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ABSTRACT

Modern data science problems revolves around the Koopman operator Cϕ (or Composition

operator) approach, which provides the best-fit linear approximator to the dynamical system

by which the dynamics can be advanced under the discretization. The solution provided by

Koopman in the data driven methods is in the sense of strong operator topology, which is

nothing better then the point-wise convergence of data (snapshots) in the underlying Hilbert

space. chapter 2 provides the details about the aforementioned issues with essential counter-

examples. Thereafter, provable convergence guarantee phenomena is demonstrated

by the Liouville weighted composition operators Af,ϕ over the Fock space by providing the

boundedness (cf: Theorem 2.17) and compactness (cf: Theorem 2.25) establishment

of Af,ϕ over the Fock Space. Modern learning algorithms such as support vector machines

and activation function for Neural Nets heavily relies on the kernel function which arises

from the Lebesgue measure and reproducing kernel of Fock space. Thus, this chapter serves

its related results by establishing the norm convergence which benefits the practitioners of

learning algorithms community.

chapter 3 investigates the interaction of the weighted composition operators over the

Paley-Wiener Space. For sampling and interpolation of signals, Paley-Wiener Space is crucial.

The distinctive contribution of this chapter is the discussion of the Phragmén-

Lindelöf indicator function and the Pólya representation in the presence of the

weighted composition operators over the Paley-Wiener Space. Additionally, it has

been demonstrated that there exist no compact composition operators over the Paley-Wiener

Space. However, due to the presence of an extra symbol (multiplication- ψ) in the

iv



weighted composition operator, one can leverage it to attain the compactness of

it over the Paley-Wiener Space.

chapter 4 introduce the Koopman or composition operator over the Poly-logarithmic

Hardy Space. As a result of this, we also learned about the Nevanlinna Counting Function

for the Poly-logarithmic Hardy Space.

chapter 5 provides the theory of Mittag-Leffler Space of entire functions in the setting

of Lp space. The chief contribution of this chapter are the duality, isometry,

boundedness of integral operators via the Schur’s test which leads to perform

the atomic decomposition of the Mittag-Leffler Space.
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CHAPTER 1

INTRODUCTION

The research progress made in the present dissertation sits in the center of the theory of

Reproducing Kernel Hilbert Spaces (RKHS) and Operator Theory.

Definition 1.1 (cf. [1]). Let K be either R or C and X ̸= ∅. Then H is defined as a

K-reproducing kernel Hilbert space comprising if for functions f : X → K such that

1. A function K : X ×X → K is called a reproducing kernel of H if K(·, x) ∈ H ∀x ∈ X

and the reproducing property holds i.e.

f(x) = ⟨f,K(·, x)⟩H , ∀f ∈ H and x ∈ X.(RK)

2. H is called RKHS over X if ∀x ∈ X, the point evaluation functional Px : H → K

defined by Px(f) := f(x) for f ∈ H is continuous.

The existence of the reproducing kernel K(·, x) in (RK) is ensured by the Riesz Represen-

tation theorem; states as follows:

Theorem 1.2 (Riesz Representation Theorem). Let H be a Hilbert Space and let L : H →

K be a bounded linear functional. Then ∃ a unique vector h0 ∈ H such that L(h) =

⟨h, h0⟩H , ∀h ∈ H. Furthermore, ∥L∥H= ∥h0∥H .

1



1.1 Examples of RKHS

The examples of RKHS for entire functions are provided here. These examples will play

an important roles in this dissertation.

1.1.1 Fock Space

Consider the Gaussian measure as dAG = 1
πn
e−|z|2dA(z) for z ∈ Cn, where dA is

ordinary Lebesgue measure over Cn. Consider L2 (Cn, dAG) as the Lebesgue measurable

space comprising of measurable functions g for which the following holds:

(1.1) ∥g∥2F2(Cn):=
∫
Cn
|g(z)|2dAG(z) <∞.

The Fock space, F2(Cn), is given as the subset of L2(Cn, dAG) whose elements have an entire

function as a representative of their equivalence class. Since analyticity is preserved through

convergence with respect to the L2(Cn, dAG) norm, F2(Cn) is closed, and is identified as a

space of entire functions. F2(Cn) is a reproducing kernel Hilbert space, see [53], with the

kernel given as

(1.2) Kw(z) = K(z, w) = e⟨z,w⟩ = ez·w, z, w ∈ Cn,

and the normalized kernel function at w ∈ Cn for F2(Cn) is given as

(1.3) kw(z) = exp
(
⟨z, w⟩ − |w|2

2

)
, z ∈ Cn.

2



1.1.2 Mittag-Leffler Space

Recall the one-parameter Mittag-Leffler’s classical function; that is defined by the power

series given as follows:

(1.4) Eq(z) =
∞∑
k=0

zk

Γ(qk + 1) , where Γ(τ) =
∫ ∞

0
tτ−1e−τdt.

The Mittag-Leffler space, ML2(C; q), of entire functions of order q > 0, is defined as follows:

ML2(C; q) :=
{
f(z) =

∞∑
n=0

f̂(n)zn :
∞∑
n=0

|f̂(n)|2Γ(qn+ 1) <∞
}
,

We define the norm of f ∈ML2(C; q) as follows:

∥f∥2 :=
∫
C
|f(z)|2dµq(z), where,(1.5)

dµq(z) :=
1
qπ

|z| 2q−2e−|z|
2
q
dA(z).(1.6)

Remark 1.3. Note that if q = 1 in (1.6), then dµq(z) is the usual Gaussian measure (see

[53, Chapter 2, Page 33]). For additional and particular details about the norm, measure of

ML2(C; q) given in (1.5) and (1.6) and its connection with the Fock space, follow [34].

Proposition 1.4 (cf. [34] and [18].). Following properties holds for ML2(C; q):

1. The set {ej}∞j=0 in (1.7), forms the orthonormal basis for ML2(C; q)

(1.7) {ej(z)}j =

 zj√
Γ(qj + 1)


j

.

2. For all f ∈ML2(C; q), the following inequality is enjoyed by f ,

(1.8) |f(z)|2≤ Eq(|z|2)∥f∥2.

3



For q > 0, we define the normalized reproducing kernel kz at z ∈ C for ML2(C; q) as

follows:

kz =
Kz

∥Kz∥
,(1.9)

where ∥Kz∥=
√
K(z, z) =

√
Eq (|z|2).

Lemma 1.5. The normalized reproducing kernel of ML2(C; q) given (1.9), is a unit vector

in ML2(C; q).

Proof. The proof is easy once we use the reproducing property of the reproducing kernel Kλ,

that is, ⟨f,Kλ⟩ = f(λ) in ML2(C; q). Now, we give the proof for this as follows:

∥kλ∥2 =
1
qπ

∫
C
|kλ(z)|2|z|

2
q
−2e−|z|

2
q
dA(z),

= 1
qπ

∫
C

∣∣∣∣∣∣∣
Kλ(z)√
Kλ(λ)

∣∣∣∣∣∣∣
2

|z| 2q−2e−|z|
2
q
dA(z),

= 1
qπKλ(λ)

∫
C
Kλ(z)Kz(λ)|z|

2
q
−2e−|z|

2
q
dA(z),

= 1.

Therefore, kλ is a unit vector in ML2(C; q), as desired.

1.1.3 Paley-Wiener Space

Definition 1.6. An entire function f is of exponential type τ if |f(z)|≤ O (exp ((τ + ϵ)|z|))

∀ϵ > 0.

We will use either τ or σ symbols are reserved for ‘type’ for a function which is an

entire function of exponential type EFET , in this dissertation. Recall the classic result of

Paley-Wiener theorem given as:

4



Theorem 1.7 (Paley and Wiener). Suppose f ∈ L2(R). Then the necessary and sufficient

condition that the Fourier transform of f vanish outside of [−σ, σ] is that f(x) be of exponential

type σ.

Paley-Wiener space, PW 2
π , is comprised of entire functions of exponential type σ less than

or equal to π whose restriction to the real line belongs to the space L2(R), that is, entire

function f with |f(z)|≤ O (exp ((σ + ϵ)|z|)) for all ϵ > 0, and for all σ ≤ π, satisfies the

following:

∥f∥2L2(R)=
∫
R
|f(x)|2dx <∞, ∀ f ∈ PW 2

π .(1.10)

The aforementioned definition of PW 2
π is the result of Theorem 1.7. PW 2

π is a RKHS

whose norm ∥•∥PW 2
π
is given as (1.10), that is, ∥f∥PW 2

π
≡ ∥f∥L2(R)< ∞. For f ∈ PW 2

π and

with z = x+ iy, the Plancherel-Pólya theorem states that
∫
R|f(z)|2dx ≤ ∥f∥2

PW 2
π
e2π|Im z| for

f being an EFET since σ ≤ π [27, Page-51, Theorem 4]. The reproducing kernel of PW 2
π

is K(z, w) = sinc (z − w) = sin (π (z − w))
π (z − w) . For n ∈ Z, {Kn}n forms the orthonormal basis

of PW 2
π , since sinc (z − n) is the image of e

−int
√
2π

under the inverse Fourier transform. For

f ∈ PW 2
π , the relationship ∥f∥2L2(R)=

∑
n∈Z∥f(n)∥2 is true by the virtue of Parseval’s identity.

Every candidate f ∈ PW 2
π enjoys the following representation against f̂ ∈ L2 (−π, π):

f(z) =
∫ π

−π
f̂(t)eitz dt√

2π
.

There exists a unitary Fourier isometric isomorphic transform from PW 2
π → L2 (−π, π), and

again as an application of Parseval’s identity we have

∥f∥2L2(R)= ∥f̂∥2L2(−π,π).(1.11)

5



Let f ∈ PW 2
π . Recall [27, Lecture-10, Page-69] as follows:

|f(x+ iy)| ≤ e−π|y|

2π

∫ π

−π
|f̂(t)|dt(1.12)

|f(x+ iy)|2 ≤ e−2π|y|

2π ∥f∥2PW 2
π
, (use Cauchy-Schwarz & (1.11)).(1.13)

We now include important examples of RKHS over a finite measure space, in particular the

unit disc D.

1.1.4 Hardy Space

The Hardy space, H2(D), is a Hilbert space comprised of all holomorphic functions f in

D for which the following holds:

(1.14) ∥f∥2H2= sup
0≤r<1

1
2π

∫ π

−π
|f(reiθ)|2dθ <∞.

Upon the calculation of (1.14) for f(z) = ∑∞
n=0 f̂(n)zn, the following summation correspon-

dence holds true for f ∈ H2,

(1.15) ∥f∥2H2=
∞∑
n=0

|f̂(n)|2<∞.

1.1.4.1 Littlewood-Paley Identity for H2 We need following elementary equality that

can be easily proved by integration by parts technique.

(1.16)
∫ 1

0
r2n−1 log 1

r
dr = 1

4n2 , n ∈ Z+.

The Littlewood-Paley Identity for H2 is given above and we give the proof of it for clarity.

(1.17) ∥f∥2H2= |f(0)|2+2
π

∫
D
|f ′(z)|2log 1

|z|dA(z), for f ∈ H2.

6



Proof of (1.17). The LHS of (1.17) is ∑∞
n=0|f̂(n)|2. On the other hand,

∫
D
|f ′(z)|2log 1

|z|dA(z) =
∫
D

∣∣∣∣∣
∞∑
n=1

nf̂(n)zn−1
∣∣∣∣∣
2

log 1
|z|dA(z),

=
∞∑
n=1

∞∑
m=1

nmf̂(n)f̂(m)2πδnm
∫ 1

0
rn+m−1 log 1

r
dr,

= 2π
∞∑
n=1

n2|f̂(n)|2
∫ 1

0
r2n−1 log 1

r
dr, (use (1.16)),

= π

2
∞∑
n=1

|f̂(n)|2.

Therefore, |f(0)|2+2
π

∫
D|f ′(z)|2log 1

|z|dA(z) = |f̂(0)|2+∑∞
n=1|f̂(n)|2= ∥f∥2H2 .

Remark 1.8. The Littlewood-Paley Identity for H2 is useful for instance, as one can

learn from (1.17) that for f ∈ H2, its norm is equivalent to the condition that f ′ ∈

L2
(
D,

2
π
log 1

|z|dA(z)
)

up-to the addition of |f(0)|2. In other words, here 2
π
log 1

|z| is the

right measure that matches with the derivative of function in H2 in L2 setting over D. The

similar phenomena will rise for different Hilbert space of entire functions. However, the

name of equivalent norm representation, abbreviated as ENR will be utilized for the discussed

Hilbert space. Therefore, the Littlewood-Paley Identity is only associated with H2.

Let us now define the Polylogarithmic Hardy space as follows:

1.1.5 Polylogarithmic Hardy Space

Definition 1.9. Let s ∈ C. The Polylogarithmic Hardy space PL2(D; s) is defined as follows:

(1.18) PL2(D; s) =
{
fs(z) =

∞∑
k=1

f̂(k)
ks

zk :
∞∑
k=1

∣∣∣f̂(k)∣∣∣2 <∞
}
.

Note that fs ∈ PL2(D; s) is entire in s and analytic for |z|< 1 (cf. [33]). The fact that fs

is analytic implies the existence of holomorphic character of fs. PL2(D; s) is a reproducing

7



kernel Hilbert space with the kernel function K(z, w; s, t) given as:

K(z, w; s, t) = Ls+t(zw), where Ls(z) =
∞∑
n=0

zn · n−s

for s and t ∈ R. Consider fs and gs in PL2(D; s), then that inner product for the same is

defined in relation with H2 as:

⟨fs, gs, ⟩PL2(D;s) = ⟨S∗f0, S
∗g0⟩H2 ,

= 1
2π

∫ 2π

0
S∗f0(eiθ)S∗g0(eiθ)dθ,(1.19)

where S =Mz is the shift operator. In addition to this, the norm of fs ∈ PL2(D; s) is:

∥fs∥2PL2(D;s)=
1
2π

∫ 2π

0
|S∗f0(eiθ)|2dθ <∞.(1.20)

1.1.6 Dirichlet Space

The Dirichlet space, D2(D), is a Hilbert space comprised of all holomorphic functions f

in D for which the following holds:

(1.21) ∥f∥2D2= |f(0)|2+1
π

∫
D
|f ′(z)|2dA(z) <∞,where dA is the area measure.

Note that for f(z) = ∑∞
n=0 f̂(n)zn with the calculation of (1.21), the following summation

correspondence holds true for f ∈ D2,

(1.22) ∥f∥2D2=
∞∑
n=0

(n+ 1)|f̂(n)|2<∞.
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1.1.7 Bergman Space

The Bergman space, A2(D), is a Hilbert space comprised of all holomorphic functions f

in D for which the following holds:

(1.23) ∥f∥2A2=
1
π

∫
D
|f(z)|2dA(z) <∞.

For f(z) = ∑∞
n=0 f̂(n)zn ∈ A2:

(1.24) ∥f∥2A2=
∞∑
n=0

|f̂(n)|2
n+ 1 <∞.

The following space containment relation among all three Hilbert spaces, is true:

(1.25) D2 ⊂ H2 ⊂ A2.

Now, we revisit some modern theory of weighted composition operators over various RKHS.

1.2 Weighted composition operators

Let H be a Hilbert space of entire functions over C. Let ψ and ϕ be entire functions.Then,

the weighted composition operator denoted formally by Wψ,ϕ is defined as

Wψ,ϕf :=ψ · (f ◦ ϕ) under Wψ,ϕ : dom (Wψ,ϕ) → H.

The dom (Wψ,ϕ) is the domain of Wψ,ϕ such that ψ · (f ◦ ϕ) ∈ H. For ψ = 1, Wψ,ϕ is the

classical Composition operators.

The history of Wψ,ϕ traces back to 1964 when Forelli demonstrated the isometries

among the Hardy spaces Hp for 1 < p <∞ and p ̸= 2, see [11].
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1.2.1 Disjoint Support Property

Let X be a Hausdorff topological space and let E be a real or complex Banach space.

The space of continuous E valued functions on X will be denoted by C(X,E). This space is

a Banach space when endowed with the usual norm

∥f∥= sup{|f(x)|: x ∈ X}.

Disjoint support property of an operator T on C(X,E) is defined then as:

if ∥f(x)∥∥g(x)∥= 0 for every x ∈ X =⇒ ∥Tf(x)∥∥Tg(x)∥= 0 for every x ∈ X.

It has been demonstrated that the only bounded operator over C(X,E) which satisfy with

the disjoint support property are precisely the weighted composition operators Wψ,ϕ; which

was shown by Jamison and Rajagopalan in [21].

1.2.2 Results by Carswell, MacCluer and Schuster

Carswell, MacCluer and Schuster characterized bounded and compact Cϕ over

the Fock space F2(Cn) of entire functions [4].

Theorem 1.10 (Theorems-1 & 2, [4]). Composition operator Cϕ is bounded on F2(Cn) only

when ϕ(z) = Az +B with ∥A∥≤ 1. Conversely, suppose that ϕ(z) = Az +B with A being a

n× n complex matrix and B ∈ Cn. If ∥A∥= 1 then Cϕ is bounded on F2(Cn) if and only if

B = 0. If ∥A∥< 1 then Cϕ acts compactly on F2(Cn).
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1.2.3 Results by Ueki and Le

For this particular section, we will use Ueki’s notation: uCϕf to denote the weighted

composition operator. Study of uCϕf := u · f ◦ϕ with certain integral transforms denoted by

Bϕ(|u|2)(w) in [49] by Ueki. The quantity Bϕ(|u|2)(w) is given as follows:

Bϕ(|u|2)(w) =
1
2π

∫
C
|u(z)|2

∣∣∣∣e ⟨ϕ(z),w⟩
2

∣∣∣∣2 e− |w|2
2 e−

|z|2
2 dA(z).

The boudedness and compactness characterization of uCϕf over the Fock space (for a single

variable, F2) by Ueki is given as follows:

Theorem 1.11. Follow [49, Theorem 1 & Theorem 2] respectively for following results.

1. uCϕ is a bounded operator on F2 if and only if Bϕ(|u|2) ∈ L∞(C).

2. Suppose uCϕ is bounded over F2, then there is a positive constant C such that

lim sup
|w|↑∞

Bϕ(|u|2)(w) ≤ ∥uCϕ∥e≤ C lim sup
|w|↑∞

Bϕ(|u|2)(w).

In particular, uCϕ is a compact operator on F2 if and only if lim|w|↑∞Bϕ(|u|2)(w) = 0.

Related results were further-up simplified in [26] by Le.

Theorem 1.12. Follow [26, Theorem 2.2. & Theorem 2.4.] respectively for following results.

1. Wf,ϕ is bounded on F2 if and only if f belongs to F2, ϕ(z) = ϕ(0)+λz with |λ|≤ 1 and

M(f, ϕ) := sup |f(z)|2exp
(
|ϕ(z)|2−|z|2

)
: z ∈ C} <∞.

2. Wf,ϕ is compact on F2 if and only if ϕ(z) = ϕ(0) + λz for some |λ|< 1 and

lim
|z|↑∞

|f(z)|2exp(|ϕ(z)|2−|z|2) = 0

holds.
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1.3 Liouville operators and Occupation Kernels

Rosenfeld, Russo and Kamalapurkar et.al. studied Dynamic Mode Decomposition

(DMD) for continuous dynamical systems in the setting Liouville operators paired up with

Occupation kernels [35, 36, 37, 42]. Further, occupation kernels have played a key role to

study the motion tomography in [43] and fractional order system identification [28].

Definition 1.13 (Liouville Operators). Let γ̇ = f(γ) be a dynamical system with f : Rn → Rn

as a locally Lipschitz function. Let H be a RKHS over compact X ⊂ Rn, then Liouville

operator native to the given dynamics Af : D(Af ) → H operates as

Afg(∗) := ∇g(∗) · f(∗) where D(Af ) := {h ∈ H | ∇h · f ∈ H}.(1.26)

Fruitful results are discovered when Af is coupled with Occupation Kernel, defined as

follows:

Definition 1.14 (Occupation Kernel). Take a continuous trajectory γ : [0, T ] → X ⊂ Rn

where X is compact in Rn. Let (H, ⟨∗, ∗⟩H) be the RKHS over X consisting of continuous

functions; the functional g 7→ ∫ T
0 g(γ(τ))dτ is bounded. Appealing to the Riesz Representation

theorem, ∫ T

0
g(γ(τ))dτ = ⟨g,Γγ⟩H

for some Γγ ∈ H. This Γγ is called as an occupation kernel corresponding to γ ∈ H.

Letting K(·, ·) be the kernel function corresponding to H, then following holds:

A∗
fΓγ = K (·, γ(T ))−K (·, γ(0)) .

A∗
fΓγ provides the input-output relationships that enable DMD of time series data. Liouville

operators in a DMD routine allows the dynamics to be locally rather than globally Lipschitz.

{Af} when examined via {Γγ} avoids the limiting relations of Koopman operators that might
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not be well defined for a particular discretization of a continuous time nonlinear dynamical

system. Readers are encouraged to follow important references for this: [36, 38].
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CHAPTER 2

PROVABLE CONVERGENCE GUARANTEE SOLUTION FOR LEARNING

ALGORITHMS

Since the beginning of the 21st century, there has been a tremendous data production,

of which a majority of it is unprocessed and unanalysed which eventually is unused. Giant

domains where the data misses the opportunity of even being understood are commerce,

technology, health and network sectors. Often times, these data are affiliated with certain

dynamical systems which are nonlinear and chaotic. To understand and process the generated

data, Koopman operator framework is employed.

2.1 Koopman Operator

2.1.1 Forward Complete Dynamics

Koopman operator framework or mathematically just the Composition operator has

emerged as one of the main candidates for machine learning of dynamical processes. In

particular, practitioners employ Cϕ in the sense of Koopman [24] to deal with the discretizable

dynamical systems and Dynamic Mode Decomposition (DMD) [15, 25, 29, 50] and etc.

Koopman operator technique/analysis fails to capture the data-driven analysis for the

dynamics which are not discretizable, for instance ẋ = 1 + x2. Here, for a fixed and

finite time-incremental δt in
(
0, π2

)
the corresponding discrete time dynamics are xm+1 =

tan (arctan(xm) + δt). Observe that when xm takes tan
(
π

2 − δt
)
, it results into the absurdity

of xm+1. Hence, the symbol ϕ to the corresponding Koopman operator is not well-defined. The

example discussed here is one of the simplest example belonging to the polynomial dynamics.
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These dynamics are prevalent in the literature of mass-action kinetics in thermodynamics,

chemical reactions and species populations. These situation makes the study of Liouville

operators as a big industry in various themes.
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Figure 1. Vector field of dynamical system ẋ(t) = 1 + x2(t)

15



2.1.2 Affine Symbols

2.1.2.1 For the Fock Space A proof-sketch of Theorem 1.10 is addressed here for the

Koopman operators Cϕ interacting on the Fock Space F2(Cn).

Proof sketch of Theorem 1.10. If Cϕ is bounded over F2(Cn) then

sup
w∈Cn

∥C∗
ϕ(kw)∥
∥kw∥

= sup
w∈Cn

exp
(1
4
(
|ϕ(w)|2−|w|2

))
<∞.

From above, we infer that

lim sup
|w|↑∞

|ϕ(w)|
|w| ≤ 1.(2.1)

Thus, each coordinate of ϕ is linear, that is, ϕ(z) = Az +B. Besides this, say |Aζ|> |ζ| for

some ζ ∈ Cn whose norm is 1. Letting z = τζ, where τ > 0 and then making τ → ∞ and

combined with (2.1) as follows:

lim
τ→∞

|Aζ + 1
τ
B|

|ζ| < 1.

The above inequality implies |Aζ|< |ζ| which is a contradiction. For compactness, let ∥A∥= 1

and note that

∥Cϕ∥e≥ lim sup
|w|↑∞

exp
(1
4
(
|ϕ(w)|2−|w|2

))
,

which allows ∥Cϕ∥e ̸= 0, so Cϕ is not compact. Thus, ∥A∥< 1.
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2.1.2.2 For the Paley-Wiener Space Fundamental to the data sampling and data

interpolation is the classical space PW 2
π . We learned from subsection 1.1.3 that it

comprises of only those entire functions of exponential type whose restriction of it on real

axis is L2(R)-integrable. It has been demonstrated in [5] that the only Koopman operators

that can act bounded over PW 2
π are affine. Moreover, aforementioned reference also proved

that there exist no compact Koopman operators for PW 2
π .

2.2 Preliminaries

Remark 2.1. Unless otherwise stated, all vectors v ∈ Cn are column vectors, v⊤ denotes

the transpose of a vector or matrix. When n = 1, the symbols |·| implies the modulus of a

complex number. The symbols ∥•∥ will represent either F2(Cn) norm (defined in (1.1)) or

operator norm depending on the context. det(A) denotes the determinant of a matrix A. The

multi-index notation is employed as j = (j1, . . . , jn) and |j|= j1 + · · ·+ jn. If z = (z1, . . . , zn)

then zj = (zj11 , . . . , zjnn ), and dz = dz1 · · · dzn.

Definition 2.2. Let D(Af,ϕ) be a subspace of F2(Cn), Af,ϕ : D(Af,ϕ) → F2(Cn), then the

Liouville weighted composition operator induced by entire multiplication symbol f and an

entire composition symbol ϕ with f : Cn → Cn and ϕ : Cn → Cn, is given as follows:

(2.2) Af,ϕg := ∇g(ϕ(·)) ·Dϕ(·) · f(·), where

D(Af,ϕ) :=
{
g ∈ F2(Cn) such that ∇g(ϕ(·)) ·Dϕ(·) · f(·) ∈ F2(Cn)

}
.

The term ‘∇g’ implies the usual gradient of g and Dϕ implies the matrix-valued derivative

taken on ϕ.
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2.2.1 Simple Preliminaries

Lemma 2.3. Let ϕ : Cn → C be holomorphic on a domain Ω containing the closed unit ball.

If ϕ(z) = ∑
|j|=0 ajz

j, then

1
(2π)n

∫ π

−π
· · ·

∫ π

−π
|ϕ|2dθ =

∑
|j|=0

|aj|2r2j, aj ∈ C.

Jensen’s Inequality will also be utilized in this manuscript, and it is stated here for clarity.

Proposition 2.4. (Jensen’s Inequality, [12, Lemma 6.1, Page 33]) Let (Ω,Σ, µ) be a

probability space, and g a real-valued function that is µ-integrable. If ψ is a convex function

then,

ψ
(∫

Ω
g dµ

)
≤
∫
Ω
ψ ◦ g dµ.

Theorem 2.5 (Cauchy’s integral formula for distinguished boundary). Let f(z) be an-

alytic function of several complex variables z = (z1, · · · , zn) in a closed polydisc D, D =

{z ∈ Cn : |zk − ak|< rk}. Then, at each point of D, f(z) is representable by a multiple Cauchy

integral:

(2.3) f(z) =
( 1
2πi

)n ∫
T

f(ζ)
(ζ − z)dζ,

where

T = {ζ ∈ Cn : |ζk − ak|= rk, k = 1, . . . , n}

is the distinguished boundary of the polydisc, ζ = (ζ1, . . . , ζn), dζ = dζ1 · · · dζn and ζ − z =

(ζ1 − z1) · · · (ζn − zn).

Proof. Follow [20, Page 553, Equation 17], or [13, Page 11, Theorem 12].
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2.2.2 Closeness

The following theorem establishes that Liouville weighted composition operators are closed

operators. Hence, when the domain of the operators encompass the entire space, Liouville

weighted composition operators are bounded by the closed graph theorem.

Theorem 2.6. Let H be a reproducing kernel Hilbert space of continuously differentiable

functions over Cn. Consider entire mappings f : Cn → Cn and ϕ : Cn → Cn. Then Af,ϕ is a

closed operator.

Proof. Suppose {gm}∞m=1 ⊂ D(Af,ϕ) such that ∥gm−g∥H→ 0 in H. It follows that
{
∂gm
∂zi

(z)
}

converges uniformly to ∂g

∂zi
(z) on compact subsets of Cn (cf. [48, Corollary 4.36]). Suppose

also that Af,ϕgm → h for some h ∈ H, then

∇gm(ϕ(z))D(ϕ(z))f(z) pointwise−−−−−−→ ∇g(ϕ(z))D(ϕ(z))f(z).

Since, Af,ϕgm(z) = ∇gm(ϕ(z))D(ϕ(z))f(z), it follows that

h(z) = lim
m→∞

Af,ϕgm(z) = lim
m→∞

∇gm(ϕ(z))D(ϕ(z))f(z) = ∇g(ϕ(z))D(ϕ(z))f(z).

Thus, ∇g(ϕ)D(ϕ)f = h and g ∈ dom(Af,ϕ).

Note that the Theorem 2.6 generalizes of [39, Theorem 3.3].

