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Abstract

This dissertation focuses on addressing the technical challenges of non-stationarity in

smart factories through the use of cyber-physical AI agents. Industry 4.0 and smart man-

ufacturing with smart factories as a central role, have a growing demand for Just-in-Time

(JIT) and on-demand production, as well as mass customization—all while maintaining high

productivity, resource efficiency and resilience. This research positions Multi-Robot Systems

(MRS)-driven smart factories. The heterogeneous production and transportation robots

in an MRS collaborate to form multiple real-time adjusted production flows achieving the

flexibility to accommodate such on-demand, mass customization.

However, the implementation of MRS introduces new sets of challenges, including the

need for a coordination mechanism with superior agility, productivity, and energy efficiency.

Further complexities arise in ensuring system resilience under unpredictable production de-

mands and cyber-physical errors, which contribute to the non-stationary nature of smart

factories. To address these issues, this dissertation proposes the cyber-physical AI agent sys-

tem approach. This approach proposed is based on autonomous Artificial Intelligence (AI)

agents that emphasize knowledge-based rationality, and AI cognitions including reasoning,

prediction, and planning. Additionally, the AI agents learn to adapt to non-stationarity

through data-driven computations while interacting with the environment.

This dissertation offers both theoretical and applicational contributions to the electri-

cal engineering field. On the theoretical side, it solidates knowledge-based problem-solving

of AI research, using graph models as domain models for the AI cognitions. More impor-

tantly, when multiple AI agents unite into a system, with wireless information exchange and

social learning, the networked AI agents achieve collaboration toward collective objectives

through communications. On the practical side, this work addresses real-world challenges in

vii



smart factories, including real-time Multi-Robot Task Allocation (MRTA), resilient opera-

tion of production robots in the presence of physical errors, predictive path coordination for

transportation robots, and maintaining the operational integrity of MRS in the presence of

cyber-physical errors.
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Chapter 1: Introduction

Wireless networked Multi-Robot Systems (MRSs) are rapidly emerging as a center role

in smart factories, Industry 4.0, smart manufacturing, lean manufacturing, and future gen-

erations of manufacturing paradigms. The inherent qualities of MRSs align well with the

objectives of these paradigms, which include enhanced productivity, energy efficiency, agility,

flexibility, and sustainability [104, 88, 19, 25, 111, 96].

The application and expansion of these systems have been largely driven by Artificial

intelligence (AI) as well as advances in other key technologies. Edge computing [110, 109]

that performs system-wise decision-making with complex computation including production

and transportation task scheduling and assignment, predictive maintenance is where central

AI is located. Distributed AI computing and mobile AI computing [19, 14, 33] enables MRS

to make real-time collaborative coordination and adjustments in task executions; Cyber-

Physical Systems (CPS) [33] provide a framework for the integration of both types of AI

computing with physical processes, allowing the application of data-driven Machine Learning

(ML) techniques; Information Communication Technologies (ICT) [19] and wireless commu-

nication and networks [25, 20] facilitate data-driven AI decision-making and communication

between smart factory components. When implemented within the framework of a smart

factory, wireless networked MRS can handle heterogeneous process types, facilitate multiple

real-time adjusted production flows, and support dynamic temporal-spatial collaborations.

These functionalities allow them to effectively cater to Just-in-Time (JIT) or on-demand and

mass-customized production.
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1.1 Industry 4.0: The Emergence of the Smart Factory

The history of industrialization can be traced back to the late 18th century with the

emergence of the First Industrial Revolution, marked by the mechanization of textile pro-

duction and the application of steam power. This era significantly amplified the productivity

of individual workers and laid the foundational framework for modern manufacturing. How-

ever, at this stage, the concept of automation and intelligent systems was almost entirely

absent; labor was still predominantly manual, and machine assistance was rudimentary.

The subsequent industrial phases, characterized by the proliferation of electricity and the

rise of mass production techniques, increased efficiencies but did not significantly diversify the

capabilities of industrial systems. The Third Industrial Revolution, fueled by advancements

in computer technology and automation, began to show the potential for intelligence within

the manufacturing sector. Yet, despite these developments, the scope was primarily limited

to single, autonomous units, fixed automated assembly lines or simple networked systems

that executed repetitive, predefined tasks.

Fast forward to the 21st century, the term “Industry 4.0” incorporates the latest trans-

formation in manufacturing, characterized by the seamless integration of physical and digital

technologies. Within the paradigm of Industry 4.0, Smart Factories emerge as centers of an

ecosystem connected not just by machinery but by data and analytics. These systems go be-

yond isolated tasks to incorporate adaptability, scalability, and learning into the production

cycle. It is here that Wireless Networked Multi-Intelligent Robot Systems play a critical role

in augmenting the abilities of a Smart Factory.

The automated manufacturing systems in Industry 3.0 were primarily engineered toward

singular tasks. Robots on an assembly line could weld car doors or paint exteriors, but they

couldn’t adapt or switch between tasks efficiently. They lacked the intelligence to coordinate

with other machines, adapt to new manufacturing configurations, or respond in real time to

external changes.
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Wireless Networked Multi-Intelligent Robot Systems represent extensive changes in this

regard. By enabling high levels of coordination, these systems make it possible to have

multiple robots work in unison, each aware of the other’s position, status, and function.

This level of integration provides a new range of flexibility and efficiency elaborated as

follows that was unimaginable in earlier industrial stages.

• Scalability: MRS can be easily scaled up or down to adapt to the demands of pro-

duction. Additional robots can be seamlessly integrated into the industrial wireless

network as required.

• Adaptability: These robots can switch roles or tasks in real time based on the demands

of the manufacturing process. This is especially crucial for custom manufacturing and

just-in-time or on-demand productions.

• Optimization: AI algorithms bring maximized productivity, increased overall efficiency

and minimized downtime through optimized task scheduling and assignments.

• Resilience: The system is less vulnerable to breakdowns; if one robot fails, tasks can be

dynamically reallocated among the remaining robots so that MRS remains operating

under errors.

• Data-Driven: Continuous data collection from MRS’s interaction with the production

environment and analytics with Machine Learning (ML) techniques make these systems

self-improving, allowing them to adapt and become more efficient over time.

• Machine Intelligent Collaboration: Robots not only communicate with each other but

can also make collaborative decisions toward system-wide and collective objectives.

Therefore, Wireless Networked Multi-Intelligent Robot Systems offer capabilities that

dramatically break through the limitations of traditional industrial setups. By offering un-

precedented levels of scalability, adaptability, and intelligence, these systems are defining the

3



future landscape of smart factories and pushing the boundaries of new possibilities in the

modern industry.

1.2 Research Motivation, Objectives and Organization

Building on the foundation set by Section 1.1, the emerging generation of the industry,

inclusive of smart factories, is evolving to autonomously accommodate fluctuating production

demands. This eliminates the need for product-specific automation programming.

This research introduces a method that employs a heterogeneous and collaborative Multi-

Robot System (MRS) to achieve this objective. This approach aligns with the discrete

production paradigm, as discussed in recent literature [132, 38].

Discrete production pertains to the manufacturing of distinct items that are countable

and tangible. This mode of production revolves around assembling individual components or

parts to produce complete goods. It stands in contrast to process production, characterized

by continuous flows or batches, common in the creation of chemicals or beverages. For

instance, products from discrete manufacturing include automobiles, furniture, airplanes,

toys, smartphones, and defense systems. These items are distinguishable by their ability to

be deconstructed into individual components and reassembled.

Tasks within the discrete production realm often encompass actions such as cutting,

drilling, or assembling to yield the final products. Given the unique nature of each product,

discrete manufacturing processes are generally more adaptable than their continuous coun-

terparts. Such adaptability allows manufacturers to seamlessly transition between different

products or tailor products in response to market demand.

Employing a heterogeneous, collaborative Multi-Robot System (MRS) comprised of both

production and transportation robots, each robot type can be dedicated to specific produc-

tion processes. By assigning them time-varying tasks that pinpoint the necessary processes,

the MRS is capable of establishing multiple, real-time adjusted production flows. This setup

4



efficiently meets the Just-In-Time (JIT) and mass-customized production demands, elimi-

nating the need for product-specific programming.

In the context of a smart factory, this efficiency is realized through AI computations on

a centralized edge server paired with a network of interconnected robots. These robots fetch

task assignments directly from the edge computing system. Based on these assignments,

they self-reconfigure, setting up new, tailored production flows as needed.

The implementation of MRS within smart factories presents a myriad of challenges,

several of which remain unaddressed in current literature:

• Productivity and Energy Efficiency : A fully automated MRS is anticipated to surpass

traditional production lines in both productivity and energy efficiency. While the

integration of Machine Learning (ML) techniques and AI computing at both the edge

and robotic levels is expected to autonomously optimize these performance metrics,

this remains an unresolved issue in current research.

• Uncertainty in JIT Production: By nature, JIT production isn’t wholly predictable,

introducing non-stationarities to MRS operations. This unpredictability challenges

prevalent ML techniques in literature, particularly those rooted in statistical assump-

tions.

• Operational Resilience of MRS : A novel aspect of smart factories is the operational

resilience of MRS. Enhanced by ML and AI applications, MRS can continuously func-

tion even amidst cyber-physical errors. In contrast, previous industrial generations

required scheduled maintenance and calibrations, which inevitably interrupted opera-

tions. Moreover, despite decentralized functioning, point failures within a smart fac-

tory’s MRS can be identified and localized, allowing for predictive maintenance without

halting production flows. This resilience, integral to modern smart factories, has yet

to be thoroughly explored in academic literature.
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• Data-Driven Approaches : Cutting-edge ML techniques have ushered in data-driven

methodologies. However, questions remain about the nature and methods of data

collection from the MRS operations.

• AI & ML in MRS Automation: While AI and ML have been subjects of extensive

research, the methodology to incorporate them effectively in automating MRS oper-

ations is still in its infancy. This leads us to the primary technical proposal of this

research: the cyber-physical AI agent system approach. While AI and ML represent

a toolkit of techniques, a cyber-physical AI agent actively engages with its surround-

ings across both digital and physical realms. These agents also collaborate with fellow

robots, aiming to achieve individual and collective objectives.

The contribution of this lies in both the technical and practical aspects of employing

Multi-Robot Systems (MRS) in a smart factory, aiming to identify and address new chal-

lenges including the need for an effective coordination mechanism with superior agility, pro-

ductivity, and energy efficiency under the complex multi-robot interactions, as well as the

operational resilience and integrity under unpredictable production demands and cyber-

physical errors.

From a technical perspective, a fundamental principle of my research is the application

of Artificial Intelligence (AI) and Machine Learning (ML) to cope with the complex chal-

lenges raised by MRS-driven smart factories. A cyber-physical AI agent system approach

is proposed, which resides at the intersection of foundational AI research, as outlined by

[89]. Furthermore, this research employs graph theory as an essential tool for modeling the

MRS and its operations. This mathematical technique offers a robust framework to map

out complex systems and their interactions, serving as a bridge to the fast adaptability of

AI and ML solutions. This modeling approach is elaborated in Section 3.1.

The proposed approach integrates the strengths of the rational agent framework, as

presented by [89], with augmented cybernetic attributes. This synthesis transforms robots

into holistic entities capable of advanced communication, perception, reasoning, predictive
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planning, and decision-making informed by domain knowledge. The graph model serves

as this domain knowledge, effectively acting as the “world model” posited by [58]. These

innovations substantially enhance AI and ML efficiencies, such as learning sample efficiency,

computational time, and accelerated learning. Moreover, this framework supports MRS

interoperability and communication efficiency, as detailed in Section 3.2 and 3.3.

In practical terms, as an electrical engineer and researcher, my overarching aim is to actu-

alize the theoretical aspirations of smart factories with MRS. I explore how the broader goals

of smart factories—namely flexibility, agility, productivity, energy efficiency, scalability, and

resilience—can be mapped onto specific MRS objectives. These include task assignment,

collaborative task execution, maximized production yield, and the maintaining of these per-

formance indices even under the presence of cyber-physical errors - resilient MRS operations.

The detailed MRS modeling is proposed in Section 1.3.

Chapter 3

Chapter 1

Smart factory goals: 
• mass customization
• on-demand manufacturing

New challenges:
• Complex robot interactions and dependencies
• Productivity, Energy (resource) efficiency
• Resilient operation with cyber-physical errors
• Adaptivity under non-stationarity environment

Networked, Heterogenous 
MRS with multiple real-time 
adjusted production flows

Edge-S

Domain knowledge as Graph models:
• Cyber-Physical Multi-Robot System model
• Hypergraph production robot model
• Multi-floor transportation model

Cyber-Physical AI Agent approach
• Graph model as domain model
• Problem-solving with knowledge-based 

reasoning, predicting and planning
• Learning to adapt to uncertainties

Collaborative Cyber-Physical AI Agent System
• Social learning – collaborative estimation
• Predictive coordination in complex collaborative-

competitive environment

Chapter 4 – 6: Solutions
• Hypergraph Search for Productive 

and Energy Effective Real-time 
Multi-Robot Task Allocation

• Predictive Path Coordination for 
Collaborative Transportation

• Operational Resilience and Integrity 
under Cyber-Physical Errors

Chapter 2: Preliminaries

Figure 1.1 The organization of the dissertation.

The organizational structure of the dissertation is outlined as follows.

In Chapter 1, with the previous sections’ elaboration of smart factory goals, Section 1.3

aligns these goals with MRS and real-time adjusted multiple production flows. On top of
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the challenges summarized earlier in this section, Section 1.4 discusses the new technical

challenges associated with implementing MRS in a smart factory and offers a comprehen-

sive literature review. Chapter 3 delves into the networked AI agents approach, integrating

domain models to facilitate intelligent decision-making to address the aforementioned chal-

lenges. This chapter also underscores the cyber-physical feature, which allows intelligent

agents to improve their behavior through active interaction with their environment. Sub-

sequent sections focus on specific methodologies: Section 3.1 explains how graph modeling

serves as the foundational technique for mathematically representing domain knowledge;

Section 3.2 proposes how a single AI agent utilizes both domain models and AI cognition

for problem-solving; and Section 3.3 elaborates on how multi-AI agents collaborate through

communications. Chapters 4 to 6 validate these methodological innovations with particu-

lar engineering problems, solutions, computational experiments and discussions. Figure 1.1

illustrates the above organization of the dissertation.

1.3 Multi-Robot System-Driven Smart Factories

Introduced by [19], [76], and [75], wireless networked Multi-Robot Systems (MRSs), which

comprise both production and transportation robots, are conceptualized as Cyber-Physical

Multi-Robot System (CPMRS) to be detailed in Section 3.1.1. As depicted in Figure 1.2,

both the cyber and physical domains utilize the same set of production robots as nodes.

However, edge computing is exclusive to the cyber domain. The cyber domain embodies

a wireless network that integrates distributed robot computing with edge computing. In

contrast, the physical domain represents a dynamic production flow network [126] that en-

compasses production robots, transportation robots, and raw materials.

In this configuration, edge computing serves as a central AI controller that dynamically

adapts the Multi-Robot Systems (MRS) to meet fluctuating production demands. It does

so through real-time task assignment and scheduling. These task assignments are centrally

orchestrated by the real-time Multi-Robot Task Allocation (MRTA) algorithm. Both produc-
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flows by computing 
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Cybernetic agents in Cyber-
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Autonomous
Reconfiguration

Autonomous 
adaptation
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Autonomous 
adaptation

Autonomous
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Figure 1.2 An MRS-driven smart factory with edge computing governing production robots
and transportation robots to form dynamic production flows.

tion and transportation robots are recipients of these centrally assigned tasks. However, the

actual execution of these tasks is done collaboratively and is decentralized, sometimes even

distributed across the network of robots. Consequently, the MRS operates in a dual man-

ner: decentralized in task execution and temporally collaborative to adapt to time-varying

production flows.

The CPMRS model grants smart factories significant flexibility and agility. Each robot

is uniquely equipped to execute specific tasks, allowing for frequent reconfiguration of pro-

duction flows. Edge computing addresses dynamic, on-demand production requirements by

calculating TAs in real time, which factors in productivity, resource efficiency, and resilience.

Consequently, multiple time-varying production flows exit the physical domain, highlighting

the unique position of edge computing in the cyber domain as it oversees and influences the

physical domain.

The concept of time slots is introduced to manage the task execution in Multi-Robot

Systems (MRS). In MRS, each robot is allocated specific tasks and possesses unique capabil-

ities, as well as differing multiplexing capacities. Production robots operate synchronously

by leveraging their multiplexing capabilities. Despite the variability in time required for

different production tasks, the synchronization is achieved by assigning specific multiplexing
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capacities to each robot [19]. As a result, within a single time slot, production robots can

handle multiple production flows. This is referred to as executing one task per time slot

with multiplexing capability. In contrast, transportation robots function asynchronously

at the task assignment level. These robots are allocated new transportation tasks as they

complete preceding ones, leading to continuous task execution [69]. Nonetheless, during

the actual task execution, transportation robots move in discrete navigation steps that are

synchronized. This synchronous movement allows for real-time adjustments, facilitating

collision-free navigation paths.

An MRS that combines production and transportation robots constitutes a heterogeneous

system, where the robots cooperate in specific robot-specific tasks and collaborate in the

overall production flows. Edge computing assigns each production or transportation task to

a corresponding production or transportation robot. In the physical domain, these robots

collaborate in a temporal-spatial manner: a production robot completes a task, producing

a semi-finished product, which a transportation robot then conveys to the next production

robot for further processing, and the cycle continues. Simultaneously, in the cyber domain,

the robots collaborate to make real-time adjustments to their task executions, optimizing

for productivity.

1.3.1 Production Robots for Customized Production Demands

Given a production demand that defines the product type, task type, and the number

of tasks needed to fabricate a product [30], edge computing is employed to execute the

MRTA (Multi-Robot Task Allocation) algorithm. This process generates task assignments

and then transmits reconfiguration directives, coupled with these assignments, to each robot

via wireless communications.

As demonstrated in Figure 1.3, this research assumes a heterogeneous MRS, meaning

that it involves multiple types of robots, with each type exclusively dedicated to a specific

production task. Practical production flows align with the task assignments provided to
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Figure 1.3 Temporal-spatial production robot model.

fixed-location production robots. The subsequent paths, indicated by arrows leading to

transportation robots, form a temporal-spatial operational model.

As depicted in Figure 1.3, an MRS comprising M types of production robots can be

represented by the tuple (M ,N,ω, εh, εv , εd).

Here:

• {N} = (N1,N2, ... ,Nm, ... ,NM) signifies that Nm type-m robots are positioned and

aligned at the top of the mth column, dedicated to type-m tasks.

• ω = (ω1,ω2, ... ,ωm, ... ,ωM) denotes the multiplexing capability of a production robot.

Specifically, type-m production robots can execute ωm type-m tasks concurrently within

a time slot, hinting at Multi-Task robots [35].

• Transportation is constrained to spatially adjacent production robot neighbors, whether

they are in columns, rows, or diagonals [41, 78]. The respective energy consumptions

for these transports are quantified by εh, εv , and εd .
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This setup distinguishes the spatial characteristics of the MRS based on the placements

of production robots, transportation constraints, and quantifications of energy consumption.

The temporal characteristic, on the other hand, is differentiated by the robot’s multiplexing

capabilities within a time slot.

Each production robot is identified by the label Rm,n where m = 1, 2, ... ,M and n =

1, 2, ... ,Nm.

Figure 1.3 showcases an MRS characterized by the following tuple, where the three unique

colored arrows distinguish the three types of transportation.

(M = 4,N = (3, 3, 4, 3),ω = (2, 1, 4, 3), εh, εv , εd)

As illustrated in Figure 1.3, the production demands are represented by the vector set

{λl}, where l specifies the product type. Given the established relationship between the

type of a production robot and the type of production task, manufacturing product-l can be

decomposed into a sequence of production tasks. These tasks are executed by the production

robots in ascending order and can be denoted by the vector λl = (λl
1,λ

l
2, ... ,λ

l
m, ... ,λ

l
M). Each

element in λl indicates the number of corresponding tasks needed to complete product-l .

It’s worth noting that while product-l might not necessitate every type of task for its

production, any given λl
m can be zero. However, the aggregate of all M elements in λl ,

represented as
∑M

m=1 λ
l
m, should exceed 0 to be valid.

Figure 1.3 presents the same MRS as seen previously with production demands given

by {λl} = {(2, 1, 4, 2), (1, 0, 6, 3)}. This illustration also includes a feasible, albeit non-

optimal, task assignment showcasing two chair-production flows (denoted as a(1) and a(2))

and a single bed-production flow (represented as b). A production flow is visualized using a

sequence of arrows, indicating transportation, and circled numbers, indicating task execution.

Different product types and production flows are differentiated using colors and shades,

respectively.
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Interestingly, while both a(1) and a(2) meet the production demand λa = (2, 1, 4, 3), they

differ in terms of the number of production robots used and the transportation pathways.

Specifically, a(2) employs one additional production robot and an extra transportation seg-

ment, necessitating an additional time slot for production. This makes a(1) a more optimized

production compared to a(2). The flexibility inherent in the temporal-spatial MRS model

is evident from the involvement of certain production robots in multiple production flows

(e.g., R3,3) and the segmented transportation paths based on layout.

The evolution of manufacturing processes, as outlined in the model, illustrates a shift

from static flows in traditional automated manufacturing systems to a flexible, temporal,

and sequential task execution process within MRS. The MRTA problem, as presented in this

study, aims to satisfy the production demands {λl} by allocating production tasks to indi-

vidual production robots Rm,n while adhering to task sequence constraints when determining

transportation paths.

Given the intricate dynamics of real-time application scenarios, the diversity of robot

and product types, the capabilities of multi-task robots [35], and the interwoven temporal

constraints, this unique MRTA problem can be categorized under “Complex Dependencies

[MT-SR-IA]” as described by [55]. Consequently, this categorization underscores the need

for a nuanced approach to effectively solve and optimize this problem, bearing in mind time

complexity considerations.

1.3.2 Transportation Robots Under Constrained Operation

When employing transportation robots to advance industrial autonomous transporta-

tion in a smart factory the autonomous navigation of transportation-MRS comprising au-

tonomous mobile robots (AMRs) is formulated as discrete navigation facilitated by decentral-

ized AI decision-making [3, 108]. As depicted in In Figure 1.2-(a) and (b), edge computing in

a smart factory performs real-time multi-robot task allocation (MRTA) [76] and dynamically

assigns production tasks to production-MRS according to production demands, which leads

13



to dynamic transportation task requirements to transportation-MRS. It allows the produc-

tion flows to change from a and b to c and d between time ta and tb, which is known as an

MRS reconfiguration [76]. Transportation task changes from MRS reconfigurations cannot

be reasonably predicted by an AMR since they involve executive-level decisions and customer

demands [116]. Potential collisions will happen when multiple AMRs are located at the same

location and intend to take the same navigation step, which can be resolved or avoided in

advance with the assistance of discrete navigation and thus referred to as potential collisions.

Consequently, 11 autonomous mobile robots (AMRs) in Figure 1.2-(a) and (b) are assigned

distinct tasks in a real-time, end-to-end manner. Therefore, breaking down the navigation

paths of AMRs into a series of smaller, discrete steps allows for more adaptable, flexible, and

efficient coordination [23, 67], as the AMRs can quickly adjust to avoid potential collisions

by re-routing their paths in real-time.

A transportation-MRS flexibly accomplishes transportation tasks by path planning ca-

pable of making real-time adjustments according to the requirement of production-MRS,

to achieve agile and flexible production in a smart factory. Contrasting to conventional in-

dustrial autonomous transportation, techniques such as conveyor belts, assembly lines, and

Autonomous Guided Vehicles (AGVs) are designed to handle static production flows. Once

such systems are tuned to satisfy efficiency and consistency, they lose the adaptability to

dynamic changes in production demands [46]. Moreover, unlike warehouse logistics with

AMRs, transportation tasks in smart factories do not begin or end at a single fixed location

and have precise due time because they are parts of production flows [7]. Literature such as

[1] and [122] formulate smart factory transportation as multi-path scheduling that optimizes

the delay and energy consumption. Yet, they cannot address the dynamic production flows

with the interaction of two MRSs. Further, [68] and [134] formulate the path following con-

trol for industrial AGVs but cannot address the path constraints from transportation tasks

and thus are inapplicable for smart factories.
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Figure 1.4 The smart factory transportation is formulated as discrete navigations in a
multi-floor model.

1.4 Technical Challenges and Literature Review

The challenges of employing multi-robot systems in a smart factory are identified in

this Section. First, superior flexibility brings complexity. While ideally, a multi-robot sys-

tem can execute time-varying tasks to form multiple real-time adjusted production flows,

classical task allocations or scheduling methods face the challenge of large complexity from

heterogeneity and inter-dependencies. Second, such complexity also leads to decentralized

task execution for the sake of scalability in terms of the number of robots. Such decen-

tralization brings new challenges of collaboration. Third, the cyber-physical nature of the
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AI computing-enabled multi-robot systems brings new challenges of operational resilience,

integrity and privacy preservation.

1.4.1 Complexity in Coordination

Section 1.3 introduces the flexible heterogeneous MRS to account for customized, time-

varying production demands. However, it introduces multiple dimensions of complexity in

coordination.

Firstly, the MRS under consideration is heterogeneous, comprising various types of both

production and transportation robots. This diversity necessitates addressing the coordi-

nation challenges posed by the Multi-Robot Task Allocation (MRTA) problem, with an

emphasis on sequential coordination to meet the specific production processes.

Historically, MRTA has been a critical theoretical facet of multi-robot coordination.

Much of the existing research on MRTA has been centered around static optimization ob-

jectives, particularly under assumptions of task independence which negate the imposition

of ordering constraints on tasks [35]. Traditional approaches to MRTA have framed it as a

combinatorial optimization problem. Consequently, solutions have ranged from linear pro-

gramming techniques, exhaustive search algorithms [29], genetic algorithms [2], to distributed

auction algorithms [44]. While these methods have demonstrated efficacy and optimality for

their intended objectives, they fall short when applied to smart factories. The inherent

need for task sequencing in production flows and real-time adaptability render static MRTA

suboptimal for such contexts.

Secondly, with the production demands being customized and time-varying, MRTA must

be adaptive enough to reconfigure multiple production flows. There have been attempts to

enhance the Multi-Robot Task Allocation (MRTA) taxonomy, taking into account the in-

terconnected utilities and constraints. This enhanced perspective posits that MRTA encom-

passes the intertwined challenges of task decomposition, task allocation, and scheduling [55].

This viewpoint aligns more congruently with the dynamics of smart factory settings.

16



[105] employs a graph-partitioning technique, aiming to optimize temporal efficiency,

factoring in spatial conflicts and computational time constraints. Meanwhile, [106] leverages

genetic algorithms to address temporal sequencing of tasks and to ensure collision-free path

planning. Further, [70] introduces a distributed multi-agent system, wherein agents engage

through a negotiation protocol, optimizing both localized and overarching objectives.

While the aforementioned studies address time and space constraints in various capaci-

ties, none offer a holistic solution tailored for smart factories. Such a solution would encom-

pass dynamic production demands, flexible production flows, energy efficiency, and robust

coordination—the central concerns of the present study.

Thirdly, MRTA is required to provide dual-agent, dual-objective, comprehensive opti-

mization that focuses on both production robot productivity and transportation robot en-

ergy efficiency. These optimizations should be considered in real-time application contexts,

factoring in the intricacies of wireless communication dynamics [19, 22].

[112] puts forward a dynamic multi-agent-based real-time task allocation strategy, draw-

ing on a bargaining-game-based negotiation mechanism. However, this approach is tailored

for a job-shop environment, rendering it inadequate for managing flexible production flows.

On the other hand, [26] presents a computationally effective stochastic conflict-based

allocation strategy that considers both temporal and spatial constraints. Yet, its reliance

on a single-agent policy tree search fails to meet the system-level performance optimization

that smart factories necessitate.

Meanwhile, [49] proposes a robust, negotiation-based distributed dynamic scheduling

mechanism for a multi-agent system. However, its robustness, as a feature, is not thoroughly

addressed or convincingly demonstrated.

Given the integration of edge computing and the diverse manufacturing dynamics across

sectors, it’s crucial to acknowledge that there isn’t a definitive balance between optimality

and computational time. Moreover, for optimal task assignments to be viable, their compu-

tation must be achieved in real time. This ensures that computational delays don’t threaten
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the stable functioning of the system. Addressing these manifold challenges is the primary

objective of the present study.

1.4.2 Collaborative Task Execution Under Decentralization

In the MRS-driven smart factory, which is discussed in Section 1.3, there is a unique

blend of centralized task assignments through edge computing and decentralized task execu-

tions. While this decentralization allows for distributed activities across the robot network,

the system still upholds temporal collaboration to fulfill larger goals. However, this struc-

tural duality introduces several challenges, especially when ensuring coordination between

production and transportation robots. This has sparked the need for a new multi-intelligent

robot system architecture.

