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Abstract

Situational awareness in a large, dynamic, and complex cyber-physical critical infras-
tructure, such as a smart grid, is vital for ensuring its smooth and uninterrupted operation.
With the evolving realities of the modern-day smart grids, new challenges associated with
the situational awareness of these systems are emerging that demand intelligent and efficient
solutions. This dissertation intends to address several problems for enhancing situational
awareness by studying the dynamic interaction among the components of the smart grids
through energy data analytics using various data-driven, machine learning, and graph sig-
nal processing (GSP) techniques. The presented work provides valuable insight into the
data-driven analysis of the dynamics of cyber-physical power systems and contributes to the
rescarch regarding the security and reliability of smart grids.

Variations in load and generations as well as the operating states and conditions of the
grid equipment, and the weather and environmental factors make the smart grid’s dynamics
stochastic with complex interactions among their components. This dissertation attempts
to understand this dynamicity and interactions using numerical and analytical approaches
by exploiting the measurement data captured by numerous sensors deployed throughout the
system. The analysis of the correlation among the power system states is one of the energy
data analytic tools used in this dissertation to study the behavior of the power system in
normal operating conditions as well as under cyber and physical stresses. However, since the
smart grid is a networked system, introducing the knowledge of topology and connectivity
of its components in the analyses facilitates a better understanding of the system’s behavior.
GSP enables an explicit inclusion of the topological and connectivity information by extend-
ing the theories of classical signal processing to the irregular graph domain. Modeling the

power grid as a graph by considering the buses as the nodes and the transmission lines as the

x1



edges, the power system measurements and states can be viewed as graph signals defined in
the non-Euclidean vertex space of the graph. In this dissertation, both the correlation-based
and the GSP-based study of the power system have been utilized in several applications
related to the security and reliability of the smart grid.

Four specific applications for enhancing situational awareness in smart grids towards se-
curity and reliability stresses are studied. The first application is the data-driven detection
and location identification of cyber attacks and physical stresses in the system. Timely detec-
tion and precise localization of stresses and anomalies are crucial for the quick restoration of
the grid to its normal operating condition. As soon as a stress is detected and located in the
system, the next task should be its proper classification and characterization for determining
the best response, the root cause, and predicting similar scenarios in the future. The third
application is the recovery of smart grid’s states that are missing or corrupted due to cyber-
attacks and physical damages to the measurement devices to ensure the observability of the
system, which is crucial for monitoring and operation purposes. The final application is ana-
lyzing the nature of propagation of a single bus perturbation through the system. Moreover,
in some of the aforementioned applications, machine learning and neural network models are
used along with feature extraction techniques using GSP and correlation-based methods. In
the majority of the studies, the problems are approached using analytical analyses, which
are then verified through experiments by simulations. The results of the experiments have
been presented, interpreted, and compared with the benchmark techniques. Future work

directions are also discussed for each application.
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Chapter 1: Introduction

Since the guarantee of a seamless supply of electricity to the consumers is a glaring neces-
sity in modern days, a very sophisticated, well-maintained, and effective system is essential
for combining and synchronizing different parts of the energy system: generation, transmis-
sion, and distribution systems. A smart grid [1, 2], as its name suggests, refers to a union
of many intelligent systems working together to ensure a continual supply of electrical en-
ergy produced from various natural resources to the customers effectively and autonomously.
This dissertation focuses on several aspects related to the security and reliability of smart
grids and provides mathematical, numerical, and simulation-based analyses of these aspects,
and suggests solutions for the related problems by developing techniques and tools based on
energy data analytics [3] and graph signal processing [4, 5].

A smart grid consists of a tightly coupled communication system and an electric power
grid [1]. The communication system is the cyber layer, which is responsible for the flow of
information throughout the system that facilitates monitoring of the system using the meter-
captured measurements as well as propagating control instructions to the components. The
grid is the physical layer that enables the transfer of electric power from the generators to
the customers through the transmission and distribution systems. Since a smart grid is a
critical infrastructure encompassing a large geographical area with complex and dynamic
interactions among its components, it requires monitoring by a wide area monitoring system
(WAMS) [6]. The WAMS involves the deployment of a large number of measurement devices
(i.e., sensors) throughout the system and the processing of the data acquired by those devices

for monitoring, operation, and maintenance of the infrastructures.



1.1 Research Problems in Situational Awareness

Smart grids are being evolved every day. In recent years, with the widespread integration
of renewable distributed energy resources (DERs) [7] and electric vehicles (EVs) [8], smart
grids have become more stochastic and complex than ever. Although the cyber layer facil-
itates the efficient monitoring and operation of these systems, it makes them vulnerable to
different types of cyber attacks by adversaries [9, 10]. Moreover, various events and anoma-
lies related to the dynamics of the power system at the physical layer are perpetual concerns
in electrical energy systems. Therefore, ensuring situational awareness [2] becomes crucial
in order to maintain the reliability and security of the grid, which is a must for providing a
seamless energy supply.

Situational awareness [2]| in the smart grid involves the collection of measurement data
through the sensors and the measurement devices deployed throughout the grid for estimating
the states of the grid, visualization, analysis, and interpretation of the data in real-time or
near-real-time to detect and locate events and anomalies and predicting instabilities and
stresses in the grid, and supporting the grid operators with decisions and alarms. Many
problems related to situational awareness in smart grids can be addressed by tools and
techniques, such as signal processing and statistical data analysis. Moreover, with the large-
scale integration of high-resolution measurement devices (e.g., phasor measurement units
(PMU), advanced metering infrastructure (AMI)) in the grid [6] and with the progress of
computational resources, data analytic and machine learning techniques [3] are becoming
more popular to solve the situation awareness-related issues. In this dissertation, several
problems related to situational awareness and various techniques to address them using

graph signal processing, statistical analysis, and machine learning are presented.



1.2 Situational Awareness-Related Problems

One of the key problems related to situational awareness in smart grids is the detection
and location identification of the cyber and physical stresses in the grid. The cyber stresses
involve adversary attacks compromising the availability, confidentiality, and integrity of the
measurement data in the system, e.g., denial-of-service (DoS) attacks, false data injection
attacks (FDIA), time synchronization attacks, etc [9, 10]. The physical stresses include var-
ious power dynamical events that deviate the grid from normal operating conditions [11].
While the physical and cyber stresses can lead the power grid to instability and failures, the
cyber stresses can also lead the grid operators and the automated systems control mecha-
nisms to make incorrect decisions. Timely detection of both events is important in terms
of situational awareness, enabling rapid restoration of normal conditions and mitigating po-
tential grid stress that could result in more severe damages. Despite being studied by the
researchers for several years the detection and location identification problem is considered
as an open and challenging problem [9]. This is mainly due to the continuous introduction
of innovative and sophisticated designs for cyber attacks, aimed at evading detection mecha-
nisms, and the evolving conditions within the modern grid, such as the integration of DERs
and EVs.

As soon as a stress is detected and located in the grid, the immediate concern is to learn
about the type and the characteristics of the stress [12, 13]. This is important for two reasons:
identifying the root cause of the stress and eliminating it to restore normal operation and to
develop strategies to prevent and treat similar stresses in the future. This problem includes
the classification of the stresses between cyber and physical as well as among different types
of cyber-attacks and physical stresses.

In this dissertation, the following problems regarding the classification of the stresses are
considered. First, the classification between cyber and physical stresses and then classifica-
tion among five different sophisticatedly designed cyber attacks on the time series measure-

ments, as well as, the classification between two well-known physical events including line



tripping and abrupt load change are considered. This dissertation also includes classification
between clustered and random cyber attacks and estimating attack centers and radius in
case of clustered cyber attacks.

Recovery of the missing states [14, 15] is another problem associated with situational
awareness in power systems that have been considered in this dissertation. The knowledge
of the grid’s state is always important for grid operation, maintenance, and monitoring
purposes, and they are mostly represented with the bus voltage phasors in the power grid
context. Incomplete and incorrect knowledge of the states can lead to wrong operating
decisions, which may cause a stressed or unstable grid. The state of the power system is
either directly measured by the mounted sensors on the electrical components (e.g., buses)
or estimated using state estimation methods. The states of the power system can become
unobservable due to various reasons including DoS attacks, physical damage to the measuring
devices, etc, and recovering the missing state is crucial for continuing the normal operation
of the smart grid.

The optimum placement of measurement devices (e.g., PMUs) [16, 17] is another related
problem to the state recovery problem and is also considered in this dissertation. This
problem studies the placement of devices in such a way that it maximizes the observability
of the states and minimizes the placement cost of the devices. However, the problem can be
seen from different perspectives depending on the type of data representing the states, the
application in which the state values would be used, and the operating conditions of the grid.
This research addresses the issue considering the bus voltage angles as the state variable.

The last problem related to situational awareness in smart grids studied in this disser-
tation is the analysis of a single bus perturbation in the grid. This study focuses on how
the effect of physical stress in the form of load or generation alteration in a single bus prop-
agates throughout the electrical network. This analysis is important to understand how a
physical event can affect different parts of the power system and initiate further issues (e.g.,

instability, islanding, cascading failure, blackouts, etc.) depending upon its nature, intensity,



and location. This study can also facilitate predicting stressed grid conditions and further
unwanted stresses due to perturbation in the systems. Although this research is important
in terms of the diversities of events and perspective of analysis, this dissertation considers

the case of abrupt changes in real-power load demand or generation as the perturbation.

1.3 An Introduction to Graph Signal Processing

Graph Signal Processing (GSP) [4, 5] is a relatively new field of signal processing that
extends the theory and tools used in classical signal processing to the irregular graph domain.
The vertices of a graph are considered the independent variable associated with the graph
signal, and thereby graph signals are defined in the non-Euclidean graph vertex domain. A
graph signal by being associated with a graph structure, inherently inherits the connectivity
and topological information of the structures.

Many physical structures that consist of interconnected components can be modeled as
graphs. Biological networks, transportation networks, water distribution networks, sensor
networks, and wireless networks are some examples of such structures [4, 18, 19, 20, 21].
In recent years GSP is being popular for the data-driven analysis of networked structures
to capture the connectivity and topological information to assist the meter-captured data
for more effective analysis. Modeling network data as graph signals also facilitates applying
training-based neural network models to the data.

The electrical power grid can also be modeled as a graph [22, 23] by considering the buses
of the electric grid as the vertices and the transmission lines connecting the buses as the edges
of the graph. The weights of the edges are determined in various ways depending on the
nature of the analyses and application based on the geographical and electrical distances
between the buses. The attributes associated with the buses (either measured by sensors or
estimated by state estimation technique) can be considered as graph signals. The application
of GSP in electrical networks enables imparting of information related to the topology,

interconnection, and interaction among the grid components into many data-driven modeling



and analyses of grid events and dynamics. In this dissertation, several applications of GSP

techniques have been discussed related to grid security and reliability.

1.4 Overview of Energy Data Analytics

Data Analytics refers to a wide range of theories, tools, and techniques for processing,
analyzing, and interpreting data collected from various sources. In the smart grid, with
the extensive deployment of sensors and high-resolution measurement devices (e.g., Phasor
measurement units-PMU and advanced metering infrastructures-AMI) a big amount of data
associated with smart grids are available nowadays. Therefore, data-driven analyses of smart
grid issues are being more popular among researchers than the previous rule-based decision-
making [3].

In this dissertation, in the context of an electric energy system, the main data ana-
lytic method is the analysis of correlation among the states of the system. In most of the
cases, the bus voltage angles are considered the states of the system and they are modeled
as time-varying states by modeling them as multi-variate time series. The instantaneous
state correlation matrix provides the correlation among the states in real-time. The con-
ducted simulation suggests that certain stresses and events in the grid have distinguishable
signatures in the correlation matrices visualized as images that can be exploited in certain

applications related to smart grid security.

1.5 Key Contributions of this Dissertation

In this section, the key contribution of this dissertation has been summarized. This
dissertation studies a few problems related to situational awareness in smart grids with the
goal of enhancing the security and reliability of these systems using graph signal processing
and energy data analytics techniques. The flowchart presented in Figure 1.1 summarizes
the work presented in this dissertation. In the following subsections, the components of this

flowchart have been discussed.
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Figure 1.1: Dissertation flow chart.

1.5.1 Data Sources

In the research work presented in this dissertation, all the data are electrical attributes
of the power system (e.g. voltage magnitude and angles, current magnitude and angles, real
and reactive power, etc.). All these data are generated using quasi-static simulation using
power flow solutions in MATPOWER [24]. In the experiments involving time-series data,
the time-varying electrical attributes are generated by superimposing the time-varying load
pattern collected from NYISO [25] to the MATPOWER default load pattern. The time
resolution of the time-series data varies throughout this work depending on the application
and computing resources and will be mentioned in this dissertation in the context of different

applications.

1.5.2  An Overview of Technical Approaches

In order to analyze the power grid data and leverage the data in applications related to
the situational awareness of smart grids, data analytic and signal processing approaches in-
cluding GSP are applied. In the initial stage of this research work, the correlation among the

states of the grid (i.e., bus voltage magnitude and angles) is utilized for situational aware-



ness applications. Although the state correlation-based study of power system data offers
valuable insights into the interactions among grid components under normal and stressed
conditions and therefore provides good performance in situational awareness applications.
Consequently, we recognized that there is potential for further improvement in terms of accu-
racy, robustness, and applicability by explicitly imparting information about the connectivity
and interaction among grid components in the analysis. By representing the electric power
grid as a graph, GSP techniques have been leveraged to address the objectives related to

grid situational awareness.

1.5.3 Contributions Toward Enhancing Situational Awareness in Power Grids
1.5.8.1 Detection and Location Identification of Cyber and Physical Stresses

Both the state correlation-based and GSP-based approaches have been studied for the
detection of location identification of different cyber and physical stresses. The cyber attacks
include DoS attacks, data replay attacks, and ramp attacks and are defined and modeled
on the time-series data. The physical attacks include abrupt changes in load demand at a
particular location (i.e., bus) in the grid and tripping of a transmission line.

Through the observations on the simulated stress scenarios, it has been discovered that
certain cyber and physical stresses exhibit distinct signatures in the instantaneous correlation
matrix associated with the time-varying states (bus voltage angle) modeled as multivariate
time series. The bus voltage angle can be represented as images. Initially, simple image
processing techniques have been applied for detecting and locating stresses. However, better
performance has been achieved by extracting features from the instantaneous correlation
images and utilizing them within a k-nearest neighbor (kNN) framework. In addition to
the automated techniques for detecting and locating stresses, the real-time representation of
instantaneous correlation matrix images can serve as an efficient visualization tool for grid

operators.



To address the detection and localization of cyber and physical stresses using GSP, two
novel techniques have been proposed based on GSP: the Vertex-Frequency Energy Distribu-
tion (VFED) method and the Local Smoothness Second Time-Derivative (LSSTD) method.
The findings revealed that the LSSTD method offers the highest accuracy for detection and
localization, particularly for sophisticatedly designed cyber attacks with no abrupt changes
in signal values at the attack onset. This method combines the advantages of existing ap-
proaches by capturing both the time correlation in state values and the interrelation among

the states through the graph’s structural interconnection.

1.5.3.2  Characterization and Classification of Cyber and Physical Stresses

As soon as the stress is detected and located in the smart grid, the next task associated
with the situational awareness of the smart grid is to analyze the type and the characteristics
of the stress. The measurement data at the moment of detection (and immediate past data)
have been proposed to utilize for the characterization and classification of stresses using GSP
and machine learning techniques. The proposed classification scheme consists of a two-stage
classification of stresses: the first stage classifies between cyber and physical stresses while
the second stage involves classification among cyber (DoS, Replay, FDIA, Ramp, and Delay)
stresses and among physical (abrupt load change and line failure) stresses. In addition, a
classification model has been developed for classifying two types of cyber attacks in case
of multiple attacks: clustered cyber attacks and random multiple cyber attacks, which is
important to understand the attackers’ intentions and strategies.

For all these classifications GSP techniques (e.g., Graph Fourier Transform, local and
global smoothness of graph signals) have been applied to extract features from the bus
voltage angle graph signal at the moment of detection of stresses or its temporal vicinity.
Different sets of features are observed to be suitable for classification at different stages. The
extracted features are used as input in different machine-learning models for classification.

The presented studies show that the proposed method involving extracting GSP-based fea-



tures and feeding them to machine learning-based methods, namely Graph Signal Learning
(GSL) outperforms machine learning classification using raw voltage angle data.

Moreover, using the GSP-based feature, a neural network-based technique has been de-
veloped for detecting attack centers in case of clustered multiple cyber attacks. A simple

technique for subsequent estimation of attack radius has also been proposed.

1.5.3.8  Recovery of the Unobservable States and Optimum Placement of Measurement De-

vices

The problem of recovering missing states in the power system has been addressed by
formulating it within the framework of graph signal sampling and reconstruction. Firstly, it
has been shown that in case of data unavailability due to cyber stresses, the missing data
can be recovered using the graph signal reconstruction technique under band-limited graph
signal assumption. Later, a reconstruction technique has been proposed that integrates the
statistics of local smoothness and global smoothness of graph signals into an optimization
framework for effectively recovering missing states. The significant contribution of this work
is that the proposed technique is bandwidth-agnostic which makes it applicable to a wider
range of scenarios, even when the graph signal is not band-limited. By considering both the
global and local dynamics of the system, this method exhibits notable accuracy in estimating
the missing signal values.