2.2.3 Liouville weighted composition operators & Occupation Kernels

Recall the definition of Occupation kernels from Definition 1.14. The interaction of

Af,ϕ on the occupation kernels is given as follows:

Theorem 2.7. Let H be a RKHS of continuously differentiable functions with K(·, ·) as

its kernel. Let γ be a continuous trajectory, γ : [0, T ] → Rn satisfying γ̇ = f(γ) where
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f : Rn → Rn is Lipschitz continuous and g → ⟨Af,ϕg,Γγ⟩H bounded, then for Γγ ∈ D(A∗
f,ϕ),

A∗
f,ϕΓγ = K(·, ϕ(γ(T )))−K(·, ϕ(γ(0))).

Proof. It can be proved as follows:

⟨Af,ϕg,Γγ⟩H =
∫ T

0
Af,ϕg(γ(t))dt

=
∫ T

0

d

dt
(g ◦ ϕ(γ(t))) dt

=
∫ T

0
∇g(ϕ(γ(t)))D(ϕ(γ(t)))γ̇(t)dt,

= g(ϕ(γ(T )))− g(ϕ(γ(0))), (Fundamental theorem of Calculus)

= ⟨g,K (†, ϕ(γ(T )))−K(†, ϕ(γ(0)))⟩H ,

∴ A∗
f,ϕΓγ = K(·, ϕ(γ(T )))−K(·, ϕ(γ(0))).

The proof of Theorem 2.7 generalizes the result of [36, Lemma 2] and [38, Proposition

5].

2.2.4 Null-Space

Theorem 2.8. Let two holomorphic functions on a domain Ω ⊆ Cn coincide on a nonempty

open subset U ⊆ Ω. Then, they are the same on the whole of Ω.

Proof. Follow [22, Proposition 1.7.10] or [44, §1.2.2].

Theorem 2.9. Let H be a reproducing kernel Hilbert space over the C. Consider holomorphic

functions f : C → C and ϕ : C → C where f ̸≡ 0 and ϕ is non-constant. Let Af,ϕ be densely

defined over H induced by two holomorphic functions f and ϕ. Then the null-space of Af,ϕ
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is:

nullsp(Af,ϕ) = {g ∈ D(Af,ϕ) : g is a constant function ∈ C} .(2.4)

Proof. Let g ∈ nullsp(Af,ϕ) and therefore, Af,ϕg(z) ≡ g′(ϕ(z))ϕ′(z)f(z) = 0 for all z ∈ C

where f ̸= 0 and ϕ is non-constant. Consider {wm}m∈Z+
→ w for some w ∈ C and wm ̸= wn

if m ̸= n. Holomorphicity of ϕ in C ensures ϕ(wm) → ϕ(w). For the sake of contradiction,

suppose there exist a sub-sequence {wmj}j of {wm}m that are the zeros of ϕ. Then, ϕ(w) = 0

and zeros of ϕ does accumulate. Therefore, ϕ ≡ 0 but this cannot happen as ϕ is non-constant.

For sufficiently large m, ϕ(wm) ̸= 0.

Similarly ϕ(wm) has no constant sub-sequence. Thus, the selection of distinct ϕ(wm) is

possible. Set vm = ϕ(wm) and observe that vm → ϕ(w) such that g′ (ϕ(wm)) = g′(vm) = 0 for

all m ∈ Z+. From above, we concluded that each one of {vm}m’s are distinct and vm → ϕ(w)

that they must have an accumulation point. Hence, by Theorem 2.8, g′ ≡ 0, yielding g a

constant function in C.

The following example demonstrates that we cannot provide the null-space for Af,ϕ over

Cn unless n = 1.

Example 2.10. Let z = (z1, z2) ∈ C2. Let g : C2 → C defined by g(z) = ν1z1 − ν2z2 for

some non-zero complex constants ν1 and ν2. Let ϕ(z) = z and f(z) = (ν1, ν2)⊤. Then

Af,ϕg(z) = ∇g (ϕ(z))Dϕ(z)f(z) =
[
ν2 −ν1

] 1 0

0 1

 [ν1 ν2

]⊤
= ν2ν1 − ν1ν2 = 0.

Note that in above, the Euclidean dot product of (∇g(ϕ(z)))⊤ (which is (̸≡ 0)) with that of

Dϕ(z)f(z) is 0 implying that the vectors (∇g(ϕ(z)))⊤ and Dϕ(z)f(z) are mutually orthogonal

in C2. Due to the Euclidean dot product being 0 here, it might tempt to include a linear

function in several variables in the null-space of Af,ϕ over C2. However, vector valued
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functions of several variables are not integral domains with respect to the Euclidean dot

product.

2.3 Boundedness

Similar to methods for weighted composition operators (cf. [4, 26]), determining a

characterization of the symbols that result in a bounded Liouville weighted composition

operator will rely on the action of the adjoint of these operators on kernel functions, which is

established in Lemma 2.11 over F2(Cn).

Lemma 2.11. Suppose f : Cn → Cn and ϕ : Cn → Cn are entire functions that yield a

bounded Af,ϕ over F2(Cn), then

(2.5) ∥A∗
f,ϕKz0∥2=

(
f(z0)⊤Dϕ(z0)⊤(In + ϕ(z0)ϕ(z0)

⊤)Dϕ(z0)f(z0)
)
e|ϕ(z0)|

2
.

The quantity In in (2.5) corresponds to the n× n identity matrix.

Proof. By the definition of Af,ϕ, following expression can be written for z0 ∈ Cn with the

help of reproducing kernel Kz0 at z0 ∈ Cn,

Af,ϕg(z0) = ⟨Af,ϕg,Kz0⟩ = ⟨g, A∗
f,ϕKz0⟩ = ∇g(ϕ(z0))Dϕ(z0)f(z0).

For z ∈ Cn, the evaluation of A∗
f,ϕKz0(z) may be determined through the inner product of

the Hilbert space as

A∗
f,ϕKz0(z) = ⟨A∗

f,ϕKz0 , Kz⟩ = ⟨Kz0 , Af,ϕKz⟩ = ⟨Af,ϕKz, Kz0⟩ = Af,ϕKz(z0)

= zKϕ(z0)(z)Dϕ(z0)f(z0).
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Therefore,

∥A∗
f,ϕKz0∥2 = ⟨Af,ϕA∗

f,ϕKz0 , Kz0⟩

= Af,ϕA
∗
f,ϕKz0(z0)

=
(
f(z0)⊤Dϕ(z0)⊤(In + ϕ(z0)ϕ(z0)

⊤)Dϕ(z0)f(z0)
)
e|ϕ(z0)|

2
.

The proof of Lemma 2.11 may be adapted to show that Kz is in the adjoint of Af,ϕ for

each z ∈ C. Analogous to the approach in [18] the following quantities are defined.

Definition 2.12. Let ϕ : Cn → Cn and f : Cn → Cn be entire mappings that yield a bounded

Af,ϕ. Then the following are defined as

Mz(f, ϕ) :=
∥A∗

f,ϕKz∥2
∥Kz∥2

, where z ∈ Cn and,(2.6)

M(f, ϕ) := sup
z∈Cn

Mz(f, ϕ) = sup
z∈Cn

∥A∗
f,ϕKz∥2
∥Kz∥2

.(2.7)

Proposition 2.13. Let W : Cn → Cn and ϕ : Cn → Cn be entire functions with W (z)

non-vanishing. If

|W (z)|2e|ϕ(z)|2−|z|2 < C

for all z ∈ Cn then ϕ is linear (affine) i.e. ϕ(z) = Az +B where B ∈ Cn with ∥A∥≤ 1.

Proof. We begin by taking the logarithm of both sides,

2 log|W (z)|+
(
|ϕ(z)|2−|z|2

)
< log(C).
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Now we introduce z = (r1eiθ1 , . . . , rneiθn)⊤. Now, |z|2=
∑n
ℓ=1|zℓ|2 and |ϕ(z)|2= ∑n

ℓ=1|ϕℓ(z)|2,

where ϕℓ : Cn → C is a component function of ϕ. If we fix a k ∈ {1, . . . , n} we have

log(C) > 2 log|W (z)|+
(
|ϕ(z)|2−|z|2

)
,(2.8)

≥ 2 log|W (z)|+
(
|ϕk(z)|2−|z|2

)
,

= 2 log|W (z)|+
(
|ϕk(z)|2−

n∑
ℓ=1

r2ℓ

)
.

We integrate both sides over Tn

2
(2π)n

∫ π

−π
. . .
∫ π

−π
log|W (z)| dθ + 1

(2π)n
∫ π

−π
. . .
∫ π

−π
|ϕk(z)|2dθ −

n∑
ℓ=1

r2ℓ < log(C).

Again, the above is written using multi-index notation. By analyticity of W (z), Jensen’s

inequality in Proposition 2.4, and monotonicity of log and Theorem 2.5, we get

2 log(|W (0)|) = 2 log
(∣∣∣∣∣ 1

(2πi)n
∫
Tn

W (ξ)
ξ

dξ

∣∣∣∣∣
)
,

≤ 2 log
(

1
(2π)n

∫ π

−π
. . .
∫ π

−π
|W (z)| dθ

)
,

≤ 2
(2π)n

∫ π

−π
. . .
∫ π

−π
log|W (z)| dθ.

We have,

2 log(|W (0)|) + 1
(2π)n

∫ π

−π
. . .
∫ π

−π
|ϕk(z)|2dθ −

n∑
ℓ=1

r2ℓ < log(C).

By an application of our Lemma 2.3,

2 log(|W (0)|) +
∑
|j|=0

|akj |2r2j11 · . . . · r2jnn −
n∑
ℓ=1

r2ℓ < log(C),

here we used a super-script of k to indicate this a decomposition of the k-th component of

the function ϕ. Let ei be the multi-index with a 1 in the i-th spot and zeros else where. The
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above rearranges to:

2 log(|W (0)|) +
∑
|j|=2

|akj |2r2j11 · . . . · r2jnn + |ak0|2+
n∑
ℓ=0

(|akeℓ |2−1)r2ℓ < log(C).

This inequality is true for all r = (r1, . . . , rn)⊤ ∈ Rn. As the second term is unbounded if

any |akj |> 0 for j ≥ 2, this is enough to imply up to a relabelling that ϕk(z) = ak,1z1 + · · ·+

ak,nzn + bk. Thus, ϕ(z) = Az +B where, A = (ak,j)n,nk,j=1 and B = (b1, . . . , bn)⊤. From (2.8),

notice the following:

|z|2+ log(C) > |ϕ(z)|2.

Thus, it follows that

lim
|z|→∞

|ϕ(z)|
|z| < 1,(2.9)

which is same to say lim|z|→∞
|Az+B|

|z| < 1. Now, suppose that |Aζ|> |ζ| for some ζ whose norm

is 1. Setting z = tζ and t > 0 in (2.9) yields limt→∞

∣∣∣∣∣Aζ+1t B
∣∣∣∣∣

|ζ| < 1, which is a contradiction

and therefore, ∥A∥≤ 1.

Remark 2.14. If A is an invertible n× n complex-valued matrix, then ϕ = Az +B is an

injective entire self-mapping on Cn.

Remark 2.15. For the remainder of the chapter, ϕ will be an affine self-map on Cn; that

is to say that ϕ(z) = Az + B is an injective self-mapping entire function on Cn and A is

invertible. This convention follows that found in [4, 18, 51] and [17] for the affine structure

of ϕ.

Following proposition delivers an important result when ϕ(z) = Az+B with 0 < ∥A∥< 1.

Proposition 2.16. The quantity Mz(f, ϕ) present in (1.5) belongs to L1(Cn, dA(z)), when

ϕ(z) = Az +B where ∥A∥< 1.
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Proof. We are given that ϕ(z) = Az + B and ∥A∥< 1. Introduce WA(z) = f(z)⊤A⊤ and

VA(z) = f(z)⊤A⊤(Az +B). To prove that Mz(f, ϕ) ∈ L1(Cn, dA(z)), proceed as follows:

∫
Cn

Mz(f, ϕ)dA(z) =
∫
Cn

∥A∗
f,ϕKz∥2
∥Kz∥2

dA(z)

=
∫
Cn

(
WA(z)WA(z)

⊤ + VA(z)VA(z)
⊤
)
e|Az+B|2e−|z|2dA(z) (use (2.5))

≤ e|B|2
∫
Cn

[
|WA(z)|2+|VA(z)|2

]
e|Az|

2−|z|2dA(z).

A standard multi-variable limit argument shows that [|WA(z)|2+|VA(z)|2] e|Az|2−|z|2 → 0 as

|z|→ ∞ whenever 0 < ∥A∥< 1. Therefore, the last integral present above converges and the

integral evaluation of it over Cn is finite. That is,
∫
Cn [|WA(z)|2+|VA(z)|2] e|Az|2−|z|2dA(z) <∞,

forcing in conclusion to have:

∫
Cn

Mz(f, ϕ)dA(z) ≤ e|B|2
∫
Cn

[
|WA(z)|2+|VA(z)|2

]
e|Az|

2−|z|2dA(z) <∞.

Thus, ∥Mz(f, ϕ)∥L1(Cn,dA(z))<∞.

The above proposition will play an important role in determining the bound of Af,ϕ over

F2(Cn) discussed as follows.

2.3.1 Boundedness

Consider following notation:

(2.10) W (z) ≡ (W1(z), . . . ,Wn(z)) := f(z)⊤Dϕ(z)⊤.

Theorem 2.17 (Boundedness of Af,ϕ). Let f = (f1, f2, · · · , fn)⊤ be an entire functions with

f : Cn → Cn such that f is not identically the zero vector in Cn and ϕ be an entire functions

with ϕ : Cn → Cn. Given Af,ϕ : D(Af,ϕ) → F2(Cn) is bounded then,

1. M(f, ϕ) <∞,
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2. ϕ(z) is affine with ∥A∥≤ 1,

3. if A is invertible then {fi}ni=1 belongs to F2(Cn).

4. Furthermore, if 0 < ∥A∥< 1, then the bound of Af,ϕ is
√

∥Mz(f,Az+B)∥L1(Cn,dA(z))
πn

over

F2(Cn).

Proof. Suppose that Af,ϕ : D(Af,ϕ) → F2(Cn) is bounded. Leveraging ∥Af,ϕ∥= ∥A∗
f,ϕ∥, it

follows that ∥A∗
f,ϕ∥ is also bounded. Set C := ∥Af,ϕ∥.

1. For part (1), we have following for z ∈ Cn,

M(f, ϕ) = sup
z∈Cn

∥A∗
f,ϕKz∥2
∥Kz∥2

≤ ∥A∗
f,ϕ∥2= ∥Af,ϕ∥2< C <∞.(2.11)

2. By considering the notation in (2.10) and following Proposition 2.13, it follows that

ϕ(z) = Az +B and ∥A∥≤ 1.

3. Now we prove that with Af,ϕ being bounded with invertible A, each component of f

that is {fi} ∈ F2(Cn). For this, let πi be the projection function from Cn to the i-th

component. Then with Dϕ(z) = D(Az +B) = A, one can have following:

Af,ϕπi(z) = (0, . . . , 1︸︷︷︸
ith entry

, . . . , 0)Af = (0, . . . , 1, . . . , 0)A



f1

f2
...

fn.


.(2.12)

SinceA happens to be invertible, this implies that the rows ofA are linearly independent.

Let a⃗i denote the ith row of A and note that

(0, . . . , 1, . . . , 0)A = a⃗i.

27



By the above we know that the dot product of a⃗i and f is in F2(Cn) for all i ∈ {1, . . . , n}.

Hence, linear combinations of these vectors are in F2(Cn) as well, i.e.

(∑
i

cia⃗i

)
· f ∈ F2(Cn).

Since A is invertible and the rows thus form a basis for Cn we can construct the

standard basis from linear combinations of a⃗i, hence each component of f must also be

in F2(Cn).

4. Assume ϕ(z) = Az +B with ∥A∥< 1, then Proposition (2.16) yields that Mz(f,Az +

B) ∈ L1(Cn, dA(z)) implying ∥Mz(f,Az + B)∥L1(Cn,dA(z))<∞. Take g ∈ F2(Cn) and

then proceed as follows:

∥Af,ϕg∥2 =
1
πn

∫
Cn
|Af,ϕg(z)|2dAG(z)

= 1
πn

∫
Cn
|Af,ϕg(z)|2e−|z|2dA(z)

= 1
πn

∫
Cn
|⟨Af,ϕg,Kz⟩|2e−|z|2dA(z), (reproducing property of Kz)

= 1
πn

∫
Cn
|⟨g, A∗

f,ϕKz⟩|2e−|z|2dA(z)

≤ 1
πn

∫
Cn
∥g∥2∥A∗

f,ϕKz∥2e−|z|2dA(z), (Cauchy-Schwarz on |⟨g, A∗
f,ϕKz⟩|)

= ∥g∥2
πn

∫
Cn

∥A∗
f,ϕKz∥2
∥Kz∥2

dA(z)

= ∥g∥2
πn

∫
Cn

Mz(f,Az +B)dA(z), (use (1.5))

= ∥g∥2
πn

∥Mz(f,Az +B)∥L1(Cn,dA(z))

<∞, (conclude from Proposition (2.16)).

Hence, taking the square-root of above delivers that the bound of ∥Af,ϕ∥≤
√

∥Mz(f,ϕ)∥L1(Cn,dA(z))
πn

over F2(Cn) with ϕ(z) = Az +B and ∥A∥< 1.
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2.4 Essential norm & Compactness

2.4.1 Essential norm of Af , ϕ

We recall important terminologies here for this section.

Definition 2.18. Consider the power series expansion of f(z) around origin as f(z) =∑∞
k=0 f̃(k)zk, then we define an operator Ωm as follows,

(2.13) Ωmf(z) =
∞∑

|k|=m
f̃(k)zk.

The operator Ωm defined in (2.13) is self-adjoint and idempotent.

For g ∈ F2(Cn) with Ωm acting on it, for z ∈ Cn, we have

|Ωmg(z)|2= |⟨Ωmg,Kz⟩|2≤ ∥g∥2∥ΩmKz∥2= ∥g∥2(ΩmKz(z)) = ∥g∥2
 ∞∑

|k|=m

|z|2k
k!

 .(2.14)

We recall the definition of essential norm of an operator as follows.

Definition 2.19. For two Banach spaces X1 and X2 we denote by K(X1,X2) the set of

all compact operators from X1 into X2. The essential norm of a bounded linear operator

A : X1 → X2, denoted as ∥A∥e is defined as

∥A∥e:= inf {∥A− T∥: T ∈ K(X1,X2)} .

On the account of the fact that ∥Af,ϕ∥e= 0 if and only if A is compact.

We will use the following notion of compactness for Af,ϕ on F2(Cn).

Proposition 2.20. A bounded and linear operator T is compact on F2(Cn) if and only if

limm→∞∥T gm − T g∥→ 0 whenever {gm}∞m=0 → g weakly.

The following is the notion of weakly convergence in F2(Cn) that we adopt in this paper.
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Proposition 2.21. Let {gm}∞m=0 be any sequence in F2(Cn). Then the sequence {gm}∞m=0

converges to 0 weakly if and only if following are true,

1. the sequence {gm}∞m=0 is bounded in the norm in F2(Cn),

2. {gm}∞m=0 is uniformly convergent to 0 on the compact subsets of Cn.

The immediate consequence of Proposition 2.21 is following.

Corollary 2.22. Suppose we have sequence {wm}∞m=0 ∈ Cn such that |wm|→ ∞ as m→ ∞.

The sequence of normalized kernel (from (1.3)) given as gm = kϕ(wm), where ϕ(wm) = Awm+B

with A being a complex n× n matrix with B ∈ Cn, converges weakly to 0 in F2(Cn).

Lemma 2.23. Consider f : Cn → Cn and ϕ : Cn → Cn as an entire mappings. Assuming

that Af,ϕ : D(Af,ϕ) → F2(Cn) is bounded, then the essential norm of Af,ϕ enjoys the following

inequality:

(2.15) ∥Af,ϕ∥e≤ lim inf
m→∞

∥Af,ϕΩm∥,

where Ωm is the operator introduced in (2.13).

Proof. Let A be any compact operator on F2(Cn), then

(2.16) ∥Af,ϕ − A∥≤ ∥Af,ϕΩm∥+∥Af,ϕ(I − Ωm)− A∥.

The operator I means the identity operator. Taking the infimum over compact operators A

and letting m→ ∞ in (2.16) we have following:

lim inf
m→∞

∥Af,ϕ − A∥ ≤ lim inf
m→∞

∥Af,ϕΩm∥+ lim inf
m→∞

∥Af,ϕ(I − Ωm)− A∥,

= lim inf
m→∞

∥Af,ϕΩm∥+0,

= lim inf
m→∞

∥Af,ϕΩm∥.
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Since, I − Ωm is compact on F2(Cn), so ∥Af,ϕ(I − Ωm)∥e= 0 and thus, lim infm→∞∥Af,ϕ(I −

Ωm)− A∥= 0. We used this fact from second step to third step to conclude the result. Thus,

we establish (2.15).

2.4.1.1 Essential norm of Af,ϕ

Theorem 2.24 (Bounds of ∥Af,ϕ∥e). Consider Af,ϕ : D(Af,ϕ) → F2(Cn) to be bounded,

induced by entire functions f : Cn → Cn with f ̸≡ 0, and ϕ to be affine with ∥A∥< 1. Then

the essential norm estimates of Af,ϕ is given as follows:

lim sup
|z|→∞

√
MAz+B(f,Az +B) ≤ ∥Af,ϕ∥e≤ π−n/2

√
∥Mz(f,Az +B)∥L1(Cn,dA(z)).

Moreover, if A is invertible, then ϕ is an automorphsim of Cn and we have that

∥Af,ϕ∥e= lim sup
|z|→∞

√
Mz(f,Az +B).

Proof. Consider a compact operator F over F2(Cn); by Schauder’s theorem, F ∗ is also

compact over F2(Cn). Meanwhile consider {zm} as a sequence such that |z|m→ ∞ and by

Corollary 2.22, kϕ(zm) converges weakly to 0 as m → ∞ which is why F ∗kϕ(zm) → 0 as

m→ ∞. Therefore, we have following:

∥Af,ϕ − F∥ = ∥A∗
f,ϕ − F ∗∥,

≥ lim sup
m→∞

∥(A∗
f,ϕ − F ∗)kϕ(zm)∥,

≥ lim sup
m→∞

(
∥A∗

f,ϕkϕ(zm)∥−∥F ∗kϕ(zm)∥
)
,

= lim sup
m→∞

∥A∗
f,ϕkϕ(zm)∥,

= lim sup
|z|→∞

√
Mϕ(z)(f,Az +B).
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By application of Theorem 2.17, we have the affine structure of ϕ(z) = Az + B and

therefore the lower bound becomes lim sup|z|→∞

√
MAz+B(f,Az +B). This establishes the

lower bound of ∥Af,ϕ∥e.

Working on the upper bound of ∥Af,ϕ∥e, as follows. We will use Lemma 2.23 and due to

the affine structure of ϕ, we have ϕ(z) = Az +B along with 0 < ∥A∥< 1.

Take g ∈ F2(Cn) and fix R > 0, then,

∥Af,ϕΩmg∥2 =
∫
Cn
|Af,ϕΩmg(z)|2dAG(z),

= 1
πn

∫
Cn

|Af,ϕΩmg(z)|2 e−|z|2dA(z),

= 1
πn

∫
Cn
|⟨Ωmg, A

∗
f,ϕKz⟩|2e−|z|2dA(z),

= 1
πn

[(∫
|z|≤R

+
∫
|z|>R

)
|⟨Ωmg, A

∗
f,ϕKz⟩|2e−|z|2dA(z)

]
,

= I1 + I2.

We will consider both I1 and I2 simultaneously. For I1, we have:

I1 =
1
πn

∫
|z|≤R

|⟨Ωmg, A
∗
f,ϕKz⟩|2e−|z|2dA(z)

≤ 1
πn

∥g∥2
∫
|z|≤R

 ∞∑
|k|=m

|z|2k
k!

 ∥A∗
f,ϕKz∥2e−|z|2dA(z), (use result in (2.14))

≤ ∥g∥2 1
πn

 ∞∑
|k|=m

R2k

k!

∫
|z|≤R

Mz(f, ϕ)dA(z), (use |z|≤ R).

Note that, since g ∈ F2(Cn) by choice, thus ∥g∥ is finite-valued and so is
∫
|z|≤RMz(f, ϕ)dA(z).

The latter one is finite-valued becauseAf,ϕ is bounded over F2(Cn) forcing ∥Mz(f, ϕ)∥L1(Cn,dA(z))<

∞ by Theorem 2.17 followed by the integral monotonicity of Mz(f, ϕ) on {z ∈ Cn : |z|≤ R}

vs. z ∈ Cn. If m→ ∞, then
(∑∞

|k|=m
R2k

k!

)
→ 0 which implies that limm→∞ I1 = 0.

For I2, we have:

I2 =
1
πn

∫
|z|>R

|⟨Ωmg, A
∗
f,ϕKz⟩|2e−|z|2dA(z)
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≤ 1
πn

∫
|z|>R

∥Ωmg∥2∥A∗
f,ϕKz∥2e−|z|2dA(z), (Cauchy-Schwarz on |⟨Ωmg, A

∗
f,ϕKz⟩|)

= ∥Ωmg∥2
πn

∫
|z|>R

Mz(f, ϕ)dA(z)

≤ ∥g∥2
πn

∫
|z|>R

Mz(f, ϕ)dA(z), (∥Ωmg∥≤ ∥g∥)

≤ ∥g∥2
πn

sup
R

(∫
|z|>R

Mz(f, ϕ)dA(z)
)
.

Due to the integral monotonicity,
∫
|z|>RMz(f, ϕ)dA(z) ≤ ∥Mz(f, ϕ)∥L1(Cn,dA(z))<∞, there-

fore taking the ‘sup’ in the previous chain of inequalities results that supR
(∫

|z|>RMz(f, ϕ)dA(z)
)
<

∞. Now, recall the result of Lemma 2.23 as follows:

∥Af,ϕ∥e ≤ lim inf
m→∞

∥Af,ϕΩmg∥

≤
√√√√∥g∥2

πn
sup
R

(∫
|z|>R

Mz(f, ϕ)dA(z)
)

= ∥g∥
√

1
πn

sup
R

√∫
|z|>R

Mz(f, ϕ)dA(z).

Since lim supR→∞

√∫
|z|>RMz(f, ϕ)dA(z) = ∥Mz(f, ϕ)∥L1(Cn,dA(z)), we get the desired conclu-

sion after we let R → ∞ in the above argument as explained. We now need only note that if

ϕ is an automorphism of Cn that

lim sup
|z|→∞

√
MAz+B(f,Az +B) = lim sup

|z|→∞

√
Mz(f,Az +B).

2.4.2 Compactness

Theorem 2.25 (Compactness of Af,ϕ). Consider the bounded Af,ϕ : D(Af,ϕ) → F2(Cn)

induced by an entire function f ̸≡ 0 and ϕ to be affine with ∥A∥< 1. Then bounded

Af,ϕ : D(Af,ϕ) → F2(Cn) is compact if and only if lim|z|→∞ Mz(f,Az +B) = 0.
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Proof. We consider the bounded Af,ϕ : D(Af,ϕ) → F2(Cn) and we proceed the proof by first

showing the =⇒ direction by assuming that Af,ϕ is compact over F2(Cn). Since Af,ϕ is

compact then by Schauder’s theorem A∗
f,ϕ is so over F2(Cn). In the light of the fact that

kz = Kz
∥Kz∥ → 0 weakly as |z|→ ∞ implies that ∥A∗

f,ϕ
Kz∥2

∥Kz∥2 → 0. This can be readily understand

by realizing following chain of equalities:

∥A∗
f,ϕKz∥2
∥Kz∥2

=
⟨A∗

f,ϕKz, A
∗
f,ϕKz⟩

∥Kz∥2
=
〈
A∗
f,ϕ

Kz

∥Kz∥
, A∗

f,ϕ

Kz

∥Kz∥

〉
→ 0 because Kz

∥Kz∥
→ 0.

Upon recalling (1.5) and Theorem 2.17, we see that lim|z|→∞ Mz(f,Az +B) = 0. For the

converse, we note that if lim|z|→∞ Mz(f,Az +B) = 0 then the essential norm is zero, hence

the operator is compact.

The following example illustrates the boundedness, essential norm and compactness

characterization of Af,ϕ over the F2(Cn) that is discussed in this paper. It also serves an

example for [36, Corollary 1]. Following section provides an example for the bounded and

compact Af,ϕ.

2.5 Example

Example 2.26. Suppose z ∈ C. Let fN(z) = zN where N ∈ Z+ and let ϕA(z) = Az for

some complex A such that 0 < |A|< 1. Incorporate Lemma 2.11 to yield:

Mz(fN , ϕA) =
∥A∗

fN ,ϕA
Kz∥2

∥Kz∥2
= |A|2

(
1 + |A|2|z|2

)
|z|2N

[
exp

(
|A|2|z|2−|z|2

)]
.