First, adaptation to dynamic production flows. The smart factories of today require

real-time adjustments to dynamic production flows. Production robots often switch between

working concurrently and sequentially with different robot groups, catering to customized,

on-demand production needs. Traditional deterministic control or optimization methods fall

short in these dynamic environments [10, 16]. Current research primarily either hones in on

deterministic optimization strategies [74, 82] or ignores the dynamic aspect of production

flows entirely [13, 136]. A robust MRS should address several key areas including handling

dynamic production flows, maintaining scalable wireless communications with minimal re-

dundancy, regulating information exchange, providing accurate estimations, and fostering

inter-robot collaboration during tasks. Hence, an adaptive coordination mechanism is cru-

cial for these time-sensitive environments.

Second, edge computing and dynamic task assignments. Edge computing’s role is pivotal

in moderating the interactions between the production and transportation sectors of the

MRS. The nature of dynamic production flows can result in unexpected task assignment

changes. Therefore, the MRS must collectively make decisions on-the-fly to maintain con-

sistent performance. Though the Markov Decision Process (MDP) is renowned for modeling
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sequential decision challenges, its intricacy rises with the inclusion of more robots. Tradi-

tional multi-dimensional MDPs struggle with variable task durations and multiple conflicting

goals, leading to visibility issues. Several studies, like [81, 91, 7], employ MDPs for discrete

navigation but don’t thoroughly optimize transportation task performance.

Third, challenges of decentralized task execution. With decentralized task execution, in-

dividual robots often work without regard to their peers’ activities. This can be problematic,

given the importance of temporal collaboration. For production robots, the diverse range of

their abilities further complicates matters, making it a challenge to anticipate other robots’

actions. Transportation robots face their own set of issues. With vast shop floors, a mul-

titude of optimal or near-optimal paths are available. Predicting paths for all Autonomous

Mobile Robots (AMRs) becomes unfeasible, especially in multi-floor layouts, given the com-

putational restrictions. Some existing studies, such as [24] and [125], tackle multiagent

pickup and delivery challenges without the advantage of agent-based modeling. This results

in exponential growth in time complexity as the number of AMRs increases, complicating

the optimization process.

1.4.3 Reliability, Resilience and Privacy Preservation

As indicated by existing literature such as [119], as well as industry reports, the primary

concerns in the implementation of smart factories are reliability, resilience, and privacy. The

concept of reliability in this context refers to the ability of wireless networked multi-intelligent

robot systems to maintain operations even when errors occur, either in the physical or cyber

domain. Resilience pertains to the system’s capacity for error detection and correction,

ensuring that the performance of the Multi-Robot System (MRS) can be preserved and

restored. Lastly, privacy preservation is concerned with securing the data and models used

in Machine Learning (ML) and Artificial Intelligence (AI) techniques, protecting them from

unauthorized access.
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Particularly for production robots, estimating accuracy degradation poses a challenge.

This is due to the lack of immediate feedback from production flows and the global het-

erogeneity inherent to MRS. Requiring immediate feedback from downstream robots to up-

stream robots within every production flow imposes NP-hardness on wireless networked MRS

[94]. Moreover, because MRS are tasked with a variety of production functions, they ex-

perience differing rates and directions of accuracy degradation [36], which are not readily

known to the robots themselves. This heterogeneity creates significant technical challenges

for smart factories employing diverse MRS. Errors in task execution propagate along the

production flows, undermining the effectiveness of directly measuring unfinished products to

gauge a robot’s accuracy. Similarly, relying on edge computing to evaluate the quality of

finished products is insufficient for accurately assessing individual robot performance. Even

general stochastic optimization approaches, as discussed in [16] and [36], prove inadequate

for such coordination complexities. Thus, an intelligent MRS should collaboratively and

decentrally estimate the accuracy of peer production robots. This estimation can be accom-

plished through localized direct measurements and the exchange of information among the

robots within the MRS.

Moreover, even when MRS employs on-device machine learning techniques like Federated

Learning (FL) to circumvent the need for explicit data transmission, privacy concerns remain.

For instance, model inversion attacks can compromise privacy [133]. Attackers can intercept

the confidential data collected for local model updates by sniffing wirelessly transmitted

models. Once intercepted, these models can be used to predict original input data, thus

breaching privacy [47]. While unauthorized access to these models is a prerequisite for such

attacks, defending against them is challenging due to the difficulty in obfuscating the models’

predictions [40]. This makes the encryption of both global and local FL models crucial for

preserving privacy during model exchanges.

Additionally, the operational integrity of MRS-driven smart factories faces threats from

cyber attacks such as Sybil attacks [63]. In such attacks, fictitious clients are created to send
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malicious updates to edge nodes. These malicious ML updates are then aggregated with

updates from legitimate clients, resulting in a compromised global model [48]. Consequently,

Sybil attacks can effectively compromise FL operations even without gaining direct control

over the robots or edge nodes. When robots execute tasks using compromised models, it

not only jeopardizes the MRS operation but also introduces cyber errors that disrupt the

MRS. Further complications arise from inaccurate task execution parameters, which can

lead to defects in the finished products. Given that errors in flow-based manufacturing are

cumulative and propagate through the production line, identifying a compromised robot—or

even the spurious devices generating the malicious updates—becomes an immense challenge.
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Chapter 2: Preliminaries

This chapter serves as an introduction to the basis of knowledge that underpins the dis-

sertation. These concepts are not original contributions but are essential to the research

conducted. The chapter is divided into three primary sections: smart factory task envi-

ronments, problem-solving graphical algorithms, and stochastic optimization coupled with

machine learning.

The first section delves into the task environment of smart factories. It outlines the mul-

tidisciplinary considerations needed for modeling Multi-Robot System (MRS)-driven smart

factories, incorporating elements from robotics, automation, and industrial engineering.

The second section focuses on problem-solving graphical algorithms. These algorithms

were at the forefront of AI before the rise of machine learning and deep learning technologies.

The insights gained from these algorithms continue to offer valuable perspectives on problem-

solving within AI.

The third section addresses stochastic optimization and machine learning. These are

core theories that underlie data-driven and general-model-based learning approaches. Their

relevance extends to a wide array of applications, including but not limited to, robotics and

factory automation.

2.1 Smart Factory Task Environment

Task environments are essentially the “problems” to which rational agents are the “solu-

tions”. Here are some of the key factors that need to be considered in the task environment of

an MRS-driven smart factory in terms of performance, environment, actuators, and sensors

[89].
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The performance of an MRS in a smart factory is determined by a number of factors,

including the number of robots, the capabilities of the robots, the complexity of the tasks,

and the environment in which the robots are operating. In general, more robots will lead to

better performance, as they can collaborate to complete tasks more quickly and efficiently.

However, the additional robots also add complexity and cost to the system. The capabilities

of the robots are also important, as they must be able to perform the tasks required of

them. For example, if the robots are required to lift heavy objects, they will need to be

equipped with strong actuators. The complexity of the tasks also affects the performance

of the system. Simple tasks can be easily completed by a single robot, but more complex

tasks may require the cooperation of multiple robots. The environment in which the robots

are operating also plays a role in their performance. For example, robots that are operating

in a dusty environment will need to be equipped with sensors that can detect and avoid

obstacles.

The environment in which a MRS is operating can have a significant impact on its

performance. The environment can affect the robots’ ability to move around, the accuracy

of their sensors, and the reliability of their communication systems. Some of the factors that

need to be considered when designing a MRS for a particular environment include:

• The size and layout of the environment [130]: The robots need to be able to move

around the environment without colliding with each other or with obstacles.

• The cyber-physical error [80]: In the physical domain, the accuracy and precision of

actuators and sensors of the robots degrade over time, which can lead to defects; in

the cyber domain, the correctness of cyber operations can be compromised because of

bugs or even malicious attacks.

• The presence of other robots or humans [90]: The robots need to be able to safely

operate in an environment that is shared with other robots or humans. Actuators
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Actuators are devices that convert energy into motion. They are used to move the robots

around and to perform tasks such as picking and placing objects. The type of actuators that

are used in an MRS depends on the capabilities of the robots and the tasks that they are

required to perform. Some of the common types of actuators used in MRSs include:

• Electric motors [52]: Electric motors are the most common type of actuator used in

robots. They are relatively inexpensive and reliable, and they can be used to power a

variety of movements.

• Hydraulic actuators [77]: Hydraulic actuators are more powerful than electric motors,

but they are also more expensive and complex. They are often used in robots that

require a lot of force, such as robots that are used to lift heavy objects.

• Pneumatic actuators [5]: Pneumatic actuators are powered by compressed air. They

are less powerful than hydraulic actuators, but they are also lighter and less expensive.

They are often used in robots that need to be lightweight, such as robots that are used

in space exploration.

Sensors are devices that detect and measure physical quantities such as the position,

velocity, and acceleration of the robots. They are also used to detect obstacles and other

objects in the environment. The type of sensors that are used in a MRS depends on the

tasks that the robots are required to perform. Some of the common types of sensors used in

MRSs include:

• Cameras [93]: Cameras are used to detect objects and to track the position and move-

ment of the robots.

• LiDAR sensors [45]: LiDAR sensors use laser light to measure the distance to objects.

They are used to create a 3D map of the environment, which can be used by the robots

to plan their movements.
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• Proximity sensors [52]: Proximity sensors detect objects that are close to the robots.

They are used to prevent the robots from colliding with obstacles.

• Inertial measurement units (IMUs) [9]: IMUs measure the orientation and acceleration

of the robots. They are used to track the robots’ movements and to maintain their

balance.

The task environment of a MRS-driven smart factory is a complex and challenging one.

The factors that affect the performance of the system are numerous and varied. By carefully

considering all of these factors, it is possible to design a system that is capable of performing

tasks efficiently and effectively.

2.2 Problem-solving Graphical Algorithms

Artificial Intelligence (AI) represents an interdisciplinary field at the intersection of com-

puter science, mathematics, and engineering, with the aim to develop intelligent agents

capable of performing tasks that would otherwise require human intelligence. A core area

of focus within AI is problem-solving, which encompasses methods for searching through a

large space of potential solutions to find one that meets the specified objective. This section

focuses on four fundamental graphical algorithms that I employed throughout my research:

shortest path search, random walks, maximum flow heuristic and constraint satisfaction

problem.

2.2.1 Shortest Path Search

A graph G is defined as G = (V ,E ), where V is a set of vertices (or nodes) and E is a set

of edges (or links) connecting these vertices. Each edge e may have an associated weight ε.

The concepts of simple path, path and walk are important to interpret this dissertation. A

walk is a sequence of nodes and links in a graph. The links in a walk can be repeated, and

the nodes can be repeated, but the first and last nodes must be different. A transportation
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robot’s task execution is a walk since it might include repeated nodes and links but the first

and last nodes are different. A path is a walk in which no vertex is repeated. This means

that no links can be repeated either since an edge connects two nodes. A simple path is a

path in which the nodes are also all distinct. This means that no vertex appears more than

once in the path. The production flow of a smart factory is a simple path since it does not

include repeated nodes and links.

Here are some examples of walks, paths, and simple paths:

• The sequence (A, B, C, B, A) is a walk, but it is not a path because the vertex B

appears twice.

• The sequence (A, B, C, D) is a path, but it is not a simple path because the vertex A

appears twice.

• The sequence (A, B, C, D, E) is a simple path.

A shortest path search algorithm is a method for finding the shortest path between two

nodes in a graph. The graph can represent a physical space, such as a city map, or a more

abstract space, such as a set of possible states in a problem-solving domain. Some well-known

shortest-path search algorithms are introduced as follows

Breadth-first search (BFS) explores all the nodes at the present depth before moving

on to the nodes at the next level of depth. It is generally implemented using a queue.

BFS is complete and guarantees a shortest-path solution when all edge costs are uniform.

Depth-first search (DFS) explores as far as possible along each branch before backtracking.

Implemented using a stack, DFS is not guaranteed to find the shortest path. It is, however,

memory-efficient compared to BFS. Dijkstra’s algorithm finds the shortest path from a source

vertex to all other vertices in a weighted graph. It is complete and optimal but cannot handle

graphs with negative edge weights. A* (A-star) algorithm is an informed search algorithm

that uses a heuristic to estimate the cost from the current node to the goal. This allows A*
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Table 2.1 Comparison of shortest path algorithms

Algorithm Completeness Optimality Time Complexity Space Complexity
BFS Yes Yes O(V + E ) High
DFS Yes No O(V + E ) Low

Dijkstra’s Yes Yes O(V logV + E ) Moderate
A* Yes Yes O(V logV ) Moderate

to search in the direction of the goal, thereby often achieving faster solutions than BFS or

Dijkstra’s Algorithm.

2.2.2 Random Walks

Random Walk algorithms, particularly in the domain of graph-based models, have gained

significant importance in various fields like network analysis, machine learning, and artificial

intelligence [121, 129]. One of the well-known and employed algorithms in this dissertation

is Node2Vec [37], which utilizes random walks to create feature representations for nodes

in a graph. The aim is to generate embeddings that could be useful for a variety of graph

analysis tasks, such as classification, clustering, and link prediction.

In graph theory, a random walk is a stochastic process comprising movements from one

node to another in a graph, generally with equal probability. A simple random walk on a

graph G = (V ,E ) could start from an initial node v and move to a neighboring node chosen

at random. This walk can continue indefinitely or stop after a set number of steps.

Node2Vec extends the generic Skip-Gram model in Natural Language Processing (NLP)

to the realm of graphs. It considers each random walk as a sentence and each node as a

word within that sentence. The algorithm aims to optimize the embeddings such that the

nodes that are more likely to co-occur in these walks are closer in the feature space.

Given a node u, the objective is to maximize the log-likelihood of the neighborhood,

formulated as (2.1) Here, f (u) and f (v) are the feature representations of nodes u and v ,

respectively, and N(u) is the neighborhood of u.
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max
f

∑
u∈V

log
∏

v∈N(u)

e f (u)·f (v)∑
n∈V e f (u)·f (n)

(2.1)

Node2Vec introduces two hyperparameters, p and q, to guide the random walk. While p

controls the likelihood of revisiting the previous node, q influences the likelihood of exploring

distant parts of the graph.

The Node2Vec algorithm typically involves the following steps:

1. Random Walk Generation:

Generate random walks starting from each node, guided by

parameters p and q

2. Optimization:

Use the generated random walks as input sequences for

a Skip-Gram model and optimize the objective function to

learn the node embeddings

Node2Vec provides a flexible and efficient methodology for learning feature representa-

tions of nodes in a graph. By leveraging the foundation of random walks and Skip-Gram

models, it creates meaningful embeddings that can be used in a myriad of machine learning

and network analysis tasks.

2.2.3 Maximum Flow Problem

The Maximum Flow problem [27] is an optimization problem that deals with finding the

largest possible flow in a flow network from a source node to a sink node. This problem has

been studied extensively and is applicable to a variety of domains including transportation,

logistics, and telecommunications. Various algorithms exist for solving this problem, such

as the Ford-Fulkerson and Edmonds-Karp algorithms.

Given a directed graph G = (V ,E ) with source node s and sink node t, each edge (u, v)

has an associated capacity c(u, v). The goal is to find a flow f (u, v) such that:
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1. Capacity Constraints: 0 ≤ f (u, v) ≤ c(u, v)

2. Conservation of Flow:
∑

u∈V f (u, v) =
∑

u∈V f (v , u) for all v ∈ V \ {s, t}

3. Maximize f =
∑

v∈V f (s, v)

The Ford-Fulkerson algorithm iteratively augments the flow along feasible paths from the

source to the sink until no such paths remain.

1. Initialize flow f(u, v) = 0 for all (u, v) in E

2. While there exists a path p from s to t in the residual graph:

a. Find bottleneck capacity b on path p

b. Augment f along path p by b

3. Return f

The term “heuristic” in Maximum Flow generally refers to techniques that offer practical

solutions by trading off optimality for computational efficiency. For instance:

• Preflow-Push Algorithms: Instead of finding augmenting paths, these algorithms main-

tain a “preflow” and iteratively push flow towards the sink.

• Capacity Scaling: Prioritize paths with higher capacities to minimize the number of

iterations.

The Maximum Flow heuristic provides an efficient and practical approach to solving a

myriad of problems in various domains. Its versatility and adaptability make it a cornerstone

in the realm of optimization algorithms.

2.2.4 Constraint Satisfaction Problem

The Constraint Satisfaction Problem (CSP) [89] has been recognized as a fundamental

concept in artificial intelligence, computer science, and operations research. The versatility
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of CSPs makes them applicable in various domains such as scheduling, planning, vehicle

routing, and natural language processing.

A Constraint Satisfaction Problem is formally defined as a triple CSP = (X ,D,C ), where:

• X = {x1, x2, ... , xn} is a set of variables.

• D = {D1,D2, ... ,Dn} is a set of domains, one for each variable.

• C = {C1,C2, ... ,Cm} is a set of constraints.

A domain, Di , consists of a set of allowable values {v1, ... , vk}, for variable Xi . Different

variables can have different domains of different sizes. A constraint Ci is a relation involving

a subset of variables that specifies the allowable combinations of their values. Constraints

can be represented as equations, inequalities, or tables of allowed values.

Backtracking is a depth-first search algorithm for solving CSPs. It incrementally builds

solutions by choosing values for one variable at a time and backtracks when a variable has no

legal moves. Algorithms like Hill-Climbing and Simulated Annealing can be used for solving

CSPs. These algorithms start with an initial assignment and move to neighboring states

by altering the value of one or more variables. Techniques like Forward Checking and Arc

Consistency are used to reduce the domain of the variables, thereby simplifying the problem.

Constraint Satisfaction Problems offer a general framework for modeling and solving

combinatorial problems. They have numerous applications in various fields, making them a

critical subject in the study of optimization and artificial intelligence.

2.3 Stochastic Optimization and Machine Learning

Stochastic optimization and machine learning are interdisciplinary fields that focus on

finding optimal solutions in systems with uncertainty. In machine learning, one of the

paradigms that heavily employs stochastic optimization is Reinforcement Learning (RL).
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2.3.1 Stochastic Optimization

In optimization, the objective function is the quantity that we are trying to minimize

or maximize. The constraints are the restrictions that the solution must satisfy. Stochastic

optimization deals with optimizing objectives that are subject to stochastic (random) vari-

ations. This is in contrast to deterministic optimization, where the objective function and

constraints are known exactly. Formally, a stochastic optimization problem can be defined

as (2.2), where f : X × Ξ → R is the objective function, x is the decision variable, ξ is a

random variable with a known probability distribution, and X is the feasible set for x.

min
x∈X

E[f (x, ξ)] (2.2)

In stochastic optimization, Gradient Descent (GD) and its variant, Stochastic Gradient

Descent (SGD), are widely used algorithms. Gradient descent and stochastic gradient descent

are both iterative optimization algorithms used to find the minimum of a function. Gradient

descent works by starting with an initial guess for the minimum of the function and then

iteratively updating the guess in the direction of the negative gradient of the function. The

gradient of a function is a vector that points in the direction of the steepest ascent of the

function. By moving in the direction of the negative gradient, we are moving in the direction

of the steepest descent of the function. Stochastic gradient descent is a variant of gradient

descent that uses only a single data point at a time to update the guess for the minimum

of the function. This makes it more efficient than gradient descent, but it can also be less

accurate. The updated rule for GD and SGD are given by (2.3a) and (2.3b), respectively,

where ξt is a sample drawn from the distribution of ξ at iteration t.

xt+1 = xt − α∇f (xt) (2.3a)

xt+1 = xt − α∇f (xt , ξt) (2.3b)
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2.3.2 Machine Learning

Machine learning algorithms often involve optimization problems, where the objective

function J(θ) represents a loss or cost, and θ are the parameters to be optimized.

Reinforcement Learning (RL) [100] is a subfield of machine learning focused on learning

optimal policies in environments with stochastic dynamics. In RL, learning agents improve

their behavior in an environment by trial and error. The agent interacts with the environment

and receives rewards or punishments for its actions. The RL problem is usually modeled as a

Markov Decision Process (MDP), defined by the tuple (S ,A,P ,R), where S is the state space,

A is the action space, P is the state transition probability, and R is the reward function.

Stochastic optimization is a key component of reinforcement learning. The agent uses

stochastic optimization algorithms to update its policy, which is a mapping from states to

actions. The policy is updated so that the agent is more likely to take actions that lead to

high rewards.

One popular algorithm in RL is Q-learning, which aims to learn the action-value function

Q(s, a) that represents the expected return (cumulative discounted reward) of taking action

a in state s. The update rule for Q(s, a) is:

Q(st , at)← Q(st , at) + α
(
rt+1 + γmax

a
Q(st+1, a)− Q(st , at)

)
(2.4)

Another important class of algorithms in RL is policy gradient methods. These algo-

rithms directly parameterize the policy πθ(a|s) and update the parameters θ to maximize

the expected return (2.5), where τ is a trajectory and R(τ) is the return of τ . The policy

gradient is computed as (2.6).

J(θ) = Eτ∼πθ
[R(τ)] (2.5)
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∇J(θ) = Eτ∼πθ

[
∞∑
t=0

∇θ log πθ(at |st)R(τ)

]
(2.6)

Actor-Critic methods combine the best aspects of value-function methods like Q-learning

and policy-based methods like policy gradients. The “Actor” updates the policy in the

direction that increases the expected return, while the “Critic” estimates the value function

that guides the Actor’s updates. Mathematically, the Actor updates the policy πθ(a|s) using

the Critic’s estimation V (s) or Q(s, a) of the state-value or action-value function by (2.7a).

The Actor’s policy πθ(a|s) is updated using gradients that consider the Critic’s value by

(2.7b) The Critic’s value function Vw(s) or Qw(s, a) is updated using Temporal Difference

(TD) error by (2.7c) By combining the strengths of both value-function and policy-based

methods, Actor-Critic algorithms are often more stable and efficient than either approach

alone.

∇J(θ) = Es∼ρ,a∼π [∇θ log πθ(a|s)Qw(s, a)] (2.7a)

δt = rt + γVw(st+1)− Vw(st) (2.7b)

Vw(st)← Vw(st) + αδt (2.7c)

Stochastic optimization serves as the backbone for many machine learning algorithms,

particularly in reinforcement learning, where the aim is often to find optimal policies in

uncertain environments. Various algorithms like Q-learning, policy gradient methods, and

Actor-Critic methods offer different approaches to solving these challenging problems.
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Chapter 3: Fast Adaptive AI Agent System with Domain Model

When it comes to Artificial Intelligence, a commonly acknowledged definition is around

rationality [89]. Multiple approaches are explored, such as the Turing test approach, cog-

nitive modeling approach, and the “laws of thought” approach. This study focuses on the

cyber-physical AI agent approach, which is coherent with the production robots and trans-

portation robots introduced in Chapter 1 and Section 3.1.

The concept of cyber-physical AI agent intersects between cybernetic agent and rational

agent. An agent is an entity existing in either the physical domain or cyber domain (virtual

agent) that acts to the environment through a form in its domain. A cybernetic agent

approach is the interdisciplinary study of systems, control, and communication in animals,

machines, and organizations [15]. A rational agent approach [89] involves decision-making

(acting) to achieve the best outcome or the best-expected outcome under uncertainties.

Thus, a cyber-physical AI agent focuses on the adaptive interactions between an agent and its

changing environment with cyber-physical interactions achieving the best-expected outcomes

considering factors such as beliefs, desires, and intentions. It perceives the environment

through sensors and communications and makes rational action decisions to the environment

through actuators for the best-expected outcomes and receives causal feedback. This study

refers to “cyber-physical AI agent” as “AI agent”, or just “agent”, “robot” for simplicity.

The central AI cognitive functions explored in this study are knowledge, perception, rea-

soning, predicting, planning, learning, decison-making and communication. These topics will

be elaborated upon in the subsequent sections. But first, it is important to understand the

concept of the domain model and its relationship with knowledge-based agents. Although a

majority of AI research emphasizes the accuracy and optimality of an agent’s decision-making
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capabilities to achieve the best-expected outcomes, the reality of practical AI applications

requires a broader view. Specifically, factors such as efficiency, effectiviy and reliability also

come into play. As a result, traditional training techniques often employed in AI, whether

they are online methods like model-free reinforcement learning or offline methods such as

imitation learning and offline reinforcement learning, may not be fully adequate for practical

implementations. These approaches may fall short when the requirements extend beyond

mere accuracy and optimality to include scalability, computational efficiency and real-world

robustness.

Online training techniques like model-free reinforcement learning methods, including

multi-agent reinforcement learning [131], offer the advantage of not needing a pre-defined

domain model. They learn directly from interactions with the environment, granting them a

degree of flexibility especially useful when the environment isn’t fully understood. However,

these online methods often have slower learning curves, particularly in intricate and com-

plex settings. They are also more susceptible to data noise and bias, which can hold back

their performance. In the early stages of training, agents are prone to making errors. In a

smart factory setting, such mistakes could have severe consequences, ranging from equipment

damage and compromised product quality to potential injuries to workers. Furthermore, an

inadequately trained agent may fail to discover the optimal policy for navigating its envi-

ronment, leading to issues like diminished productivity and increased operational costs.

Offline reinforcement learning methods, as surveyed in [84], learn from a dataset of previ-

ously recorded experiences, eliminating the need for real-time interaction with the environ-

ment. This can be more efficient than online training techniques. However, the effectiveness

of offline methods heavily depends on the quality and representativeness of the dataset. If

the dataset is either insufficient or not reflective of the actual operational environment, the

trained agent may fail to learn the optimal policy for action. Moreover, gathering data

from real-world factories presents its own set of challenges. The factory setting is typically

noisy and chaotic, making accurate data collection a complicated task. In addition, security
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concerns around operational data may deter factories from participating in data collection

efforts, as this information is often sensitive and with restricted access. This can lead to

expensive and time-consuming data collection processes, further complicating the training

of agents for practical applications.

The domain model approach underscores the necessity of leveraging context-specific or

even expert knowledge to develop efficient and reliable AI applications. A domain model

serves as a comprehensive representation of various elements relevant to a specific context.

This can include knowledge about the environment, state space (perception), action space,

training trajectories (sequences of actions), and other agents in MAS or MRS. The domain

model embodies various entities, concepts, relationships, processes, rules, and constraints.

These components together facilitate the various cognitive functions of AI agents, such as

reasoning, predicting, planning, learning, decision-making, and communication. In the con-

text of smart factories and advanced manufacturing, a domain model might encapsulate a

range of crucial information. This could include the shop floor layout, the diverse types

of robots and machinery in operation, the products under manufacturing, and the overall

production processes and flows. By doing so, it provides a structured framework that aids

in the complex task of maintaining and optimizing smart factory operations.

The efficiency of involving domain models in AI agents, particularly in environments

where collecting large datasets is impractical or too costly, can be a significant advantage.

Some of the specific benefits this approach offers, especially in the context of MRS-driven

are as follows:

• Model Size and Complexity : Deep learning models, particularly those at the state-of-

the-art level, are inherently resource-intensive, necessitating substantial computational

power for both training and inference phases. This poses a challenge in Multi-Robot

Systems (MRS) environments, where computational resources are often constrained.

In contrast, domain models offer a more lightweight alternative. These models incorpo-

rate predefined rules and constraints, thereby facilitating the design of smaller neural
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networks. Consequently, fewer training steps are needed to capture the uncertainties

that are not explicitly handled by the domain models.

• Faster Training : Deep learning models typically require large amounts of data and

extensive training time to reach peak performance. In contrast, a domain model can

often start producing reasonable, near-optimal and even optimal solutions. This is

particularly useful in a smart factory setting where quick adaptability to changes is

crucial.

• Rule-based Constraints : Domain models are excellent at incorporating hard and soft

constraints into decision-making processes. This is incredibly useful in an MRS context

where, for example, robots might have to respect spatial constraints or production

timelines. Deep learning models can struggle to incorporate such rule-based logic

without complex architecture designs or loss functions.

• Scalability : As mentioned in Chapter 1, scalability is a challenge when it comes to

applying large models in MRS. The size and complexity of deep learning models of-

ten make them difficult to deploy in a distributed system comprising multiple agents

with limited computational resources. Domain models can more easily scale with the

system’s needs, offering a more resource-efficient solution.

• Transparency and Interpretability : Domain models often provide more transparent and

interpretable decisions compared to deep learning models. In environments like smart

factories, where safety and reliability are critical, being able to understand and trace

the decision-making process can be vital.

The trade-off is often in the fine-grained, nuanced decision-making that large, well-trained

neural networks can provide. However, for many practical applications in smart factories,

the “good enough” solutions provided by a well-designed domain model might be entirely

sufficient, especially factoring in the non-stationarity. The efficiency gains can make this

approach more practical for real-world implementation.
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The challenges of using domain models in various applications largely arise from their

inherent complexity, the necessity for regular updates, and their risk of becoming obsolete if

foundational assumptions change. However, adopting graph models as domain models could

serve as a viable solution to mitigate some of these challenges. One of the most compelling

features of graph models is their ability to address complexity effectively. Unlike monolithic

domain models, which often necessitate a deep understanding of numerous nuances, graph

models break down the complex system into a network of nodes (representing entities) and

links (representing relationships). This modular structure allows for easier management and

the ability to add, modify, or remove specific components without disrupting the overall

system.