Since graph signal sampling can be linked to the availability of the attribute values at
some of the buses and unavailability at the other buses in the power system. In the context
of the optimum measurement device (Phasor Measurement Unit-PMU) placement problem,
the buses where PMUs are installed can be considered as the sampling vertices, while the
non-PMU buses are represented by the non-sampling vertices. To address the optimum
PMU placement problem effectively, we approached it as a sampling set selection problem

considering the power system scenario. The objective was to minimize the reconstruction
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error and maximize the observability of the system by strategically selecting the buses where

PMUs should be placed.

1.5.3.4  Characterization of Single Bus Perturbation in Smart Grids

The last application associated with the situational awareness of smart grids discussed in
the dissertation is the analysis of the impact of a single perturbation on power systems. A
GSP framework has been developed in this regard. For this analysis, the only perturbation
considered is an abrupt change in either the real-power load demand or the real-power
generation of a specific bus as the single bus perturbation. The main focus of this work
is to investigate how the effects of perturbation propagate through the system, depending
on its location and strength. For quantifying the spreadability of a particular perturbation
through the grid, a spreadability metric has been proposed, its properties have been derived
by an analytical approach under DC power flow assumption, and the properties have been
verified by simulation using AC power flow. Simulations also suggest that the local and
global smoothness properties of the difference bus wvoltage angle graph signal before and
after the perturbation are correlated statistically with the proposed measure of spreadability
and are suitable for the estimation of relative spreadabilities depending on the perturbation
location. Moreover, it has been shown that the global smoothness of the bus voltage angle
is a quadratic function of the perturbation strength with a maximum value at the critical
perturbation strength after which the global smoothness begins to decrease and further
increment of perturbation strength leads to non-convergence of power flow. The critical
perturbation strength varies from bus to bus and can be considered as the indicator of a
stressed grid that is vulnerable to collapse.

This work presents an important study from the GSP perspective about how the effects
of a single bus load or generation perturbation spread through the power grid depending
upon its location and strength. This study should be important for predicting grid stress

and instability due to perturbations arising from many modern-day grid scenarios, e.g., the
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deployment of electric vehicles and distributed energy resources in the grid. The research is
also relevant for analyzing cascading failures in the power grid which may get initiated from

single perturbations.

1.6 Structure of this Dissertation

For the convenience of the reader at the beginning of each chapter of this dissertation, an
introduction has been added to give the reader a overview of the contents. A Related Work
section in each chapter presents a discussion on the existing literature related to the content
of the chapter. From chapters 3 to 7, each chapter is dedicated to one of the applications
discussed in the previous sections. The problem of stress detection and location identification
has been divided between Chapters 3 and 4. Chapter 3 discusses addressing this problem
using state correlation-based techniques while Chapter 4 suggests GSP-based solutions. Since
some of the applications are proposed to be solved by multiple methodologies, each of those
chapters contains a general problem formulation section with multiple methodology sections.

Chapter 2 provides an introduction to GSP in the electrical grid context. The represen-
tation of the power grid as a graph and bus attributes of the grid as graph signals are demon-
strated and visualized at the beginning of the chapter. The concept of the graph-frequency
domain, graph signal smoothness, and their relation with the vertex-domain graph signal is
presented in this chapter. The later portions of the chapter contain the representation of
the power system graph signal (particularly, the bus voltage angle graph signal) in the ver-
tex domain, graph-frequency domain, joint vertex-graph-frequency domain associated with
grid normal conditions, cyber stresses, and physical stresses. The concepts of graph signal
sampling and graph signal learning (GSL) are also introduced in the chapter.

Chapters 3 and 4 are dedicated to the application of detecting and locating cyber and
physical stresses in the smart grid. This chapter provides models for different cyber and
physical stresses in the grid and shows their effect on the bus voltage angle data. Chapter

3 illustrated the methodologies for detection and location identification using both the in-
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stantaneous correlation-based technique and the GSP-based techniques. The distinguishable
effects of different stresses on the instantancous correlation matrix image have been shown
as a motivation for developing correlation-based detection and localization methods. Sim-
ilar motivational illustrations on the graph signal parameters have also been presented in
Chapter 4. This chapter contains a detailed description of the techniques of both types, the
results of the simulation, analyses of the complexity of the methods, and a comparison with
benchmark methods. All the simulations in both chapters have been performed on the IEEE
118 bus system using quasi-static simulation in MATPOWER, and load patterns collected
from the NYISO data to create synthetic time series data.

Chapter 5 illustrates the problem of characterization and classification of cyber and
physical stresses after detecting and locating them for the data at the moment of detection
and their temporal vicinity by using GSL, a combination of GSP-based feature extraction and
machine learning models. The classification model involves a two-stage classification scheme
with binary classification between cyber and physical stresses at the first stage followed by
classification among the cyber stresses and among the physical stresses in the next stage.
An additional classification model has been proposed for classifying clustered and random
multiple cyber-attack. The characterization tasks include the estimation of the attack center
and attack radius. This chapter discusses the feature selections for different classification
models and a feature reduction technique for the graph Fourier transform-based features.

Chapter 6 is about the state recovery problem in the smart grid and the associated opti-
mum sensor placement problem. This chapter shows the formulation for the state recovery
problem in the case of both a single-time instant and time series. This chapter established
the relationship between graph signal sampling-reconstruction and state recovery problem
and shows two GSP-based techniques for recovery of states i. e., recovery of bus voltage angle
measurements. The first technique is directly using the graph signal reconstruction method
to voltage angle data considering the buses with available measurements as the sampling

vertices. A PMU placement strategy has been proposed using this technique by formulating
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a sampling-set selection problem. The objective is to maximize the observability with a
minimum number of PMUs considering electrical grid realities. Since this technique is based
on band-limited assumptions for the graph signal, a bandwidth-agnostic recovery technique
has been proposed that uses the global and local smoothness of the associated graph signal.
This chapter concludes with a state-correlation-based technique for recovering time-varying
states for a duration of unobservability.

Chapter 7 involves the characterization of single bus perturbation in smart grids modeled
as a sharp increase of real-power load demand and real-power generation at a single bus.
This chapter provides a mathematical model of the perturbation under the GSP framework,
defines the graph signals relevant to the analysis, and analyzes their properties under the
single bus perturbation context. A GSP-based metric for quantifying the spreadability of
the effect of perturbation depending on the perturbation location has been proposed and
justified using analytical calculations under DC power flow and numerical approaches using
more realistic AC power flow. The global and local smoothness properties of the graph signals
under perturbation have been derived analytically and they are shown to be estimators of
the spreadability of the perturbation.

Chapter 8 concludes the dissertation by summarizing the result and the contribution of
the research and discusses a few directions in which the research can be extended corre-

sponding to each of the applications.
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Chapter 2: Fundamentals of Grid-GSP

IThis chapter provides a brief overview of the preliminary concepts of GSP by comparing
them with classical signal processing, introduces GSP in the context of the electrical power
grid, and motivates using GSP-based techniques for power system security and reliability-
related problems. GSP tools for the analyses of graph signals in the vertex domain, graph-
frequency domain, and joint vertex-graph-frequency domain are presented with mathematical

details and examples in the power system context.

2.1 GSP Literature Review

Over the last decade, GSP has emerged and extended the concepts of classical signal
processing to the irregular graph domain. Several works have been published on the in-
terpretation of the frequency domain in the context of graph signals [4, 5]. The tools and
theories built based on these interpretations allow studying graph signals in a new domain
with a similar notion to the frequency domain for classical signals. For instance, the relation-
ship between the graph signal frequency and the eigenvalues of the graph Laplacian as well
as various concepts related to the graph signal frequency, e.g., global and local smoothness
of signals, graph filtering, and modulation of graph signals have been discussed [4, 5].

Moreover, analogous to the joint time-frequency representation of temporal signals, the
concept of vertex-frequency analysis of graph signals has been developed and interpreted in
(32, 33]. However, unlike the Fourier basis functions, the bases for representing graph signals
in the frequency domain, i.e., eigenvectors of the graph Laplacian, are localized in nature.

Windowed graph Fourier transform (WGFT) [34] and graph wavelet transform (GWT) [35]

!Portions of this chapter were published in IEEE Transaction on Smart Grid [26], IEEE Xplore [27, 28,
29, 30], and Arxiv [31]. Copyright permissions from the publishers are included in Appendix B.
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have also been introduced. Inspired by the concept of time-frequency energy distributions in
classical signal processing (e.g., Rihaczek energy distribution [33]), the work by Stankovié et.
al. [33] introduces vertex-frequency energy distributions in the context of GSP. The vertex-
frequency energy distributions can be useful for studying the frequency characteristics of
the graph signal in a vertex-localized manner. A few works have also been published on
time-vertex signal processing [36, 37], which treats a time series associated with each of the
vertices of a graph.

Recently, GSP techniques have been used in various application domains including sensor
arrays and networks [19], transportation systems [38, 39], electroencephalogram (EEG) signal
analysis [40, 41], image processing [42] and imaging [43] and smart grids [44, 22]. Specifi-
cally, researchers have shown that GSP can be a prospective field for detecting anomalies in
different types of networks and their associated signals [45].

In very recent times, GSP is being utilized in smart grid research, especially in the
security and reliability of smart grids. For instance, Kroizer et al. in [46] approximated
the non-linear measurement functions in the power grid as the output of a graph filter
and proposed a regularized least-squares estimator for signal recovery based on the inverse
of the obtained graph filter. Ramakrishna and Scaglione [22] modeled the voltage phasor
measurements in the power grid as the output of the low-pass graph filter in response to
the low-rank excitation that comes from the generators. This developed GSP model has
been used in several smart grid applications such as inferring the power grid topology as
a Laplacian learning problem, detection of false data, and PMU data compression. Saha
et. al. [47] developed a graph signal sampling-based state estimation framework for radial
distribution feeders considering a three-phase unbalanced distribution system and proposed
a related optimal advanced metering infrastructure (AMI) placement algorithm. Mendes et.
al. [48] utilized GSP for estimating load current variability in distribution feeders in the

presence of distributed generation.
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Another important role of GSP involves modeling the structured data as graph signals
to make them suitable for applications using graph neural networks (GNN) [49, 50] such as
graph convolutional networks (GCN) [51, 52]. Similar to any other fields involving network
structured data, these training-based techniques are being used widely in many power system
applications. State estimation [53, 54] , stress detection [55, 56, 57|, power flow solution

[58, 59], and cascading failure analysis [60] are some of such applications.

2.2 Review of GSP and Energy Graph Signals

The first important definition in GSP is the definition of the graph signal. While in classi-
cal signal processing, signals are defined by Euclidean representation of their values; in GSP,
the graph signals are defined by the values residing on vertices V (i.e., V = {v1, v, ..., vn }),
which are connected over graph G = (V,€) with £ representing the set of links (i.e.,
E ={e; : (i,j) € V xV}). The graph signal can formally be represented by a vector of
values denoted by x with size N defined as x : V — R. The graph signal can be denoted by
x(n) instead of x(v,) for simplicity. Therefore, one of the important steps in defining graph
signals is to specify the underlying connectivities among the components, i.e. the graph

domain.

2.2.1 Defining Graph Domain for Power Grids

In this dissertation, the discussion will be limited to the bus-vertexr graph: a weighted
undirected graph in which buses are considered as the vertices and the transmission lines or
the branches are considered as the edges. Note that the above graph is based on the physical
topology of the power system. However, the interactions among the components of the
power system can be beyond the physical topology. As such, other methods of constructing
a graph domain for power grids can also be used. For instance, the data~-driven and electric-

distance-based methods discussed in [61], can be used to infer and construct graph domains

17



for power grids beyond their physical connectivities (when needed depending on the analyses
of interest).

In some of the applications, the geographical distance between buses i/ and j is denoted
by djj and the weight corresponding to the edge ej in the bus-vertex graph G is defined as
wij = dl,-j» if there is an edge between node i and node j (i.e., ef = 1) and w;; = 0, otherwise
(if there is no edge between node i and node j, i.e., ej = 0). Graph Laplacian matrix L,
with /; elements, is also defined as [; = szzl w; if i = j and [j = —w;;, otherwise. Since, the
graph Laplacian, L is a real and symmetric matrix, it has real and non-negative eigenvalues
corresponding to the orthonormal set of eigenvectors. The Laplacian matrix of the graph
will be used later in defining the frequency domain representation of graph signals. In a
few other applications, The weight matrix W is defined in such a way that the Laplacian
matrix L = D — W of the graph represents the imaginary part of the admittance matrix of
the network. Later in this dissertation, the definition of the Laplacian matrices depending
on the application would be mentioned.

In some of the smart grid applications introduced in the dissertation, the power grid is
needed to be modeled by a dynamic weighted graph, G(t) = (V, E(t), W(t)), representing
the known topology of the grid at time t. The set of vertices, V), represents the buses of
the grid and is considered to remain unchanged over time. The set of edges £(t) = {e;(t) :
(i,j) € V x V} represents the transmission lines that are active at time t and thus may
change over time in the event of a line outage, an intentional line tripping, and restoration
of a transmission line. The set of edge weights, W(t) includes w;; elements, which represents
the i-th row and j-th column of the weight matrix at time t denoted by W;. The weight
matrix W, is defined in such a way that the Laplacian matrix L, = D; — W, of the graph

represents the imaginary part of the admittance matrix associated with the known topology

of the grid at time, t, where D, is the degree matrix of the graph, G(t).
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2.2.2 Representation of Power System Measurements as Graph Signals: Vertex Domain

Representation

The measurement values associated with each vertex i.e. bus voltage angles for G at a
time instance are considered as a graph signal. Figure 2.1 illustrates an example of a graph

signal based on the voltage angles of all the buses for the IEEE 118 bus system [62].
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Figure 2.1: Voltage angle measurements at a particular time instance as a graph signal on
the IEEE 118 bus system.

It is assumed that the signal values are available at all the buses of the grid (i.e., vertices of
the graph). To realize this assumption, it can be further assumed that PMUs are available on
every bus of the system. Alternatively, to relax this assumption based on real-world scenarios
with selective PMU placement, it can be assumed that the signal values are available either
directly from the measurement devices mounted on the buses (e.g., PMUs) or through state
estimation using the measurements from other buses. The graph signal values at different
time instances can be modeled as time-series associated with each vertex and the resultant
graph signal becomes a function of time, i.e., a time-varying graph signal that has been

discussed in subsequent subsections.
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2.2.3 Spectral Characteristics of Power Grid’s Graph Signal - Graph-Frequency Domain

Analogous to the concept of Fourier transform and frequency domain representation of
the signal in classical signal processing, the graph Fourier transform (GFT') of a graph signal

x(n) is defined as:
N

X(\e) = Zx(n)uk(n), (Analysis equation) (2.1)

n=1

and the inverse graph Fourier transform (IGFT) is:

N

x(n) = Z)A(()\k)uk(n), (Synthesis equation) (2.2)

k=1

Here, ux(n) is the basis graph signal for the GFT, which plays a similar role to the role
of complex exponential signal in classical Fourier transform. Here, ui(n) is considered as
the eigenvectors of the graph Laplacian L, where subscript k denotes the k—th eigenvector
and n is the index of n—th node in the graph G. The corresponding eigenvalues to these
eigenvectors are denoted by Ay, which are considered as the graph-frequencies, and 0 = \; <
A2 < A3 < ... < Ay. The first eigenvalue A\; = 0 is analogous to the zero-frequency (DC
component) in the case of temporal signals. The eigenvectors with lower/higher eigenvalues
(i.e., smaller/larger k) correspond to lower/higher frequency components with less/more
variation of values over vertices in a local neighborhood. In contrast to the basis functions
in classical Fourier transform (i.e. complex exponential), the graph Laplacian eigenvectors
are localized in the vertex domain. For example, Figure 2.2 illustrates two eigenvectors of
the graph structure corresponding to the IEEE 118 bus system that are localized around
two different locations in the graph. The edge weights in this case are considered as the

reciprocal of the geographic distance.
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Figure 2.2: Two of the eigenvectors for IEEE 118 bus systems graph. The two eigenvectors

are localized around two different vertices.

2.2.4  Global Smoothness of Graph Signals

The smoothness measure of a signal quantifies how rapidly the values of the signal change.

In a graph signal, the smoothness characterizes the variation of the signal over graph neigh-

borhoods, i.e., from each vertex to its neighboring vertices. The global smoothness signifies

the aggregated variations in the signal while local smoothness signifies variation in the vicin-

ity of each vertex.

The global smoothness of a graph signal x(n) is defined as:

SGlobal =

xTLx

xTx '

(2.3)
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where x is the vector representation of the graph signal, x(n). The faster the graph signal

changes from vertex to vertex, the larger the value of sgiopar-

2.2.5 Local Smoothness of Graph Signals

The smoothness measure of a signal quantifies how rapidly the values of the signal change.
While the global smoothness [33] of a graph signal provides an overall measurement of the
smoothness of a graph signal, the local smoothness associated with the graph signal, defined

as

s(n) — ’:(”), for x(n) 40, (2.4)

s(n) specifies how fast the values of the graph signal x(n) change from vertex to vertex in
the vicinity of the n—th vertex. Here /(n) is the n—th element of the vector, Lx. The work
by Dakovié et al. [63] shows that the concept of local smoothness in the graph signal is

analogous to the concept of instantaneous frequency in classical signal processing.