With a direct calculation,

M(fN , ϕA) = sup
z∈C

{
|A|2

(
1 + |A|2|z|2

)
|z|2N

[
exp

(
|A|2|z|2−|z|2

)]}
,(2.17)
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and the value of z ∈ C for which the supremum of argument present in (2.17) attains, is the

solution1 of p4(|z|) = 0, where

p4(|z|) = |z|4+|z|2
(
N |A|2+2|A|2−1

|A|4−|A|2
)
+ N

|A|4−|A|2 .

Therefore

M(fN , ϕA) =
{
|A|2

(
1 + |A|2|z|2

)
|z|2N

[
exp

(
|A|2|z|2−|z|2

)]
: z satisfying p4(|z|) = 0

}
<∞.

Now, we will determine the bound of AfN ,ϕA by showing that Mz(fN , ϕA) ∈ L1(C, dA(z)) as

follows:

∥Mz(fN , ϕA)∥L1(C,dA(z)) =
∫
C
|A|2

(
1 + |A|2|z|2

)
|z|2N

[
exp

(
|A|2|z|2−|z|2

)]
dA(z).

Proposition 2.16 dictates that WA(z) = |A|2|z|2N and VA(z) = |A|4|z|2N+2 for this

example. Observe that both WA(z) [exp (−(1− |A|2)|z|2)] and VA(z) [exp (−(1− |A|2)|z|2)]

are L1 integrable on C with respect to the usual Lebesgue area measure dA(z) on C. This is

explicitly demonstrated as follows:

|A|2
∫
C
|z|2N

[
exp

(
−(1− |A|2)|z|2

)]
dA(z) = 2π|A|2

∫ ∞

0
r2N

[
exp

(
−(1− |A|2)r2

)]
rdr

(2.18)

= π|A|2 Γ(N + 1)
(1− |A|2)N+1 ;

|A|4
∫
C
|z|2N+2

[
exp

(
−(1− |A|2)|z|2

)]
dA(z) = 2π|A|4

∫ ∞

0
r2N+2

[
exp

(
−(1− |A|2)r2

)]
rdr

(2.19)

= π|A|4 Γ(N + 2)
(1− |A|2)N+2 .

1Let p =
(

N |A|2+2|A|2−1
|A|4−|A|2

)
and r = N

|A|4−|A|2 then the solutions of p4(|z|) are ±
√

−p±
√

p2−4r
2 .
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As N <∞ and 0 < |A|< 1, thus the result present above in two parts are finite. Hence the

bound of ∥AfN ,ϕA∥ here is
√
|A|2 Γ(N+1)

(1−|A|2)N+1 + |A|4 Γ(N+2)
(1−|A|2)N+2 as explained in Theorem 2.17.

Also, fN(z) ∈ F2(C) as ∥fN∥=
√
N ! < ∞. Since for the considered ϕA(z), its inverse is

ϕ−1
A (z) = 1

Az, therefore Theorem 2.24 dictates to have

∥AfN ,ϕA∥e = lim sup
|z|→∞

[
|A|2

(
1 + |A|2|z|2

)
|z|2N

[
exp

(
|A|2|z|2−|z|2

)]] 1
2 ,

= |A|lim sup
|z|→∞

[(
1 + |A|2|z|2

)
|z|2N

[
exp

(
|A|2−1

)
|z|2

]] 1
2 .

As 0 < |A|< 1, lim sup|z|→∞

[
(1 + |A|2|z|2) |z|2N [exp (|A|2−1) |z|2]

] 1
2 = 0 and therefore the

essential norm Af,ϕ is 0, hence it is compact over F2(C) as established in Theorem 2.25.

Had |A|> 1 been into account, then the evaluation in (2.18) and (2.19) will consequently

not be finite, leading to ∥Mz(fN , ϕA)∥L1(C,dA(z)) ̸<∞. As a result, AfN ,ϕA is not bounded, let

alone AfN ,ϕA to be compact.

2.6 Conclusion

In this chapter, we established the bound of Af,ϕ and its compactness as well, followed by

the essential norm estimates over F2(Cn). A concrete example is also delivered to support the

aforementioned claims. These results eventually shows and establishes the norm convergence

of the DMD methods, which is superior to the strong operator topology convergence methods

of the Koopman operators. The norm convergence is actually the provable convergence

guarantee method that helps the practitioners in performing the data-driven methods, for

instance in [36].
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CHAPTER 3

WEIGHTED COMPOSITION OPERATORS OVER THE PALEY-WIENER

SPACE

Detailed discussion for the interaction of weighted composition operators Wψ,ϕ, with

crucial topics for EFET , in particular, Phragmén-Lindelöf indicator function and the Pólya

Representation theorem in scope of PW 2
π are made in this chapter.

The notion of Phragmén-Lindelöf indicator function for EFET is center to it and therefore,

we recall the definition of it. The Phragmén-Lindelöf indicator function is defined as follows:

Definition 3.1. With z = reiθ, adopt |z|= r and am z = θ. The function hf (am z) is called

as the Phragmén-Lindelöf indicator function for an entire function f of exponential type:

hf (am z) := lim sup
|z|→∞

log|f(z)|
|z|ρ

with respect to the order ρ. If τ represents the type of f then τ = max hf (am z) (cf. [41]).

The Phragmén-Lindelöf indicator function for an EFET describes the growth of the function

along the ray {z : am z = ϑ}.

Recall the relevant introductory details from subsection 1.1.3. Then the analysis of

Wψ,ϕ over PW 2
π begun after giving the simple results given in Problem 3.2.

Problem 3.2. Let f ∈ PW 2
π . Then for all 0 ≤ x1 < x <∞ on R, prove following:

∫ x

x1
f(x)dx = 1√

2π

∫ π

−π
f̂(t)e

itx − eitx1

it
dt,
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where ∥f∥2L2(R)= ∥f̂∥2L2(−π,π). Furthermore, the following inequality is also true for f ∈

L1((x1, x))

∣∣∣∣∫ x

x1
f(t)dt

∣∣∣∣ ≤ ∥f∥√
π

√
(x1 + x)

[ 4
π
+ 2Siπ

]
.

Proof. In order to establish the desired equality, observe that for all f ∈ PW 2
π , f ∈ L1((x1, x))

automatically1 true. So proceed as follows:

∫ x

x1
f(x)dx =

∫ x

x1

∫ π

−π
f̂(t)eitxdtdx = 1√

2π

∫ π

−π
f̂(t)

(∫ x

x1
eitxdx

)
dt = 1√

2π

∫ π

−π
f̂(t)e

itx − eitx1

it
dt.

Furthermore,

∣∣∣∣∫ x

x1
f(x)dx

∣∣∣∣2 ≤ 1
2π

∫ π

−π

∣∣∣∣∣f̂(t)eitx − eitx1

it

∣∣∣∣∣
2

dt

= 1
2π∥f̂∥

2
L2(π,π)

∫ π

−π

|eitx − eitx1|2
t2

dt

= 1
2π∥f∥

2
L2(R)

∫ π

−π

(cos tx− cos tx1)2 + (sin tx− sin tx1)2
t2

dt

= 1
π
∥f∥2L2(R)

∫ π

−π

1− cos (tx+ tx1)
t2

dt.

Introduce y = t(x+ x1) to the indefinite integral of 1− cos (tx+ tx1)
t2

dt as follows:

∫ 1− cos (tx+ tx1)
t2

dt =
∫ 1− cos y(

y

x1 + x

)2
dy

x1 + x

= (x1 + x)
[
1− cos y

y
+
∫ sin y

y
dy

]

=⇒
∫ π

−π

1− cos (tx+ tx1)
t2

dt = (x1 + x)
[(

1− cos y
y

)
|π−π +

∫ π

−π

sin y
y

dy

]
1For x1 < x < ∞ on R, it can be observed as follows:∣∣∣∣∫ x

x1

f(x)dx
∣∣∣∣2 ≤

(∫ x

x1

|f(x)|dx
)2

≤
∫ x

x1

dx

∫ x

x1

|f(x)|2dx ≤ (x− x1)
∫
R
|f(x)|2dx = (x− x1)∥f∥2L2(R)< ∞.

Hence f ∈ L1((x1, x)).
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= (x1 + x)
[ 4
π
+ 2Siπ

]
.

Besides the interesting and simple result in Problem 3.2, it helps in the application of

Wψ,ϕ after we have established the compactness of it on PW 2
π .

3.1 Key Lemma

Following theorem is an application of Hadamard’s factorization theorem.

Theorem 3.3. (cf. [46, Exercise-12, Page-155]) A non-vanishing entire function of finite

order along with its higher-order derivatives also non-vanishing is of the form of eAz+B for

some constants A and B.

Theorem 3.3 will play an essential role in establishing the key characterization of Wψ,ϕ’s

symbols over PW 2
π .

Proposition 3.4. The relation sinc(2|ζ|) ≤ sinc(ζ − ζ) holds for any ζ ∈ C.

Proof. Note that (ζ − ζ) = 2i Im ζ and sinc ζ = ∏∞
n=1

(
1− ζ2

n2

)
. Combine these results and

proceed as follows:

sinc
(
ζ − ζ

)
=

∞∏
n=1

(
1− (2i Im ζ)2

n2

)

=
∞∏
n=1

(
1 + (2 Im ζ)2

n2

)

≥
∞∏
n=1

(
1− (2 Im ζ)2

n2

)

≥
∞∏
n=1

(
1− (2|ζ|)2

n2

)

= sinc (2|ζ|) .
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Thus the desired manipulation is established2.

Lemma 3.5. Let ψ : C → C and ϕ : C → C be entire functions over C. Suppose there exist

a positive constant C such that |ψ(z)|2
sinc

(
ϕ(z)− ϕ(z)

)
sinc (z − z) < C, then ϕ(z) = Az +B where A

and B are complex constant.

Proof. If for some positive constant C, the relation |ψ(z)|2
sinc

(
ϕ(z)− ϕ(z)

)
sinc (z − z) < C is true

then it is evident that following holds:

sinc
(
ϕ(z)− ϕ(z)

)
sinc (z − z) <

C

|ψ(z)|2 .

It is evident by Proposition 3.4 that sinc
(
ϕ(z)− ϕ(z)

)
≥ sinc (2|ϕ(z)|). Therefore,

sinc (2|ϕ(z)|) < C

|ψ(z)|2 sinc (z − z) = C

|ψ(z)|2
sin 2πi Im z

2πi Im z
= C

|ψ(z)|2
sinh (2π Im z)

2π Im z
.

Use the definition on ‘sinh’ function, deduce that sinh (2π Im z) <
(
e2π Im z + 1

2

)
and therefore

the above inequality indicates that

sin 2π|ϕ(z)|
2π|ϕ(z)| <

C ′

|ψ(z)|2

(
e2π Im z + 1

)
2πr|sin θ| (C ′ = C/2) .

As − 1
2π|ϕ(z)| ≤

sin 2π|ϕ(z)|
2π|ϕ(z)| for any ϕ defined over C, therefore following prevails:

|ϕ(z)| < |ψ(z)|2r|sin θ|
C ′ (e2π Im z + 1) <

|ψ(z)|2r|sin θ|
C ′ .

Set f(z) = eϕ(z) and observe following:

|f(z)|= |eϕ(z)|≤ exp (|ϕ(z)|) ≤ exp
(
|ψ(z)|2πr|sin θ|

C ′

)
.

2Also noted by Pólya [31, Equation-(11) Page-68].
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Now, we need the order of f . So denote the order of f as ρ. Compute the order of f as

follows:

ρ = lim sup
r→∞

log log
(
exp

(
|ψ(z)|2πr|sin θ|

C′

))
log r

= lim sup
r→∞

2 log|ψ(z)|+ log(r) + log|sin θ|
log r

=⇒
∫ θ̃

0
ρ
dθ

2π =
∫ θ̃

0
1dθ2π +

∫ θ̃

0
lim sup
r→∞

2 log|ψ(reθ)|
log r

dθ

2π

ρ
θ̃

2π = θ̃

2π + lim sup
r→∞

∫ θ̃

0

2 log|ψ(reθ)|
log r

dθ

2π .

Approach θ̃ → 2π above to have following:

lim
θ̃→2π

ρ
θ̃

2π = lim
θ̃→2π

θ̃

2π + lim
θ̃→2π

lim sup
r→∞

∫ θ̃

0

2 log|ψ(reθ)|
log r

dθ

2π

=⇒ ρ = 1 + 2 lim sup
r→∞

log|ψ(0)|
log r = 1.

Hence ρ is 1 (finite). That implies that eϕ(z) is of order 1 < ∞. Note that neither f never

vanishes nor its higher-order derivatives vanishes. Together with these facts on f = eϕ(z),

Theorem 3.3 dictates that ϕ(z) = Az +B for some constants A and B.

3.2 Boundedness

Proposition 3.6. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π induced by entire functions ψ ̸≡ 0

and ϕ over C. If there exists a finite positive constant M which bounds
∥W ∗

ψ,ϕKz∥2
∥Kz∥2

, then

ϕ(z) = az + b.

Proof. Following should be acknowledged for
∥W ∗

ψ,ϕKz∥2
∥Kz∥2

:

∥W ∗
ψ,ϕKz∥2
∥Kz∥2

= |ψ(z)|2Kϕ(z)(ϕ(z))
Kz(z)

= |ψ(z)|2
sinc

(
ϕ(z)− ϕ(z)

)
sinc (z − z) .

Now, upon the application of Lemma 3.5, the desired result is achieved.
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Theorem 3.7. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be induced by entire functions ψ ̸≡ 0 and ϕ

defined over C. Then Wψ,ϕ acts bounded over the PW 2
π if and only if ψ ∈ PW 2

π , ϕ = az + b,

0 < |a|≤ 1 and

sup
z∈C

|ψ(z)|2 sinc
(
ϕ(z)− ϕ(z)

)
sinc (z − z)

 <∞.

Proof. Suppose Wψ,ϕ is bounded over PW 2
π , that is ∥W ∗

ψ,ϕ∥2PW 2
π
= ∥Wψ,ϕ∥2PW 2

π
= M < ∞.

Then

|ψ(z)|2
sinc

(
ϕ(z)− ϕ(z)

)
sinc (z − z) =

|ψ(z)|2Kϕ(z)(ϕ(z))
Kz(z)

=
∥W ∗

ψ,ϕKz∥2
∥Kz∥2

≤ ∥W ∗
ψ,ϕ∥2<∞.

Take the supremum over z ∈ C above yields that supz∈C

|ψ(z)|2 sinc
(
ϕ(z)− ϕ(z)

)
sinc (z − z)

 <∞,

as desired. From above we observe that
∥W ∗

ψ,ϕKz∥2
∥Kz∥2

< M , apply Proposition 3.6 to yield

ϕ(z) = az + b. Suppose a ∈ C with |a|> 1. So, for f ∈ PW 2
π with order ρ and type σ, f ◦ az

is of the same order but type |a|ρσ. Given that |a|> 1, hence dom (Wψ,ϕ) ̸⊂ PW 2
π from the

previous conclusion. Thus, failing the map Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π . Therefore 0 < |a|≤ 1.

Moreover, for f(z) = sinc z ∈ PW 2
π and hence f(z) = ⟨f(x), Kz(x)⟩ =

∫
R f(x)Kz(x)dx holds

by the reproducing property. However, if a = i then f ◦az = sinh z and f ◦az = sinh z
z

̸∈ PW 2
π

as

f ◦ az = sinh z
z

=
∫
R

sinh x
x

Kz(x)dx = ∞, as
∫
R

∣∣∣∣∣sinh xx

∣∣∣∣∣
2

dx = ∞.

Due to the failure of reproducing property as demonstrated above while assuming that a ∈ C,

it leads to conclude that a ̸∈ C but a ∈ R. Now, proceed further by assuming that ψ ∈ PW 2
π

and ϕ(z) = az + b where b = b1 + ib2. Pick f ∈ PW 2
π and proceed as follows:

∥Wψ,ϕf∥2PW 2
π
=
∫
R
|ψ(x)|2|f (ϕ(x)) |2dx

≤ ∥ψ∥2L2(R)

∫
R
|f (ax+ b1 + ib2) |2dx
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= ∥ψ∥2L2(R)

∫
R
|f(s+ ib2)|2

ds

|a|

≤ 1
|a|∥ψ∥

2
L2(R)e

2π|b2|∥f∥2L2(R), (Plancherel-Pólya theorem)

<∞.

Hence the bound of Wψ,ϕ is
√

1
|a|e

2π|Im b|∥ψ∥L2(R) over PW 2
π .

3.2.1 Boundedness Application-1

Following theorem deals with the interaction of Phragmén-Lindelöf indicator function

and PW 2
π .

Theorem 3.8. Let h(am z) be the Phragmén-Lindelöf indicator function. Then:

1. Following inequality holds true:

hf (am z) ≤ lim sup
|z|→∞

log∥Kz∥
|z|ρ = 1

2 lim sup
|z|→∞

log (sinh (2π|z|sinam z))
|z|ρ ,

for all f ∈ PW 2
π with respect to the order ρ.

2. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be bounded over PW 2

π and ϕ(z) = az + b where

0 < |a|≤ 1 and b = b1 + ib2. Then

hWψ,ϕf (am z) ≤ lim sup
|z|→∞

log∥W ∗
ψ,ϕKz∥

|z|ρ

= lim sup
|z|→∞

[ log|ψ(z)|
|z|ρ′ + 1

2
log sinh (2π(a|z|sinam z + b2))− log(a|z|sinam z + b2)

|z|ρ′
]
,

for all f ∈ PW 2
π with respect to the order ρ′ where ρ′ = max (order of ψ, order of f).

Proof. 1. Let f be arbitrarily picked from PW 2
π with ∥f∥PW 2

π
<∞. Then f(z) = ⟨f,Kz⟩

holds by the reproducing property ofKz in PW 2
π . Proceed by the definition of Phragmén-
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Lindelöf indicator function as follows:

hf (am z) = lim sup
|z|→∞

log|f(z)|
|z|ρ

≤ lim sup
|z|→∞

log|∥f∥∥Kz∥|
|z|ρ

= lim sup
|z|→∞

log∥Kz∥
|z|ρ

= 1
2 lim sup

|z|→∞

log (sinc (z − z))
|z|ρ

= 1
2 lim sup

|z|→∞

log (sinh (2π|z|sinam z))
|z|ρ .

2. With Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π , then Wψ,ϕf(z) = ψ(z)f (ϕ(z)) for all f ∈ PW 2

π with

∥f∥PW 2
π
< ∞. Since ∥Wψ,ϕ∥PW 2

π
< ∞, thus Wψ,ϕf(z) = ⟨Wψ,ϕf,Kz⟩ via (again) the

reproducing property of Kz in PW 2
π . Let ρ′ = max (order of ψ, order of f). As Wψ,ϕ is

bounded over PW 2
π , therefore ϕ(z) = az + b1 + ib2. Proceed (again) by the definition

of Phragmén-Lindelöf indicator function as follows:

hWψ,ϕf (am z)

= lim sup
|z|→∞

log|Wψ,ϕf(z)|
|z|ρ′

= lim sup
|z|→∞

log|⟨Wψ,ϕf,Kz⟩|
|z|ρ′

= lim sup
|z|→∞

log|⟨f,W ∗
ψ,ϕKz⟩|

|z|ρ′

≤ lim sup
|z|→∞

log∥f∥+ log∥W ∗
ψ,ϕKz∥

|z|ρ′

= lim sup
|z|→∞

log∥W ∗
ψ,ϕKz∥

|z|ρ′

= lim sup
|z|→∞

log
(
|ψ(z)|

√
Kϕ(z)(ϕ(z))

)
|z|ρ′

= lim sup
|z|→∞

log (|ψ(z)|)
|z|ρ′ + 1

2 lim sup
|z|→∞

log sinh (2π Imϕ(z))− log Imϕ(z)
|z|ρ′
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= lim sup
|z|→∞

[
log|ψ(z)|

|z|ρ′ + 1
2
log sinh (2π(a|z|sinam z + b2))− log(a|z|sinam z + b2)

|z|ρ′
]
.

Hence proved.

3.2.2 Boundedness Application-2

Following is another interesting application of Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π when Wψ,ϕ is

bounded over the PW 2
π .

Theorem 3.9. Let φ and φ̂ be two continuous function of period 2π whose respective Fourier

coefficients cn and ĉn satisfy ∑|ncn|2< ∞ and ∑|nĉn|2< ∞. Let Wψ,ϕ : PW 2
π → PW 2

π be

bounded and ϕ(z) = az + b, then following relation holds:

[
2φ(π)Wψ,ϕ − 2φ̂(π)

]
K(z, z) = ψ (2i Im z)ϕ (2i Im z)

π

∫ π

−π
[φ(t)− φ(−t)dt] eiϕ(2i Im z)tdt

− 2i Im z

π

∫ π

−π

[
φ̂(t)− φ̂(−t)

]
e−2t Im zdt.

Proof. Recall the following relationship for the EFET , f(z) that belongs to L2(R)3.

f(z) + 2φ(τ)sin τz
z

= z
∫ τ

−τ
[φ(t)− φ(−t)] eiztdt,(3.1)

where φ is continuous function with φ(•+ 2τ) = φ(•) whose Fourier coefficients cn satisfy∑|ncn|2<∞. Let Wψ,ϕ be bounded over PW 2
π . Pick an arbitrary f ∈ PW 2

π , then following

is evident from (3.1):

ψ(z)f (ϕ(z)) + 2φ(τ)ψ(z)sin τϕ(z)
ϕ(z) = ψ(z)ϕ(z)

∫ τ

−τ
[φ(t)− φ(−t)] eiϕ(z)tdt

Wψ,ϕf(z) + 2φ(τ)ψ(z)sin τϕ(z)
ϕ(z) = ψ(z)ϕ(z)

∫ τ

−τ
[φ(t)− φ(−t)] eiϕ(z)tdt.(3.2)

3In fact, this is true for Lp(R) setting as well. Follow [2, 23, 30] for this relationship held by the EFET in
Lp setting.
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According to the prerequisite, Wψ,ϕ is bounded over PW 2
π , thus by Theorem 3.7, ψ ∈ PW 2

π

and hence Wψ,ϕf(z) = ψ(z)f (ϕ(z)) is of exponential type which belongs to L2 (R). Hence

following is true for Wψ,ϕf(z)

Wψ,ϕf(z) + 2φ̂(τ)sin τz
z

= z
∫ τ

−τ

[
φ̂(t)− φ̂(−t)

]
eiztdt,(3.3)

where (again) the Fourier coefficients of φ̂ as ĉn satisfy ∑|nĉn|2<∞. Combine (3.2) and (3.3)

to have following:

2φ(τ)ψ(z)sin τϕ(z)
ϕ(z) − 2φ̂(τ)sin τz

z
=ψ(z)ϕ(z)

∫ τ

−τ
[φ(t)− φ(−t)] eiϕ(z)tdt−

z
∫ τ

−τ

[
φ̂(t)− φ̂(−t)

]
eiztdt.

As both φ and φ̂ are continuous, therefore take the limit on τ to π to yield following:

2φ(π)ψ(z)sin πϕ(z)
ϕ(z) − 2φ̂(π)sin πz

z
=ψ(z)ϕ(z)

∫ π

−π
[φ(t)− φ(−t)] eiϕ(z)tdt−

z
∫ π

−π

[
φ̂(t)− φ̂(−t)

]
eiztdt.

Divide above equality by π to have following:

2φ(π)ψ(z)sin πϕ(z)
πϕ(z) − 2φ̂(π)sin πz

πz
=ψ(z)ϕ(z)

π

∫ π

−π
[φ(t)− φ(−t)] eiϕ(z)tdt− z

π

∫ π

−π

[
φ̂(t)− φ̂(−t)

]
eiztdt.

Replace z by (z − z) above to have:

2φ(π)ψ(z − z)sin πϕ(z − z)
πϕ(z − z) − 2φ̂(π)sin π(z − z)

π(z − z)

=ψ(z − z)ϕ(z − z)
π

∫ π

−π
[φ(t)− φ(−t)] eiϕ(z−z)tdt−

(z − z)
π

∫ π

−π

[
φ̂(t)− φ̂(−t)

]
ei(z−z)tdt.
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The above setting now can be easily transferred to following:

2φ(π)Wψ,ϕK(z, z)− 2φ̂(π)K(z, z) =ψ(2i Im z)ϕ(2i Im z)
π

∫ π

−π
[φ(t)− φ(−t)] eiϕ(2i Im z)tdt

− (2i Im z)
π

∫ π

−π

[
φ̂(t)− φ̂(−t)

]
ei(2i Im z)tdt

=⇒
[
2φ(π)Wψ,ϕ − 2φ̂(π)

]
K(z, z) =ψ(2i Im z)ϕ(2i Im z)

π

∫ π

−π
[φ(t)− φ(−t)] eiϕ(2i Im z)tdt

− (2i Im z)
π

∫ π

−π

[
φ̂(t)− φ̂(−t)

]
e−(2 Im z)tdt.

This establishes the desired result. Hence proved.

3.3 The Pólya Representation Theorem for Wψ,ϕ over PW 2
π

Following are the standard and obvious theory prevalent in the domain of EFET [27,

Lecture-9]. The following build-up is essential for the smooth understanding of the upcoming

result between Wψ,ϕ acting on PW 2
π via the Laplace transform L.

Definition 3.10. A closed non-empty set E is convex in C if it contains the line segment

joining any two points of the set E. Precisely, tz1 + (1− t)z2 ∈ E, ∀ z1 & z2 ∈ E holds.

Let 0 ≤ ϑ ≤ 2π. Now, project E on the ray am z = ϑ. Denote k(ϑ) the distance from the

origin to the most remote point of this projection. That is the computation of,

k(ϑ) = max
z∈E

(
Re(ze−ϑ)

)
= max

z∈E
(x cosϑ+ y sinϑ)(3.4)

of this projection.

Definition 3.11. The function k(ϑ) in (3.4) is called the supporting function of E.

Indeed, points z ̸∈ E can easily be characterised by the fact that x cosϑ+y sinϑ−k(ϑ) > 0.

Definition 3.12. Let H0 (∞) be set of all functions that are holomorphic near ∞ and that

vanish at ∞.
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Definition 3.13. Let f(z) = ∑∞
n=0 anz

n be an EFET with type τ . The Borel transform of

this f is given as

F(w) :=
∞∑
n=0

ann!
wn

(3.5)

and lives in H0 (∞). The radius of convergence of F(w) = ∑∞
n=0

ann!
wn

is in fact τ .

Definition 3.14. The smallest convex compact set D containing all the singularities of F

defined in (3.5) is called the conjugate indicator diagram of f(z).

We know that f(z) = ∑∞
n=0 anz

n is an EFET if and only if its Borel transform F that

are holomorphic near ∞ and F(∞) = 0 (cf. [27, 40]). That is:

Theorem 3.15 (The Pólya Representation Theorem). Let f be an EFET and Γ be a contour

containing the conjugate indicator diagram of f then following relation holds

f(z) = 1
2πi

∫
Γ
F(w)ezwdw.(3.6)

The relation in (3.6) is referred as the Pólya representation for f .

The Borel transform deals with great importance in relation with Schrödinger equation

and Schrödinger operator and provide important results in quantum mechanics [7, 14]. The

function F present in (3.5) is the Laplace transform of f (that is L(f)) under the justified

strip of convergence. Additionally, it is also the analytic continuation of f . The justification

for the Laplace transform of f is given as follows:

L(f)[w] =
∫ ∞

0

( ∞∑
n=0

ans
n

)
e−swds =

∞∑
n=0

an

∫ ∞

0
sne−swds =

∞∑
n=0

ann!w−n−1 = F(w).

Term by term integration in
∫∞
0
∑∞
n=0|an|sne−xsds =

∑∞
n=0|an|n!x−n−1, makes sense by the ap-

plicability of Fubini’s theorem. Here the RHS converges for x > τ since lim supn→∞ (n! an)
1
n =

τ .
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Theorem 3.16. The Pólya Representation for Wψ,ϕ acting over PW 2
π is given as follows:

1. Let ψ and ϕ be entire functions defined over C. Let the Laplace transform of ψ be

L(ψ)[w] with α1 < Re(w) < β1. Similarly, let the Laplace transform of ϕN be L(ϕN )[w]

with α2 < Re(w) < β2. Let f(z) = ∑∞
n=0 anz

n. Then the Laplace transform of ψ · f ◦ ϕ

is:

L(ψ · f ◦ ϕ)[w] = 1
2πi

∞∑
n=0

an

∫ c+i∞

c−i∞
L(ψ)[s]L(ϕn)[w − s]ds,

where α1 + α2 < Re(w) < β1 + β2 and α1 < c < β1.

2. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be bounded and ϕ(z) = Az +B with 0 < |A|≤ 1. Then

following adaption for Wψ,ϕ acting on f holds true:

Wψ,ϕf(z) = − 1
4π2

∞∑
n=0

an

∫
Γ

∫ c+i∞

c−i∞
L(ψ)[s]L(ϕn)[w − s]ezwdsdw,(3.7)

for all f(z) = ∑∞
n=0 anz

n ∈ PW 2
π where Γ is the contour containing the conjugate

indicator diagram of L(Wψ,ϕf) (= L(ψ · f ◦ ϕ)). The relation present in (3.7) between

Wψ,ϕ and the Laplace transform of it symbols is a one-to-one relationship.