In addition to simplifying complexity, graph models offer the advantage of being dy-

namically updatable. Traditional domain models may require extensive modifications in

response to environmental changes, but graph models facilitate more straightforward up-

dates—sometimes as simple as adding or removing a node or link. This adaptability is

particularly beneficial in fast-evolving settings, such as smart factories, where the ability to

swiftly adjust to new conditions is crucial.

Here are some specific examples of how domain models with ML and AI methods can be

used to resolve MRSs or MASs problems in smart factories or smart manufacturing:

• Path planning : ML can be used to learn the optimal paths for robots to take through

the factory, taking into account the obstacles, the other robots, and the current state

of the production processes.

• Collaboration: AI can be used to develop algorithms that allow robots to collaborate

with each other to complete tasks. For example, robots could be programmed to

share information about their locations and tasks, so that they can avoid collisions

and optimize their movements.
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• Scheduling : AI can be used to develop scheduling algorithms that can take into account

the uncertainty and dynamicity of the factory environment. For example, algorithms

could be developed that can re-schedule tasks if a robot breaks down or if a new

production demand arrives.

• Reactive control : AI can be used to develop reactive control algorithms that allow

robots to respond to unexpected events in the factory environment. For example,

robots could be programmed to detect and avoid obstacles, or to react to changes in

the production process.

This chapter is extended from domain knowledge modeled as graphs, to single intelligent

robots, and then to the cyber-physical AI agent system that addresses the challenges in

smart factories.

3.1 Domain Knowledge of MRS as Graph Models

Graph modeling is a technique that uses graphs [11] to represent, analyze, and interpret

complex systems and networks. In a graph model, nodes (or nodes) represent entities,

and edges (or links) represent relationships or interactions between entities. This form of

modeling is particularly useful for systems in which the structure and relationship between

components are important features.

Meanwhile, both use graphs, a commonly known concept of graphical modeling is a

technique in statistics and machine learning where graphs are used to represent probabilis-

tic relationships among a set of variables. The graph serves as a compact and intuitive

representation of the conditional dependencies and independencies between variables. This

differs from graph modeling, which is more general and can represent any kind of relationship

between entities, not just probabilistic ones.

Although the author employs both in research, this chapter’s scope is using graph and

graph theory to mathematically represent the MRS-driven smart factory. Graph models can
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be used to represent the interactions and dependencies between robots, the environment,

and other entities, and to analyze, reason and predict the system’s behavior. However, there

are a number of challenges in using graph models for MRS and MAS in smart factories.

Graph models face several challenges when applied to MRS and MAS, particularly in

the context of smart factories [98]. Firstly, scalability becomes a major issue. As the num-

ber of robots and other elements within the system expands, the graph model also grows

exponentially in size. This increased complexity presents challenges in terms of storage,

manipulation, and analysis of the model. Secondly, environmental uncertainty adds an-

other layer of complexity [51]. The ever-changing conditions in a smart factory can make it

challenging to encapsulate the nuanced interactions between robots and their surroundings

within a graph-based representation. Lastly, traditional graph models are often inadequate

in capturing the dynamics of MRS and MAS [98]. While they excel in representing static

relationships, they fall short in portraying temporal variations and dynamic interactions.

To overcome these challenges, several strategies are being explored. One approach involves

the development of lightweight graph models tailored for scalability and computational effi-

ciency. Another alternative is the use of probabilistic graph models capable of accounting for

environmental uncertainties. Researchers are also working on novel graph models designed

to capture the dynamic aspects of MRS and MAS.

Three graph models are presented in this chapter. They are based on the MRS-driven

smart factory’s main components, production robots, transportation robots and wireless

networks. These three models are proposed to resolve multiple engineering problems in-

cluding finding the optimal task assignments for both production robots and transportation

robots with optimized productivity and energy efficiency; facilitating communication for col-

laboratively production task execution against actuator errors; and facilitating optimal and

near-optimal transportation task execution planning.

These models allow mathematical representation of the spatial environment of smart fac-

tories, complex heterogeneous MRS and its multiple dynamic production flows in operation.
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These graph models can be further vectorized and used for ML and AI techniques to solve

the engineering problems mentioned above. On the other hand, they allow analysis of mul-

tiple production flows in the physical domain, wireless communications and topology in the

cyber domain and their interactions in the cyber-physical domain.

3.1.1 Cyber-Physical Multi-Robot System (CPMRS) Model

This section introduces the Multi-Robot Systems (CPMRS) model, a framework de-

signed to enable effective coordination within smart factories featuring Multi-Robot Systems

(MRS). As discussed in Section 1.3, the MRS in smart factories exhibit inherent complex-

ities such as time-dynamic production flows and system heterogeneity. These complexities

introduce non-stationarity into the system, making deterministic solutions less effective.

Therefore, a non-deterministic, decentralized AI computing approach is required. CPMRS

aims to facilitate MRS coordination in a decentralized manner. It does so by dynamically

leveraging information from edge computing and the MRS itself. By regulating the gath-

ering and exchange of this real-time data, CPMRS makes it possible to perform effective

coordination via AI computing.
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Figure 3.1 An example of CPMRS with an edge server, 8 production robots and 3
transportation robots.

41



The CPMRS model features a dual-layer network architecture comprising:

• Physical Domain Gphy : Represents real-time physical interactions among MRS, in-

cluding the Multi-Robot Task Allocation (MRTA) to handle time-dynamic production

flows. In this domain, an upstream robot’s output serves as input for a downstream

robot.

• Cyber Domain Gcyb: Focuses on wireless network communications and social commu-

nications among the MRS for information exchange and AI computing.

As illustrated in Figure 3.1, both the physical and cyber domains share a common set

of nodes, representing heterogeneous production robots. This forms a cohesive, dual-layer

model. To enrich the model with additional domain-specific information, an extra layer,

denoted as Gfloor, can be incorporated. As shown in Figure 3.1, this third layer consists of both

production and transportation robots, thereby capturing the dynamics of transportation

task execution. Furthermore, CPMRS can exhibit time-varying behavior, as indicated by

the superscript t in G t
phy, G

t
cyb, and G t

floor. This temporal notation allows the model to adapt

its topology in response to changes in MRS operations.

In the physical domain, multiple, time-varying production flows serve as crucial compo-

nents. Referring to the various transportation path segments outlined in Section 1.3, each

production flow consists of an alternating sequence of nodes and links. The configuration of

these flows can be dynamically adjusted through MRTA mechanisms.

The cyber domain is largely dependent on wireless networks. The network topology could

be either fully connected or partially connected, depending on the specific engineering chal-

lenges at hand. A fully connected topology implies that every node is directly linked to every

other node in the network. While this offers the advantage of direct communication between

all pairs of nodes, it also has downsides. Namely, the implementation and maintenance costs

are high, and the number of required links grows quadratically with the addition of nodes,

making the topology impractical for large networks. On the other hand, a partially connected
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social topology only necessitates that some nodes are directly connected. Such topologies are

prevalent in real-world social networks like Facebook and Twitter, where not all users are

interconnected. The degree of connectivity can vary, ranging from nodes connected to only

a few other nodes to nodes with many connections.

In the physical domain, dynamic, time-varying production flows serve as critical compo-

nents. As elaborated in Section 1.3, each production flow is characterized by an alternating

sequence of nodes and links. These flows can be flexibly configured using MRTA to adapt

to real-time needs.

The cyber domain predominantly relies on wireless networks, the topology of which could

be either fully connected or partially connected based on the engineering challenges being

addressed. A fully connected topology signifies that every node in the network is directly

linked to all other nodes. Although this setup facilitates immediate communication between

any two nodes, it comes with drawbacks such as elevated implementation and maintenance

costs. Additionally, the number of required links increases quadratically as nodes are added,

rendering it unsuitable for large-scale networks.

Contrastingly, a partially connected social topology requires only some nodes to be directly

linked. This type of topology is commonly found in real-world social networks like Facebook

and Twitter, where not all users are interconnected. The degree of connectivity can be

adjusted, with some nodes having only a few connections and others having many.

Considering the scalability limitations and impracticality of maintaining a fully connected

topology for complex MRS operations, subsequent chapters advocate for adopting a partially

connected social topology within the CPMRS model. This approach aligns well with the

inherent characteristics and capabilities of production robots, featuring a stochastic, partially

connected framework that allows for adaptable and flexible robot interactions.

In the CPMRS framework, wireless communications are subject to specific timing and

informational constraints. These constraints effectively transform the communication process

into a social interaction paradigm among AI-enabled robots.
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3.1.1.1 Physical Domain

Initially introduced in Section 1.3, a heterogeneous MRS is characterized by (M ,N,ω),

with individual production robots denoted by Rm,n, where m = 1, ... ,M , n = 1, ... ,Nm, and

Nm ∈ N. The parameter M distinguishes heterogeneity based on the robots’ properties,

such that type-m robots only execute type-m production tasks. N = (N1, ... ,Nm, ... ,NM)

characterizes the number of each type of production robot, with two robots considered

adjacent if their numbers differ by one.

A finished product is processed from raw material and transported along a series of het-

erogeneous production robots by transportation robots in smart factories, forming a discrete

production flow. Consequently, the completion of products involves the collaboration of var-

ious groups of production robots in MRS in a temporal-spatial manner. MRTA composes

such production flows to ensure required sequential processes for product completion, while

dynamically adjusting production flows to enhance productivity and energy efficiency. Com-

pared to factory automation, which employs dedicated robots for static production flows a

heterogeneous MRS endows a smart factory with flexibility and agility.

The physical domain network, G t
phy = (Rm,n,Et

phy ), treats each production robot as a

node and time dynamic production flows (3.1a) as links, given by (3.1b). Time-dynamic

production flows are therefore time-dynamic simple paths, or physical domain topology,

distinguished by time slot t in G t
phy , which is vectorizable domain knowledge for AI computing

from edge computing. The MRS operates with time-slotted synchrony in the unit time slot

denoted by t, which represents the smallest unit of task execution and production flow

adjustments.

ρl = (Rm1,n1 ,Rm2,n2 , ... ,Rmi−1,ni−1
,Rmi ,ni ) (3.1a)

G t
phy = ({Rm,n},Et

phy ← {ρ1,ρ2, ... ,ρl , ... }) (3.1b)
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Figure 3.2 illustrates a physical domain network consisting of 12 robots capable of per-

forming four types of production tasks. Governed by MRTA, these robots collaborate to

manufacture a variety of products. As a production flow change occurs at t2, the links in

G t1
phy are altered to the links in G t2

phy . From t = t1 to t = t2, R2,2 participates in two produc-

tion flows at both time periods but collaborates with different groups of robots and processes

distinct products. Simultaneously, although G t1
phy and G t2

phy share the same “bed” product,

the production flow is adjusted to accommodate the new “couch” production demand. These

complex physical time dynamics are achieved through MRTA and are investigated by [76].

Consequently, in this chapter, we do not distinguish product denotation l with a time index.
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Figure 3.2 A CPMRS with a physical domain consisting of multiple time-varying
production flows and a cyber domain consisting of a partially connected social topology.

3.1.1.2 Cyber Domain

In the cyber domain of the proposed CPMRS model, production robots engage in infor-

mation exchange through Robot-to-Infrastructure-to-Robot (R2I2R) communications [42]

and receive task assignments from the edge computing via Robot-to-Infrastructure (R2I)

45



communications. This process enables adaptive and collaborative coordination through AI

computing.

Due to the decentralization and agent-based modeling inherent in MRS, as well as the

scalability concerns that prevent edge computing from accessing sensor data from every

robot, real-time centralized robot manipulation that provides the edge computing with com-

plete information for estimating the accuracy of all robots, imposes a heavy computational

burden on the edge computing and wireless resources while also limiting scalability. More-

over, exhaustive feedback of each task execution from the downstream robots to the up-

stream robots can achieve decentralized accuracy estimation, but this approach presents

NP-hardness [72] and is thus computationally intractable for production robots with limited

computation capability.

Consequently, in order to propose a novel collaborative MRS coordination approach in

Section 6.1 via social learning, leveraging information available from individual robots and

social communications within a partially connected wireless topology in the CPMRS, as de-

tailed. Social learning can be both computationally lightweight and effective, even in the

context of incomplete observations [124]. A partially connected network has been demon-

strated to offer high efficiency [43, 71]. Wireless message passing is conducted among a subset

of robots, rather than all robots, reducing redundant communications and unnecessary mes-

sage passing that do not enhance observability. This approach also improves communication

delays and optimizes the use of wireless resources.

The cyber domain network, denoted as Gcyb, shares the same node set Rm,n with the

physical domain network G t
phy . However, the links in Gcyb are derived stochastically and

do not need to be changed unless the node set changes. Algorithm 3.1 provides a unified-

degree, stochastic network formulation algorithm that outputs the stochastic cyber network

topology, which is executed by the edge computing.

Algorithm 3.1 iteratively considers each robot Rm,n as the root, with robot type difference

as a constraint, and links d robots as cyber neighbors through random choices. The numerical
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parameter k represents the ratio of the number of intra-robot-type links over the total number

of links d . The cyber network degree is thus a composite degree denoted byDcyb = (d , kd , (1−

k)d), meaning that each robot in the cyber network Gcyb has d links, of which kd links are to

intra-type robots while (1− k)d links are to inter-type robots. Therefore, a small set of fully

connected robots (denoted as cyber neighbors in Algorithm 3.1) forms a cyber cluster, and

a robot can be included in multiple clusters, ensuring that the cyber network is connected

and messages can be passed between clusters.

Algorithm 3.1: Stochastic Cyber Topology Formulation

Data: Gphy ({Rm,n},Ephy ),Dcyb = (d , kd , (1− k)d)
1 Initialization:
2 Gcyb({Rm,n},Ecyb)← Gphy

3 {Rm,n.Cyber Neighbor} ← ∅
4 for Rm,n in {Rm,n} :
5 while Rm,n.Cyber Neighbor < d :
6 if Rm,n.Cyber Neighbor.same type < kd :
7 Candidates← {Rm±1,1, ... ,Rm±1,Nm}
8 Rm,n.Cyber Neighbor.same type←
9 Random Choose (Candidates)

10 else:
11 Candidates← {Rm,n} \ Rm±1,1, ... ,Rm±1,Nm

12 Rm,n.Cyber Neighbor.different type←
13 Random Choose (Candidates)

Social communication in a multi-robot system (MRS) refers to the exchange of informa-

tion among linked nodes, commonly termed cyber neighbors. This concept is also known

as the diffusion strategy in the context of social MRS [94]. Social communication primarily

governs the wireless interactions within the cyber domain network. Unlike general commu-

nications, which may involve all nodes, social communications are restricted to occur only

between directly linked nodes.

These social communications are scheduled to take place at each discrete time slot. In

contrast, communications between the MRS and edge computing infrastructure are event-

driven, typically occurring during adjustments to the production flows. These adjustments
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can span varying time intervals, ranging from hours to days, as highlighted in previous

studies [76, 75].

Importantly, social communications within the MRS are designed to be efficient in a

partially connected cyber network. The system avoids retransmission and back-forwarding

mechanisms to conserve wireless resources, thereby ensuring an economical use of the network

bandwidth.

Figure 3.2 shows the cyber domain network with composite degree Dcyb = (3, 1, 2) of

the same 12 robots. Although production flows in G t=t1
phy are adjusted at t = t2, the cyber

domain network does not change with such physical adjustments. The randomness of the

stochastic cyber network is produced from the sequence of robots in line 4 and function

Random Choose in lines 9 and 13 in Algorithm 3.1 in which a robot is unified drawn to link

from the candidate list.

3.1.2 Hypergraph MRS Model

As indicated by [62], smart factories can provide real-time responses to dynamic produc-

tion demands with a time resolution as fine as 10 milliseconds, potentially serving as the

length of a time slot in the model. While the reconfiguration of the MRS is not expected to

occur at every time slot, the time required to perform multi-robot task allocation (MRTA)

must be compatible with these real-time operational needs.

However, solving MRTA in the context of the temporal-spatial MRS model described

in Section 1.3 is computationally challenging, being an NP-hard problem. The additional

objectives of optimizing productivity and energy efficiency further complicate the matter,

rendering conventional techniques like linear programming and exhaustive search impractical

for real-time operations.

Although genetic algorithms have been widely adopted to handle interrelated constraints

and deliver sub-optimal solutions, they suffer from scalability issues related to time com-

plexity. As a result, they are often considered a secondary option for this application.
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To address these challenges, this section introduces hypergraph modeling specifically

tailored for the temporal-spatial MRS model discussed in Section 1.3. This approach aims

to solve MRTA with constant time complexity, thereby offering sub-optimal solutions in both

productivity and energy efficiency suitable for real-time operations in smart factories.

In graph theory, a hypergraph serves as a generalization of a traditional graph. While

a standard graph has links that link exactly two nodes, a hypergraph features hyperedges

capable of connecting any number of nodes, potentially more than just two. Hypergraphs

exhibit several distinctive properties, elaborated as follows:

• Incidence Matrix: Similar to standard graphs, hypergraphs can also be represented

using incidence matrices. However, these matrices tend to be more complex and may

require careful interpretation.

• Degree: In a hypergraph, the degree of a node is defined as the number of hyperedges

in which that node participates.

• Duality: For a given hypergraph H , its dual hypergraph essentially reverses the roles of

nodes and hyperedges. In other words, each node in the dual hypergraph corresponds

to a hyperedge in H , and vice versa.

• Connectivity: The concept of connectivity in hypergraphs is less straightforward than

in standard graphs. Various approaches have been proposed to extend the traditional

notions of connectivity to the realm of hypergraphs.

Integrated with the temporal-spatial MRS model, the hypergraph model represents tem-

poral resources as hypernodes and spatial resources as weighted links. Each hypernode

comprises multiple blocks, which are interconnected by these weighted links.

The hypergraph search algorithm, detailed in Chapter 4, addresses both the ascending

task order constraints and the production demands constraints. It aims to optimize objec-

tives such as throughput and energy efficiency.
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Additionally, the hypergraph search algorithm outputs the production flow as a simple

path within the hypergraph model. It also provides specific production tasks for the pro-

duction robots and outlines the transportation paths for the transportation robots. This

comprehensive output serves as a valuable input for higher-level decision-making processes.

(1,1) (2,1) (4,1)(3,1)

(1,2) (2,2) (4,2)(3,2)

(1,3) (2,3) (4,3)(3,3)

(3,4)

Directional link represents horizontal transportation
Directional link represents vertical transportation
Directional link represents diagonal transportation

(1,1) (2,1) (4,1)(3,1)

(1,2) (2,2) (4,2)(3,2)

(1,3) (2,3) (4,3)(3,3)

(3,4)

a-1

a-2

b

Tasks assigned for product a’s

Transportation paths for two 
product a’s

Tasks assigned for product b
Transportation paths for product b

(a) (b)

Figure 3.3 Hypergraph production robot and MRTA model.

A hypergraph H({Rm,n},E ), where m = 1, 2, ... ,M and n = 1, 2, ... ,Nm, is defined as a

directed hypergraph. In this hypergraph, each hypernode represents a production robot,

and the set of weighted links E denotes horizontal, vertical, and diagonal transportation

paths. These links are weighted based on the corresponding energy consumption metrics.

The notation for hypernodes, Rm,n, inherits the robot type m, spatial distribution, and

multiplexing capability ωm from the temporal-spatial MRS model.

Following the concept of a hyperedge as defined in [12], a hypernode can be viewed as a

set of variables, as expressed in Equation (3.2). Each element βb
m,n indicates the single-task

execution capability of the robot Rm,n. A value of βb
m,n = 0 denotes an unassigned block,

while βb
m,n = l implies that the b-th task execution capability of the robot Rm,n is designated
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for manufacturing product-l . Consequently, the number of elements in the set Rm,n is equal

to its multiplexing capability ωm.

Rm,n = {β1
m,n, β

2
m,n, ... , β

ωm
m,n} (3.2)

In the hypergraph, each weighted directed link in E connects two neighboring robots.

Specifically, E = {ei ,j :i ′j ′} = {(Rmi ,nj ,Rmi′ ,nj′
)}, where Rmi ,nj and Rmi′ ,nj′

form a neighboring

hypernode pair. Figure 3.3 illustrates this hypergraph model, which corresponds to the

production robot system shown in Figure 1.3.

For example, within the hypernode R1,1, the presence of two blocks indicates that its

multiplexing capability is ω1 = 2. The link (R1,1,R2,1) serves as a directed link with the

hypernode R1,1 as the head, R2,1 as the tail, and the link itself carrying a weight of εh.

3.1.3 Multi-floor Model of a Smart Factory
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Figure 3.4 The smart factory multi-floor model for transportation.
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A multi-floor smart factory transportation environment is characterized by an undirected

graph, denoted as Gfloor. It is defined by the tuple (Nf ,Nx ,Ny ), where each element signifies

the maximum value of the floor, x , and y coordinates, respectively. This configuration

inherently spans an Euclidean space.

Specifically:

• Nf represents the number of floors, with values ranging from 1 to Nf .

• Each individual floor is structured as an Nx ×Ny lattice graph (also known as a square

grid graph). nodes within this graph correspond to either a production robot or a

production cell. The x coordinates span from 1 to Nx , while the y coordinates range

from 1 to Ny .

The links of Gfloor depict feasible navigation steps between adjacent nodes, whether

through the floor, x , or y coordinates. Given the nature of adjacency, these links are in-

herently undirected. When navigating within the same floor, nodes adjacent either in the

x or y direction are interconnected, consistent with the properties of a lattice graph. For

transitions between floors, typically facilitated by UAVs or elevators which come with their

own constraints [66, 54], only nodes adjacent in floor coordinates and situated at the links

of the floor are connected. This is further elaborated in (3.3).

It’s important to note that Gfloor is a cyclic graph, characterized by the presence of

multiple graph cycles. Moreover, all links within this graph bear weights, indicative of the

energy consumption associated with traversal. The energy required is contingent upon the

link’s position within the coordinate space, denoted as εf , εx , εy .

The formal definition of Gfloor is presented in (3.3), where nodes are expressed in terms

of vi ,j ,k coordinates, sequenced by the floor, x , and y dimensions. Additionally, a node

positioned at the link, expressed as vi ,jside,kside , is located at the side of the ith floor, as

elaborated in (3.3c) and (3.3e). Figure 3.4-(a) provides a visualization of an example Gfloor

characterized by (Nf = 3,Nx = 3,Ny = 4). If an AMR is required to navigate from node
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v1,2,3 to v3,2,2, it would necessarily traverse the nodes situated on the links of both the first

and second floors to facilitate cross-floor navigation.

Gfloor = (Vfloor ,Efloor ) (3.3a)

Vfloor = {vi ,j ,k}, i = 1, ... ,Nf , j = 1, ... ,Nv , k = 1, ... ,Nh (3.3b)

Efloor = {(vi ,j ,k , vi ,j ′,k ′)} ∪ {(vi ,jside,kside , vi ′,jside,kside)} (3.3c)

j ′ = j ± 1, k ′ = k ± 1, (3.3d)

jside = 1,Nv , kside = 1,Nh, i
′ = i ± 1 (3.3e)

A transportation-MRS comprises K AMRs, hereafter referred to as K -AMRs, operating

with synchronous discrete navigation in each time slot t. Within a given slot, an AMR

may either move from one node to another or stay put, an action termed as a “navigation

step” throughout this paper. Every navigation step consumes one time slot, independent of

energy consumption. This synchronized approach promotes real-time adjustments ensuring

collision-free operations, as corroborated by prior studies [19, 76, 75]. Given that industrial

AMRs may have diverse navigation step durations, the time slot is designed to be flexible,

accounting for longer tasks like cross-floor navigation. The multi-floor model acts both as the

environment for the AMR system and as a knowledge base for intelligent decision-making,

given that both time and energy consumption metrics for navigation are predefined.

3.2 Single Cyber-Physical AI Agent

In this chapter, a single cyber-physical AI agent is defined as an entity in both cyber and

physical domains that is capable of autonomously solving tasks in an uncertain environment.

This is achieved through the application of domain knowledge, information gathered during

the problem-solving process, and AI cognition. The agent perceives its cyber-physical envi-

ronment and makes decisions to act upon it. While uncertainties in the task environment are
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modeled probabilistically, it is noteworthy that the agent is unaware of these probabilistic

models.

The notion of a cyber-physical AI agent serves as an intersection between the concepts

of cybernetic agent and rational agent. According to [89], rationality at any given moment

is determined by four key factors:

• The performance measure that outlines the criteria for success.

• The agent’s prior knowledge of the environment.

• The range of actions that the agent can execute.

• The sequence of percepts that the agent has experienced to date.

Therefore, a rational agent is defined as one that, for every possible sequence of percepts,

selects an action expected to maximize its performance measure. This selection is based on

the evidence gathered through the percept sequence and any built-in knowledge the agent

possesses.

In addition to perception and acting, [83] highlights that a cybernetic agent places a

strong emphasis on feedback loops for system control. Agents utilize feedback to compare

their current state to a predefined goal or desired state. This comparative analysis informs the

decision-making process, allowing the agent to adapt its actions in response to environmental

changes.

3.2.1 Artificial Intelligence, Cybernetic and Reinforcement Learning

AI is a broad field that incorporates a variety of techniques and methodologies, one of

which is Reinforcement Learning (RL). As a subset of machine learning, RL equips agents

with the capability to learn tasks autonomously, without explicit programming. As noted

in the preface of Chapter 3, RL algorithms leverage data to improve an agent’s performance

in given tasks. In RL, agents learn to optimize their actions to gain maximum cumulative
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rewards over time. They do this through a process of trial and error, iteratively updating

their behaviors in response to the feedback they receive from the environment. The ultimate

aim is to find a policy that consistently leads to desirable outcomes. AI and RL are closely

related since RL gives the fundamental rationality - the agent acts to gain more rewards.

While RL serves as a mechanism for realizing specific AI objectives—such as mastering games

or governing robotic movements—other AI techniques, like deep learning, can be employed

to enhance the effectiveness of RL algorithms. This interplay between AI and RL techniques

allows for the development of increasingly sophisticated and adaptive systems.

Cybernetics and RL are both disciplines focused on the study of adaptive and learning

systems, although with different scopes and emphases. Cybernetics, made known by Norbert

Wiener in the 1940s, offers a broader perspective on systems that can self-regulate. Often

referred to as “cybernetic systems”, these entities employ feedback loops to receive infor-

mation about their current states and adjust their behaviors accordingly. In contrast, RL

is a specialized field within machine learning that concentrates on how agents can learn to

optimize their actions in specific environments through trial and error. The agent’s primary

goal is to maximize cumulative rewards based on its interactions with the environment. The

interplay between cybernetics and RL becomes evident when RL algorithms are employed to

train agents operating within cybernetic systems. Therefore, cybernetics provides a compre-

hensive framework for understanding the principles underlying adaptive systems, RL offers

a targeted methodology for training agents to behave optimally within those systems.

In this study, RL and stochastic optimization techniques—including tabular methods, Q-

learning, and actor-critic algorithms—are extensively employed to enable agent adaptation

in environments characterized by unknown probabilistic uncertainties. The rationale for this

approach is numerous numerous.

Firstly, RL leverages machine learning models, such as tabular methods and Neural

Networks (NN), to approximate optimal policies, state-value functions and state-action-
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value functions (Q functions). These models are not only supported by a robust body of

literature but are also highly versatile, making them suitable for a range of applications.

Secondly, Stochastic Gradient Descent (SGD) serves as a key stochastic optimization

(Section 2.3) technique within machine learning. SGD is essentially a stochastic approxima-

tion of gradient descent optimization, designed to minimize an objective function formulated

as a sum of differentiable functions. Its stochastic nature is particularly well-suited for han-

dling non-stationary, non-deterministic, and unknown probabilistic uncertainties.

Thirdly, RL’s concept of “reward”—a real-numbered value reflecting the feedback in

cybernetic terms—complements SGD optimization effectively. For SGD optimization applied

to neural networks, certain assumptions are generally made: the loss function must be

differentiable, approximately convex, and stationary. When examining the convergence rates

of gradient-based methods like SGD, researchers often assume that the gradients (or the

differences between parameter updates) are bounded in their L2 norm. Real-numbered

rewards and well-chosen loss functions—such as Mean Squared Error (MSE) and smooth L1

loss—facilitate these assumptions, thereby aiding in convergence and stability.

Consequently, the cyber-physical AI agent agent model employed in this study adopts

an RL framework. Here, the agent’s perception of the task environment is represented as a

real-numbered state vector, its decision-making is exhibited through a real-numbered action

vector, and feedback is quantified as a real-numbered reward. The agent aims to maximize

its cumulative reward over time through a process of trial and error, thereby integrating a

data-driven aspect into its operational paradigm.

3.2.2 Problem-solving with Domain Knowledge and AI Cognition

Figure 3.5 outlines the framework of the cyber-physical AI agent approach. Within this

framework, both engineering challenges and domain-specific knowledge contribute to the

development of the domain model. To enhance this model, general computational methods

like linear models, Q tables and neural networks are integrated into the models module.
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As the agent operates within its environment—undertaking perception, learning, problem-

solving, and decision-making, certain internal changes or state transitions occur. These in-

ternal shifts are not always completely visible to the agent. In the context of this study,

these invisible or partially visible elements are termed uncertainties. This is in line with

some academic literature, where the phenomenon is often referred to as partial observability.