2.2.6 Joint Vertex-Frequency Representations

In classical signal processing, the joint time-frequency representations of signals (e.g.,
spectrogram, windowed Fourier transform, wavelets, etc.) are used for the time-localization
of a particular frequency component. The joint vertex-frequency representations serve a
similar purpose for graph signals. In GSP, there are different approaches for localization
of the frequency components in the literature. For example, Stankovié¢ et al. [33] propose

localized vertex spectrum (LVS) of graph signal x(n) as:

LVS,(n, ) =Y x(m)h(n — m)u(m), (2.5)

where h(n) is the window function. This approach has the major drawback of being depen-
dent on the width and the characteristics of the window function. Instead, for improving

the localization of the signal energy in the joint vertex-frequency domain, the VFED is in-
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troduced in [33], which does not require any window. The VFED, E(n, k) is calculated from

the graph signal using the equation:

(n, k) = Z (m)ug(n). (2.6)

2.2.7 Time-Varying Graph Signals

In previous discussions, the graph signals at a single time instant have been considered.
However, in dynamic systems, such as power grids, the values of the signal at each node vary
in time. For instance, the bus voltage measurements in power grids change in time because
of changes in load demand and other changes in the power system. As a result, the graph
signal, x(n) changes in time. Therefore, a time-varying graph signal can be thought of as
a function of both vertex and time and can be denoted by x(n, t). While dynamic time-
varying graph signals are considered here, it is assumed that the underlying graph of the
system (vertices and links) remains unchanged during the analyses. If the underlying graph
of the system and consequently graph of the graph signal change, then the set of eigenvectors
and thus the basis of GFT will change, which make the frequency analyses of graph signals
before and after the graph change incomparable. For time-varying graph signal x(n, t), the
spectral representations, as well as the global and local smoothness of the graph signals also
change with time. Here, the k—th eigenvalue, the k—th eigenvector, the GFT, the VFED,
and the local smoothness at time t will be denoted by A(t), uk(t), X(Ax, t), E(n, k, t), and

s(n, t), respectively.

2.2.8 Amount of High Graph-Frequency Components

In reference to [31], the amount of high graph-frequency components in the graph signal

at time t, y(t) as

t)—Z|X (A, t)

(2.7)
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where H(\) is a high-pass graph filter with frequency response: H(A) = 0, if A < A, and
H(A\) =1, if A > A, and A, is the cut-off frequency. Since during normal operation, the
graph signal is smooth and thereby contains only low graph-frequency components, a high
value of 7(t) indicates an anomaly in the grid. However, all kinds of anomalies are not
reflected in the value of ~(t) and this quantity is dependent on the selection of A.. For
detecting stresses by using the local smoothness, the instantaneous local smoothness, s(n, t)

has been used to detect stresses.

2.3 Reflection of Smart Grid Stresses on Their Graph Signals

2.3.1 Cyber Attack Models

In this section, the approach for modeling the effects of different types of cyber attacks on
the time-varying voltage angle graph-signals in smart grids are discussed. Specifically, five
types of cyber attacks including DoS attack, replay attack, ramp attack, delay attack, and
a special form of FDIA have been considered. For modeling cyber attacks in graph signal
domain, let us consider a set of vertices, V4 C V is under attack within the time interval
tstart 1O teng. The corrupted signal in the generalized cyber attack model can be expressed
as follows:

x(na, t) = c(t), for tsanr <t < teg, and na € V4. (2.8)

The corrupted signal ¢(t) can be defined to model and capture the effects of various types
of attacks as will be discussed next. Figure 2.3, illustrates different types of cyber attacks
on the time-series, x(102, t), which is associated with the time-varying values of the graph

signal x(n, t) at vertex/bus 102 in the IEEE 118 bus system.

2.3.1.1 Denial-of-service (DoS Attack)

In a DoS attack, the attackers can prevent the communication of measurement values

(at certain parts of the system) to the data collection and monitoring system, for instance

24



‘—Original Signal —Corrupted Signal

33.5

Replay
Attack

w
&

.[FDIA Delay

x(102,t) (in Degree)

DoS Attack
Attack
321 4
3150 Ramp §
Attack
31 L L L L L L L L L L L L L L L L L L L L L L L L
N B T T I RN N R L N B R R N I R MG A Ll

Time, ¢ (in Hour)

Figure 2.3: Cyber attacks on time-series.

through overloading network resources. In cyber security literature, DoS attacks are often
modeled as the absence of measurement signal at the attack location [64]. As a result, the
data collection and monitoring system receives only the measurement noise from tear: 10 teng
from the attacked location, which creates an abrupt change of signal value at ts.,;. To make
the attack model more challenging, in this work, the DoS attack is modeled as the suspension
of updating the time-series measurements at the attack location. As a result, the corrupted
measurements appear to be a constant value during the attack (i.e., the value at the onset

of the attack, x(na, tsare) plus noise). More specifically, the model for this attack considers:

c(t) = x(na, tstare) + q(t) (2.9)

where q(t) is the additive white Gaussian noise with zero mean and variance o2 . In Figure

2.3, the example DoS attack starts at time 5 and ends at time 6.

2.3.1.2  False Data Injection Attack (FDIA)

FDIA involves sophisticated false data designing methods to deceive the traditional bad
data detection techniques associated with the state estimation and monitoring mechanisms.

The most common strategy of FDIA in smart grids from literature designs the FDIA based
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on the power system state estimation framework with z = h(y), where z and y are the
measurements and the states of the power system, respectively. The non-linear function
h relates measurements and states. The traditional bad data detector declares a set of
measurements z as bad data if the residue of state estimation r = ||z — h(y)||, exceeds a
threshold 7, where § is the estimated states. To bypass the bad data detector, the attacker
injects a false measurement zgpia = z+a in such a way that the residue, ||zepia — h(¥)|], < 7.
In this work, the bus voltage angles are considered as the state of the power system and the
measurements are taken in the form of bus voltage angles. It is also assumed that the state
values of the nodes are obtained either by mounting measurement devices (e.g., PMU) on
every bus or by estimating the voltage angle of buses with the available measurement devices
at other buses. In this work, a special type of FDIA is considered, which does not introduce
any sharp change at the onset of the attack and is thereby challenging to be detected by
many detection mechanisms. To model this type of FDIA in the general cyber attack model

in equation (2.8), ¢(t) can be defined as:

c(t) = x(na, t) + (=1)°x, (2.10)

where b € {0, 1}, |x’| is considered to be a very small value that the injected false datum does
not create any easily detectable abrupt change at the onset of the attack and also bypasses
the bad-data detector embedded into the state estimation system. In other words, the FDIA
in this work is designed such that the absolute value of the difference of the true datum and
the falsified datum change, i.e., x’; to be smaller than the detector threshold 7. In Figure

2.3, the example FDIA starts at time 3 and ends at time 4.

2.3.1.8 Ramp Attack

A ramp attack involves inserting falsified measurements gradually in the measurement

time series of the compromised buses. Since there is no abrupt change of values at the onset
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of the attack, the detection of ramp attacks can be challenging. Ramp attack can be modeled
by:

c(t) = x(na, tstare) + m X (t — tsare) + q(t), (2.11)

where m is the slope of the change and q(t) is the additive white Gaussian noise. In Figure

2.3, the example ramp attack with slope —0.8 starts at time 7 and ends at time 9.

2.3.1.4 Replay Attack

Replay attack involves inserting any recorded previous measurement as the current mea-
surement in the attack duration. In this case, the attackers get access to some of the meters
(PMUs), record the measurements, and afterward insert the recorded measurements as the
true measurements into the same meter or other meters in the attack duration. Replay

attacks can be modeled by:

c(t) € {x(nr tp)} tp < tstar, N € VR (2.12)

where Vi C V is the set of all buses (vertices) in which the attackers have access to record
measurements before tg,,;. Depending on the selection of the compromised meter and the
data to be inserted, replay attacks can be designed in various ways. In this work, c(t) is
considered to be c(t) = x(na, —t). In Figure 2.3, the example replay attack starts at time

15 and ends at time 17.

2.3.1.5 Delay Attack

In the delay attack, the attackers compromise the global positioning system (GPS) signal
associated with the PMUs to falsify the measurements using the delayed version of the

original measurements. The delay attack can be modeled by:

c(t) = x(na, t — tq) (2.13)
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where ty is the amount of delay. For small t;’s, the detection of this type of attack is very
challenging. In Figure 2.3, the example delay attack starts at time 19 and ends at time 21.

For a successful cyber attack from the attacker’s perspective, the attack must bypass
the traditional bad data detector based on a threshold determined from historical data.
The cyber attacks designed in this work involve injecting recent-past valid measurements in
the current time with a smooth transition of measurement values at the attack onset. For
this reason, the cyber attacks proposed in this work can bypass the traditional bad data
detectors, at least at the beginning of the attack duration. Moreover, the absence of any
abrupt changes in the onset of the attack makes it difficult for the existing methods to detect

them quickly in real-time.

2.3.2 Reflection of Cyber Attacks on Graph Spectra

In this subsection, analyses of the impacts of types and the location of cyber stresses
in the smart grid on the graph-spectral domain are presented through GFT and the local
smoothness of the graph signals associated with the bus voltage angle measurements. Figure
2.4 illustrates how the aforementioned cyber-attacks affect the time-varying graph signal of
the system as well as the frequency domain representations associated with it. In Figure
2.4(a), the cyber-attacks launched at bus number 102 at different moments of the day are
shown on x(102,t). Figure 2.4(b), illustrates the changes in the amount of high graph-
frequency components v, associated with x(n, t) over time. From this figure, we observe
that these critically designed cyber-attacks are not well reflected on ~; values, although
it is shown that these values can be used to detect simple cyber-attacks [44, 31]. Figure
2.4(c) shows the time-varying local smoothness corresponding to the attacked bus (vertex),
s(102,t). It is observed that all the attacks are well reflected on s(102, t). In particular,
the delay attack at hour 19, which is even difficult to perceive from x(102, t) itself, has a
noticeable signature on s(102, t). Figure 2.4(d) shows the time-varying local smoothness

values at vertex 92, which corresponds to a neighboring bus of the attacked bus, 102. From
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Figure 2.4: The effects of different types of cyber attacks on time-varying graph signal and
its various spectral parameters. The following time series represent (a) time-varying graph
signal values at vertex 102, x(102, t), (b) changes in the amount of high-frequency
components, v;, (c) local smoothness values of vertex 102, s(102, t), and (d) local
smoothness values of vertex 92, s(92, t) (neighboring vertex of 102).

29



this figure, it can be noticed that although the values of s(92, t) are affected by cyber-attacks,
they are not as prominent as in s(102, t). The vertex in which the change of local smoothness

value is the most can be considered as the location of the cyber-attack.

2.3.3 Effects of Node-degree of Stressed Buses on Graph Spectra

The degrees of the buses (i.e. nodes), which are under cyber-attack or physical stress,
affect the graph spectra of the associated graph signal. The reason behind this is the local-
ization of the eigenvectors of the graph Laplacian, L. It is observed that the eigenvectors
corresponding to the high graph-frequency components are more localized in nature and each
of the high-frequency eigenvectors is localized in the vicinity of a particular vertex with a
high degree. Whenever a cyber-attack occurs in a bus with a high degree, the GFT coeffi-
cient corresponding to the particular eigenvector localized in that vertex (i.e. bus) is mostly
affected. In contrast, when a cyber-attack occurs on a bus with a low degree, several GFT
coefficients are affected. Figure 2.5 illustrates the scenarios for two buses having degrees 9

and 5.
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Figure 2.5: The effects of degree of the attacked bus on GFT.
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2.3.4 Comparative Analyses of Effects of Cyber and Physical Stresses

In this subsection, we have compared the effects of cyber and physical stresses on the
graph-spectral domain of the corresponding graph signals. The motivation behind this com-
parison is that cyber-attacks and physical stresses affect the bus voltage angle graph signal
differently that consequently has a distinguishable effect on the spectral domain represen-
tations of the graph signals. Since from the perspective of the monitoring and operation of
the smart grid, characterization of stress is crucial along with its detection and localization,
analysis of their distinct signatures on the graph signal and its spectral representation is

important.
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Figure 2.6: The GFT values associated with the graph signals during a normal condition,
under FDIA at bus 11, and load change at bus 11.

Figure 2.6 compares the GF'T of the graph signals associated with a cyber-attack, and a
physical stress occurring on the same bus. From the GFT representation of the graph signals,
it can be observed that an abrupt change of load at bus number 11 affects the low-frequency
components of the GFT. The abrupt load change being a physical event changes the power
flow around a region, centering bus number 11. The bus-to-bus variations in the voltage
angle measurements around bus number 11 is smooth, which corresponds to low-frequency
components of GFT. In contrast, the injection of false data at bus number 11 introduces

changes in the magnitude of some of the high-frequency components. False data at bus
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number 11 causes a change in the voltage angle value of bus no 11 only. For this reason,
there introduces a sharp variation in the values of voltage angles (i.e. graph signal values)
of bus number 11 with respect to its neighboring values. This sharp variation corresponds

to the high-frequency component of GFT.
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Figure 2.7: The local smoothness values of the nodes during a normal condition, cyber
attack at bus 11, and load change at bus 11.

Figure 2.7 illustrates the same pair of phenomena in terms of local smoothness values. It
is observed that false data injection at bus number 11 affects the local smoothness values of
only a few vertices (vertices at a one-hop distance) around vq;, whereas the abrupt change
in the load demand changes local smoothness values around a wider region, centering vertex

11.

2.4 Effects of Cyber Attacks Patterns on Local Smoothness of Graph Signals

The local smoothness [63] of the graph signal x(n, t) associated with the bus voltage
angles is described by:

s(n, t) = , x(n, t) #0, (2.14)

where I(n, t) is the n—th element of the vector Lx and x is the vector form of the graph
signal x(n, t). Here, the effects of cyber attacks on the local smoothness values are inspected

analytically to evaluate the effectiveness of the detection and locating method in case of

32



‘ ‘ 0.2
a2 I
4l-|1 l? 24041 —42 53 54._;556
fs‘f 1?1111;3 3‘%5 i kz 5c1ax 01
113 -47
! iém I32\\2'22 n \7& o= KB@'? 0

e 2""?21,0/ Single cyber atiack

“B\\ T g at bug- 100

7‘:-1"1;’2;?_.9? - /
@ *mk. 107 01
a9 82101 104 000 '
| 12

-0.2

Difference in local smoothness values

‘ 0.2
53-54 =56 55 I

E ! 0.1
P, fnéaas?sas“ﬂ:ﬁ; 7{5#1 \

‘4?

o
Difference in local smoothness values

% \7‘ =Tl
—iaA. 72,0/:3%1‘&_ !
Thrstig ,;f.sana‘
i 9339
00— 107 i
.ag.gaam 1oiﬁ 0:1
| 1z
-0.2
(b)
0.2
4 I
32 B
4k n:m’ JfoH—42 53 54_.5555
s e 5 0.1
257 /%18‘15 :ua'gs “ \4;{5&18‘\\

o
Difference in local smoothness values

Figure 2.8: Changes in the local smoothness values due to different types of FDIA
assuming no load changes in the system. Attacks include: (a) single attack at bus 100
affects bus 100 and its 1—hop neighbors i. e., {100} U .41(100), (b) multiple attacks at bus
12, 27, 41, 63, 111 affect those buses and their 1—hop neighbors i.e.