Proof. The proof are given as follows:

1. With the given formatting of f , it is self-explanatory that f ◦ ϕ(z) = ∑∞
n=0 anϕ

n(z)

and hence ψ(z) · f ◦ ϕ(z) = ψ(z) ·∑∞
n=0 anϕ

n(z) = ∑∞
n=0 anψ(z) · ϕn(z). Consider the

Laplace transform of ψ and ϕn as given in the prerequisite along with the respective

strip of convergence and then proceed as follows,

L(ψ · f ◦ ϕ)[w] =
∫ ∞

0
ψ(s) · f ◦ ϕ(s)e−wsds

=
∞∑
n=0

an

∫ ∞

0
ψ(s) · ϕn(s)e−wsds

=
∞∑
n=0

an

( 1
2πi

∫ c+i∞

c−i∞
L(ψ)[s]L(ϕn)[w − s]ds

)
,

49



where the last step is concluded from [3, Page-385] with additional details for the

strip of convergence. Therefore, the desired result is achieved for the justified strip of

convergence.

2. Since Wψ,ϕ is bounded over PW 2
π . Therefore, ψ ∈ PW 2

π and affine structure of ϕ

is already prevalent. As ψ is an EFET , therefore its Borel transform exist which is

eventually L(ψ). Moreover, the product of ψ with f ◦ (Az + B) ∈ PW 2
π will still be

EFET not exceeding π and therefore, their Laplace transform also exists, which is

eventually L(ψ · f ◦ ϕ), already derived in the preceding part. The relation in (3.7) is

the one-to-one relationship between Wψ,ϕ and its symbols via f(z) = ∑∞
n=0 anz

n. We

are now in position to apply the Theorem 3.15 as follows:

Wψ,ϕf(z) =
1
2πi

∫
Γ
L(Wψ,ϕf)[w]ezwdw

= 1
2πi

∫
Γ
L(ψ · f ◦ ϕ)[w]ezwdw

= − 1
4π2

∞∑
n=0

an

∫
Γ

∫ c+i∞

c−i∞
L(ψ)[s]L(ϕn)[w − s]ezwdsdw.

Hence, the desired result is achieved.

3.4 Compactness

3.4.1 Compactness of Wψ,ϕ over PW 2
π

Let N ∈ Z+. With ϕN(z) = ϕ ◦ ϕ ◦· · ·◦ ϕ(z), i.e. N -times composition of ϕ by itself.

Adopt following:

(Wψ,ϕ)N f(z) = ψ(z)ψ(ϕ(z)) · · ·ψ(ϕN−1(z))f (ϕN(z)) .(3.8)

Proposition 3.17. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be bounded over PW 2

π and ψ ∈ PW 2
π

and ϕ(z) = az + b with 0 < |a|≤ 1 and b ∈ R. Consider (Wψ,ϕ)N as defined in (3.8) for
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N ∈ Z+.Then (Wψ,ϕ)N is bounded over PW 2
π and the bound is given as:

∥∥∥(Wψ,ϕ)N
∥∥∥
PW 2

π

≤∥ψ∥L2(R)√
|a|


N

.

Proof. Let Wψ,ϕ be bounded over PW 2
π and hence ψ ∈ PW 2

π with ϕ(z) = az + b where 0 <

|a|≤ 1. Easy calculation for N composition on ϕ(z) = az+ b yields ϕN (z) = aNz+ b
∑N−1
l=0 al.

Given that b ∈ R; then ImϕN(x) = 0. Pick an arbitrary f ∈ PW 2
π then:

∥∥∥(Wψ,ϕ)N f
∥∥∥2
PW 2

π

=
∫
R
|ψ(x)|2|ψ(ϕ(x))|2· · · |ψ(ϕN−1(x))|2|f(ϕN(x))|2dx.

Notice following for ψ (ϕm(x)) for m = 1, . . . , N − 1:

|ψ (ϕm(x))|2 ≤
∥ψ∥2L2(R)

2π

∫ π

−π

∣∣∣eitϕm(x)
∣∣∣2 dt = ∥ψ∥2L2(R)

2π

∫ π

−π
eIm tϕm(x)dt = ∥ψ∥2L2(R).(3.9)

For f ∈ PW 2
π , notice following for f(ϕN(x)),

∫
R
|f(ϕN(x))|2dx =

∫
R

∣∣∣∣∣f
(
aNx+ b

N−1∑
l=0

al
)∣∣∣∣∣

2

dx =
∥f∥2

PW 2
π

|a|N .(3.10)

Combine the results of (3.9) and (3.10) to deduce following:

∥∥∥(Wψ,ϕ)N f
∥∥∥2
PW 2

π

≤ ∥ψ∥2L2(R)

(
∥ψ∥2L2(R)

)N−1 ∥f∥2PW 2
π

|a|N =

(
∥ψ∥L2(R)

)2N
|a|N ∥f∥2PW 2

π
.

Taking the square-root of above yields the desired result.

Proposition 3.18. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be bounded and ϕ(z) = az + b where

0 < |a|< 1 and b ∈ R. Define BN =

∥ψ∥L2(R)√
|a|


N

. Then BN → 0 as N → ∞ if and only if

∥ψ∥L2(R)<
√
|a|.

Proof. Assume the prerequisite of the proposition. The proof is as follows:
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=⇒ If ∥ψ∥L2(R)<
√
|a|, then this imply that BN < 1 for all N ∈ Z+. Therefore, BN → 0

assuming that ∥ψ∥L2(R)<
√
|a| is true.

⇐= Suppose that BN → 0 as N → ∞, this imply that
∥ψ∥L2(R)√

|a|
< 1. Hence, ∥ψ∥L2(R)<

√
|a|

given that BN → 0 as N → ∞.

Hence proved.

Following proposition dictates the weakly convergence of
{
(Wψ,ϕ)|n|Kn

}
n
over the PW 2

π .

Proposition 3.19. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be bounded where ϕ(z) = az + b with

0 < |a|< 1 with b ∈ R. Assume that ∥ψ∥2
PW 2

π
< |a|. Consider

{
(Wψ,ϕ)|n|Kn

}
n
for n ∈ Z

where {Kn}n is the orthonormal basis in PW 2
π . Then the sequence

{
(Wψ,ϕ)|n|Kn

}
n
converges

weakly to 0 in PW 2
π .

Proof. Conclude from Proposition 3.17 that (Wψ,ϕ)|n|Kn is bounded over PW 2
π and also

it converges to 0 over C followed by the Proposition 3.18 under the mentioned conditions.

Combining these arguments results into the weakly convergence of
{
(Wψ,ϕ)|n|Kn

}
n
over

PW 2
π .

Hence, following is the compactness characterization of Wψ,ϕ over PW 2
π .

Corollary 3.20. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be bounded with ϕ(z) = az + b where

0 < |a|< 1 and b ∈ R. Then Wψ,ϕ acts compactly over the PW 2
π if and only if ∥ψ∥PW 2

π
<
√
|a|.

Proof. As following is true:

∥∥∥Wψ,ϕ

(
(Wψ,ϕ)|n|Kn

)∥∥∥2
PW 2

π

=
∥∥∥((Wψ,ϕ)|n|+1Kn

)∥∥∥2
PW 2

π

≤ B2
|n|+1.

By Proposition 3.18, we already have B|n|+1 → 0 if and only if
∥ψ∥2

PW 2
π

|a| < 1. This shall

imply that
∥∥∥Wψ,ϕ

(
(Wψ,ϕ)|n|Kn

)∥∥∥
PW 2

π

→ 0 as n→ ±∞ if and only if
∥ψ∥2

PW 2
π

|a| < 1.
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3.4.2 Compactness Application

Following theorem further provides the existence of a Borel measure over R under the

restrictions of Im z > 0 for the Imϕ.

Theorem 3.21. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be bounded. Suppose 0 < a ≤ 1 and

y > 0 and also let b2 > 0 where b = b1 + ib2. Consider (Wψ,ϕ)N acting over PW 2
π with

ImϕN = aNy + b2
∑N−1
j=0 a

j. Then there exists a non-negative a Borel measure over R, µ(t)

such that

∫
R

dµ(t)
t2 + y2

= b2π

y

N−1∑
j=0

aj.

In particular, letting dµ(t) = F (t)dt then F (t) is essentially a positive constant function with

F (t) = b2
∑N−1
j=0 a

j.

Proof. Observe that ImϕN = aNy + b2
∑N−1
j=0 a

j is non-negative and harmonic function for

Im z > 0. Thus following relationship holds due to the Poisson representation:

aNy + b2
N−1∑
j=0

aj = ρy + y

π

∫
R

dµ(t)
t2 + y2

where ρ = limy→∞
ImϕN
y

= aN > 0. Putting this value of ρ, the above setup simplifies to

the following:

∫
R

dµ(t)
t2 + y2

= b2π

y

N−1∑
j=0

aj.

Additionally
∫
R
dµ(t)
1 + t2

< ∞ where µ(t) is the desired Borel measure over R. Since we

have established this representation for ImϕN , then we can apply Fatou’s Theorem to
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dµ(t) = F (t)dt to yield

F (t) = lim
y→0

ImϕN = b2
N−1∑
j=0

aj.

Also, this F (t) is L1 (R) integrable with respect to 1
1 + t2

as can be seen as follows:

∫
R

|F (t)|
1 + t2

dt = b2
N−1∑
j=0

aj
∫
R

1
1 + t2

dt = πb2
N−1∑
j=0

aj <∞.

Theorem 3.22. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be compact, then following attributes are

carried over ψ:

1. ψ is bounded over R.

2. Let ψ be of EFET with type τ .

(a) There exists ψ̃n which are of bounded variation on (−τ, τ) for all n such that for

each z, following holds:

ψ(z) = lim
n→∞

∫ τ

−τ
eiztdψ̃n(t).

(b) Following inequality is true with no possibility of improving the constants for ψ

∣∣∣∣ψ (x+ π

2τ

)
+ ψ

(
x− π

2τ

)∣∣∣∣ ≤ 8
τ
sup
n

∣∣∣∣ψ (nπτ
)∣∣∣∣ .

(c) Suppose ψ is real for real x and hψ
(
±π

2

)
≤ c and |ψ(x)|≤M for all x ∈ R then

|ψ(x+ iy)|≤M cosh cy,
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and there is equality at some non-real point only if ψ(z) =M cos (cz +B) where

B ∈ R.

Proof. Following are the respective proof for each attributes on ψ.

1. Consider now that Wψ,ϕ is compact over PW 2
π , then by the Corollary 3.20

∥ψ∥2PW 2
π
=
∫
R
|ψ(x)|2dx < 2π|a|e−σ|b2|.

Therefore ψ is bounded over R by [27, Remark-Page-51].

2. (a) This result follows from [2, Theorem-6.8.14] when combined with the above result

of boundedness of ψ over R.

(b) This result follows from [2, Theorem-11.5.4] when combined with the above result

of boundedness of ψ over R.

(c) This result follows from [9, Page-556 ] or [32, Theorem-4, Page-826] or [2, Theorem-

3, Page-83].

Theorem 3.23. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be compact and ϕ(z) = |a|z + b where

b ∈ R+. Consider Ix = [0, x] ⊂ R. Let f ∈ PW 2
π which is bounded over R. Additionally

suppose both f and ψ are monotonic on the real axis, then

|Wψ,ϕf(x)|≤
∥ψ∥∥f∥
π3

[ 4
π
+ 2Siπ

]
sup
x∈Ix

√
xϕ(x) = ∥ψ∥∥f∥

π3

[ 4
π
+ 2Siπ

]
sup
x∈Ix

√
|a|x2 + bx.

The equality above will holds when

ψ = sin2(τψη/2)
η2

, and

f = sin2(τfη/2)
η2

,
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almost everywhere (a.e.)4 where τψ and τf are the respective exponential type of ψ and f in

PW 2
π .

Proof. Follow [2, Theorem 11.3.7, Page 212] along with the setting of the Fundamental

theorem of Calculus. The result is now established as follows:

|Wψ,ϕf(x)| = |ψ(x)f(ϕ(x))|

≤ 1
π2 sup

x∈Ix

∣∣∣∣∫ x

0
ψ(t)dt

∣∣∣∣ · sup
x∈Ix

∣∣∣∣∣
∫ ϕ(x)

0
f(t)dt

∣∣∣∣∣
= 1
π2

∥ψ∥√
π
sup
x∈Ix


√
x
[ 4
π
+ 2Siπ

] · ∥f∥√
π
sup
x∈Ix


√
ϕ(x)

[ 4
π
+ 2Siπ

]
= ∥ψ∥∥f∥

π3

[ 4
π
+ 2Siπ

]
sup
x∈Ix

√
xϕ(x)

= ∥ψ∥∥f∥
π3

[ 4
π
+ 2Siπ

]
sup
x∈Ix

√
|a|x2 + bx.

In the perspective of achieving equality again [2, Theorem 11.3.7, Page 212] to realize that

∫ z

0
ψ(t)dt =

∫ z

0

sin2(τψη/2)
η2

dη∫ z

0
f(t)dt =

∫ z

0

sin2(τfη/2)
η2

dη

where τψ and τf are the respective type of ψ and f and obviously τψ · τf ≤ π. Therefore,

following are the additional consequences of above equalities:

∫ z

0
ψ(t)dt−

∫ z

0

sin2(τψη/2)
η2

dη = 0 =⇒ ψ = sin2(τψη/2)
η2

a.e.,∫ z

0
f(t)dt−

∫ z

0

sin2(τfη/2)
η2

dη = 0 =⇒ f = sin2(τfη/2)
η2

a.e.

4If
∫
X f =

∫
X g, then f = g, a.e. over X.
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3.5 Hilbert-Schmidtness Property

Theorem 3.24. Let Wψ,ϕ : dom (Wψ,ϕ) → PW 2
π be compact with ϕ(z) = az + b where

0 < |a|< 1 and b ∈ R. Then Wψ,ϕ is not Hilbert-Schmidt over the PW 2
π .

Proof. From the preliminary, {Kn}n∈Z are the orthonormal basis for the PW 2
π . Therefore,

∥Wψ,ϕ∥2HS =
∑
n∈Z

∥Wψ,ϕKn∥2PW 2
π

≤ ∥ψ∥2L2(R)
∑
n∈Z

∫
R

∣∣∣∣∣sin (π (ax+ b− n))
π (ax+ b− n)

∣∣∣∣∣
2

dx

=
∥ψ∥2L2(R)

|a|
∑
n∈Z

1 = ∞.

Thus, Wψ,ϕ is not Hilbert-Schmidt over PW 2
π .
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CHAPTER 4

COMPOSITION OPERATORS OVER THE POLY-LOGARITHMIC HARDY

SPACE

After providing all the basic details related to PL2(D; s) in subsection 1.1.5, this

chapter aims to provide further in-depth analysis on PL2(D; s). The target interest is the

determination of the Nevanlinna counting function for the PL2(D; s) and its consequences

related to the composition operator (or, Koopman Cφ). Now, we move to following section

where we develop the crucial equation of Littlewood-Paley Identity for PL2(D; s).

4.1 Littlewood-Paley Identity for the Poly-Logarithmic Hardy Space

Recall that fs ∈ PL2(D; s) is entire in s and analytic for |z|< 1. We will use fs as being

holomorphic to establish the Littlewood-Paley Identity for PL2 (D; s) in Theorem 4.1. The

theory developed in this section will be employed further for defining the Nevanlinna counting

function for PL2(D; s).

Theorem 4.1. If fs belongs to PL2(D; s), then following equality is true:

(4.1) ∥fs∥2PL2(D;s)= |fs(0)|2+
1

πΓ(2− 2s)

∫
D
|f ′
s(z)|2

(
2 log 1

|z|

)1−2s

dA(z).

The equality (4.1) is the Littlewood-Paley Identity for PL2(D; s).

Proof. The LHS of (4.1) is straightforward, that is ∑∞
k=1|f̂(k)|2, followed by the definition of

fs ∈ PL2(D; s) given in (1.18). Now, by the virtue of the fact fs(0) = 0, thus we focus on
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the remaining part of RHS of the (4.1) as follows,

∫
D
|f ′
s(z)|2

(
2 log 1

|z|

)1−2s

dA(z) =
∫
D

∣∣∣∣∣∣
∞∑
k=1

kf̂(k)
ks

zk−1

∣∣∣∣∣∣
2 (

2 log 1
|z|

)1−2s

dA(z),

=
∞∑
k=1

∞∑
l=1

kl

ksls
f̂(k)f̂(l)2πδkl

∫ 1

0
rk−1rl−1

(
2 log 1

r

)1−2s
rdr,

= 2π
∞∑
k=1

k2

k2s
|f̂(k)|2

∫ 1

0
r2k−1

(
2 log 1

r

)1−2s
dr,

= π
∞∑
k=1

k2

k2s
|f̂(k)|2k2s−2Γ(2− 2s),

= πΓ(2− 2s)
∞∑
n=1

|f̂(k)|2.

Therefore and hence,

|fs(0)|2+
1

πΓ(2− 2s)

∫
D
|f ′
s(z)|2

(
2 log 1

|z|

)1−2s

dA(z) = ∥fs∥2PL2(D;s).

Thus, we established the Littlewood-Paley Identity for PL2(D; s).

Let’s assume for brevity,

(4.2) CPL2 = 21−2s

πΓ(2− 2s) ,

with this constant, from now, we will consider the following formatting of the PL2(D; s).

∥fs∥2PL2(D;s)= |fs(0)|2+CPL2

∫
D
|f ′
s(z)|2

(
log 1

|z|

)1−2s

dA(z).

Notation 4.2. Lets have some useful notation for s ≤ 1
2 , that will show their presence in

the rest of the paper frequently. We have following notation

dH(z) = CPL2

(
log 1

|z|

)1−2s

dA(z),(4.3)

where CPL2 is being defined in (4.2).
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4.2 Nevanlinna Counting Function

In this section, we develop the theory and the notion of Nevanlinna counting function for

PL2(D; s). Before we shall define Nevanlinna counting function for PL2(D; s), we shall first

recall the notion of partial counting function, usual Nevanlinna counting function and change

of variables.

4.2.1 Partial Counting Function

Definition 4.3. Suppose φ is a holomorphic map on D. Let {zj(w)}j≥1 denotes the points

of the pre-image of φ−1 {w} where w ∈ C \ φ(0) and sequenced in the increasing moduli order

along with its multiple repetition, if necessary. Denote #(r, w) as the number of these point

in the disc rD for 0 ≤ r < 1. Then the partial counting functions for φ is defined as follows:

(4.4) Nφ(r, w) =
#(r,w)∑
j=1

log r

|zj|
.

4.2.2 Nevanlinna Counting Function

We give the definition of Nevanlinna counting function that is prominent in the study of

H2 as follows:

Definition 4.4 (Nevanlinna counting function for H2). Suppose φ is holomorphic on D.

Then Nφ is the Nevanlinna counting function of φ given as follows:

(4.5) Nφ(w) =


∑
w∈φ−1(w) log

1
|z| if w ∈ φ(D),

0 if w ̸∈ φ(D).
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With (4.5) as the definition of the (original) Nevanlinna counting function, we can have

following relation with partial counting function that is defined in (4.4):

Nφ(w) = Nφ(1, w),

=
∑
j

log 1
|zj(w)|

.(4.6)

We have an important inequality called as Littlewood’s inequality and is given as follows:

Proposition 4.5 (Littlewood’s inequality for H2). Suppose for all w ∈ D \ φ(0), then

Nevanlinna counting function Nφ satisfies following inequality:

(4.7) Nφ(w) ≤ log
∣∣∣∣∣1− φ(0)w
φ(0)− w

∣∣∣∣∣ .

Proof. See [45, Section 4.2.].

We are now, in good shape to define the Nevanlinna counting function for PL2(D; s) as

follows.

Definition 4.6 (Nevanlinna counting function for PL2(D; s)). Consider w ∈ C \ φ(0), and

r ∈ [0, 1) and s ≤ 1
2 we write:

Nφ,s(w) =
#(r,w)∑
j=1

log
(

r

|zj(w)|

)1−2s

, and

Nφ,s(w) = Nφ,s(1, w) =
∑
j=1

[
log

(
1

|zj(w)|

)]1−2s

.

Here, again {zj(w)} represents the multiplicity sequence of φ-pre-images of w. On the account

of brevity, Ns implies Nφ,s. The function Ns is called as the Nevanlinna counting function

for PL2(D; s).

Useful to note that following equalities are true:

N0(w) = Nφ(w), and(4.8)
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N 1
2
(w) = #(r, w).(4.9)

We have new version of Littlewood’s inequality involving the Nevanlinna counting function

Ns for PL2(D; s) which is given in Proposition 4.7 as follows:

Proposition 4.7 (Littlewood’s inequality for PL2(D; s)). For all s ≤ 0 and w ∈ D \ φ(0),

the Nevanlinna counting function Ns enjoys the following inequality:

(4.10) Ns(w) ≤
(
log

∣∣∣∣∣1− φ(0)w
φ(0)− w

∣∣∣∣∣
)1−2s

.

Proof. The proof for (4.10) is divided in two parts and given as follows:

1. First case, suppose s = 0, then

Ns(w) = N0(w) (use s = 0),

= Nφ(w) (use (4.8)),

≤ log
∣∣∣∣∣1− φ(0)w
φ(0)− w

∣∣∣∣∣ (use (4.7)).

That is, this situation that corresponds to the original Littlewood’s inequality presented

in (4.7) in Proposition 4.5.

2. Second and last case, on the other hand if s < 0, then γ > 1 where γ = 1− 2s. Use this

along with the proof of Proposition 6.3 of [45], and thus we are done with the proof of

(4.10).

One can realize that the behaviour of Nevanlinna counting function for PL2(D; s) in

(4.10) is similar to the original Nevanlinna counting function that we observe in Littlewood’s

inequality in (4.7).
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4.2.3 Change of Variable Formula

We recall the change of variable formula from H2 as follows:

Proposition 4.8 (Change of variable in H2). If g is a positive measurable function on D,

then: ∫
D
(g ◦ φ)|φ′|2dλ1 = 2

∫
D
gNφdA,

where

dλ1(w) = log 1
|w|2dA(w).

Proof. See [45, Section 4.3].

In the spirit of Proposition 4.8, we can have the following Lemma 4.9 which shows

the change of variable formula for PL2(D; s). In actual sense, the proof is similar to the

original one, therefore we do not include the proof for this here.

Lemma 4.9 (Change of variable in PL2(D; s)). If g is a positive measurable function on D,

then:

(4.11)
∫
D
(g ◦ φ)|φ′|2dH = CPL2

∫
D
gNsdA,

where the constant CPL2 is already defined in (4.2) and dH is defined in (4.3).

The direct consequence of Lemma 4.9 is the following corollary.

Corollary 4.10. If fs ∈ PL2(D; s), then

(4.12) ∥fs ◦ φ∥2PL2(D;s)= |fs(φ(0))|2+CPL2

∫
D
|f ′
s|2NsdA.

Proposition 4.11. If s is strictly negative that is s < 0, then

(4.13) 1
2Ns(r, w) = s(2s− 1)

∫ r

0

N0(t, w)(
log r

t

)1+2sdt.
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Proof. Use γ = 1− 2s in [45, Proposition 6.6] and the result is established.

Theorem 4.12 (Sub-harmonic property of Ns). Suppose s < 0, then the sub-harmonic

property of Ns is given as follows for g being holomorphic on a plane region Ω:

(4.14) Area(∆)Ns(g(a)) ≤
∫
∆
Ns(g(w))dA(w),

where ∆ is an open disc in Ω \ g−1(φ(0)) with center a.

Proof. See [45, Corollary 6.7.].

4.3 Upper Bound of Essential norm

4.3.1 Upper Bound

Proposition 4.13. Suppose T is a bounded linear operator on a Hilbert space H. Let {Pn}

be a sequence of compact self-adjoint operator on H, and write Pn = I − Pn. Suppose

∥Pn∥= 1 for each n, and ∥Pnx∥→ 0 for all x ∈ H. Then:

∥T ∥e= lim
n→∞

∥T Pn∥,

where ∥T ∥e represents the essential norm of the operator T .

Proof. See [45, Proposition 5.1.].

Lemma 4.14. Suppose fs ∈ PL2(D; s) and consider it has a zero of order n at the origin,

then for each z ∈ D, following is true:

1. For s ≥ 0, following is true:

(4.15) |fs(z)|2≤
|z|2n

n2s (1− |z|2)∥fs∥
2
PL2(D;s).
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2. For s ≥ 0, following is true:

(4.16) |f ′
s(z)|2≤

|z|2n
n2s−2 (1− |z|2)∥fs∥

2
PL2(D;s).

Proof. We give the proof of inequalities presented above as follows. Consider following series

representation for fs,

fs(z) =
∞∑
k=n

f̂(k)
ks

zk.

1. Upon considering the above power series expansion, we have following immediately:

|f(z)| =
∣∣∣∣∣∣
∞∑
k=n

f̂(k)
ks

zk

∣∣∣∣∣∣ ,
≤

√√√√√ ∞∑
k=n

∣∣∣∣∣∣ f̂(k)ks

∣∣∣∣∣∣
2√√√√ ∞∑

k=n
|z|2k (use Cauchy-Schwarz),

≤
√√√√ 1
n2s

∞∑
k=n

|f̂(k)|2 |z|n√
1− |z|2

,

≤ |z|n

ns
√
1− |z|2

∥fs∥PL2(D;s).

Squaring the above inequality establishes (4.15).

2. Similarly, we have following,

|f ′(z)| =
∣∣∣∣∣∣
∞∑
k=n

f̂(k)
ks−1 z

k−1

∣∣∣∣∣∣ ,
≤
√√√√ ∞∑
k=n

∣∣∣∣∣zk−1

ks−1

∣∣∣∣∣
2
√√√√ ∞∑
k=n

|f̂(k)|2 (use Cauchy-Schwarz),

≤
√√√√ ∞∑
k=1

|z|2(k+n−1)

(k + n− 1)2s−2∥fs∥PL2(D;s),

≤ |z|n−1

√√√√ 1
n2s−2

∞∑
k=1

|z|2k∥fs∥PL2(D;s),
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≤ |z|n

ns−1
√
1− |z|2

∥fs∥PL2(D;s).

Squaring the above inequality establishes (4.16).

Thus, our proof is done.

Lemma 4.15. The Nevanlinna counting function Ns for PL2(D; s) satisfies the following

inequality:

(4.17)
∫
D
NsdA ≤ 1

CPL2
.

Proof. Considering φ ≡ z in (4.12), the following is obtained:

∥φ∥2PL2(D;s)= |φ(0)|2+CPL2

∫
D
NsdA.

Hence, with easy transportation in above:

CPL2

∫
D
NsdA = ∥φ∥2PL2(D;s)−|φ(0)|2≤ 1− |φ(0)|2≤ 1.

Therefore, dividing above inequality by CPL2 yields the desired inequality (4.17).

Now, we have the main goal of the chapter given in Theorem 4.16.

Theorem 4.16 (Principal Goal 1). The upper bound of the essential norm of Cφ in PL2(D; s)

represented by ∥Cφ∥e is given as follows:

∥Cφ∥2e≤ lim sup
|w|→1−

Ns(w)(
log 1

|w|

)1−2s ,(4.18)

where Ns is the Nevanlinna counting function for PL2(D; s) and 0 < s ≤ 1
2 .
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Proof. We will implement the Proposition 4.13 with Pn operator defined as follows on

fs(z) =
∑∞
k=1

f̂(k)
ks

zk ∈ PL2(D; s):

(4.19) Pnfs(z) =
n∑
k=1

f̂(k)
ks

zk.

Notice that Pn defined in (4.19) is the orthogonal projection of PL2(D; s) onto the closed

subspace which is spanned by the monomials z, · · · , zn (see inner product in (1.20)), it is self

adjoint and compact. Since Pn defined as follows:

Pn = I − Pn,

is the complimentary projection, therefore its norm is 1. Hence, in the light of Proposi-

tion 4.13, we have

∥Cφ∥e= lim
n→∞

∥CφPn∥,

where ∥Cφ∥e is the essential norm of Cφ over PL2(D; s). Therefore, by Corollary 4.10,

we have following

∥CφPnfs∥2PL2(D;s)= |Pnfs(φ(0))|2+CPL2

∫
D
|Pnf

′
s|2NsdA.

Since ∥fs∥PL2(D;s)≤ 1, the same reasoning applies for Pnfs. Since Pnfs has a zero of order n

at the origin, therefore by incorporating results (4.15) and (4.16) of Lemma 4.14, we get
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following:

∥CφPn∥2PL2(D;s) ≤
[
CPL2 sup

∫
D\rD

|Pnf
′
s|2NsdA

]

+
[
CPL2

r2n

n2s−2(1− r2)

∫
rD

NsdA

]
+
[

|φ(0)|2n
n2s(1− |φ(0)|2)

]
,

≤
[
CPL2 sup

∫
D\rD

|(Pnf
′
s)|2NsdA

]

+
[
CPL2

r2n

n2s−2(1− r2)CPL2

]
+
[

|φ(0)|2n
n2s(1− |φ(0)|2)

]
,

=
[
CPL2 sup

∫
D\rD

|(Pnf
′
s)|2NsdA

]

+
[

r2n

n2s−2(1− r2)

]
+
[

|φ(0)|2n
n2s(1− |φ(0)|2)

]
.