Additionally, during the trial-and-error learning process, the agent has the capability

to collect data from its interactions with the environment. This accumulated data can

be employed to update and refine the agent’s model, thereby incrementally improving its

performance and adaptability over time.

As introduced in Section 3.1, graph models are used to represent domain knowledge,

serving as the domain models that guide agents. This domain knowledge forms the foun-

dation upon which an agent’s rational decision-making is built during problem-solving. It

allows the agent to take reasonably good, near-optimal or even optimal actions without the

need for extensive learning. The interplay between domain knowledge and AI cognition in

the decision-making process is further detailed in the subsequent sections.

As initially outlined in the introductory section of Section 3.2, cyber-physical AI agents

receive real-numbered rewards as a form of feedback. Stochastic optimization techniques

are employed to adjust the weights of the general neural network model. The objective

is to minimize the loss between the received reward and the reward predicted from the

previous action. This process, commonly known as training, enables the agent to adapt to

environmental uncertainties.

However, this framework presents an engineering challenge related to goal formulation.

Specifically, the reward function must be both coherent with the task environment and

aligned with the agent’s ultimate objectives. Further discussions on the details of construct-

ing a suitable reward function will be elaborated upon in Section 3.2.3.

This section explores the application of graph models, as initially discussed in Section 3.1.

These models function as domain models and allow agents to perform autonomous reasoning
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Figure 3.5 A schematic depiction of a cyber-physical AI agent.

and planning tasks within the smart factory context. It is crucial to note that the tasks

mentioned here do not concern typical production or transportation tasks commonly found in

smart factories. Instead, they relate to the cognitive tasks of reasoning and planning that the

agents are tasked with. As for prediction, the primary focus is on making predictions under

uncertainties using general models. This topic will be elaborated upon in the subsequent

section.

3.2.2.1 Reasoning with Bayesian Network

Reasoning within the framework of a domain model involves applying logical inference

and decision-making based on a specific set of rules, relationships, and entities defining the

domain. A domain model sets the boundaries and guidelines for reasoning, ensuring that the

outcomes are more consistent and accurate. Utilizing a domain model allows an AI agent to

achieve a more nuanced understanding of the problem, enhancing the contextual relevance
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of its reasoning. Additionally, a domain model aids in efficiently navigating the solution

space while adhering to predefined rules and relationships. It serves to refine complicated

real-world scenarios into a manageable set of entities and relationships, thereby streamlin-

ing the reasoning process. When multiple AI agents operate within the same domain, a

shared domain model facilitates interoperability by standardizing the rules and constraints

underpinning their reasoning and decision-making.

Bayesian networks serve as a robust tool for representing probabilistic uncertainties and

capturing interdependencies through conditional probabilities. A Bayesian network, also

known as a Bayes net or belief network, is a directed graph where each node is annotated

with quantitative probability information. As noted in the preface of Section 3.1, Bayesian

networks are graphical models widely used in ML. While graph models are powerful domain

models, as briefly mentioned in Section 5, they often fall short in terms of scalability—a

requirement for smart factories. As elaborated in Section 3.1.1, each production robot in

an MRS is connected to neighboring nodes in two distinct domains: the physical domain,

defined by the production flow, and the cyber domain, characterized by a stochastic partially

connected wireless network.

In this reasoning process, Bayesian networks integrate information from upstream pro-

duction robots in each production flow, denoted as G t
phy , along with domain knowledge

obtained from task execution for reasoning. This forms a Bayesian network aimed at iden-

tifying the actuator errors that contribute to defects in completed products, as illustrated

in Figure 3.6. Here the actuator error is a real number that characterizes the difference

between required task execution and real execution. Such errors are challenging to detect

in flow-based manufacturing without immediate, NP-hard feedback from every downstream

robot. It’s denoted by error for the rest of this section. By doing so, the Bayesian network

provides a scalable solution for reasoning about which robots are contributing to defects,

adapting to the number of production robots within the MRS.
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Figure 3.6 Bayesian network that describes a segment of cyber-physical interaction.

Initiated by [76, 75], the MRS operates with tight time synchronization, wherein each task

execution occurs within a single time slot, denoted by t. This synchronization is achieved

through multiplexing considerations in MRTA [76]. The task execution process for a produc-

tion robot is modeled as follows: During each time slot t, the nth type-m production robot

in the MRS, represented by Rm,n, receives a raw material or an unfinished product-l with

a state quantified by pl ,tm,n ∈ Θp, where Θp signifies the product state space. Subsequently,

Rm,n employs its onboard sensors to obtain a noisy measurement x l ,tm,n, denoted by f m,n
measure(·)

in (3.4a), in which the measurement noise is characterized by additive Gaussian noise ζ l ,tm,n.

Next, given that error is unobservable, each production robot estimations the error belief

of the upstream robot, using social information, which is exchanged via wireless communica-

tions within a partially connected network, constituting collaborative social learning. This

will be detailed in Section 3.3.2.1. Rm,n calculates the parameter in task execution, denoted

as action atm,n ∈ A, based on the measurement x l ,tm,n and the MRS error belief, bt
m,n:sys . This

calculation is represented by f m,n
compute(·, ·) in (3.4b).

However, due to imperfections in wireless communications and the network’s partial

connectivity, social information may be incomplete. Therefore, the derivation of f m,n
compute(·, ·)

necessitates the application of AI computing. This ensures the resulting actions are not only

coordinated but also capable of adapting to real-time changes in production flows, which

will be detailed in Section 6.1.

Finally, when Rm,n executes atm,n (employing actuators to process product-l and alter

pl ,tm,n), denoted by f m,n
execute(·, ·, ·) in (3.4c), an error with respect to the hypothetical global
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reference from the required task arises due to unobservable error. This error is represented

by etm,n ∈ [−γR , γR ] as in (3.4c), with γR defining the error boundary resulting from error.

When etm,n /∈ [−γR , γR ], Rm,n produces defective products, leading to point failures and neces-

sitating maintenance. Without loss of generality, task execution is characterized as a linear

combination of measurement, action, and errors, as expressed in (3.4c). Here, the action

atm,n specifically indicates the coordinated action for better productivity performance. The

quantitative action for task assignment is related to product design and robotics, which is

beyond the scope of this study. The above model characterizes the unobservable uncertain-

ties. Although the error resulting from error, etm,n, affects task execution, the computation

of action cannot take it into consideration.

x l ,tm,n = f m,n
measure(p

l ,t
m,n) = pl ,tm,n + ζ l ,tm,n ∼ N (0,σmeasure) (3.4a)

atm,n = f m,n
compute(x

l ,t
m,n,b

t
m,n:sys) (3.4b)

pl ,t+1
m′,n′ = f m,n

execute(p
l ,t
m,n, a

t
m,n, e

t
m,n)

= f m,n
execute(p

l ,t
m,n, f

m,n
compute(f

m,n
measure(p

l ,t
m,n),b

t
m,n:sys), e

t
m,n)

= pl ,tm,n + ζ l ,tm,n + atm,n + etm,n

(3.4c)

Utilizing the Naive Bayes approach [8, 17] and under the assumption that the three pro-

cesses—measurement, computation, and execution—are independent, Here we can define

the joint probability of pl ,tm,n, x
l ,t
m,n, a

t
m,n, and etm,n as detailed in Equation (3.5), where α is

a normalization factor. Equation (3.5a) provides the full joint distribution. Given that the

measurement and task execution processes are independent, it is possible to estimate the

errors etm,n that lead to the observed outcomes, also known as effects or events. These are

represented in boldface vector form as xl ,tm,n and pl ,t+1
m′,n′ , and can be estimated using Equations

(3.5b) and (3.5c). It is important to note during these estimations that the conditional

probabilities are explicitly defined in the task execution process in Equation (3.4). Specifi-
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cally, Pr(xj |ζ l ,tm,n) is defined by f m,n
measure(·) in Equation (3.4a), and Pr(pj |etm,n, x

l ,t
m,n) is defined

by f m,n
execute(·, ·, ·) in Equation (3.4c). These estimations enable each robot to discern whether

a measured error originates from an upstream robot’s process or from a process further

upstream, thereby facilitating a crucial reasoning process within the multi-robot system.

Pr(ζ l ,tm,n, e
t
m,n, x

l ,t
m,n, p

l ,t+1
m′,n′ ) = Pr(ζ l ,tm,n)Pr(e

t
m,n)Pr(x

l ,t
m,n|ζ l ,tm,n)Pr(p

l ,t+1
m′,n′ |e

t
m,n) (3.5a)

Pr(ζ l ,tm,n|xl ,tm,n) = αPr(ζ l ,tm,n)
∏

xj∈xl ,tm,n

Pr(xj |ζ l ,tm,n) (3.5b)

Pr(etm,n|x l ,tm,n,p
l ,t+1
m′,n′ ) = αPr(etm,n)

∏
pj∈pl ,t+1

m′,n′

Pr(pj |etm,n, x
l ,t
m,n) (3.5c)

3.2.2.2 Planning with Graph Search

Planning in AI involves determining a sequence of actions to attain a specific goal within

a discrete, deterministic, static, and fully observable environment [89]. This general problem-

solving technique finds applications across various domains, including robotics, scheduling,

and game-playing.

In most planning algorithms, a world representation is essential. This representation

includes the potential states the world can assume, the actions available and the rewards to

be gained. In the context of cyber-physical AI agents, this representation is encapsulated by

the domain model and perception mechanisms.

RL introduces a specialized form of planning tailored for agents operating in Markov

Decision Processes (MDPs) [100]. An MDP provides a stochastic model of an environment

where an agent performs actions to transition between states and receives rewards. RL aims

to discover a policy that optimizes the expected reward over time.

Planning within RL is commonly approached in two ways: model-based planning and

model-free planning. Model-based planning entails constructing an explicit model of the

MDP and utilizing it to plan action sequences. Although generally more efficient, this
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approach can be challenging to implement. On the other hand, model-free planning does

not create a model of the MDP; instead, it learns a policy directly from interactions with

the environment. While this method is typically less efficient, it offers greater generality and

applicability to complex problems.

This study focuses on planning techniques grounded in the field of AI, as opposed to

planning approaches that are rooted in RL. In the field of AI, the use of a domain model

brings structure to the planning process by characterizing the applicable rules, actions, states,

and objectives specific to a given problem space. The inclusion of a domain model serves to

significantly boost the efficiency and effectiveness of AI planning algorithms.

One of the key benefits of using a domain model is that it ensures all generated plans

are consistent and coherent, as they adhere to the same set of rules and constraints. This

uniformity is invaluable for generating reliable solutions. Additionally, the reusability of

a domain model across different instances of problems within the same space offers the

advantage of saving both time and computational resources.

Domain models also aid in the abstraction of complex actions and states, transforming

them into simpler, more manageable forms. This level of abstraction enables the AI system

to generalize the model, making it applicable across a variety of scenarios within the same

domain. A well-constructed domain model further optimizes the planning process by swiftly

filtering out solutions that either have diminished utility or fail to meet specific constraints,

thereby enhancing the efficacy of AI agents.

This section aims to explore these various facets of planning in AI, particularly empha-

sizing the integral role that domain models play in enhancing the planning process.

This section delves into the planning strategies employed by an autonomous mobile robot

(AMR) for executing transportation tasks, using a domain model for guidance. Specifically,

the domain model used here is represented by the multi-floor transportation model discussed

in Section 3.1.3. Within this framework, the domain model Gfloor and a pre-established

number of plans, denoted as κN , are used to improve computational efficiency. When a task,
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denoted as taskm, is assigned to AMR-k , the robot utilizes a multi-path planning method to

devise its course of action. This planning method is an enhancement of Yen’s algorithm, as

elaborated by [4], and is referred to as Planning in Algorithm 3.2.
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Figure 3.7 “Unfold” heuristic in planning with multi-floor domain model.

The heuristic known as “unfold” is graphically illustrated in Figure 3.7. This heuristic

plays a critical role in generating four acyclic sub-graphs from the cyclic graph Gfloor. Such

a transformation is vital because Yen’s algorithm is specifically tailored for acyclic graphs.

To provide more details, if both the current location of the AMR, denoted as vfk ,xk ,yk , and its

target location, vft ,xt ,yt (which could either be a pickup node with coordinates ft = fs , xt =

xs , yt = ys or a delivery node ft = fd , xt = xd , yt = yd), are on the same floor, then the

actor algorithm uses only the sub-graph corresponding to that specific floor for multi-path

planning. This is clarified in lines 3-5 of Algorithm 3.2.
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Vsub = {(fi , xi , yi) ∈ Vfloor|fi = fk or fi = ft}, (3.6a)

Vsub1 = Vsub ∪ {(fi , xi , yi) ∈ Vfloor|xi = 1}, (3.6b)

Esub1 ={((fi , xi , yi), (fj , xj , yj)) ∈ Efloor

|(fi , xi , yi), (fj , xj , yj) ∈ Vsub1}
(3.6c)

Gsub1 = (Vsub1,Esub1) (3.6d)

Vsub2 = Vsub ∪ {(fi , xi , yi) ∈ Vfloor|xi = Nx}, (3.6e)

... (3.6f)

When the AMR’s current and target locations are on two different floors, the actor

algorithm accommodates this by incorporating both floors and the nodes that connect them

at positions x = 1, x = Nx , y = 1, and y = Ny . By doing so, the algorithm produces

four acyclic sub-graphs, which are then utilized for multi-path planning. This process is

demonstrated in the Unfold method, as outlined in Algorithm 3.2 and formally described

by (3.6).

Moreover, integrating a domain model into the planning process lends a greedy heuristic

to the actor module. This is because Yen’s algorithm inherently generates the shortest plans

first, ensuring that AMRs execute tasks by following either optimal or near-optimal paths.

These shortest paths are represented as walks in the multi-floor models and are denoted by

ρm
k , as defined in Section 3.1.

3.2.3 Learn to Adapt to Uncertainties

As previously introduced in Section 3.1.1, the data generated from MRS operations for

subsequent AI computations take the form of time series, also referred to as trajectories.

These time series are particularly challenging to analyze due to their non-stationary and non-
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Algorithm 3.2: Planning with Domain Model

def Plan(vfk ,xk ,yk ,Gfloor , task
m,κN ,κk):

Result: {ρm
k , ... }

1 vft ,xt ,yt ← taskm

2 if fk == ft:
3 Vsub = {(fi , xi , yi) ∈ Vfloor |fi = fk}
4 Esub = {((fi , xi , yi), (fj , xj , yj)) ∈ Efloor |fi = fj = fk}
5 Gsub1 = (Vsub,Esub)

6 else:
7 {Gsub1, ... ,Gsub4} ← Unfold (Gfloor , fk , ft)
8 {ρm

k , ... } ← Yen’s algorithm ({Gsub, ... }, vfk ,xk ,yk , vft ,xt ,yt ,κN)

deterministic nature, which arise from time-varying production demands and burst errors in

actuators and wireless communications.

In the field of time series analysis [73], the terms “non-stationary” and “non-deterministic”

are sometimes used interchangeably, but they have distinct meanings. A stationary time

series has statistical properties such as mean, variance, and autocorrelation that remain

constant over time. Conversely, a non-stationary time series has statistical properties that

change over time. In a non-deterministic time series, even full knowledge of past values

cannot perfectly predict future values due to random shocks or disturbances affecting the

series.

In the case of MRS, time-varying production demands cause the reconfiguration of the

system, leading to changes in statistical properties and hence, non-stationarity. Meanwhile,

burst errors from actuators and wireless communications introduce random disturbances,

contributing to the time series’ non-deterministic nature.

In technical terms, a non-stationary time series differs from a strictly stationary process.

The latter is characterized by statistical properties that remain consistent across all time

periods. On the other hand, a non-deterministic time series is distinct from a Markov process,

which is a specific type of stochastic process where the future state is solely dependent on

the current state and is independent of past states.
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Stochastic Gradient Descent (SGD) stands out as one of the most widely used optimiza-

tion algorithms for training neural networks. Its main advantage is its capability to navigate

the complex, high-dimensional landscapes typical of neural network loss functions. When

applied to systems that are both non-stationary and non-deterministic, SGD offers unique

benefits. This section delves into the technical facets that make SGD particularly well-suited

for such challenging contexts.

The first aspect is stochasticity. In its most basic form, standard Gradient Descent

(GD) computes the gradient of the loss function with respect to all the samples in the

training set and then updates the model parameters based on this gradient. In contrast, SGD

approximates the true gradient by considering just a single (or a small batch of) example(s)

at each iteration. This stochasticity introduces noise into the optimization process, which

can be both a curse and a blessing. On one hand, this noise can prevent the algorithm

from settling into sub-optimal local minima in non-convex loss landscapes common to neural

networks. On the other hand, this same noise can also prevent the algorithm from reaching

the exact minimum, settling instead in a region around the minimum.

The second aspect is non-stationarity. In non-stationary environments, where the data

distribution can change over time, the stochastic nature of SGD is particularly beneficial. It

allows the model to adapt more quickly to new data, making it more robust to shifts in the

data distribution. This is crucial in scenarios like online learning or when the network has

to adapt to new, unseen data quickly. Because each gradient update is calculated on-the-fly

with the latest available data, the model remains adaptive to non-stationary patterns in the

data.

The third aspect is non-determinism. In systems with inherent randomness or variability,

capturing all the potential nuances with a deterministic model may be impractical. In such

cases, the stochastic nature of SGD provides a form of regularization, preventing the model

from overfitting to the training data. This means that the model can generalize better to

new, unseen data.
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The fourth aspect is learning rate scheduling. In environments that are both non-

stationary and non-deterministic, the selection of an appropriate learning rate becomes a

critical factor for the performance of SGD. Adaptive learning rate methods such as Ada-

Grad, RMSprop, and Adam can be integrated into SGD to dynamically adjust the step size.

Additionally, within the context of a smart factory, domain knowledge regarding statistical

property changes induced by MRS reconfigurations can be leveraged to schedule the learning

rate adaptively. These enhancements not only make SGD more resilient to shifts in data

distribution but also facilitate quicker convergence of the optimization algorithm.

The fifth aspect is replay buffer reset. Experience replay is a technique commonly em-

ployed in reinforcement learning to enhance both the stability and sample efficiency of the

learning process. It involves storing the agent’s historical experiences in a designated replay

buffer. Instead of relying solely on real-time interactions with the environment, the agent

draws samples from this replay buffer to update its policy or value functions. This strategy

helps break the temporal correlations often present in sequential data, enabling the agent to

learn from a more diverse set of experiences. Periodically resetting the replay buffer ensures

that the agent’s learning process remains aligned with the evolving state of the environment,

thus maintaining a representative distribution of transitions for effective learning.

In reinforcement learning, various algorithms target different optimization objectives.

For example, value-based methods like Q-learning or DQN aim to minimize the difference

between the predicted value function Q(s, a; θ) and the expected return or target, often

represented as Q ′(s, a). The Mean Squared Error (MSE) loss function, given by Equation

(3.7a), is commonly used for this purpose. Here, θ are the parameters of the neural network

approximating Q. Stochastic Gradient Descent (SGD) is employed to update these weights

as shown in Equation (3.7d). Similarly, when optimizing the state-value function V (s), the

goal is to minimize the difference between the estimated value V (s; θ) and the expected return

V ′(s), also typically using MSE as indicated by Equation (3.7b). In contrast, policy-based

methods like Policy Gradients target the policy π(a|s) directly. The aim is to maximize the
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expected return J by tweaking the parameters θ of the policy, as detailed in Equation (3.7c).

These policy gradient methods are often combined with value function approximations to

reduce variance in gradient estimates. Actor-critic methods integrate both value-based and

policy-based paradigms: the critic updates the value function parameters while the actor

updates the policy parameters, commonly using SGD or its variants like Adam for both.

Moreover, Gradient Ascent can also be used for policy optimization in some algorithms,

requiring a simple sign change in the weight update equations (3.7d) and (3.7e).

L(θ) = E
[
(Q ′(s, a)− Q(s, a; θ))2

]
(3.7a)

L(θ) = E
[
(V ′(s)− V (s; θ))2

]
(3.7b)

J(θ) = Eτ∼πθ
[R(τ)] (3.7c)

θt+1 = θt − lr∇θL(θ
t) (3.7d)

θt+1 = θt − lr∇θJ(θ
t) (3.7e)

SGD’s intrinsic stochasticity makes it a robust and versatile algorithm, particularly suited

for training neural networks on non-stationary and non-deterministic data. By leveraging

SGD’s stochastic nature and combining it with advanced learning rate scheduling and spe-

cialized algorithmic modifications, one can effectively tackle the challenges posed by such

complex environments.

3.3 Cyber-Physical AI Agent Systems

The concept of a cyber-physical AI agent system is anchored in the principles of smart

factories and the cyber-physical AI agent approach, as discussed in Section 3.2. In a smart

factory environment, the system is designed to be decentralized, self-organized, and self-

optimized. These features are implemented using edge computing and distributed computing

techniques within a MRS.
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Edge computing serves as a shared computational and memory resource for the MRS,

effectively dealing with shared data processing needs. Additionally, the distributed comput-

ing capabilities of individual robots within the MRS are leveraged to address the challenge

of system scalability. Furthermore, robot-to-robot communication protocols are utilized to

facilitate collaboration among agents in the MRS.

This approach is particularly well-suited for decentralized, MRS-driven smart factories.

Unlike edge computing or virtual AI agents, which do not interact directly with the physical

domain, the MRS has the ability to directly learn from and optimize its interactions with the

environment through a trial-and-error process. However, it’s worth noting that individual

robots within the MRS typically have limited computational power. While they can optimize

their respective tasks, they often lack the capability for global system coordination and

optimization.

One significant advantage of this approach is that it facilitates more effective system-

wide coordination than could be achieved through the mere duplication of individual agents.

This is further elaborated in Section 3.3.1. Subsequent to this, Section 3.3.2 provides detailed

discussions on two key aspects: collaborative prediction among production robots and col-

laborative coordination among transportation robots, each covered in separate subsections.

3.3.1 The Whole Is Greater than the Sum of Its Parts

In multi-agent environments, the dynamics often involve a blend of both collaboration and

competition, mirroring the complexities of real-world systems such as biological ecosystems,

social networks, or economic markets. A cyber-physical AI agent system is particularly

beneficial in navigating these complex collaborative-competitive landscapes, transcending

the capabilities of isolated, single intelligent agents.

When resources are limited, a natural competition arises among agents. However, the

effective utilization of these scarce resources often necessitates collaboration. This approach
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facilitates this by enabling more coordinated resource allocation compared to systems that

merely duplicate single intelligent agents.

Agents in the system are typically oriented toward both shared and individual goals.

While the pursuit of individual objectives might lead to competition, working towards com-

mon goals naturally promotes collaboration. The cyber-physical AI agent system framework

enhances this balance by promoting intelligent collaboration where needed, without sacrific-

ing beneficial competition.

Partial observability of the system often complicates the agents’ decision-making pro-

cesses. In such cases, the collaborative mechanisms within the system prove advantageous,

helping to mitigate the uncertainties arising from the limited information of peer agents.

Communication serves as a foundation for the efficacy of this approach, especially in

mixed collaborative-competitive settings. Agents can use explicit communication to coordi-

nate actions, thereby optimizing the attainment of shared objectives. They can also share

critical information about environmental changes, new constraints, or shifts in goals, allowing

each agent to make more informed decisions.

Resource conflicts are inevitable in environments where multiple agents vie for the same

limited assets. In a cyber-physical AI agent system, communication can streamline negotia-

tion processes to rationally resolve these conflicts, thus preserving the system’s collaborative

goals.

Moreover, sustained communication within the system can help build reputations for re-

liability and trustworthiness among agents. This facilitates a convention of effective collab-

oration for future interactions. Over time, this regular communication also helps establish

communal norms or “unwritten rules” [97], which serve as guiding principles in scenarios

where formal rules may be lacking or ambiguous.

By excelling in these aspects, a cyber-physical AI agent system offers a significant ad-

vancement over systems that simply duplicate single agents, presenting a more nuanced and
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effective approach for managing the intricate dynamics of complex collaborative-competitive

environments.

3.3.2 Collaboration with Communications

This section is divided into two subsections that focus on the collaborative aspects of

cyber-physical AI agent systems facilitated by communication mechanisms. The collabora-

tion is primarily manifested in the form of “agreements” among agents concerning specific

variable values.

Section 3.3.2.1 explores how production robots collaborate to predict actuator errors

through social learning. This approach leverages scalable social communications within an

MRS and particularly thrives under conditions where the available information is incomplete

and derived from a partially connected social wireless topology.

On the other hand, Section 3.3.2.2 discusses the collaborative coordination among trans-

portation robots. This coordination is facilitated by scalable collision-instance-based commu-

nications and is executed within the framework of an innovative Multi-Agent Reinforcement

Learning (MARL) architecture. This subsection focuses on enabling effective collaboration

in a mixed collaborative-competitive environment.

Both of these approaches demonstrate the capabilities of the cyber-physical AI agent sys-

tem approach in facilitating efficient collaborations among agents, through scalable commu-

nications, even in scenarios fraught with challenges such as partial information and resource

constraints.

3.3.2.1 Collaborative Prediction with Social Learning

On top of social communications defined by CPMRS in Section 3.1.1.2, as well as the

Bayesian network-based reasoning in Section 3.2.2.1, social learning forms production robot

errors etsys as the local belief bt
m,n:sys from incomplete and time-inefficient information in a

best-effort manner. Social learning takes a segment of production flow in G t
phy as domain
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knowledge and performs estimation under measurement noises, incomplete and time ineffec-

tive information. Therefore, the local belief bt
m,n:sys can also be incomplete.

In contrast to social learning methods that share beliefs instead of evidence (measure-

ments), Rm,n formulates the local belief of upstream robot in production flow Ri ,j as b
t
m,n:i ,j

following a Combine-then-Adapt (CTA) diffusion strategy [94]. This is achieved by (3.8a)

that aggregates local evidence xm,n in form of f m,n
measure(pm,n) and social evidence of Ri ,j , yi ,j

as µt
m,n:i ,j(φ

t
i ,j), φ

t
i ,j ∈ [−γR , γR ]. Rm,n then computes the local belief of Ri ,j ’s misalignment

btm,n:i ,j through maximum likelihood estimation given by (3.8b). For simplicity, both (3.8a)

and (3.8b) use boldface vectors instead of time-specific values (t in superscripts) or product-

specific values (l in superscripts) since social learning only concerns time index of relative

errors eti ,j and error is not product-sensitive.

µt
m,n:i ,j(φ

t
i ,j) =

φt
i ,j f

m,n
measure(pm,n)f

i ,j
execute(pi ,j , ai ,j ,φt

i ,j)f
m,n
compute(xi ,j ,bi ,j :sys)∑

φt
i ,j

′∈[−γR ,γR ]
φt
i ,j

′f m,n
measure(pm,n)f

i ,j
execute(pi ,j , ai ,j ,φt

i ,j
′)f m,n

compute(xi ,j ,bi ,j :sys)

(3.8a)

btm,n:i ,j = argmax
φt
i ,j

log(µt
m,n:i ,j(φ

t
i ,j)|xm,n, yi ,j , ai ,j) (3.8b)

bt
m,n:sys = (bt

m,n:1,1, ... ,b
t
m,n:m,n, ... ,b

t
m,n:M,NM

) (3.8c)

As defined in (3.4), in social learning, f m,n
measure, f

m,n
compute and f m,n

execute are transferred into prob-

ability distributions. To solve (3.8a), a prior distribution f m,n
compute(xi ,j ,bi ,j :sys) is needed. This

study assumes that when MRS performs social communications, MRS also takes “straight-

forward” actions, which means f m,n
compute(·, ·) does not use error beliefs to compute actions. As

f m,n
measure(·) is modeled Gaussian, both f m,n

compute(·, ·) and f m,n
execute(·, ·, ·) take f m,n

measure(·)’s outputs,

all three distributions are Gaussian. In addition, social learning is performed periodically

instead of every time slot so that AI computing can take effect.

After establishing the topology of the cyber domain network, we can infer that produc-

tion robot Rm,n may potentially receive measurements from all other robots, but the quality
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and frequency of these measurements may vary due to imperfect wireless communications.

Consequently, Rm,n attempts to perform social learning for all robots in the MRS, utilizing

incomplete and time-ineffective information to build the local belief bt
m,n:sys that becomes

increasingly comprehensive over time as given by (3.8c). Furthermore, changes in the physi-

cal domain topology, such as alterations to the production flow by MRTA, introduce further

diversity into social communications, potentially accelerating the completeness of social mea-

surements for the MRS.

3.3.2.2 Predictive Coordination in Complex Collaborative-Competitive Environment

The architecture of the proposed solution—a decentralized, off-policy Multi-Agent Re-

inforcement Learning (MARL) algorithm referred to as “Multi-Agent Actor-Mixed Critics”.