{12,27,41,63,111} U A7(12) U A1(27) U A7(41) U A41(63) U A47(111) (c) clustered attack
centered at bus 100 and radius 1 affects {100} U .47(100) U .42(100).
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multiple, clustered, and coordinated cyber attacks. In this case, by utilizing the sparse

nature of the graph Laplacian matrix, L, L (n, t) can be expressed alternatively as:

K(nt) = > lux(i.t), (2.15)
ie{n}UAM(n)
where #4(n) is the set of all vertices in the k—hop neighborhood of n. Next, the effects of

cyber attacks on the local smoothness s(n) will be illustrated.

e Single Cyber Attack Case with Fixed Load: Let us consider a single cyber attack at
bus na € V4. According to equation (2.15), this single attack will affect L(n, ty) for
n € {na}U.A1(na). According to equation (2.14), the local smoothness values for these
vertices are affected because of the single cyber attack at the vertex ns. For instance,
Fig.2.8(a) illustrates the difference between the local smoothness values of each vertex

before and after a single cyber attack at bus 100.

e Multiple Random Cyber Attack Case with Fixed Load: Let us consider p cyber attacks
at buses na, na,, ... na, € V. According to equation (2.15), this multiple attack will
affect I(n, ty) and thereby the local smoothness s(n, t;) for:

n € {na, na, -..na} UA(na,) U A1(na,) ... A1(nap). For instance, Figure 2.8(b) illus-
trates the effect of FDIA on buses 12, 27, 41, 63, and 111.

e Clustered Cyber Attack Case with Fixed Load: In a clustered cyber attack case, it
is assumed that the attacker attacks a central node and its K—hop neighbors. The
parameter K is called the radius of the attack. In clustered cyber attacks, the attacker
can inject false data at any vertex within the radius K. For example, in a clustered
cyber attack with attack center nc € V and radius 1, the attacker changes the graph
signal x(n) for n € {nc} U A1(na.). According to equation (2.15), due to the changes
of the signal values in the attack center nc, the value of [,(n) would change for n €

{nc}UA(nc) and due to the changes of the value at each of the vertices ni- € A1(nc),
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the value of I(n,ty) would change for n € Ai(n.), Vn € A5(n}). Therefore, a
clustered attack centered at nc and radius 1 would affect the values of L(n, ty) for
the vertices n € {nc} U A1(nc) U A5(nc). According to equation (2.14), the local
smoothness s(n, ty) changes for these vertices. A clustered attack centering at bus 100
and radius 1 has been considered as an example at Figure 2.8(c). In general, a clustered

cyber attack, with attack center nc and radius K, can affect the local smoothness values

of the vertices: {nc} U {U! Aj(nc)}.

j=1

The above discussion provides insight for detecting, locating, and characterizing cyber
attacks in power grids based on the local smoothness of the associated graph signals. How-
ever, the assumption of no-load change does not hold in real-life scenarios. Therefore, due
to the perpetual changes of load demands, the graph signal, x(n, t), and thereby the local
smoothness s(n, t) change continuously over time. It is a challenge to distinguish the changes
in local smoothness due to the cyber attack from the regular changes in local smoothness
due to the load changes. To overcome this problem, estimating the probability distribution
of the second time-derivative of the local smoothness values for each of the buses under the

load changes from the past data has been proposed [26].

2.5 Graph Signal Sampling Overview

2.5.1 The Concept of Graph Spectral Bandwidth

In this work, the spectral domain of a graph is defined by the graph Fourier transform.
The graph Fourier transform (GFT) and the inverse graph Fourier transform (IGFT) of
a graph signal x(n) are defined by the analysis equation (equation 2.1) and the synthesis
equation (equation 2.2). Analogous to the concept of bandwidth for the signals defined in
the Euclidean domain, the bandwidth, Ag of a graph signal can be defined as If X(\s) =0,

for k > B, then \g is called the bandwidth of the graph signal x(n). In this case, the graph
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signal is said to be band-limited to the graph frequency, Ag. The set { A4 : Ay < Ag} contains

B number of significant graph-frequency components in the graph signal.

2.5.2 Sampling and Reconstruction of Band-limited Graph Signals

Sampling a graph signal can be defined as considering graph signal values corresponding
to a subset S of the set of all vertices V. According to the Nyquist criterion in classical
signal processing while down-sampling a signal by a factor d, the signal needs to be band-
limited within % radian/sample for being able to be perfectly reconstructed from its down-
sampled version [65]. If the signal is not band-limited to 4 radian/sample, overlapping would
occur in the spectral domain during the down-sampling process causing aliasing. To avoid
aliasing signals can be made to be band-limited by discarding insignificant high-frequency
contents over % radian/sample. If the frequency component beyond % radian/sample is not
insignificant, the signal should not be down-sampled at a rate of d. Similarly, down-sampling
of graph signal creates aliasing in the graph-spectral domain unless the signal is band-limited
to a certain frequency. Narang and Ortega [66] showed that for k—regular bipartite graphs
the phenomenon is the same as Nyquist criteria when every d vertices are sampled, However,
for the arbitrary graphs, the scenario is not directly analogous to the 5 limit. For the method
implemented in [67], if the graph signal is band-limited to B graph-frequency components,
then the number of sampling points Ns should not be less than B (i.e. Ny > B).

Let x(n) be a graph signal approximately band-limited to Ag, i.e. X(Ai,) < X(Ag),
for k, > B and k; < B. Since the signal does not have significant frequency contents
beyond Mg, discarding those frequency components would not distort the signal notably;
however, similarly to the case of sampling in classical signal processing, these insignificant
frequency components cause aliasing during the sampling process, which makes reconstruc-
tion impossible. To avoid this situation and to be able to reconstruct the original signal

from its samples, the high-frequency components of the original signal are discarded using
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an anti-aliasing graph filter. The frequency response of the proposed anti-aliasing graph

filter is:

1, for )\k S >\B
H(\) = (2.16)

0, otherwise.

The band-limited graph signal xg.(n), which is obtained by filtering the original graph signal

x(n) can be described in the GFT domain by:

XeL(A) = H(A)X (Ak)- (2.17)

The set of vertices to be sampled, S, is an indexed set with the i—th member of the set

denoted as s;. As such, the sampled graph signal can be expressed as:

Xs(n) _ XBL(I’I), ifneS (218)

0, otherwise.

The selection of vertices to be sampled, S, can be based on various criteria considering the
topology and physics of the system. The reconstruction process estimates the original band-
limited signal values from the sampled signal x;(n). The reconstructed signal can be defined
as:

Xre(n) = Z(xs(n)), (2.19)

where Z is the reconstruction operator that acts on the sampled signal. Note that the
aforementioned descriptions of xs(n) and x,.(n) provide the conceptual definition of the graph
signal sampling and reconstruction process. Both of the operations have been implemented
by following the approach suggested in [67] based on matrix multiplications as discussed

next. The sampling process corresponds to the matrix multiplication:

s = Wxg,, (2.20)
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where xg;, a N x 1 vector, is the vector form of the graph signal xg;(n) and W is a Ng x N
sparsec matrix. The entry at the i—th row and j—th column of W is defined as: ¥; = 1
if, j = s;, and ¢ = 0, otherwise. The Ns x 1 vector s contains the non-zero values of the
sampled signal in the order of the indexed set, S. The reconstruction process is implemented

by:

r=Uy,(WUy,) s, (2.21)

where Uy, is a N x Ny matrix containing the first Ny eigenvectors, {u, : k < Ng} of the
Laplacian matrix L in its Ng columns. For the application of graph signal sampling in this

power grid:

) x(n), ifnes 22

fn otherwise,

where r, is the n—th element of the vector r. As an example, we have implemented the
technique described here for power system graph signals. The voltage angle measurement
of each bus for the IEEE 118 bus system [62] has been considered as the graph signal, x(n).
Simulations have been performed in MATPOWER 6.0 [24].
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Figure 2.9: Decomposition of reconstruction error for graph-signal sampling as a function
of the number of sampled nodes, N;.

The anti-aliasing filter has been designed to obtain xg;(n) to be band-limited within

B = Ns graph-frequency components. In this sampling reconstruction process, the total
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error in the reconstructed signal consists of two errors: the error caused by the anti-aliasing
filter for band-limiting the graph signal, and the error for reconstructing the non-sampled
vertices in the matrix multiplication process. It is observed that, as N; increases, the first
type of error decreases since the anti-aliasing filter allows more high-frequency components.
However, the second error depends mainly on selecting the sampling set, S, and is relatively
negligible compared to the other error. The comparison of the two types of error is shown

in Figure 2.9.

2.6 Learning of Graph Signals

Under the perpetual changes in the grid scenarios including changes in load demands and
generator output at different buses of the grid, the graph signal, x(n, t), its graph-frequency
domain representation, and the smoothness parameters calculated from x(n, t) vary contin-
uously over time. As a result, rule-based decision-making from the GSP-based signatures
of various events and stresses becomes difficult, especially in the case of classification and
characterization of anomalies and stresses. In spite, the GSP parameters associated with the
events can be more effective for classifying than the raw data with learning-based models
(30, 29]. Therefore, for leveraging the potential of GSP in capturing the topological as well as
interaction and interdependency dynamics among the components of the grid for improved
classification accuracy, the GSL framework has been proposed. GSL involves feature extrac-
tion using GSP techniques and feeding these features to machine learning models including
neural networks. The GFT values, local and global smoothness values, and their temporal
statistics can be considered GSP-based features. Chapter 5 provides a detailed analysis of
classification using the learning of graph signals. Experiments show that GSL achieves better

classification accuracy than learning raw data.
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Chapter 3: Detection and Location Identification of Cyber and Physical

Stresses in the Smart Grid: Part I: State Correlation Approach

2Due to the importance of system monitoring in smart grids as critical infrastructures,
various types of cyber-attacks have targeted this function by compromising various compo-
nents of the system and tampering with or obstructing the data from monitoring sensors.
Such attacks can lead to errors in the estimated system state in the control system and
potentially severe flaws in the control and operation of the system affecting its reliability
and efficiency of the system. As such, identifying and locating such cyber-attack incidents
is critical in enhancing the reliability and efficiency of smart grids. In addition to cyber-
attacks, physical anomalies also threaten the reliability of smart grids and require real-time
detection and locating by state monitoring systems.

In this work, the data streams from the PMUs, in the form of time series, will be utilized
to help with the state monitoring function for detecting and locating various cyber and
physical stresses in smart grids in real-time. Specifically, this work presents data-driven
methods based on the correlation among the states of the components for detecting and
locating stresses.

In the previous work [68], we observed that the correlations among the states of the
components vary in time due to changes in the system, such as generation and load demand
variations as well as cyber and physical stresses affecting the system. Particularly, we showed
that different kinds of events in the power grid have certain signatures on the time series
associated with the states of the system as well as on the correlation pattern among the states.

We also discussed that the instantaneous correlation matrix can serve as a visualization tool

2Portions of this chapter were published in IEEE Xplore [68] and IET Smart Grid [69]. Copyright
permissions from the publishers are included in Appendix B.
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that can guide operators in detecting and locating the stresses instantaneously. By presenting
the instantancous correlation matrix corresponding to the states of the grid as an image, in
[68], we proposed an image-processing-based technique for the detection and locating of
anomalies in the system.

In this next work [69], we extend the work in [68] to study the effects of multiple stresses on
the instantaneous correlation matrix corresponding to the states of the grid. Furthermore,
we improve the technique presented in [68] for detecting and locating the stresses in the
system by introducing a classification technique that alleviates the challenge of characterizing
detection thresholds in the image-processing-based technique. Specifically, the proposed
technique exploits the features extracted from the instantaneous correlation matrix and
trains a k— Nearest Neighbour (k—NN) classifier for the detection of the stresses. The
locations of the stresses are also determined from the correlation patterns of the buses in
real-time. Once the model is trained with historical data, real-time detection, and locating
require a small amount of past data to calculate the instantaneous correlation matrix. The
technique is capable of detecting multiple cyber attacks and single-line tripping events in

the smart grid with improved and promising detection and false-positive rates.

3.1 Related Work

Over the past decades, a large body of work is focused on detecting and locating cyber
and physical stresses in power systems. Many such methods are data-driven techniques that
exploit PMU or other types of historical data for developing models for detecting stresses.
Some of such models use dimensionality reduction techniques to represent and analyze the
large volume of data using lower-dimensional models [70, 71, 72, 73]. For instance, Chen
et. al. [70] uses historical data for real-time prediction of one-step-ahead states. In this
approach, if the error of prediction exceeds a certain threshold compared to the actual
measurements then an anomaly is declared. In [71], a real-time anomaly detection method

is proposed in which the lower-dimensional representation of the PMU data using feature
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selection. Then, the isolation forest (iForest) algorithm is used for the detection of anomalies.
In [72], Cai et. al. considered the PMU data stream as a multivariate time series. Then
using principal component analysis (PCA) lower-dimensional representations of the time
series are obtained and the T2 and the Q statistics of the principal components are used as
the features for detection. Finally, a k—nearest neighbor (k—NN) method has been applied
in real-time to detect the stresses. Mahapatra and Chaudhuri [73] also proposed a technique
for the detection of cyber-attacks in wide-area systems based on the PCA of the PMU data.

Neural network-based methods are also popular for detecting and locating stresses in
smart grids. For instance, Basumallik et. al. [74] proposed a convolutional neural network
(CNN) based detection and classification for detecting anomalies from the packet-PMU data.
In this work, the PMU data from different PMUs at the phasor data concentrator (PDC)
is considered as a multivariate time series. The cross-correlation matrices corresponding to
different types of anomalies are taken as the features for the CNN classifier. Ganjkhani
et. al. [75] proposed a nonlinear auto-regressive exogenous neural network (NARXNN) for
the real-time detection of false data injection attacks in the smart grid. NARXNN is a
robust recurrent neural network model that is specially designed for time series data. In this
method, the high correlations among states are used for one-step-ahecad prediction of the
states using measurement values along with historical data. The false data is then detected
by comparing the predicted state values and the original measurements.

In addition to the aforementioned works, some studies use data mining and Bayesian
models. For instance, Pan et. al. [76] introduced a data mining-based intrusion detection
system for the detection and classification of normal operations, cyber-attacks, and distur-
bances. The authors in this work used the common path mining technique on both of the
synchrophasor data and the power system audit logs. Karimipour ef. al. [77] presented an
unsupervised machine-learning method for the detection of cyber-attack in smart grids in
real-time. In this work, Symbolic Dynamic Filtering (SDF) is used for the extraction of the

feature. The learning is based on a dynamic Bayesian network model.
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Moreover, some researchers have utilized the spatial and temporal correlation among the
measurements throughout the power grid to detect stresses in the system. For instance, Li
et. al. in [78] proposed a real-time detection and locating technique for false data injection
attacks in the smart grid. In this work, they used the hidden Markov model (HMM) to
recover the temporal correlations in measurements that are applied to detect the anomalies.
Vector auto-regression is used to capture the spatial correlation among the measurements
to locate the attack. Shi [79] proposed a spatio-temporal correlation-based monitoring, and
anomaly detection and locating for distribution networks.

Among the other methods for detecting anomalies, Kurt et. al. [80] used a cumulative
sum (CUSUM) based algorithm for the real-time detection of cyber and hybrid attacks in
smart grids. Furthermore, Chu et. al. [81] proposed a quadratic prediction-based algorithm
for the detection of cyber-attacks and anomalies. In this work, a three-sample quadratic
prediction algorithm (TSQPA) based filter predicts one sample from its previous three sam-
ples. The error between the predicted sample and the measured sample is used to detect
the stress. This work shows that the technique performs quite accurately on the suddenly
applied false data, but when a set of false measurements is inserted gradually in the system
i.e. ramp-attacks the technique sometimes fails.

In this work, the time-varying states corresponding to the power grid buses are considered
as the multivariate time series. The time-varying states can be obtained from the PMU
data or by the sequence of measurements from the supervisory control and data acquisition
(SCADA) system. In [69], a k—NN classification method is applied while the features for
the training are determined from the instantaneous correlation matrix corresponding to the
states. Instead of taking each pixel of the instantaneous correlation matrix image as features
similar to [74], features are extracted to train the k—NN method for classification which is

computationally efficient.
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3.2 Effects of Cyber and Physical Stresses on Instantaneous Correlations

The electrical attributes associated with the buses and the branches in power systems
can be considered as the state variables that collectively define the state of the system. The
voltage phasors (voltage magnitudes and angles) of the buses in power systems are examples
of key attributes that can enable the specification of the state of the system and other system
attributes. Let us denote the set of all buses in the system by B with the cardinality of the
set represented by |B| = N. The value of a specific electrical attribute associated with bus
i € B at time instant t is denoted by x;(t). The N— dimensional vector z(t) represents the
values of the attribute of all the buses at time t.

In this work, the voltage angles of the buses are considered as the state variables of
the system. The reason behind this is that based on rigorous simulation and numerical
evaluations, it is observed that the effects of changes in the system (e.g., load variations and
most of the other phenomena such as cyber and physical stresses) are reflected in the bus
voltage angle values. For the rest of this chapter, x(t) represents the bus voltage angles at

time t, otherwise stated.

3.2.1 Instantaneous Correlation Matrix

In power systems, the time series of bus voltage angles associated with the buses within
certain vicinity (geographical or topological) have strong correlations. Figure 3.1(a) illus-
trates the average correlation among the bus voltage angles of the IEEE 118 [62] bus system
throughout the day. Note that in this figure, the blue pair of horizontal and vertical lines
correspond to the reference bus that has a voltage angle of 0 at all times. For better visual-
ization of the average correlation matrix, the reference bus has been omitted in the analysis
in the work as can be seen in Figure 3.1(b).

Based on the average correlation matrix image in Figure 3.1(b), it can be observed that
the voltage angles of buses in a vicinity have strong correlations. However, due to continuous

changes in the load of the buses and other dynamics of the system, the correlation among the
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Figure 3.1: Average correlations among PMU data (specifically, voltage angles) in the
IEEE 118 bus system (calculated over day-long time series). The average correlation
among states are represented as images:(a) including the reference bus 69, and (b) without
the reference bus and re-scales to adjust image intensity values.

bus voltage angles varies considerably from time to time. For this reason, we are interested in
the instantaneous correlation among the bus voltage angles instead of the average correlation.
The instantaneous correlation matrix of the bus voltage angles at any time instant t is a

N x N square matrix C(t) with element c;(t) defined as:

e, x,(f)xJ(T)dT

\/ft te X2 /,L)d,l,l;\/ft te

ci(t) = , 1,j€DB, (3.1)

where t. is the length of the correlation window. Although the length of the correlation
window affects the instantaneous correlation matrix, in this work, this effect has not been
studied and instead a constant t. is considered.