Note that, in the second step above we used (4.17) for the middle term in the RHS. Letting

n→ ∞ and denoting B as the unit ball for PL2(D; s), and denoting

h(w) = Ns(w)(
log 1

|w|

)1−2s .

Proceeding further, we get

∥Cφ∥2e≤ CPL2 sup
B

∫
D\rD

|f ′
s|NsdA = sup

B

∫
D
|f ′
s|2hdH ≤

[
sup

r≤|w|<1
h(w)

]
sup
B

∫
D
|f ′
s|2dH ≤ sup

r≤|w|<1
h(w).

The last statement follows by the Littlewood-Paley Identity for PL2(D; s) and by approaching

r to 1, consequently establishes the upper bound of the ∥Cφ∥e, that is (4.18).
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4.4 Angular Derivative

4.4.1 Definition

Definition 4.17. By supposing φ to have a finite angular derivative at ζ ∈ ∂D, we mean

that the following difference quotient,

φ(z)− ω

z − ζ
,

is finite as z approaches to ζ non-tangentially for some ω ∈ ∂D. If this limit exists, it is

called as the angular derivative of φ at ζ and is represented by φ′(ζ).

1. φ has angular derivative at ζ,

2. φ has a non-tangential limit of modulus 1 at ζ, and the complex derivative φ′ has a

finite non-tangential limit at ζ.

3. φ′(ζ) = φ∗(ζ)ζd, provided following is true:

(4.20) lim inf
{
1− |φ(z)|
1− |z| when z → ζ unrestrictedly in D

}
= d <∞.

In accordance with the Schwarz lemma, the quantity d present in (4.20) cannot be 0. With

that being noted, this imply that the angular derivative can never be 0. Follow [45] for more

details to this.

4.4.2 Angular Derivative and Upper Bound Estimate

For ω ∈ ∂D and κ ≥ 0 we have:

εκ(ω) =
∑

ζ∈E(φ,ω)

{
1

|φ′(ζ)|κ
}
,
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where |φ′(ζ)| denotes the magnitude of the angular derivative of φ at ζ, if it exists and ∞ if

it does not exist. We define E(φ, ω) as follows:

E(φ, ω) = {ζ ∈ ∂D, φ∗(ζ) = ω} .

We recall useful results from H2 as follows:

Proposition 4.18. Let ∥Cφ∥e be the essential norm of Cφ on H2. We have following

inequality when κ = 1:

sup
ω∈∂D

{ε1(ω)} ≤ ∥Cφ∥2e.

Proof. See [45, Theorem 3.3.].

Note that, Schwarz lemma assures that |φ′(z)| is bounded away from 0 on ∂D by a

constant that is dependent only on φ(0). Therefore, supposing that 0 < κ < κ′, then the

Julia-Carathèodory theorem forces to have,

εκ′(ω) ≤ ϕ0 · εκ(ω),

where this ‘ϕ0’ depends only on κ, κ′ and φ(0). Therefore, with the advantage of Proposi-

tion 4.18, the quantity ε1(ω) is bounded on the unit circle. Hence, the same is valid for

εκ(ω) for all κ ≥ 1.

We recall famous results from H2 in Proposition 4.19, that will be used later in the

paper.

Proposition 4.19. Recall ∥Cφ∥e as the essential norm of Cφ on H2, then:

(4.21) ∥Cφ∥2e= lim sup
|w|→1−

Nφ(w)

log 1
|w|

.
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In fact, in particular, Cφ is compact on H2 if and only if lim|w|→1−
Nφ(w)

log 1
|w|

= 0.

Proof. See [45, Section 5].

Proposition 4.20. Suppose φ is an inner function, then following is true:

(4.22) ∥Cφ∥e=
√√√√[1 + |φ(0)|

1− |φ(0)|

]
.

Proof. See [45, Theorem 2.5].

Now, we prove our second and last principal goal of this chapter.

Theorem 4.21 (Principal Goal 2). The essential norm of Cφ on PL2(D; s) satisfies the

following in relation with the angular derivative of φ for 0 < s ≤ 1
2 :

(4.23) ∥Cφ∥2e≤ ∥Cφ∥2e sup
ζ∈∂D

{
|φ′(ζ)|−2s

}
.

Proof. We begin the proof of having the upper bound for ∥Cφ∥e as follows: For each w ∈

D \ (0, φ(0)), we will pick z = z(w) ∈ φ−1 {w}, which is of minimum modulus, therefore the

following is true:

Ns(w)(
log 1

|w|

)1−2s ≤ N0(w)

log 1
|w|


log 1

|z|
log 1

|w|


−2s

.(4.24)

Now we will choose ω ∈ ∂D and a sequence of points {ωn} ∈ D such that ωn → ω and

Ns(wn)(
log 1

|ωn|

)1−2s → lim sup
|w|→1−

Ns(w)(
log 1

|ωn|

)1−2s .
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By passing to a further sub-sequence (supposing that is required), we may also assume that

the sequence of selected pre-images {z(wn)} also converges. Under the influence of Schwarz

lemma, its limit must be a point ζ which lives in ∂D. In accordance with the last part of the

Julia-Carathèodory theorem:

lim sup
z→ζ


log 1

|z|
log 1

φ(z)

 = |φ′(ζ)|−1.

Hence by (4.24),

lim sup
|w|→1−

Ns(w)(
log 1

|w|

)1−2s ≤

lim sup
|w|→1−

N0(w)(
log 1

|w|

)

[
|φ′(ζ)|−1

]2s
,

=

lim sup
|w|→1−

Nφ(w)(
log 1

|w|

)

[
|φ′(ζ)|−1

]2s
(use (4.8)),

= ∥Cφ∥2e
[
|φ′(ζ)|−1

]2s
, (use (4.21)).

With this, we have achieved the upper bound on the essential norm of Cφ over PL2(D; s).

Corollary 4.22. If φ is an inner function, then following inequality is true for 0 < s ≤ 1
2 :

(4.25) ∥Cφ∥2e≤
[
1 + |φ(0)|
1− |φ(0)|

] [
sup
ζ∈∂D

{
|φ′(ζ)|−2s

}]
.

Proof. Use (4.22) in (4.23) and hence, (4.25) is established.
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CHAPTER 5

MITTAG-LEFFLER REPRODUCING KERNEL HILBERT SPACE

One can immediately realize that functions ez, cos z and cosh z can be recovered from

Eq defined in (1.4) upon putting q = 1 against z and q = 2 against −z2 and z2 respectively.

Follow [16] for more on this. In the present avenue of the discussion, lets replace z by αqz in

(1.4) where both α and q are positive and we get following eventually:

Eq(αqz) =
∞∑
k=0

(αqz)k
Γ(qk + 1) ,

and in the spirit of defining the kernel represented by K [α]
q (·, ·), we have following:

K [α]
q (z, w) = Eq (αqzw) =

∑
n≥0

(αqzw)n
Γ(qn+ 1) .(5.1)

The present chapter serves the purpose of studying the Mittag-Leffler reproducing kernel

Hilbert space represented here by M⋆
α with its associated kernel defined in (5.1). Note that,

we loose no generality if choose any particular value of α, in fact, in particular if α = 1 in

(5.1), we get the standard Mittag-Leffler kernel function K [1]
q (z, w) which was introduced by

Rosenfeld et.al. in [34] (see Definition 4).

73



5.1 Basics

Consider following measure over the complex plane C for any positive parameter α,

(5.2) dJα(z)[2] = dJα(z) :=
α

πq
|z| 2q−2e−α|z|

2
q
dA(z),

where dA is the Euclidean area measure on the complex plane C. We see that a calculation

with polar coordinates shows that dJα(z) defined and introduced in (5.2) is a probability

measure.

5.1.1 Orthonormal Basis for M⋆
α(2)

Theorem 5.1. For f ∈M⋆
α(2), the norm f is as follows:

(5.3) ∥f∥2M⋆
α(2):=

∫
C
|f(z)|2dJα(z)[2].

Proof. The proof can be provided by standard and considerable adjustments to the proof of

[34, Theorem 3.2.].

Lemma 5.2. The collection of orthonormal basis for M⋆
α(2) is

{√
αnq

Γ(qn+1)z
n
}
n
.

Proof. Follow [34].

Now we present the equivalent norm representation for f ∈M⋆
α(2).

Theorem 5.3 (Equivalent norm representation ofM⋆
α(2)). Let f(z) = ∑∞

n=0 f̂(n)zn ∈M⋆
α(2),

then:

(5.4) ∥f∥2M⋆
α
= |f(0)|2+ q

π

∫
C
|f ′(z)|2

(∫ ∞

|z|
q
2

e−αt

t
dt

)
dA(z).

74



Proof. The LHS of (5.4) is of course, ∥f∥2M⋆
α
= ∑∞

n=0|f̂(n)|2Γ(qn+ 1)/αnq. Note that f(0) =

f̂(0), therefore |f(0)|2= |f̂(0)|2. Now we will focus on the remaining part of RHS in (5.4) as

follows:

∫
C
|f ′(z)|2

(∫ ∞

|z|
q
2

e−αt

t
dt

)
dA(z) =

∫
C

∣∣∣∣∣
∞∑
n=1

nf̂(n)zn−1
∣∣∣∣∣
2 (∫ ∞

|z|
q
2

e−αt

t
dt

)
dA(z),

=
∞∑
n=1

∞∑
m=1

nmf̂(n)f̂(m)2πδnm
∫ ∞

0
rn−1rm−1

(∫ ∞

r
q
2

e−αt

t
dt

)
rdr,

= 2π
∞∑
n=1

n2|f̂(n)|2
∫ ∞

0

∫ ∞

r
q
2
r2n−1 e

−αt

t
dtdr,

= 2π
∞∑
n=1

n2|f̂(n)|2
∫ ∞

0

e−αt

t

∫ t
q
2

0
r2n−1dr

 dt (by Fubini),

= 2π
∞∑
n=1

n2|f̂(n)|2
∫ ∞

0

e−αt

t

tnα

2n dt,

= π
∞∑
n=1

n|f̂(n)|2
∫ ∞

0
tnq−1e−αtdt,

= π
∞∑
n=1

n|f̂(n)|2Γ(nq)
αnq

,

= π

q

∞∑
n=1

|f̂(n)|2
[
nqΓ(nq) 1

αnq

]
.

Hence after dividing above by π
q
in the last step above, we get following:

q

π

∫
C
|f ′(z)|2

(∫ ∞

|z|
q
2

e−αt

t
dt

)
dA(z) =

∞∑
n=1

|f̂(n)|2Γ(qn+ 1)
αnq

.(5.5)

Here, we use the property of Gamma function, given as Γ(s + 1) = sΓ(s). Thus, setting

s = nq, establishes nqΓ(nq) = Γ(nq + 1). Now, adding |f(0)|2 to (5.5) yields following:

|f(0)|2+ q

π

∫
C
|f ′(z)|2

(∫ ∞

|z|
q
2

e−αt

t
dt

)
dA(z) = |f(0)|2+

∞∑
n=1

|f̂(n)|2Γ(nq + 1)
αnq

,

= |f̂(0)|2+
∞∑
n=1

|f̂(n)|2Γ(nq + 1)
αnq

,(5.6)

=
∞∑
n=0

|f̂(n)|2Γ(nq + 1)
αnq

,

= ∥f∥2M⋆
α
.
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We used |f(0)|2= |f̂(0)|2 in (5.6). Therefore, (5.4) is established.

The M⋆
α(2) consists of all entire functions f such that f ∈ L2(C, dJα(z)). Now, we will

show that M⋆
α(2) is a closed subspace of L2(C, dJα(z)).

Theorem 5.4. M⋆
α(2) is a closed subspace of L2(C, dJα(z)).

Proof. Recall that a subspace M of a Hilbert space H is a closed subspace if and only if it is

itself a Hilbert space (with the same inner product). Applying this fact to our case, provides

the desired result.

5.1.2 Reproducing Kernel

Definition 5.5. Consider both α > 0 and q > 0, the reproducing kernel for M⋆
α(2) represented

by K [α]
q (z, w) is given as follows:

K [α]
q (z, w) = Eq (αqzw) =

∑
n≥0

(αqzw)n
Γ(qn+ 1) .

With the abuse of notation, we often prefer to go for K [α]
q,w for a fixed w ∈ C to imply

K
[α]
q (z, w). For any fixed w ∈ C, the mapping f 7→ f(w) is a bounded linear functional on

M⋆
α(2), due to the mean value theorem. By the Riesz representation theorem in Theorem 1.2:

⟨f,K [α]
q,w⟩ = f(w) ∀f ∈M⋆

α(2).

Lemma 5.6. If f ∈M⋆
α(2), then

f

K
[α]
q,w

∈M⋆
α(2).

Proof. We begin by considering the inner product for M⋆
α(2) as follows:

∣∣∣∣∣∣
〈

f

K
[α]
q,w

, K [α]
q,w

〉∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
C

f(z)
K

[α]
q,w(z)

K [α]
q,w(z)dJα(z)

∣∣∣∣∣∣ ,
=
∣∣∣∣∫

C
f(z)dJα(z)

∣∣∣∣ ,
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≤
∫
C
|f(z)|dJα(z),

≤
√∫

C
|f(z)|2dJα(z)

√∫
C
dJα(z), (use Cauchy-Schwarz)

= ∥f∥<∞ (as f ∈M⋆
α(2)).

We recall following inequality from [18, Remark 2.3] which will be extensively implemented

in further discussion here.

Lemma 5.7. With both q and α > 0, there exist positive constants C1 and C2 such that

following is true:

C1e
t
1
q ≤ |Eq(t)|≤ C2e

t
1
q
.

Corollary 5.8. Let f ≥ 0 and f ∈ L1
(
C, dJα(z)[2]

)
, then for any z ∈ C, following is true:

(5.7)
∫
C
f(z − w)dJα(w)[2] =

∫
C
f(w) 1

Eq(αq|z − w|2)dJα(w)
[2],

and also,

(5.8)
∫
C
f(z + w)dJα(w)[2] =

∫
C
f(w) K

[α]
q (2z, w)

Eq(αq|w − z|2)dJα(w)
[2].

Proof. We will provide the proof of (5.7) as follows:

∫
C
f(z − w)dJα(w)[2] =

α

πq

∫
C
f(z − w)|w| 2q−2e−α|w|

2
q
dA(w),

= α

πq

∫
C

f(z − w)
K

[α]
q (z, w)

K [α]
q (z, w)|w| 2q−2e−α|w|

2
q
dA(w),

= f(0)
K

[α]
q (z, z)

(apply Lemma 5.6, then reproducing property),

=
∫
C

f(w)
K

[α]
q (z − w, z − w)

dJα(w)[2],
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=
∫
C
f(w) 1

Eq(αq|z − w|2)dJα(w)
[2].

Thus, with this we have established the relation presented in (5.7). Now, we will show the

relation given in (5.8) and the whole procedure will be same as what we have done above.

∫
C
f(z + w)dJα(w)[2] =

α

πq

∫
C
f(z + w)|w| 2q−2e−α|w|

2
q
dA(w),

= α

πq

∫
C

f(z + w)
K

[α]
q (z, w)

K [α]
q (z, w)|w| 2q−2e−α|w|

2
q
dA(w),

= f(2z)
K

[α]
q (z, z)

(apply Lemma 5.6, then reproducing property),

=
∫
C

f(w)
K

[α]
q (z − w, z − w)

K [α]
q (2z, w)dJα(w)[2],

=
∫
C
f(w) K

[α]
q (2z, w)

Eq(αq|w − z|2)dJα(w)
[2].

Lemma 5.9. Define following quantity which one can see a relation between l and N ∈

Z+ ∪ {0},

(5.9) λq =
[
Γ (qN + 1)

N∑
l=0

1
Γ(ql + 1)Γ(qN − ql + 1)

] 1
qN

.

Suppose α > 0 and β ∈ R, then following is true:

(5.10)
∫
C

∣∣∣K [β]
q (z, a)

∣∣∣ dJα(z) = K [α]
q

(
βa

λqα
,
βa

λqα

)
.

Proof. In order to proof (5.10), first we realize first that, in the light of (5.9), following

relation holds:

K [β]
q (z, a) =

(
K [α]
q (a, z)

)2
.
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It follows from the definition of the reproducing kernel that

K [α]
q (a, a) =

∫
C

∣∣∣K [α]
q (a, z)

∣∣∣2 dJα(z).
Now, replacing a by βa

λqα
, yields the desired result.

Now, consider α > 0 and p > 0, we use the notation Lpα to denote the space of Lebesgue

measurable functions f on C such that the function f(z)|z| 1q−1e−
α
2 |z|

2
q ∈ Lp(C, dA). With the

following measure,

(5.11) dJα(z)[p] :=
pα

2πq |z|
p
q
−pe−

pα
2 |z|

2
q
dA(z).

we write f ∈ Lpα as following:

∥f∥pM⋆
α(p)

:=
∫
C
|f(z)|pdJα(z)[p].

Again, with α > 0 and p = ∞, we use the notation L∞
α to denote the space of Lebesgue

measurable functions f on C such that

∥f∥M⋆
α(∞)= esssup

{
|f(z)|e−α

2 |z|
2
q for z ∈ C

}
<∞.

Its important to note that f is entire under the consideration. Following is the isometry

relation in M⋆
α(p) that will be used in complex interpolation of M⋆

α(p) further.

Theorem 5.10 (Isometry in M⋆
α(p)). Let ζ ∈ C \ {0}, then define ζq as following:

ζq = ζ
1
q
−1, and fζ(z) := ζ

1− 2
p

q f(ζz).

Then, f(z) → fζ(z) is an isometry from M⋆
α(p) onto M⋆

|ζ|
2
q α
(p) for 0 < p ≤ ∞.
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Proof. We have following calculation:

∥fζ(z)∥pM⋆

|ζ|
2
q α

= pα|ζ| 2q
2πq

∫
C
|fζ(z)|p|z|

p
q
−pe−

p|ζ|
2
q α

2 |z|
2
q
dA(z),

= pα|ζ| 2q
2πq

∫
C

∣∣∣∣ζ1− 2
p

q f (ζz)
∣∣∣∣p |z| pq−pe− pα

2 |ζz|
2
q
dA(z),

= pα|ζ| 2q
2πq

∫
C

∣∣∣∣∣∣ ζ
1
q
−1

ζ(
1
q
−1) 2

p

f(ζz)
∣∣∣∣∣∣
p

|z|
p
q
−pe−

pα
2 |ζz|

2
q
dA(z),

= pα|ζ| 2q
2πq

∫
C

∣∣∣∣∣∣ ζ
1
q
−1

ζ(
1
q
−1) 2

p

∣∣∣∣∣∣
p

|f(ζz)|p|z|
p
q
−pe−

pα
2 |ζz|

2
q
dA(z),

= pα|ζ| 2q
2πq

∫
C

|ζ|
p
q
−p

|ζ| 2q−2
|f(ζz)|p|z|

p
q
−pe−

pα
2 |ζz|

2
q
dA(z),

= pα

2πq

∫
C
|f(w)|p|w|

p
q
−pe−

pα
2 |w|

2
q
dA(w), (where w = ζz)

= ∥f∥pM⋆
α
.

Theorem 5.11. For f ∈M⋆
α and 0 < p <∞, the point evaluation inequality is satisfied as:

|f(z)|≤ ∥f∥M⋆
α(p)

√
K

[α]
q (z, z).

Proof. In the consideration of 0 < p <∞, following is achieved:

|f(0)|p≤ pα

2πq

∫
C
|f(z)|p|z|

p
q
−pe−

αp
2 |z|

2
q
dA(z),

due to the sub-harmonicity of |f |p and integration in polar coordinates. Now, consider

function F in the following format,

F (w) := f(z − w) K
[α]
q (w, z)√
K

[α]
q (z, z)

, where f ∈M⋆
α(p) and any z ∈ C.

80



In the light of the fact that |F (0)|p≤ ∥F∥pM⋆
α(p)

, we proceed as follows:

∣∣∣∣∣∣∣f(z)
K

[α]
q (0, z)√
K

[α]
q (z, z)

∣∣∣∣∣∣∣
p

≤ pα

2πq

∫
C

∣∣∣∣∣∣∣f(z − w) K
[α]
q (w, z)√
K

[α]
q (z, z)

∣∣∣∣∣∣∣
p

|w|
p
q
−pe−

αp
2 |w|

2
q
dA(w),

|f(z)|p ≤ pα

2πq

∫
C

∣∣∣f(z − w)K [α]
q (w, z)

∣∣∣p |w| pq−pe−αp
2 |w|

2
q
dA(w),

= pα

2πq

∫
C
|f(z − w)|p

∣∣∣K [α]
q (w, z)

∣∣∣p |w| pq−pe−αp
2 |w|

2
q
dA(w),

= pα

2πq

∫
C
|f(z − w)|p

[
K [α]
q (w, z)K [α]

q (w, z)
] p

2 |w|
p
q
−pe−

αp
2 |w|

2
q
dA(w),

= pα

2πq

∫
C
|f(z − w)|p

[
K [α]
q (w, z)K [α]

q (z, w)
] p

2 |w|
p
q
−pe−

αp
2 |w|

2
q
dA(w),

= pα

2πq

∫
C
G(z, w)

[
K [α]
q (z, w)

] p
2 |w|

p
q
−pe−

αp
2 |w|

2
q
dA(w).

We have the function G(z, w) = |f(z − w)|p
[
K

[α]
q (w, z)

] p
2 and now we use the reproducing

property of M⋆
α(p2) to have: |f |p≤ |f(0)|p

[√
K

[α]
q (z, z)

]p
≤ ∥f∥pM⋆

α(p)

[√
K

[α]
q (z, z)

]p
. Thus, in

conclusion, after taking 1/p power above, we have: |f |≤ ∥f∥M⋆
α(p)

√
K

[α]
q (z, z), as desired.

Proposition 5.12. Suppose 0 < p <∞ and put fr(z) := f(rz), then following holds:

1. ∥fr − f∥M⋆
α(p)→ 0 as r → 1−.

2. There is a sequence of polynomials {pn} of polynomials such that limn→∞∥pn−f∥M⋆
α(p)=

0.

Proof. 1. We recall the basic result from the usual Lp-spaces theory as follows:

lim
n→∞

∫
X
|gn − g|pdµ = 0 ⇐⇒ lim

n→∞

∫
X
|gn|pdµ =

∫
X
|g|pdµ,

where {gn}n and g lives in Lp(X, dµ). Now, letting f ∈ M⋆
α and then we proceed as

follows:

∥fr∥pM⋆
α(p)

=
∫
C
|fr(z)|p dJα(z)[p],
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= pα

2πq

∫
C
|f(rz)|p|z|

p
q
−pe−

pα
2 |z|

2
q
dA(z),

= pα

2πq

∫
C
|f(w)|p

∣∣∣∣wr
∣∣∣∣ pq−p e− pα

2 |w
r
|
2
q dA(w)

r2
,

= pα

2πqr2+
p
q
−p

∫
C
|f(w)|p|w|

p
q
−p e−

pα
2 |w

r
|
2
q
dA(w),

= pα

2πqr2+
p
q
−p

∫
C
|f(w)|p|w|

p
q
−p e−

pα
2 |w|

2
q
e
− pα

2 |w|
2
q

[
1
r

2
q−1

]
dA(w).

Since, we have 0 < r < 1, we have following: e
− pα

2 |w|
2
q

[
1
r

2
q−1

]
≤ 1, ∀w ∈ C. An

application of Lebesgue Dominated Convergence Theorem shows that following is true:

∥fr∥M⋆
α(p)→ ∥f∥M⋆

α(p) as n→ ∞.

Combining this argument with the previous arguments yields the desired result.

2. In the light of the Theorem 5.11 we have M⋆
β(2) ⊂M⋆

α(p), for β from (r
2
qα, α) where

obviously 0 < r < 1. Due to this set containment relationship, we obtain following:

∥g∥M⋆
α(p)≤ C∥g∥M⋆

β
(2),

where we pick g ∈ M⋆
β(2). We consider pn as the nth Taylor-polynomial for fr and

therefore

∥fr − pn∥M⋆
α(p)≤ C∥fr − pn∥M⋆

β
(2)→ 0 as n→ ∞.

Theorem 5.13. Let q > 0 and 1
q
< 1. Suppose 0 < p ≤ p′ <∞, then ∥f∥M⋆

α(p′)≤ C∥f∥M⋆
α(p),

where C =
(
p′

p

) 1
p

.
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Proof. Since, 1
q
< 1, this means that |z|

p′
q
−p′≤ |z|

p
q
−p. For any entire function f ∈M⋆

α(p), we

consider the integral in the following manner:

∥f∥p′M⋆
α(p′)

= p′α

2πq

∫
C
|f |p′ |z|

p′
q
−p′e−

αp′
2 |z|

2
q
dA(z),

= p′α

2πq

∫
C
|f |p′−p|f |p|z|

p
q
−pe−

αp′
2 |z|

2
q
dA(z),

≤ p′α

2πq

∫
C
∥f∥p′−pM⋆

α(p)

[√
K

[α]
q (z, z)

]p′−p
|f |p|z|

p
q
−pe−

αp′
2 |z|

2
q
dA(z),

= p′α

2πq∥f∥
p′−p
M⋆
α(p)

∫
C

[√
Eq(αq|z|2)

]p′−p
|f |p|z|

p
q
−pe−

αp′
2 |z|

2
q
dA(z),

≤ p′α

2πq∥f∥
p′−p
M⋆
α(p)

∫
C

[√
e(αq |z|2)

1
q

]p′−p
|f |p|z|

p
q
−pe−

αp′
2 |z|

2
q
dA(z),

= p′α

2πq∥f∥
p′−p
M⋆
α(p)

∫
C

[
e(αq |z|2)

1
q

] p′−p
2

|f |p|z|
p
q
−pe−

αp′
2 |z|

2
q
dA(z),

= p′α

2πq∥f∥
p′−p
M⋆
α(p)

∫
C

[
eα|z|

2
q
] p′−p

2
|f |p|z|

p
q
−pe−

αp′
2 |z|

2
q
dA(z),

= p′α

2πq∥f∥
p′−p
M⋆
α(p)

∫
C
e
α|z|

2
q

(
p′−p

2

)
|f |p|z|

p
q
−pe−

αp′
2 |z|

2
q
dA(z),

= p′

p

pα

2πq∥f∥
p′−p
M⋆
α(p)

∫
C
|f |p|z|

p
q
−pe−

αp
2 |z|

2
q
dA(z),

= p′

p
∥f∥p′M⋆

α(p)
.

Now, taking the 1/p′ power of the above inequality yields the desired result. Now we will see

that the inclusion as discussed above is proper. Let I :M⋆
α(p) →M⋆

α(p′) be the identity map

under the assumption that M⋆
α(p′) = M⋆

α(p). Therefore, I is one-to-one, and onto. By the

open mapping theorem, there must exist a constant C > 0 such that

(5.12) 1
C
∥f∥M⋆

α(p)≤ ∥z∥M⋆
α(p′)≤ C∥f∥M⋆

α(p).
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On the other hand, with the help of Stirling’s approximation of Gamma function, we have

following:

∥zn∥pM⋆
α(p)

= pα

(
2
αp

)npq
2 + p

2−
pq
2 +q

Γ
(
npq

2 + p

2 − pq

2 + q
)
,

≈ pα

(
2
αp

)npq
2 + p

2−
pq
2 +q

√√√√√2π
( 2

αp

)npq
2 + p

2−
pq
2 +q



(

2
αp

)npq
2 + p

2−
pq
2 +q

e


( 2
αp)

npq
2 + p2− pq

2 +q

.

Similarly

∥zn∥p′M⋆
α(p′)

= p′α

(
2
αp′

)np′q
2 + p′

2 − p′q
2 +q

Γ
(
np′q

2 + p′

2 − p′q

2 + q

)
,

≈ p′α

(
2
αp′

)np′q
2 + p′

2 − p′q
2 +q

√√√√√√2π

( 2
αp′

)np′q
2 + p′

2 − p′q
2 +q



(

2
αp′

)np′q
2 + p′

2 − p′q
2 +q

e


(

2
αp′

)np′q
2 + p

′
2 − p′q

2 +q

.

It is then obvious that there is no positive constant C with the property that (5.12) is

satisfied.

Definition 5.14. We define f∞
M⋆
α
as the space of entire functions such that following is

satisfied by f :

lim
z→∞

f(z)√
K

[α]
q (z, z)

= 0.

Theorem 5.15. The space f∞
M⋆
α
is separable in contrast to M⋆

α(∞).

Proof. Note that f∞
M⋆
α
is a closed subspace of M⋆

α(∞). Also, for the set of polynomials, f∞
M⋆
α

is the closure in M⋆
α(∞). This imply that f∞

M⋆
α
is separable but the same cannot happen in

M⋆
α(∞).