MARL, as outlined in the work of Li et al. [61], is a specialized subfield of RL that aims

to equip multiple agents with the capabilities to learn and interact within either collabora-

tive or competitive environments. This domain emerges at the confluence of reinforcement

learning and game theory and is specifically designed to address the intricate dynamics and

potential conflicts that arise when multiple autonomous agents co-exist and make decisions

in a shared setting.

In a typical MARL framework, each agent operates as an autonomous unit capable of

perceiving its environment, executing actions, and receiving consequential feedback in the

form of rewards or penalties. These agents are designed to refine their individual policies over

time, all while taking into account the dynamically evolving behaviors and policies of other

agents within the same environment. The central goal of MARL is to strike an optimal bal-

ance between exploration—investigating new strategies—and exploitation—utilizing known

effective strategies. This ensures that agents not only optimize their individual performances

but also adapt responsively to the shifting tactics employed by their peer agents.

In the cyber-physical AI agent system approach designed for transportation robots,

agents operate in a complex, dynamic environment characterized by non-stationarity and
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non-determinism, as depicted by Figure 3.8. Each agent possesses an actor module for plan-

ning upon receiving a transportation task assignment, utilizing predictions from both the

shared global critic and its own local critic to decide a collision-avoidant paths execution

plan. Given that this planning doesn’t consider the plans of other agents, potential colli-

sions, when they arise, are resolved through token-passing among the colliding agents. These

agents perceive their environment with the aid of the multi-floor model, generating global

states, global rewards, local states, and local rewards. Here, agents do not possess the ability

to directly control or predict the multi-floor model, the transportation tasks, or any task

reconfigurations. This adds layers of complexity as, from each agent’s perspective, not only

are the behaviors of peer agents unpredictable, but the nature of the transportation tasks

themselves is also inherently unpredictable.

When an agent-k receives a task assignment, denoted as taskm, its actor module engages

in planning activities. The planning process takes into consideration the multi-floor model

Gfloor , its own local critic Qk , and the global critic Vg . The resulting plans are designed to

either be collision-free or to minimize the risk of collisions. Furthermore, these plans aim for

optimal or near-optimal delays in task execution.

To enhance the readability and consistency of this section, the narrative uses g and l as

subscripts for variables associated with the global and local critics, respectively. It should

be noted that the critic variables do not differentiate between different time slots.

The global critic, denoted as Vg , is a shared value function among all agents and is

hosted via edge computing for accessibility. This critic is responsible for predicting the

global reward, which quantifies an agent’s contribution to the system’s collective objective

or the global utility. The state vector for the global critic, denoted as sg ,k , is tailored to

each agent and encapsulates the current status of that agent’s task execution relative to the

system’s collective objective.

Unlike traditional centralized critic methods frequently encountered in existing literature,

this approach features an agent-specific global reward r tg ,k . This reward offers a nuanced
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Figure 3.8 Architecture of the multi-agent actor-mixed critics with the knowledge-based
domain model.

understanding of how each agent’s actions individually contribute to the attainment of the

global utility.

Each agent also hosts its own local critic, Qk , and engages in distributed training for this

critic. This local critic is geared toward guiding agent-k in avoiding potential collisions by

predicting the associated penalties, referred to as local rewards, for all conceivable actions

within its action space A.

In a departure from the global state, the local state sl ,k is designed to be agent-specific,

representing the current status of an individual agent’s task execution in relation to its

localized objectives. Similar to the global rewards, these local rewards are also agent-specific,

providing a measure of how each agent’s actions contribute to fulfilling its own localized goals.

In the collaborative-competitive setting, the roles of the global and local critics are dis-

tinct yet complementary. The global critic Vg and its corresponding global rewards focus
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on the collaborative aspects, driving agents toward maximizing the collective global utility.

This serves as the system’s collaborative component.

Conversely, the local critic Qk and the associated local rewards act as the competitive

component, capturing the competitive dynamics among agents. During instances of compe-

tition, the involved agents engage in a distributed process to resolve the competition and

reach a competitive equilibrium. Finding the global utility optima is closely related to the

individual utilities of agents and their competitive equilibrium, which is proved by Theorem

2.3.5 in [97]. This competition resolution may result in a modified action vector, one that

aligns the individual actions of all agents with the environmental constraints bringing the

competition in the first place.

Each agent is also equipped with an actor module that is responsible for both planning

and executing actions in line with the guidance from both the shared global critic and the

agent’s own local critic. This dual-guidance system operates effectively thanks to a short-

term memory mechanism for storing plans and an advantage function [95]. The advantage

function provides a relative valuation of possible actions within the agent’s action space,

based on assessments from both the global and local critics.

Collaborative training of shared global critic contributes to sample efficiency. Edge com-

puting, which hosts the global critic, lacks the capability for task execution. As a result, tran-

sitions for training the global critic are collaboratively collected by all agents. Considering

the execution of taskm as an episode, each agent compiles two global critic transitions—one

from the pickup path and the other from the delivery path. By the episode’s completion,

two paths ρm
k and two cumulative returns Rm

k are collected, thus constituting two global

state vectors and their corresponding global rewards. It’s important to note that, being

a state-value function, the global critic doesn’t necessitate actions within its transitions.

For the global critic, it is implemented by a neural network as the function approximator,

characterized by its weights θt
g .
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Figure 3.9 An example of decentralized sample collection with 2 agents.

As illustrated in Figure 3.9, the edge computing system, via robot-to-infrastructure (R2I)

communications, consistently updates θglobal for all agents. In turn, at the completion of

each episode, every AMR transmits two transitions to the edge server. Consequently, the

incorporation of additional AMR directly augments the number of transitions available for

training the global critic, rendering the training both scalable and efficient. The optimization

of the global critic employs gradient ascent, utilizing mean squared loss [64] and experience

replay with unified sampling [31]. The trajectory (or path) ρm
k accounts for the sequential

global rewards r tg ,k realized at each step.
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Chapter 4: Hypergraph Search for Productive and Energy Effective Real-time

Multi-Robot Task Allocation

This is my initial trial of factored representation ([89] Chapter 2.4.7) of environment or

knowledge, to address the challenges in Multi-Robot Task Allocation (MRTA) in a smart

factory. Traditional graphical methods often rely on exhaustive search algorithms to handle

the complex interrelated constraints and optimize the objective functions. Although effective

and guaranteed optimality in most cases, these methods are computationally intensive and

do not scale well with the total number of production robots, especially when dealing with

a large number of production robots with various multiplexing capabilities.

To overcome these limitations, the hypergraph search algorithm was specifically designed

for the hypergraph model. This algorithm efficiently identifies task assignments in a simple

path form and offers a well-scaled, constant time complexity, making it suitable for real-time

decision-making without compromising optimality.

To evaluate the performance of MRTA, two numerical metrics are defined: throughput,

denoted as T , and energy efficiency, denoted as E .

Throughput serves as a measure of the total products manufactured by an MRS within a

unit of time, thereby indicating the system’s productivity. For a given task assignment {ρl},

where l = 1, 2, ... , L, the number of time slots, τ l , required to manufacture product-l is given

by ν as per equation (3.1a), under the assumption of guaranteed-delivery transportation.

For consistency with the temporal-spatial MRS model introduced in Section 1.3, here define

the time slot as the unit time, as shown in (4.1a). This definition also aids in the imme-

diate evaluation of throughput upon deriving a task assignment from MRTA, consequently

reducing the time complexity.
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The energy efficiencies are derived from the edges as depicted in (3.1a). Let the function

w(·) represent the weight of an inputted edge. Such an edge’s weight can be one among

εh, εv , and εd . The overall energy consumption, denoted as ε, aligns with the throughput

definition, and is defined as the average product of the additive edge weights, as described

in (3.1a). The conversion from energy consumption to energy efficiency is achieved simply

by taking the reciprocal, as presented in (4.1b).

T =
1

τ 1
+

1

τ 2
+ · · ·+ 1

τL
(4.1a)

E =
1

ε
=

L∑L
l=1(
∑

i ,j∈ρl w(ei ,j ;i+1,j+1))
(4.1b)

The proposed algorithm integrates a collection of heuristics, each addressing distinct

facets of the MRTA problem as characterized by the hypergraph model:

• Constraint Satisfaction Heuristic: Adopted from [89], this heuristic handles production

demands and ensures adherence to sequential processing constraints.

• Maximum Flow Heuristic: Based on [27], it is employed to optimize the system’s

throughput.

• Greedy Heuristic: This approach is utilized to amplify energy efficiency.

Algorithm 4.1 outlines the hypergraph search process. The inputs for this algorithm are

twofold. The MRS hypergraph model H({Rm,n},E ) as defined in Section 3.1.2. Production

demands for L types of products, denoted as {λl} where l = 1, 2, ... , L. These demands are

elaborated upon in Section 1.3.1 and must satisfy the condition given in (4.2).

L∑
l=1

λl
m ≤ Nmωm ∀m ∈ {1, 2, ... ,M} (4.2)

The algorithm presented in Algorithm 4.1 works as follows:
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Algorithm 4.1: Hypergraph Search

Data: M ,N,ω, εh, εv , εd , {λl}, L
1 residual ← M ,N,ω, εh, εv , εd
2 p = 0
3 while True :
4 if p >= L :
5 p = 0
6 else:
7 p ← p + 1
8 task flow ← λp

9 Rm,n ← MAKE CHOICE(λp, residual)
10 while task flow!= NULL :
11 current type ← m
12 task ← task flow.pop(first task)
13 if task.type > current type :
14 candidates ← all type-(m + 1) hypernodes
15 Rm+1,n′ , edge = MakeChoice(candidates, residual)
16 if Rm+1,n′ != NULL :
17 ρp ← Rm+1,n′ , edge
18 Rm,n = Rm+1,n′

19 else:
20 candidates ← all type-m hypernodes
21 Rm,n′ , edge = MakeChoice(candidates, residual)
22 if Rm,n′ != NULL :
23 ρp ← Rm,n′ , edge
24 Rm,n = Rm,n′

25 if residual == NULL or ρp == NULL :
26 return Solution
27 else:
28 Solution, residual ← ρp

• Task Assignments: Denoted as Solution, these assignments are returned in lines 26 and

28, taking the form of simple paths {ρl} where l = 1, 2, ... , L.

• Residual Hypergraph: A residual hypergraph, residual H({r(Rm,n)},E ), is constructed

over H({Rm,n},E ). In this graph, each hypernode only comprises unassigned blocks

(where βb
m,n = 0), accumulated using the function r(Rm,n). This hypergraph is initial-

ized in line 1 and updated in line 28 whenever a task assignment ρp is determined.
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• Throughput Maximization: The throughput is optimized using a maximum flow heuris-

tic, as detailed in [27]. This optimization is realized through the while loop beginning

at line 3 and the termination conditions from lines 25 to 28.

• Iterative Search: The loop at line 3 perpetually seeks task assignments for the products

specified in {λl}.

• Task Choice: The MakeChoice function, invoked in lines 9, 15, and 21 with residual as

its input, alongside the termination conditions in lines 25 to 28, adheres to constraint

(4.3a). The function c(Rm,n, l) provides the count of single task execution capabili-

ties allocated to manufacture product-l in Rm,n. This ensures robots operate at full

multiplexing or stop when their residual multiplexing capabilities can no longer meet

additional production demands, preventing task assignments that surpass a robot’s

multiplexing capacity.

Nm∑
n=1

r(Rm,n) ≥
Nm∑
n=1

c(Rm,n, l) (4.3a)

λl
m =

Nm∑
n=1

c(Rm,n, l), for all the Rm,n ∈ ρl (4.3b)

• Task Flattening: In lines 1 to 8, the set {λl} is flattened to produce a sequence of

single tasks.

• Initial Robot Choice: In line 9, the function MakeChoice takes λl as input and selects

a robot with positive residual multiplexing capabilities at random. This robot is then

designated as the first robot in the solution.

• Constraint Handling: The while loop from lines 10 to 24 is influenced by the principles

of constraint satisfaction problems [89]. Its role is to address interrelated constraints,

particularly the production demands constraint represented by (4.3b). This constraint

mandates that task assignments ρl align with the quantity of required tasks.
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• Meeting Production and Order Constraints: To ensure adherence to both the pro-

duction demands constraint and the ascending order constraint, lines 8 and 12 define

task flow as a sequence. This, in turn, guides lines 14 and 20 to expand the search

space exclusively with hypernodes of a consistent type.

In Algorithm 4.1, as the search domain expands based on the variable residual, the func-

tion MakeChoice invoked in lines 15 and 21, employs a greedy heuristic. This heuristic is

designed to select a hypernode with the minimal edge weight, thereby aiming to reduce

energy consumption during transportation, exemplifying a one-step greedy decision-making

process.

If there are multiple hypernodes with identical edge weight values, the function chooses

one at random. This combination of one-step greedy logic and random selection ensures that

the time complexity of Algorithm 4.1 remains constant. However, a trade-off exists: while

this method offers computational efficiency, it might not always find the globally optimal

task assignment, potentially resulting in sub-optimal solutions.

Furthermore, the MakeChoice function seamlessly integrates both the constraint satis-

faction heuristic and the greedy heuristic. It’s architected to operate efficiently, relying

on logical flow control and, when necessary, straightforward sorting processes rather than

looping.

4.1 Complexity of the Algorithm

To fulfill the real-time requirements of smart factories, the hypergraph search exhibits

constant time complexity, taking M , N, ω, εh, εv , εd , {λl}, L as inputs. This ensures both

effectiveness and dual-objective optimization.

Consider the while loop at line 10 in Algorithm 4.1, which iterates over the tasks in

task flow. In the worst-case scenario, a product p requires all types of tasks for its man-

ufacture. This implies that all λp
m values in λp are positive. Consequently, the length of

task flow is given by
∑L

l=1 λ
l
m for all L product demands. Let T1 represent the time taken
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for one iteration of the while loop at line 10. Since the execution time is linear with respect

to its input, it is
∑L

l=1 λ
l
mT1. All other lines within this loop execute in a constant time C1.

Therefore, the total execution time of this loop is
∑L

l=1 Lλ
l
mT1 + C1.

The while loop at line 3 iterates over the product sequence until its termination condition

is satisfied. In the worst-case scenario, every product among the L demanded requires at

least one type-1 task. If T2 denotes the time for one iteration of the while loop at line 3,

its execution time, being linear to the input, is ω1N1T2. All other lines outside this loop

take a constant time C2 to execute. Thus, the execution time for the while loop at line 3 is

T = ω1N1T2 + C2.

In summary, the execution time of the while loop at line 3 can be expressed as T =

ω1N1(
∑L

l=1 λ
l
mT1 + C1) + C2. Its time complexity is O(ω1N1(

∑L
l=1 λ

l
m)), indicating constant

time with respect to the given inputs.

4.2 Computational Experiments

Computational experiments are conducted on an MRS equipped with 18 production

robots. As previously discussed, Algorithm 4.1 does not guarantee a globally optimal so-

lution. To account for this and to analyze the deterministic behavior of the hypergraph

search approach, here employed a Monte Carlo simulation, executed 10,000 times. This

allows the demonstration of the sub-optimality of the approach through statistical means.

The parameters utilized in the experiments are provided in Table 4.1. For all experimental

runs, εh = 1, εv = 2, and εd =
√
5 are set. This choice is grounded in the consideration of

Euclidean geometry, along with the aim of achieving practical transportation efficiency and

ensuring flexibility within the manufacturing systems.

This section delves into a statistical analysis that highlights the sub-optimality of the

proposed hypergraph approach. To achieve this:
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Table 4.1 Parameters of real-time MRTA experiments.

Parameters Small-scale Case Large-scale Case
M 4 5
N (3, 3, 4, 3) (4, 4, 4, 3, 3)
ω (2, 1, 4, 3) (2, 1, 4, 3, 2)
L 2 4
λa (2, 1, 4, 2) (3, 1, 5, 0, 1)

λb (1, 0, 6, 3) (2, 2, 0, 3, 2)
λc (1, 1, 6, 2, 1)

λd (1, 0, 4, 3, 2)

• Monte Carlo simulation is performed on the hypergraph approach, focusing on a large-

scale case. The parameters for this simulation are detailed in the corresponding column

of Table 4.1. This was carried out on the same MRS to maintain consistency.

• Despite using consistent product demands {λa,λb,λc ,λd}, the demands at each exe-

cution is permutated. This approach was adopted to minimize sequence-induced de-

viations within the production demands. As a result, we ended up with a substantial

240,000 task assignments in total.

• The results of these simulations are pictorially represented in two figures:

1. Figure 4.1 showcases the cumulative distributions of solutions from two distinct

viewpoints.

2. Figure 4.1a presents the joint cumulative distribution for throughput-energy ef-

ficiency. Here, the x-axis represents throughput, the y -axis denotes energy effi-

ciency, and the z-axis, characterized by a cold-warm color gradient, displays the

cumulative number of identical solutions returned by the hypergraph search.

3. Conversely, Figure 4.1b visualizes the same joint cumulative distribution, but the

color depth symbolizes the cumulative number of identical solutions. The through-

put is still on the x-axis and energy efficiency is on the y -axis. Furthermore, the
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marginal cumulative distributions for both throughput and energy efficiency are

displayed at the top and the right, respectively.

The intention behind this structured analysis is to provide a comprehensive perspective

on the sub-optimality of the hypergraph approach, based on robust statistical methods.

(a) Joint cumulative distribution (b) Marginal cumulative distribution

Figure 4.1 Statistical plot of Monte Carlo simulation.

In Figure 4.1a, the joint cumulative distribution displays a notable ridge formation along

the z-axis, which can be characterized as the vector connecting adjacent maximum values.

This ridge is oriented towards enhanced values of both throughput and energy efficiency

within the Euclidean vector space delineated by the x , y , and z axes. Specifically, the ridge

peaks at a throughput value of T = 0.78 and an energy efficiency value of E = 0.16.

On the other hand, Figure 4.1b, while visually representing the same observation through

its color depth on the joint cumulative distributions, provides marginal cumulative distribu-

tions for throughput and energy efficiency. A closer examination of these marginal distri-

butions reveals that the medians (0.733 for throughput and 1186.2e−4 for energy efficiency)

exceed their respective means (0.727 for throughput and 1186.1e−4 for energy efficiency).

The observations outlined previously highlight the dual-objective optimization capability

intrinsic to Algorithm 4.1. While it might appear trivial at first glance, the potential solution
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space for a system with 18 production robots is formidable, being expressed as 2N·ω = 243.

The addition of production demands amplifies this space further to 18!. It’s worth noting that

even though the valid solution space is marginally smaller than this calculated expanse, not

all valid solutions present equal likelihood during the MRTA solution process using Algorithm

4.1. Drawing from the law of large numbers, among the myriad task assignments Algorithm

4.1 yields for consistent input parameters, those solutions with elevated throughput and

energy efficiency tend to manifest more frequently. This behavior underscores the algorithm’s

proclivity to optimize task assignments across both the throughput and energy efficiency

dimensions, aligning well with the requisites of a contemporary smart factory.

THe prior sections concentrated on providing quantitative optimization objectives with a

focus on product-averaged throughput and energy efficiency. However, when contemplating

decision-making, several other metrics merit consideration. This includes, but isn’t limited

to, factors like production prioritization informed by comprehensive big data market analy-

sis and forecasting, manufacturing costs derived from nuanced supply chain analytics, and

forecasts pertaining to MRS maintenance grounded in data-centric insights, as elucidated by

[85].

4.3 Toward Robust Real-time MRTA

Beyond the sub-optimality analysis for a specific MRS, smart factories, when grappling

with dynamic production demands, encounter a nuanced interplay between achieving task

assignment optimality during each system reconfiguration and ensuring aggregate task as-

signment optimality over time. This section posits that in the context of a smart factory,

MRTA transcends mere optimization, emerging more aptly as a decision-making challenge.

Guided by this perspective, the concept of “permissible MRS task assignments” is introduced.

Opting for permissible solutions strikes a balance: it prioritizes computational efficiency and

system resilience, even if it means a slight departure from absolute optimality. This approach

ensures results that are in close proximity to the optimal solution. Moreover, the ensuing
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parts of this section delve into the robustness intrinsic to the hypergraph approach. This ro-

bustness is pivotal, enabling the system to nimbly adapt to fluctuating production demands

and offering resilience against practical cyber anomalies, such as packet errors encountered

in wireless communications.

4.3.1 Permissible Task Assignment Approximation

While the experiment hints that Monte Carlo simulations of Algorithm 4.1 might be

adept at estimating local optimal task assignments, it’s imperative to introduce scientific

termination conditions to scale these simulations. Bootstrapping serves as a potent tool

in this context, offering a statistical approximation of the empirical distribution derived

from a limited set of solutions. Such an approach aids in achieving real-time computation.

Consequently, this section harnesses bootstrapping to approximate the marginal cumula-

tive distributions of both throughput and energy efficiency, ensuring these approximations

closely adhere to the Gaussian distribution [59]. Additionally, using importance sampling,

99% confidence intervals are constructed for these two marginal cumulative distributions.

These intervals delineate permissible task assignment boundaries and shed light on the deli-

cate balance between Monte Carlo simulation iterations and the pursuit of task assignment

optimality.

4.3.2 Parameter-Based Throughput and Energy Efficiency Estimation

Before deploying Algorithm 4.1, it’s feasible to analytically determine the “best-case”

and “worst-case” task assignments based on the provided inputs: M ,N,ω, εh, εv , εd , {λl}, L.

Specifically, Equation (4.4) identifies a “bottleneck” robot type, contingent upon a given

production demand {λl}. In this equation, the type-m robots exhibit the least ratio—this is

computed by dividing the aggregate multiplexing capability of all type-m robots by the total

number of type-m tasks present in {λl}. Within the framework of the hypergraph search,

these “bottleneck” type robots are prone to nearing their multiplexing capability limits. This
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saturation can either be attributed to their inherent limited multiplexing capabilities or to

an excessive requirement of type-m tasks in {λl}.

m̂ = argmin
m

(
N1ω1

1
L

∑L
l=1 λ

l
1

,
N2ω2

1
L

∑L
l=1 λ

l
2

, ... ,
Nmωm

1
L

∑L
l=1 λ

l
m

, ... ,
NMωM

1
L

∑L
l=1 λ

l
M

)
(4.4)

Consequently, the throughputs for the best-case, UT, and the worst-case, LT, are esti-

mated as delineated in Equation (4.5). The identified “bottleneck” robot type, denoted as m̂,

signifies the best-case scenario. Meanwhile, the condition presented in Equation (4.2) illus-

trates the worst-case scenario, where only one unit of each demanded product is completed

within a single time slot.

UT =

Nm̂ωm̂
1
L

∑L
l=1 λ

l
m̂

1
L

∑L
l=1

∑M
m=1⌈

λl
m

ωm
⌉

(4.5a)

LT =
Lt

1
Lt

∑Lt
l−1

∑M
m=1min(Nm,λl

m)
(4.5b)

With respect to energy efficiency, it’s reasonable to assume that the energy consump-

tion for transportation adheres to the relationship: εh < εv < εd . The best-case UE and

worst-case LE for energy efficiency are estimated in Equation (4.6). In optimal scenarios,

transport occurs solely along vertical and horizontal edges for both intra-type and inter-type

movements. Conversely, in suboptimal scenarios, all inter-type transport actions transpire

along diagonal edges.

UE =
1

1
L

∑L
l=1{(M − 1)εh + εv

∑M
m=1⌈

λl
m

ωm
− 1⌉}

(4.6a)

LE =
1

1
L

∑L
l=1[(M − 1)εd + εv

∑M
m=1(λ

l
m − 1)]

(4.6b)
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It’s worth noting that both Equations (4.5) and (4.6) should be treated as approximations

since their derivations are predicated on product averages and do not differentiate among

the L distinct products.

4.3.3 Permissible Task Assignment Boundaries

In the quest to derive scientifically informed permissible boundaries, this section begins

by applying bootstrapping, using an initial subset of algorithm executions, to obtain a pre-

liminary set of task assignments, θ. The empirical marginal distributions for throughput and

energy efficiency are denoted in terms of their means, µt and µe , as well as their variances,

σ2
t and σ2

e , respectively. To counteract potential bias stemming from the limited initial exe-

cutions, the analytical estimations UT, LT, UE, and LE are integrated into the bootstrapping

pool. From this, the values of µt , µe , σ
2
t , and σ2

e are derived, leveraging the sample mean

and variance across B bootstrap iterations.

To derive distributions of particular interest, importance sampling is performed on both

the marginal cumulative throughput and energy efficiency distributions. The means for these

samplings are set to the best-case estimations for throughput, UT, and energy efficiency, UE,

respectively. Let wt and we represent the likelihood or weight of these two importance

samplings. Given a permissible task assignment characterized by throughput T and energy

efficiency E , boundaries for this assignment can be defined as per (4.7). Here, z1−0.99/2

represents the critical value for the standard Gaussian distribution.

T ≥ Tpermissible = µt − z1−0.99/2
wtσt√
θ + 2

(4.7a)

E ≥ Epermissible = µe − z1−0.99/2
weσe√
θ + 2

(4.7b)

Consequently, the trade-off mechanism can be distilled into three pivotal parameters:

the initial execution time θ, the desired quantity of permissible task assignments N, and
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Table 4.2 Parameters for 10000 random cases.

Parameter Values or Vectors
M U(3, 10)
Nm (U(3, 10)), m = 1, 2, ... ,M
ωm (U(1, 5)), m = 1, 2, ... ,M
L U(1, 5)
λl
m U(0, 5), l = 1, 2, ... , L

the upper limit for Monte Carlo simulation time, MCmax . Augmenting the values of these

parameters prompts further runs of Algorithm 4.1, steering the solution closer to the sought-

after optimality.

An experiment was conducted involving 10,000 randomly generated MRSs using parame-

ters defined in Table 4.2. The tuple was defined in the following, and a uniform distribution,

U(a, b), was used. Remarkably, out of these 10,000 cases, 6,476 achieved 10 permissible

solutions and concluded within just 10 executions. This highlights the superiority of permis-

sible task assignments compared to relying solely on a large fixed number of Monte Carlo

simulations. Conversely, 782 cases culminated at 100 iterations, with an average parameter

L value of 1.99, which is notably lower than the overall mean of 3 observed across all 10,000

cases. These findings underscore that the efficacy of the trade-off mechanism is influenced

not just by production demand dynamics, but also by the specific parameters of the MRS,

laying the groundwork for intriguing future research avenues.

(θ,B ,wt ,we , N,MCmax) = (10, 100, 0.1, 5.0, 10, 100)

4.3.4 Raise of Non-stationarity and Resilience Challenges

Smart factories, equipped with real-time MRTA-coordinated MRS, offer advantages in

flexibility, productivity, and energy efficiency. However, they also raise concerns about ro-

bustness in the face of dynamic production demands and resilience against issues related to

cyber reliability and security [21, 114].
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The experiments reveal that the permissible task assignment method strikes a good bal-

ance between computation time and task assignment optimality. Furthermore, the robustness

of Algorithm 4.1 has been validated under the challenging scenario of 10, 000 random MRSs.

This section delves deeper by evaluating the hypergraph approach against 20 randomly

generated production demands, simulating 20 reconfigurations determined by the edge com-

puting parameters (M ,N,ω, εh, εv , εd) as listed in Table 4.1, and {λl}, L from Table 4.2.

Figure 4.2 displays the reconfigurations for t = 1, 2, ... , 20. At each reconfiguration

time instant t, real-time MRTA is executed, yielding 1,000 solutions as its termination

conditions. This helps in observing the deterministic nature of the approach. The upper

and lower sections of Figure 4.2 depict the throughput and energy efficiency over the course

of t respectively. The blue shades represent the marginal cumulative distribution of the 1,000

solutions, while the dashed line indicates the lower bounds of the permissible solutions.

Figure 4.2 Time dynamic experiment uses randomly generated production demands to
request real-time MRTA and the MRS is reconfigured following output task assignments to
simulate the dynamics of smart factories.

The results underscore the prowess of the hypergraph methodology when confronted with

randomly generated production demands. It consistently delivers effective, near-optimal so-

lutions. The marginal cumulative distributions vividly illustrate this, showcasing encourag-
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ing outcomes even under challenging conditions where feasible solutions are limited. Such

findings highlight the robustness of the proposed approach, which can assure effective task

assignments without the need for explicit prediction of production demands.

Moreover, the influence of MRS reconfigurations and their intrinsic non-stationarity be-

comes evident. As depicted in Figure 4.2, the statistical characteristics of each reconfig-

uration shift in response to the changing dynamics of production demands. Considering

that task assignments dictate the operation of the MRS, the oscillating nature of these as-

signments—and by extension, task execution—presents a formidable resilience challenge for

smart factories.

Resilience in smart factories extends beyond just adaptability; it also necessitates short

latency and swift responsiveness [62] especially when faced with dynamic production de-

mands compounded by potential cyber reliability issues and potential cyber-attacks.

Among the pivotal technologies introduced in this study, the MRS—which encompasses

production and transportation robots, wireless networks, wireless communications, and edge

computing—stands out. While these technologies can significantly enhance manufacturing

processes, they also introduce new risks.

This landscape opens doors for research opportunities, particularly in the realm of cyber-

physical systems. Exploring the nexus between the cyber domain—comprising AI and wire-

less networking—and the physical domain, characterized by production flow-based networked

robots, becomes crucial [43].

