................................ 2 

1.2.1 Monitoring the Smart Grid............................................................................. 2 

1.2.2 Wide Area Situational Awareness and the Issue of Unobservability ............ 4 

1.2.3 PMU Optimum Placement to Maximize Observability ................................. 5 

1.2.4 Power System State Estimation ..................................................................... 5 

1.3 Overview of Cyber-Physical Attacks on Smart Grids .................................................. 6 

1.4 Research Motivation and Questions ............................................................................. 8 

1.5 Contributions and Thesis Organization ........................................................................ 9 

 

Chapter 2: Literature and Review of Key Concepts ..................................................................... 12 

2.1 Time Series Analysis Using Deep Neural Network ................................................... 12 

2.2 State Estimation .......................................................................................................... 15 

2.2.1 Classical State Estimation ............................................................................ 16 

2.2.2 Data-Driven State Estimation ...................................................................... 17 

2.3 Data-Driven Attack Detection and Localization ......................................................... 19 

2.3.1 Unsupervised Models................................................................................... 20 

2.3.2 Supervised Models ....................................................................................... 22 

2.4 Optimal PMU Placement ............................................................................................ 24 

 

Chapter 3: Methodology, Dataset, and Attack Model .................................................................. 26 

3.1 Methodology ............................................................................................................... 26 

3.2 Generation of the Nominal Dataset............................................................................. 29 

3.3 FDIA Modeling ........................................................................................................... 32 

3.4 Evaluation Metrics ...................................................................................................... 35 

3.4.1 State Estimation Evaluation Metric ............................................................. 35 

3.4.2 Detection and Localization Metrics ............................................................. 36 

3.5 System Configuration and Software Tools ................................................................. 38 

 

Chapter 4: State Estimation Models ............................................................................................. 39 

4.1 LSTM and GRU Models ............................................................................................. 40 

4.2 Stacked LSTM and GRU Models ............................................................................... 43 



ii  

4.3 Hybrid Stacked Model ................................................................................................ 44 

4.4 Results and Discussions .............................................................................................. 45 

 

Chapter 5: Attack Detection and Localization Models ................................................................. 51 

5.1 Unsupervised Model ................................................................................................... 51 

5.1.1 SE-Based Models ......................................................................................... 52 

5.1.2 Non-SE-Based Models................................................................................. 55 

5.2 Supervised Models ...................................................................................................... 57 

5.3 Results and Discussion ............................................................................................... 59 

5.3.1 Unsupervised Models Results ...................................................................... 60 

5.3.2 Supervised Model Results ........................................................................... 62 

 

Chapter 6: Experimental Evaluation of Effects of Unobservability ............................................. 64 

6.1 Experiment Based on Unsupervised Model. ............................................................... 64 

6.1.1 Experiment 1: The Effect of Number of Unobservable Buses on                

the Detection and Localization Large Intensity Attack .................................. 64 

6.1.2 Experiment 2: The Effect of Number of Unobservable Buses on                

the Detection and Localization Low Intensity Attack .................................... 67 

6.1.3 Experiment 3: Testing the Optimal PMU Placement Strategies               

under the Detection and Localization Model High Intensity Attack .............. 70 

6.1.4 Experiment 4: Testing the Optimal PMU Placement Strategies               

under the Detection and Localization Model Low Intensity Attack. .............. 72 

6.1.5 Experiment 5: Assessing Detection and Localization with           

Sequentially Unobservable Buses – One at a Time. ....................................... 74 

6.1.6 Experiment 6: Effect of Unobservability of Large Regions on                    

the Detection and Localization Performance .................................................. 76 

6.1.7 Experiment 7: Effect of Unobservable Clustered PMUs on the         

Detection and Localization Performance ........................................................ 78 

6.2 Experiment Based on Supervised Model .................................................................... 81 

6.2.1 Experiment 1: The Effect of Number of Unobservable Buses on                

the Detection Large Intensity Attack .............................................................. 82 

6.2.2 Experiment 2: The Effect of Number of Unobservable Buses on                

the Detection Low Intensity Attack ................................................................ 83 

6.2.3 Experiment 3: Testing the Optimal PMU Placement Strategies                 

with Detection High Intensity Attack ............................................................. 84 

6.2.4 Experiment 4: Testing the Optimal PMU Placement Strategies                 

with Detection Low Intensity Attack .............................................................. 85 

6.2.5 Experiment 5: Assessing Detection with Sequentially                

Unobservable Buses – One at a Time ............................................................. 87 

6.2.6 Experiment 6: Effect of Unobservability of Large Regions on                    

the Detection Performance .............................................................................. 88 

6.2.7 Experiment 7: Effect of Unobservable Clustered PMUs on the         

Detection Performance.................................................................................... 89 

6.3 Experiments Conclusions and Remarks...................................................................... 89 

 

 



iii  

Chapter 7: Conclusions and Future Work ..................................................................................... 91 

7.1 Conclusions ................................................................................................................. 91 

7.2 Future Work ................................................................................................................ 92 

 

References ..................................................................................................................................... 94 

 

Appendix A: Copyright Permissions .......................................................................................... 106 
 



iv  

 

 

 

 

 

List of Tables 

 

Table 3.1         FDIA simulation parameters. ................................................................................ 34 
 

Table 3.2         Ratio of the attacked buses and time instances to all instances across the       

testing set. ............................................................................................................. 35 
 

Table 4.1         The parameters being used while developing the various models. ....................... 42 
 

Table 4.2         Performance of SE under no-attacks scenario ...................................................... 46 
 

Table 4.3         Performance of SE under attack scenario where 𝑥′ =0.04 p.u and A=10 ............. 46 
 

Table 5.1         Performance of unsupervised models. .................................................................. 60 
 

Table 5.2         Performance of supervised models ....................................................................... 62 
 

Table 6.1         Detection threshold variation for A=2 under 𝑥′=0.004. ....................................... 69 
 

Table 6.2         Optimal PMU placement strategies adopted from [84]. ....................................... 71 
 

Table 6.3         PMUs for each of the five regions used for distributed state estimation       

adopted from [7]. .................................................................................................. 77 
 

Table 6.4         PMUs in each cluster in Experiment 7. ................................................................ 79 



v 

 

 

 

 

 

 

 

List of Figures 
 

Figure 1.1       Smart grid components. ........................................................................................... 2 
 

Figure 1.2       Physical and communication layers in smart grids ................................................. 3 
 

Figure 2.1       LSTM cell. ............................................................................................................. 14 
 

Figure 3.1       Flowchart of the methodology presented in this thesis. ........................................ 28 
 

Figure 3.2       The IEEE 118 bus system physical topology. ....................................................... 30 
 

Figure 3.3       Heat map of correlation between the buses. .......................................................... 31 
 

Figure 3.4       Hourly real power values for Bus 1 during December 2019 in the IEEE             

118 bus system. ......................................................................................................31 
 

Figure 3.5       Hourly aggregation of the real power values for bus index 1 in the IEEE            

118 bus system. ..................................................................................................... 32 
 

Figure 4.1       Dataset input structure for LSTM.......................................................................... 41 
 

Figure 4.2       LSTM cell unfolding for sequential training.. ....................................................... 41 
 

Figure 4.3       LSTM model structure with a single sequence as input. ....................................... 43 
 

Figure 4.4       Stacked GRU model structure. .............................................................................. 44 
 

Figure 4.5       Hybrid stacked model structure. ............................................................................ 44 
 

Figure 4.6       Comparison of R2 score of the proposed models under no attack scenario. ......... 46 
 

Figure 4.7       Comparison of R2 score of the proposed models under attack scenario,          

where 𝑥′=0.04, p.u and A=10  ............................................................................... 47 
 

Figure 4.8       Training time in minutes of the models. ................................................................ 48 
 

Figure 4.9       The predictions vs. actual real power values for bus 1 .......................................... 49 
 

Figure 4.10     Global MSE under different attack intensities. ..................................................... 49 
 

Figure 4.11     MSE of the unobservable buses under different attack intensities. ....................... 50 
 



vi 

 

 

Figure 5.1       Histogram of detection MSE for the training data using the LSTM model. ......... 53 
 

Figure 5.2       Histogram of detection MSE for the testing data using the LSTM model. ........... 53 
 

Figure 5.3       Histogram of localization MSE for the training data using LSTM model. ........... 54 
 

Figure 5.4       Histogram of localization MSE for the testing data using LSTM model. ............. 54 
 

Figure 5.5       Architecture of LSTM autoencoders. .................................................................... 55 
 

Figure 5.6       LSTM-OCSVM model. ......................................................................................... 57 
 

Figure 5.7       Supervised stacked GRU model. ........................................................................... 58 
 

Figure 5.8       BiLSTM model architecture. ................................................................................. 59 
 

Figure 5.9       CNN-GRU architecture. ........................................................................................ 59 
 

Figure 5.10     F1 score of the unsupervised models for attack detection and localization. ......... 61 
 

Figure 5.11     Accuracy of the unsupervised models for attack detection and localization. ........ 61 
 

Figure 5.12     Localization threshold vs. F1 score under x'=0.004, and A=10 ............................ 62 
 

Figure 5.13     F1 and accuracy scores for the supervised models. ............................................... 63 
 

Figure 5.14     Average training time for the supervised models. ................................................. 63 
 

Figure 6.1       The effect of number of unobservable buses k on SE performance with       

𝑥′=0.04 under the unsupervised model ................................................................. 65 
 

Figure 6.2       The effect of number of unobservable buses k on detection and              

localization performance with 𝑥′=0.04 under the unsupervised model ................ 66 
 

Figure 6.3       The effect of number of unobservable buses k on SE performance with     

𝑥′=0.004 under the unsupervised model. .............................................................. 67 
 

Figure 6.4       The effect of number of unobservable buses k on detection and              

localization performance with 𝑥′=0.004 under the unsupervised model .............. 68 
 

Figure 6.5       The effect of number of attacked buses A on SE performance with                        

𝑥′ =0.04 for the three placement strategies under the unsupervised model  ......... 71 
 

Figure 6.6       The effect of number of attacked buses A on detection and localization 

performance with 𝑥′ =0.04 for the three placement strategies under the    

unsupervised model .............................................................................................. 72 
 

 



vii 

 

 

Figure 6.7       The effect of number of attacked buses A on SE performance with                        

𝑥′=0.004 for the three placement strategies. ......................................................... 73 
 

Figure 6.8       The effect of number of attacked buses A on detection and localization 

performance with 𝑥′  =0.004 for the three placement strategies under the 

unsupervised model .............................................................................................. 73 
 

Figure 6.9       Detection performance across the 118 buses under the unsupervised              

model with each bus being unobserved one at a time ........................................... 75 
 

Figure 6.10     The five distributed SE regions - based on the region definition adopted             

from [7]. ................................................................................................................ 77 
 

Figure 6.11     The impact of lack of observability on large defined regions on the           

detection and localization performance with high and low intensity                

attack under the unsupervised model .................................................................... 78 
 

Figure 6.12     The clusters adopted in experiment 7. ................................................................... 79 
 

Figure 6.13     The impact of unobservable clustered PMUs on the detection and          

localization performance with high and low intensity attack under the 

unsupervised model .............................................................................................. 81 
 

Figure 6.14     The effect of number of unobservable buses k on SE performance with        

𝑥′=0.04 under the supervised model. .................................................................... 82 
 

Figure 6.15     The effect of number of unobservable buses k on detection and              

localization performance with 𝑥′=0.04 under the supervised model .................... 82 
 

Figure 6.16     The effect of number of unobservable buses k on SE performance with      

𝑥′=0.004 under the supervised model ................................................................... 83 
 

Figure 6.17     The effect of number of unobservable buses k on detection and              

localization performance with 𝑥′=0.004 under the supervised model. ................. 84 
 

Figure 6.18     The effect of number of attacked buses A on SE performance with                        

𝑥′ =0.04 for the three placement strategies under the supervised model .............. 85 
 

Figure 6.19     The effect of number of attacked buses A on detection performance under            

𝑥′ =0.04 for the three placement strategies ........................................................... 85 
 

Figure 6.20     The effect of number of attacked buses A on SE performance with                        

𝑥′=0.004 for the three placement strategies under the supervised model ............. 86 
 

Figure 6.21     The effect of number of attacked buses A on detection performance under            

𝑥′=0.004 for the three placement strategies under the supervised model ............. 86 
 

 



viii 

 

 

Figure 6.22     Detection performance across the 118 buses under the supervised model            

with each bus being unobserved one at a time ...................................................... 87 
 

Figure 6.23     The impact of lack of observability on large defined regions on the            

detection performance with high and low intensity attacks under the       

supervised models ................................................................................................. 88 
 

Figure 6.24     The impact of the number of unobservable clustered PMUs on the             

detection performance with high and low intensity attacks under the        

supervised model. ................................................................................................. 89 
 

  



ix 

 

 

 

 

 

 

 
Abstract 

 

In an era increasingly marked by sophisticated cyber-attacks, this thesis investigates the 

critical issue of bus unobservability in smart grids and its impact on the effectiveness of cyber-

attack detection and localization models. Given that unobservability is a prevalent challenge in 

smart grids due to various factors, researchers have developed numerous algorithms for optimal 

Phasor Measurement Unit (PMU) placement under scenarios of limited observability. However, 

these models primarily focus on enhancing network observability, often without considering 

whether this placement optimally facilitates attack detection. This research is driven by the 

hypothesis that a deeper understanding of the effects of unobservable buses can inform more 

effective PMU deployment strategies, thereby bolstering the grid's defenses against cyber-attacks.  

The research is structured to first provide a comprehensive review of existing state 

estimation, detection, and localization models, emphasizing data-driven temporal analysis 

methods. It then delves into an in-depth experimental evaluation to assess how unobservability 

influences the accuracy and reliability of these models. The insights from these experiments are 

intended to inform utilities about the potential impacts of network unobservability on cyber-attack 

detection, contributing to a broader understanding that may support future PMU placement 

strategies. 

The principal finding of this thesis is the identification of a direct correlation between the 

number of unobservable buses and the efficiency of attack detection and localization performance. 

As the count of unobservable buses escalates, there is a noticeable decline in the performance of 

both state estimation and detection and localization models. Accordingly, this study proposes an 



x 

 

 

estimated threshold for the number of PMUs required to maintain model effectiveness before a 

critical decline in performance occurs. Moreover, the research delineates that certain buses exert a 

more significant influence on detection and localization outcomes than others, suggesting that 

strategic placement of PMUs at these buses can enhance detection capabilities. Additionally, this 

thesis evaluates the efficacy of detection and localization models under various common PMU 

placement strategies, concluding that, despite an increase in system observability, these strategies 

may not optimally support attack detection. The impact of clustered unobservability on detection 

models is also explored, providing insights into how it affects model performance. 

In summary, this thesis provides a focused examination of how bus unobservability impacts 

the detection and localization of cyber-attacks in smart grids. It highlights the importance of 

strategic PMU placement as a critical factor in enhancing grid security. This work underscores the 

necessity for ongoing research in the face of evolving cyber threats, aiming to safeguard critical 

energy infrastructure effectively. 
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                                                         Chapter 1: Introduction 

1.1 The Revolution of Smart Grids 

The transition towards smart grids marks a significant paradigm shift in the evolution of 

power systems, driven by the need to address modern challenges such as energy efficiency, 

reliability, and the seamless integration of renewable resources. Smart grids epitomize an advanced 

infrastructure that elevates control and monitoring capabilities through sophisticated digital 

technology, resulting in substantial improvements over traditional grids. In stark contrast to the 

latter, which are limited by unidirectional communication and static management, smart grids are 

characterized by their dynamic bidirectional energy flows and the proactive engagement of 

consumers in both energy production and consumption. This transformative shift is essential for 

the effective incorporation of distributed energy resources, including renewables, thus enhancing 

the grid's resilience to outages and cyber-attacks. The intrinsic value of smart grids is amplified by 

their flexibility to accommodate diverse power source structures, significantly reducing the 

likelihood of widespread blackouts and augmenting the overall economic efficiency of power 

supply by curtailing costs, minimizing energy consumption, and decreasing emissions [1-2]. 

For instance, the smart grid encompasses a variety of components as illustrated in Figure 

1.1. Moving beyond the traditional linear system of generation, transmission, and distribution to 

the end-user, the smart grid paradigm introduces bidirectional power flow, integrating an array of 

Distributed Energy Resources (DERs), microgrids, and electric vehicles. It empowers utilities to 

monitor and manage the system with greater efficiency, thereby reducing energy waste and 

enhancing economic value through initiatives like demand response programs. This complex 
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system is underpinned by a robust communication network, essential for coordinating the diverse 

elements within the smart grid architecture and ensuring optimal performance. Such a 

sophisticated communication system results in introducing new threats and challenges in smart 

grids [3].  