Lemma 5.16. For any positive parameters α and γ, the set of functions of the form

f(z) =
n∑
k=1

ckK
[α]
q (z, wk),
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is dense in M⋆
α(p) for 0 < p <∞ and also in f∞

M⋆
α
.

Proof. Since, the points wk are arbitrary, we may assume that γ = α. The result is obvious

when p = 2. In fact, if a function h ∈M⋆
α(2) is orthogonal to each function f(z) = K

[α]
q (z, w),

then h(w) = 0 for every w. In general, with the help of Theorem 5.11, we can find a

positive parameter β such that M⋆
β(2) ⊂M⋆

α(p) continuously, say

∥f∥M⋆
α(p)≤ C∥f∥M⋆

β
(2),

for all f ∈ M⋆
β(2), (in fact every β from (0, α) works). Now, if f is a polynomial and

{wq, . . . , wn} ∈ C, then

∥∥∥∥∥f(z)−
n∑
k=1

ckK
[α]
q (z, wk)

∥∥∥∥∥
M⋆
α(p)

≤ C

∥∥∥∥∥f(z)−
n∑
k=1

ckK
[α]
q (z, wk)

∥∥∥∥∥
M⋆
β
(2)
,

= C

∥∥∥∥∥f(z)−
n∑
k=1

ckK
[α]
q

(
z,

(
α

β

)q
wk

)∥∥∥∥∥
M⋆
β
(2)
.

Combining this with the density of the functions ∑n
k=1 ckK

[α]
q (z, uk) ∈M⋆

β(2), we conclude

that every polynomial can be approximated in the norm topology of M⋆
α(p) by functions of

the form ∑n
k=1 ckK

[α]
q (z, uk). Since the polynomials are dense in M⋆

α(p), we have proved the

result for M⋆
α(p) for 0 < p <∞. The proof for f∞

M⋆
α
is similar.

We have interesting technical lemma for 0 < q < 2 that are inspired by the study of [6].

Lemma 5.17. For 0 < q < 2, and 0 < p <∞, then there exists a positive constant C such

that following is true for all entire functions f :

1.

∫
C
|f(w)|p|w| 2q−2e−β|w|

2
q
dA(w) ≥ C

∫
C
|f(w)|pe−β|w|

2
q
dA(w);
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2.

∫
C
|f(w)|p|w| 2q−2e−β|w|

2
q
dA(w) ≤ C

∫
|w|≥1

|f(w)|p|w| 2q−2e−β|w|
2
q
dA(w)

Proof. Considering 0 < q < 2.

1. First part result follows from the subharmonicity of |f(z)|p and the maximum principle,

there is a positive constant C such that,

∫
|w|≤1

|f(w)|pdA(w) ≤ C
∫
|w|≤1

|f(w)|p|w| 2q−2dA(w),

for all entire functions f and 0 < p < ∞. Since, e−β|w|
2
q is both bounded above and

bounded below on |w|≤ 1, we deduce that

∫
C
|f(w)|p|w| 2q−2e−β|w|

2
q
dA(w) ≥ C ′

∫
C
|f(w)|pe−β|w|

2
q
dA(w),

which is our desired result.

2. Second part result follows from the subharmonicity of |f(z)|p|z| 2q−2 and integration in

polar coordinates.

5.2 Integral operators

We recall previously known results from theory of integral operators.

Lemma 5.18. Say, 1 ≤ p < ∞ and 1
p
+ 1
p′

= 1. If an integral operator given as Tf(x) =∫
X H(x, y)f(y)dµ(y), is bounded on Lp(X, dµ), then its adjoint with mapping given as T ∗ :

Lp
′(X, dµ) → Lp

′(X, dµ), is the integral operator given as T ∗f(x) =
∫
X H(y, x)f(y)dµ(y).

Proof. See [19] or [53].
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Lemma 5.19. Say H(x, y) is a positive kernel and Tf(x) =
∫
X H(x, y)f(y)dµ(y), is the

associated integral operator. Suppose p ∈ (1,∞) with 1
p
+ 1
p′

= 1. If there exist a positive

function h(x) and positive constants C1 and C2 such that

∫
X
H(x, y)h(y)p′dµ(y) ≤ C1h(x)p

′
, ∀x ∈ X,∫

X
H(x, y)h(x)pdµ(x) ≤ C2h(y)p, ∀y ∈ X,

then the operator T is bounded on Lp(X, dµ) and ∥T∥≤ C
1
p′
1 C

1
p

2 .

Proof. See [54] or [53].

Definition 5.20. We fix two positive parameters α and β for the rest of this section and we

define following integral operators Pα and Qα over Lp(C, dJβ(z)) as follows:

(5.13) Pαf(z) =
α

β

∫
C
f(w)K [α]

q (z, w)e(β−α)|w|
2
q
dJβ(w),

and

(5.14) Qαf(z) =
α

β

∫
C
f(w)

∣∣∣∣K [α]
q (z, w)e(β−α)|w|

2
q

∣∣∣∣ dJβ(w).
Following can easily be retrieved by Lemma 5.18.

(5.15) P ∗
αf(z) =

α

β
e(β−α)|z|

2
q
∫
C
f(w)K [α]

q (z, w)dJβ(w),

and

(5.16) Q∗
αf(z) =

α

β
e(β−α)|z|

2
q
∫
C
f(w)

∣∣∣K [α]
q (z, w)

∣∣∣ dJβ(w).
Lemma 5.21. If Pα is bounded on Lp

(
C, dJβ(z)[2]

)
, then αp ≤ 2β.
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Proof. We will use fx,k(z) = zke−x|z|
2
q
. See [8, 52, 53] for this. Its natural to deduce the

following calculations:

∫
C
|fx,k(z)|pdJβ(z)[2] =

β

(β + px) pqk2 +1
Γ
(
pqk

2 + 1
)
.

With the following definition of Pα from (5.13), we have:

Pαf(z) =
α

β

∫
C
f(w)K [α]

q (z, w)e(β−α)|w|
2
q
dJβ(w),

and applying above to the function fx,k as follows:

Pαfx,k(z) =
α

qπ

∫
C
fx,k(w)K [α]

q (z, w)|w| 2q−2e−α|w|
2
q
dA(w),

= α

α + x

∫
C

[
K [α]
q (z, w)wk

]
dJα+x(w),

= α

α + x

∫
C

∑
n≥0

(α + x)qn
(

αqzw

(α + x)q
)n 1

Γ(qn+ 1)

wkdJα+x(w),
= α

α + x

∫
C
K [α+x]
q

((
α

α + x

)q
z, w

)
wkdJα+x(w)(5.17)

= α1+qk

(α + x)1+qk z
k.(5.18)

We applied reproducing property ofM2
α+x from (5.17) to get to (5.18). Now, we have following

∫
C
|Pαfx,k|pdJβ(z) =

(
α

α + x

)pkq+p ∫
C
|z|pkdJβ(z) =

(
α

α + x

)pkq+p Γ (pkq2 + 1
)

β
pkq
2

.

In the consideration of the statement of the lemma, we have a constant C > 0 such that

following is true:

(
α

α + x

)pkq+p Γ (pkq2 + 1
)

β
pkq
2

≤ C
β

(β + px) pqk2 +1
Γ
(
pqk

2 + 1
)
,

(
α

α + x

)pkq+p 1
β
pkq
2

≤ C
β

(β + px) pqk2 +1
,
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(
α

α + x

)pkq+p
≤ C

ββ
pkq
2

(β + px) pqk2 +1
.

Fix x > 0 and raise the above inequality to 2
pk

and letting letting k → ∞ in (5.19) to (5.20),

in to have following:

(
α

α + x

)2(q+1/k)
≤ βq+2/pk

(β + px)q+2/pk ,(5.19) (
α

α + x

)2q
≤ βq

(β + px)q ,(5.20)

α2(β + px) ≤ β(α + x)2.

Letting x → 0 yields αp ≤ 2β. Similarly, if we let k = 0 and let x → ∞ in the previous

paragraph, the result is p ≥ 1. This completes the proof of the lemma.

Lemma 5.22. If 1 < p <∞ and Pα is bounded on Lp (C, dJβ(z)), then pα > β.

Proof. Here, we have 1 < p < ∞ and if Pα is bounded on Lp(C, dJβ(z)), then P ∗
α is

bounded on Lp′ (C, dJβ(z)) where
1
p
+ 1
p′

= 1. Applying the formula for P ∗
α to 1, we have

e(β−α)|z|
2
q ∈ Lp

′ (C, dJβ(z)), thus with the calculation in polar coordinates we have following:

∫ ∞

0
r

2
q
−1e−(β−p′(β−α))r

2
q
dr < ϕ0 <∞,

which implies that β > p′(β − α) =⇒ pα > β. Hence proved.

Lemma 5.23. If Pα is bounded on L1(C, dJβ(z)), then α ≤ λqβ
(
α−β
β

) q
2 .

Proof. Consider the following format of the function for a ∈ C

fa(z) =
K

[α]
q (z, a)∣∣∣K [α]
q (z, a)

∣∣∣ .
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Then we have following:

P ∗
αfa(a) =

α

β
e(β−α)|a|

2
q
∫
C
fa(w)K [α]

q (a, w)dJβ(w),

= α

β
e(β−α)|a|

2
q
∫
C

K
[α]
q (w, a)∣∣∣K [α]
q (w, a)

∣∣∣K [α]
q (a, w)dJβ(w),

= α

β
e(β−α)|a|

2
q
∫
C

∣∣∣K [α]
q (w, a)

∣∣∣ dJβ(w),
= α

β
e(β−α)|a|

2
q
K [β]
q

(
αa

λqβ
,
αa

λqβ

)
,

≥ C
α

β
e(β−α)|a|

2
q
e
β

(
α2|a|2

λ2qβ
2

) 1
q

.

Use Lemma 5.9 in the above second last step. Since, P ∗
α is bounded on L∞(C), we have

following

α

β
e(β−α)|a|

2
q
e
β

(
α2|a|2

λ2qβ
2

) 1
q

≤ ∥P ∗
αf∥∞≤ C∥f∥∞= C.

Thus we have following after essential calculation from above:

(β − α) + β

(
α

λqβ

) 2
q

≤ 0 =⇒ α ≤ λqβ

(
α− β

β

) q
2

.

which is our desired result.

Lemma 5.24. Suppose 1 < p ≤ 2 and Pα is bounded on Lp (C, dJβ(z)), then pα = 2β.

Proof. Once again, we consider functions of the form fx,k(z) = zke−x|z|
2
q
. We then have

following calculations:

∫
C
|fx,k(z)|p

′
dJβ(z)[2] =

β

(β + p′x)
p′qk
2 +1

Γ
(
p′qk

2 + 1
)
.
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On the other hand, we have following:

P ∗
αfx,k(z) =

α

πq
e(β−α)|z|

2
q
∫
C
K [α]
q (z, w)e−x|w|

2
q
wk|w| 2q−2e−α|w|

2
q
dA(w) = α1+qk

(β + x)1+qk z
ke(β−α)|z|

2
q
.

Therefore,

∫
C
|P ∗
αfx,k(z)|p

′
dJβ(z) =

(
α

β + x

)(1+qk)p′
β

πq

∫
C
ep

′(β−α)|z|
2
q |z|p′k|z| 2q−2e−β|z|

2
q
dA(z),

=
(

α

β + x

)(1+qk)p′
β

(β − p′(β − α))
p′qk
2 +1

Γ
(
p′qk

2 + 1
)
.

In the consideration of the hypothesis, we have following:

∫
C
|P ∗
αfx,k(z)|p

′
dJβ(z) ≤ C

∫
C
|fx,k(z)|p

′
dJβ(z),

which results into following:

(
α

β + x

)(1+qk)p′
β

(β − p′(β − α))
p′qk
2 +1

Γ
(
p′qk

2 + 1
)
≤ C

β

(β + p′x)
p′qk
2 +1

Γ
(
p′qk

2 + 1
)
,

(
α

β + x

)2q

≤
(
β − p′(β − α)

β + p′x

)q
,

=
(

pα− β

(p− 1)β + px

)q
.

Reducing above by taking 1
q
of above, we have following:

(pα− β)x2 + (2β(pα− β)− αp)x+ β2(pα− β)− α2(p− 1)β ≥ 0.

Let q(x) denote the quadratic function on the left-hand side of the above inequality. By

Lemma 5.22, we already have pα > β, q(x) attains its minimum value at x0 = pα2−2β(pα−β)
2(pα−β) ,

and since p ≤ 2, the top part of x0 is greater than or equal to pα2−2αβp+pβ2 = p(α−β)2 ≥ 0.
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Also, q(x) ≥ q(x0) for all x and from this, we deduce that the discriminant of q(x) cannot be

positive. Therefore, (pα− 2β)2 ≤ 0 =⇒ pα = 2β. This gives the desired result.

Lemma 5.25. Suppose 2 < p <∞ and Pα is bounded on Lp(C, dJβ(w)), then pα = 2β.

Proof. Again, given that Pα is bounded on Lp(C, dJβ(z)) then P ∗
α is bounded on Lp′(C, dJβ(z))

with 1 < p′ < 2 and 1
p′

+ 1
p
= 1. We have a positive constant C such that

∫
C

∣∣∣∣e(β−α)|z| 2q ∫
C
K [α]
q (z, w)

[
f(w)e(α−β)|z|

2
q
]
dJα(w)

∣∣∣∣p′ dJβ(z) ≤ C
∫
C
|f(w)|p′dJβ(w),

where f ∈ Lp
′(C, dJβ(z)). Let f(z) = g(z)e(β−α)|z|

2
q
, where g ∈ Lp

′(C, dJβ−p′(β−α)). By,

Lemma 5.22, we have β−p′(β−α) > 0.We obtain another positive constant C (independent

of g) such that ∫
C
|Pαg|p

′
dJβ−p′(β−α) ≤ C

∫
C
|g|p′dJβ−p′(β−α),

for all g ∈ Lp
′(C, dJβ−p′(β−α)). Since 1 < p′ < 2, it follows from Lemma 5.24, we have

p′α = 2 (β − p′(β − α)) . The last equation above is pα = 2β and this is our desired result.

Theorem 5.26. Recall λq and suppose p = 1, then following are equivalent:

1. Qα is bounded on Lp(C, dJβ(z)),

2. Pα is bounded on Lp(C, dJβ(z)),

3. finally, α ≤ λqβ
(
α−β
β

) q
2 .

Proof. (1.) =⇒ (2.) obvious. (2.) =⇒ (3.) by Lemma 5.23. Lastly, (3.) =⇒ (1.) from

Fubini’s theorem and Lemma 5.9.

Theorem 5.27. Suppose 1 < p <∞, then following are equivalent:

1. Qα is bounded on Lp(C, dJβ(z)),
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2. Pα is bounded on Lp(C, dJβ(z)),

3. finally, pα = 2β.

Proof. By Lemma 5.24 and Lemma 5.25 on 1 < p < ∞ we have (2.) =⇒ (3.) and

(1.) =⇒ (2.) is still obvious. We shall consider 1 < p <∞ and show (3.) =⇒ (1.) and we

do this with the help of Schur’s test. Let 1
p′

+ 1
p
= 1 and consider the positive function

h(z) = eδ|z|
2
q
.

Recall that

Qαf(z) =
∫
C
H(z, w)f(w)dJβ(w),

where

H(z, w) = α

β

∣∣∣∣K [α]
q (z, w)e(β−α)|w|

2
q

∣∣∣∣
is a positive kernel. We first consider the integrals

(5.21) I(z) =
∫
C
H(z, w)h(w)p′dJβ(w)

and assuming α− p′δ > 0 we have following

I(z) =
(

α

α− p′δ

)
K [α−p′δ]
q

(
αz

λq(α− p′δ) ,
αz

λq(α− p′δ)

)
,

=
(

α

α− p′δ

)
Eq

(α− p′δ)q
(

α|z|
λq(α− p′δ)

)2
 ,

≤
(
C1

α

α− p′δ

)
e
α−p′δ

[
α

λq(α−p′δ)

] 2
q
|z|

2
q

.

The above C1 comes from the following inequality:

Eq

(α− p′δ)q
(

α|z|
λq(α− p′δ)

)2
 ≤ C1e

α−p′δ
[

α
λq(α−p′δ)

] 2
q
|z|

2
q

.
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Now, if we choose δ so that

(α− p′δ)
(

α

λq (α− p′δ)

) 2
q

= p′δ,(5.22)

then one can have

∫
C
H(z, w)h(w)p′dJβ(w) ≤

(
C

α

α− p′δ

)
h(z)p′ .(5.23)

In similar ways, we have following for all w ∈ C,

J(w) =
∫
C
H(z, w)h(z)pdJβ(z),

and assuming that β − pδ > 0, then we have following

J(w) = α

β − pδ
e(β−α)|w|

2
q
K [β−pδ]
q

(
αw

λq(β − pδ) ,
αw

λq(β − pδ)

)
,

= α

β − pδ
e(β−α)|w|

2
q
Eq

(β − pδ)q
(
α|w|
β − pδ

)2
 ,

≤ C2
α

β − pδ
e(β−α)|w|

2
q
e
β−pδ

[
α

λq(β−pδ)

] 2
q
|w|

2
q

.

Again, the C2 above comes in the same way as C1 came in the above paragraph. If we choose

δ so that

(β − α) + β − pδ

[
α

λq(β − pδ)

] 2
q

= pδ,(5.24)

then we see that

∫
C
H(z, w)h(z)pdJβ(z) ≤ C

α

β − pδ
h(w)p.(5.25)
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In the view of Schur’s test and the estimates in the conditions (5.23) and (5.25) we conclude

that the operator Qα would be bounded on Lp(C, dJβ(z)) provided that we could choose a

real δ to satisfy conditions α− p′δ > 0, β − pδ > 0 along with (5.22) and (5.24) to be true.

These leads to following equality:

(α− p′δ)
2
q
−1
p′δ =

(
α

λq

) 2
q

,(5.26)

and

(β − pδ)
2
q
−1 (pδ − β + α) =

(
α

λq

) 2
q

.(5.27)

In the view of pα = 2β and 1
p
+ 1
p′

= 1, indeed the solution of (5.22), (5.24), (5.26) and

(5.27) when solved for δ will be same upon the consistency of the equations and following be

satisfied with δ = δq as the solution:

(5.28)
(
α

λq

) 2
q

=
(
α− p′δq
β − pδq

) 2
q
−1 (

pδq − β + α

p′δq

)−1

.

This completes the proof of the theorem.

The δq coming from (5.28) will be used in the following theorem and subsequent corollary.

Theorem 5.28. If 1 ≤ p <∞, 1
p
+ 1
p′

= 1 and pα = 2β, then

∫
C
|Pαf |pdJβ(z) ≤

∫
C
|Qαf |pdJβ(z) ≤ C

( α

α− p′δq

) 1
p′
(

α

β − pδq

) 1
p

 ∫
C
|f |pdJβ(z)

for all f ∈ Lp (C, dJβ(z)) and C = (C1)
1
p′ (C2)

1
p > 0, where C1 and C2 comes from the

Theorem 5.27.
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Corollary 5.29. For any α > 0 and 1 ≤ p ≤ ∞, Pα is a bounded projection from Lpα onto

M⋆
α(p)

(5.29) ∥Pαf∥M⋆
α(p)≤ C

( α

α− p′δq

) 1
p′
(

α

β − pδq

) 1
p

 ∥f∥M⋆
α(p),

for all f ∈ Lpα and C = (C1)
1
p′ (C2)

1
p > 0, where C1 and C2 comes from the Theorem 5.27.

Proof. The case 1 ≤ p < ∞ follows from Theorem 5.28 and for p = ∞ follows from

Lemma 5.9.

5.3 Duality

In this section, we will identify all the bounded linear functional on the Mittag-Leffler

space M⋆
α whenever 0 < p <∞ and also for f∞

M⋆
α
. Its interesting to know that for q > 0, the

duality of Mittag-Leffler space depends on the geometric mean of α and β.

Theorem 5.30. Suppose β > 0, 1 < p <∞ and 1
p
+ 1
p′

= 1, then dual of M⋆
α(p) is M⋆

β(p′)

under the following integral pairing:

⟨f, g⟩γ =
γ

πq
lim
R→∞

∫
|z|<R

f(z)g(z)|z| 2q−2e−γ|z|
2
q
dA(z),(5.30)

where γ = (αβ)
1
2 .

Proof. To begin with, we assume that g ∈M⋆
β(p′) and say F is defined as follows:

F (f) = γ

πq
lim
R→∞

∫
|z|<R

f(z)g(z)|z| 2q−2e−γ|z|
2
q
dA(z).

We proceed to show that F gives rise to a bounded linear functional on M⋆
α(p) by the

assumption that g is is a finite linear combination of kernel functions. If f(z) = K
[γ]
q (z, a) for
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some a ∈ C, then with the help of reproducing property of K [γ]
q (z, a), we have following:

g(a) = γ

πq

∫
C
K

[γ]
q (z, a)g(z)|z| 2q−2e−γ|z|

2
q
dA(z),

= γ

πq

∫
C
f(z)g(z)|z| 2q−2e−γ|z|

2
q
dA(z).(5.31)

On the other hand, by the reproducing property of K [α]
q (z, a), we have following:

g(a) = g

(α
β

) q
2 γq

αq
a

 ,
= α

πq

∫
C
K [α]
q

(
γq

αq
a, z

)
g

(α
β

) q
2

z

 |z| 2q−2e−α|z|
2
q
dA(z),

= α

πq

∫
C

∑
n≥0

(
αq
γqa

αq
z
)n

Γ(qn+ 1)

 g
(α

β

) q
2

z

 |z| 2q−2e−α|z|
2
q
dA(z),

= α

πq

∫
C

∑
n≥0

(γqaz)n

Γ(qn+ 1)

 g
(α

β

) q
2

z

 |z| 2q−2e−α|z|
2
q
dA(z),

= α

πq

∫
C
K [γ]
q (a, z)g

(α
β

) q
2

z

 |z| 2q−2e−α|z|
2
q
dA(z),

= α

πq

∫
C
K

[γ]
q (z, a)g

(α
β

) q
2

z

 |z| 2q−2e−α|z|
2
q
dA(z),

= α

πq

∫
C
f(z)g

(α
β

) q
2

z

 |z| 2q−2e−α|z|
2
q
dA(z).(5.32)

Therefore by (5.31) and (5.32), we have following:

∫
C
fgdJγ =

α

πq

∫
C
f(z)g

(α
β

) q
2

z

 |z| 2q−2e−α|z|
2
q
dA(z).(5.33)
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This shows that

F (f) = α

πq

∫
C
f(z)g

(α
β

) q
2

z

 |z| 2q−2e−α|z|
2
q
dA(z),

= α

πq

∫
C

[
f(z)|z| 1q−1e−

α
2 |z|

2
q
] g

(α
β

) q
2

z

 |z| 1q−1e−
α
2 |z|

2
q

 dA(z),

for all functions f of the form f(z) = ∑N
k=1 ckK

[γ]
q (z, ak), that are dense in M⋆

α(p). Now, it is

clear that g ∈ Lp
′
(
C, |z| 1q−1e−

β
2 |z|

2
q
dA(z)

)
is equivalent to the condition that

φ(z) = g

(α
β

) q
2

z

 ∈ Lp
′
(
C, |z| 1q−1e−

α
2 |z|

2
q
dA(z)

)
.

Applying the Holder’s inequality to have

|F (f)|≤ C∥f∥M⋆
α(p)∥φ∥M⋆

α(p′)= C ′∥f∥M⋆
α(p)∥g∥M⋆

β
(p′),(5.34)

where again, f any linear combination of kernel functions, and C and C ′ are positive constants.

This shows that F defines a bounded linear functional on M⋆
α(p). Next, we assume that

F :M⋆
α(p) → C is a bounded functional linear in nature. Define g as follows on C

g(w) = Fz
(
K [γ]
q (z, w)

)
.

It is easy to note that g is entire and now we will show that g ∈M⋆
β(p′) and F (f) = ⟨f, g⟩γ

for all f dense in M⋆
α(p). The equivalent of g ∈ M⋆

β(p′) is g(w)|w|
1
q
−1e−

β
2 |w|

2
q ∈ Lp

′(C, dA).

Consider the following integral for h ∈ Lp
′(C, dA)

ψ(h) =
∫
C
h(w)g(w)|w| 2q−2e−

β
2 |w|

2
q
dA(w).

It suffices to show that ψ defined above is bounded functional on Lp(C, dA). Without loss of

generality, we assume that h has compact support in C. In this case, the integral given as
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follows:

∫
C
h(w)K [γ]

q (z, w)|w| 2q−2e−
β
2 |w|

2
q
dA(w),

converges in the norm topology of M⋆
α(p) and thus

ψ(h) =
∫
C
h(w)Fz

(
K [γ]
q (z, w)

)
|w| 2q−2e−

β
2 |w|

2
q
dA(w),

= F
(∫

C
h(w)K [γ]

q (z, w)|w| 2q−2e−
β
2 |w|

2
q
dA(w)

)
,

= α

β
F
(∫

C
h(w)K [α]

q (z, w)|w| 2q−2e−
α
2 |w|

2
q
dA(w)

)
,

= πq

β

α

πq
F

∫
C
h

(α
β

)q/2
w

K [α]
q (z, w)|w| 2q−2e−

α
2 |w|

2
q
dA(w)

 ,
= πq

β
F

 α

πq

∫
C
h

(α
β

)q/2
w

K [α]
q (z, w)|w| 2q−2e−

α
2 |w|

2
q
dA(w)

 ,
= πq

β
F (Pα(φ)) ,

where φ(z) = h
((

α
β

) q
2 z
)
|z| 1q−1e

α
2 |z|

2
q
, since h ∈ Lp

′(C, dA) which implies that φ ∈ Lp
(
C, |z|1− 1

q e−
α
2 |z|

2
q
dA(z)

)
and since the projection Pα maps Lp

(
C, |z| 1q−1e−

α
2 |z|

2
q
dA(z)

)
boundedly onto M⋆

α(p) and

therefore, we conclude that

|ψ(h)|≤ πq

β
∥F∥∥Pα(φ)∥M⋆

α(p)≤ C∥h∥.

With this we have completed the proof of g ∈M⋆
β(p′). Now, lastly, let f = K

[γ]
q (z, a) for some

a ∈ C then

⟨f, g⟩γ =
γ

πq
lim
R→∞

∫
|z|<R

f(z)g(z)|z| 2q−2e−
α
2 |z|

2
q
dA(z) = g(a) = F (f).

Thus, whenever f is linear combination of kernel functions we have F (f) = ⟨f, g⟩γ, as

desired.
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The relation given in (5.33) assumes that both f and g are linear combinations of kernel.

Also, (5.34) ensures that the right-hand side of (5.33) converges for all f ∈ M⋆
α(p) and

g ∈ M⋆
β(p′) and the integral is dominated by ∥f∥M⋆

α(p)∥g∥M⋆
β
(p′). With all these proceeding

and under the influence of Lemma 5.16, we have following:

lim
R→∞

∫
|z|<R

f(z)g(z)|z| 2q−2e−γ|z|
2
q
dA(z) =

∫
C
f(z)g(z)|z| 2q−2e−γ|z|

2
q
dA(z),

and hence,

lim
R→∞

∫
|z|<R

f(z)g(z)dJγ(z) =
∫
C
f(z)g(z)dJγ(z).

Theorem 5.31. Let 0 < p ≤ 1 and β > 0, then the dual space of M⋆
α(p) can be identified

with M⋆
β(∞) under the integral pairing given as follows:

⟨f, g⟩γ =
γ

πq
lim
R→∞

∫
|z|<R

f(z)g(z)|z| 2q−2e−γ|z|
2
q
dA(z),

where γ = (αβ)
1
2 .

Proof. Assume that g ∈M⋆
β(∞) and as of now, we will show that F (f) is a bounded linear

functional over M⋆
α(p) for 0 < p ≤ 1 as follows:

F (f) = α

πq

∫
C
f(z)φ(z)|z| 2q−2e−α|z|

2
q
dA(z) = α

πq

∫
C

[
f(z)|z| 1q−1e−

α
2 |z|

2
q
] [
φ(z)|z| 1q−1e−

α
2 |z|

2
q
]
dA(z),

where φ(z) = g
((

α
β

) q
2 z
)
, then we see that

|F (f)|≤ C∥φ∥M⋆
β
(∞)∥f∥M⋆

α(1)≤ C∥φ∥M⋆
β
(∞)∥f∥M⋆

α(p).
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This shows that F is bounded linear functional over M⋆
α(p) and now we will show that

g ∈M⋆
β(∞) and for that we first consider g(w) = Fz

(
K

[γ]
q (z, w)

)
. Then,

|g(w)|p ≤ pα

2πq∥F∥
p
∫
C

∣∣∣K [γ]
q (z, w)

∣∣∣p |z| pq−pe− pα
2 |z|

2
q
dA(z),

= pα

2πq∥F∥
p
∫
C

[
K [γ]
q (z, w)K [γ]

q (z, w)
] p

2 |z|
p
q
−pe−

pα
2 |z|

2
q
dA(z),

= pα

2πq∥F∥
p
∫
C

[
K [γ]
q (z, w)

] p
2
[
K [γ]
q (w, z)

] p
2 |z|

p
q
−pe−

pα
2 |z|

2
q
dA(z),

= ∥F∥p
[
K [γ]
q (w,w)

] p
2 .