Ensuring resilience in the operations of an edge computing-coordinated MRS demands

a reliable network design [43]. It also requires the adoption of ultra-reliable, low-latency

communications [21, 22, 62] and the implementation of distributed computing on robots

[19].

Using wireless communications in smart factories as a lens to examine cyber reliability

issues, an experiment based on Table 4.2 is conducted. Five identical MRSs—each with the

93



same production demands and the same reconfigurations for t = 1, 2, ... , 20 are examined.

However, each MRS had unique permissible task assignments, as depicted in Figure 4.3.

Instead of the analytical throughput, in this context, throughput is assessed at each

time slot. This is based on the straightforward MRS resilient consensus principle [135]: a

production flow will only execute the assigned task if all robots are free from random wireless

packet errors. These wireless error rates span from 0.01 to 0.1 [34].

Given that the MRSs are identical and face the same production demands, their analytical

throughput remains consistent, represented as the scenario “Error rate = 0” in Figure 4.3.

Yet, when accounting for the variations in MRS task assignments and random wireless errors,

the simulated throughput exhibits divergent drops across the 5 identical MRSs for all three

error rate scenarios and all 20 reconfigurations. This starkly illustrates the influence of cyber

domain errors on the physical domain within an MRS-driven smart factory.

From the above, it’s evident that while MRS task assignments optimized for throughput

and energy efficiency at all times can be appealing, they may not align perfectly with the

overarching goals of smart factories. Such assignments might not always translate to opti-

mized productivity and resource efficiency in the long run. Moreover, they could introduce

additional computation time and elevate the risks associated with robustness and resilience.

This further underscores the sub-optimality of the hypergraph search approach.

Figure 4.3 Throughput of the same MRS under 5 wireless packet error rates.
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Chapter 5: Predictive Path Coordination of Collaborative Transportation MRS

for Productive Transportation

AMRs in the transportation-MRS execute transportation tasks in an end-to-end se-

quence, leading to asynchronous task execution; a new task is assigned upon completion of

the prior one. Dynamic production flows necessitate reconfigurations in two MRSs, specifi-

cally, changes in production and transportation tasks. Nonetheless, between these reconfig-

urations, the transportation-MRS operates with a static set of tasks that reflect production

tasks and flows. This dynamic nature means transportation task assignments for AMRs are

inherently unpredictable, given they might be reconfigured a different set of tasks to serve

altered production flows, reconfigured to support an ongoing flow, or assigned a completely

new task due to reconfiguration.

Let M t denote the total number of transportation tasks adjustable at reconfiguration

intervals represented by t = t1, t2, .... At each reconfiguration, edge computing formulates a

new set of M t tasks, TS t , consisting of pairs of a pickup vertex vm
fp ,xp ,yp

and a delivery vertex

vm
fd ,xd ,yd

, as defined in (5.1a). The task generation process is mathematically described by

(5.1b), where hDU denotes a discrete uniform distribution used to select two vertices from

Gfloor for pickup and delivery.

TS t = {(v1fp ,xp ,yp , v
2
fd ,xd ,yd

), ... , (vmfp ,xp ,yp , v
m
fd ,xd ,yd

),

... , (vM
t

fp ,xp ,yp , v
Mt

fd ,xd ,yd
)}

(5.1a)

(vmfp ,xp ,yp , v
m
fd ,xd ,yd

) = hDU(2; 0,Nf · Nx · Ny ) (5.1b)

m = 1, 2, ... ,Mt (5.1c)

t = t1, t2, ... (5.1d)
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A transportation task is denoted by taskm for m = 1, 2, ... ,M t . When this task is assigned

to AMR-k , it is defined by the pickup vertex vm
fp ,xp ,yp

, the delivery vertex vm
fd ,xd ,yd

, and the

associated pickup and delivery due times, τmdue,pickup and τmdue,deliver, respectively, as described

in (5.2). Assuming AMR-k is at location vfk ,xk ,yk at the time of assignment, it first navigates

to vm
fp ,xp ,yp

for pickup and then proceeds to vm
fd ,xd ,yd

for delivery. The A∗ algorithm, denoted by

hA∗ [103], calculates the shortest feasible delay for both routes. However, since AMRs might

not always choose the shortest path, a margin parameter β is introduced to adjust the due

times accordingly.

taskm = (vm
fp ,xp ,yp , v

m
fd ,xd ,yd

, τmdue,pickup, τ
m
due,deliver) (5.2a)

τmdue,pickup = (1 + β) · hA∗(vfk ,xk ,yk , v
m
fp ,xp ,yp) (5.2b)

τmdue,deliver = (1 + β) · hA∗(vfp ,xp ,yp , v
m
fd ,xd ,yd

) (5.2c)

In summary, the set of transportation tasks is refreshed during the reconfiguration time

slot, which occurs every several hundred to thousand time slots [120], as indicated by (5.1).

A single navigation step taken by AMR-k at time slot t is denoted as atk (termed an

action). This action transitions AMR-k from vertex vf ,x ,y to an adjacent vertex vf ′,x ′,y ′

in Gfloor, as concisely represented by (5.3a). Equations (4b) to (4h) explicitly define the

empirical actions “west”, “south”, “east”, “north”, “stay”, “up-floor”, and down-floor and

their corresponding numerical representations. Thus, the discrete action space for AMRs is

given by A = {0, 1, 2, 3, 4, 5, 6}.

Integrating the models from the previous two subsections, when AMR-k at location

vf0,x0,y0 is assigned a task, taskm, as defined by (5.2) at time slot t, it first navigates to vfp ,xp ,yp

in τmk,pickup time slots for pickup. Subsequently, it moves to vfd ,xd ,yd in τmk,deliver time slots for

delivery, marking the completion of the task execution.
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This assignment results in two walks on Gfloor: ρ
m
k,pickup and ρm

k,deliver, as defined by (5.4a)

and (5.4b), respectively. The delay and energy consumption associated with AMR-k com-

pleting taskm are described by (5.4c) and (5.4d), respectively.

vf ,x ,y
atk−→ vf ′,x ′,y ′ (5.3a)

atk = 0 := f ′ = f , x ′ = x , y ′ = y − 1 (5.3b)

atk = 1 := f ′ = f , x ′ = x + 1, y ′ = y (5.3c)

atk = 2 := f ′ = f , x ′ = x , y ′ = y + 1 (5.3d)

atk = 3 := f ′ = f , x ′ = x − 1, y ′ = y (5.3e)

atk = 4 := f ′ = f , x ′ = x , y ′ = y (5.3f)

atk = 5 := f ′ = f + 1, x ′ = x − 1, y ′ = y (5.3g)

atk = 6 := f ′ = f − 1, x ′ = x − 1, y ′ = y (5.3h)

As established in Section 3.1.3, each navigation step occupies one time slot. Therefore,

the delay is equivalent to the number of vertices in the walks ρm
k,pickup and ρm

k,deliver minus

one. This count also corresponds to the number of actions forming each walk.

ρm
k,pickup = (vf0,x0,y0

atk−→ vf1,x1,y1
at+1
k−−→ vf2,x2,y2 ...

...
a
t+τpickup
k−−−−−→ vm

fp ,xp ,yp)

(5.4a)

ρm
k,deliver = (vm

fp ,xp ,yp

a
t+τpickup+1

k−−−−−−−→ vf3,x3,y3 ...

...
a
t+τpickup+τdeliver
k−−−−−−−−−−→ vm

fd ,xd ,yd
)

(5.4b)

τmk = τmk,pickup + τmkdeliver (5.4c)

Emk = hweight(ρ
m
k,pickup) + hweight(ρ

m
k,deliver) (5.4d)
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A potential collision during task execution can arise when the set of AMRs, K t
f ,x ,y , is

located at vf ,x ,y at time t. Given all planned actions atk for k in K t
f ,x ,y , the action set

is invalid, as indicated by (5.5), due to the presence of duplicate elements. Fortunately,

with time synchronization, potential collisions can be mitigated using token-passing. This

resolution might prompt AMRs to opt for the “stay” action, which could prolong the task

execution delay.

∄{atk |∀atk , k ∈ K t
f ,x ,y} (5.5)

Delay (also referred to as completion time or makespan) and energy consumption stand

as the primary performance indicators for smart factory transportation [39, 28]. Thus, these

indicators are used to assess the performance of the transportation-MRS, as described by

(5.6a). This evaluation takes into account the proposed multi-floor model, task model, and

the formulated discrete navigation problem. Given that both delay and energy consumption

are more favorable when minimized, a negative Cobb-Douglas utility function [56] is used. In

this function, α signifies the preference balance between delay and energy. The function given

by (5.6a) is termed the global utility, representing the average delay and energy consumption

across all completed tasks and all AMRs. Further, (5.6c) indicates that both delay and

energy originate from the task execution paths, ρm
k,pickup and ρm

k,deliver. These paths must be

consistent with taskm.

minimize

∑K
k=1

∑T
t=1

∑Mt

m=1 (τ
m
k )α(Emk )

1−α

K
∑T

t=1M
t

(5.6a)

s.t. (5.6b)

∃ τmk , Emk ← (taskm,ρm
k,pickup,ρ

m
k,deliver) (5.6c)

m = 1, 2, ... ,M t (5.6d)
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The primary objective of coordination within the transportation-MRS is the optimization

of both delay and energy consumption. This is assessed using the global utility as defined by

(5.6a). It’s important to note that the delay and energy consumption during task executions

result from the discrete navigation actions of all AMRs within the transportation-MRS. This

scenario presents a multiagent optimization problem.

5.1 Collborative Multi-Intelligent Robot System with Domain Model for Path

Coordination

This section practices the cyber-physical AI agent system approach introduced in Sec-

tion 3.3 and integrates the multi-floor model from Section 3.1.3 as its domain model. The

overall architecture is illustrated in Figure 5.1.

Within this framework, agents perceive their environment primarily through transporta-

tion tasks, with the multi-floor domain model serving as an assisting tool. Notably, any

reconfigurations leading to non-stationary transportation tasks are known by the agents.

These AMRs work in a collaborative and predictive manner, executing transportation tasks

along paths that are planned to avoid collisions. In instances where potential collisions arise,

they are addressed using a token-passing-based collision resolution.

Collectively, this methodology targets the optimization of the collective objective, as

delineated by Equation (5.6).

The global critic, represented as Vg , is a shared entity amongst all AMRs and is hence

maintained via edge computing. Its primary role is to forecast the global reward, which is

a reflection of a pickup or delivery path’s contribution to timely task completion and the

global utility. This prediction is made based on the information from the assigned task,

taskm, and its associated path, ρm
k .

Deviant from the prevailing centralized critic methodologies documented in scholarly

literature, the global reward mechanism in this design is intrinsically agent-centric. Given the

decentralized nature of the framework, accurately predicting the exact time slot earmarked
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Figure 5.1 Architecture of multi-agent “Actor-Mixed Critics” approach under MARL
framework.

for task culmination across all AMRs becomes an intricate challenge. To address this, the

global reward is disseminated in each distinct time slot. As elucidated in (5.7), when AMR-k

achieves either a pickup or delivery within the prescribed timeframe, it garners an amplified

reward of 10. Conversely, any task that overshoots its due time is penalized, receiving a

muted reward of 5. Throughout the intervening period, until the pickup or delivery milestone

is realized, the ledger for AMR-k consistently reflects a global reward tally of 0.

r tg ,k =


10 picked up or delivered and τmk ≤ τmdue

5 picked up or delivered and τmk > τmdue

0 otherwise

(5.7)

Each AMR operates and refines its local critic, denoted Qk , in a distributed fashion. The

primary purpose of the local critic Qk is to guide AMR-k in evading potential collisions.

This is achieved by predicting the expected penalty, which is referred to as the local reward,
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for every conceivable action in its defined action space, A. These predictions stem from

historical encounters with potential collision scenarios.

The local state s tl ,k is adeptly designed as an 8-element vector, which resonates with AMR-

k ’s spatial position at the time instant t, denoted as v t
fk ,xk ,yk

. By having such a formulation,

the relationship between the local state and the ensuing actions is better generalized, ensuring

a more efficient navigation system.

Local rewards, as articulated by (5.8), are derived considering the situations where K t
fk ,xk ,yk

AMRs are concurrently positioned at vfk ,xk ,yk during time t. An AMR that takes an action

that directly conflicts with the maneuver of another AMR, or situations where more than

three AMRs are congregated at a single vertex, invokes a penalty via the local rewards

mechanism. It is imperative to note that when three AMRs coexist at a singular position,

the susceptibility to collisions escalates dramatically.

r tl ,k =


−1 action cause potential collision as (5.5),

or K t
fk ,xk ,yk

> 3

0 otherwise

(5.8)

5.1.1 Predictive Collision Avoidance

Building upon the planning methodology elucidated in Section 3.2.2.2, the actor module

strategically chooses κk plans out of the available κN plans. This selection process is driven

by the most promising advantage values, as delineated by Ak in (5.9). This particular

advantage function amalgamates insights from both the global and local critics’ assessments

for AMR-k .

Drawing inspiration from the generalized advantage function presented by [95], which

presents a comparative evaluation of actions within an action space, (5.9) ventures a step

further. It encapsulates the overarching global utility metric (5.6a), emphasizing the relative
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Algorithm 5.1: Actor module

def Evalaute Path(ρm
k ):

Result: plans
1 values global← Vg (s

m
g ,k ← PathEmbd({ρm

k , ... }))
2 values local mean← Mean (Qk({skl , ak , ... } ← {ρm

k , ... }))
3 Ak({ρm

k , ... })← αg · values global+ values local mean

4 plans← argsort (κk ,Ak({ρm
k , ... }))

def Calculate Value(atk , a
t−1
k , s tl ,k ,Qk):

Result: Vt
k

5 values local← Qk(s
t
l ,k , a), a ∈ A

6 values local← argsort (values local)
7 for a in A:
8 if a == Reverse (at−1

k ):
9 values local(a) = 0

10 elif a == atk :
11 values local(a) = 6
12 elif a meet cross floor condition:
13 values local(a) = 0

14 Vt
k ← Map (values local, [0, 1, 2, 3, 4, 5, 6])

def Act(plan, vfk ,xk ,yk ,Gfloor , task
m,Vg ,Qk ,κN ,κk):

Result: atk
15 if deadlock detected :
16 switch flag←Switch plan (vfk ,xk ,yk )
17 if ¬switch flag:
18 if Random > 0.5:
19 return atk = 4

20 if vfk ,xk ,yk /∈ plan:
21 switch flag←Switch plan (vfk ,xk ,yk )
22 if ¬switch flag:
23 Plan (vfk ,xk ,yk ,Gfloor , task

m,Vg ,Qk ,κN ,κk)

24 plan← Get plan (vfk ,xk ,yk )
25 atk ← plan

impact of the plans on pivotal aspects such as prompt task execution, delay minimization,

energy conservation, and effective collision circumvention.

Incorporating concepts from TD(λ) [100], for any designated path plan ρm
k , the expression

in (5.9) integrates the global critic Vg , offering a projection of the cumulative expected

returns arising from ρm
k . Concurrently, it melds insights from the local critic Qk , estimating
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the prospective values of all individual actions forming the backbone of ρm
k . Yet, given the

varying action count within each plan ρm
k , there’s an innate bias. To counteract this, the

predictions from Qk are uniformly averaged across all constituent actions, indexed as i .

In this multifaceted planning landscape, the determination of an ideal coefficient, rep-

resented as αg , becomes pivotal. This coefficient aims to balance the evaluations from the

global critic with those of the local critic, and its ideal value should be empirically derived,

weighing the nuances of both global and local reward formulations.

Ak(ρ
m
k ) = αgVg (s

m
g ,k ← PathEmbd(ρm

k )) +
1

i

∑
skl ,ak∈ρ

m
k

Qk(s
k
l , ak ← ρm

k ) (5.9)

Upon evaluating the advantage values, the actor finalizes its decision by adopting the

plan with the paramount advantage value as the chief policy for action. The remainder of

the plans, that is κk − 1, are retained as contingency or backup strategies. This decision-

making process is compactly detailed within the Evaluate Path function, specifically from

lines 1 to 4, as presented in Algorithm 5.1.

5.1.2 Collision Resolution with Token-passing

Under the proposed collaborative cyber-physical AI agent system approach, a token-

passing-based collision resolution is employed to address situations where potential collisions

have not been preemptively avoided. This method adeptly manages the equilibrium between

collaboration and the risk of collisions through communication among intelligent agents.

In the transportation-MRS introduced in Section 3.1.3, even though task execution pro-

gresses asynchronously, discrete navigation steps among AMRs are synchronous. When

potential collisions occur, the involved AMRs collaboratively resolve the collision in a decen-

tralized fashion to maintain collision-free task executions.

The token-passing-based collision resolution draws inspiration from the Dutch auction

method [92]. In this configuration, each AMR has a local numerical value, denoted as tokentk ,
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serving as a “currency” to streamline the action-claiming process. Every AMR commences

with a primary allocation of tokens, symbolized by token0k .

Referring to Figure 5.2, imagine a situation where a potential collision is forecasted

among a group of AMRs, such as AMR-1, 2, 3, 4, at a specific time t. Initially, each AMR

employs its actor module to determine a value vector V t
k relative to the action space. The

derivation of this vector is elaborated in Algorithm 5.1 under the function Calculate Value,

particularly from lines 5 to 14. It ensures actions that circumvent potential collisions have

elevated values, with lines 14 to 19 integrating domain-specific knowledge. A planned action,

highlighted in lines 16 and 17, is assigned a value of 6. Conversely, unplanned cross-floor

actions, discerned by cross floor condition, and the action reverting the last one, are

assigned a value of 0. The Map function ensures that all V t
k integer elements are within the

[0, 6] interval, in agreement with action space A.

Subsequently, AMRs disseminate their value vectors and token counts, leading to a unified

value vector, Vt
k,a, and token vector tokent for the decentralized execution of Algorithm 5.2.

Lines 2 and 4 accentuate that AMRs possessing more tokens receive preference, enabling

them to commit to their prime actions ahead of others. Conversely, token-deficient AMRs

are left with the residual choices in Action set. In cases of token scarcity, as shown in lines 7

to 13, certain AMRs might not secure any action. Line 5 emphasizes that AMRs only select

actions with values greater than 0, viewing 0-valued actions as unfavorable. Unsuccessful

AMRs default to the “stay” action, which is free of token charges, as outlined in lines 14

to 16. Conclusively, the Token exchange process guarantees the tokens expended by AMRs

are evenly redistributed among others, ensuring the system’s token count remains invariant,

reflecting a zero-sum game. Post-resolution, all AMRs exchange the obtained outcomes, Xt ,

and their refreshed token numbers, represented by tokent .

The resolution of potential collisions is decentralized among the colliding AMRs. This

decentralized approach is enabled through a proximity-based ad hoc wireless network. Such

a network offers significant advantages, including enhanced scalability, optimized communi-

104



AMR-1

𝑽!"

AMR-2

𝑽!" , 𝑡𝑜𝑘𝑒𝑛!"

AMR-3

Calculate value matrices

𝑽#" 𝑽$"

𝑽$,&" , 𝑡𝑜𝑘𝑒𝑛$,&"

𝑽#,$,&" , 𝑡𝑜𝑘𝑒𝑛#,$,&"

𝑽!,#" , 𝑡𝑜𝑘𝑒𝑛!,#"

𝑎!" 𝑎#" 𝑎$"

𝑡

𝑡𝑜𝑘𝑒𝑛!"'! 𝑡𝑜𝑘𝑒𝑛#"'! 𝑡𝑜𝑘𝑒𝑛$"'!𝑡 + 1

AMR-4

𝑽&"

𝑽&" , 𝑡𝑜𝑘𝑒𝑛&"

𝑽!,#,$" 𝑡𝑜𝑘𝑒𝑛!,#,$"

Collision resolution with token-passing

𝑎&"

𝑡𝑜𝑘𝑒𝑛&"'!

Figure 5.2 An example of distributed collision resolution among 3 AMRs.

cation efficiency, and reduced energy consumption. In scenarios where multiple AMRs show

an inclination towards the same actions and possess identical token counts, a synchronized

random seed is utilized. The synchronization ensures that the resulting decisions, denoted

as Xt , remain uniform across all participating AMRs.

5.2 Computational Experiments

To showcase the efficacy, near-optimality, and scalability of the proposed methodology,

computational experiments are performed using varying numbers of AMRs and multi-floor

models. Specifically, we consider:

K ∈ {13, 17, 19, 23, 29, 31}

and

(Nf ,Nx ,Ny ) ∈ {(2, 4, 5), (2, 5, 5), (2, 5, 6), (3, 3, 4), (3, 4, 4), (3, 4, 5)}.

To emphasize potential collisions, the scenario with 31 AMRs on a multi-floor model

is defined by the dimensions (3, 3, 4), resulting in 36 vertices. This experiment runs for a

total of 10, 000 timesteps to underscore the method’s effectiveness and near-optimality. This
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Algorithm 5.2: Collision resolution with token-passing

Data: A, atn = (atk , ... ),V
t
k,a, token

t = (tokentk , ... )
1 Xt , prices← ∅
2 AMR set← argsort (token)
3 Action set← A
4 for k in AMR set:
5 desired actions k← argsort (Vt

k,a)
6 for ak in desired actions k:
7 if ak in Action set:
8 Xt ← k , ak
9 price← Vt

k,a

10 if price ≥ tokenk :
11 Action set.remove(ak)
12 prices← price

13 break

14 if k not in Xt:
15 Xt ← k , ak = 4
16 price← 0

17 tokent+1 ← Token exchange (Xn,t , prices, token)

configuration, having the highest AMR count and the fewest vertices across all scenarios,

inherently poses the maximum risk of potential collisions given the path constraints.

Throughout the 10, 000 timesteps, task reconfigurations occur at intervals: 2000, 4000,

6000, and 8000 timesteps. This simulates dynamic reconfigurations typically observed in

smart manufacturing environments, a situation unforeseen by all AMRs. To ensure result

comparability across different task sets, a consistent task set is maintained where tasks

possess an optimal delivery path delay of 6. This consistency ensures that every task set

presents a similar level of challenge for the AMRs.

All experiments are executed five times, each with unique seed sets for the environment

and individual AMRs. Leveraging the parameters enumerated in Table 5.1, the results illus-

trate average curves (considering both AMR numbers and five iterations) with accompanying

shaded regions indicating the range observed over the five repetitions.

The experimental outcomes for a scenario with 31 AMRs on a multi-floor model of

dimensions (3, 3, 4) are presented in Figures 5.3a through 5.6b.
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Table 5.1 Parameters of predictive transportation path coordination experiments.

Parameter Value Parameter Value

Nf ,Nx ,Ny ,K 3, 3, 4, 31, 7 pwalks , qwalks 1, 1
εf , εx , εy 3, 1, 2 κk 5

β 0.2 ϵ 1
α 0.7 token0k 10
κN 240 Training period 10 time slots

lr g , lr
k
l 0.001, 0.0005 Vg hidden size [6, 6]

γl , γdecay 0.98, 0.90 Qk hidden size [8]
αglobal 0.1 Vg buffer size 5000

nwalks, nsteps 3, 3 Qk buffer size 1000
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Figure 5.3 The delay and energy consumption results.

Among these, Figures 5.3a to 5.4b, as well as Figures 5.5a and 5.5b, employ the x-axis

to denote episodes, i.e., completed tasks. Conversely, Fig. 5.6a uses the x-axis to represent

timesteps, or time slots. This distinction arises because performance metrics like delay,

energy consumption, and global utility are determined post-task completion, whereas both

global and local rewards are designed to enhance these very metrics.

Vertical dashed lines within these figures indicate the timesteps at which task reconfigu-

rations, or changes in the task set, occur. Given that the number of timesteps within each

episode can vary, the reconfiguration timesteps in figures with episodes as the x-axis are

approximations.
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Figure 5.4 The shortest time ratio and global utility results.

The Shortest Time Ratio (STR) is an essential metric that showcases near-optimal per-

formance. It is defined as (5.10) and its results are depicted in Figure 5.4a.

The STR computes the mean ratio of the delay for each finalized task (τmk ) to the shortest

achievable delay (τmshortest). Notably, the term τmshortest shares similarities with τmdue from (5.2),

but with the distinction of having a margin parameter set as β = 0.

Furthermore, drawing parallels to (5.2), vfk ,xk ,yk represents the location of AMR-k when

the task taskm is allocated to it.

An STR value approximating 1 implies that a majority of tasks are finalized utilizing

optimal paths, and a deviation from this value indicates otherwise.

STRT =
1

K
∑T

t=1M
t

T∑
t=1

τmk
τmshortest

(5.10a)

∃ τmk ← (taskm,ρm
k,pickup,ρ

m
k,deliver) (5.10b)

τmshortest = hA∗(vfk ,xk ,yk , v
m
fp ,xp ,yp) + hA∗(vfp ,xp ,yp , v

m
fd ,xd ,yd

) (5.10c)

m = 1, 2, ... ,MT (5.10d)
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Although leveraging the domain model for planning assures near-optimality, AMRs dy-

namically adapt to avoid potential collisions and coordinate their task execution paths.

Figure 5.3a through 5.4b elucidates this:

• In the initial 200 episodes, there’s a substantial reduction in delay, energy consump-

tion, and STR, implying improved task execution efficiency. Concurrently, there’s a

noticeable upswing in global utility.

• Beyond the 200 episode mark, even with subtle task set alterations, all four performance

metrics exhibit only marginal fluctuations. This behavior indicates that, within the

first 200 episodes, AMRs have not only adopted collision-averse strategies but have

also adeptly adapted to task reconfigurations to uphold consistent performance levels.

• Pertaining to near-optimality, post the 200 episode threshold, the STR gravitates to-

wards an average of 1.23. This suggests that the mean delay is approximately 23%

longer than the ideal optimal delay. Remarkably, this is achieved with 31 AMRs oper-

ating in a Gfloor having 36 vertices (represented as 3×3×4). This configuration means,

on average, one AMR occupies 86% of the space of another AMR.

100 200 300 400 500 600
5

10

15

20
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(a) Global reward.

100 200 300 400 500 600
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Episode

(b) Local reward.

Figure 5.5 The global and local reward results.
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Figure 5.5a portrays the average global rewards. Notably, the trend seen here aligns well

with the global utility, as presented in Figure 5.4b. This coherence is expected, given that the

global critic and global reward are devised to optimize both delay and energy consumption

during task execution.

On the other hand, Figure 5.6b showcases the average local reward, which essentially

provides insights into the mean number of potential collisions an AMR encounters in each

episode. Observations from this figure are as follows:

• During the initial 20 episodes, a substantial enhancement in local rewards is witnessed,

with values moving from approximately −3 to −2.

• For the episodes that ensue, the local reward remains relatively stable around the

−2 mark. This consistent pattern implies that, in a scenario where 31 AMRs are

functioning on a Gfloor comprised of 36 vertices, one can anticipate encountering two

potential collisions in every episode.
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(a) MSE loss of the global critic.
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Figure 5.6 The global and local critic loss results.

Figure 5.6a and Figure 5.6b display the MSE loss for the global critic and the average

smooth L1 loss for local critics, respectively. A deeper analysis yields the following insights:

• Global Critic Loss: Post the mark of approximately 9000 time slots, the global critic

loss exhibits a declining trend, eventually approximating a value close to 3. This

110



decline is noteworthy considering that the global rewards span a relatively broad range

([0, 10]). Training on transitions from all 31 AMRs yields a signature indicative of

promising convergence.

• Local Critic Loss Dynamics: The behavior of the average local critic loss underscores

the challenges inherent to AMR path plan coordination in the wake of reconfigura-

tions. An initial sharp decline from 0.25 to 0.11 is observed within the first 400 time

slots. Subsequently, each reconfiguration event, delineated by vertical dotted lines,

introduces perturbations to the average local critic curve. These perturbations can be

attributed to the disruption caused to the coordination previously established by the

AMRs, instigating a distributional shift. In the face of reconfigurations, the AMRs are

compelled to collaboratively and adaptively forge new coordination.

• Local Critics’ Adaptation: Pertinent to local critics, the reconfigurations lead to shifts

in optimal weights. Consequently, abrupt augmentations or reductions in loss are

manifest, which are subsequently optimized courtesy of the replay buffer reset fine-

tuning mechanism.
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Chapter 6: Operational Resilience and Integrity of MRS in a Smart Factory

This chapter addresses the operational resilience and integrity of MRS under cyber-

physical errors with cyber-physical AI agents and smart contracts. Section 6.1 focuses on

collaborating to mitigate the impact of production robot actuators’ accuracy degradation

that leads to defects in the physical domain. Section 6.2 focuses on collaborating to detect in-

correct cyber operations by enforcing cyber operations as immutable blockchain transactions

by smart contracts.