In addition to the changes in load variations in time, the instantaneous correlation matrix
changes due to cyber and physical stresses. Specifically, for physical stresses, such as the
tripping of a transmission line or generator, the topology and dynamics of the system change
abruptly. As a result, the state variables of the grid change, and the changes will be reflected
in the instantaneous correlation matrix, C(t). Similarly, in the case of cyber attacks, the
obtained values for the state variables change, and thereby the instantaneous correlation

matrix, C(t) undergoes abrupt change. Our studies show that although the instantaneous
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correlation matrix, C(t) changes continuously in time due to the dynamics of the system and
load variations as well as stresses, the pattern of the change is quite different in normal and
abnormal situations. In general, changes due to stresses are more abrupt and localized than
the changes due to the normal load variations throughout the day. This difference in the
changing pattern of the instantaneous correlation matrix, C(t) is exploited for monitoring
of the system, and detecting and locating cyber and physical stresses.

In the first step, it has been proposed that the visualization of the instantaneous corre-
lation matrix, C(t), as an image can enable real-time visualization of abnormal changes and
detection of stresses. Specifically, any change corresponding to the cyber or physical stresses
can be visually detected and located from the instantaneous correlation matrix image due
to sharp lines appearing in the images (will be discussed in the following subsections). We
will specifically discuss how different cyber and physical stresses can be reflected in the bus
voltage angle time series and how they can be monitored visually with the help of the instan-
taneous correlation matrix image. Later in this work, the instantaneous correlation matrix
will be analyzed using a classification method to automatically detect the abnormalities in

the system.

3.2.2 Visualizing Cyber Stresses Using Instantaneous Correlation Matrix Image

Various types of cyber-attacks can threaten the security and reliability of smart grids
and attackers are always on the hunt for new methods to hamper the security of the system
[9, 82, 83, 84]. In this work, we have considered three types of cyber-attacks including DoS
attack [85], Data-replay attack [85, 86], and Ramp attack [81]. The DoS attack and Data-
replay attacks are common types of attacks in cyber-physical systems. The ramp attack is
a special type of data integrity attack in which the attacker introduces false measurements
into the system gradually with time to deceive the system and operators. The detection of
this type of attack is difficult because of the absence of sharp discontinuities at the onset

of the attack. In this subsection, we present simple mathematical formulations of different
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cyber-attacks and illustrate their effects on the bus voltage angle time series. We will also
show the visualization of their effects in the instantancous correlation matrix image. For the
purpose of defining cyber attacks, let A C B be the set of buses under cyber attack and
S C B be the set of buses that the attackers have access to record data. Note that in practice,
various constraints, such as technical, physical and limited resources, can affect the size and
distribution of the sets A and S and in general the capabilities of attackers in launching
the attacks. While such constraints can affect the spread and severity of the attacks and
thereby impact the performance of detection and locating mechanisms, these aspects are not
the focus of this work. Here, it is assumed that the attacker has the capability to launch

single or multiple attacks on any of the buses of the system.

3.2.2.1 DoS Attack

The DoS attack is modeled as the absence of measurements or unobservability of any of
the state variables for a certain period of time (i.e., from the time instant ts.¢ to the time
instant tg,q the value of variables associated with attacked components are not sampled or
communicated). Let, x;(t) be the actual time series of any state variable (i.e., any electrical
attribute such as voltage phase angle) corresponding to the i—th bus, and xpes.(t) is the time

series corresponding to the state under DoS attack. The DoS attack is modeled as follows:

ni(t) if tStart S t S tEnd
XDos; (t) = (3.2)
xi(t) + ni(t) otherwise,

where n;(t) is the Additive White Gaussian Noise signal associated with the i—th bus voltage
angle measurement. Figure 3.2 (a) illustrates the voltage angle time series associated the
bus number 87 in the IEEE 118 system when there is a DoS attack at that bus within the
time interval tear—s5 to tgng = 6. Figure 3.2 (b) and Figure 3.2 (¢) are two consecutive frames
of C(t), which show just before the onset of the attack (i.e., at t = tspar — €, Where € is a

small constant) and just after the onset of the attack (i.e., at t = tspary + €), respectively. By
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comparing these two consecutive frames of C(t), one can observe that a pair of horizontal
and vertical lines corresponding to the attached bus (i.c., in this case, bus 87) appear in the

matrix image of C(t) after the attack.
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Figure 3.2: DoS attack at bus 87 in the IEEE 118 bus system. The effects of the attack are
reflected on: (a) voltage angle signal at bus 87, (b) instantaneous correlation matrix at
tstars — €, and (c) instantaneous correlation matrix at tsya + €. The blue pair of horizontal
and vertical lines in the latter indicates the attack.

3.2.2.2  Data Replay Attack

The data-replay attack or replay attack is a cyber-attack in which the attacker records
the data stream from some of the buses and injects them later into the data stream of the
same buses or other buses that they have compromised. Mathematically the data replay can

be expressed as follows:

Xk(tl +t— tStart) + ni(t) lf tStart S t S tEnd
XReplay,-(t) = (33)
xi(t) + n;(t) otherwise,
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where tsi¢ and tg,q are the starting and ending of the replay attack, respectively, and t’ is

the starting of the recording time. Here, i € A and k € S.
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Figure 3.3: Replay attack at bus 107 in the IEEE 118 bus system. The effects of the attack
are reflected on: (a) voltage angle signal at bus 87, (b) instantaneous correlation matrix at
tsiars — €, and (c) instantaneous correlation matrix at tsga, + €. The blue pair of horizontal
and vertical lines in the latter indicates the attack.

Figure 3.3 (a) illustrates the voltage angle time series associated with bus number 107 in
the IEEE 118 system when there is a data-replay attack at that bus within the time interval
tstart=13 tO tgna = 14. Figure 3.3 (b) and Figure 3.3 (c) are two consecutive frames of C(t),
which show just before the onset of the attack (i.e., at t = tsiary — €, where € is a small
constant) and just after the onset of the attack (i.e., at t = tgart + €), respectively. A pair
of horizontal and vertical lines corresponding to bus number 107 is visible when the attack
occurred in the system. However, another pair of horizontal and vertical lines corresponding
to bus number 80 is also visible in C(tgary — €). This is due to the dynamics of the system
and load variations at bus number 80, which has resulted in a different correlation pattern

with other buses. Prior knowledge of this type of behavior can be helpful in eliminating
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false alarms in the system. In the automated method of detection that will be discussed in
the next section, these kinds of situations are handled automatically by training the model

using data from normal and abnormal states of the system.

3.2.2.3  Ramp Attack

The ramp attack is a special type of FDIA in which the attacker gradually introduces bad
data into the data stream. Any linear-prediction-based detector will fail to detect this type
of attack due to its gradual change. In Figure 3.4 (a), we observe the ramp attack at time
3.00. Instead of a sharp change in values at the instant t = 3.00, falsified measurements are
gradually injected into the time series associated with the bus voltage angle of bus number

28. Mathematically, this type of attack can be expressed as follows:

XRamp,-(t) _ Xi(tstart) + ni(t) + m X (t — tgtart),  if tstart < t < tgna (3.4)
xi(t) + ni(t), otherwise,
where m is the slope.

Similar to the previous attacks, the ramp attack can be detected and located visually
from two consecutive instantaneous correlation matrices as can be seen in Figure 3.4 (b) and
Figure 3.4 (¢). However, since in the ramp attack, the value of the variable (i.e., voltage
angle) in the compromised bus changes gradually, the effect of the stress may be noticeable

after one or two sampling instances from the attack instance (i.e., it might be reflected on

C(tgpars + € ) instead of C(tspt + €), Where, € > .

3.2.2.4  Multiple Cyber Attacks

The examples shown in Figures 2, 3, and 4 depicted the effects of single cyber attacks in
the system on the instantaneous correlation matrix. We can evaluate the effects of multiple
attacks similarly. In Figure 3.5 the instantaneous correlation matrix of the system is shown

after multiple attacks. Figure 3.5 (a) presents the instantaneous correlation matrix of the
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Figure 3.4: Ramp attack at bus 23 in the IEEE 118 bus system. The effects of the attack
are reflected on: (a) voltage angle signal at bus 23 (b) and (c) instantaneous correlation
matrices at two consecutive frames, where the blue pair of horizontal and vertical lines
indicates the attack.

system after multiple cyber attacks launched on random buses throughout the grid. Figure
3.5 (b) and Figure 3.5 (c) represent multiple cyber attacks on the clustered buses (buses
within certain vicinity) during normal and high fluctuation load variation periods, respec-
tively. As can be observed from Figure 3.5 (c), when load variations in the system are high,

detecting and locating attacks are more challenging.

3.2.3 Effects of Physical Stresses on Instantaneous Correlation Matrix Image

Physical stresses in power grids generally involve changes in the physical state of the
components (e.g., functional state of the components, load on the components). Tripping
of a transmission line or a generator or changes in the reactive power are some examples of
physical stresses. In this work, the effects of tripping a single transmission line in the system

on its state and the instantaneous correlation matrix will be studied.
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Figure 3.5: Multiple cyber attacks on the IEEE 118 bus system at a single time instant. ta
is the attack instant. Instantaneous correlation matrix at ts4 + € for (a) random attacks, (b)
clustered attacks, and (c) clustered attacks during a high load fluctuation period.

Physical stresses in power systems usually affect the state of the components that are
within a certain vicinity of the location of the incidence. The effects, in general, depend on
various factors such as the structure and dynamics of the system. For example, Figure 3.6
illustrates the effect of tripping the transmission line between bus number 85 and 89 of the
[EEE 118 bus system on the bus voltage angle signal of the nearby buses. We observe that
the tripping affects the bus voltage angle signals of bus numbers 85, 87 & 89. However, the
bus voltage angle time series associated with bus number 88 seems to be unaffected although

this bus is also geographically adjacent to the tripped line.
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Figure 3.6: The effects of a single line trip on the signal of a few of its adjacent buses.
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Similar to the cyber-attacks, physical stresses can be visually detected from the instan-
tancous correlation matrix images, but since this kind of stresses affects voltage angle mea-
surement of the nearby buses the exact location of the stress is comparatively difficult to
identify. Instead of a single pair of horizontal and vertical lines in the cyber-attack cases, a
region with sharp variations is observed in the instantaneous correlation matrix images. For
example, from the instantaneous correlation matrix image in Figure 3.7, it can be specified
that the physical stress has occurred somewhere within buses indexed 68 to 75. The stress

is in fact tripping of the line connecting bus numbers 75 and 77.

s o o o o
N o= O 00

Bus Number
L
s 5 5
Y
Correlation Coefficients Values

'
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Figure 3.7: Instantaneous correlation matrix corresponding to a single line tripping.

3.3 Detection and Location Identification Using Image Processing on Instanta-

neous State Correlation Matrix Image

3.3.1 Detection and Location Identification Technique

In [68], a technique was proposed to provide the operator with an early alert about the
cyber attacks on the smart grid and to find the attack locations based on the instantaneous
state correlations. An operator can have an alarm of any cyber or physical anomaly by
visualizing the instantancous state correlation matrix image itself in real-time and the lo-

cation of the attack is also identifiable from the image in real-time based on the horizontal
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Figure 3.9: (a) Instantaneous correlation matrix at the onset of a physical event
(restoration of a tripped line), (b) Image after removing reference PMU and thresholding,

(c) the vector, w(t).
and vertical lines that appear in the image. The automatic identification of the anomalies
involves a simple image processing technique (i.e. detecting horizontal and vertical lines for
cyber-attacks.)

For detecting and locating the attack in real-time, the instantaneous correlation matrix

image, C(t) is processed for each time instant, t. The steps are given below:

1. Converting C(t) to binary form: At first, we remove the horizontal and vertical lines
for the reference (slack bus) from C(t). Then we apply a threshold to that image to

obtain a binary image, Cginary (t). Here, we have selected the threshold as the median
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Figure 3.10: (a) Instantaneous correlation matrix at the onset of a physical event (tripping
line between bus no. 55 and bus no. 59), (b) the vector, w(t) at the onset of the event.
of the intensity values of the pixels of C(t). C(t) and Cpgjnar (t) are shown in Figure

3.8(a) and Figure 3.8(b), respectively.

2. Calculating w(t): From the binary correlation image we determine the number of buses
with which a particular bus has a significant amount of correlation (above threshold).
Let the i—th element of the vector w(t), denoted as w;(t) represents the number of
buses with which the time series of the i—th bus has a significant correlation at time

instant t, where i € P. We calculate the w(t) as:
ﬂ(t) = CBinary(t)Hv (35)

where u =[1,1, ...l]T, and:
Wior = Chised, (3.6)

where Cj; is the historical average correlation matrix.

3. Detecting and Locating Cyber Attack: Let us denote the n— th minimum element of a
vector, x as min(x, n). For the detection of the cyber-attack, at first, the PMU which

is compromised by the attacker is found. This PMU can be identified as the index of
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Figure 3.11: (a) Instantaneous correlation matrix at the onset of a physical event (tripping
line between bus no. 92 and bus no. 102), (b) the vector, w(t) at the onset of the event.

the minimum element of w(t). Mathematically, the index, / of the attacked PMU is

calculated from the following equation:
w)(£) = min(w(t), 1). (3.7)

Some of the PMUs have significant correlations with only a small number of PMUs,
even in normal conditions. The set of all such PMUs can be defined as Q = {q :
Whist.q < Nin}, Where, ny, is selected empirically. Therefore, for avoiding false positives,

it is ensured that / is not a member of this set. However, a cyber attack is declared if:
min(w(t),2) — min(w(t),1) > b, ¢ Q, (3.8)

where b is a threshold selected empirically. Also, / is declared as the index of the

compromised PMU.

The cyber-attacks can be distinguished from the physical events in this process as in the
next example. Figure 3.9 illustrates the effect of a physical phenomenon on the correlation

matrix. From Figure 3.9(c) it can be observed that, a few consecutive elements of the vector
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Figure 3.12: (a) Instantaneous correlation matrix at the onset of a physical event (tripping
line between bus no. and bus no. 89), (b) the vector, w(t) at the onset of the event.

Table 3.1: Performance Evaluation of the Image Processing on Instantaneous Correlation
Matrix Technique.

Cyber Attack | Detection | Exact Locating
Type Rate Rate
DoS Attack 1.0000 0.9915
Replay Attack 0.9915 0.8803
Ramp Attack 0.9402 0.8454

w(t) are comparatively smaller than the others unlike cyber-attacks illustrated in Figure 3.8,

where a single element of the vector w(t) is very small compared to the others.

3.3.2 Simulation and Performance Analysis

Our evaluations show that the proposed method has a good performance in the detection
of cyber-attacks. Table. 3.1 shows the detection and the correct locating rate for different
types of cyber-attacks. The average detection and locating rates have been calculated by
simulating cyber-attacks in all the buses of the IEEE 118 bus system. This method performs

well for the ramp attacks as well, which are challenging to detect because of the gradual

injection of the falsified data.
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3.3.3 Detecting and Locating Physical Stresses

Since any physical event on a single bus affects the electrical attributes of several buses,
determining the exact bus location is difficult from the correlation image. In some cases,
we can exactly detect and locate physical attacks. Figure 3.10 illustrates the detection of
the tripping of Branch No. 87 in the IEEE 118 bus system, which connects BUS No. 55
and BUS No. 59. From the correlation matrix in Figure 3.10(a) we can easily identify some
anomaly near bus No. 58 to bus No. 64. Since we can see horizontal and vertical lines
within a range instead of a single PMU (as in the case of cyber attack), it can be decided
that the stress is physical. The effect is also identifiable from w(t) in Figure 3.10(b) and the
algorithm locates PMU No. 59 as the anomalous PMU, which was in fact connected to the
tripped line.

However, in some cases, this method detects the event correctly but fails to locate it
exactly. For example, we simulated a line tripping between BUS No. 92 and BUS No. 102.
From Figure 3.11(a) we can easily identify that there is an event within BUS No. 82 and
BUS No. 93, but the method locates the failure at BUS No. 82, which is in fact two hops
away from BUS No. 92. And in some cases, the method fails to detect physical events.
Figure 3.12 illustrates such cases.

In summary, the proposed method based on the state correlation matrix can detect and
locate cyber attacks with good performance. However, while the method can detect physical
stresses and distinguish them from cyber attacks, it may not be able to accurately locate the
physical stresses in the system. In the following section, an improved method for detecting

and locating stresses has been discussed which

3.4 Detection and Location Identification Using the k—Nearest Neighbor Anal-

ysis of Instantaneous State Correlation

In this section, the instantaneous correlation matrix, which bears information about the

cyber and physical stresses, will be used to develop methods for detecting and locating the
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stresses in the system using the k—nearest neighbor analysis of the correlation matrices.
In [68], a method for detecting and locating stresses from the instantancous correlation
matrix, C(t) has been developed for single stresses using image processing techniques. In
the current work, a new method has been introduced based on classification methods to
enhance the previous technique by adding robustness against load variations and being able
to detect multiple cyber attacks. Specifically, the presented method in this work addresses
the challenge of characterizing thresholds for the detection of stresses used in the previous
method with a machine learning-based approach, which extracts features and classifies the
data (as anomalous or normal) using the k— nearest neighbor method. For the extraction
of the features, both the correlation values at the decision instant and the difference of
the correlation values with its previous instant are used. In the following subsections, the
processes of detection and localization have been discussed. The steps of the presented

method have been illustrated using a flow chart in Figure 3.16.