This shows that g ∈M⋆
β(∞) with ∥g∥M⋆

β
(∞)≤ ∥F∥.

Corollary 5.32. 1. Let 1 ≤ p < ∞, then the dual of M⋆
α(p) can be identified by M⋆

α(p′)

where 1
p′
+ 1

p
= 1.

2. If 0 < p < 1, then the dual of M⋆
α(p) can be identified by M⋆

α(∞) under the same integral

pairing ⟨f, g⟩γ.

Theorem 5.33. The dual of f∞
M⋆
α
can be identified by M⋆

β(1) under the integral pairing of

⟨f, g⟩γ.

Proof. If g ∈M⋆
β(1), then by the Theorem 5.31, we have F (f) = ⟨f, g⟩γ defines a bounded

linear functional on f∞
M⋆
α
. With this F in our hand, we have the set of linear combination of

kernels to be dense in f∞
M⋆
α
not in M⋆

α(∞), we have following:

F (f) = γ

πq
lim
R→∞

∫
|w|<R

f(w)g(w)|w| 2q−2e−γ|w|
2
q
dA(w),

for f in a dense subset of f∞
M⋆
α
, where g(w) = Fz

(
K

[γ]
q (z, w)

)
. Now, we will show that

g ∈M⋆
β(1) by showing following:

|⟨f, g⟩γ| ≤ C∥f∥M⋆
α(∞),
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for all f ∈ M⋆
α(∞). This is so because, since the dual space of M⋆

β(1) is identified with

M⋆
α(∞) under the integral pairing ⟨f, g⟩γ. Let

fn(z) = f
(

n

n+ 1z
)
,

∀n ∈ Z+ and z ∈ C. It is clear that f ∈M⋆
α(∞) and ∥fn∥M⋆

α(∞)≤ ∥f∥M⋆
α(∞), then following

chain of equalities follows:

⟨f, g⟩γ =
γ

πq
lim
R→∞

∫
|w|<R

f(w)Fz
(
K [γ]
q (z, w)

)
|w| 2q−2eγ|w|

2
q
dA(w),

= F

(
γ

πq
lim
R→∞

∫
|w|<R

f(w)K [γ]
q (z, w)|w| 2q−2e−γ|w|

2
q
dA(w)

)
,

= lim
n→∞

F

(
γ

πq
lim
R→∞

∫
|w|<R

fn(w)K [γ]
q (z, w)|w| 2q−2e−γ|w|

2
q
dA(w)

)
,

= lim
n→∞

F

(
γ

πq

∫
C
fn(w)K [γ]

q (z, w)|w| 2q−2e−γ|w|
2
q
dA(w)

)
,

= lim
n→∞

F (fn).

With the above observations, following can be deduced:

|⟨f, g⟩γ|≤ ∥F∥∥fn∥M⋆
α(∞)≤ ∥F∥∥f∥M⋆

α(∞),

for all f ∈M⋆
α(∞). This implies that g ∈M⋆

β(1) and we are done.

5.4 Complex Interpolation

Theorem 5.34. Suppose w, w0, and w1 are positive weight functions on C and if 1 ≤ p0 ≤

p1 ≤ ∞ and θ ∈ [0, 1], then

[Lp0(C, w0dA), Lp1(C, w1dA)]θ = Lp(C, wdA),
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with equal norms, where

1
p
= 1− θ

p0
+ θ

p1
and w

1
p = w

1−θ
p0

0 w
θ
p1
1 .

Proof. Follow [47] or [10] for this.

Lpα contains all the Lebesgue measurable function on C such that f(z)|z| 1q−1e−
α
2 |z|

2
q ∈

Lp(C, dA). With the inherited norm, M⋆
α(p) is the closed subspace of Lpα consisting of entire

functions.

Corollary 5.35. Suppose 1 ≤ p0 ≤ p1 ≤ ∞ and θ ∈ [0, 1], then for any positive weight

parameters α0 and α1, we have following

[
Lp0α0 , L

p1
α1

]
θ
= Lpα,

where
1
p
= 1− θ

p0
+ θ

p1
and α = α0(1− θ) + α1θ.

Proof. It follows from the Stein–Weiss interpolation theorem that
[
Lp0α0 , L

p1
α1

]
θ
is

=
[
Lp0

(
C, |z| 1q−1e−

α0
2 |z|

2
q
dA(z)

)
, Lp0

(
C, |z| 1q−1e−

α1
2 |z|

2
q
dA(z)

)]
θ
,

= Lp
(
C, |z| 1q−1e−

α
2 |z|

2
q
dA(z)

)
= Lpα.

This proves the desired result under the observation of 1
p
= 1− θ

p0
+ θ

p1
and α = α0(1−

θ) + α1θ.

We consider the case when the weight parameter α is fixed.

Theorem 5.36. With 1
p
= 1−θ

p0
+ θ
p1

and 1 ≤ p0 ≤ p1 ≤ ∞ and θ ∈ [0, 1], then [M⋆
α(p0),M⋆

α(p1)]θ =

M⋆
α(p).
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Proof. The inclusion of [M⋆
α(p0),M⋆

α(p1)]θ in M⋆
α(p) follows from the definition of complex

interpolation, the fact that each M⋆
α(pk) is a closed subspace of Lpkα and we already have

the interpolation done on Lpkα in Corollary 5.35. Now, we proceed further by showing

the other side of the inclusion by picking f ∈ M⋆
α(p) ⊂ Lpα which is entire. Due to the

interpolation there exist a function F (z, ζ) with z ∈ C and 0 ≤ Re(ζ) ≤ 1 with following

conditions, where δ = 0 and 1 and C̃ is a positive constant.

1. F (z, θ) = f(z) for all z ∈ C

2. ∥F (·, ζ)∥M⋆
α(pδ)≤ C̃ with Re(ζ) = δ.

Define G(z, ζ) as follows

G(z, ζ) = α

πq

∫
C
K [α]
q (z, w)F (w, ζ)|w| 2q−2e−α|w|

2
q
dA(w).

By the Corollary 5.29, we have following

1. G(z, θ) = f(z) for all z ∈ C

2. ∥G(·, ζ)∥M⋆
α(pδ)≤ C

( α

α− p′δ

) 1
p′
(

α

β − pδ

) 1
p′
 C̃ with Re(ζ) = δ.

As z → G(z, ζ) is entire thus, this implies f ∈ M⋆
α(p) ⊂ [M⋆

α(p0),M⋆
α(p1)]θ, and thus our

desired result is achieved.

Now, we consider the case when we have different weight parameters α0 and α1 as follows.

Theorem 5.37. Suppose 1 ≤ p0 ≤ p1 ≤ ∞ and θ ∈ [0, 1], then for any positive weight

parameters α0 and α1, we have

[
M⋆

α0(p0),M
⋆
α1(p1)

]
θ
=M⋆

α(p),

for
1
p
= 1− θ

p0
+ θ

p1
and α = α1−θ

0 αθ1.
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Proof. Consider a dilation operator ζ defined as follows:

Sζf(z) = ζ
1− 2

p
q f

(α0

α1

)(ζ−θ)
q
2

z

 ,

where ζq = ζ
1
q
−1. By the Theorem 5.10 we have Sζ an isometry from M⋆

α0(p0) to M⋆
α(p0)

when Re(ζ) = 0. On the other hand, Sζ is again an isometry from M⋆
α0(p1) to M⋆

α(p) when

Re(ζ) = 1. Furthermore, both Sζ and its inverse are analytic in ζ whenever f is so. Thus by

the abstract Stein interpolation theorem, we have the operator Sθ must be an isometry from[
M⋆

α0(p0),M⋆
α1(p1)

]
θ
to [M⋆

α(p0),M⋆
α(p1)]θ. Since, Sθ = I, is the identity operator, we must

have

[M⋆
α(p0),M⋆

α(p1)]θ =M⋆
α(p),

where this step follows from Theorem 5.36.

5.5 Atomic Decomposition

This section provides the atomic decomposition of M⋆
α which is of high importance in

applied direction.

Proposition 5.38. Suppose α and p > 0. Let K be a non-empty, closed and bounded subset

of C and for s ∈ [0, r] define Eα,p,q(s|a) : K × [0, r] → R+ by following:

(5.35) Eα,p,q(s|a) := e
−αp

2

[
|s+a|

2
q−(|s|2+|a|2)

1
q
]
.

Then Eα,p,q(s|a) attains both maximum and minimum over K × [0, r] for s ∈ [0, r].

Proof. To begin with, we note that Eα,p,q(s|a) is continuous and also we have, by the closed

and bounded nature of K × [0, r] which makes it compact. Combining these two, we have

the image of K × [0, r] to be compact in R+ under the mapping Eα,p,q(s|a) and therefore,
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since every compact subset of R+ has both maximum and minimum values, our desired result

follows immediately.

Let mEα,p,q(s|a) be the minimum of Eα,p,q(s|a) and will be used in the following lemma.

Lemma 5.39. For any positive parameters α, p, and R, we have following:

∣∣∣∣f(a)a 1
q
−1e−

α
2 |a|

2
q

∣∣∣∣p ≤ 1
r2mEα,p,q(s|a)

∫
B(a,r)

∣∣∣∣f(z)z 1
q
−1e−

α
2 |z|

2
q

∣∣∣∣p dA(z),
for all entire functions f , all complex numbers a, and all r ∈ (0, R] and mEα,p,q(s|a) is coming

from the Proposition 5.38 for s ∈ [0, r].

Proof. To begin with, we first consider following equalities:

|w + a| 2q=
[
|w|2+wa+ wa+ |a|2

] 1
q =

∞∑
k=0

(
1/q

k

)(
|w|2+|a|2

) 1
q
−k

(wa+ wa)k ,

=
(
|w|2+|a|2

) 1
q +

∞∑
k=1

(1
q

k

)(
|w|2+|a|2

) 1
q
−k

(wa+ wa)k .

This imply that we have following:

e−
αp
2 |w+a|

2
q = e−

αp
2 (|w|2+|a|2)

1
q

e−
αp
2
∑∞

k=1 (
1
q
k
)(|w|2+|a|2)

1
q−k(wa+wa)k .

Let F (w, a) = f(w + a)(w + a)
1
q
−1e−

αp
2 (|w|2+|a|2)

1
q . We consider the integral on the right side

of above lemma and then following follows:

I =
∫
B(a,r)

∣∣∣∣f(z)z 1
q
−1e−

α
2 |z|

2
q

∣∣∣∣p dA(z),
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and then following consequences follows up:

I =
∫
|w|<r

∣∣∣∣f(w + a)(w + a)
1
q
−1e−

α
2 |w+a|

2
q

∣∣∣∣p dA(w),
=
∫
|w|<r

∣∣∣f(w + a)(w + a)
1
q
−1
∣∣∣p e−αp

2 |w+a|
2
q
dA(w),

=
∫
|w|<r

|F (w, a)|p e−
αp
2
∑∞

k=1 (
1
q
k
)(|w|2+|a|2)

1
q−k(wa+wa)kdA(w),

≥ |F (0, a)|p
∫
|w|<r

e−
αp
2
∑∞

k=1 (
1
q
k
)(|w|2+|a|2)

1
q−k(wa+wa)kdA(w),

= |f(a)|p|a|
p
q
−pe−

αp
2 |a|

2
q
∫
|w|<r

e−
αp
2
∑∞

k=1 (
1
q
k
)(|w|2+|a|2)

1
q−k(wa+wa)kdA(w),

= |f(a)|p|a|
p
q
−pe−

αp
2 |a|

2
q
∫
|w|<r

e
−αp

2

[
|w+a|

2
q−(|w|2+|a|2)

1
q
]
dA(w),

= 2π|f(a)|p|a|
p
q
−pe−

αp
2 |a|

2
q
∫ r

0
e
−αp

2

[
|s+a|

2
q−(|s|2+|a|2)

1
q
]
sds,

≤ 2π|f(a)|p|a|
p
q
−pe−

αp
2 |a|

2
q
mEα,p,q(s|a)

r2

2 ,

= π|f(a)|p|a|
p
q
−pe−

αp
2 |a|

2
q
mEα,p,q(s|a)r

2.

Thus, our desired result is achieved and from now-on-wards mEα,p,q will be used to represent

mEα,p,q(s|a).

Lemma 5.40. Let R00 be the fundamental region Λ where Λ is same as given in Section 1.2

in [53], then for any positive number δ, following is true for all w ∈ C:

∑
z∈Λ

e
−δ
[
|z|

1
q−|w|

1
q

]2
≤ C.

Proof. We will proof the above result for the fundamental region R00 of Λ by realizing the

fact that
∣∣∣∣wz
∣∣∣∣ ≤ 1

2, which is why

∣∣∣|z| 1q−|w| 1q
∣∣∣2 = |z| 2q

∣∣∣∣∣1−
∣∣∣∣wz
∣∣∣∣ 1q
∣∣∣∣∣
2

≥ |z| 2q
∣∣∣∣∣1−

∣∣∣∣12
∣∣∣∣
1
q

∣∣∣∣∣
2

.

Since, ∑z∈Λ e
−δ|z|

2
q

[
1−| 12 |

1
q
]2

is obviously convergent, we obtain the desired result.
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Proposition 5.41. We propose following as an asymptotically equivalence relation for a

fixed z ∈ C

(5.36)
∣∣∣k[α]
u (z)− k[α]

w (z)
∣∣∣ ≈ C

∣∣∣∣∣∣∣
eα|zu|

1
q

e
α
2 |u|

2
q
− eα|zw|

1
q

e
α
2 |w|

2
q

∣∣∣∣∣∣∣ ,

under the situation |u− w|< δ, where δ is arbitrarily positive.

Proof. To understand above, we first consider the right side of above and proceed as follows:

∣∣∣∣∣∣∣
eα|zu|

1
q

e
α
2 |u|

2
q
− eα|zw|

1
q

e
α
2 |w|

2
q

∣∣∣∣∣∣∣ =
1

e
α
2 |u|

2
q
e
α
2 |w|

2
q

∣∣∣∣eα2 |w| 2q eα|zu| 1q − e
α
2 |u|

2
q
eα|zw|

1
q

∣∣∣∣ ,
= 1

e
α
2 |u|

2
q
e
α
2 |w|

2
q

∣∣∣∣∣∣
∑

n,m≥0

αn+m

n!m!
|zu|nq |w| 2mq

2m −
∑
k,l≥0

αk+l

k! l!
|zu| kq |w| 2lq

2l

∣∣∣∣∣∣ ,
= 1

e
α
2 |u|

2
q
e
α
2 |w|

2
q

∣∣∣∣∣∣
∑

n,m≥0

∑
k,l≥0

αn+m
n!m!

|zu|nq |w| 2mq
2m − αk+l

k! l!
|zu| kq |w| 2lq

2l

∣∣∣∣∣∣ ,
≈ 1

e
α
2 |u|

2
q
e
α
2 |w|

2
q

∣∣∣∣∣∣
∑

n,m≥0

αn+m

2mn!m! |zu|
n
q |w| 2mq −

∑
k,l≥0

αk+l

2lk! l! |zu|
k
q |w| 2lq

∣∣∣∣∣∣ .
Now, fixing z and grouping all the terms present above at the same index makes the result

immediately 0, and therefore we see that the difference is asymptotically equivalent to

|z|j1|u − w|j2 for some j1,&j2 ∈ Z+ on unequal indices. Before proceeding further we first

recall two basic inequalities for Eq(αq|u|2) and Eq(αq|u|2) as follows:

C1•we
α|w|

2
q ≤ Eq(αq|w|2) ≤ C2•we

α|w|
2
q
,(5.37)

and

C1•ue
α|u|

2
q ≤ Eq(αq|u|2) ≤ C2•ue

α|u|
2
q
.(5.38)
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Now, we have following:

k[α]
w (z) = K

[α]
q (z, w)√
K

[α]
q (w,w)

,

= K
[α]
q (z, w)√
Eq(αq|w|2)

,

≥ K
[α]
q (z, w)

C2•weα|w|
2
q
,

=⇒
∣∣∣k[α]
u (z)− k[α]

w (z)
∣∣∣ ≤

∣∣∣∣∣∣K
[α]
q (z, u)

C1•ueα|u|
2
q
− K

[α]
q (z, w)

C2•weα|w|
2
q

∣∣∣∣∣∣ .
The above quantity is same as to have following:

1
C1•ueα|u|

2
qC2•weα|w|

2
q

∣∣∣∣∣C2•w
∑
n≥0

(
α
2 |w|

2
q

)n
n!

∑
m≥0

(αqzu)n
Γ(qm+ 1) − C1•u

∑
k≥0

(
α
2 |w|

2
q

)k
k!

∑
l≥0

(αqzu)l
Γ(ql + 1)

∣∣∣∣∣.
Again, with the same reasoning of asymptotically equivalence as given above, here we have

zj1 |u − w|j2 for some j1,&j2 ∈ Z+ on unequal indices. Combining these two above results

and with the fact that |u− w|< δ, thus (5.36) is proved.

Proposition 5.42. For C > 0, we have following:

∣∣∣k[α]
u (z) + k[α]

w (z)
∣∣∣ ≤ C

∣∣∣∣∣∣∣
eα|zu|

1
q

e
α
2 |u|

2
q
+ eα|zw|

1
q

e
α
2 |w|

2
q

∣∣∣∣∣∣∣ .(5.39)

Proof. Consider the left side of above and then

∣∣∣k[α]
u (z) + k[α]

w (z)
∣∣∣ ≤ ∣∣∣k[α]

u (z)
∣∣∣+ ∣∣∣k[α]

w (z)
∣∣∣ ,

≤ |K [α]
q (z, u)|

C1•ueα|u|
2
q

+ |K [α]
q (z, w)|

C1•weα|w|
2
q
,

= |Eq(αqzu)|
C1•weα|w|

2
q
+ |Eq(αqzw)|
C1•weα|w|

2
q
,
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≤ C1•z,ue
α|zu|

1
q

C1•weα|w|
2
q

+ C1•z,we
α|zw|

1
q

C1•weα|w|
2
q
,

≈ C

∣∣∣∣∣∣∣
eα|zu|

1
q

e
α
2 |u|

2
q
+ eα|zw|

1
q

e
α
2 |w|

2
q

∣∣∣∣∣∣∣ .

Recall that for any positive number r,

rZ2 := {r(m+ in) : m,n ∈ Z2},

is a square lattice in C, with following as the fundamental region which is obtained by

removing the boundary points

Sr =
{
z = x+ iy : x, y ∈

[
−r2 ,

r

2

)}
.

The following decomposition of C is admissible:

C =
⋃{

Sr + z : z ∈ rZ2
}
,

and therefore, ∫
C
f(z) =

∑
w∈rZ2

∫
Sr+w

f(z)dµ(z),

since, the fundamental region defined by Sr doesn’t overlap with each-other; for f ∈ L1(C, dµ).

Theorem 5.43. We may have following 0 < p ≤ ∞ with

f(z) =
∑

w∈rZ2

cwk
[α]
w (z),
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where cw ∈ ℓp for w ∈ rZ2. Moreover, there exists a positive constant C (independent of f)

such that
1
C
∥f∥M⋆

α(p)≤ inf{∥cw∥}ℓp ≤ C∥f∥M⋆
α(p),

for all f ∈M⋆
α(p).

Proof. To begin with, assume that 0 < p ≤ 1 and f(z) = ∑
w∈rZ2 cwk

[α]
w (z), with {cw} ∈ ℓp.

Then by Holder’s inequality and k[α]
w (z) unit vector in M⋆

α(p)

∣∣∣∣f(z)z 1
q
−1e−

α
2 |z|

2
q

∣∣∣∣p ≤ ∑
w∈rZ2

|cw|p
∣∣∣∣k[α]
w (z)z

1
q
−1e−

α
2 |z|

2
q

∣∣∣∣p ,
∥f∥pM⋆

α(p)
≤

∑
w∈rZ2

|cw|p.

Thus, f ∈M⋆
α(p) and ∥f∥pM⋆

α(p)
≤ inf∑w∈rZ2|cw|p. Now, {cw} ∈ ℓ∞, then

|f(z)|e−α
2 |z|

2
q ≤ C ′∥{cw}∥∞

∑
w∈rZ2

|k[α]
w (z)|e−α

2 |z|
2
q
,

≤ C ′∥{cw}∥∞
∑

w∈rZ2

Ceα|zw|
1
q(

C1eα|w|
2
q

) 1
2
e−

α
2 |z|

2
q
,

≤ C̃∥{cw}∥∞
∑

w∈rZ2

e
−α

2

[
|z|

1
q−|w|

1
q

]2
,

≤ C∥{cw}∥∞ (by Lemma 5.40, other C > 0).

Taking the infimum is taken over all sequences {cw}ℓ∞ to have ∥f∥M⋆
α(α)≤ C inf∥{cw}∥ℓ∞ .

After interpolating between p = 1 and p = ∞, we have now shown that, for all 0 < p ≤ ∞

and f(z) = ∑
w∈rZ2 cwk

[α]
w (z), is in M⋆

α(p) {cw} ∈ ℓp and finally, ∥f∥M⋆
α(p)≤ C inf∥{cw}∥ℓp ,

where C is positive constant depending on α, p and r and the infimum is taken over all

sequences {cw} ∈ ℓp, that give rise to the representation of f as f(z) = ∑
w∈rZ2 cwk

[α]
w (z).

To prove the other part of the theorem, we assume that 0 < r < 1 and consider the linear
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operator Tr defined on the space of entire functions as follows:

Trf(z) =
α

πq

∑
w∈rZ2

k[α]
w (z)

∫
Sr+w

f(u)|u| 2q−2e−
α
2 |u|

2
q
e−αi Im(wu)dA(u).

We claim that ∥I − Tr∥< 1 on M⋆
α(p), where I is the identity operator, which is why Tr is a

bounded linear operator on M⋆
α(p). We proceed as follows by realizing that

f(z) =
∫
C
f(u)K [α]

q (z, u)dJα(u),

= α

πq

∑
w∈rZ2

∫
Sr+w

f(u)K [α]
q (z, u)|u| 2q−2e−

α
2 |u|

2
q−αi Im(wu)e−

α
2 |u|

2
q+αi Im(wu)dA(u).

It follows that Dr = I − Tr is as follows:

Drf(z) =
α

πq

∑
w∈rZ2

∫
Sr+w

f(u)H(z, w, u)dA(u),(5.40)

where H(z, w, u) =
[
k
[α]
w (z)− k

[α]
u (z)e−αi Im(wu)

]
|u| 2q−2e−

α
2 |u|

2
q+αi Im(wu). We now estimate the

norm of the operator Dr on M⋆
α(∞) and on M⋆

α(1).

Case 1: p = ∞ By (5.40) we have |Drf | e
−
α

2 |z|
2
q

≤ α
πq
∥f∥M⋆

α(∞)Jr(z), and

Jr(z) =
∑

w∈rZ2

∫
Sr+w

∣∣∣k[α]
u (z)e−αi Im(wu) − k[α]

w (z)
∣∣∣ |z| 2q−2e−

α
2 |z|

2
q+αi Im(wu)dA(u),

≤
∑

w∈rZ2

∫
Sr+w

[∣∣∣k[α]
u (z)

∣∣∣+ ∣∣∣k[α]
w (z)

∣∣∣] |z| 2q−2e−
α
2 |z|

2
q+αi Im(wu)dA(u),

≤
∑

w∈rZ2

∫
Sr+w

[∣∣∣k[α]
u (z)− k[α]

w (z)
∣∣∣+ ∣∣∣k[α]

u (z) + k[α]
w (z)

∣∣∣]
|z| 2q−2e−

α
2 |z|

2
q+αi Im(wu)dA(u),

≤
∑

w∈rZ2

∫
Sr+w

C1

∣∣∣∣∣∣∣
eα|zu|

1
q

e
α
2 |u|

2
q
− eα|zw|

1
q

e
α
2 |w|

2
q

∣∣∣∣∣∣∣+ C2

∣∣∣∣∣∣∣
eα|zu|

1
q

e
α
2 |u|

2
q
+ eα|zw|

1
q

e
α
2 |w|

2
q

∣∣∣∣∣∣∣


|z| 2q−2e−
α
2 |z|

2
q+αi Im(wu)dA(u),
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≈≤
∑

w∈rZ2

∫
Sr+w

C|z| 2q−2
[∣∣∣∣∣∣e−

α
2

[
|z|

1
q−|u|

1
q

]2
− e

−α
2

[
|z|

1
q−|w|

1
q

]2 ∣∣∣∣∣∣
+
∣∣∣∣∣∣e−

α
2

[
|z|

1
q−|u|

1
q

]2
+ e

−α
2

[
|z|

1
q−|w|

1
q

]2∣∣∣∣∣∣
]
dA(u).

Therefore, Jr(z) is less than or equal to following:

Jr(z) ≤ E(z, w),(5.41)

where E(z, w) is given as follows.

E(z, w) =
∑

w∈rZ2

∫
Sr+w

C|z| 2q−2e
−α

2

[
|z|

1
q−|w|

1
q

]2 
∣∣∣∣∣∣∣∣1−

e
−α

2

[
|z|

1
q−|u|

1
q

]2
e
−α

2

[
|z|

1
q−|w|

1
q

]2
∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣1 +
e
−α

2

[
|z|

1
q−|u|

1
q

]2
e
−α

2

[
|z|

1
q−|w|

1
q

]2
∣∣∣∣∣∣∣∣
 dA(u).

Now, for any ζ ∈ C we have |1 + eζ |+|1− eζ |≤ 1 + e|ζ| + e|ζ| − 1 = 2e|ζ|, applying this to have

following:


∣∣∣∣∣∣∣∣1−

e
−α

2

[
|z|

1
q−|u|

1
q

]2
e
−α

2

[
|z|

1
q−|w|

1
q

]2
∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣1 +
e
−α

2

[
|z|

1
q−|u|

1
q

]2
e
−α

2

[
|z|

1
q−|w|

1
q

]2
∣∣∣∣∣∣∣∣
 ≤ 2e

α
2

[[
|z|

1
q−|w|

1
q

]2
−
[
|z|

1
q−|u|

1
q

]2]
,

≤ 2e
α
2

[[
|z|

1
q−|w|

1
q

]2
−
[
|z|

1
q−r

1
q

]2]
,

≤ 2re
α
2

[
|z|

1
q−|w|

1
q

]2
.(5.42)

Combining (5.41) and (5.42) to have following:

Jr(z) ≤ 2Cr|z| 2q−2 ∑
w∈rZ2

e
−α

2

[
|z|

1
q−|w|

1
q

]2
e
α
2

[
|z|

1
q−|w|

1
q

]2 ∫
Sr+w

dA(u),

= 2Cr3 1
mEα,2,qr

2 , (mEα,p,q in Lemma 5.39).

113



This shows that in conclusion, we have following, independent of 0 < r < 1,

∥Drf∥M⋆
α(∞)≤ Cr∥f∥M⋆

α(∞) =⇒ ∥Dr∥M⋆
α(∞)< 1.

To estimate the norm of Dr on M⋆
α(1), first note that |Drf(z)| is less than or equal to

following:

α

πq

∑
w∈rZ2

∫
Sr+w

∣∣∣k[α]
w (z)− k[α]

u (z)e−αi Im(wu)
∣∣∣ |f(u)||u| 1q−1e−

α
2 |u|

2
q
dA(u).

By Fubini’s theorem, the integral
∫
C|Drf(z)|e−

α
2 |z|

2
q |z| 1q−1dA(z) is less than or equal to

α

qπ

∑
w∈rZ2

∫
Sr+w

|f(u)||u| 1q−1e−
α
2 |u|

2
q
H(w, u)dA(u),

where H(w, u) is defined as follows:

H(w, u) =
∫
C

∣∣∣k[α]
w (z)− k[α]

u (z)e−αi Im(wu)
∣∣∣ |z| 2q−2e−

α
2 |z|

2
q
dA(u),

≤
∫
C
C|z| 2q−2e

−α
2

[
|z|

1
q−|w|

1
q

]2 
∣∣∣∣∣∣∣∣1−

e
−α

2

[
|z|

1
q−|u|

1
q

]2
e
−α

2

[
|z|

1
q−|w|

1
q

]2
∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣1 +
e
−α

2

[
|z|

1
q−|u|

1
q

]2
e
−α

2

[
|z|

1
q−|w|

1
q

]2
∣∣∣∣∣∣∣∣
 dA(u).