Figure 1.1 Smart grid components. From “Smart grid governance: An international review of 

evolving policy issues and innovations,” by M.A. Brown, S. Zhou, & M. Ahmadi, 2018, WIREs 

Energy and Environment, e290. Used with permission [3]. 

1.2 Monitoring and Situational Awareness in Smart Grids 

1.2.1 Monitoring the Smart Grid  

In smart grids, the convergence of advanced communication technologies, such as 

wireless networks, fiber optics, and Internet Protocols (IP), with critical infrastructure components 

like sensors, smart meters, and PMUs forms the backbone for efficient, reliable, and secure 

electricity management. This integration facilitates two-way communication between the grid's 

operational components and the control center, enabling real-time data exchange and control 

actions. Advanced Metering Infrastructure (AMI) and Supervisory Control and Data Acquisition 
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(SCADA) systems play pivotal roles in collecting and managing data, respectively. AMI offers 

detailed monitoring of energy usage at the consumer level, while SCADA ensures centralized 

control over the grid's operational components. This seamless data flow from generation sources 

to data centers, supported by a robust communication framework, is crucial for optimizing grid 

performance, integrating distributed energy resources, and enhancing resilience against 

disruptions, thereby ensuring the grid's overall responsiveness and resilience.  

Figure 1.2 illustrates the intricate mesh of communication and physical systems within the 

smart grid [4]. On the customer end, Smart Meters equipped with AMI enable detailed usage 

monitoring. The transmission and generation sectors utilize PMUs and Remote Terminal Units 

(RTUs) to ensure connectivity of transmission devices. Centralized monitoring and control are 

achieved through systems such as SCADA, ADMS (Advanced Distribution Management System), 

EMS (Energy Management Systems), and DERMS (Distributed Energy Resources Management 

Systems) housed within the control center. These systems work in concert to optimize grid 

Figure 1.2 Physical and communication layers in smart grids. From “A survey on smart metering 

and smart grid communication,” by Y. Kabalci, 2016, Energy Reviews, 57, pp. 302–318. Used 

with permission [4].
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performance and reliability, providing a comprehensive overview and real-time management 

capabilities across the smart grid. 

1.2.2 Wide Area Situational Awareness and the Issue of Unobservability 

As the smart grid becomes more and more equipped with robust communication layers, 

Wide-Area Situational Awareness (WASA) in smart grids is becoming essential for real-time 

system monitoring and management. WASA's effectiveness is heavily dependent on the 

observability of the network, which is challenged by several factors. The cost considerations for 

the implementation of PMUs in smart grids cannot be overlooked. While PMUs are fundamental 

to enhancing WASA and achieving network observability, the financial burden they impose is 

significant. The expenses extend beyond the PMU devices themselves to include the cost of Phasor 

Data Concentrators (PDCs), the necessary communication infrastructure, the modernization of 

older substations to ensure compatibility, and the management of the resulting big data. These 

economic factors make widespread PMU deployment a challenging proposition, despite the 

potential benefits for smart grid monitoring and management [5]. However, even equipping a 

system fully with PMUs does not guarantee complete observability. Studies indicate that 

approximately 10 to 17% of PMUs installed in North America experience quality problems that 

could lead to conditions of unobservability due to data loss. These quality issues often stem from 

hardware failures, communication congestion, and delays or losses in data transmission [6]. 

Moreover, the grid's partial unobservability can also result from cybersecurity threats, such as 

Denial of Service (DoS) attacks. A DoS attack disrupts service by overwhelming the network with 

traffic or sending information that triggers a crash, thereby blocking legitimate network traffic and 

potentially leading to data unavailability from PMUs [7]. These reasons for unobservability present 

significant hurdles in maintaining the operational security and reliability of smart grids, 
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emphasizing the need for innovative solutions to enhance WASA capabilities; thus, increasing the 

reliability and security of the smart grids’ operation. 

1.2.3 PMU Optimum Placement to Maximize Observability 

To address the challenge of observability, the strategic placement of PMUs becomes 

critical. The optimum placement of these units is a complex problem that seeks to achieve 

maximum observability with the minimum number of PMUs, considering the constraints of 

budget, network topology, and the criticality of certain grid sections. Various algorithms and 

optimization techniques have been developed to identify the key locations where PMUs should be 

installed to ensure comprehensive monitoring and support the efficient operation of the grid by 

improving the state estimation of the system [8]. The techniques utilized for optimizing PMU 

placement have been widely reviewed in the literature [5,9]. This research will further examine 

some of these techniques in Section 2.4. 

1.2.4 Power System State Estimation 

State estimation is a vital process in smart grid management, compensating for the 

inherent issue of unobservability by estimating the grid's state vectors, such as voltages and phase 

angles, from the available measurements. This mathematical process uses algorithms to provide 

the most probable snapshot of the grid's status, incorporating measurements from PMUs and other 

devices. State estimation enables grid operators to make informed decisions, optimize power flow, 

and enhance system stability by offering insights into the parts of the network that are not directly 

observable. It plays a crucial role in ensuring the reliability and security of the smart grid, 

particularly in the detection and localization of cybersecurity threats [10]. State estimation 

techniques range from traditional approaches to modern, data-driven methods, all of which have 

been extensively reviewed in the literature [11,12,13,14]. Section 2.2 will explore a range of 
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established traditional methods alongside some of the data-driven approaches that have been 

developed to address SE challenges. 

1.3 Overview of Cyber-Physical Attacks on Smart Grids 

 The smart grid's increased connectivity and complexity have exposed it to cyber threats, a 

vulnerability that has been exploited in various attacks over the years. The first documented cyber-

physical attack occurred in 1982, targeting pipeline control software in the Siberian wilderness, 

resulting in a massive explosion due to manipulated valve controls. In 2003, the Slammer worm 

disrupted the SCADA systems at the Davis-Besse nuclear power plant. A more sophisticated 

example was the Stuxnet worm in 2010, which targeted Iranian nuclear facilities, manipulating the 

SCADA systems to cause physical damage to uranium enrichment centrifuges [15]. 

The most well-known incident in the context of power systems was the 2015 cyberattack 

on Ukrainian power distribution companies, where a highly coordinated cyber-attack targeted the 

Ukrainian power grid, leading to extensive service outages that affected 225,000 customers and 

exemplifying the vulnerability of smart grids to sophisticated threats. The attackers demonstrated 

comprehensive capabilities, from initial spear-phishing campaigns to deploying variants of the 

BlackEnergy 3 malware, to gain entry into the information technology networks of the electricity 

companies. Once inside, they exhibited a deep understanding of both IT and operational 

technology environments, including the manipulation of Uninterruptible Power Supplies (UPS) 

and Human Machine Interfaces (HMI). Their actions culminated in the manual opening of breakers 

through SCADA systems, resulting in widespread and prolonged blackouts across multiple 

regions. The attack was further compounded by a simultaneous telephonic denial-of-service that 

overwhelmed the energy company's call center, preventing customers from reporting the outages 

and exacerbating the situation. The incident not only disrupted the immediate power supply but 
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also highlighted the potential long-term implications for smart grid security, emphasizing the need 

for robust protective strategies against such multi-vector cyber threats [16][17]. 

Further incidents of varying sophistication have since been documented, such as the Aurora 

generator attack, where hypothetical attackers desynchronized a generator from the grid by 

manipulating circuit breakers, potentially causing significant physical damage. Pricing attacks on 

smart grids have also been reported, where attackers manipulate price signals to create mismatches 

between generated and consumed power, leading to economic losses and power quality issues [15]. 

Furthermore, False Data Injection Attacks (FDIA) represent a broad category of cyber 

threats where attackers manipulate input data to deceive and disrupt system operations. By altering 

the information processed by systems, FDIA can compromise various functions across different 

sectors. In the context of power systems, these attacks are particularly concerning as they can 

mislead operational and control mechanisms. This misguidance may result in unstable system 

conditions or even precipitate a complete system collapse, especially when critical functions such 

as state estimation are targeted. 

Blind FDI attacks have emerged, where attackers, without explicit knowledge of the power 

grid's topology, use statistical methods to craft stealthy attack vectors that can go undetected while 

causing significant harm. Moreover, Load Redistribution (LR) attacks have been designed to 

manipulate load and line power flow measurements to create conditions for system overload and 

cascading failures [18]. 

Additionally, topology attacks - that are examples of FDIA- have been developed by 

manipulating the estimated topology state, such as switch and breaker states, to cause incorrect 

system operation. These historical incidents underscore the evolving landscape of cyber threats 

targeting smart grids and highlight the ongoing challenge of safeguarding critical infrastructure 
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against such malicious activities. Owing to the diverse nature of these attacks and the significant 

economic losses they can incur; numerous research initiatives have been undertaken to develop 

robust models aimed at detecting these threats which will be discussed further in Section 2.2. 

1.4 Research Motivation and Questions 

As delineated in preceding sections, cyber-attacks pose a significant threat, potentially 

leading to substantial economic and operational repercussions. Consequently, the development of 

detection models capable of identifying these threats is of paramount importance for researchers 

and engineers. Given the inherent nature of power grids, which include unobservable points due 

to the challenges outlined in Section 1.2, these detection models must be adept at navigating 

partially unobservable networks. However, while addressing the Optimal PMU Placement (OPP) 

challenge, the aspect of cyber-attack detection is often overlooked, with the primary focus being 

on enhancing network observability and state estimation accuracy within constrained budgets. 

To our knowledge, scant research has been directed towards optimizing PMU placement 

in the context of attack mitigation [20-21], with existing studies primarily aimed at preventing the 

initiation of attacks—a topic that will be explored in detail in the literature review (Chapter 2). 

Notably, there is a lack of comprehensive analysis on how unobservability impacts the 

effectiveness of detection and localization mechanisms in the event of an existing attack. 

This study seeks to address several pivotal questions, offering in-depth insights that could 

significantly inform PMU placement strategies. Among these questions are: How does 

unobservability influence the detection and localization of attacks? How many PMUs can remain 

unobservable before detection models become ineffective? How do the intensity of the attack and 

the number of targeted buses impact detection in a not fully observable network? Are there specific 

grid locations where unobservability detrimentally affects detection mechanisms? Do current 
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literature-proposed PMU placement strategies also optimize protection and enhance attack 

detection? Moreover, how do detection models behave when unobservable buses are either 

dispersed throughout the network or clustered in specific areas? 

This research aims to elucidate these inquiries through data-driven models, initially 

applying state estimation to discern the status of unobservable buses; thereafter, presenting a fully 

observable network to the detection model for attack identification and localization, or directly 

using the results from the State Estimation to identify the attacks. Subsequent chapters will delve 

into the mechanisms in greater detail. It is important to mention that while this thesis does not 

directly devise a PMU placement strategy, our findings are anticipated to offer valuable insights, 

aiding utilities in PMU deployment and refining their strategies to ensure comprehensive 

observability alongside cyber-attack detection and localization capabilities. 

1.5 Contributions and Thesis Organization 

This thesis contributes to the field of smart grid cybersecurity, with a particular focus on 

state estimation, detection, and localization of cyber-attacks in the context of PMU placement and 

grid observability. The contributions of this thesis are summarized as follows: 

• Comprehensive review and implementation of State Estimation model: This work provides

a thorough review and implementation of various data-driven models for state estimation

based on temporal analysis. For all the models, their performance will be assessed using

various evaluation metrics along with determining the computational efficiency of each

model.

• Comprehensive review and analysis of data-driven attack detection and localization

models: A detailed review and analysis of several detection and localization models are

presented, focusing on data-driven temporal approaches in both supervised and
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unsupervised frameworks. This analysis contributes to a deeper understanding of how these 

models can be effectively applied to identify and localize cyber-attacks within the smart 

grid infrastructure. 

• Experimental evaluation of bus unobservability impact: Through a series of comprehensive

experiments, this thesis investigates the impact of bus unobservability on the performance

of detection and localization models. It examines how the number of unobservable buses

affects detection accuracy, identifies critical points in the grid where PMUs are essential

for enhancing detection capabilities, and provides insights into optimal PMU placement

strategies. These experiments yield valuable recommendations for PMU placement, aiming

to improve smart grid security.

This thesis is organized as follows:

Chapter 2 (Literature Review) delves into the core concepts underpinning this thesis,

including state estimation, the detection and localization of FDIA, and strategies for PMU 

placement. It aims to provide a foundational understanding and contextual background for the 

study.  

Chapter 3 (Methodology, Dataset, and Attack Model) shows the approach utilized in this 

research, detailing the dataset employed, the mechanisms for generating FDIA cyber-attacks, and 

the metrics used to evaluate model performance.   

Chapter 4 (State Estimation Models) focuses on examining and evaluating various data-

driven models for state estimation based on temporal analysis. The goal is to identify the most 

effective model(s) for the dataset. 

Chapter 5 (Detection and Localization Models) presents an analysis of detection and 

localization models based on temporal data-driven approaches. Both supervised and unsupervised 
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frameworks are explored to ascertain the optimal models tailored to the dataset in use throughout 

utilizing various performance metrics. 

In Chapter 6 (Experimental Evaluation of Effects of Unobservability) extensive 

experiments are conducted to assess the impact of bus unobservability on the efficacy of state 

estimation and detection models. The findings from these experiments are expected to yield 

actionable insights regarding the optimal number and placement of PMUs to enhance detection 

capabilities.  

Finally, Chapter 7 (Conclusions and Future Work) summarizes the key findings of the 

thesis and proposes directions for future research to build upon the work presented. 
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Chapter 2: Literature and Review of Key Concepts 

This chapter embarks on a comprehensive exploration of the pivotal concepts underpinning 

this thesis, focusing on time-series analysis, state estimation, detection and localization of cyber 

threats, and placement strategies within smart grids. Each of these areas plays a crucial role in 

enhancing the security, reliability, and efficiency of smart grid operations, particularly in the 

context of defending against and mitigating the impacts of cyber-attacks. 

2.1 Time Series Analysis Using Deep Neural Network 

Anomaly and attack detection within infrastructures like smart grids inherently relies on 

time-series analysis due to the temporal relationships among measurements over time. This means 

that understanding the temporal patterns among various measurements is pivotal for enriching the 

learning process of Machine Learning (ML) models. By grasping these underlying connections, it 

becomes possible to enhance grid status forecasting, identify anomalies when typical time patterns 

are disrupted, and explore further applications. Therefore, the integration of Recurrent Neural 

Networks (RNNs) is indispensable for capturing these dependencies, as they are specifically 

designed to process sequential data, making them an essential tool for effectively analyzing and 

predicting based on the dynamic, time-sensitive nature of smart grid data. 

RNN networks were first introduced in [22-23]. The need for RNNs arises from the 

limitations of traditional Neural Networks (NNs) in processing sequential data. Unlike NNs, which 

assume data samples are independent, RNNs can handle sequences where there is a dependency 

between elements, such as speech, language, and time series. NNs struggle with capturing long-

range dependencies and cannot manage variable-length sequences effectively. Techniques, such 
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as fixed-size sliding windows, have limitations in capturing longer dependencies and adding noise. 

RNNs, by maintaining a state vector, can remember past information, allowing them to capture 

dependencies across time steps and handle variable-length sequences efficiently, overcoming the 

constraints of NNs [24].   

However, RNNs often struggle with long-term dependencies because of the vanishing 

gradient problem when applying back propagation, which makes them less effective for sequences 

where past information is crucial for understanding future states [25]. 

To overcome the issue of vanishing gradient difficulty with learning long-term 

dependencies in RNNs, Long Short-Term Memory (LSTM) was first introduced in 1997 [26]. 

Unlike RNNs, which struggle with retaining past information due to weight changes during 

learning, LSTM introduces a gating mechanism. This mechanism manages information flow 

within neurons, allowing for controlled memory behavior that captures both short-term and long-

term dependencies. The architecture includes forget and add gates, inversely linked to regulating 

memory capacity, mimicking the limited nature of human memory [27].  

The LSTM architecture features six key components -shown in Figure 2.1 and represented 

by a set of equations 2.1 each with a specific function in processing sequential data:  

• Input: Integrates current input 𝒙𝑡 and previous output 𝒉(𝑡−1) , processed through a tanh

function to generate 𝑪

• Input Gate: Determines the relevance of new information to be added to the memory cell

by processing 𝒙𝑡and 𝒉(𝑡−1)   and applying a sigmoid Function.

• Forget Gate: Decides which information to discard from the cell state, aiding in managing

the memory’s relevance across different sequences.
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• Memory Cell: Holds the LSTM's internal state, updating with relevant inputs while

discarding outdated information.

• Output Gate: Controls the information to be output from the LSTM unit by filtering the

cell state.