6.1 Social Learning Coordination of Collaborative MRS for Resilient Produc-

tion

The accuracy of production robots inevitably degrades over time due to factors such as

degradation of mechanical components, onboard sensor measurement noise, and environ-

mental factors including temperature, humidity, dust, or vibration [86]. Traditional factory

automation typically carries out system-wide, resource-intensive, and human-extensive cali-

bration to hopefully maintain a consistent global accuracy reference. However, such efforts

disrupt factory operations and reduce productivity [32]. On the contrary, AI computing-

facilitated MRS coordination offers a more flexible and agile approach to relative accuracy,

which avoids the need for frequent system-wide maintenance with a global reference. Each

production robot can adjust actuator parameters within its operation range, in real-time

based on AI computing outputs. As a result, coordinated task execution leads to the fin-

ished products meeting effective production requirements in a more cost-effective and efficient

manner.
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Figure 6.1 Time-slotted MRS for flow-based manufacturing suffers from accuracy
degradation without frequent maintenance that impacts the resilient production.

Multi-robot coordination can effectively mitigate the accuracy degradation with the rela-

tive accuracy approach. When the completion of a product involves multiple task executions

by several robots (also referred to as processes or stages), each task execution is performed

by heterogeneous robots with distinct reference systems. As a result, maintaining a globally

precise reference among such heterogeneous MRS becomes exceedingly challenging [18]. Con-

sequently, the inspection of finished products relies on the relative alignment of all processes

involved in the production, rather than an absolute global reference [102]. By collaboratively

coordinating task executions, MRS can minimize such relativity so that the finished products

are effective even in the presence of robot accuracy degradation [99]. From t1 to t1 + 3 in

Figure 6.1, although accuracy degradation occurs, the finished products are effective since

MRS are performing coordinated task executions. However, from t2 to t2 + 3, as accuracy
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continues to degrade, the relativity in multiple task execution increases, which leads to de-

fects. Such defects can be mitigated by MRS within the operational range of the actuator,

by reducing the group’s relativity through coordination.

The error resulting from accuracy degradation, etm,n, is characterized by the last mainte-

nance time tM, Time to Repair (TTRm,n), and degradation rate wm,n [107], assuming that

maintenance resets e0m,n to 0. The degradation is modeled as linear until etm,n = −γR or γR ,

with TTRm,n ∼ U(tS , tL). Here, U represents a discrete uniform distribution defined by the

shortest possible maintenance time tS and the longest possible maintenance time tL. The

degradation and degradation rate, wm,n, are characterized by (6.1a). Consequently, given

the errors of all robots at time t = 0 as per (6.1b) and their respective degradation rates

according to (6.1c), the error of the MRS at time t is given by (6.1d).

wm,n

TTRm,n + tM

0

 = −γR or γR (6.1a)

e0sys = (e01,1, ... , e
0
m,n, ... ) (6.1b)

wsys = (w1,1, ... ,wm,n, ... ) (6.1c)

etsys = wsys ·

 t

e0sys

 (6.1d)

Furthermore, a production flow is composed of a series of tasks executed by production

robots as delineated by MRTA [76]. Given the focus on formulating an AI computing-oriented

coordination problem, we employ atm,n in (3.4) as a concise representation of task execution.

Formally, a production flow ρl for product-l is a vector composed of i robots, as specified in

(3.1a). This vector is further refined to a simple path in CPMRS in Section 3.1.1. All the

i actions al and errors el contributing to the processing of product-l are provided in (6.2a)

and (6.2b) respectively. As depicted in (6.2c), the state of the finished product-l , pl ,t+i+1
m′,n′ ,
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progresses through all the actions al and errors el temporally, with the robot and number (i)

in the defined production flow (3.1a) varying over time. Although accuracy degradation is

linearly modeled by (6.1), finished products are processed by a linear combination of robots,

each with varying and dynamic accuracy degradations. This results in complex interactions

within the MRS and introduces significant non-linearity. The outcome state of a product is

influenced by the additive Gaussian noises in measurements and errors in task executions of

all production robots in the corresponding production flow.

al = (al ,tm1,n1
, al ,t+1

m2,n2
, ... , al ,t+i−2

mi−1,ni−1
, al ,t+i−1

mi ,ni
) (6.2a)

el = (etm1,n1
, et+1

m2,n2
, ... , et+i−2

mi−1,ni−1
, et+i−1

mi ,ni
) (6.2b)

pl ,t+i+1
m′,n′ = f mi ,ni

execute(f
mi−1,n−1

execute (... (f m2,n1
execute

(f m1,n1
execute(p

l ,t
m1,n1

, atm1,n1
, etm1,n1

), at+1
m2,n2

, et+1
m2,n2

),

... ), at+i−2
mi−1,ni−1

, et+i−2
mi−1,ni−1

), at+i−1
mi ,ni

, et+i
mi ,ni

)

= pl ,tm1,n−1 + εl ,tm1,n1
+ atm1,n−1 + etm1,n1

+ εl ,tm2,n2

+ atm2,n−2 + etm2,n2
+ · · ·+ εl ,tmi−1,ni−1

+ atmi−1,ni−1

+ etmi−1,ni−1
+ εl ,tmi ,ni

+ atmi ,ni
+ etmi ,ni

(6.2c)

AI computing-enabled MRS coordination can maintain production against the impact of

accuracy degradation without necessitating maintenance or calibration, which is referred to

as resilient production.

As a practical metric for smart factory production, the effective rate (also referred to as

the survival rate) of finished products is defined as the percentage of satisfactory products

subject to constraint∆ among all finished products. This definition is inspired by the “yield”

definition in [19]. As previously introduced, the satisfactory constraint ∆ is determined

based on the relativity of task execution considered for finished products. Building upon

the modeled task execution (3.4), accuracy degradation (6.1), and subsequent production
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flow definitions, the effective rate Φt for all L finished products can be expressed by equation

(6.3).

The effective rate Φt is a function of MRS actions al and degradation error el , subject to

dynamic production flows {ρ1,ρ2, ... ,ρl , ... ,ρL}, while both al and el are vectors of numerical

sequences with respect to time slots t. Regardless of the raw material’s state, when the range

between the maximum and minimum task execution satisfies the predetermined constraint

∆, the finished product is considered effective, and vice versa, which is coherent with the

relative accuracy approach proposed in this study. The vector al is determined adaptively

and collaboratively by the MRS, rendering (6.3a) a multiagent optimization problem to be

addressed by the decentralized AI computing, while the time dynamic production flows ρl ,

l = 1, ... , L, and errors from accuracy el remain unknown. The functions max(·) and min(·)

return the maximum and minimum elements of the input vector, respectively, and 1∆ is an

indicator function. The constraints in (6.3b) pertain to coordination, indicating that the

action must be accomplished within the action space and that coordination is only valid in

the absence of point failures.

Φt(al , el) =

∑
l∈L 1∆ : max(al + el)−min(al + el) → {0, 1}

L
(6.3a)

s.t. ∃ρl , al , el

∀atm,n ∈ al , atm,n ∈ A

∀etm,n ∈ el , etm,n ∈ [−γR , γR ]

l = 1, ... , L

(6.3b)

Furthermore, resilience in an engineering context refers to the capacity of a system,

component, or infrastructure to withstand, adapt, and recover from disturbances, shocks,

or stressors while maintaining its core functionality [118]. This concept is essential for

designing and managing systems that can endure uncertain or adverse conditions, such as

natural disasters, equipment failures, or human errors, and ensure their continued operation
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[65]. Although resilience has no common definition, the definition of resilient production

could be derived from the productivity metric, effective rate Φt . This study adopts Mean

Time To Fail (MTTF) [107] based on the effective rate Φt to evaluate resilient production.

As resilience is concerned with maintaining core functionality, which, for MRS-driven smart

factories, is production, MTTF measures the average time MRS operates before failure, i.e.,

effective rate decrease to 0. A longer MTTF indicates more resilient production facilitated by

MRS facing accuracy degradation. The effective rate Φt can be traced in every time slot, as

once production tasks are assigned, multiple production flows in MRS continuously generate

finished products; however, it is not a function of time slots t. Thus, MTTF is defined by

(6.4), which is a composition of Φt , al , and el , with al and el being vectors of time sequences.

By maintaining the effective rate Φt through MRS coordination in the presence of accuracy

degradation, the time until MRS reaches Φt = 0 will be longer, indicating more resilient

production.

MTTF (al , el) =

∫ ∞

0

Φt(al , el)dt (6.4)

After establishing the topology of the cyber domain network, we can infer that produc-

tion robot Rm,n may potentially receive measurements from all other robots, but the quality

and frequency of these measurements may vary due to imperfect wireless communications.

Consequently, Rm,n attempts to perform social learning for all robots in the MRS, utilizing

incomplete and time-ineffective information to build the local belief bt
m,n:sys that becomes

increasingly comprehensive over time as given by (3.8c). Furthermore, changes in the physi-

cal domain topology, such as alterations to the production flow by MRTA, introduce further

diversity into social communications, potentially accelerating the completeness of social mea-

surements for the MRS.

To improve the accuracy and completeness of error belief estimation, the MRS employs

the SGD to estimate the degradation weight wt
m,n:sys , which is a local belief of (6.5d) used to

update the local belief bt
m,n:sys . The degradation rate wt

m,n:i ,j can be calculated by (6.5d) using
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the most updated local beliefs, as given by (6.5a). Estimating wt
m,n:sys is an online stochastic

optimization process, defined by (6.5c), which is incrementally updated by the most updated

btm,n:i ,j using the Huber loss function, as given by (6.5b). The Huber loss function is preferred

over squared error losses as it is less sensitive to outliers in the data, with δ distinguishing

the quadratic interval, and αSGD is the learning rate. The estimated belief of the degradation

rate wt
m,n:sys is given by (6.5d) and the missing beliefs (or missing time indices) can thus be

calculated by (6.5a) with wm,n:i ,j and substituting btm,n:i ,j with b̂tm,n:i ,j .

btm,n:i ,j = ŵm,n:i ,j

 t

b0m,n:i ,j

 (6.5a)

Lt =


1
2
(bt

m,n:sys − b̂t
m,n:sys) for |bt

m,n:sys − b̂t
m,n:sys | ≤ δ

δ(|bt
m,n:sys − b̂t

m,n:sys | − 1
2
δ) otherwise

(6.5b)



wt
1,1:sys

...

wt
m,n:sys

...

wt
M,NM :sys


=



wt−1
1,1:sys

...

wt−1
m,n:sys

...

wt−1
M,NM :sys


−



αSGD
ˆ▽wTLt
1,1:sys

...

αSGD
ˆ▽wTLt
m,n:sys

...

αSGD
ˆ▽wTLt
M,NM :sys


(6.5c)

wt
m,n:sys = (wt

m,n:1,1, ... ,w
t
m,n:m,n, ... ,w

t
m,n:M,NM

) (6.5d)

6.1.1 Adaptive Coordination for Resilient Productivity by RL

The local beliefs bt
m,n:sys and wt

m,n:sys may not be complete or precise, but they suffice to

coordinate actions within collaboration groups via RL, denoted by f m,n
computed in (6.2c).

As illustrated in Figure 6.2, the implemented RL algorithm comprises a main policy

πmain(bt
m,n;sys), two sub-policies πsub1 and πsub2, and a state-action value function Qt

m,n. The

main policy πmain takes bt
m,n;sys as the state and returns πsub1 when Rm,n has no local belief

about itself and πsub2 otherwise. Both πsub1 and πsub2 take local evidence x l ,tm,n(from (5.3a))
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Figure 6.2 Reinforcement Learning structure for MRS coordination.

and bt
m,n;sys as states to maximize the future reward r l ,t shared among collaboration group.

πsub1 takes coordinated actions based on the error beliefs of other robots, while πsub2 takes

actions based on the error beliefs of itself. Both policies share the same state-action value

function Q, which is updated with a learning rate αq and discount factor η, given by (6.6).

Qt
m,n(b

t , at) = Qt−1
m,n (b

t , at) + αq[r
l ,t + ηmax

a
Qt−1

m,n (b
t+1, a)− Qt−1

m,n (b
t , at)] (6.6)

Rewards play a critical role in determining the performance of the Q-function, as they

specify how the function generalizes the expected rewards with respect to both the state

and action space. In this case, rewards are determined based on the inspection of finished

products from collaborating robots at each time slot, where a greater value indicates a higher

yield and vice versa. This concept is expressed in (6.7), which is defined following (6.2a).

In this equation, āl represents the mean of al , I denotes the total number of actions (i.e.,

the total number of robots) processing product l , and βa and βb are coefficients empirically

determined based on the learning rate. It is important to note that a robot may take different

actions when involved in multiple production flows, depending on the local evidence and

rewards associated with each flow.

r l ,t = exp

 1

βa

√∑I
i (a

l ,t+i−1
mi ,ni − āl)2

I

+ βb

 (6.7)

The RL-based MRS coordination enables production robots to optimize productivity

even under incomplete bt
m,n;sys . Algorithm 6.1 summarizes the synthesis of state formulation

119



and RL-based MRS coordination on Rm,n, which includes functions SocialLearning (equation

(3.8)), SGD (equation (6.5)), and UpdateBelief, and functions RL and UpdateQ (equation

(6.6)).

The implementation is executed with respect to a maximum number of social steps dur-

ing which MRS computes “straightforward” actions based solely on local measurements. At

the beginning of each reconfiguration, MRS performs social communications and “straight-

forward” actions. Once the maximum social steps are reached, MRS performs social learning

and SGD to form or update beliefs for RL, enabling adaptive and collaborative AI decision-

making, as indicated by lines 4, 5, 12, 13, 21 and 22. Once social communication terminates,

MRS employs the SDG to update the belief (line 19) because the prior in social learning is

no longer accurate when MRS takes actions with RL.

6.1.2 Experiments and Numerical Results

Computational experiments are conducted to evaluate productivity by the effective rate

and resilience of the MTTF. To simulate time-varying production demands and MRTA

defining production flows, ω and λl
m from [76] are used, which are unknown for MRS. The

noisy measurement f m,n
measure(p

l ,t
m,n) in (3.4a) is implemented using a Gaussian distribution with

a mean of pl ,tm,n and a variance of 0.2. The unobservable etsys is initially set to all zeros at t = 0,

and TTR is the mean of TTRm,n that characterizes the accuracy degradation in (6.1a). The

wireless channels are modeled with a 10% error rate, while social communications are not

re-transmitted or back-forwarded. The experiments are conducted with the parameters in

Table 6.1, and the results are presented as the mean curves of 5 repetitions over 5 distinct sets

of random seeds, with the shades representing the range of the results due to the randomness

introduced by the stochastic, partially connected cyber domain network and MRTA.

The first experiment aims to investigate the impact of accuracy degradation on MRS

coordination problems and to evaluate the effectiveness of the proposed CPMRS model. To

achieve this goal, we compare the implemented RL-based MRS coordination with a baseline
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Algorithm 6.1: RL algorithm on Rm,n

Data: G t
phy ,Gcyb,MRTA,TTR ,pt

m,n,A,αSGD ,αq, δ, η,
πmain, πsub1, πsub2,Q

t
m,n, max social steps

1 Reconfiguration effect until t = T
2 physical neighbors← G t

phy

3 social neighbors← Gcyb

4 social steps = 0
5 learning flag = False

6 for t in T :
7 x tm,n ← f m,n

measure(p
t
m,n)

8 yt ← social neighbors

9 if social steps < max social steps :
10 atm,n ← f m,n

compute(x
t)

11 social steps += 1

12 elif social steps ≥ max social steps :
13 if not learning flag :
14 bt

m,n:sys ← SocialLearning(xt , yt)

15 wt
m,n:sys ← SGD(bt

m,n:sys ,α, δ)

16 bt
m,n:sys ← UpdateBelief(bt

m,n:sys ,w
t
m,n:sys)

17 learning flag = True

18 else:
19 bt

m,n:sys ← UpdateBelief(bt
m,n:sys ,w

t
m,n:sys)

20 atm,n ← RL(x tm,n,b
t
m,n:sys , a

t−1
m,n , πmain, πsub1, πsub2,Q

t
m,n)

21 pt+1
i ,j , r l ,t ← f m,n

execute(p
t
m,n, a

t
m,n, e

t
m,n)

22 UpdateQ (bt
m,n:sys ,b

t−1
m,n:sys , a

t
m,n, r

l ,t ,αq, η)

23 if reconfigure :
24 G t

phy ← MRTA

25 social steps = 0
26 learning flag = False

method, referred to as “bare MRS”, which only takes “straightforward” actions without

AI computing. In addition, “burst errors” are introduced in the experiments to test the

resilience of MRS to out-of-distribution or un-modeled noises. Burst errors are sudden errors

that occur at five randomly selected time slots, specifically (20, 60, 100, 140, 180), which are

not known to the MRS and are not modeled in the degradation model. At each burst

error, one randomly selected robot will suddenly have an error of either 10 or −10 with a

probability of 0.5 each. These burst errors violate the modeled accuracy degradation and
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Table 6.1 Parameters of resilient production robots experiments.

Parameters Values Parameters Values
M 6 αSGD , αq 0.001, 0.1
N (5, 5, 5, 5, 5, 5) βa, βb, βq 5, 2, 0.1
ω (6, 5, 6, 5, 7, 6) ∆ 10
L U(1,5) δ 4
λl
m U(0,8) η 0.9

Ωp [−10, 10] z 5
σmeasure 0.2 Reconfiguration 25 times

γR 5 Interval (in time slots) 40
TTR 200 Social composite degree (4, 0.25, 0.75)
A [−5, 5] Wireless error rate 0.1

can occur in real-world smart factories due to cyber attacks that sabotage a small number

of robots, causing point failures and rapidly decreasing the effect rate to 0.

Figs. 6.3a - 6.3d present the results of the aforementioned experiment. In Figure 6.3a,

four groups labeling “bare MRS”, “AI MRS”, “bare MRS + burst errors” and “AI MRS

+ burst error” are compared, with respective MTTF values of 190.48, 350.00, 125.50 and

282.10. Reconfigurations are indicated by yellow vertical dot lines and burst errors by pink

vertical dot lines. During the first 100 time slots, “bare MRS” and “AI MRS” achieve an

effective rate of 1, indicating that accuracy degradation has not caused finished products to

become defective. However, after 100 time slots, both curves begin to decrease, and with

burst errors, this happens after 20 time slots. Table 6.1 shows that since TTR = 200, bares

MRS fails before the mean of TTR , and even earlier with burst errors. The implemented

RL-based coordination, on the other hand, results in 83.75% and 124.78% improvements in

MTTF, respectively.

Furthermore, as shown in Figs. 6.3b and 6.3c, although the RL-based coordination

greatly improves MTTF, it cannot fully compensate for the effects of accuracy degradation

on MRS, as suggested by the increasing loss and decreasing rewards over time. Finally,

Figure 6.3d demonstrates how MRTA-driven reconfigurations make the raised coordination

problem non-stationary through Root Mean Squared Error (RMSE) of the Q function. Each
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Figure 6.3 Numerical results of computational experiments showing the impact of raised
accuracy degradation problem and how MRS coordination effectively mitigates the
problem without frequent maintenance.
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reconfiguration indicated by the vertical line leads to a shift in the optimal Q function, and

the RL framework with stochastic optimization successfully adapts to such changes.

The second experiment aims to demonstrate the scalability of the proposed CPMRS

and RL-based MRS coordination by evaluating the MTTF of MRSs with different num-

bers of production robots and burst errors. The experiments are conducted on MRSs with

(17, 23, 29, 37, 43, 47) production robots and burst errors of (0, 2, 4, 6, 8, 10). The results, as

shown in Figure 6.4, indicate that when MRSs have burst errors from 0 to 5, the MTTF

decreases as the number of robots increases, which can be attributed to the fact that larger

MRSs can accommodate more production flows and are thus more capable of handling ac-

curacy degradations. However, when MRSs have burst errors from 6 to 10, the impact of

burst errors becomes more pronounced for smaller MRSs, resulting in an increase in MTTF

as the number of robots increases. This is because the number of burst errors compared to

the total number of robots is relatively small when the MRS is large enough. These results

demonstrate the scalability of the proposed CPMRS and RL-based coordination, which can

effectively coordinate a large number of production robots in smart factories and ensure

resilience in the face of burst errors.
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Figure 6.4 MTTR in terms of the size of MRS and a number of burst errors.
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While a comparison study can provide additional insights, it is not included in this study

as the implementation is based on the proposed CPMRS model, making it difficult to trace.

Nonetheless, the optimality of the approach can be observed from the results, with the op-

timum effective rate achieving 1. This study’s primary contribution is the introduction of

the CPMRS model, which enables adaptive and collaborative MRS coordination to address

productivity issues. The results demonstrate that social communications facilitate the esti-

mation of unobservable errors. Furthermore, the RMSE of the Q functions indicates that

CPMRS allows stochastic optimization by enabling data collection from social communica-

tions. This systematic design and analysis have not been precisely studied in the literature.

6.1.3 Toward Group Decision for Predictive Maintenance

While the proposed MRS coordination method mitigates accuracy degradation and cir-

cumvents the need for frequent maintenance and calibration by prioritizing relative accuracy,

it is less effective in dealing with point failures. To address this concern, a group decision-

based predictive maintenance approach [127] is proposed to further improve resilient pro-

duction, which only mandates maintenance for robots identified as potential points of failure

by the collective decision of the MRS.

As elaborated in Section 3.1.1.2, the maintenance procedure in MRS-driven smart facto-

ries necessitates system-wide changes including disruptions to the production flows, adjust-

ments to the production flows, and reductions in the number of operational robots. Such

comprehensive changes require a group decision-making process, facilitated by edge comput-

ing. In this regard, the proposed approach seeks to maintain only those production robots

that demonstrate significant accuracy degradation or point failure, as identified by predictive

group decisions to limit the cost of maintenance.

Classical consensus algorithms in distributed systems, which are typically designed for

group decision-making, are based on fully connected cyber topologies and are not generally

applicable to the CPMRS model. Furthermore, as Section 3.1.1.2, only collaborative MRSs
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can detect decreased accuracy, and edge computing cannot directly observe it. Although

consensus is unattainable over a partially connected cyber network, edge computing can still

gather trust from all robots and formulate group decisions regarding necessary maintenance.

This approach is illustrated in Figure 6.5 with a 4-robot-system, where the edge computing

gathers trust vectors from all robots (R1 to R4) as a trust matrix. In particular, this figure

indicates that R2 is the least trusted robot and is thus causing point failures that need to be

addressed through maintenance.
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Figure 6.5 The group decision-based predictive maintenance.

To make the maintenance decisions, the edge computing collects a trust vector ot
m,n;sys

from all robots, which predicts the number of time slots until significant accuracy degradation

for each robot based on error beliefs bt
m,n:sys and wt

m,n;sys . The trust value o
t
m,n:i ,j is calculated

from (6.8a) and stored in the local trust vector ot
m,n;sys . The edge computing then collects

all local trust vectors to form a trust matrix OM t as in (6.8c) and uses the auto-correlation

of OM t to determine which robots need maintenance. After the trust matrix, OM t is com-

puted according to (6.8c), edge computing selects z robots with the least average trust as the

ones causing point failure, which requires scheduled maintenance. The performance of the
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decision is evaluated through the auto-correlation of OM t using (6.8d) and (6.8e). Group

decision-making can be seen as an information aggregation process on edge computing, lead-

ing to near-optimal decisions. Compared to centralized methods, information aggregation

only occurs when a maintenance decision is necessary, for instance when point failures are

detected (but their location cannot be determined) or when a system-wide reconfiguration is

triggered by new production demands. This approach results in limited, regulated wireless

communications and a well-balanced computation load between edge computing and mobile

computing, contributing to the resilience of the system.

wt
m,n;i ,j

t + ot
m,n:i ,j

bt
m,n;i ,j

 = −γR or γR (6.8a)

ot
m,n;sys = (ot

m,n;1,1, ... , o
t
m,n;m,n, ... , o

t
m,n;M,NM

) (6.8b)

OM t = (ot
1,1;sys , ... , o

t
m,n;sys , ... , o

t
M,NM ;sys) (6.8c)

CR t =



cr t1,1;1,1 · · · cr t1,1;m,n · · · cr t1,1;M,NM

...
. . .

...
. . .

...

cr tm,n;1,1 · · · cr tm,n;m,n · · · cr tm,n;M,NM

...
. . .

...
. . .

...

cr tM,NM ;1,1 · · · cr tM,NM ;m,n · · · cr tM,NM ;NM ,M


(6.8d)

cr tm,n;i ,j =
Cov(om,n;sys , oi ,j ;sys)

σm,n;sysσi ,j ;sys
(6.8e)

In this section, the group decision approach is evaluated in terms of its ability to achieve

predictive maintenance and resilience in MRS-driven smart factories. First, the same ex-

periment conducted in Section 6.1.2 is repeated with the value of z suggested by Table 6.1.

As depicted in Figure 6.6, the AI MRS with predictive maintenance is able to maintain Φt ,

the SGD loss, and RL rewards even under burst errors, fulfilling the definition of a resilient

system capable of recovering from failures and achieving new stability.
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Regarding optimality, please note that the group decision approach does not guarantee

global optima, which goes beyond the scope of this study. However, since the ideal optimum

for Φt is 1, the empirical observation from Figure 6.6a demonstrates that the group decision

approach achieves an MTTF of 523.68, which indicates a 317.27% improvement from the

bare MRS and 85.64% improvement from the AI MRS.
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Figure 6.6 Experiment results on the predictive maintenance based on the group
decision-making.

Furthermore, since the maintenance decision is made on the edge server from the trust

vector of each robot, the partially connected cyber domain network leads to incomplete

trust vectors and thus an incomplete opinion matrix on the edge server, which makes the

precise group decision-making challenging. We analyze the trade-off between composite
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social degrees and group decision-making with results shown in Figure 6.7a - 6.7c on a

43-robot system with N = (6, 7, 7, 7, 7, 7).

The coherence of consensus (COC) is adopted to evaluate the quality of group decision-

making from the mean of the product of the opinion matrix and effective trust values given

by (6.9) [79]. In this equation, fO calculates the ratio of successfully trusted robots to the

total number of robots, since the trust vector is not complete due to partial observability.

Please note that the coherence of consensus does not mean consensus, and it actually reflects

the quality and quantity of group decision-making correlations.

COCt =

∑
(m,n),(i ,j)∈Gcyb

cr tm,n;i ,j

∥CR t∥
·
∑

m,n∈Gcyb
fO(ot

m,n;sys)∑
i∈M Ni

(6.9)

Figure 6.7a presents an analysis of the coherence of consensus with respect to the total

number of links d for each robot in the composite degree of the cyber network Dcyb =

(d , kd , (1 − k)d), where k is the fraction of outgoing links. As the total number of links

d increases, significant differences in the coherence of consensus can be observed at d = 2,

d = 3, and d = 4 for similar k values (since the number of links is discrete, identical k values

cannot be obtained). For d ≥ 4, the coherence of consensus shows similar performance, which

is consistent with the behavior of random network evolution, as the proposed stochastic

unified-degree cyber network is a special case of the ER network. According to the evolution

of random networks, when d ≥ 4, the largest connected cluster has a size close to the total

number of robots, which demonstrates the effectiveness of the stochastic partially connected

cyber network.

Figs. 6.7b and 6.7c investigate the coherence of consensus as a function of the ratio k

between intra-type links and total links, for systems with d = 4 and d = 6, respectively.

In both cases, a significant decrease in the coherence of consensus is observed when k = 1,

corresponding to systems without any inter-type links. For d = 4 and k < 1 (Figure 6.7b),

the coherence of consensus is higher when the ratio of inter-type links is higher than that
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of intra-type links. However, for d = 6 and k < 1 (Figure 6.7c), all groups show similar

performance, possibly because the network is more connected than in the case with d = 4.
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Figure 6.7 Empirical analysis of the proposed stochastic partially connected social network.

In summary, the empirical results indicate that networks with d ≥ 4 and k ≤ 0.5 are

advantageous for maintenance decision-making, as they favor fewer intra-type robot links

and more inter-type robot links. Consequently, a total of 4
∑M

m=1 Nm social messages are

transmitted in each time slot, yielding constant complexity relative to the total number of

production robots. The experiments discussed in Section 6.1.2 and this Section demonstrate
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the impact of accuracy degradation, which can reduce productivity to 0. Moreover, the pro-

posed CPMRS model facilitates social learning and RL-based MRS coordination, resulting

in a 124% improvement in MTTF and a 317.27% improvement in MTTF with predictive

maintenance. This notable improvement in MTTF signifies resilient production, prevents

frequent system-wide maintenance, reduces defects, and consequently, further enhances the

productivity and resource efficiency of MRS-driven smart factories.

6.2 MRS Operational Integrity and Privacy Addressed by Smart Contracts

Federated Learning (FL) is a scheme coherent with Multi-Robot Systems (MRS), pro-

moting collaborative machine learning across numerous decentralized robot nodes. However,

with this approach, data privacy and operation integrity emerge as principal concerns.

To understand how these concerns are addressed by smart contracts, let’s first introduce

the concept of a blockchain network. A blockchain network is essentially a decentralized

assembly of computers that collectively maintain a storage—or ledger—of transactions [53].

Specifically, within a smart factory, this blockchain network is fully connected. This means

that all M edge nodes and N robot nodes possess identical copies of the blockchain.