3.4.1 Aggregated Instantancous Correlation Vectors

The proposed method in this work utilizes the information embedded in the instantaneous
correlation matrix. As such the first step of the proposed process would be to calculate the
instantaneous correlation among the state of the components using PMU time series. As
discussed earlier, at each time instant, t we calculate C(t) from the values of the state
variables using equation (3.1). In the results presented in this work, we have considered the
correlation window of width 30 seconds. In the previous section, we observed the effects
of stresses and anomalies in the system by visualizing C(t) as an image. For designing
analytics that can detect changes in the C(t), we need further processing of C(t). To this
end, we calculate the aggregated correlation for each individual component with the rest of
the components of the system at time t. Specifically, we denote the vector of all aggregated
correlations by v(t) defined as v(t) = C(t)u, where u = [1,1,...1]" (i.e., the vector v(t) is

the column sum of the matrix C(t)).
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Figure 3.13: The effects of a single line failure on (a) instantaneous correlation matrix
image C(t), (b) the aggregated correlation vector v(t), (c) the correlation difference matrix
image, Cpig(t), and (d) vp(t).

Figure 3.13 (a) and Figure 3.13 (b) illustrate C(t) and w(t) after a single line trip. In
this case, branch number 165, which is a transmission line connecting buses 103 and 104
in the IEEE 118 system, has been tripped. The state variables (i.e. the voltage angle
measurements) in the nearby buses have been changed drastically and the correlation of the
state variables in this area with the other state variables decreased. This effect can easily
be visualized from C(t) in Figure 3.13(a). In addition, from Figure 3.13(b), we observe that
the components of v(t) in the vicinity of the tripped line are significantly lower than other
components because the correlations among the other buses do not change significantly.
However, depending on the load fluctuations and the location of the stresses, this effect may
not be visually obvious all the time, nevertheless, v(t) is a useful source of features for the

automated detection and locating of the stresses.
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Large load variations in the power systems can result in large variations in the instanta-
neous correlation matrix C(t). As a result, if an attack occurs during a high load variation
period then sharp changes in v(t) due to the stress becomes difficult to distinguish from
changes due to load variations. Although in practice, the load fluctuation scenarios are
likely to be less abrupt than cyber and physical stresses and show smaller variations in the
correlation, to make the detection method more robust to such scenarios, we consider the
difference correlation matrix to capture the temporal change of the correlation patterns in
the system. The difference correlation matrix is defined as Cpi#(t) = C(t) ~ C(t — Ty),
which is the difference matrix between the instantaneous correlation matrix images at the
time, t, and its previous sampling instant, t — T,. Similarly to the v(t), we also define the
aggregated difference correlation vp(t) = Cpir(t)u. In this work, we consider Cp;(t) and

vpir(t) along with C(t) and w(t) for the detection of stresses.
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Figure 3.14: Tripping of the transmission line 28, which connects bus number 21 and 22:
(a) instantaneous correlation matrix image C(t), (b) the aggregated correlation vector,
v(t), (c) the correlation difference matrix image, Cpig(t), and (d) vpe(t).
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3.4.2 Feature Extraction and Classification for Stress Detection

In the previous subsections, it was discussed and shown that the vectors v(t) and vp(t)
contain signatures and patterns of the effects of stresses in the system that can be used for
detection. A simple and yet not very effective approach for detecting the stresses using these
vectors is to apply thresholds to identify sharp changes in the correlation of the components.
However, due to the dynamics of the power system governed by the physics of electricity
as well as the stochastic nature of loads and generations in the system, the state variables
associated with some of the buses have high variance characteristics, which may lead to
sharp changes in vectors v(t) and v (t) causing large false alarms. Moreover, in the case of
multiple stresses and during load fluctuations, vectors v(t) and vp(t) may contain multiple
sharp changes with different amplitudes. Examples of such scenarios are depicted in Figure
3.15 and Figure 3.14. Specifically, Figure 3.15 represents a case in which there is no cyber
or physical stresses. Nevertheless, some of the components of v(t) and vp(t) seem to have
large correlation variations compared to most of the components (they appear as peaks in
vpr(t) and drops in v(t)). Another example has been illustrated in Figure 3.14, in which
there is a line failure at branch number 28 connecting bus no. 21 and 22 in the IEEE 118
system. This phenomenon is detectable visually from C(t) and wv(t) but in vp,.(t) we notice
another anomaly-like region near bus no 70—80. Therefore, a simple threshold-based method
would fail to distinguish normal versus abnormal variations in the correlation.

For this reason, instead of taking decision directly from wv(t) or vp(t) and using thresh-
olds, we propose to extract a few important features from w(t) and vp(t) and apply a
machine learning algorithm for classifying the normal and stressed (cyber-attack or line fail-
ure) cases. By training the model using samples of normal and abnormal conditions we will
show that the false alarms due to normal conditions that cause variations in the correlation

can be reduced significantly.
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Figure 3.15: No stress scenario: (a) instantaneous correlation matrix image C(t), (b) the
aggregated correlation vector, v(t), (c) the correlation difference matrix image, Cpig(t),
and (d) vpi(t)

The features to be used by the classification method in this work have been identified

based on vectors v(t) and vp.(t) as follows. For v« (t), we consider:

e F1: Mean of the vector vp4(t).

e ['2: Standard deviation of vector vp(t).

e F'3. Difference between the first and second maximum component of vp..(t).
e F4: Difference between the first and third maximum component of vp4(t).

e ['5: Difference between the standard deviation of the seven largest components of

v (t) and the standard deviation of all the components of vp.(t).

63



e F6: Difference between the mean value of the three largest components of vp(t) and

the mean value of all the components of vp«(t).

vDiff,; (£) =t pyge (1)

e 7. Cardinally of the set, {j : 2 < < 6}, where, vpig (t) is the j—th

Ovpif (t)

component of the vector v at time t.

e F'8: Cardinally of the set, {j : voir () o), 6}.

v pifr (t) -

To enhance the robustness of the detection method against dynamics, such as load varia-
tions, these features have been selected such that they capture multiple peaks’ characteristics
in vpi(t). For instance, features F1 and F2 (i.e., the mean and the standard deviation of
vpir(t)) are good overall indicators of the existence of peaks due to the stresses. Specifically,
peaks due to normal load changes are not usually significant and these first two features can
describe the normal variations in the correlations and vp,z(t). On the other hand, features
F3 and F4 capture the characteristics of large peaks in vp(t) and to specify significant
changes in variations. Features F'5 and F6 will enable the model to recognize multiple cyber
attacks. Features F7 and F8 describe the number of peaks in vp(t). The exact definition
of these features and their parameters, for instance, the number of the largest values to be
considered are identified based on experiment and by trial and error. We use the same set
of features mentioned above from vector |v(t)| as well. Note that, although none of these
features is a clear indicator of the stress separately, together they can characterize abnormal
variations in the signal that is required for classification between normal and abnormal cases.
These 16 features are utilized for the classification as discussed next. Using the features ex-
tracted from vectors v(t) and vp4(t), we propose to apply k—nearest neighbor (k—NN)

method for the classification of normal and stress cases.

3.4.2.1 k-NN Method for Classification

After extracting the features from the instantaneous correlation matrix by various signal

processing techniques, we formulate the detection of stress at the time, t as a two-class
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classification problem. Let f(t) be the feature vector and y(t) be the class label (i.e.,
y(t) € {Normal, Stressed}) associated with the instance t. According to the k—NN method,

the probability of stress at time t is calculated as [87]:

Pr{y(t) = Stressed} = % Z I(y(t) = Stressed), (3.9)
iENK(£(1))

where N, (f(t)) is the set of all points in the k—nearest neighborhood of the point f(t),
(i.e. the set of k—points that have minimum Euclidean distance from the point f(t) in the
feature space) and I is the indicator function. In addition to k—NN, we have studied the
performance of other classification methods, such as decision trees, and have observed that
in this problem k—NN outperforms other methods in terms of accuracy and computational
time. In the presented method, the k—NN classifier is trained with normal and anomalous
data generated using the simulations of normal and stresses scenarios as discussed in the
Result Section. In its training step, k—NN stores the coordinates of the instances and their
class label using the features space. In the test step, it decides the class of the instance,
i.e., normal or stressed, by computing its neighborhood. The computational efficiency of the

k—NN classifier makes it suitable for real-time applications such as monitoring the state.

3.4.3 Locating Stresses in the System

The classification method using the introduced features will allow the detection of cyber-
attacks and line failure stresses in the system. To determine the location of the stresses, we
utilize the vector vpe(t) directly. We choose b = max{wp; (t)}, i.e., the peak location in
this vector, to specify the location of the stress. Note that index b represents the bus index
under cyber attack or the bus index of the bus connected to a tripped line in case of physical

failure.
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Figure 3.16: Flow chart of stress detection at time instant t.

3.4.4 Computational Complexity

The complexity for computing the instantaneous correlation matrix, C(t) is O(2ncerr X
W) ~ O(N?.ncor ), Where, ncor, is the number of samples within the correlation window
[t — t., t]. Since ncoy is kept constant the complexity of calculating C(t) is considered as
O(N?) relative to the size of the system N. The complexity for computing the difference
correlation matrix Cpg(t), aggregated correlation matrix, v(t), and aggregated differences
correlation matrix, vpe(t), are also O(N?) since they involve accessing all the elements of
C(t). In the feature extraction level, the computations involve sorting the elements and

calculating simple statistical parameters of w(t), therefore the complexity is in the order

of O(Nlog(N)) (as w(t) is a vector of size N). The complexity of k—NN by brute force
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method is O(NTyain X Nreatures) = O(NMrain X 16) & O(Nyain). However, the complexity of the
k—NN method can be reduced up to O(log(nmyvaim)) [88]. In summary, the complexity of the
proposed detecting and locating method is: max{O(N?), O(log(nreain))}. For smaller grids,
the computational load is dominated by the number of training samples whereas in large
grids by the size of the grids. However, since in larger grids, the computational complexity is
higher, the presented method would be more effective with computation by grid partitioning

or optimal placement of PMUs.

3.4.5 Simulation and Results
3.4.5.1 Generating State Attribute Time Series

In this work, the power system simulations are based on MATPOWER 6.0, a package of
MATLAB M-files [24]. A simulated PMU time series has been generated using the steady-
state power flow calculations using MATPOWER based on time-varying loads. The process
of generating data is quasi-static in the sense that the dynamic models for the generators in
the power system have not been used; instead, the dynamicity is associated with the load
variations. The load patterns collected from the daily load data of the New York Independent
System Operator (NYISO) [25] have been used to generate time-varying loads for this quasi-
static simulation. There are eleven regions in NYISO and for each of the regions, we have
the time-varying day-long load data. Since in IEEE 118 bus system we have 91 load buses,
we synthetically create (131) = 165 day-long load data by taking averages of the combinations
of three load data similar to [89]. From these 165 load profiles, we consider the first 91 load
data for the 91-load buses of the IEEE 118 bus system. The load profiles are then normalized
within 0 to 1 and added to the default constant loads of the MATPOWER 118 bus case.
The generations and the power factors are adjusted accordingly to ensure the convergence
of the power flow solution for normal cases. The load data in the NYISO are recorded
every five minutes. This time series is interpolated to increase the sampling rate to 0.33

samples/sec. However, in this process, the sampling rate can be further increased depending
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on the computational resources. Single-line failures are also simulated and their effects are
collected in the corresponding time series. Moreover, the effects of various cyber-attacks are
reflected in the time series using the models discussed in Section 3.2.2.

For the cyber-attacks, 10,000 scenarios have been simulated for the performance eval-
uation. Among these scenarios, some of them contain cyber-attacks of a certain kind and
other scenarios do not contain any attack and are for the system under normal conditions. If
the scenario contains an attack, then the type of cyber-attack (i.e. DoS attack, data-replay
attack, or ramp attack) and the number of attacks are selected randomly. After that, the
location of the attack is also selected randomly from all the buses with uniform probability.
The time for the launching of the attack is also selected randomly among all possible time
instants throughout the day with uniform probability.

For the performance evaluation in the case of a single line tripping, 1,000 scenarios were
created with tripping and no-tripping cases similar to the scenarios for cyber stresses. The
lines to be tripped are selected randomly from the 186 branches of the IEEE 118 bus system

with uniform probabilities.

3.4.5.2  Detection and Locating Performance

Here, the voltage angles associated with buses are considered state variables. We have
calculated the instantaneous correlation matrix using the equation (3.1). The correlation
window, t. is selected as 0.25 minutes.

As described previously, we use k—NN classification and choose k = 5 to detect stresses
in real time. Simulation shows that the detection performance is not very sensitive to the
values of k. (Figure 3.17). In fact, for physical stresses, the detection performance remains
constant after k = 20. Randomly generated 10,000 instances in different locations and at
different times throughout the day have been used in the training of the k—NN model by
extracting features from the instances. The Performance of the model is validated by 10-fold

cross-validation.
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Table 3.2: Performance Evaluation of the k-NN Analysis of Instantaneous Correlation
Matrix Technique.

True False Exact Lo?atfon LO(.:atfon
" . . within within
Stress Type Positive | Positive | Locating
Rate Rate Rate 2-hop 3-hop
Distance | Distance
Cyber-Attack (k—NN) 0.86 0.13 0.85 - -
Cyber-Attack (DT) 0.85 0.13 0.85 - -
Line Failure (k—NN) 0.94 0.05 0.38 0.71 0.81
Line Failure (DT) 0.93 0.04 0.38 0.71 0.81

The accuracies of the presented methods for cyber and physical stresses have been studied,
separately. We apply the classification method to all 10,000 scenarios (scenarios with cyber-
attack or no attack) to determine if a cyber-attack has occurred in the system or not (if
the scenario does not contain any attack, a random time instant is still selected at which
the proposed method runs to detect whether there is an attack). The statistics of the
performance of the method (i.e., True Positive Rate (TPR), False Positive Rate (FPR),
and Exact Locating Rate) are calculated and presented in Table 3.2. The work by Shi et.
al. [79], which uses spatio-temporal correlation for detection shows a detection rate of 85%
and a false-positive rate of 16.04%. Although the exact comparison of these methods is
challenging due to the differences in detection parameters, test cases, measurement data,
and stress models, these methods show comparable performances. Besides, the proposed
method can perform well for the ramp attack, which is a challenging detection problem
[81]. Moreover, many existing works, including [68], only focus on the detection rate for
the performance evaluation of their proposed methods [78], while the false-positive rate is

usually overlooked. One of the key advantages of the proposed method is achieving a good

detection rate while keeping the false positive rate low.
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Figure 3.17: The effect k in the k-NN method on detection rate.

In the case of physical line failure, we have applied the method to the 1,000 scenarios
with one line failure and no failures. In general, identifying the exact location of the line
failure is more difficult compared to cyber stresses. As such, to evaluate the performance
of the locating process, in addition to the exact location, we consider a two-topology-hop
vicinity of the failed line and calculate the rate of locating within this vicinity. The statistics
of the performance of the method for physical failure are shown in Table 3.2 based on TPR,
FPR, Exact Locating Rate, and Locating within 2—Hop and 3—Hop Distance Rates.

The k—NN method for classification is simple in implementation and robust to linearly
non-separable classes. Moreover, k—NN facilitates easy insertion of new instances into the
training set that enables updating the training instances regularly with the changing situ-
ations of the grids. This advantage makes the arrangement robust to the long-term grid
dynamics. The conducted simulation shows that similar performance can be achieved by the

decision tree method taking twice as much time as the k—NN method (Table 3.2).
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Chapter 4: Detection and Location Identification of Cyber and Physical
Stresses in the Smart Grid: Part II: GSP Approach

3The availability of large volumes of energy data in smart grids provides extensive op-
portunities to support their critical functions. In recent years, various data analytics and
machine learning techniques have been applied to analyze energy data in order to supple-
ment or enhance traditional power grid monitoring and control functions. In this work, a
Graph Signal Processing (GSP) framework [4, 5] has been exploited for the representation
and analyses of smart grid data, particularly to support the monitoring function for their
reliable and secure operation.

The reliability and security of smart grids, as critical infrastructures, are of utmost im-
portance. Smart grids maintain their proper functioning by continuous acquisition and pro-
cessing of measurement data. Any attack on the availability and integrity of measurement
data can lead to improper decisions and actions, which may result in severe consequences
and instability of the system. Examples of such attacks include DoS attack [64], data-replay
attack [86], ramp attack [81], and FDIA [64], which have been extensively studied in smart
grids’ literature. These attacks can be launched on the supervisory control and data acqui-
sition (SCADA) readings as well as on the time-stamped synchrophasor measurements from
the phasor measurement units (PMUs). In the real world, these attacks can be launched by
unauthorized access and compromising various cyber clements of the system, ranging from
sensing and monitoring devices (such as PMUs), communication channel, data processing
servers, and more. In addition to cyber stresses, physical stresses can also affect the reliabil-

ity and stability of the system. Examples of such stresses include line and generator failures,

3Portions of this chapter were published in IEEE Transactions on Smart Grid [26]. Copyright permissions
from the publishers are included in Appendix B.
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and abrupt load changes. In this work, the term stress is used to refer to any kind of cyber
or physical anomaly that can threaten the smooth operation of the system.