• Output: Produces the LSTM unit's final output, blending the cell state with the output gate's

decision

𝒊𝑡 = 𝜎(𝑾𝑖𝑥𝒙𝑡 + 𝑾𝑖ℎ𝒉𝑡−1 + 𝒃𝑖)

𝒇𝑡 = 𝜎(𝑾𝑓𝑥𝒙𝑡 + 𝑾𝑓ℎ𝒉𝑡−1 + 𝒃𝒇)

𝒐𝒕 = 𝜎(𝑾𝒐𝒙𝒙𝑡 + 𝑾oh 𝒉
𝑡−1 + 𝒃𝒐)

�̃� = tanh (𝑾𝑪�̃�𝒙𝑡 + 𝑾𝑪�̃�𝒉𝑡−1 + 𝒃�̃�)

𝑪𝒕 = 𝒊𝒕 ⊙ �̃�𝑡 + 𝒇𝒕 ⊙ 𝑪𝒕−1

𝒉𝒕 = tanh (𝑪𝒕) ⊙ 𝒐𝒕

(2.1) 

where 𝑊𝑖𝑥, 𝑊𝑖ℎ, 𝑊𝑓𝑥, 𝑊𝑓ℎ, 𝑊𝑜𝑥, 𝑊𝑜ℎ, 𝑊𝐶�̃�, 𝑊𝐶ℎ̃ represent the weights; and 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 , 𝑏�̃�  represent

the bias vector [28].  

Figure 2.1 LSTM cell. From “Spatio-temporal data-driven detection of false data injection attacks 

in power distribution systems,” by A.S. Musleh, G. Chen, Z.Y. Dong, C. Wang, & S. Chen, 2023, 

Electrical Power and Energy Systems, 145(108612). Used with permission [28]. 
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The LSTM architecture, as explained, has proven to be very effective when dealing with 

prediction in time series. Thus, it is a basic building block of all the models that are discussed in 

this study.  

A simpler version of the LSTM cell - The Gated Recurrent Unit (GRU) cell – was 

introduced later. GRU is an evolution of the LSTM designed to adaptively capture dependencies 

of different time scales. GRUs simplify the LSTM architecture by using fewer parameters with 

just two gates: update and reset. The update gate helps the GRU determine how much of the past 

information needs to be passed along to the future, and the reset gate defines how much of the past 

information to forget. These mechanisms allow GRUs to efficiently manage information flow 

throughout the network, balancing between memory retention and forgetting. This streamlined 

structure enables GRUs to achieve performance on par with LSTMs, often with faster training 

times due to their reduced complexity [29]. GRU is also frequently used in the models adopted in 

this thesis.   

2.2 State Estimation 

State estimation is a key aspect of smart grids, vital for wide-area monitoring. It directly 

impacts crucial functions within the grid. Traditional methods of state estimation, reliant on 

accurate system models, can falter due to model inaccuracies. Thus, data-driven state estimation 

has emerged, leveraging the abundance of data in energy systems. Despite its advantages, it 

confronts challenges like data handling and sensor inaccuracies. Addressing these issues is 

essential to enhance power system reliability and security. This section will review classical and 

contemporary data-driven state estimation techniques. Incorporating such machine learning and 

advanced algorithms, these contemporary techniques offer potential solutions to overcome 

traditional limitations that don’t depend on the physical dynamic network topology. 
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2.2.1 Classical State Estimation 

 Conventional State Estimation (SE) in power systems is a pivotal process that provides 

operators with the best estimate of the system's state variables, typically voltages and phase angles, 

based on redundant and noisy measurements. It employs mathematical models to represent the 

physical behavior of the power grid, allowing for the optimization of power flow and ensuring grid 

stability. Traditional SE methods are model-based, relying heavily on the accuracy of the network 

model and the measurements from various sensors across the system [11]. 

 Traditional SE tackles this by formulating an over-determined system of nonlinear 

equations, usually approached as an optimization problem. The fundamental equation for SE is 

𝑧 = ℎ(𝑦) + 𝑒 where z represents the measurement vector, 𝑦 is is the state vector, h(y) is the 

nonlinear function mapping system states to measurements, and e encapsulates measurement 

errors [20]. 

A very common example is the DC state estimation, where only real power flows are 

considered, ignoring reactive power and losses. The real power flow between buses i and j is 

described by equation 2.2: 

                                             𝑃𝑖𝑗 =
𝑋𝑖𝑗

(𝜃𝑖−𝜃𝑗)
                                                (2.2) 

and the power injection at bus i is 𝑃𝑖 = ∑(𝑗 ∈ 𝑁𝑖)  𝑃𝑖𝑗  where 𝑁𝑖 is the set of buses connected to bus 

i and 𝑋 is the line admittance. Then the fundamental SE equation 𝑧 = ℎ(𝑦) + 𝑒, to solve for the 

state vector using methods such as Weighted Least Squares (WLS), which minimizes the following 

objective function in equation 2.3. 

                                         𝐽(𝑦) = (𝑧 − 𝐻�̂�)𝑇𝑅−1(𝑧 − 𝐻�̂�)                                          (2.3) 

Now, if the attacker was able to launch an attack vector “a”, a manipulated measurement 

vector will be received at the estimator end: 𝑍𝑎 = 𝑍 + 𝑎; now the estimator will estimate a new 
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malicious vector: �̂�𝑚𝑎𝑙 = �̂� + c Where c is the error associated with the given malicious vector.  

The estimator then can detect an attack if  ∥ 𝑧 − 𝐻�̂� ∥2< 𝜏; where τ is a predetermined threshold 

[30]. 

 Further, the work presented in [31] provides a comprehensive examination of various SE 

methodologies tailored for distribution systems. The work explores three SE algorithms: the WLS 

explained above, the Weighted Least Absolute Value (WLAV), and the Schweppe Huber 

Generalized M-estimator (SHGM). The difference between the three methods can be summarized 

as follows:  

• WLS is the most common approach, where the objective is to minimize the squared 

differences between measured and estimated values, adjusted by the measurement's error 

variances. This method assumes measurement errors are Gaussian and statistically 

independent. 

• WLAV aims to minimize the absolute differences between measured and estimated values. 

This method is less sensitive to outliers compared to WLS, providing a robust alternative 

by not squaring the residuals, thus not amplifying the effect of large errors. 

• SHGM further enhances robustness against outliers by applying a weighting function to 

the residuals, which can adapt based on the residual size, reducing the influence of 

significant outliers. 

2.2.2 Data-Driven State Estimation 

Data-driven state estimation represents a significant shift from traditional model-based 

approaches, leveraging the wealth of data generated by modern power systems to enhance grid 

monitoring and operational efficiency. Unlike classical methods that rely on predefined system 

models, data-driven techniques employ advanced algorithms and machine learning to infer the 
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grid's state directly from data. This approach offers the potential to overcome limitations related 

to inaccurate or incomplete models, providing a more flexible and adaptive framework for 

managing the complexities of contemporary and future energy systems [10]. 

While there are ML and statistical-based models that tackle the state estimation problem 

such as ARMA method, Kalman filter, and Bayesian approach [7,32,33], Artificial Neural 

Networks models [34] become more popular due to the large volume of available data as more 

PMUs and smart meters are being incorporated into the grids, and ANN’s ability to capture non-

linear dynamics which is a limitation in the machine learning models [35]. 

Most of the work that is based on ANN considers the temporal analysis of the data. The 

work in [36] employs model-specific deep neural networks (DNNs) unrolled from iterative solvers 

for real-time state estimation, alongside deep RNNs for forecasting. This dual approach leverages 

historical voltage time series to predict future states, significantly improving performance over 

traditional methods. Further, [37] presents a scalable distribution systems state estimation 

approach using LSTM networks as surrogate models to enhance computational efficiency. It 

leverages LSTM's ability to capture temporal correlations between consecutive states and uses an 

autoencoder to reduce input dimensionality, thereby improving scalability and computational 

speed. This method significantly accelerates state estimation convergence in large systems. 

Moreover, the authors in [38] present a data-driven real-time SE model using deep ensemble 

learning. This approach incorporates dense Residual Neural Networks (ResNetD) as base-learners 

and a multivariate-linear regressor as the meta-learner. The model addresses challenges such as 

incomplete data sets by forecasting system states during instances of missing measurements, 

thereby enhancing the reliability and accuracy of SE in dynamic and uncertain operating 

conditions.  
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Finally, graph-based models are becoming more popular in analyzing state estimation 

problems because of their ability to capture spatial relationships between the buses. These models 

use a graph framework to model the grid, allowing for a more intuitive and efficient analysis of 

network topology. By representing buses as nodes and transmission lines as edges, graph-based 

approaches facilitate the identification of critical network components and paths and capture the 

interactions among the components of the system in the model [39]. The performance of the GNN 

(Graph Neural Networks) models is even enhanced when also considering the temporal dimension 

during training as implemented in [40]. This approach presents a TGCN (Temporal Graph 

Convolution Network) which combines the topological structure capturing capability of G-CNNs 

with the dynamic variation handling of gated recurrent units for improved SE accuracy. 

In this study, the focus will be on temporal dynamics for state estimation, specifically 

leveraging the LSTM models, renowned for their effectiveness in processing time-series data. 

2.3 Data-Driven Attack Detection and Localization  

Data-driven detection algorithms for FDIA in smart grids are characterized by their 

independence from system models and parameters. According to [41], these model-free 

approaches are categorized into three main types based on their data usage: machine learning 

algorithms, data mining algorithms, and other algorithms that neither learn from data nor mine it 

for patterns. In this review, the focus is only on the machine learning-based models, and according 

to the same resource, the ML models can be classified into three categories: Supervised (labels are 

provided during training), Unsupervised (no labels are provided during the training), and 

Reinforcement learning models. It must be clear that the reliance on historical data is a defining 

aspect of ML techniques, as it is crucial for training the models to perform the required tasks. This 

dependency enables the algorithm to learn and make predictions or decisions based on past system 
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behavior. In the following review, the machine learning unsupervised and supervised models will 

be reviewed. 

2.3.1 Unsupervised Models 

In unsupervised learning, machines analyze unlabeled data to uncover hidden patterns and 

classifications. This method autonomously groups data points based on their intrinsic 

characteristics, which is particularly useful in detecting FDIA in smart grids, as these anomalies 

typically form distinct clusters separate from normal operational data. Unsupervised models excel 

in anomaly detection because they are trained on normal data—assumed attack-free—allowing 

them to identify deviations during testing as potential anomalies, given the absence of predefined 

attack labels. Therefore, these models are considered more agile to handle different types of attacks 

[42]. 

Since anomalies are usually rare [43] and mostly continuous [44], utilizing recurrent units 

like LSTM and GRU is very efficient in capturing anomaly behavior, and differentiating them 

from the normal data. According to [45] the models based on including RNN units can be classified 

into three categories: Prediction-based models, Autoencoders-based models, and hybrid models.   

The basic idea behind prediction-based models, as implemented in various works such as 

[46-49] is comparing actual values against model forecasts. Simple methods might use a window-

based approach to predict future values through statistical measures such as the median, and then 

flag deviations beyond a set threshold as anomalies [47]. More sophisticated techniques involve 

creating temporal models that predict the next value in a sequence. Anomalies are identified when 

observed values significantly diverge from these predictions, indicating unexpected behavior 

within the data. Thus, the prediction error is high enough to confirm the presence of anomalies in 

the network. 
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Various architectures have been implemented based on RNN units for more robust 

prediction.  The work presented in [50] utilizes a single-layer LSTM for predictions, where a 

prediction error exceeding a certain limit signals a potential anomaly. A circular array records 

recent prediction errors to calculate two metrics: the percentage of anomalies and the sum of 

prediction errors. When both metrics surpass predefined thresholds, the corresponding sequence 

is classified as a collective anomaly, enabling the effective detection of irregular patterns in data 

sequences. In [51] the authors introduce a stacked LSTM model for identifying irregularities in 

time series data, distinguishing itself from robust or denoising LSTM Autoencoders (AE), which 

will be reviewed later, by not relying on dimensionally reduced features for input. Instead, it 

identifies anomalies through the assessment of discrepancies between actual and predicted data, 

employing variance analysis to quantify deviations.  

The Autoencoder models are neural network approaches, by compressing input data into a 

lower-dimensional space and then reconstructing it, are adept at identifying anomalies through 

significant reconstruction errors. The novelty lies in their ability to discern complex, time-variant 

anomalies by learning normal system dynamics. This method's efficacy is enhanced by 

incorporating noise reduction and regularization techniques, allowing for robust detection of 

anomalies even in disturbed data, thereby setting a foundation for advanced anomaly detection in 

time-series data [52-53]. 

Some Variation based on AE models was introduced in Park’s work [54] which employs a 

probabilistic approach in both the encoding and decoding phases. This method translates input 

sequences into compressed, lower-dimensional representations and reconstructs them, focusing on 

significant features. Anomaly detection is executed through a log-likelihood ratio, assessing 

discrepancies between actual and reconstructed data. Finally, [55] introduced an enhanced 
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Seq2Seq LSTM network architecture for improved anomaly detection, featuring sparsely 

connected encoders and decoders with skip connections. These connections adjust based on input 

sequence information density, allowing for flexible cell state propagation. The architecture uses a 

shared copying layer for distributing a condensed feature vector, preventing overfitting, and 

enhancing generalization. The anomaly detection cost function aims to minimize reconstruction 

errors while incorporating a penalty term to manage information flow, optimizing anomaly 

detection performance. 

The third and final approach of the unsupervised models is using hybrid networks where 

different deep neural networks or ML models are combined. The work in [56] applies the 

integration of LSTM neural networks with a One-Class Support Vector Machine (OCSVM) for 

enhanced anomaly detection in time series data. By combining LSTM's ability to learn temporal 

dependencies with OCSVM's capability for identifying data points that deviate from the learned 

normal behavior, while in [57] they used an autoencoder network combined with the OCSVM and 

followed the same approach. The work in [58] introduces a method that combines Convolutional 

Neural Networks (CNN) and Long LSTM networks to enable multidimensional anomaly 

detection. By leveraging the efficient compression capabilities of CNNs for high-dimensional data, 

the method can extract dependencies across multiple dimensions. The classification process in this 

method is based on cross-entropy. 

2.3.2 Supervised Models 

In supervised learning, the model is trained with a dataset that includes input-output pairs, 

where the outputs are labels indicating the category (nominal or anomalous) of each instance. This 

means the model learns to predict the output for a given input based on examples provided during 

training. 
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The use of the regular FFN (Forward Networks) for FDIA detection was introduced in 

various works. For example, the work presented in [59] built a fully connected network, where 

there are 60 Neurons per layer with Softmax activation function, achieving detection accuracy of 

99% on the given dataset, surpassing the performance of regular ML models like SVM. 

Furthermore, the work in [60] introduces a technique that leverages FFN to concurrently execute 

distribution state estimation computations and identify FDIAs. Specifically, they utilize a single 

DNN model to carry out both regression and classification tasks, enabling simultaneous SE 

computation and FDIA detection. 

Nonetheless, combining the FFN networks with RNN networks usually yields better results 

due to RNNs abilities to store and capture dynamic temporal relations as discussed earlier [61-62]. 

Additionally, several models that integrate CNNs and RNNs within a supervised 

framework have demonstrated effective outcomes, such as the study where CNN-LSTM and CNN-

GRU were utilized [63]. By pairing RNN units to identify temporal patterns with CNN layers that 

use convolutional operations instead of conventional matrix multiplication, this approach 

effectively captures relational and dependent features, resulting in a robust detection mechanism. 

Also, [64] introduces an RNARXNN model which is a type of recurrent neural network that 

combines the features of Nonlinear AutoRegressive Exogenous Networks (NARX) with deep 

learning for time series forecasting. It incorporates both historical input and output data to predict 

future states. This model is structured to capture temporal dependencies and patterns within data, 

making it particularly effective for anomaly detection in time series data.  

Finally, as outlined in Section 2.2, graph-based models are gaining prominence due to their 

significant potential. These models can also be effectively applied to detect anomalies within 

graph-based topologies, such as smart grids. In related work, the authors have employed Temporal 
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Graph Neural Networks (TGNN) – essentially a Graph Neural Network that utilizes a message-

passing mechanism to discern the relationships between buses (nodes). This is coupled with a GRU 

unit to capture temporal dynamics, enabling the detection and localization of attacks with high 

precision, even when the attack intensity is low [65].  

In Chapter 4, implementation and testing of several of these models on our dataset will take 

place to determine the most suitable model for our problem and dataset structure. Similar to SE, 

all models under consideration are temporal-based. The objective is to characterize the effects of 

limited observability on the performance of such models. 