Now, again from we pick-up from (5.42) as follows:


∣∣∣∣∣∣∣∣1−

e
−α

2

[
|z|

1
q−|u|

1
q

]2
e
−α

2

[
|z|

1
q−|w|

1
q

]2
∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣1 +
e
−α

2

[
|z|

1
q−|u|

1
q

]2
e
−α

2

[
|z|

1
q−|w|

1
q

]2
∣∣∣∣∣∣∣∣
 ≤ 2e

α
2

[[
|z|

1
q−|w|

1
q

]2
−
[
|z|

1
q−|u|

1
q

]2]
,

≤ 2e
α
2

[[
|z|

1
q−|w|

1
q

]2
−
[
|z|

1
q−r

1
q

]2]
,

≤ 2e
α
2

[
|w|

2
q−2|zw|

1
q−r

2
q+2|zr|

1
q

]
,

≤ 2re
α
2

[(
|z|

1
q−|w|

1
q

)2
+|z|

2
q

]
.
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With this, it is now clear that we can find a positive constant C depending only on α, such

that H(w, u) ≤ Cr for all w and u. It follows that

∫
C
|Drf(z)|e−

α
2 |z|

2
q |z| 1q−1dA(z) ≤ Cr

∫
C
|f(u)|e−α

2 |u|
2
q |u| 1q−1dA(u)

for all f ∈M⋆
α(1). Thus, the norm of Dr satisfies

∥Dr∥M⋆
α(1)< Cr, 0 < r < 1.

By the fact that ∥Dr∥M⋆
α(∞)< Cr and ∥Dr∥M⋆

α(1)< Cr, this imply that for sufficiently small

r, ∥Dr∥M⋆
α(∞)< 1 and ∥Dr∥M⋆

α(1)< 1. By the complex interpolation, we have ∥Dr∥M⋆
α(p)< 1

for all p ∈ [1,∞]. This shows that Tr is invertible for r being small enough on M⋆
α(p) for all

p from [1,∞]. Hence, for f ∈ M⋆
α(p), we can write f = Trg with g = T−1

r f , and we obtain

the atomic decomposition f(z) = ∑
w∈rZ2 cwk

[α]
w (z), with

(5.43) cw = α

qπ

∫
Sr+w

g(u)|u| 2q−2e−
α
2 |u|

2
q+αi Im(wu)dA(u),

and with the help of Lemma 5.39 shows that the above sequence {cw} ∈ ℓp, whenever

g ∈M⋆
α(p). This completes the proof.

We will complete the proof of the case 0 < p < 1 after we have proved the following three

lemmas.

Lemma 5.44. Say 0 < r < 1 and 0 < p ≤ 1 and m ∈ Z+. For any entire functions f we

define a sequence, {
(Sf)w,k : w ∈ rZ2, 0 ≤ k ≤ m

}

(Sf)w,k =
α

qπ

∫
Sr+w

eαi Im z(z−w)−α
2 |z−w|

2 (z − w)k
Γ(qk + 1)e

−α
2 |z|

2
q
f(z)|z| 2q−2dA(z).

Then S maps M⋆
α(p) boundedly into ℓp.
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Proof. For any w ∈ rZ2, z ∈ Sr + w and 1 ≤ k ≤ m, we have |(Sf)w,k|p as follows:

= αp

(qπ)p

∣∣∣∣∣
∫
Sr+w

eαi Im(z−w)z−α|z−w|2
2

(z − w)k
Γ(qk + 1)f(z)z

1
q
−1
[
K [α]
q (z − w,w)

]−1
e−

α|w|
2
q

2 +αi Im(z−w)wdA(z)
∣∣∣∣∣
p

,

= αp

(qπ)p

∣∣∣∣∣
∫
Sr+w

e−α|z−w|
2−α|w|

2
q

2
[
K [α]
q (z − w,w)

]−1
f(z)z

1
q
−1 (z − w)k

Γ(qk + 1)dA(z)
∣∣∣∣∣
p

,

≤ αp

(qπ)p

[
e−

α
2 |w|

2
q
∫
Sr+w

e−α|z−w|
2
∣∣∣∣∣f(z)z 1

q
−1
[
K [α]
q (z − w,w)

]−1 (z − w)k
Γ(qk + 1)

∣∣∣∣∣dA(z)
]p
,

≤ αp

(qπ)pC
rpk

(Γ(qk + 1))p
[
e−

α
2 |w|

2
q
∫
Sr+w

∣∣∣∣f(z)z 1
q
−1
[
K [α]
q (z − w,w)

]−1
∣∣∣∣ dA(z)]p ,

≤ C1r
p(2+k)e−

αp
2 |w|

2
q sup

{∣∣∣∣f(z)z 1
q
−1
[
K [α]
q (z − w,w)

]−1
∣∣∣∣p : z ∈ Sr + w

}
,

≤ C2r
p(2+k)−2e−

αp
2 |w|

2
q
∫
Qr+w

∣∣∣∣f(z)z 1
q
−1
[
K [α]
q (z − w,w)

]−1
∣∣∣∣p dA(z),

= C2r
p(2+k)−2e−

αp
2 |w|

2
q
∫
Qr+w

|f(z)|p |z|
p
q
−p
∣∣∣K [α]

q (z − w,w)
∣∣∣−p dA(z),

= C2r
p(2+k)−2e−

pα
2 |w|

2
q
∫
Qr+w

|f(z)|p |z|
p
q
−p
∣∣∣Eq(αq(zw − |w|2)

∣∣∣−p dA(z),
≤ C2r

p(2+k)−2e−
αp
2 |w|

2
q
∫
Qr+w

|f(z)|p |z|
p
q
−p e

−αp
(
|zw−|w|2|

1
q

)
dA(z),

≤ C2r
p(2+k)−2

∫
Qr+w

|f(z)|p |z|
p
q
−p e−

αp
2 |z|

2
q
e
αp
2 |z|

2
q
e−

αp
2 |w|

2
q
dA(z),

= C2r
p(2+k)−2

∫
Qr+w

|f(z)|p |z|
p
q
−p e−

αp
2 |z|

2
q
e
αp|z|

1
q

2

[
|z|

1
q−|w|

1
q

]
dA(z),

≤ C3r
p(2+k)−2

∫
Qr+w

|f(z)|p |z|
p
q
−p e−

αp
2 |z|

2
q
dA(z).

Finally, by letting C4 = C3(m+ 1), then

∑
w∈rZ2

m∑
k=0

∣∣∣(Sf)w,k∣∣∣p ≤ C4r
2(p−1) ∑

w∈rZ2

∫
Qr+w

∣∣∣∣f(z)z 1
q
−1e−

α
2 |u|

2
q

∣∣∣∣p dA(z),
≤ C5r

2(p−1)
∫
C

∣∣∣∣f(z)z 1
q
−1e−

α
2 |u|

2
q

∣∣∣∣p dA(z),
which proves the desired result.
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Lemma 5.45. Suppose r ∈ (0, 1) and p ∈ (0, 1] and m is a non-negative integer. For every

sequence

c = {cw,k : w ∈ rZ2, 0 ≤ k ≤ m},

define a function Tc by

Tc(z) =
∑

w∈rZ2

m∑
k=0

cw,k [αq(z − w)]k k[α]
w (z),

then T is a bounded linear operator from ℓp into M⋆
α(p).

Proof. We have following chain of inequalities:

|Tc(z)|p ≤
∑

w∈rZ2

m∑
k=0

|cw,k|p|[αq(z − w)]|pk
∣∣∣k[α]
w (z)

∣∣∣p ,
∥Tc∥pM⋆

α(p)
≤

∑
w∈rZ2

m∑
k=0

|cw,k|pαqpk
∫
C
[|z|+|w|]pk

∣∣∣k[α]
w (z)

∣∣∣p |z| pq−p e−αp
2 |z|

2
q
dA(z),

≤ C
∑

w∈rZ2

m∑
k=0

|cw,k|pαqpk|2w|pk.

This proves the desired result.

Lemma 5.46. Let r0 be the number from Theorem 5.43 in the case p = ∞. Suppose

0 < r < r0 and p ∈ (0, 1]. Then every monomial zk can be represented as

zk =
∑

w∈rZ2

cwk
[α]
w (z),

where {cw} ∈ ℓp.

Proof. Fix ρ ∈ (r, r0). By the already-proved case p = ∞ of Theorem 5.43, every monomial

zk can be represented as

zk =
∑

w∈rZ2

cwk
[α]
w (z),
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where {cw} ∈ ℓ∞. For w ∈ ρZ2, we can write w = ρ(m + in) for some integers m and n.

Since,

k[α]
w (z) = K

[α]
q (z, w)√
K

[α]
q (w,w)

,

we have for w′ = r(m+ in) that

k[α]
w

((
r

ρ

)
z

)
= K

[α]
q (z, w′)√

K
[α]
q (w′, w′)

√
K

[α]
q (w′, w′)√
K

[α]
q (w,w)

,

it follows that,

(
r

ρ
z

)k
=

∑
w′∈rZ2

c′w′k
[α]
w′ (z),

where

c′w′ =
K

[α]
q (w′, w′)
K

[α]
q (w,w)

= cw
Eq(αq|w′|2)
Eq(αq|w|2)

= cw
Eq (αqr2(m2 + n2))
Eq (αqρ2(m2 + n2)) .

Recall that r < ρ, therefore, this sequence is in ℓp and this shows the atomic decomposition

of monomials.

Case 2: p = ∞ We will now finish the proof for the atomic decomposition for M⋆
α(p) for

0 < p < 1. Fix a sufficiently small r ∈ (0, 1) and let m be the integer part of 2(1− p)/p and

let S and T be the operators defined in previous two lemmas. We have then,

(I − TS) f(z) = α

qπ

∑
w∈rZ2

∫
Sr+w

G(z, w, u)f(u)e−
αp
2 |u|

2
q |u| 2q−2dA(u)
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where

G(z, w, u) = k[α]
w (z)eαi Imu(u−w)−α

2 |u−w|
2
K [α]
q (z − w, u− w)

− k[α]
w (z)eαi Imu(u−w)−α

2 |u−w|
2

 m∑
k=0

[αq(z − w)(u− w)]k

Γ(qk + 1)

 ,
which is same to say that

G(z, w, u) = k[α]
w (z)eαi Imu(u−w)−α

2 |u−w|
2

 ∞∑
k=m+1

[αq(z − w)(u− w)]k

Γ(qk + 1)

 ,
and therefore, for u ∈ Sr + w, we have |u− w|< r, therefore,

|G| ≤
∣∣∣k[α]
w (z)

∣∣∣ ∞∑
k=m+1

[αq |z − w| r]k
Γ(qk + 1) ,

and so by Holder’s inequality |(I − TS)f(z)|p is less than or equal to

αp

(qπ)p
∑

w∈rZ2

∣∣∣k[α]
w (z)

∣∣∣p
 ∞∑
k=m+1

[αq|z − w|r]k
Γ(qk + 1)

p [∫
Sr+w

∣∣∣∣f(u)u 1
q
−1e−

α
2 |u|

2
q

∣∣∣∣ dA(u)]p .
It follows from this and Fubini’s theorem that

∫
C

∣∣∣∣(I − TS)f(z)e−α
2 |z|

2
q
z

1
q
−1
∣∣∣∣p dA(z)

less than or equal to less than or equal to

αp

(qπ)p
∑

w∈rZ2

C(w)
[∫
Sr+w

|f(u)||u| 1q e−α
2 |u|

2
q
dA(u)

]p
,

where

C(w) =
∫
C

∣∣∣k[α]
w (z)

∣∣∣p
 ∞∑
k=m+1

[αq|z − w|r]k
Γ(qk + 1)

p dA(z),

119



≤ rp(m+1)

|Eq(αq|w|2)|
p
2

∫
C

 ∞∑
k=m+1

[αq|z − w|]k
Γ(qk + 1)

p dA(z),
≤ rp(m+1)

|Eq(αq|w|2)|
p
2

∫
C
|K [α](z,w)

q |p
 ∞∑
k=m+1

αq [|z|+|w|]k
Γ(qk + 1)

p dA(z),
= rp(m+1)|w|p−

p
q e

α
2 |w|

2
q

 ∞∑
k=m+1

αq [2|w|]k
Γ(qk + 1)

p .
So, there is a constant C > 0 such that

∫
C

∣∣∣∣(I − TS)f(z)z
1
q
−1e−

α
2 |z|

2
q

∣∣∣∣p dA(z)
is less than or equal to

Crpm+p ∑
w∈rZ2

[∫
Sr+w

|f(u)|e−α
2 |u|

2
q |u| 1q−1dA(u)

]p
.

On the other hand,

[∫
Sr+w

|f(u)|e−α
2 |u|

2
q |u| 1q−1dA(u)

]p
≤ r2p sup

u∈Sr+w

∣∣∣∣f(u)|u| 1q−1e−
α
2 |u|

2
q

∣∣∣∣p ,
and an application of Lemma 5.39 produces another constant C > 0 which is independent

of r ∈ (0, 1) such that

[∫
Sr+w

|f(u)|e−α
2 |u|

2
q |u| 1q−1dA(u)

]p
≤ Cr2p−2

∫
Qr+w

[
|f(u)||u| 1q−1e−

α
2 |u|

2
q
]p
dA(u).

Thus,

∫
C

∣∣∣∣(I − TS) f(z)|z| 1q−1e−
α
2 |z|

2
q

∣∣∣∣p dA(z) ≤ Crpm+3p−2 ∑
w∈rZ2

∫
C
|f(u)|p|u|

p
q
−pe−

αp
2 |u|

2
q
dA(u).
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So, we can find another constant C > 0 independent of r such that

∥I − TS∥M⋆
α(p)≤ Crm+3− 2

p ,

where 0 < r < 1 and obviously m+ 3− 2
p
> 0. We see that there exists some r0 ∈ (0, 1) such

that ∥I − TS∥M⋆
α(p)< 1 whenever r ∈ (0, r0). Thus, TS is an invertible operator on M⋆

α(p)

where r ∈ (0, r0). Since, for all r ∈ (0, r0), the operator T is onto and thus every function

f ∈M⋆
α(p) can be written as

(5.44) f(z) =
∑

w∈rZ2

m∑
k=0

cw,k(z − w)kk[α]
w (z).

Now, the coefficients cw,k in (5.44) above all depends on f linearly and we have

∑
w∈rZ2

m∑
k=0

|cw,k|p≤ C∥f∥pM⋆
α(p)

,

where C is a positive constant independent of f . Given any δ > 0 and ∀ r ∈ (0, r0), it follows

from Lemma 5.46 that there exist coefficient cw,k, 0 ≤ k ≤ m, w ∈ rZ2 and |w|≤ N such

that ∥∥∥∥∥∥zk −
∑

u∈rZ2,|u|≤N
c′u,kk

[α]
w (z)

∥∥∥∥∥∥
M⋆
α(p)

< δ,

for all 0 ≤ k ≤ m. By a change of variables,

∥∥∥∥∥∥(z − w)kk[α]
w (z)−

∑
u∈rZ2

c′u,kk
[α]
u (z − w)k[α]

w (z)
∥∥∥∥∥∥
M⋆
α(p)

< δ,

for all 0 ≤ k ≤ m and w ∈ rZ2. The above inequality can be modified as follows:

∥∥∥∥∥∥(z − w)kk[α]
w (z)−

∑
u∈rZ2

c′u,ke
αi Imwuk

[α]
u+w(z)

∥∥∥∥∥∥
M⋆
α(p)

< δ.
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Now, define an operator Ar on M⋆
α(p) as follows:

Arf(z) =
∑

w∈rZ2

cw,k
∑

u∈rZ2,|u|≤N
c′u,ke

αi Im(uw)k
[α]
u+w(z)

It then follows from Hölder’s inequality that,

∥f − Arf∥pM⋆
α(p) ≤

∑
w∈rZ2,0≤k≤m

|cw,k|pδp ≤ Cδp∥f∥pMLp

for all f ∈M⋆
α(p). Now, choosing δ in such a manner that Cδp < 1, then ∥I − Ar∥M⋆

α(p)< 1

and so the operator Ar is surjective on M⋆
α(p). Since w + u ∈ rZ2 whenever w ∈ rZ2 and

u ∈ rZ2, the proof of atomic decomposition of M⋆
α(p) is now complete.

5.6 Maximum Principle

We provide the maximum principle for the M⋆
α(p) in this section.

Theorem 5.47. Let p ≥ 1 and α > 0 and suppose |f(z)|≤ |g(z)| over the region |z|≥ R,

then following is true:

∫
C
|f(z)|pdJα(z)[p] ≤

∫
C
|g(z)|pdJα(z)[p].

Proof. Without loss of generality, we will assume that g ∈ M⋆
α(p). Otherwise, the desired

result is obvious. Under this assumption, we also have

∫
|z|≥R

|f |pdJα(z)[2] ≤
∫
|z|≥R

|g|pdJα(z)[2] <∞,

and therefore, f ∈ M⋆
α(p) also. We consider following for the positive r and any complex

function F ,

I(r, F ) =
∫ 2π

0
F
(
reiθ

)
dθ.
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Let some positive R is fixed and we proceed by assuming |f(z)|≤ |g(z)| over the region

R < |z|< ∞. For r ∈ (0, R) and ρ ∈ (R,∞), we will compare I(r,f ∆g) with I(ρ,−f∆g),

where f∆g = |f |p−|g|p. Note that, considering w(z) = f(z)
g(z) over the region |z|∈ (R,∞), ω(z)

is analytic with its modulus strictly less than 1. Even if, the modulus of ω(z) is 1 for some z0

where |z0|∈ (R,∞), then by the classical maximum modulus principle, the analytic function

ω(z) is constant. In this case, f and g differs by a constant multiple in the whole complex

plane, from which the desired result clearly follows.

Pick a point ζ(ρ) ∈ C such that its modulus is ρ where ρ ∈ (R,∞) and along with this

following is also satisfied:

|w(ζ(ρ))|= max {|ω(z)|: |z|= ρ} .

Thus, 0 < |w(ζ(ρ))|< 1 for all ρ ∈ (R,∞). Here, we are not assuming the f = 0, otherwise

the result follows trivially. For the sake of simplified notation, say ωρ = ω(ζ(ρ)). Now consider

following two inequalities for p ≥ 1 and both x and y at-least greater than 0:

(5.45) xp − yp ≤ pxp−1(x− y)

and

(5.46) pyp−1(x− y) ≤ xp − yp.

We will use both of the above inequalities to discuss the comparison between I(r,∆) with

I(ρ,−∆) as follows. We use (5.45) to have following:

I(r,f ∆g) =
∫ 2π

0
|f(reiθ)|p−|g(reiθ)|pdθ,

≤
∫ 2π

0
p|f(reiθ)|p−1

[
|f(reiθ)|−|ωρg(reiθ)|

]
dθ,

≤
∫ 2π

0
p|f(reiθ)|p−1

[
|f(reiθ)− ωρg(reiθ)|

]
dθ,(5.47)
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≤
∫ 2π

0
p|f(ρeiθ)|p−1

[
|f(ρeiθ)− ωρg(ρeiθ)|

]
dθ(5.48)

=
∫ 2π

0
p
|ω|p−1

1− |ω|p
[
|g(ρeiθ)|p−|f(ρeiθ)|p

]
|ω − ωρ|dθ,

We used the property of subharmonicity & increasing in r nature of the argument in the

integral in (5.47) to (5.48). We use (5.46), to realize that following is true:

p
|ω|p−1

1− |ω|p ≤ 1
1− |ω| =

1 + ω

1− |ω|2 <
2

1− |ω|2 .

Therefore, in conclusion we have following:

I(r,f ∆g) ≤
∫ 2π

0

2
1− |ω|2 |ω − ωρ|

[
|g(ρeiθ)|p−|f(ρeiθ)|p

]
dθ.

Consider γ(ρ) as a following quantity:

γ(ρ) = max
{
|ω(z)− ω(ζ(ρ))|

1− |ω(z)|2 : |z|= ρ, ρ ∈ (R,∞)
}
.

Therefore following is achieved ∀ 0 ≤ r ≤ R < ρ <∞,

I(r,f ∆g) ≤ 2γ(ρ)I(ρ,−f∆g),∫ 2π

0

[
|f(reiθ)|p−|g(reiθ)|p

]
dθ ≤

∫ 2π

0

[
|g(ρeiθ)|p−|f(ρeiθ)|p

]
dθ.(5.49)

We will integrate both sides of (5.49) against the measure αr
2
q
−2

πq
e−αr

2
q
rdr over the limits of

[0, R] as follows:

∫
|z|≤R

f∆gdJα(z)[2] ≤
∫ R

0

αr
2
q
−2

πq
e−αr

2
q
rdr

 γ(ρ) ∫
|z|≤R

−f∆gdJα(z)[2],

=
q
(
1− e−αR

2
q

)
2α γ(ρ)

∫
|z|≤R

−f∆gdJα(z)[2].
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This implies that

1
γ(ρ)

(∫
|z|≤R

f∆gdJα(z)[2]
)
≤
q
(
1− e−αR

2
q

)
2α

∫
|z|≤R

−f∆gdJα(z)[2].(5.50)

We will integrate (5.50) against the measure αρ
2
q
−2

πq
e−αρ

2
q
ρdρ to have following:

∫ ∞

R

ρ
2
q
−2

γ(ρ) e
−αρ

2
q
ρdρ

∫
|z|≤R

f∆gdJα(z)[2] ≤

(
1− e−αR

2
q

)
2π

∫
|z|≥R

−f∆gdJα(z)[2].

In conclusion, we get following:

∫
|z|≤R

f∆gdJα(z)[2] ≤ CR

∫
|z|≥R

−f∆gdJα(z)[2],

where

CR =
q
(
1− e−αR

2
q

)

2α
∫∞
R

ρ
2
q
−2e−αρ

2
q

γ(ρ) dρ

.(5.51)

We will show CR < 1 (in Lemma 5.48) and as of now we are assuming and proceeding

further as follows:

∫
C
f∆gdJα(z)[2] =

∫
C
|f |p−|g|pdJα(z)[2],

=
∫
|z|≤R

[|f |p−|g|p] dJα(z)[2] +
∫
|z|≥R

[|f |p−|g|p] dJα(z)[2],

≤ CR

∫
|z|≥R

[|g|p−|f |p] dJα(z)[2] +
∫
|z|≥R

[|f |p−|g|p] dJα(z)[2],

≤
∫
|z|≥R

[|g|p−|f |p] dJα(z)[2] +
∫
|z|≥R

[|f |p−|g|p] dJα(z)[2],

= 0,

=⇒
∫
C
|f |pdJα(z)[2] ≤

∫
C
|g|pdJα(z)[2].
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Lemma 5.48. The value of CR in (5.51) is less than 1.

Proof. Recall the Mobius pseudo-hyperbolic metric in the unit disc D as follows:

(5.52) m(z, w) =
∣∣∣∣ z − w

1− zw

∣∣∣∣ .
After recalling m(z, w) in (5.52), we can have following setting:

|u− v|
1− |u|2 = m(u, v)√

1−m(u, v)2

√
1− |v|2√
1− |u|2

.(5.53)

Replacing u by ω(z) and v by ω(ζ(ρ)) in (5.53) to have following consequences:

|w(z)− ω(ζ(ρ))|
1− |w(z)|2 = m(w(z), ω(ζ(ρ)))√

1−m(w(z), ω(ζ(ρ)))2

√
1− |ω(ζ(ρ))|2√
1− |w(z)|2

,

≤ m(w(z), ω(ζ(ρ)))√
1−m(w(z), ω(ζ(ρ)))2

.

It follows that for ρ ∈ (R,∞)

γ(ρ) ≤ sup
|z|=ρ

m(w(z), ω(ζ(ρ)))√
1−m(w(z), ω(ζ(ρ)))2

.

If we take H(z) = ω(R/z), then we realize that it has removable singularity at 0 and is

bounded in the neighbourhood of 0. Also, it maps 0 < |z|< 1 analytically to the unit disc D.

Thus, we can picture this map as a self-analytic map over D. Hence, with the application of

Schwarz lemma, we have following deduction:

m(H(z), H(w)) ≤ m(z, w),
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which is why,

m((w(z), ω(ζ(ρ)))) ≤ m(H(R/z), H(R/ω(ζ(ρ)))) ≤ m(R/z,R/ω(ζ(ρ))).

for all |z|= ρ. Therefore,

γ(ρ) ≤ sup
|z|=ρ

m(R/z,R/ω(ζ(ρ)))√
1−m(R/z,R/ω(ζ(ρ)))2

.

When we take the symmetry of D into account,

sup
|z|=ρ

m(R/z,R/ω(ζ(ρ))) = m(−R/ω(ζ(ρ)), R/ω(ζ(ρ))) = 2Rρ
ρ2 +R2 ,

therefore

γ(ρ) ≤ 2Rρ
ρ2 −R2 for R < ρ <∞,

=⇒ 1
γ(ρ) ≥ ρ2 −R2

2Rρ ,

ρ
2
q
−2e−αρ

2
q
ρdρ

γ(ρ) ≥ (ρ2 −R2)ρ
2
q
−2e−αρ

2
q
ρdρ

2Rρ ,

∫ ∞

R

ρ
2
q
−2e−αρ

2
q
ρdρ

γ(ρ) ≥
∫ ∞

R

(ρ2 −R2)ρ
2
q
−2e−αρ

2
q
ρdρ

2Rρ ,

=⇒ 1∫∞
R

ρ
2
q−2

e−αρ
2
q
ρdρ

γ(ρ)

≤ 2R∫∞
R (ρ2 −R2)ρ

2
q
−2e−αρ

2
q dρ

,

=⇒ CR ≤ Rq

α

(1− eαR
2
q )∫∞

R (ρ2 −R2)ρ
2
q
−2e−αρ

2
q dρ

as R −→ 0+. Therefore, we have CR < 1.
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5.7 Translation

Suppose a ∈ C, then we define following three analytic self-maps of C:

ta(z) := z + a,

τa(z) := z − a,

φa(z) := a− z.

We have following attributes for ta, τa and φa. The map ta is called the translation by a, and

it is clear that τa = t−a = t−1
a . The map φa is the composition of the translation ta with the

reflection z → −z. Note that φa is its own inverse. From (5.7) and (5.8), following easily

follows:

∫
C
f ◦ τw(z)dJα(w)[2] =

∫
C
f(w) 1

Eq(αq|z − w|2)dJα(w)
[2],

∫
C
f ◦ tw(z)dJα(w)[2] =

∫
C
f(w) K

[α]
q (2z, w)

Eq(αq|w − z|2)dJα(w)
[2].

Corollary 5.49. We have following calculations:

∫
C
f ◦ τa(z)

∣∣∣k[α]
a (z)

∣∣∣2 dJα(z)[2] = ∫
C
f(z)dJα(z),(5.54) ∫

C
f ◦ ta(z)

∣∣∣k[α]
a (z)

∣∣∣2 dJα(z)[2] = ∫
C
f(z + 2a)dJα(z).(5.55)

Proof. We give the proof of (5.54) as follows:

∫
C
f ◦ τa(z)

∣∣∣k[α]
a (z)

∣∣∣2 dJα(z)[2] = ∫
C
f(z − a)

∣∣∣K [α]
q (z, a)

∣∣∣2
K

[α]
q (a, a)

dJα(z)[2],

= 1
K

[α]
q (a, a)

∫
C
f(z − a)K [α]

q (z, a)K [α]
q (a, z)dJα(z),

= f(0),
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=
∫
C
f(z)dJα(z)[2].

In similar ways (5.55) can be proved.
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Journal of Mathematics 3.4 (1953), pp. 823–835.

[33] Joel A Rosenfeld. “Introducing the Polylogarithmic Hardy Space”. In: Integral Equations

and Operator Theory 83.4 (2015), pp. 589–600.

132



[34] Joel A Rosenfeld, Benjamin Russo, and Warren E Dixon. “The Mittag-Leffler reproduc-

ing kernel Hilbert spaces of entire and analytic functions”. In: Journal of Mathematical

Analysis and Applications 463.2 (2018), pp. 576–592.

[35] Joel A Rosenfeld, Benjamin Russo, and Xiuying Li. “Occupation Kernel Hilbert Spaces

and the Spectral Analysis of Nonlocal Operators”. In: arXiv preprint arXiv:2102.13266

(2021).

[36] Joel A Rosenfeld et al. “Dynamic mode decomposition for continuous time systems

with the Liouville operator”. In: Journal of Nonlinear Science 32.1 (2022), pp. 1–30.

[37] Joel A Rosenfeld et al. “On occupation kernels, Liouville operators, and Dynamic

Mode Decomposition”. In: 2021 American Control Conference (ACC). IEEE. 2021,

pp. 3957–3962.

[38] Joel A Rosenfeld et al. “The occupation kernel method for nonlinear system identifica-

tion”. In: arXiv preprint arXiv:1909.11792 (2019).

[39] Joel A Rosenfeld et al. “The occupation kernel method for nonlinear system identifica-

tion”. In: arXiv preprint arXiv:1909.11792 (2019).

[40] Lee A Rubel and James E Colliander. “Relation Between the Growth of an Entire

Function and the Size of Its Taylor Coefficients”. In: Entire and Meromorphic Functions.

Springer, 1996, pp. 40–44.

[41] Lee A Rubel and James E Colliander. “The Pólya Representation Theorem”. In: Entire
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