Elevating the functionalities of blockchain, we have smart contracts. They are essentially

self-executing contracts with the terms and conditions directly embedded into lines of code.

They provide automation and programmability to the blockchain [60].

The decentralized nature of blockchain networks ensures transparency, availability, and

immutability, which are crucial for MRS-driven smart factories. Meanwhile, smart contracts

offer added layers of automation, trust, integrity, and interoperability. Given these attributes,

both blockchain networks and smart contracts present themselves as excellent complements

to FL.

The principal technologies underpinning blockchain include cryptographic hash functions

[6], a peer-to-peer (P2P) network structure [115], and consensus mechanisms [57]. Crypto-

graphic hash functions process an input message to compute a fixed-length byte string,
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termed a hash. This hash acts as a “digest” of the input message, remaining consistent for

identical inputs while exhibiting drastic alterations upon minor modifications to the input.

Moreover, the re-engineering of the original input message from its corresponding hash is

computationally prohibitive, making hashes crucial for data integrity. SHA-256 is a promi-

nent hash function employed in numerous blockchain implementations.

Blockchain adopts a P2P network structure, constituting a fully interconnected topology

among participant edge nodes and robot nodes. Every node in the network concurrently

performs as both a server and client, all possessing equal authority and the capability to

independently add and validate transactions and blocks.

The legitimacy of transactions and blocks relies on a consensus mechanism among all

participating nodes. Proof of Work (PoW) [87] is a frequently utilized consensus mechanism

in which the node proposing the addition of a new block to the blockchain must solve a

complex mathematical problem. The block is appended to the blockchain only after all

other nodes in the network validate the solution to the problem. As the problem is designed

to be computationally challenging to solve yet straightforward to verify, the computation

overhead is scalable.

Blockchain technology provides transparency and availability through its inherent struc-

ture and operation. All participating nodes in the blockchain network poccess identical

blockchain databases except for unconfirmed transactions all the time, which ensures that

all the nodes have access to the same information stored in the blockchain without central-

ized authorization. Also, typical implementations of blockchain involve relevant details such

as timestamps, transaction amounts, and participating nodes’ identification (IP addresses or

other IDs), enabling effortless tracking and validations.

Blockchain’s immutability is facilitated by cryptographic hash functions, while block va-

lidity is assured through consensus mechanisms. Cryptographic hash functions play vital

roles in cybersecurity, serving numerous applications including data integrity validations,

password storage, digital signatures, and blockchain technology, among others [117]. A
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Figure 6.8 Blockchain with smart contracts and DPoW.

hash function, represented as H = fhash(message), inputs a message and conducts a one-way

computation that outputs a deterministic, fixed hash, typically through bitwise operations,

modular arithmetic, and logical functions. Proof of Work (PoW), a consensus mechanism

commonly used in blockchain networks, notably Bitcoin, mandates that participating nodes

(also known as miners) carry out computational work, such as solving a complex mathe-

matical problem, to authenticate and append new blocks of transactions to the blockchain.

Consequently, once a transaction or block is appended and validated by the network, it trans-

forms into a permanent and unmodifiable record, thereby conferring blockchain its inherent

characteristic of immutability.

Moreover, smart contracts are encoded using dedicated programming languages such as

Solidity for Ethereum [50]. These contract terms and conditions can be activated by elements

in the blockchain, and their execution is ensured by transactions and blocks within the

blockchain. Once deployed, smart contracts automatically execute according to predefined

codes and upon the fulfillment of certain conditions, thereby facilitating automation in the

cyber domain of smart factories, including Federated Learning (FL). Transactions and blocks
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governed by smart contracts bring about trust and integrity, as they provide a transparent

and unalterable record of all contract-related events under specified terms. In addition,

smart contracts can function as protocols defining the interaction among robots, such as data

exchange and conditional actions. This capacity promotes interoperability among distinct

robots from various manufacturers.

As shown in Algorithm 6.2 and Figure 6.8, the smart factory’s MRS employs Delegated

Proof of Work (DPoW) as a consensus mechanism to reduce computational demand, thereby

enhancing scalability. This delegation process is both conducted and enforced via a smart

contract. Algorithm 6.2 presents a round-robin style delegation of the PoW computation to

the robot nodes. The mining process, or the addition of new blocks to the blockchain, is

triggered by the fundamental steps inherent to FL and executed by delegated nodes.

Algorithm 6.2: Blockchain with Delegated Proof of Work (DPoW)

def DPoW (M ,N, blockchain, pendingTXN, lastExecutor):
lastRobot ← 0
lastEdge ← 0
while True:

if pendingTXN is not empty:
newBlock.TXN = pendingTXN
newBlock.prevBlockHash = blockchain[-1].blockHash
newBlock.miner = lastExecutor

newBlock.nonce = findNonce(newBlock)
newBlock.blockHash = fhash(newBlock)
blockchain.append(newBlock)
pendingTXN = empty
if lastExecutor is Edge:

executor ← Next(last edge)
lastEdge ← executor

elif lastExecutor is Robot :
executor ← Next(last robot)
lastRobot ← executor

yield executor
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6.2.1 Smart Contracts for the MRS Operational Integrity

While the key management mechanism is specifically engineered to preserve privacy dur-

ing model exchange, its execution—along with other steps in Federated Learning (FL)—is

enforced by smart contracts to ensure integrity. The implementation of smart contracts

in an FL framework, which incorporates M edge nodes (serving as FL controllers) and N

robot nodes (acting as FL clients), provides a foundation for both the integrity and privacy

preservation associated with the five critical stages of FL.

Edge node 1
Robot node 1 Robot node 2 Robot node 3

Edge node 2 Edge node 3

𝜏

Edge node 2
Robot node 1 Robot node 2 Robot node 3

Edge node 1 Edge node 2

𝜏 + 1

⋮⋮ ⋮

Sharer Recipients

Figure 6.9 Global model distribution with delegated edge node as a sharer and all other
nodes as recipients.

Robot node 1

Robot node 2 Robot node 3

Edge node 1 Edge node 2 Edge node 3

Merkle tree 
topology

key-part-to-leaf-
node association

Delegated robot 
to initialize the 
sharing

Each robot sharer send key parts to their 
encrypted model to all edge recipients

Robot node 3

Sharer

Recipients

Figure 6.10 Local model upload with delegated robot node initialize the share, all robot
nodes as shares and all edge nodes as recipients.

During the beginning global model distribution phase, as depicted in Figure 6.9, a smart

contract is used to designate an edge node to carry out the model distribution. This is
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accomplished by following the process outlined in Algorithm 6.2. The updated global model

is encrypted, and the corresponding key is split into several parts. This key fragmentation

results in a Merkle tree with an associated key part-leaf node mapping. Each recipient is

then sent a uniquely assigned key part, the Merkle tree topology, and a necessary hash set.

Simultaneously, a blockchain transaction is added, involving the hash of the entire key to

the encrypted model within it.

Algorithm 6.3: Smart contract for integrity FL.

lastExecutor ← 0
while True :

/* Global model update, synchronization and distribution */

1 m← DPoW(M ,N , blockchain, pendingTXN, lastExecutor)
2 key ← KeyGen

3 DelegatedEdge(m,θm, key ,N) for i in M+N :
4 if i == m :
5 continue
6 Recipients(i ,MT i ,Hi , γi ,θm,E )
7 i execute model distribution.

/* Local training */

8 for i in N :
9 dataset id , pi ← i execute local training.

10 addTXN(i , dataset id , pi)

/* Local model upload */

11 n← DPoW(M ,N , blockchain, pendingTXN, m)
12 DelegatedRobot(n,N)
13 for i in N :
14 key ← KeyGen

15 RobotSharer(i ,wi , keyi ,ϕn)

16 for i in M :
17 EdgeRecipient(i ,MT i , {γ1,i , ... , γN,i},w1:N,E )

/* Model aggregation */

18 m← DPoW(M ,N , blockchain, pendingTXN, n)
19 τ ← m execute model aggregation.
20 addTXN(τ ,m)

Each recipient node, including the remaining M − 1 edge nodes and the N robot nodes,

responds by adding a transaction that includes the calculated Merkle root, derived from

their individual key parts, the Merkle tree topology, and the necessary hash set. It is only
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when all the Merkle roots align consistently that all recipient nodes share their key parts

with the other nodes. This step further integrates the global model update, synchronization

and distribution procedures integral to the FL process.

During local training, each robot node adds a transaction on the blockchain. This transac-

tion includes the dataset’s identity and size (pn), as well as the hash of the key corresponding

to the encrypted, updated local model. Following this, the selected robot node generates a

Merkle tree that associates key parts with leaf nodes. It then distributes the Merkle tree’s

topology to all edge nodes and transmits the key part-leaf node association to the remaining

robot nodes.

Each robot node then transmits the key parts according to the key part-leaf node asso-

ciation. All edge nodes exchange hashes until they can compute the Merkle root. At this

point, they append a transaction containing the Merkle root to the blockchain, a process

visualized in Figure 6.10. Once again, the edge nodes only exchange key parts with all other

edge nodes when all the Merkle roots align.

The model aggregation step requires the delegated edge node to add an additional trans-

action. This transaction incorporates the global FL iteration count and the identifier of the

edge node.

The smart contracts presented in Algorithm 6.3 ensure integrity in the aforementioned

steps by mapping each action to a corresponding transaction in the blockchain. This trans-

parency and traceability of operations are critical in the setup. During the process of imple-

menting the key management, recipients do not require knowledge of the key part-leaf node

association within the Merkle tree while the models remain encrypted during transmission;

all the keys are disseminated in parts.

Furthermore, the pseudocode provided in this study has been formulated with scalability

in mind. The first argument of functions, including addTXN, addTXNandMine, InitShare,

and Distribute, represents the identifier of the node executing the function. The scalability
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and immutability are both ensured since once the smart contracts are deployed, they should

not be further modified [123].

6.2.2 Computational Experiments

The Federated Learning (FL) experiment is conducted using the “MixedWM38” dataset

[113] in a smart factory setting within the semiconductor industry. As the fundamentals for

the production of integrated circuits (ICs) and a variety of electronic components, the op-

eration of wafers encompasses deposition, etching, photolithography, doping, dicing, assem-

bly, and testing. These processes can be executed by a heterogeneous Multi-Robot System

(MRS). Various studies, including [113], [128], and [101], have investigated Machine Learn-

ing (ML) based wafer defect pattern recognition, useful for distinguishing batch variations

of wafers when they are processed by an MRS.

For the sake of generality, a unified model that represents different operations on wafers

is proposed, which is solely for demonstrating the proposed integrity and privacy-preserving

FL framework. In this model, the robot manipulates only normal dies or approaches as close

as possible to such. A wafer is represented as a matrix A, where aij = 0 signifies an empty

space; aij = 1 indicates the presence of a normal die; and aij = 2 represents a failed die. The

task execution parameter for the robot is defined as a matrix B, which shares dimensions

with A, and the execution of the task is defined as C = A+B. Further a “paradigm” matrix

D that describes the perfect task execution outcome is assumed. D := A − 2(A == 1),

resulting from a logical operation that introduces non-linearity mathematically. The FL’s

goal is to minimize the Euclidean distance between C and D. This is equivalent to calculating

the L2 norm of the difference between the two matrices, resulting in a convex problem as

expressed in Equation (6.10):

ℓ(C,D) = |C − D|F =

√∑
i
∑
j

(cij − dij)2 (6.10)
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The batch variation of wafers (the raw materials for the MRS) is introduced by distribut-

ing one of the 38 categories of the dataset to all the robots in a time-varying manner, which

remains undisclosed to the robots. When a global iteration number is reached, the simulation

switches to the next dataset for all robots, indicating the exhaustion of the previous wafer

batch and the arrival of a new one. The robots adapt to such batch variation through FL

and determine the task execution parameters B to minimize the loss between C = A+B and

D. Figure 6.11 shows two wafer examples (A) from pattern ID C7 and C13, along with the

corresponding task execution parameters B, task execution outcome C, and the paradigm

task execution outcome D. The wafers from the same pattern shall be homogeneous and the

wafers from different patterns shall be heterogeneous which the robots need to adapt to.

A B C D

Figure 6.11 The wafer patterns as the experiment environment.

In the Federated Learning (FL) experiment, 17% of the dataset is allocated for validation

to confirm the assumptions regarding the loss function. As the loss function is selected for

proof-of-concept purposes, its absolute value does not carry physical significance. Both the

training and validation losses are illustrated in Figure 6.12, with the vertical dotted line

indicating the point of dataset switching in terms of FL global iterations.
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Table 6.2 Parameters of smart contracts experiments.

Variable Quantity
M 6
N 37
local training epochs 5
local batch size 32
learning rate 0.001
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Figure 6.12 The training loss and validation loss of FL.

From the figure, it can be observed that both the training and validation losses decrease

over the FL global iterations. Each time the dataset switches, there is an expected increase

in loss, as the robots need time to adapt to the new batch of wafer patterns. The loss begins

to decrease again once the robots have adjusted to the new batch. It should be noted that

the optimal loss can differ since the method of modeling task execution C = A + B is not

unique.

Figures 6.13 to 6.16 depict four distinct blocks in the blockchain. These were extracted

from an experiment involving M = 4 edge nodes (ID 100, 101, 102, 103) and N = 9 robot

nodes (ID 0, 1, ..., 8). The experiment settings have been simplified to these parameters

rather than M = 6 and N = 37 purely for illustrative purposes.
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Figure 6.13 An block containing global model distribution transactions enforced by smart
contracts.

Figure 6.14 An block containing Merkle tree-based key management transactions enforced
by smart contracts.

Figure 6.13 shows the delegation of global model distribution to edge node 1 (ID 100).

This node adds a transaction to the blockchain that includes the FL iteration number, the

executor node ID, and the hash of the key corresponding to the global model. Figure 6.14

shows transactions associated with the key management during the global model distribution

process. All robot nodes and edge nodes, excluding the delegated edge node 1 (ID 100), add

transactions to the blockchain. These transactions comprise the Merkle root calculated from

the key parts, the Merkle tree topology, and the necessary hashes received from edge node

1 (ID 100). Only after all nodes verify all the Merkle roots, transactions containing the

key parts are added to the blockchain. Figure 6.15 shows the local training transactions

originating from the robots. These transactions include the dataset ID, dataset volume (pn),

and the hash of the key to the local model. Figure 6.16 shows the local model upload
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Figure 6.15 An block containing local training transactions enforced by smart contracts.

Figure 6.16 An block containing local model upload enforced by smart contracts.

transactions from the edge nodes, which include the Merkle roots they have calculated.

Once the robot node delegated for local model uploading verifies all the Merkle roots, all

edge nodes exchange their key parts for the full key.

All the transactions detailed above are immutable and accessible to all nodes in the

blockchain network, ensuring the integrity of the FL process. Any malicious activities,

including missing transactions, incorrect Merkle roots, and inconsistent dataset IDs, can be

immediately detected by any node in the network, thereby preserving the integrity of FL.
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Chapter 7: Summary and Future Technological Opportunities

Revisiting the research objectives outlined in Section 1.2, this study is anchored in the

principles of smart factories and puts forward an MRS architecture tailored for flexible, on-

demand, mass-customized production. This approach introduces new technical challenges

related to intricate coordination and resilient operation. To address these challenges, the

research proposes a decentralized architecture powered by cyber-physical AI agents, aimed

at enhancing scalability.

Utilizing graph models, this research characterizes the heterogeneity of MRS, captures

multiple dynamically adjusted production flows, and models operations within the smart

factory environment. These graph models serve as domain models that enable AI agents

to solve a range of problems. These include optimizing productivity, improving energy ef-

ficiency, coordinating transportation routes, detecting and mitigating cyber-physical errors,

and recovering from localized failures. All of these tasks are accomplished through AI cog-

nition, communication, learning, and collaboration.

Supported by comprehensive engineering problems, solution frameworks, and numerical

results, this study substantiates the feasibility of the proposed MRS architecture as well as

the efficacy of the AI agents developed.

Looking ahead, future research opportunities may involve integrating the proposed MRTA

with predictive path coordination mechanisms for transportation robots, advancing predic-

tive maintenance models that account for MRS reconfiguration time and energy expenditures,

and extending the framework to multiple smart factories.

The proposed real-time MRTA offers dual benefits: task scheduling and task allocation,

anchored in temporal-spatial MRS modeling. Yet, when viewed through the lens of AI plan-
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ning, its application appears limited. The current real-time MRTA formulates plans based

solely on immediate production demands, striving to optimize throughput. This approach,

however, doesn’t factor in variations in customer product demand. Tending to favor “eas-

ier” products for maximum throughput can misalign with customer preferences, leading to

potential overproduction of less desired items. Consequently, a promising direction for fu-

ture work would be to enhance the planning component of real-time MRTA. By calculating

a series of dynamic task assignments, it can better mirror the diverse product quantities

demanded by customers.

Moreover, this study operates under certain assumptions that may not hold in real-world

scenarios. It presumes that reconfigurations are cost-free in terms of time, energy, and other

resources. Such an assumption is overly optimistic and somewhat detached from practical

realities. Similarly, the work downplays the temporal and energy costs associated with main-

tenance and calibration, treating them as negligible. Addressing these gaps, future technical

endeavors should incorporate these costs. For instance, when reshaping the MRS, the AI

agent could choose from a range of potential new physical topologies. These topologies,

while being productivity and energy-efficient, should be structurally similar to the preceding

configuration. Techniques like graph learning [121] and convolutional neural networks can be

employed to concurrently evaluate productivity, energy efficiency, and reconfiguration costs.

Such a strategy ensures that a majority of the production flows remain consistent, leading

to fewer disruptions. Additionally, minimizing robot reconfiguration can mitigate the

Another potential area for technical exploration lies in the integration of production-MRS

task execution and transportation-MRS task execution. The real-time MRTA introduced in

this study allocates tasks to both MRS types, yet the subsequent sections delve into each

MRS in isolation. The rationale behind this approach is the classic “divide and conquer”

strategy. An evident distinction between the two systems is their differing time slot lengths.

While production robots can readily synchronize their time slots thanks to their multi-

plexing capability, transportation robots present a challenge. Both modeling and experimen-
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tal results show variability in the execution time slots of transportation tasks, introducing

the concept of task “difficulty”. Chapter 5 touches upon the notion of “fairness” in task

assignments and path coordination. However, integrating this with production MRS intro-

duces fresh complications. Specifically, task assignments for transportation robots need to

factor in their instantaneous locations and the pickup locations of the production robots.

Addressing this via a centralized MRTA presents computational challenges, evolving into an

unscalable NP-hard problem.

A promising solution might involve fostering communication between production and

transportation robots and empowering transportation robots with multiplexing abilities.

This integration could be initiated by incorporating transportation-MRS into the broader

framework of CPMRS.
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[35] Brian P Gerkey and Maja J Matarić. A formal analysis and taxonomy of task allocation

in multi-robot systems. The International journal of robotics research, 23(9):939–954,

2004.

[36] Payam Ghassemi and Souma Chowdhury. Decentralized task allocation in multi-robot

systems via bipartite graph matching augmented with fuzzy clustering. In International

design engineering technical conferences and computers and information in engineer-

ing conference, volume 51753, page V02AT03A014. American Society of Mechanical

Engineers, 2018.

[37] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.

In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 855–864, 2016.

150



[38] Mingrui Gu, Liang Luo, and Pengzhong Li. Study and development of intelligent kpi

management system for discrete manufacturing enterprises in industry 4.0. In 2023 4th

International Conference on Mechatronics Technology and Intelligent Manufacturing

(ICMTIM), pages 19–25. IEEE, 2023.

[39] Zhengang Guo, Yingfeng Zhang, Xibin Zhao, and Xiaoyu Song. Cps-based self-

adaptive collaborative control for smart production-logistics systems. IEEE Trans-

actions on Cybernetics, 51(1):188–198, 2021.

[40] Ali Hatamizadeh, Hongxu Yin, Pavlo Molchanov, Andriy Myronenko, Wenqi Li, Pre-

rna Dogra, Andrew Feng, Mona G Flores, Jan Kautz, Daguang Xu, and Holger R.

Roth. Do gradient inversion attacks make federated learning unsafe? IEEE Transac-

tions on Medical Imaging, 42(7):2044–2056, 2023.

[41] Christian Henkel, Jannik Abbenseth, and Marc Toussaint. An optimal algorithm

to solve the combined task allocation and path finding problem. arXiv preprint

arXiv:1907.10360, 2019.

[42] Chen Hou and Qianchuan Zhao. Optimal control of wireless powered edge computing

system for balance between computation rate and energy harvested. IEEE Transactions

on Automation Science and Engineering, pages 1–17, 2022.

[43] J. H. Hsiao and K. C. Chen. Network analysis of collaborative cyber-physical multi-

agent smart manufacturing systems : Invited paper. In 2019 IEEE/CIC International

Conference on Communications in China (ICCC), pages 219–224. IEEE, 2019.

[44] Yin Huang, Yi Zhang, and Hong Xiao. Multi-robot system task allocation mechanism

for smart factory. In 2019 IEEE 8th Joint International Information Technology and

Artificial Intelligence Conference (ITAIC), pages 587–591. IEEE, 2019.

151



[45] Jeong-Yeon Hwang, Jiyoun Seo, and Chang-Hyeon Ji. Electromagnetic omnidirec-

tional scanning micromirror with multi jet fusion printed structures for smart factory

applications. Additive Manufacturing, 55:102868, 2022.

[46] Senthil Kumar Jagatheesaperumal, Mohamed Rahouti, Kashif Ahmad, Ala Al-Fuqaha,

and Mohsen Guizani. The duo of artificial intelligence and big data for industry 4.0:

Applications, techniques, challenges, and future research directions. IEEE Internet of

Things Journal, 9(15):12861–12885, 2022.

[47] Malhar S. Jere, Tyler Farnan, and Farinaz Koushanfar. A taxonomy of attacks on

federated learning. IEEE Security & Privacy, 19(2):20–28, 2021.

[48] Yupeng Jiang, Yong Li, Yipeng Zhou, and Xi Zheng. Sybil attacks and defense on

differential privacy based federated learning. In 2021 IEEE 20th International Confer-

ence on Trust, Security and Privacy in Computing and Communications (TrustCom),

pages 355–362. IEEE, 2021.

[49] Zengqiang Jiang, Yang Jin, Mingcheng E, and Qi Li. Distributed dynamic scheduling

for cyber-physical production systems based on a multi-agent system. IEEE Access,

6:1855–1869, 2018.

[50] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanan, Yang Liu, and Jun Sun. Se-

mantic understanding of smart contracts: Executable operational semantics of solidity.

In 2020 IEEE Symposium on Security and Privacy (SP), pages 1695–1712. IEEE, 2020.

[51] Joran Jongerling, Sacha Epskamp, and Donald R Williams. Bayesian uncertainty es-

timation for gaussian graphical models and centrality indices. Multivariate Behavioral

Research, 58(2):311–339, 2023.

[52] Tahera Kalsoom, Naeem Ramzan, Shehzad Ahmed, and Masood Ur-Rehman. Ad-

vances in sensor technologies in the era of smart factory and industry 4.0. Sensors,

20(23):6783, 2020.

152



[53] Abid Khan, Furqan Shahid, Carsten Maple, Awais Ahmad, and Gwanggil Jeon. To-

ward smart manufacturing using spiral digital twin framework and twinchain. IEEE

Transactions on Industrial Informatics, 18(2):1359–1366, 2022.

[54] Reza Kia, Fahime Khaksar-Haghani, Nikbakhsh Javadian, and Reza Tavakkoli-

Moghaddam. Solving a multi-floor layout design model of a dynamic cellular manu-

facturing system by an efficient genetic algorithm. Journal of Manufacturing Systems,

33(1):218–232, 2014.

[55] G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias. A comprehensive taxon-

omy for multi-robot task allocation. The International Journal of Robotics Research,

32(12):1495–1512, 2013.

[56] Naveen Kumar and Jyoti Kumar. Efficiency 4.0 for industry 4.0. Human Technology,

15(1):55, 2019.

[57] Bahareh Lashkari and Petr Musilek. A comprehensive review of blockchain consensus

mechanisms. IEEE Access, 9:43620–43652, 2021.

[58] Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-

06-27. Open Review, 62, 2022.

[59] P.M. Lee. Bayesian Statistics: An Introduction. Wiley, 2012.

[60] Jiewu Leng, Xiaofeng Zhu, Zhiqiang Huang, Kailin Xu, Zhihong Liu, Qiang Liu, and

Xin Chen. Manuchain ii: Blockchained smart contract system as the digital twin

of decentralized autonomous manufacturing toward resilience in industry 5.0. IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 53(8):4715–4728, 2023.

153



[61] Tianxu Li, Kun Zhu, Nguyen Cong Luong, Dusit Niyato, Qihui Wu, Yang Zhang, and

Bing Chen. Applications of multi-agent reinforcement learning in future internet: A

comprehensive survey. IEEE Communications Surveys & Tutorials, 24(2):1240–1279,

2022.

[62] Xiaomin Li, Di Li, Jiafu Wan, Athanasios V Vasilakos, Chin-Feng Lai, and Shiyong

Wang. A review of industrial wireless networks in the context of industry 4.0. Wireless

networks, 23(1):23–41, 2017.

[63] Zengpeng Li, Vishal Sharma, and Saraju P. Mohanty. Preserving data privacy via

federated learning: Challenges and solutions. IEEE Consumer Electronics Magazine,

9(3):8–16, 2020.

[64] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-

forcement learning. International Conference on Learning Representations (ICLR),

2016.

[65] Igor Linkov and Benjamin D Trump. The science and practice of resilience. Springer,

2019.

[66] Xiaopeng Liu, Huiyu Zhang, Jun Lin, Xuanrui Chen, Qingxin Chen, and Ning Mao.

A queuing network model for solving facility layout problem in multifloor flow shop.

IEEE Access, 10:61326–61341, 2022.

[67] Yonggang Liu, Bobo Zhou, Xiao Wang, Liang Li, Shuo Cheng, Zheng Chen, Guang Li,

and Lu Zhang. Dynamic lane-changing trajectory planning for autonomous vehicles

based on discrete global trajectory. IEEE Transactions on Intelligent Transportation

Systems, 23(7):8513–8527, 2022.

154



[68] Zhixiang Liu, Youmin Zhang, Chi Yuan, and Jun Luo. Adaptive path following control

of unmanned surface vehicles considering environmental disturbances and system con-

straints. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(1):339–

353, 2021.

[69] Hang Ma, Jiaoyang Li, T.K. Satish Kumar, and Sven Koenig. Lifelong multi-agent

path finding for online pickup and delivery tasks. In Proceedings of the 16th Conference

on Autonomous Agents and MultiAgent Systems, AAMAS ’17, page 837–845, Richland,

SC, 2017. International Foundation for Autonomous Agents and Multiagent Systems.

[70] Abderraouf Maoudj, Brahim Bouzouia, Abdelfetah Hentout, Ahmed Kouider, and

Redouane Toumi. Distributed multi-agent scheduling and control system for robotic

flexible assembly cells. Journal of Intelligent Manufacturing, 30(4):1629–1644, 2019.

[71] Vincenzo Matta, Virginia Bordignon, Augusto Santos, and Ali H. Sayed. Interplay

between topology and social learning over weak graphs. IEEE Open Journal of Signal

Processing, 1:99–119, 2020.

[72] Vincenzo Matta, Augusto Santos, and Ali H. Sayed. Graph learning with partial

observations: Role of degree concentration. In 2019 IEEE International Symposium

on Information Theory (ISIT), pages 1312–1316. IEEE, 2019.

[73] Douglas C Montgomery, Cheryl L Jennings, and Murat Kulahci. Introduction to time

series analysis and forecasting. John Wiley & Sons, 2015.

[74] Anuj Nandanwar, Vibhu Kumar Tripathi, and Laxmidhar Behera. Fault-tolerant con-

trol for multi-robotics system using variable gain super twisting sliding mode control

in cyber-physical framework. In 2021 IEEE/ASME International Conference on Ad-

vanced Intelligent Mechatronics (AIM), pages 1147–1152. IEEE, 2021.

155



[75] Zixiang Nie and Kwang-Cheng Chen. Distributed coordination by social learning in

the multi-robot systems of a smart factory. In 2021 IEEE Global Communications

Conference (GLOBECOM), pages 01–06. IEEE, 2021.

[76] Zixiang Nie and Kwang-Cheng Chen. Hypergraphical real-time multirobot task alloca-

tion in a smart factory. IEEE Transactions on Industrial Informatics, 18(9):6047–6056,

2022.

[77] Felipe Orellana and Romina Torres. From legacy-based factories to smart factories

level 2 according to the industry 4.0. International Journal of Computer Integrated

Manufacturing, 32(4-5):441–451, 2019.

[78] Michael Otte, Michael J Kuhlman, and Donald Sofge. Auctions for multi-robot task

allocation in communication limited environments. Autonomous Robots, 44(3):547–

584, 2020.

[79] Iván Palomares, Luis Mart́ınez, and Francisco Herrera. A consensus model to detect

and manage noncooperative behaviors in large-scale group decision making. IEEE

Transactions on Fuzzy Systems, 22(3):516–530, 2014.
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