2.4 Optimal PMU Placement 

As previously discussed, the task of PMU placement poses significant challenges due to 

budget constraints and the goal of achieving maximal network observability. Numerous scholars 

have explored this problem, leading to the development of a range of algorithms designed to 

navigate these complexities. Below, some of these innovative approaches are highlighted: 

Integer Linear Programming (ILP) is a method used in OPP strategies aimed at minimizing 

the total number of PMUs required while guaranteeing the system's complete observability. 

Various ILP models have been devised, incorporating constraints such as zero injection buses and 

N-1 contingency scenarios to enhance the robustness of power system monitoring.

Heuristic algorithms such as Genetic Algorithms (GA) are a common method as well [67]. 

GAs are used for solving the OPP problem by mimicking the process of natural selection. These 

algorithms iteratively select, mutate, and crossover candidate solutions, efficiently navigating the 

search space to find near-optimal PMU configurations. 

Moreover, Particle Swarm Optimization (PSO) is recognized as a population-based 

stochastic optimization approach inspired by the social behaviors observed in bird flocking. A 
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PSO-based strategy for addressing the OPP issue within a particular power grid configuration is 

introduced [68]. This strategy has been rigorously tested and confirmed effective on IEEE 14, 30, 

and 68-bus systems and has been applied to a significant portion of the Brazilian power grid to 

verify its applicability [69]. 

However, as discussed, the primary aim of these algorithms is to maximize grid 

observability and optimize PMU placement for enhanced state estimation. It is noted that few 

studies specifically address placement strategies under the threat of attacks or faults. A novel 

contribution in this domain introduced a greedy algorithm focused on defending against data 

integrity attacks, notably FDIA, in the power grid. This approach involves estimating the minimal 

number of sensors vulnerable to compromise for a successful attack and then employing a greedy 

algorithm to strategically place PMUs to thwart these attacks [20]. A later work presented in [86] 

investigates the limits of fault localization using synchrophasor data in power grids, particularly 

in scenarios where the number of PMUs is insufficient for complete grid observability. The authors 

propose a statistical analysis method based on the Kullback-Leibler (KL) divergence between 

distributions corresponding to different fault location hypotheses, highlighting how fault locations 

tend to cluster around certain areas of the grid more closely connected to the actual fault site. This 

leads to a PMU placement strategy aimed at achieving near-optimal fault localization resolution 

with a limited number of sensors. 

As highlighted in Chapter 1, existing literature lacks a detailed analysis on the impact of 

unobservability during ongoing attacks, and primarily focuses on PMU placement to prevent the 

initiation of such attacks. Chapter 6 will shift the focus towards examining how PMU placement 

influences the detection capabilities when an attack is in progress, offering a new perspective on 

enhancing grid security by considering limited unobservable scenarios. 
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Chapter 3: Methodology, Dataset, and Attack Model 

This chapter is established as the groundwork for the subsequent chapters, where the actual 

implementation of the study will be explored. The methodology adopted in this thesis is outlined 

here to pave the way toward achieving the final goal of conducting a comprehensive experimental 

analysis of the effect of bus unobservability on the detection and localization model. Following 

this, an in-depth examination of the dataset used in the research will be provided, offering insights 

into its composition and relevance. Additionally, the FDIA model will be discussed in detail, with 

its significance within the context of the study being highlighted. The chapter concludes with a 

presentation of the evaluation metrics that were utilized to assess the performance of the models. 

Through this structured approach, it is aimed to prepare the reader for the comprehensive 

experiments and analyses that are conducted in the following chapters. 

3.1 Methodology 

To explore the influence of unobservability on detection models, various detection models 

were developed, adapting and modifying architectures from the literature to suit our specific 

problem. This thesis evaluates both supervised and unsupervised detection models, aiming to 

identify the most effective approach; nevertheless, both models will be used when conducting the 

unobservability experiments to study the commonalities and differences between the two different 

approaches.  

First, start by developing various models under the unsupervised model category. These 

models can be divided into 2 categories: 
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• State Estimation-Based Models: These include LSTM, GRU, Stacked LSTM, Stacked

GRU, and Hybrid Stacked models.

• Non-State Estimation-Based Models: This category comprises LSTM-Autoencoders and

LSTM-OCSVM models.

Chapter 5 will delve into the intricacies of these models. It is noteworthy that state

estimation-based models possess a distinct advantage over their non-state estimation counterparts, 

as they can function in scenarios with unobservable buses by estimating their readings. In contrast, 

non-state estimation-based models require full observability, necessitating a preliminary state 

estimation to approximate the readings of unobservable buses before data input into the detection 

model. 

Following the development of unsupervised models, our attention shifted towards creating 

supervised models, including Stacked LSTM, Stacked GRU, BiDirectional LSTM (BiLSTM)-

based, and CNN-LSTM models. Like the unsupervised non-state estimation models, these too are 

limited by the need for full observability, thereby requiring SE before data input. 

The state estimation models, initially paired with unsupervised state estimation-based 

models, are now solely tasked with estimating the state of unobservable buses. These estimated 

states, combined with the actual values for the observed buses, feed into the detection models. 

Figure 3.1 illustrates the process flow in this mechanism. The process starts with the 

application of state estimation, utilizing the most effective model, which will be detailed in Chapter 

4. The next step involves determining whether the training data are nominal (no attacks) or

anomalous, meaning they contain cyberattacks. If the training data are found to be nominal, 

unsupervised learning models are used for further analysis. In the case that these unsupervised 

models are based on state estimation, an attack is indicated if the prediction error exceeds a specific 
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threshold (τ). For models that do not use state estimation, attack detection hinges on whether the 

reconstruction error from LSTM-AE or the output from LSTM-OCSVM surpasses the threshold. 

Figure 3.1 Flowchart of the methodology presented in this thesis.

Should the training data contain attacks, supervised models are then utilized. The binary 

prediction outputs from the neural network will determine whether a given time instance is under 

attack.  These mechanisms will be discussed in depth in chapter 5. 

Notably, while the used supervised models can detect attacks, unsupervised models extend 

to attack localization. The challenge with supervised models in pinpointing attack locations lies in 

their need for additional data features for effective training. Specifically, they require multiple 
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features per bus, such as voltage angles, voltage magnitude, and real power, to achieve accurate 

predictions, which in turn, greatly increases computational demands. However, in this study—

especially considering the extensive number of experiments outlined in Chapter 6—only one 

feature (real power) is used during training to enhance computational efficiency. This decision is 

strategically made to facilitate a large volume of unobservability experiments while managing 

computational load effectively; thus, in this study, only unsupervised models are used for attack 

localization. 

Before delving into the details of the mentioned models and their performance, it's essential 

to shed some light on the dataset itself to grasp its structure. Following this, the methods used to 

model and introduce attacks into the developed dataset will be explored. 

3.2 Generation of the Nominal Dataset 

The system used in this study is the IEEE-118 bus system [70] which is a widely recognized 

test case in power systems engineering used for conducting research and simulations. The system 

comprises 118 buses, 186 branches (including transmission lines and transformers), and 54 

generators, making it a comprehensive model for studying the behavior of a large-scale power 

network. The IEEE 118 Bus System is often utilized for power flow analysis, stability studies, 

reliability assessment, and optimization algorithm testing. It provides a realistic and complex 

network structure, featuring a variety of load demands and generation capacities. Figure 3.2 shows 

a physical representation of the IEEE-118 Bus System. 

In this study, time-series data for the power system is generated through power flow 

simulations conducted on the IEEE 118 bus system using MATPOWER 7.1. These simulations 

incorporated a dynamic load profile, which records the load patterns provided by the New York 

Independent System Operator (NYISO) [71], as outlined in previous work [72]. 
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Figure 3.2 The IEEE 118 bus system physical topology. 

By solving the power flow equation at each time instance, state measurements such as 

active power, reactive power, voltage angles, and voltage magnitude were recorded. The used 

NYISO dataset contains the load profile over 1 month – December 2019- and was sampled at 0.033 

Hz (1 sample every 30 seconds), resulting of total 90210-time instances. For our analysis, the focus 

will be on real power as the primary feature of interest. Given the structure of our dataset, which 

encompasses 118 buses, each bus will be considered an individual feature within our model. This 

approach leads to the creation of a multivariate time series dataset, comprising 90,210 observations 

across 118 dimensions.  

To analyze the relationships and dependencies across the different buses, a heatmap is 

employed of the correlation matrix of the real power and voltage angles, utilizing the sklearn and 

seaborn libraries in Python [73] (refer to Figure 3.3).  

This visualization in Figure 3.3 illustrates the extent of correlation among the voltage 

angels’ values at various buses. It reveals a predominantly positive correlation, with correlation 

coefficients ranging between 0.9 and 1, indicating a strong interconnection among all buses. This 

observation suggests that the buses influence each other's behavior, with a notably stronger 
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correlation observed among adjacent buses compared to those further apart. Yet even the distant 

buses still have high correlation values. 

 

Figure 3.3 Heat map of correlation between the buses. 

To effectively visualize the temporal dynamics of the data, we graphed the real power 

values for Bus 1 across one month as shown in Figure 3.4. 

 

Figure 3.4 Hourly real power values for Bus 1 during December 2019 in the IEEE 118 bus system. 
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For enhanced clarity in the visualization, data points were aggregated on an hourly basis, 

thereby consolidating multiple samples into a single data point for each hour. This approach allows 

for a more coherent and simplified representation of trends over time. Figure 3.5 illustrates this 

analysis, showcasing how the real power at Bus 1 fluctuates throughout the observed month. 

Figure 3.5 Hourly aggregation of the real power values for bus index 1 in the IEEE 118 bus system. 

In concluding the discussion on data preparation, it's pertinent to highlight how the dataset 

was partitioned. In this work, 60% percent of the sequential data, amounting to 54,126 time 

samples, was allocated for training purposes. Validation and testing phases were allotted 15% and 

25% of the dataset, corresponding to 13,531- and 22,553-time samples, respectively. This 

segmentation ensures a comprehensive approach to model training, validation, and testing. This 

segmentation is used across all the models that will be discussed in Chapters 4 and 5. 

3.3 FDIA Modeling  

This section aims to introduce the attack model used to inject FDIA attacks on our nominal 

dataset described in 3.2.  The basic attack strategy of FDIA was briefly mentioned while reviewing 

the State Estimation in Section 2.2.1. The efficacy of traditional bad data detectors hinges on their 

ability to identify discrepancies between observed measurements Z, and those predicted by state 
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estimation �̂� based on a predefined threshold (τ).  This is quantified through the residue vector 𝑟 =

|𝑧 − ℎ(�̂�)|2 which, when surpassing τ, signals the presence of anomalous data. 

In the simulation of the FDIA used in this research, the approach from [74] is adopted. We- 

as the attackers- adept in FDIA methodologies engineering our data injections 𝑍𝑎 = 𝑍 + 𝑎 such 

that the residue resulting |𝑍𝑎 − h(�̂�)|2 remains below the detection threshold τ thus camouflaging 

the attack. To encapsulate this strategy within the broader framework of cyber-attacks, the attack 

vector is defined as shown in the below equation (3.1):  

                                            c(t) = x(𝑛𝐴, 𝑡) + (−1)𝑏𝑥′                                                 (3.1) 

where b ∈ 0,1, and |𝑥′| is deliberately kept minimal to ensure that the introduction of false data 

does not prompt an immediate, noticeable disruption at the beginning of the attack, thereby 

circumventing the detection mechanisms integrated within the state estimation system. Essentially, 

the design of the FDIA discussed in this study aims to maintain the absolute deviation between the 

actual and the manipulated data, denoted 𝑥′ below the detection threshold τ, ensuring the 

alterations remain undetected. In this work, the smallest possible |𝑥′| was assumed to be 0.004 

p.u. which is usually less than 1% of the original value of the real power. To further model our 

attack scenarios, the following assumptions were made:  

• Attacks within the network are infrequent yet sustained; once initiated, they persist for a 

discernible duration [43-44]. 

• The hypothetical attacker possesses significant resources, enabling them to compromise 

anywhere from one to twenty buses simultaneously. While this is a wide range relative to 

the size of the system, it has been investigated in this work for the purpose of a 

comprehensive analysis. 
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• The execution of an attack is synchronized across targeted buses. Consequently, if an 

attack targets two buses, it commences and concludes simultaneously for both. 

• Buses that are not observable—either due to the absence of PMUs or because they are 

disconnected— are not the target of the attacks. 

Table 3.1 shows the parameters used in the attack simulation across all the experiments. 

Table 3.1 FDIA simulation parameters. 

Parameter Values 

Gaussian Noise added to the measurements 45-55 dB [75] 

Number of attack scenarios • Supervised model: 200 (150 attacks in the 

training set, 50 attacks in the testing set) 

• Unsupervised model: 50 (0 attacks in the 

training set, 50 attacks in the testing set) 

Attack length (Duration) Randomly selected between (30-80) time 

instances for each scenario 

Attack size (affected buses at a time) “A” 1,2,5,8,10,20 

Location of attacks For each scenario (attack) the location of the 

attacks is randomly selected 

Attack severity 0.04 (high severity attack) 

0.004 (low severity attack) 

 

To provide a better understanding of the frequency and distribution of attacks within the 

dataset, table 3.2 presents the average ratio of time instances and the ratio of buses targeted during 

attacks across the whole test dataset, categorized by the number of buses attacked. 
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Table 3.2 Ratio of the attacked buses and time instances to all instances across the testing set. 

Number of attacked buses 1 2 5 8 10 20 

Average Ratio of attacked buses 0.1% 0.21% 0.55% 0.89% 1.1% 2.2% 

Average Ratio of attacked time 

instances   

12% 12.1% 12.2% 12.5% 12.6% 12.7% 

 

 

 

3.4 Evaluation Metrics   

It is crucial to outline the evaluation metrics that will be employed to gauge the efficacy of 

our models. Given that our study encompasses two distinct types of models—state estimation 

models and attack detection models—two separate sets of performance metrics tailored to each 

model type will be utilized. This differentiation ensures that the assessment of each model aligns 

with its specific objectives and challenges, providing a comprehensive evaluation of its 

performance. 

3.4.1 State Estimation Evaluation Metric  

Since the framework of SE in this work is mainly based on predictive SE, the selected 

evaluation metrics are mainly based on the evaluation of regression problems. Two metrics will 

be used to evaluate the state estimation. 

• Mean Squared Error (MSE) [76-77]: MSE assesses the average of the squares of the errors, 

thereby giving more weight to larger errors, so it becomes more sensitive to the outliers. 

It's calculated as in equation 3.2. MSE will serve as our main performance metric. 

                                                              MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1                                                (3.2) 

 

• 𝑅2 score [78]: 𝑅2 , often referred to as the coefficient of determination, measures the 

proportion of the variance in the dependent variable that is predictable from the 

independent variables. 𝑅2 provides a sense of how well the observed outcomes are 

replicated by the model, based on the proportion of total variation of outcomes explained 
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by the model. Its formula can be found in equation 3.3. 𝑅2 score also will be used as a

secondary metric. 

𝑅2 = 1 −
(𝑠𝑢𝑚𝑖=1

𝑛 (𝑦𝑖−�̅�)2)

(𝑠𝑢𝑚𝑖=1
𝑛 (𝑦𝑖−𝑦�̂�)2)

       (3.3) 

Other metrics such as Mean Absolute Percentage Error (MAPE) [79] were considered but 

not reported in this thesis. MAPE expresses the error as a percentage of the true values, providing 

an intuitive sense of the error magnitude relative to the actual values as shown in equation 3.4. 

𝑀𝐴𝑃𝐸 = (
1

𝑛
) ∗ 100% ∗ ∑ |

(𝑦𝑖−𝑦�̂�)

𝑦𝑖
|𝑛

𝑖=1                                                (3.4)

Despite being MAPE is easy to interpret but can be problematic for values close to zero; 

and since some of our real power values in the dataset are zeros, MAPE score couldn’t give a 

correct reliable evaluation for these buses. Thus, it is not used as a primary or secondary metric in 

this research. 

3.4.2 Detection and Localization Metrics  

The primary objective of detection and localization models is to optimize the number of 

True Positives (TP) — accurate identifications of the target phenomenon — while concurrently 

reducing the occurrences of False Positives (FP) and False Negatives (FN), which represent 

incorrect alerts and missed detections, respectively. Typically, a confusion matrix serves as an 

effective tool for visualizing and assessing these metrics, offering a clear depiction of the model's 

performance in distinguishing between actual and predicted classifications. Another two metrics 

can be derived to give us more insights about the detection performance: 

• Precision (Positive Predictive Value): Precision (equation 3.5) measures the accuracy of

the anomaly predictions made by the model. It is defined as the ratio of true positives to

the total number of instances predicted as positive (both true positives and false positives).