To ensure seamless monitoring, control, and operation of smart grids, it is essential to
enhance situational awareness toward cyber and physical stresses. To do so, in this work,
properties and characteristics of graph signals associated with the power grid measurements
(e.g., bus voltage angles) are analyzed in various GSP domains including the vertex domain,
graph-frequency domain, and the joint vertex-frequency domain.

Based on the effects of different stresses on the vertex-frequency energy distribution
(VFED) [33] and the local smoothness (LS) [63] of the graph signals, two novel GSP-based
stress detection techniques are proposed. These techniques also enable stress localization in
the smart grid. To the best of our knowledge, this is the first work, which introduces VFED
and LS-based techniques in analyzing smart grid data for stress detection and localiza-
tion. The proposed technique based on LS is named local smoothness second time-derivative
(LSSTD) and is particularly effective for detecting and locating the designed cyber attacks
and physical stresses. For evaluation of the proposed techniques, abrupt load change (as
the physical stress) and five types of cyber attacks with smooth transitions of signal values
at the onset of the attack are modeled on the time-series representation of the bus volt-
age angle measurement values. These carefully designed attacks with smooth changes of
values at the onset are challenging to detect for many existing stress detection techniques.
The performances of the proposed techniques are evaluated in comparison with the graph
Fourier transform (GFT)-based detection technique [44, 22], as a GSP-based benchmark
technique, and other non-GSP-based techniques including support vector machine (SVM),
decision tree (DT), long short-term memory (LSTM) and techniques directly analyzing the
time-series data, such as three sample quadratic prediction algorithm (TSQPA) [81]. The
proposed GSP-based techniques show promising performance and also address some of the

limitations of the GFT-based technique for detecting stresses with no sharp changes at the
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onset, for detecting abrupt changes in load demand, and for locating stresses. The main

contribution of this work can be summarized as follows:

e A general GSP framework for modeling power system states as graph signals is pre-
sented in order to exploit the knowledge of interaction and interconnection among the

components of the system in analyzing energy data.

e A novel technique, named LSSTD, is proposed, which is based on analyzing the time-
varying graph signal model of the smart grid voltage angle signals. It is shown that the
LSSTD method performs well in detecting and locating challenging cyber and physical

stresses with no abrupt change at the attack onset.

e A novel technique based on analyzing the vertex-graph-frequency representation of
power system graph signals, namely VFED), is proposed for stress detection and lo-
calization. Although the detection accuracy of this method is not as high as the first
proposed technique, it outperforms LSSTD in locating the physical stresses (i.e., the
abrupt load change cases). The key merits of this method can be recognized by its new
graph signal-analytical perspective and providing a new approach to locating complex

physical stresses.

e Detailed analysis and discussion on the performance of the presented techniques com-
pared to other GSP-based and non-GSP-based techniques are presented to reveal the

advantages of time-varying GSP-based techniques.

4.1 Related Works

Detection and determining the location of cyber attacks in the smart grid using GSP is
a relatively new domain. In our work [31, 27], the effects of cyber and physical stresses on
the associated power system’s graph signals in the vertex and graph-frequency domains are
discussed. Drayer and Routtenberg [44] proposed a GFT-based detection method for FDIA

in smart grids. In the later work, it is assumed that the graph signal associated with the

73



bus voltage angles of the power system is smooth and for this reason, the high-frequency
components (corresponding to the large cigenvalues of the graph Laplacian) of the graph
signals would be insignificant. The existence of false data is proposed to be detected based
on the existence of significant high-frequency components. Moreover, in [44], the authors
proposed locating FDIA using graph modulation. In the work by Ramakrishna and Scaglione
[90], the voltage phasor measurement model developed based on GSP is utilized to detect
FDIA in smart grids. Anderson and Yu [91] proposed a physics-based graph construction
technique specifically for three-phase distribution systems and used the lower dimensional
representation of the GFT's associated with the voltage magnitude graph signals to identify
bad data in the SCADA measurements. Shi et. al in [92] proposed a GSP-based technique to
sort the PMUs so that the PMUs with strong correlation in measurements are kept together
in the PMU data tensor, which is the input for a deep-learning model for event detection
and classification. In this chapter, novel GSP-based techniques based on VFED and LS are
presented, which address some of the limitations of the existing methods in detecting and

locating stresses with no abrupt changes at the onset of the attack in smart grids.

4.2 Stress Models

4.2.1 Cyber Attack Models

The cyber attack models used in this work are the same models described in 2.3.1.

4.2.2  Physical Stress Model

In this work, the abrupt change in the demand at a single bus is considered as physical
stress. Although the variation of load/demand with time is perpetual in electric grids, it
usually occurs slowly in a smooth fashion. Sudden changes in demand can represent abnormal
conditions since they can hamper the reliability of the grid. In this work, the abrupt change
in load demand is modeled using a scaling factor 3. Specifically, if the original load demand

of the n—th bus at time t is P,(t) mega-watt, then the load demand of the stressed bus at
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Figure 4.1: Cyber attacks on time-series according to 2.3.1.

time t + € is considered 5P,(t) mega-watt, where € is small. In this work, the range of the
values for 3 is considered in such a way that the abrupt changes in the load do not cause the
failure of transmission lines and subsequent islanding that alter the topology of the system
(i.e., changing the underlying graph G). In other words, the techniques in this work are for
graph signals with static G and time and vertex varying values. Physical stresses that create
changes in the topology can be addressed by dynamic graphs [93] and are out of the scope

of this work and important for future studies.

4.3 GSP-based Detection and Localization

A detailed review of GSP fundamentals in the power system context can be found in
Chapter 2, Section 2.2. In the current section, the GFT-based technique for detecting
stresses as presented in [44, 22] has been reviewed. Then, two new techniques have been
proposed for analyzing the power grid’s measurements for detecting and locating stresses

based on VFED and LS of graph signals.

4.3.1 Stresses Detection Using GFT

In general, the low-frequency components are prominent for the bus voltage angle graph

signals because of the smooth changes of bus-to-bus values due to the power flow dynamics.
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The GFT coefficient magnitudes with respect to the normalized graph-frequencies (i.e., M =

Ae—mini{\;i}
max;{\; }—min;{\;}

the graph of the IEEE 118 bus system under normal condition, under an FDIA at bus 49,

) are illustrated in Figure 4.2 for a bus-voltage angle graph signal defined on

and under an abrupt change of load (physical stress) at the same bus. It can be observed that
the magnitudes of the high-frequency components become larger in the case of the FDIA
but remain almost unaffected in the case of physical stress. The reason is that in the case
of physical stress at bus 49, the graph signal values corresponding to vertex 49, as well as
its nearby vertices, get affected. This means no abrupt change can be observed in the graph
signal value at bus 49, instead more spread-out changes occur over the graph. In contrast, in
the case of FDIA, the value changes only occur at the vertex under attack, vertex 49. Such
abrupt change at only a single vertex results in an increase in the magnitude of the high-
graph frequency components. This property can be exploited for the detection of anomalies
in the measurement data. A parameter v(t) is introduced to quantify the amount of high
graph-frequency components corresponding to a graph signal x(n, t) at the time instant t as

follows:

(1) =D IX(, )HA)], (4.1)

where H()\) is a high-pass graph filter expressed by the following frequency response: H(\) =
0, if A< Acand H(A\) =1, if A > A, where A is the cut-off graph-frequency. For detecting
cyber and physical stresses, the probability distribution of 7, p,(¢), has been estimated in
normal conditions from the past measurements of the system and assuming ~ is a stationary
random variable. For a certain time instant ¢, a stress is declared if the likelihood of ~(t)
corresponding to the distribution is less than a certain threshold 6., (i.e., p,(7(t)) < 6,).
The threshold 6, is selected empirically considering the tail probabilities of p,(¢). Although
this method detects cyber stresses reasonably well, the major drawback of this method is

that it cannot provide any information about the location of the stress.
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Figure 4.2: GFT magnitude response for IEEE 118 bus system: emphasized high
graph-frequency components can be observed in case of false data injection.

4.3.2 Detecting and Locating Stresses Using VFED

Containing the topological and spectral information simultaneously, the VFED associated
with the time-varying graph signal x(n, t) makes itself suitable for detecting and locating
anomalies in complex networks. Moreover, due to the better concentration of signal energy
compared to the linear joint vertex-frequency representations [33], it serves better for locating
stresses. According to equation (4), let E(n, k, toare — €) and E(n, K, tsare + €) be the VFEDs
corresponding to the graph signals just before the attack (under normal conditions) and
just after the stress, respectively. Cyber/physical stresses involve abnormal changes in the
time-vertex graph signal x(n, t), which also affect the graph-spectral characteristics of the
graph signal at that time instant, i.e., E(n, k, tsar + €). Hence, the VFEDs before and
after the stress have certain differences that can be used in detecting and locating stresses.
Here, by marginalizing the difference distribution, n(n, t) = Sn_, |E(n, k, t +¢) — E(n, k, t —
€)|, over the graph-frequency axis k, we use the comparatively large values of n(n, t) as
indicators for the compromised vertices. Specifically, if the likelihood of n(n, t) value is
below a certain threshold likelihood 6,, (i.e., p,,(n(n, t)) < 6,,) at time instant t, a stress
is declared at vertex n at that time instant. Figure 4.3 illustrates normalized n(n, tsar) in

the case of an FDIA at vertex 86 of the IEEE 118 bus system, where a large value can
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be observed. Although the VFED provides a technique for locating stresses with abrupt
changes in graph signal values, this method fails to detect the sophistically designed stresses
with smooth transitions of graph signal values at the onset discussed in Section 2.3.1. It
is worth mentioning that the basis signals of the graph frequency domain (i.e., eigenvectors
of the Laplacian matrix) are localized around certain vertices, unlike the sinusoidal bases
for classical Fourier transform. For this reason, the VFED fails to contain information
corresponding to the stress located at a particular vertex as distinctively as in the case of
classical joint time-frequency representations (e.g., spectrogram). Moreover, this technique

is computationally heavy for real-time applications.
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Figure 4.3: Normalised 7(n, tsr) (between 0 to 1). For n = 86, the largest value is
obtained which indicates stress at the vertex (bus) 86.

4.3.3 Detecting and Locating Stresses Using Local Smoothness

Both the GFT- and the VFED-based methods provide insights into how the graph-
frequency components associated with the graph signal at one instant can be utilized to
detect anomalies in the grid. The latter method is also capable of providing information
about the stress location in the grid. While both of the methods work well for stress models
with abrupt changes in graph signal values at the onset of the attacks, they fail to detect

and locate sophistically designed stresses with no abrupt change at the onset as discussed
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in Section 2.3.1. Here, a technique for detecting and locating stresses based on the local
smoothness of the graph signals is presented that addresses the limitation of the previous
techniques. As described in Section 2.2.5, the local smoothness s(n, t) of the graph signal
x(n, t) specifies how the graph signal values at time t vary among the vertices. For example,
a higher value of s(n, t) specifies higher fluctuations of signal values in the vicinity of vertex
n. Figure 4.4 illustrates the local smoothness of the vertices of the IEEE 118 bus system
corresponding to the bus-vertex graph G and graph signal x(n) in the normal condition
(Figure 4.4(a)) as well as under DoS attack at bus number 100 (Figure 4.4(b)). It can be
observed that the local smoothness values of the vertices in the vicinity of vertex number 100
have changed significantly. This effect on the local smoothness of the vertices can be exploited
to detect and locate anomalies in the grid. Specifically, by evaluating the changes in the
signal values around each vertex of a graph signal, local smoothness s(n, t) provides spectral
and vertex-domain information simultaneously (similar to the instantaneous frequency in
classical signal processing).

To this end, the local smoothness second time-derivative (LSSTD) method has been
proposed for detecting and locating stresses. In this method, instead of using s(n, t) directly,
the second time derivative of s(n, t), i.e., s”(n, t) = j—;(s(n, t)), has been considered. The
rationale behind this consideration is that s”(n, t) differentiates between the changes in the
local smoothness values due to stresses and due to the regular load changes better by reducing
non-stationarity in s(n, t) (which is introduced by the non-stationarity of x(n, t) due to load
changes). At each time instant t, if the likelihood of s”(n, t) is less than a certain threshold s,
(i-e., psy(s”(n, t)) < bsr), a stress is declared at vertex n. If multiple vertices are obtained, all
the vertices are considered as the possible candidate locations of stresses. The most possible
location is identified as x € V for which ps/(s”(k, t)) = min, ps:(s”(n, t)). In this work,
past measurements of the system have been used to estimate the probability distribution of
the second time derivative of the local smoothness of the n—th vertex ps/(¢) under normal

conditions. In summary, the process consists of three critical steps: 1) calculating the
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Figure 4.4: Local smoothness of the vertices of the IEEE 118 bus system: (a) at normal
condition, (b) during DoS attack at bus 100.

second time-derivative of the local smoothness, 2) obtaining the likelihood of the second
derivative of the local smoothness values at each vertex/bus, and 3) comparing the likelihoods
with the thresholds at each bus to detect and locate stresses simultaneously. In this work,
Gaussian distributions are assumed for p,(¢), p,,(¢), and ps(¢), and the estimation of the
parameters of the distributions are updated regularly to be consistent with the effects of
changing statistics of x(n, t) (i.e., data drift [94]) that arise from changes in generations,

load demands, and control parameters.
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4.4 Performance Evaluation

4.4.1 Simulating Stress Scenarios

For evaluating the performance of our proposed detecting and locating techniques, the
IEEE 118 bus system [62] has been considered and simulated using MATPOWER 6.0 [24].
For generating time series associated with the graph vertices, the time-varying load patterns
from the New York Independent System Operator (NYISO) [25] have been added with the
default MATPOWER loads as in [95]. The time-varying graph signal associated with the
bus voltage angle measurements is obtained from the load flow analysis resulting. The cyber
attacks are simulated according to the descriptions in Section 2.3.1. The noise g(t) is added so
that the signal-to-noise ratio is 45 dB in the generated signals. For the physical stresses, i.e.,
abrupt changes in load demand at a bus, the original demand at that bus has been scaled
up by factor 5. For performance evaluation of the detecting and localization techniques
with respect to cyber attacks, 10,000 random scenarios are simulated among which there are
normal cases and attack cases with equal probability. For cyber stresses, the stress start time,
tstare, and the location of the stress are selected randomly, all using the uniform distribution.
The reference bus for voltage angle measurement (i.c., bus number 69 in IEEE 118 bus
system) is excluded from the consideration of being a location of cyber stress. For FDIA,
range of x’ = 0.02 to 3 for voltage angle degrees are considered. For physical stresses (i.e.,
the abrupt load change), 1,000 scenarios are simulated for each value of 8 (specifically for
£ =0.5,0.6,0.7,0.8 and 0.9). Note that based on the selected range of values for § to avoid
topology change, larger values indicate smaller changes in the load. For better clarity, the
performance of the methods is shown as a function of parameter o defined as 1 — /3 to better
reflect the proportional changes in the load. Among the aforementioned 1,000 simulated
scenarios, there are normal cases as well as abrupt load changes with equal probability. In
normal scenarios, loads of the buses change gradually following a pattern affected by the

daily and seasonal variations and other slowly changing events that can introduce small
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changes in the load demand from one time sample to the next. The locations (buses) of the
abrupt load change are selected from the load buses of the IEEE 118 bus system with equal

probability.

4.4.2 Performance Metrics

Several metrics have been considered for the assessment of the proposed real-time detect-
ing and locating schemes. The true positive rate ( TPR) expresses the ratio of the number
of true-positive (TP) and the number of total positive cases, i.e., stress scenarios, while the
false positive rate (FPR) expresses the ratio of the number of the false-positive (FP) and

the number of total negative cases, i.e., normal scenarios. The accuracy of detection is de-

TP+TN

TP TN EPTEN- I a real-time application, it is important to consider the time

fined as a =
needed to detect the stress; the detection time is defined is as tgetect — tstart, Where tgetect 1S
the time instant at which the stress is detected. For the assessment of the performance of
stress locating techniques, the location accuracy has been defined in two forms: (1) based
on LAeact, which specifies the efficiency based on the ability to locate the exact location

(i.e., the vertex, where the stress occurred) and (2) based on the performance in locating

the stress within K—hop distances of the actual location of the stress. In this work, we have
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considered K = 1 and K = 2 and denote the corresponding performance metric by LA;_pop

and LAy_pop, Tespectively.