High precision indicates a low false positive rate but does not account for false negatives.
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Precision =  
TP

(TP + FP)
(3.5) 

• Recall (Sensitivity or True Positive Rate): Recall (equation 3.6) measures the model's

ability to detect all relevant cases of anomalies. It is defined as the ratio of true positives to

the actual positives (sum of true positives and false negatives). High recall indicates that

the model is effective at identifying anomalies but does not consider the accuracy of those

identifications:

          Recall =  
TP

(TP + FN)
(3.6) 

• F1 score: The F1 score is highly valuable for anomaly detection due to its ability to equally

consider precision and recall, offering a balanced measure that's crucial when both false

positives and false negatives have significant impacts. Acting as the harmonic mean of

precision and recall, the F1 score penalizes extreme discrepancies, ensuring a

comprehensive evaluation. This is particularly useful in unbalanced datasets (please refer

to table 3.2), a frequent scenario in anomaly detection, where it provides a nuanced view

of a model's performance over mere accuracy. This balance makes the F1 score an excellent

metric for accurately assessing anomaly detection systems, especially in environments

where detecting every anomaly is as important as minimizing false alerts [80]; its formula

is shown in equation 3.7. Due to its advantages and suitability to our problem, the F1 score

will be used as our primary evaluation metric.

𝐹1 =  
(2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
(3.7) 

Finally, Accuracy (equation 3.8) will be considered as it measures the overall correctness 

of the model across both anomalies and normal observations. It is calculated as the ratio of 

correctly predicted observations (both true positives and true negatives) to the total number of 
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observations. While a useful general metric, accuracy can be misleading in datasets with a 

significant imbalance between normal observations and anomalies, that’s why accuracy will be 

used as a secondary metric:  

       Accuracy =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+FP+FN
(3.8) 

3.5 System Configuration and Software Tools 

The development and execution of SE models, alongside detection and localization 

algorithms that will be discussed in Chapters 4 and 5, were performed using Python version 3.9.16. 

This work incorporated a range of libraries, including TensorFlow, Scikit-learn, Keras, and 

Seaborn, to facilitate the implementation of the computational models and data visualization. Data 

generation and attack simulation were carried out using Matpower version 7.1, integrated with 

MATLAB Version 23.2.0.2365128, to ensure accurate and realistic simulation environments. The 

entire computational workload was processed on an Intel(R) Core (TM) i5-7300U CPU @ 

2.60GHz. 
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Chapter 4: State Estimation Models 

The objective of this chapter is to establish a state estimation model to be utilized in 

unobservability experiments. To achieve this, a variety of models were developed, primarily 

employing the resources and literature reviewed in Chapter 2. The aim is to evaluate the 

performance of these models and select the one that exhibits the best performance for conducting 

the unobservability experiments. However, it is crucial to note the following considerations 

regarding all models discussed in Chapters 4 and 5: 

While these models were fundamentally derived from various pieces of literature, they do 

not strictly adhere to the same model structure; changes were made to some of the 

hyperparameters, alterations were made to some layers, and in certain cases, new layers were 

introduced to better align with the specific nature of our problem. For example, Batch 

Normalization (BN) layers were incorporated into some models (especially those with complex 

structures), not merely to mitigate overfitting but also to accelerate the training process by reducing 

internal covariance shift [81]. Given the extensive volume of experiments conducted, minimizing 

computational time during training is essential for this study. 

Building on this point, it is pertinent to highlight that the “winning model” is identified not 

solely based on achieving the best performance according to the evaluation metrics outlined in 

Chapter 3, but also considering the training time. The optimal model is expected to deliver the 

highest possible performance while maintaining a reasonable training duration. 

In this study, the developed models for SE will undergo evaluation using two distinct 

datasets to assess their performance under different conditions. The first dataset is free of any 
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cyber-attacks, serving as a baseline to determine the efficacy of the SE model under normal 

operating conditions. Conversely, the second dataset incorporates cyber-attacks, with an attack 

intensity set at 𝑥′ = 0.04 𝑝. 𝑢 (refer to equation 3.1), and the number of attacked buses 𝐴 =10. For

both experiments, the number of random unobservable buses 𝑘 is set to be= 10.  

Also, the evaluation metrics MSE and 𝑅2 score will be applied in two contexts: first, to

assess the SE models' performance across the entire network of 118 buses, denoted as 'SE Global'; 

and second, to specifically evaluate their performance on the unobservable buses, referred to as 

'SE Unobservable'. 

In this chapter, the performance of five models—LSTM, GRU, Stacked LSTM, Stacked 

GRU, and a hybrid stacked approach—will be explored. Initially, we will detail the architecture 

of each model to provide a comprehensive understanding of their design and operational 

principles. Subsequently, the final section, titled 'Results and Conclusions,' will delve into a 

discussion of the performance outcomes for each model. This analysis will culminate in the 

identification of the Winning model, which will be selected based on its superior performance 

metrics and subsequently employed in the remainder of the unobservability experiments.  

4.1 LSTM and GRU Models 

In this section, we will discuss the architectures of the LSTM and GRU models together, 

as they share a similar structure with the primary distinction being the type of recurrent unit 

employed in each. Both models utilize a 'lookback' technique, hereafter referred to as window size, 

which leverages a predetermined number of past time instances to predict the subsequent instance 

in the sequence. The input for these models is formatted as a 3-dimensional array, denoted by 

[𝑡, 𝑖, 𝑛 − 𝑘] , where "𝑡” denotes all the time instances, 𝑖 is the window size, 𝑛 is the total number 

of features (consistently set at 118), and 𝑘 is the number of unobservable buses. Figure 4.1 shows 
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how this 3-D array is constructed, where 𝑖 = 10, and the first sequence is being fed to the LSTM 

unit.  

Figure 4.1 Dataset input structure for LSTM. 

Subsequently, the LSTM unit is iteratively unfolded ' 𝑖 ' times to apply sequential training, 

a process depicted in Figure 4.2.  

Figure 4.2 LSTM cell unfolding for sequential training. From "Dynamic evaluation method for 

time-variant reliability of structural safety of concrete-faced rockfill dam" by J. Yang, L. Pei, C. 

Kuang, Y. Li, & Y. Liu, 2023, Institution of Structural Engineers. Used with permission [85]. 

It is critical to note that, although the features of unobservable buses are not utilized as 

input during the model's training phase, any machine learning model necessitates historical target 

values for effective training. This requirement is exclusive to the training phase and does not 

extend to the testing phase. Consequently, accessing the power values of unobservable buses is 

essential for the training process. To acquire historical data for these buses, two primary 
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assumptions can be considered: these buses were previously equipped with measurement units that 

have since been disconnected due to physical disconnections or Denial of Service (DoS) attacks, 

as discussed in [7]; alternatively, deriving historical values through the application of power flow 

equations in conjunction with classical state estimation techniques. Although it has not been 

considered in this work, certain ML models including GNN models [82] and graph signal 

processing techniques [83] can estimate the state of unobservable ones from the relation among 

the nodes and do not require historical values in the training. Such models can be considered as 

future directions of research for this study. 

The proposed model comprises a single LSTM layer, which includes multiple parallel units 

and is augmented by a dropout layer to prevent overfitting. This configuration is followed by a 

dense layer equipped with 118 neurons. To identify the optimal model configuration, a 

comprehensive evaluation of various parameter combinations was undertaken. The testable 

parameters and their respective combinations are detailed in Table 4.1. Using trial and error, the 

best combination of parameters is shown in the same table. 

Table 4.1 The parameters being used while developing the various models. 

Parameter Parameter Values Selected Value 

Number of units per layer 4, 20, 64, 128 64 

Window Size 2,10,30 10 

Dropout 0, 0.1, 0.2 0.2 

Recurrent Dropout 0,0.2 0.2 

Activation Relu, Sigmoid Relu 

Early stopping min_delta 10𝑒−3, 10𝑒−5 10𝑒−5

Optimizer Adam, SGD Adam 

Loss Function MSE MSE 
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Figure 4.3 provides a visual representation of the model per one sequence, illustrating its 

architecture with recurrent units depicted as LSTMs. While this figure specifically represents 

LSTM-based models, it is important to note that GRU models possess a similar structure. The key 

difference lies in the substitution of LSTM units with GRU units. 

 

Figure 4.3 LSTM model structure with a single sequence as input. 

4.2 Stacked LSTM and GRU Models 

In this section, the architectures of the Stacked LSTM and GRU models will be explored. 

The distinguishing feature of this approach, compared to the previously discussed models in 

Section 4.1, is the layering of multiple LSTM or GRU layers atop one another. This design is 

intended to capture more complex temporal dependencies within sequential data. However, it is 

important to note that this increased complexity also raises the risk of model overfitting.  

The input shape of the model adheres to the specifications outlined in Section 4.1. This 

model is configured with three GRU or LSTM layers, featuring 128, 64, and 64 neurons in each 

layer, respectively. Following each GRU or LSTM layer, a Dropout (DO) layer is applied to 

mitigate overfitting with a value of 0.2, succeeded by a Batch Normalization layer to enhance 

training stability and speed. Additionally, a ReLU activation function is employed to introduce 
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non-linearity, culminating in a dense layer to finalize the architecture. The detailed structure of the 

model is visually depicted in Figure 4.4. 

Figure 4.4 Stacked GRU model structure. 

4.3 Hybrid Stacked Model 

To the best of knowledge, this methodology is not documented within the power systems 

SE literature, the proposed model, which alternates between LSTM and GRU layers in a four-layer 

stacked configuration, demonstrated better performance relative to models exclusively composed 

of LSTM or GRU stacked layers. This model alternates between LSTM and GRU layers, 

effectively leveraging the unique strengths of both to enhance learning capabilities. The 

architecture of this model, detailed in Figure 4.5, illustrates its structured approach to integrate the 

LSTM and GRU layers. 

Figure 4.5 Hybrid stacked model structure. 

It is believed that combining GRU and LSTM layers in a single model can harness the 

strengths of both architectures, potentially leading to enhanced performance on complex sequence 

modeling tasks. This approach offers the simplicity and efficiency of GRUs alongside the 

sophisticated long-term dependency capture of LSTMs, enabling the model to learn a wider range 
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of patterns and dependencies within the data. The combination of GRU and LSTM layers allows 

the model to learn a broader set of patterns and dependencies within the data. For example, the 

GRU layers might quickly capture the short-term dependencies, while the LSTM layers focus on 

retaining information over longer sequences. This can be particularly beneficial for complex 

sequence modeling tasks where different types of dependencies exist in the data. Such a mixed 

architecture can provide improved regularization, reduce the risk of overfitting, and offer greater 

flexibility and customization for the SE tasks.  

4.4 Results and Discussions 

In this section, the performance of the proposed models is discussed. It is important to 

mention that many scenarios were simulated to evaluate the performance of these models; 

however, the results shown below are for two specific scenarios that are believed to represent the 

other scenarios. The first scenario involved a dataset where no attacks were introduced, allowing 

us to assess the state estimation baseline performance of the models. The second scenario 

examined the performance of the models under FDIA attacks with a magnitude of 𝑥′ = 0.04 𝑝. 𝑢, 

and the number of the attacked buses 𝐴 =10. It is also pertinent to note that the models were 

uniformly trained across all scenarios, utilizing 64 batches and undergoing 40 epochs of training. 

This setup ensures a consistent basis for evaluating their performance under both standard and 

adversarial conditions.  

Table 4.2 presents the results for the first scenario, where no attacks were introduced, 

highlighting both the MSE and 𝑅2 score for clarity. Concurrently, Figure 4.6 offers a graphical 

depiction of the 𝑅2  score values across all five models, facilitating a visual comparison of their 

performance. For the second scenario, where attacks are introduced, Tables 4.3, and Figure 4.7 

show the performance of the models. 
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Table 4.2 Performance of SE under no-attacks scenario. 

 

 

 

Figure 4.6 Comparison of R2 score of the proposed models under no attack scenario. 

Table 4.3 Performance of SE under attack scenario where x' =0.04 p.u and A=10 

 

 

 

 

 

 

 
SE Global (118 Buses) SE of Unobservable Buses 

 
MSE 

Global 

R2 

Global 

MSE 

Unobserv 

R2  

Unobserv 

LSTM 0.00017 0.997 0.0001 0.998 

Hybrid Stacked 0.00045 0.994 0.00026 0.9965 

LSTM Stacked 0.00049 0.993 0.00028 0.996 

GRU Stacked 0.00049 0.993 0.00031 0.995 

GRU 0.00069 0.991 0.00028 0.996 

 
SE Global (118 Buses) SE of Unobservable Buses 

 
MSE 

Global 

R2 

Global 

MSE 

Unobserv 

R2  

Unobserv 

LSTM 
0.0070 0.7106 0.0056 0.9231 

Hybrid Stacked 
0.0074 0.7 0.0084 0.901 

LSTM Stacked 
0.0079 0.64 0.014 0.79 

GRU Stacked 
0.0077 0.67 0.012 0.83 

GRU 
0.0076 0.69 0.011 0.85 
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Figure 4.7 Comparison of R2 score of the proposed models under attack scenario, where x' =0.04 

p.u and A=10. 

 

The results indicate that the basic LSTM model outperforms the other five models under 

consideration. Although the hybrid stacked approach exhibits encouraging outcomes, it ranks 

second to LSTM. Furthermore, as depicted in Figure 4.8, it also incurs the longest training 

duration. Consequently, the LSTM emerges as the preferred model for state estimation, balancing 

simplicity with efficacy. The findings suggest that, within this context, a less complex model 

achieves more accurate predictions, while more intricate models tend to underperform, likely due 

to overfitting. On the other hand, overly simplistic models, such as the GRU, fail to fully capture 

the temporal dependencies. Therefore, the LSTM stands out as the optimal model, striking a 

balance between simplicity, manageable training time, and superior performance.  

It is also worth mentioning that the presence of the attacks highly affects our SE. The MSE 

drops by almost 1 digit when attacks are present. However, this should help us to detect the attacks 

as will be discussed in Chapter 5. 



48 

 

 

 

Figure 4.8 Training time in minutes of the models. 

Figure 4.9 provides a detailed comparison of predicted versus actual power values for bus 

1 for the LSTM model under the two distinct scenarios. As shown, Figure 4.9-a and Figure 4.9-b 

illustrate the comparison for scenario 1, where there are no attacks on the system, demonstrating 

how closely the predictions align with the actual data in a secure environment. Conversely, Figures 

4.9-c and Figure 4.9-d present the comparison for scenario 2, which involves the FDIA attacks. 

These figures highlight the impact of such attacks on the accuracy of the SE predictions. These 

results are shown for bus 1 as an example but similar trends are observable for other buses. 

Finally, a sensitivity analysis has been conducted.  The outcomes of the sensitivity analysis 

are detailed in Figures 4.10 and 4.11. The experiment in scenario 2 was repeated, with two 

intensities x' =0.04, and x' =0.004. Figure 4.10 depicts the global MSE, and Figure 4.11 shows the 

MSE for unobservable buses. The results indicate that a decrease in attack severity (moving from 

x' =0.04 to x' =0.004) improves prediction accuracy. Moreover, it is observed that as the number 

of unobservable buses increases, there is a corresponding increase in the MSE. 
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Figure 4.9 The predictions vs. actual real power values for bus 1. (a) all values under no attacks, 

(b) aggregated values under no attacks, (c) all values under FDIA attack with x' =0.04, and (d) 

aggregated values under FDIA attack with x' =0.04. 

 

 

Figure 4.10 Global MSE under different attack intensities.  



50 

Figure 4.11 MSE of the unobservable buses under different attack intensities. 
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Chapter 5: Attack Detection and Localization Models 

 In this chapter, the focus is shifted towards the evaluation of various detection and 

localization models to identify the most effective one that will be used to conduct observability 

experiments detailed in Chapter 6. It is crucial to note that the models examined in this chapter are 

assessed based on their performance under conditions of full observability. Furthermore, as 

detailed in the SE chapter, many scenarios were studied, but the results presented in this chapter 

will focus on the most comprehensive scenario believed to represent the other scenarios 

adequately. Specifically, the attack intensity considered here is x'=0.004 p.u, based on the 

assumption that if the models are capable of detecting attacks at low intensity, they will inherently 

detect attacks of higher intensity. 

The model that emerges as the most capable from this analysis will then be combined with 

the optimal model identified in Chapter 4, LSTM SE model, for undertaking experiments on 

unobservability in Chapter 6. Both unsupervised and supervised learning models are explored, 

aiming to provide a comprehensive understanding of their applicability and performance in 

different observability contexts. 

5.1 Unsupervised Model 

In this section, the assessment will begin with the unsupervised model. Two types of 

models have been evaluated: the SE-based models and the non-SE-based models. The SE-based 

model triggers a threshold “τ” if the SE error exceeds a certain limit, whereas the non-SE-based 

models make their final decision without explicitly depending on SE, although SE may play a role 

during the process. The exploration of models based on SE will be initiated first.  
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5.1.1 SE-Based Models 

The models utilized in this section are the same as those described in Sections 4.1 and 4.2, 

specifically the LSTM, GRU, Stacked LSTM, and Stacked GRU. Therefore, the details of their 

architecture will not be revisited, as they have already been explained in Chapter 4. Instead, this 

part will focus on explaining how the detection and localization mechanisms operate following the 

completion of state estimation. 

First, the detection mechanism will be addressed. Following the completion of the SE on 

the training set, the MSE for each time instance in the training set is calculated, with each time 

instance comprising 118 buses. This is done using the MSE equation in 5.1. 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛=118
𝑖=1   (5.1) 

By applying this equation across all time instances of the training set, an MSE error vector 

𝑒(𝑡), where t represents all time instances in the training set, is obtained. In this case, the error

vector will have dimensions [54,126, 1], where 54,126 is the total time samples in the training set. 

It is crucial to recognize that, since the training was conducted on nominal data with no attacks 

introduced, all error values within 𝑒(𝑡) are considered nominal errors. Consequently, a histogram 

for the nominal data error can be plotted, as illustrated in Figure 5.1. It is noted that the histogram 

is skewed to the right, a result of eliminating negative errors through the squaring process in the 

MSE formula. This approach simplifies the process of dealing with a single threshold on the 

positive axis, rather than two. 

The underlying assumption is as follows: given that all values in 𝑒(𝑡) are nominal, lying 

within the range of 0 to 0.0013 as depicted by the example histogram in Figure 5.1, during testing, 

any instances of attacks will result in an error exceeding the normal range of nominal error. 

Consequently, a threshold τ could be set at 0.0013 or a value close to it. For the testing dataset, 
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any MSE value exceeding this threshold would be identified as corresponding to an attack, thus 

the detection alarm could be flagged. 

 

Figure 5.1 Histogram of detection MSE for the training data using the LSTM model. 

For illustrative purposes, although not essential for the implementation, the MSE histogram 

of the testing set is depicted in Figure 5.2. Observation reveals that points beyond the established 

threshold, τ, are indicative of attacks. The histogram demonstrates an expanded MSE range, 

extending from 0.0013 to 0.035. Notably, any point exceeding the threshold of 0.0099 is classified 

as an attack in this case.  

 

Figure 5.2 Histogram of detection MSE for the testing data using the LSTM model. 
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The approach for attack localization mirrors that of detection, with a key distinction: 

instead of computing the MSE for each time instance, the Absolute Error (AE) for each output is 

determined, as outlined in the following equation: 

 AE = |𝑦𝑖 − 𝑦�̂�|                                                 (5.2)

 Consequently, the resulting vector dimensions are [118*t, 1], where t represents the total 

number of time instances, in this case, 54,126. This yields a vector of dimensions [6,386,868, 1]. 

Subsequently, the AE can be visualized through histograms for both the training and testing 

datasets, as depicted in Figures 5.3 and 5.4.  

Figure 5.3 Histogram of localization MSE for the training data using LSTM model. 

Figure 5.4 Histogram of localization MSE for the testing data using LSTM model. 
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The outcomes of detection and localization performances for the four models—LSTM, 

GRU, Stacked LSTM, and Stacked GRU—will be examined in detail in Section 5.3. 

5.1.2 Non-SE-Based Models 

In this section, two models that do not explicitly depend on SE for their final decision-

making process will be discussed, although SE plays a role in their operations. The models in focus 

are AE and LSTM-OCSVM. Their architecture and decision-making mechanisms will be 

discussed in this section. 

Starting with AE, as explored in Section 3.2.1, Autoencoders are designed to compress and 

subsequently reconstruct input data, with the goal of achieving as close a match as possible to the 

original input. The underlying principle is that, during training with nominal (i.e., normal or attack-

free) data, the autoencoder learns specific weights for its encoder-decoder architecture that enable 

it to accurately reconstruct the input data. However, in the presence of anomalies or cyber-attacks, 

this reconstruction process is likely to be compromised, resulting in significant deviations from 

the original input and, consequently, high reconstruction errors. 

Building upon the discussion in Section 5.1.1, it becomes apparent that these reconstruction 

errors, rather than prediction errors, serve as a crucial indicator for identifying the presence of 

attacks within the system. Figure 5.5 shows the architecture of the best-performing AE model.  

Figure 5.5 Architecture of LSTM autoencoders. 
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The model initiates by inputting data in the format previously detailed in Section 4.1, 

tailored to enable the LSTM network's processing of sequential information. It employs two 

stacked LSTM layers for the encoding process, containing 128 and 64 neurons each, to capture the 

temporal dependencies and features within the data effectively. 

Following the encoding layers, a Repeat Vector layer is introduced. This layer serves a 

critical function by duplicating the output of the final LSTM encoder layer across the time steps 

required by the decoder. This replication ensures that the decoder receives input in a format that 

maintains the sequential context, enabling it to effectively reconstruct the sequential data output. 

For the decoding process, a mirrored structure of the encoder is utilized, featuring two 

LSTM layers with 64 and 128 neurons, respectively. This symmetric architecture allows for the 

gradual reconstruction of the original input data from the encoded representation, aiming to 

replicate the initial sequence as closely as possible. 

A TimeDistributed layer is then applied, which is essential for maintaining the 

independence of the time steps in the output sequence. It allows the model to apply a fully 

connected dense layer to every temporal slice of the input data, ensuring that the model can make 

predictions for each time step independently, thus preserving the temporal sequence structure in 

the output. 

Each layer in the model is followed by a dropout layer, set at 0.2, to prevent overfitting by 

randomly ignoring a subset of neurons during training. Additionally, a batch normalization layer 

follows each LSTM layer, which normalizes the activations of the previous layer at each batch, 

maintaining the mean output close to 0 and the output standard deviation close to 1. This practice 

helps in accelerating the training process and achieving higher stability as discussed in Chapter 4. 
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Shifting to LSTM-OCSVM, this model combines the strengths of LSTM networks and 

OCSVM for anomaly detection. This hybrid approach leverages the sequential data processing 

capability of LSTM networks to capture temporal dependencies and features within the data, these 

features are then classified by OC-SVM, which distinguishes between normal and anomalous 

patterns by creating a boundary in the feature space. This LSTM model can be any of the models 

described in the previous sections. The model can be visualized as shown in Figure 5.6. 

Figure 5.6 LSTM-OCSVM model. 

In this work, both the LSTM and LSTM-AE were used for LSTM block part, and for the 

OCSVM part, testing was conducted with both RBF and linear kernels. Training the model with 

the linear kernel proved to be particularly challenging and time-consuming due to the difficulty in 

establishing linear boundaries. Regarding the ν (nu) parameter, which is pivotal in balancing the 

proportion of outliers against the decision boundary size around normal data points, various values 

were experimented with, including 0.01, 0.1, 0.2, and 0.5.  

5.2 Supervised Models 

In this work, the focus is on employing supervised models for attack detection within 

datasets that include labeled attacks. The discussion will cover four specific models: Stacked 

LSTM, Stacked GRU, CNN-LSTM, and BiLSTM. The decision to prioritize detection over 

localization stems from two main considerations. Firstly, the extensive training required for these 

models to achieve convergence for localization purposes necessitates more training epochs. 

Secondly, localization demands a significant increase in features per bus, such as voltage 
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magnitude and reactive power, making the process computationally expensive and less aligned 

with the goal of conducting numerous unobservability experiments. Consequently, the models are 

strategically directed towards detection rather than localization. Some of these models are similar 

to the models that were discussed previously, except for one major difference: they use binary 

cross entropy as a loss function instead of using MSE. Below is a description of each model. 

Stacked LSTM/GRU models are very similar to the stacked GRU and LSTM models 

discussed in Section 4.2, with two major differences: the introduction of a dense layer with 32 

neurons before the final layer, and the inclusion of a single-neuron dense layer activated by a 

sigmoid function for the output. Figure 5.7 illustrates the Stacked GRU model's architecture, with 

the LSTM model differing only in the use of LSTM units instead of GRU units. 

Figure 5.7 Supervised stacked GRU model. 

BiLSTM-based model is based on The Bidirectional Long Short-Term Memory (BiLSTM) 

unit which is an advanced version of the traditional LSTM unit. Unlike standard LSTMs that 

process data in a forward direction, BiLSTMs analyze information in both forward and backward 

directions. This dual-path processing allows BiLSTMs to capture context from both past and future 

data points, which supposedly provides a richer understanding of the sequence context. The 

constructed model here has only one BiLSTM layer with 128 units in it, followed by a dense layer 

with 32 neurons, then a one-neuron dense layer. As usually practiced in this work, BN and 0.2 DO 

layers are employed. Figure 5.8 shows its construction. 
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Figure 5.8 BiLSTM model architecture. 

CNN-LSTM/GRU models combine the spatial data capturing capabilities of CNNs with the 

sequential data processing strengths of LSTM or GRU layers. Given the high positive correlation 

among features (buses) as noted in Figure 3.3 and given that buses with closely numbered indices 

are typically adjacent to each other, employing CNN layers initially helps in capturing spatial 

correlations between buses. This setup includes two 1D convolutional layers with 64 filters each, 

with a kernel size of three by one, effectively convolving features. Subsequently, a layer of either 

GRU or LSTM with 64 units is applied, followed by two dense layers—one with 100 neurons and 

another with a single neuron—to finalize the model's predictions. The construction of this model, 

illustrated in Figure 5.9, optimizes the handling of spatial and temporal dependencies. 

Figure 5.9 CNN-GRU architecture. 

5.3 Results and Discussion 

In the concluding section, the performance of previously discussed models is evaluated 

with the objective of selecting two models for the unobservability experiments in Chapter 6: one 
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unsupervised and one supervised. The evaluations are based on a specific scenario involving an 

attack intensity of 𝑥′ = 0.004 p.u. and number of attacked buses A =10 buses, The scenario was

chosen for its challenge in detection. Although various scenarios were explored, this particular 

setup is utilized to representatively showcase the models' capabilities under challenging 

conditions. 

5.3.1 Unsupervised Models Results 

Table 5.1 presents the F1 scores and accuracy for the six models reviewed in Section 5.1. 

It's crucial to note that the reported results for the SE-based models are derived at the optimal 

threshold for each respective model. 

Table 5.1 Performance of unsupervised models.

Model 
Detection 

F1 

Localization 

F1 

Detection 

Accuracy 

Localization 

Accuracy 

LSTM 0.993028 0.970071 0.998758 0.999341 

GRU 0.99 0.96 0.998 0.9973 

stacked GRU 0.62 0.6519 0.916 0.99 

stacked LSTM 0.61 0.6219 0.91 0.988 

AE 0.71 0.749 0.914 0.9932 

LSTM_OCSVM 0.65 0.67 0.913 0.991 

Further, Figures 5.10 and 5.11 show a graphical representation for both F1 and accuracy 

respectively for all the six models.  

The results demonstrate that the LSTM model outperforms others in detection and 

localization, evidenced by its superior F1 scores and accuracy, followed by the GRU and AE 

models. This aligns with insights from Section 4.4, suggesting simpler models are more effective 

for this dataset, as complex models tend to overfit. Given its optimal SE performance noted in 

Section 4.4 and its efficiency in detection and localization tasks within a reasonable training 



61 

timeframe, the LSTM model is selected as the winning model for further experiments that will be 

conducted in Chapter 6. 

Figure 5.10 F1 score of the unsupervised models for attack detection and localization. 

Figure 5.11 Accuracy of the unsupervised models for attack detection and localization. 

Upon selecting the LSTM model, the challenge of establishing a consistent threshold for 

different datasets arises, given the slight variations in optimal thresholds across datasets. To 

overcome this, multiple datasets with varying parameters were generated. For each dataset, the 

relationship between the F1 score and various thresholds was charted, as depicted in Figure 5.12. 

These charts were then consolidated into a single F1 versus threshold curve to determine a unified, 
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optimal threshold. The optimal thresholds for both detection and localization for the winning 

LSTM model are 0.00099 for Detection and 0.14 for localization. The unifying threshold will 

facilitate a fair comparison in Chapter 6. 

Figure 5.12 Localization threshold vs. F1 score under x'=0.004, and A=10. 

5.3.2 Supervised Model Results 

Table 5.3 presents the F1 Score and Accuracy for the studied 4 models. Figure 5.13 shows 

a graphical representation of the same data. 

Table 5.2 Performance of supervised models. 

Detection 

F1 

Detection 

Accuracy 

CNN-LSTM 0.983 0.996 

BiLSTM 0.81 0.96 

stacked GRU 0.961 0.99 

stacked LSTM 0.77 0.95 
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Figure 5.13 F1 and accuracy scores for the supervised models. 

The CNN-LSTM model surpasses the other models in performance due to its ability to 

capture spatial features from the data, followed by Stacked GRU, BiLSTM, and Stacked LSTM. 

However, its significant disadvantage is the lengthy training time, as shown in Figure 5.14. The 

CNN-LSTM model's average training duration is approximately 22.5 minutes, which is 

impractical for the extensive experiments planned in Chapter 6. Therefore, despite its slightly 

inferior performance compared to CNN-LSTM, the Stacked GRU model, with a more reasonable 

training time of 11.5 minutes, will be utilized instead. 

Figure 5.14 Average training time for the supervised models. 
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Chapter 6: Experimental Evaluation of Effects of Unobservability 

In this chapter, the point is finally reached where the conduct of the unobservability 

analysis can be initiated, given that the necessary SE and attack detection and localization models 

are now in place. Several experiments are to be conducted in an attempt to answer the questions 

presented in Section 1.4. This section will be divided into two parts: one using a supervised LSTM 

model and the other using an unsupervised stacked GRU model, as discussed in Chapter 5. It is 

important to remember that the supervised models proposed in this study account only for attack 

detection without localization, while the unsupervised model is capable of both. 

6.1 Experiment Based on Unsupervised Model 

This section outlines a series of seven experiments to evaluate and compare the 

performance of the attack detection and localization unsupervised model under unobservability 

conditions. These experiments will document the performance of SE, alongside assessing the 

performance of the proposed attack detection model, which fundamentally relies on the 

performance metrics of SE. 

6.1.1 Experiment 1: The Effect of Number of Unobservable Buses on the Detection and 

Localization Large Intensity Attack 

The goal of this experiment is to study the effect of increasing the number of unobservable 

buses and to observe how the model behaves in response to increasing unobservability. This could 

assist in determining the minimum number of PMUs required to be installed before the detection 

model fails to detect and localize the attacks.  
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The following parameters were utilized in this experiment: 

• Attack value x’=0.04

• Number of attacked buses A∈ {2,5,8,10,20}

• Number of unobservable buses 𝑘 ∈ { 0,2,5,10,20,35,50,80}

Figure 6.1 shows the effect of increasing k on SE performance, while Figure 6.2 shows the

effect of increasing k on detection and localization performance. 

Figure 6.1 The effect of number of unobservable buses k on SE performance with 𝑥′=0.04 under 

the unsupervised model. (a) the effect of increasing k on SE MSE across all 118 buses, and (b) the 

effect of increasing k on SE MSE across only the unobservable buses. 

According to Figure 6.2, detection and localization accuracy is significantly impacted by 

the number of attacked buses since larger-scale attack on many buses leads to a deterioration in 

SE performance by increasing the MSE as shown in Figure 6.1. Since our model concurrently 

detects attacks with SE, impaired SE accuracy triggers more thresholds, resulting in a higher 

number of true alarms (indicative of effective detection) but also an increased rate of false alarms 

(where normal data is incorrectly flagged as anomalous). Despite this observation does not directly 

relate to the problem of unobservability being studied, it is important to understand how the model 

behaves. 
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Figure 6.2 The effect of number of unobservable buses k on detection and localization performance 

with 𝑥′=0.04 under the unsupervised model. (a) the effect of increasing k on detection F1 score, 

(b) the effect of increasing k on detection accuracy, (c) the effect of increasing k on localization 

F1 score, and (d) the effect of increasing k on localization accuracy. 

 

 

Moreover, an increase in the number of attacked buses results in a decrease in the F1 score, 

due to compromised SE performance as illustrated in Figures 6.2-a, and 6.2-c. This trend indicates 

that the detection mechanism is more effective when the attack is confined to fewer buses. 

Notably, when the attack was limited to two buses (A=2), with either zero or two 

unobservable buses (k=0,2), the model achieved perfect localization of all data points. This is 

reflected by an F1 score of 1 and an accuracy of 100% in this case as shown in Figures 6.2-c and 

6.2-d. 

Moreover, it is evident that an increase in the number of unobservable buses negatively 

affects state estimation as illustrated in Figure 6.1, leading to reduced detection and localization 

performance according to Figure 6.2. The data demonstrates that detection capabilities degrade 
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more rapidly once the number of unobservable buses k reaches or exceeds 50, with this decline 

accelerating as the number of attacked buses A increases. 

Finally, we can conclude that the F1 score emerges as a superior metric because it 

synthesizes TP, TN, FP, and FN into a single measure. Despite the less reliable nature of accuracy 

in highly unbalanced datasets, correlating the F1 score trend with accuracy trends is essential for 

a comprehensive validation of the model's effectiveness. 

6.1.2 Experiment 2: The Effect of Number of Unobservable Buses on the Detection and 

Localization Low Intensity Attack 

This experiment replicates Experiment 1, with the exception that the attack value is reduced 

(x' = 0.004). The objective is to determine how the performance of our models is influenced by 

the number of unobservable buses when a very low attack value is injected. Below are the 

parameters of this experiment: 

• Attack value 𝑥′=0.004   

• Number of attacked buses A∈ {2,5,8,10,20} 

• Number of unobservable buses 𝑘 ∈ { 0,2,5,10,20,35,50,80} 

Figure 6.3 shows the effect of increasing k on SE performance, while Figure 6.4 shows the 

effect of increasing k on detection and localization performance. 

 

 
Figure 6.3 The effect of number of unobservable buses k on SE performance with 𝑥′=0.004 under 

the unsupervised model. (a) the effect of increasing k on SE MSE across all 118 buses, and (b) the 

effect of increasing k on SE MSE across only the unobservable buses. 
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Figure 6.4 The effect of number of unobservable buses k on detection and localization performance 

with 𝑥′=0.004 under the unsupervised model. (a) the effect of increasing k on detection F1 score, 

(b) the effect of increasing k on detection accuracy, (c) the effect of increasing k on localization 

F1 score, and (d) the effect of increasing k on localization accuracy. 

 

 

In line with Experiment 1, as presented in Figure 6.4, it is observed that both the F1 score 

and accuracy tend to decrease with an increase in the number of unobservable buses k and attacked 

buses A. This observation corroborates the initial findings, presenting a consistent pattern across 

our studies. 

An exception was noted in one specific scenario, where the number of attacked buses, A, 

was set to 2. Contrary to other cases, the model's performance in attack detection exhibited 

unexpected variability, as highlighted by significant reductions in the F1 score and accuracy in 

Figures 6.4-a and 6.4-b. This outcome was perplexing, given that, according to prior trends, these 

metrics were anticipated to be at their highest with that condition. This discrepancy led to an 

investigation into the distinct behavior of the model under these circumstances. Upon closer 
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examination, it was discerned that this behavior could be linked to the threshold settings, 

particularly noting the preset threshold of 0.00099 as discussed in Section 5.3. In most 

experiments, the optimal threshold ranged slightly between 0.00095 and 0.001, which closely 

matched our predetermined threshold of 0.00099. However, in scenarios involving only two 

attacked buses, the optimal threshold exhibited significant deviation from the preset value as 

shown in Table 6.1. 

Table 6.1 Detection threshold variation for A=2 under 𝑥′=0.004. 

No 

unobservable 

buses 

0 2 5 8 10 20 35 50 

Set_threshold 0.00099 0.00099 0.00099 0.00099 0.00099 0.00099 0.00099 0.00099 

Best_threshold 0.0006 0.00057 0.00065 0.00066 0.00058 0.00056 0.00053 0.00056 

This marked shift leads to two inquiries: Why does the best threshold for this case (A=2) 

move to the left? and why is this adjustment not mirrored in scenarios with a higher attack intensity 

(𝑥′=0.04)? To answer these questions, an exploration of the model's operational dynamics is 

crucial. The model assesses the MSE across all buses (118) for each time instance, employing this 

error in our histogram analyses (please refer to Section 5.1.1). With a mere two buses being 

attacked and at a lower intensity (𝑥′=0.004), the aggregated error does not significantly alter the 

overall MSE per time instance, unlike in scenarios with a greater number of buses or higher attack 

intensity. As a result, some attacks blend within the error domain of normal data, necessitating a 

leftward adjustment in the optimal threshold. 

Finally, in scenarios with a higher attack intensity of 0.04, the F1 score range for detection 

was observed to be narrower, spanning from 0.997 to 0.98, as demonstrated in Figure 6.2-a while 

localization scores varied from a perfect 1 to 0.84 as illustrated in Figure 6.2-c. Conversely, in the 
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lower intensity scenarios (0.004), excluding the anomalous case with two attacked buses, a wider 

range was noted: from 0.994 to 0.970 for detection (Figure 6.4-a) and from 0.98 to 0.71 for 

localization (Figure 6.4-c). This contrast underscores the significant influence of attack intensity 

on the performance of our model. 

6.1.3 Experiment 3: Testing the Optimal PMU Placement Strategies under the Detection and 

Localization Model High Intensity Attack 

The objective of this experiment is to evaluate the performance of various placement 

strategies, as identified in the literature, within the context of an attack detection model. While 

these strategies primarily focus on maximizing observability, aspects of attack detection and 

localization were not previously considered. Therefore, the central inquiry of this experiment is 

whether the OPP strategies also yield the best configurations for effective attack detection and 

localization. Based on the work cited in [84], three strategies (S1, S2, S3) will be examined. The 

specifics of these strategies are detailed in Table 6.2. To assess the effectiveness of various 

placement strategies, their performance will be compared to the random, unobservable case studied 

in Experiment 1, which naturally involves random placement. Specifically, we will utilize data 

from Experiment 1 with k=50, a condition closely resembling Strategy 3's setting of k=51. This 

comparison aims to evaluate and understand the relative performance of these strategies in 

detecting and localizing attacks. The test parameters are as follows:  

• Attack value 𝑥′=0.04

• Number of attacked buses A∈ {2,5,8,10,20}

Figure 6.5 shows the effect of increasing A on SE performance, while Figure 6.6 shows

the effect of increasing A on detection and localization performance considering the three 

placement strategies. 
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Table 6.2 Optimal PMU placement strategies adopted from [84]. 

Optimal 

PMU Set 

Bus Index 

 

Number 

of 

PMUs 

Number of 

unobservable 

buses 

S1 2, 5, 10, 11, 12, 17, 20, 23, 25, 29, 34, 37, 40, 45, 49, 

50, 51, 52, 59, 65, 66, 71, 75, 77, 80, 85, 87, 91, 94, 

101, 105, 110, 114, 116 

 

34 84 

S2 1, 5, 10, 12, 13, 17, 21, 25, 28, 34, 37, 40, 45, 49, 52, 

56, 62, 63, 68, 70, 71, 75, 77, 80, 85, 87, 90, 94, 102, 

105, 110, 114 

 

32 86 

S3 1, 4, 5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21, 22, 24, 25, 

26, 27, 28, 30, 32, 34, 37, 40, 43, 45, 49, 50, 56, 59, 61, 

62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 77, 79, 80, 

83, 85, 87, 89, 90, 92, 94, 96, 100, 101, 105, 106, 108, 

110, 111, 112, 114, 116, 117, 118 

67 51 

 

The observations and conclusions drawn from Experiment 3 will be discussed in 

conjunction with those from Experiment 4, given their similar structures and the comparative 

insights they offer. 

 
Figure 6.5 The effect of number of attacked buses A on SE performance with 𝑥′ =0.04 for the three 

placement strategies under the unsupervised model. (a) the effect of increasing A on SE MSE 

across all 118 buses, and (b) the effect of increasing A on SE MSE across only the unobservable 

buses. 
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Figure 6.6 The effect of number of attacked buses A on detection and localization performance 

with 𝑥′ =0.04 for the three placement strategies under the unsupervised model. (a) the effect of 

increasing A on detection F1 score, (b) the effect of increasing A on detection accuracy, (c) the 

effect of increasing A on localization F1 score, and (d) the effect of increasing A on localization 

accuracy. 

 

 

6.1.4 Experiment 4: Testing the Optimal PMU Placement Strategies under the Detection and 

Localization Model Low Intensity Attack 

Experiment 4 replicates Experiment 3, with the exception that the attack intensity is 

reduced to 𝑥′ =0.004. Figure 6.7 shows the effect of increasing A on SE performance, while Figure 

6.8 shows the effect of increasing A on detection and localization performance considering the 

three placement strategies with the low intensity attack of 𝑥′ =0.004. 

The outcomes of Experiment 3 with an intensity 𝑥′ =0.04 (Figure 6.6) and Experiment 4 

with an intensity 𝑥′=0.004 (Figure 6.8) showed analogous trends, revealing a uniform model 

response across varying levels of attack intensity. Naturally, the model exhibited improved 

performance in scenarios characterized by less severe attacks. 
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Figure 6.7 The effect of number of attacked buses A on SE performance with 𝑥′  =0.004 for the 

three placement strategies. (a) the effect of increasing A on SE MSE across all 118 buses, and (b) 

the effect of increasing A on SE MSE across only the unobservable buses. 
 

 

 

 
Figure 6.8 The effect of number of attacked buses A on detection and localization performance 

with 𝑥′  =0.004 for the three placement strategies under the unsupervised model. (a) the effect of 

increasing A on detection F1, (b) the effect of increasing A on detection accuracy, (c) the effect of 

increasing A on localization F1 score, and (d) the effect of increasing A on localization accuracy. 

 

 

As expected, S3 outperformed S1 and S2 in both detection and localization as shown in 

Figures 6.6 and 6.8. This can be attributed to the number of unobservable buses—51 for S3 as 

opposed to 84 and 86 for S1 and S2, respectively.  
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Furthermore, referring to the same figure, S2 surpasses S3 in performance when the 

number of attacked buses is equal to or less than 12-14. However, as the number of attacked buses 

exceeds 14, S3 shows better performance in detection and localization. This highlights the dynamic 

efficiency of S3 in handling wider-ranged attacks. 

Comparison between S3 and the random placement with k=50 as adopted in Experiments 

1 and 2, reveals that random placement outperforms S3 in both detection and localization in most 

of the cases. This is illustrated in Figures 6.7 and 6.9, where the random placement is depicted by 

the red line, contrasting with the green line that represents S3. Thus, it can be concluded that 

although these placement strategies satisfy the condition of full observability; however, in terms 

of attack detection these combinations may perform worse than our average. This implies the 

conclusion that the optimum placement sets – although achieving high observability – can cause 

more attack threat probability than other combinations. That could mean also that we might need 

to add some PMUs at some specific points to increase the detection and localization accuracy, 

which is the aim of experiment 5 to check the effect of each bus on the model performance.  

6.1.5 Experiment 5: Assessing Detection and Localization with Sequentially Unobservable Buses 

– One at a Time.

The objective of this experiment is to identify specific locations within the power grid 

where the absence of PMUs or lack of observability might lead to diminished performance in 

attack detection and localization. It posits that equipping such critical buses with PMUs is 

essential. In this experiment, each bus will be made unobservable in turn, with the model's 

performance evaluated at each instance. The setup for the experiment is as follows: 

• Attack value 𝑥′ ∈ {0.04, 0.004}

• Number of attacked buses A = 8 (fixed)
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Figure 6.9 shows the model performance in terms of F1 score and accuracy over the 118 

buses for both intensities 𝑥′ ∈ {0.04, 0.004}. 

 

Figure 6.9 Detection performance across the 118 buses under the unsupervised model, with each 

bus being unobserved one at a time. (a) detection F1 score, (b) detection accuracy, (c) localization 

F1 score, and (d) localization accuracy. 
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Following the mentioned Figure, A drop in the F1 score and accuracy for the high-intensity 

attack 𝑥′=0.04 when a bus is unobservable is likely to be followed by a drop at the same bus for 

the low-intensity attack 𝑥′=0.004. However, the converse does not necessarily hold. A drop in 

performance at a specific bus with a low-intensity attack does not necessarily imply a similar drop 

with a higher intensity. 

Furthermore, from the analysis of the graphs shown in Figure 6.9, it can be inferred that 

the absence of PMUs at certain specific buses leads to a significant drop in detection and 

localization performance, especially with low-intensity attacks. Buses such as 11, 15, 46, 65, 109, 

110, and 111 are identified as requiring PMUs, regardless of whether the PMU placement strategy 

originally includes them. 

Finally, generally, though not always, the weak points for both detection and localization 

tend to be consistent. 

6.1.6 Experiment 6: Effect of Unobservability of Large Regions on the Detection and 

Localization Performance 

The objective of this experiment is to evaluate the influence of clustering on detection and 

localization accuracy, drawing upon the work from [7]. In the cited work, the authors propose a 

multi-regional distributed SE, utilizing K-means clustering to divide the IEEE-118 bus system into 

five regions as delineated in Figure 6.10 below. The five regions have “almost” equal number of 

PMUs on each. Table 6.3 shows what PMUs belong to what region. 

Originally, the purpose behind dividing the network into regions was to perform SE 

independently within each region using a local edge server. However, for this experiment, a 

different premise is considered: these edge servers act as local switches for their respective regions, 

forwarding the collected data to a control center for secondary analysis of the entire network. The 
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central question being addressed is the impact of a failure in one of these edge servers (due to 

physical disconnection or a cyber-attack) on detection and localization performance. Specifically, 

are some regions more critical than others, necessitating redundancy? 

Figure 6.10 The five distributed SE regions- based on the region definition adopted from [7]. 

Table 6.3 PMUs for each of the five regions used for distributed state estimation-adopted from 

[7].

Region BUS index Number 

of 

PMUs 

R1 1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18,19,20,30,33,34,35,36,117 24 

R2 9,10,21,22,23,24,25,26,27,28,29,31,32,65,66,68,70,71,72,73,113,114,115 23 

R3 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,56 23 

R4 59,60,61,62,63,64,67,69,97,98,99,100,101,102,103,104,105,106,107,108,109,110

,111,112 

24 

R5 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,116,118 25 

In this setup, each region will be considered unobservable in turn, and the impact on 

performance will be systematically analyzed. Below is the setup for this experiment:  

• Attack value 𝑥′ ∈ {0.04, 0.004}

• Number of attacked buses A= 8 (Fixed)
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Figure 6.11 The impact of lack of unobservability on large defined regions on the detection and 

localization performance with high and low intensity attack under the unsupervised model. (a) 

detection F1 score, (b) detection accuracy, (c) localization F1 score, and (d) localization accuracy. 

 

 

The analysis reveals that certain regions hold greater significance than others in terms of 

unobservability’s impact. Specifically, with respect to detection, the unobservability of regions 3 

and 4 markedly impairs detection capabilities as shown in Figures 6.11-a and 6.11-b. In terms of 

localization, performance significantly deteriorates when regions 1 and 4 are unobservable as 

illustrated in Figures 6.11-c and 6.11-d. Region 4 emerges as critical for observation, underscoring 

the necessity of maintaining uninterrupted connectivity to its local edge server. In essence, this 

indicates that redundancy is indispensable for region 4. 

6.1.7 Experiment 7: Effect of Unobservable Clustered PMUs on the Detection and Localization 

Performance 

This experiment extends the methodology of the previous one by dividing the region into 

smaller geographical units, resulting in a total of 17 clusters as outlined in Figure 6.12, and Table 
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6.4. It is important to note that the buses within each cluster are closely sequenced in terms of their 

indices. Consequently, obscuring a single cluster during the model’s training phase leads to the 

concealment of a sequence of adjacent features. 

Figure 6.12 The clusters adopted in experiment 7. 

Table 6.4 PMUs in each cluster in Experiment 7. 

Clusters BUS index Number 

of PMUs 

C1 1,2,3,4,5,6,7,8,11,12 10 

C2 13,14,15,16,17,18,30,117 8 

C3 33,34,35,36,19,20 6 

C4 9,10 2 

C5 28,27,114,115,32,31,29,113 8 

C6 21,22,23,25,26,24 6 

C7 70,71,72,73, 4 

C8 65,66,67 3 

C9 49,50,51,52,53,54,55,56,57,58,56 10 

C10 37,38,39,40,41,43 6 

C11 42,44,45,46,47,48 6 

C12 103,104,105,106,107,108,109,110,111,112 10 

C13 59,60,61,62,63,64 6 

C14 69,68,116,74,75,118,76 7 

C15 98,99,100,94,95,93,92,102,101 9 

C16 78,79,77,82,96,97,80,81 8 

C17 83,84,85,88,89,86,91,90,87 9 
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The purpose of this experiment is to investigate the impact of clustering by examining how 

the model’s behavior changes when multiple clusters are hidden simultaneously. The process 

begins with obscuring just one cluster, followed by repeating this procedure with 15 different 

clusters chosen at random and compiling the results. The experiment then progresses to hiding two 

clusters at a time, with this step also being repeated 15 times, and continues in this manner. 

Given the division into 17 clusters, hiding an additional cluster equates to obscuring 

approximately 7 more buses each time. Thus, hiding two clusters results in a total of 14 buses 

being concealed, three clusters lead to 21 hidden buses, and so on. This detail is crucial for drawing 

comparisons with the outcomes of Experiments 1 and 2, where the hiding strategy involved 

scattered buses. For a valid comparison, an equivalent number of unobserved scattered buses 

adopted from the first 2 experiments will be plotted, such that the number of unobservable scattered 

buses matches the number of unobservable buses at that cluster. For example, with three 

unobservable clusters, the average number of unobservable buses will be twenty-one. Thus, at the 

same point, the results from twenty-one scattered unobservable buses will be plotted. Below is the 

setup for this experiment:  

• Attack value 𝑥′ ∈ {0.04, 0.004}

• Number of unobserved clusters C  ∈ {1,2,3,4,5,6,7,8,9,10}

In line with expected outcomes, an increase in the number of unobservable clusters

correlates with a noticeable decline in our evaluation metrics as observed in Figure 6.13. 

While not universally applicable, it is generally observed that, compared to the results from 

Experiments 1 and 2 in Figures 6.2 and 6.4, performance tends to improve when the unobservable 

buses are clustered. 
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Figure 6.13 The impact of unobservable clustered PMUs on the detection and localization 

performance with high and low intensity attack under the unsupervised model. (a) detection F1 

score, (b) detection accuracy, (c) localization F1 score, and (d) localization accuracy.

6.2 Experiment Based on Supervised Model 

In this section, the experiments conducted in Section 6.1 are replicated with the setup 

remaining identical, with some key differences concerning the model’s operational mechanism. 

These differences are outlined as follows: Unlike the unsupervised model, the training data, in this 

case, incorporates attacks, with a similar ratio to that observed in the testing data. Furthermore, SE 

is employed solely for the purpose of estimating the values of the unobserved buses, not all buses 

as in the unsupervised model scenario. The estimated values for the unobservable buses are then 

combined with the actual values of the observed buses. This aggregated dataset is subsequently 

input into the detection model, where F1 scores and accuracy metrics are calculated for each 

experiment. It is important to mention that these experiments are essentially duplicates of those 

detailed in Section 6.1; therefore, only the results of these experiments will be discussed in this 
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section. For comprehensive details regarding the setup of each experiment, a reference to Section 

6.1 is recommended. 

6.2.1 Experiment 1: The Effect of Number of Unobservable Buses on the Detection Large 

Intensity Attack 

Figures 6.14 show the effect of increasing k on SE performance, while Figure 6.15 shows 

the effect of increasing k on detection performance. 

Figure 6.14 The effect of number of unobservable buses k on SE performance with 𝑥′=0.04 under 

the supervised model. (a) the effect of increasing k on SE MSE, and (b) the effect of increasing k 

on SE 𝑅2 score.

Figure 6.15 The effect of number of unobservable buses k on detection and localization 

performance with 𝑥′=0.04 under the supervised model. (a) the effect of increasing k on detection 

F1 score, and (b) the effect of increasing k on detection accuracy. 

The data presented in Figures 6.14 and 6.15 align with the observations and trends 

previously identified in Figures 6.1 and 6.2. Specifically, as the number of unobservable buses k 

increases, SE performance deteriorates. This is illustrated by an increase in MSE (Figure 6.14-a) 
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and a decrease in the 𝑅2 score (Figure 6.14-b). Moreover, with the rise in the number of

unobservable buses k, there is a notable decline in the detection F1 score and accuracy, as shown 

in Figure 6.15. Two significant drops are observed: one after k exceeds 20 and another when k 

surpasses 50. This latter observation correlates with findings from Section 6.1.1, where a rapid 

performance decline was noted once k exceeded 50 in the context of the unsupervised model. 

Consequently, it is advisable to keep k below 50 to maintain reasonable performance levels. 

Additionally, although not directly linked to the issue of observability, it is important to 

highlight that supervised and unsupervised models used in this thesis function inversely. In 

scenarios of large-scale attacks on numerous buses, large A, unsupervised models demonstrate 

reduced detection efficiency due to the significantly affected SE, as illustrated in Figures 6.2-a and 

6.2-b. Conversely, supervised models exhibit improved detection capabilities as the scale of the 

attack increases.  

6.2.2 Experiment 2: The Effect of Number of Unobservable Buses on the Detection Low 

Intensity Attack 

Figures 6.16 show the effect of increasing k on SE performance, while Figure 6.17 shows 

the effect of increasing k on detection performance. 

Figure 6.16 The effect of number of unobservable buses k on SE performance with 𝑥′=0.004 under 

the supervised model. (a) the effect of increasing k on SE MSE, and (b) the effect of increasing k 

on SE 𝑅2 score.
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Figure 6.17 The effect of number of unobservable buses k on detection and localization 

performance with 𝑥′=0.004 under the supervised model. (a) the effect of increasing k on detection 

F1 score, and (b) the effect of increasing k on detection accuracy.

The trends presented in Figures 6.16 and 6.17 are confirmed to align with expectations 

based on observations from Sections 6.1.2 and 6.2.1. As the number of unobservable buses k 

increases, an increase in SE MSE is observed, alongside a decrease in the 𝑅2 score, and a reduction

in attack detection F1 score and accuracy. A significant decrease in performance is observed in 

Figure 6.17-a, as previously demonstrated in Figure 6.15 when k exceeds 50. It is also noteworthy 

that a significant drop in detection performance is seen in this scenario, with a detection rate of 

x’=0.004, compared to the x’=0.04 result found in Section 6.2.1. The model’s effectiveness in 

detecting attacks is completely compromised when A=2 and k reaches 80. 

6.2.3 Experiment 3: Testing the Optimal PMU Placement Strategies with Detection High 

Intensity Attack 

Figure 6.18 shows the effect of increasing A on SE performance, while Figure 6.19 shows 

the effect of increasing A on detection performance considering the three placement strategies. 

Given the similarities between Experiments 3 and 4 outcomes, their conclusions will be 

discussed together at 6.2.4. 
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Figure 6.18 The effect of number of attacked buses A on SE performance with 𝑥′ =0.04 for the 

three placement strategies under the supervised model. (a) the effect of increasing A on SE MSE, 

and (b) the effect of increasing k on SE 𝑅2 score. 

 

 

 
Figure 6.19 The effect of number of attacked buses A on detection performance under 𝑥′ =0.04 for 

the three placement strategies. (a) the effect of increasing A on detection F1 score, (b) the effect of 

increasing A on detection accuracy 

 

 

 

6.2.4 Experiment 4: Testing the Optimal PMU Placement Strategies with Detection Low 

Intensity Attack 

Experiment 4 replicates Experiment 3, with the exception that the attack intensity is 

reduced to 𝑥′ =0.004. Figure 6.20 shows the effect of increasing A on SE performance, while 

Figure 6.21 shows the effect of increasing A on detection performance considering the three 

placement strategies with the low intensity attack of 𝑥′ =0.004. 

It can be observed that similar patterns are observed between Experiments 3 and 4, where 

Strategy S3 demonstrates superior performance over Strategies S1 and S2, as indicated in Figures 

6.19 and 6.21. Strategy S2 outperforms S1 when the attack size A is below 16. 
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Figure 6.20 The effect of number of attacked buses A on SE performance with 𝑥′ =0.004 for the 

three placement strategies under the supervised model. (a) the effect of increasing A on SE MSE, 

and (b) the effect of increasing k on SE 𝑅2 score. 

 

 

 
Figure 6.21 The effect of number of attacked buses A on detection performance under 𝑥′ =0.004 

for the three placement strategies under the supervised model. (a) the effect of increasing A on 

detection F1 score, (b) the effect of increasing A on detection accuracy 

 

 

However, once A exceeds 16, these dynamic reverses, with S1 surpassing S2 in 

performance. This trend closely mirrors the results depicted in Figure 6.6 from Section 6.1.3 and 

Figure 6.8 from Section 6.1.4 for the unsupervised model, with a notable deviation in the transition 

point between S1 and S2; in the earlier sections, this shift occurs when A is between 12 and 14, 

whereas in the current analysis, it is observed between 16 and 18. Furthermore, the conclusion 

reached in Section 6.1.4 remains applicable: although these placement strategies enhance 

observability to the highest degree, they do not necessarily translate to the most effective attack 

detection capabilities. This assertion is further substantiated by the findings presented in Figures 

6.20 and 6.22 where the random placements adopted from Experiments 1 and 2 with k=50 

outperform S3 performance. Although for the case with 𝑥′ =0.04, S3 outperforms the random 
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placement when A<10, as shown in Figure 6.20, the conclusion remains true for all the other cases 

tested in this work.  

6.2.5 Experiment 5: Assessing Detection with Sequentially Unobservable Buses – One at a Time 

Similar to Section 6.1.5, this experiment seeks to evaluate the influence of individual buses 

on the performance of the detection model. By systematically unobserving one bus at a time, the 

aim is to identify specific buses whose absence notably diminishes the model’s accuracy. Figure 

6.22 illustrates the variations in F1 score and detection accuracy corresponding to each bus being 

unobserved sequentially. 

 

Figure 6.22 Detection performance across the 118 buses under the supervised model, with each 

bus being unobserved one at a time. (a) detection F1 score, (b) detection accuracy. 

 

 

Mirroring the insights obtained from Section 6.1.5, the analysis presented in Figure 6.22 

reveals consistent trends within the system across both low and high-attack scenarios. 

Furthermore, some buses, when unobserved, are considered to have a high impact on detection 
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capabilities. Identifying and monitoring these weak points is crucial for maintaining system 

security. Notably, some of these crucial buses, such as buses 65, 109, 110, and 111, are commonly 

identified by both supervised and unsupervised models, as highlighted in Figures 6.22 and 6.9, 

respectively. This consistency underscores a shared understanding of system dependencies and 

critical features across different modeling approaches. However, the emergence of new sensitive 

buses to unobservability in the supervised model analysis—such as buses 5, 26, and 46—

underscores the distinct detection capabilities of both supervised and unsupervised models. 

6.2.6 Experiment 6: Effect of Unobservability of Large Regions on the Detection Performance 

Figure 6.23 shows the F1 score and accuracy when unobserving each of the five regions at 

a time that was introduced in Section 6.1.6 

Figure 6.23 The impact of lack of observability on large defined regions on the detection 

performance with high and low intensity attacks under the supervised models. (a) detection F1 

score, (b) detection accuracy.

 As observed in Figure 6.23, certain regions exert a more pronounced impact on attack 

detection performance when left unobserved. According to the data from Figure 6.23 in Section 

6.1.6 related to the unsupervised model, region 4 was identified as having the most significant 

impact, followed by region 3. In the experiments involving the supervised model, region 4 

continues to show the highest negative influence upon being unobserved, with Region 5 emerging 

as the second most impactful, replacing Region 3. Therefore, the findings affirm the critical 
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importance of region 4 in the context of attack detection. Consequently, it is advisable to consider 

the deployment of a redundant edge server in Region 4 in case the primary server encounters 

failure. 

6.2.7 Experiment 7: Effect of Unobservable Clustered PMUs on the Detection Performance 

Figure 6.24 illustrates the F1 score and accuracy against the number of unobserved clusters. 

Consistently, performance declines with an increase in the number of unobservable clusters. 

Moreover, this experiment's results validate the observation in Section 6.1.7 that clustering 

unobserved PMUs, as opposed to scattering them randomly, often leads to improved performance. 

This is evident when comparing Figure 6.24, which represents clustered unobserved PMUs, with 

Figures 6.15 and 6.17, where the unobserved PMUs are dispersed. 

Figure 6.24 The impact of the number of unobservable clustered PMUs on the detection 

performance with high and low intensity attacks under the supervised model. (a) detection F1 

score, (b) detection accuracy.

6.3 Experiments Conclusions and Remarks 

The findings from this thesis present compelling insights into how unobservability affects 

the performance of the two distinct models in FDIA detection. The analysis indicates consistent 

trends across both models: performance deteriorates as the number of unobservable buses 

increases, specific buses becoming unobservable can significantly reduce performance, and 

clustering unobservable buses tends to yield better results. 
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However, the conducted experiments highlight the superior performance of the 

unsupervised model over its supervised counterpart used in this thesis, attributing this to several 

advantages:  the unsupervised model is more adaptable to various types of anomalous data, simpler 

and quicker training process, and can localize attacks without extensive training on numerous 

features. In contrast, the supervised model requires detailed training on specific attacks, making it 

less efficient in detecting new or varied attacks. It also demands considerable time for training, as 

it involves training both the SE model followed by detection model and struggles with attack 

localization without extensive feature training. For these reasons, the unsupervised model 

demonstrates superior overall performance. However, while the unsupervised model generally 

outperforms the supervised model, the latter may have an edge in detecting large-scale attacks 

while the unsupervised model performance is being hindered by these large attacks. 

In conclusion, while there are some differences between the performance and operation of 

both models, the consistent trend across both underscores that despite the model being used, 

unobservability inherently poses a significant threat to the effectiveness of cyber-attack detection. 
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Chapter 7: Conclusions and Future Work 

7.1 Conclusions 

Drawing upon the detailed analyses and findings from the experiments conducted, the 

conclusion of this thesis underscores several insights into the cybersecurity of smart grids, 

particularly focusing on the aspects of detection and localization accuracy in the face of cyber-

attacks like FDIA under conditions of unobservability. The research meticulously outlined the 

significant impact that the number and distribution of unobservable buses have on the overall 

effectiveness of state estimation processes, detection, and localization accuracy. 

It was demonstrated through many experiments with different parameters that the number 

of unobservable buses affects the detection and localization of the attacks. The work presented can 

give insights to the utilities on the minimum number of PMU units that must be installed in order 

to ensure system security and reliability. Moreover, through comprehensive experimentation, it 

was demonstrated that not all buses and regions within the grid hold equal significance in terms of 

maintaining system security. Specific buses and regions were identified as crucial nodes whose 

observability significantly influences the grid's ability to detect and localize attacks effectively. 

Furthermore, the study revealed that current PMU placement strategies suggested in the 

literature may not necessarily offer the optimal configuration for attack detection and localization, 

even though they ensure the maximum possible network observability. This highlights the need 

for research to develop PMU placement strategies that prioritize both maximum observability and 

enhanced network resilience to attacks. Additionally, it was demonstrated that different 

configurations of unobservable buses can significantly impact attack detection capabilities. 
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Specifically, this work found that a clustered configuration for unobservable buses is more 

effective than a scattered configuration in terms of attack detection and localization capabilities. 

The findings from the experiments could provide insights for future research directions, 

particularly in the development of dynamic and adaptive PMU placement strategies that can 

accommodate the evolving landscape of cyber-physical threats under conditions of unobservability 

to ensure not only complete network observability but also reliable attack detection and 

localization. 

7.2 Future Work 

The work explored in the thesis, which sheds light on the effects of bus unobservability on 

FDIA detection and localization can open several promising directions for future research that 

could significantly advance the field of smart grid cybersecurity. 

Firstly, integrating spatial dynamics into the existing temporal models, particularly through 

the adoption of GNNs, presents a fertile ground for enhancement. GNNs, by their ability to capture 

spatial dependencies within graph-structured data, could offer a substantial improvement in 

modeling the complex interactions within power systems. This integration could lead to a more 

nuanced understanding of how attacks propagate through the network and how different nodes 

influence each other, thereby improving detection and localization accuracy under conditions of 

unobservability. 

Secondly, in this work, for training the SE model, which primarily relies on machine 

learning techniques requiring target values, the approach must utilize previous temporal states of 

the unobservable buses so the training can be accomplished; therefore, assuming disconnections 

at a certain point in time or employing classical SE methods for data acquisition of the 

unobservable buses. Future enhancements could involve adopting models that do not depend on 
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the availability of previous states, such as those based on GNN or graph signal processing 

techniques. These advanced models are capable of estimating the states of unobservable nodes 

through the relationships among nodes, eliminating the need for historical training data.  

Additionally, broadening the scope of research to encompass various cyber-physical events 

beyond FDIA could immensely benefit the resilience of power systems. While FDIA represents a 

critical threat to smart grids, other types of cyber-physical threats could also have profound 

impacts. By examining a wider array of cyber-physical events, researchers can gain comprehensive 

insights into the vulnerabilities of power systems and the effectiveness of different detection and 

localization strategies under unobservability conditions. This broader perspective could inform 

more holistic and robust PMU placement strategies, ensuring that the grid is not only resilient to 

FDIA but to a spectrum of potential threats. 
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