4.4.3 Analyses of the Results

Table 4.1 summarizes the performance of detecting and localizing cyber and physical
stresses by the LSSTD techniques. For all types of stresses, the false-positive rate is zero.
Since the distributions (py((), py,(¢), and psr(¢)) have long tails, the detection threshold has
been chosen in such a way that the false-positive rate is zero without significantly affecting
the false-negative rate. The detection times for most of the stresses (> 90%) are instant, i.e.,
they are detected immediately; however, for the rest of the cases (< 10%), it can take several
time samples to detect the stress. Note that the results in Table 4.1 for the delay attack and
the FDIA are for particular attack intensities (i.e., x’ = 0.04 for FDIA and d = 2 samples
for delay attack). The detailed performance for the FDIA has been illustrated in Figure 4.5.
As can be observed from the results, a large value of x’ creates a large change in graph signal
values of the compromised vertex and thereby becomes easy to detect. Similarly, in delay
attacks, a large delay is less challenging to detect (Figure 4.6. The average detection accuracy
for FDIA in the range x’ = —0.04 to x’ = 0.04 is 0.887, while the average exact location

accuracy and average 1— hop location accuracies are, respectively, 0.485 and 0.792. For
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Table 4.1: Performance Evaluation of LSSTD Method.

Stress Type Accuracy, a | LAgact | LA1—hop

DoS Attack 0.967 0.635 0.996

Replay Attack 0.978 0.670 | 1.0000

Ramp Attack 0.999 0.647 | 1.0000

FDIA (x’ = 0.01) [See Fig.4.5] 0.993 0.634 | 0.988
Delay Attack (d = 2 samples) [See Fig.4.6] 0.989 0.628 | 0.994
Load Change (8 = 0.6)[See Fig.4.7] 1.00 0.609 | 0.778

the delay attacks, the average detection accuracy, exact location accuracy, 1— hop location
accuracy over the range d =1 to d =5 are, 0.978, 0.611, and 0.988, respectively.

Since the physical stress, i.e., load demand change at a particular bus, is always abrupt,
it can be easily detected by the proposed techniques. However, since the physical stresses
affect the bus voltage angle measurements associated with a large number of buses in the grid,
identifying the location of the stress is very challenging. Figure 4.7 illustrates the location
performances as a function of the changes in load demand ratio. The 1— hop and 2—hop

locating accuracies are 0.792 and 0.894, respectively, on average for § = 0.5,0.6,0.7, 0.8, 0.9.
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4.4.4 Comparison with Existing Methods
4.4.4.1 Candidate Techniques for Comparison

In this work, the performance of the proposed techniques is compared with other GSP-
and non-GSP-based techniques. In the GSP-based category, the GFT-based detection tech-
nique [22, 44] (reviewed in Section 4.3.1) and in the non-GSP-based category, support vector
machine (SVM), decision tree (DT), long short term memory (LSTM)-based and the three
sample quadratic prediction algorithm (TSQPA) [81] are considered. Among the non-GSP-
based methods, SVM and DT are well-known machine learning methods, which do not
consider the temporal correlation within the data stream. On the other hand, LSTM and
TSQPA are two methods that consider the temporal correlation. LSTM is a neural network-
based method that requires a large amount of data to capture the normal pattern in the
time-series. The TSQPA is a signal processing-based technique that is selected in this work as
it uses the time-series representation of streaming bus voltage angle data and attack models
based on the time-series similar to this work. The TSQPA method predicts a measurement
sample using quadratic prediction with the past three measurement samples of the same
time-series. If the difference between the predicted value and the actual value exceeds a
certain threshold, an attack is declared. In the LSTM-based method, the above-mentioned
prediction is done by an LSTM neural network considering the multivariate setting of the
time-series, and an attack is declared when the normalized prediction error exceeds a certain
threshold similar to the TSQPA method.

The exact same time-series dataset and simulated cyber and physical scenarios, discussed
in Section 4.2, are considered for all the techniques. Specifically, for machine learning meth-
ods (SVD, DT, and LSTM), the voltage angle time-series are directly considered as the
features. The LSTM prediction model is considered with two LSTM layers with 100 neurons
in each followed by an output-dense layer with a single neuron. The performance of the

LSTM-based stress detector improves by increasing the amount of training data; however,
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Figure 4.8: Comparison among the detection accuracy of different methods for various (a)
FDIA attack intensity, x' (b) abrupt load changing factor « =1 — .

for ensuring the fairness of comparison among the detection methods the model is trained

using the same dataset used by other methods.

4.4.4.2  Comparison of Detection Accuracy

Our evaluations revealed that while all these methods (GFT-based, VFED-based, SVM,
DT, LSTM-based, and TSQPA methods) perform well in detecting the stresses with sharp
(abrupt) changes at the onset, the proposed LSSTD outperforms these methods significantly
in the case of more sophisticated and challenging cyber attacks with no abrupt change at
the onset. The comparative performance of the proposed LSSTD method with the other
GSP-based and non-GSP-based methods has been shown in Figure 4.8. Next, some of the
details of this comparison are presented.

In the case of FDIA, where parameter x’ quantifies the change in the value of the attack
at its onset, simulations have shown that for x’ = 0.02, the accuracy of detection for TSQPA,
GFT, SVM, DT, LSTM, and the VFED method is limited to just a little over 0.5. While
for x’ = 0.05, the TSQPA method attains an accuracy of 0.76, the performance of the other
methods for this setting is still limited. For a large abrupt change, i.e., x’ = 3, the LSSTD,
TSQPA, SVM, DT, LSTM, VFED methods attain accuracies of 1, 1, 0.97, 0.99, 0.97, and

0.93, respectively.
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The performance of the GFT-based method in all these scenarios is just over 0.5. How-
ever, GFT can detect FDIA with more abrupt changes; for example, for x’ = 15, the GFT
technique achieves an accuracy of 0.94 and for x’ = 16.5 it achieves an accuracy of 1. The
reason behind the lower performance of GFT in the time-series setting is the changing statis-
tics of the time-series data due to high non-stationarity, which poses difficulty in choosing
6, that leads to a high false-positive rate. In [31] and [44], it is shown that a comparable
accuracy for GFT-based method is attainable in scenarios in which the statistics of the states
are stationary.

The example of the physical stress case considered in this work is the abrupt load change,
which in general contains sharp changes of signal values at the onset. Both the LSSTD
method and the TSQPA method attain perfect accuracy in detection for o = 0.1 to 0.5,
while the accuracy of the VFED method is between 0.79 to 0.92. However, the GFT-
based method is not able to detect load changes due to the absence of high-graph frequency
components as illustrated in Figure 4.2. In the GFT-based method, the GFT of a graph
signal cannot capture the local dynamics of the grid as it is a global measurement of the
contribution of the frequency components.

In the case of load change, instead of the multivariate setting of the LSTM (as for the
cyber stress detection model), 118 separate LSTM models are considered. It can be observed
from Figure 4.8(b) that although LSTM is generally an efficient method for analyzing time
series, in the specific case of this work with high dimensionality and under limited data
utilization, it fails to perform up to the mark. Moreover, from Figure 4.8, it can be observed
that although VFED achieves lower detection accuracy than all the other methods both in
the case of cyber and physical stresses, it outperforms LSTM and SVD especially in the
challenging range of small load changes (i.e., @ < 0.3) as can be seen in Figure 4.8(b).
The VFED method is based on the joint-vertex frequency distribution of the graph signal,
which represents the contribution of each frequency component in the vicinity of a vertex.

Although VFED does not use any window explicitly, the computation of VFED by equation
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2.6 implicitly introduces some smoothing effect and therefore, loses specificity to detect the
small amount of changes in the signal. From Figure 4.8, it can be observed that although
TSQPA can achieve the same level of detection accuracy as the LSSTD method for abrupt
load change and FDIA for the range of x’ > 0.25 but has lower accuracy for the range of

x" < 0.25.

4.4.4.8 Performance of Location Accuracy

Since all the aforementioned methods are not equipped with the ability to locate the
stresses, stress detection accuracy is considered as the primary criterion of comparison among
the performance of the methods. However, among the GSP-based techniques, the proposed
LSSTD and VFED techniques can locate the stresses along with the stress detection. Be-
tween these two techniques, LSSTD has better locating accuracy in most of the cases as the
smoothing effect in calculating the VFED values reduces its vertex localization. On the other
hand, the LSSTD is calculated directly in the vertex domain, which helps with the locating
process. However, the locating accuracy of the VFED method for abrupt load changes is

better than the LSSTD method (0.98 for o = 0.4 and 0.70 for o = 0.1).

4.4.4.4  Further Discussions

In this subsection, more discussions on the observed performance of the methods in the
previous subsection are presented. One of the challenges of the LTSM-based stress detection
technique, considered in this work for comparison, is that although the LSTM-based method
can capture the temporal dynamics, being a training-based pattern recognition method, it
considers the very small changes that are present at the onset of the designed stresses as
noise, and therefore, fails to classify them as anomalies. Moreover, in the high dimensional
multivariate time-series setting (for the 118 buses in the case of IEEE 118 buses), LSTM
requires a large amount of training data for good accuracy. Specifically, in the case of abrupt

load change, a change of load demand in a particular bus affects the voltage angle time-series
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of many of its neighboring buses simultaneously. As such, for training the LSTM model to
differentiate between the normal condition and the load change condition, a large amount of
data is needed.

Furthermore, the SVM and DT methods are training-based data-centric methods. Al-
though they implicitly learn the relations among data and their sources, they cannot explic-
itly utilize the knowledge of the grid topology, and also they are not capable of capturing
the time correlation among the states. TSQPA method can track the time evolution of data
by a quadratic function; however, it cannot capture the interrelation among the time-series
at different buses. The GFT-based method also does not capture the temporal relations in
the data and cannot capture the local dynamics of the grid as it is a global measurement of
the contribution of the frequency components.

The key advantage of the proposed LSSTD method is that it combines the advantages
of the existing methods by having the ability to capture both the time correlation in the
state values as well as the inter-relation among the states by their structural interconnec-
tion through the graph. Specifically, the proposed LSSTD method can detect the carefully
designed cyber attacks by capturing the interaction and interconnection among the graph
signal values while the non-GSP methods cannot utilize the knowledge of the interaction and
interconnections among the data sources explicitly. Moreover, since a small amount of data
is needed to obtain and update the probability distributions (p,(¢), py,(¢), and ps(¢)), it

can work on real-time without any explicit training.

4.4.5 Computational Complexity

In this subsection, the computational complexity of the LSSTD and VFED is discussed.

The complexity for computing s(n, t) = 28 x(n, t) # 0 is dominated by the computation

— x(nt)?
of I,(n, t), the n—th element of the vector, Lx, which is in the order of O(N?). The complexity
for computing the second time-derivative of s(n, t) and the comparison with the threshold

65, are both in the order of O(N). As a result, the computational complexity of the LSSTD
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detection algorithm is O(N?), where N is the number of buses in the grid. For the VFED
technique, equation (2.6) is the key computational component. Specifically, at cach time
instant, the value of VFED is calculated at every vertex (i.e., N buses) and every N frequency
component. The calculation for each VFED value comprises of three multiplications and N
summations. Therefore, the complexity of VFED is in the order of O(N3). As such, although
these methods have been applied to the IEEE 118 bus system, particularly VFED has limited
scalability to large grid sizes. It is hoped that future research on the VFED technique
can lead to new developments with better computational complexity or the development
of complementing techniques, such as augmented graphs with reduced domain and grid
partitioning, to allow VFED application to a smaller system for stress localization. In its
current form, the VFED technique can be applied in parallel to LSSTD to a small system

to complement the localization process after stress is detected by the LSSTD technique.
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Chapter 5: Classification and Characterization of Cyber and Physical Stresses

in the Smart Grid Using Graph Signal Learning

4Once a stress is detected and located in the system, the next step would be to identify
the type and characteristics of the occurred stress in order to implement effective corrective
measures to mitigate the stress and also plan for preventive measures in the future. The key

contributions of this chapter are summarized as:

e A two-stage classification framework for the power system stresses has been proposed
based on the learning power system’s graph signals. The proposed framework involves
incorporating GSP-based features into machine learning (ML) methods for leveraging
the potential of GSP in capturing the topological as well as interaction and interdepen-
dency dynamics among the components of the grid for improved classification accuracy.
The classification performances have been evaluated across various ML classifiers using

data under different noise levels.

e Various GSP-based features of time-varying voltage angle graph signals at different

classification stages are evaluated.

e A neural network-based technique for the classification of multiple random cyber at-
tacks and clustered/coordinated cyber-attacks has been proposed using features ex-

tracted by GSP-based analysis.

e Techniques for estimating attack center and radius in case of clustered multiple cyber

attacks have been proposed.

4Portions of this chapter were published in IEEE Xplore [29, 30]. Copyright permissions from the pub-
lishers are included in Appendix B.
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e A technique for reducing the dimensionality of the GSP-based features based on down-

sampling in the graph-frequency domain is proposed.

5.1 Related Works

Among the studies of stress classification in the smart grid, the classification of physical
stresses (or events) using ML techniques has been extensively studied [96, 12, 97, 98, 99].
For instance, Rafferty and Liu, [98], considered three types of physical stresses: generation
dip, loss of load, and line tripping for classification at the PMU level using the quadratic dis-
criminant analysis (QDA) method that also facilitates the identification of unknown events
for further human interaction. In [98], the frequency, phase angle, voltage magnitude, and
their time derivatives are considered as the features and their relative importance is studied.
Liu et al. [99] present a detailed analysis of the classification of four types of power system
events including frequency events, line outages, transformer outages, and oscillation events
by applying various benchmark classification techniques. The proposed three-step technique
involves pre-processing of real-world imperfect PMU data, extraction of fine-grained event
waveform data after the detection of the event, and extraction of useful features for classifi-
cation from the waveform of multiple attributes. The analysis has revealed that each event
has signatures on the waveform of different particular attributes (e.g., voltage magnitude)
and the signal similarity among different PMUs, under different events, is different. In [13],
along with the physical stresses (e.g., line fault and generation loss), fake events created
by false data injection are also considered for classification. Yuan et al. [100] also propose
a GNN-based event classification technique in which the latent interaction graphs among

different PMUs are learned from the PMU data.
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5.2 Problem Formulations

5.2.1 Classification Problem Formulation
5.2.1.1 A Short Review of GSP Concepts

The power grid has been modeled by a dynamic weighted graph, G(t) = (V, £(t), W(t)),
representing the known topology of the grid at time t. The weight matrix W, is defined in
such a way that the Laplacian matrix L, = D; — W, of the graph represents the imaginary
part of the admittance matrix associated with the known topology of the grid at the time,
t, where D; is the degree matrix of the graph, G(t). The time-varying graph signal, x(n, t)
defined over the graph, G(t), is a mapping of the graph vertices to real numbers, x : V — R
that, in this work, represents the value of the voltage angle at bus n € V at time t. A more
detailed discussion about the GSP basics, especially in the power system context can be

obtained in Section 2.2.

5.2.1.2  Classification Models

In this chapter, two types of stress classification models have been presented. In the first
model [30], a two-stage stress classification framework has been proposed. When any stress
is detected in the grid at time t,, the first step is to determine whether it is cyber or physical
stress. This binary classification task is performed in the first stage of the proposed two-
stage classification scheme. The second stage involves classification among different physical
stresses and different types of cyber attacks. Here, abrupt load changes and transmission line
outages as physical stresses and five types of cyber attacks (DoS, FDIA, replay, ramp, and
delay attacks) are considered. These stresses are modeled on the voltage angle time-series.
A detailed description of the model of these stresses and their characteristics can be found
in 2.3.1.

For the classification tasks at both stages, first, a set of features will be engineered from

the associated graph signals, x(n, t), starting from when the attack was detected, t,, for
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a duration of At,. The extracted features can then be fed to any ML-based classifier.
The features being extracted from the time-varying graph signals contain temporal as well
as topological information to incorporate into the classification framework. The binary

classification (i.e., physical stress vs. cyber attack) at the first stage can be formulated as:

y =f(W(x(n t))), tg <t<ty+ At,, (5.1)

where y € {Physical stress, Cyber attack} and W(x(n, t)) is the graph signal feature matrix
obtained from the time-varying graph signal x(n, t) for the time interval At,,, starting from
the moment of the detection. For the stresses that are detected as physical ones, the next
stage classification involves classifying them between abrupt load changes and transmission

line outages, which can be expressed as:

z, = g(Wp(x(n, 1)), ts <t <ty+ At,, (5.2)

where z, € {Abrupt load changes, Line failure} and Wy(x(n, t)) is the graph signal feature
matrix obtained from the time-varying graph signal x(n, t) for the time interval At,, starting
from the moment of the detection. A similar formulation can be shown for stresses that are

classified as cyber attacks in the first stage:

z. = h(W(x(n, t))), ts <t<ty+ Aty, (5.3)

where z, € {DoS, FDIA, Replay attack, Ramp attack, Delay attack} and W¢(x(n, t)) is the
graph signal feature matrix obtained from the time-varying graph signal x(n, t) for the time
interval At,,, starting from the moment of the detection of the cyber attack.

The second classification model [29] is relevant after characterizing a cyber attack as a
simultaneous-cyber-attacks launched at multiple locations. This model classifies clustered

cyber attacks and random multiple cyber attacks. Based on the discussions in Section 2.4, it
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can be concluded that single random attacks, multiple random attacks, and clustered cyber
attacks have distinctive signatures in the pattern of local smoothness values at the time of
detecting the attack, ty. However, under the load change at different buses, the voltage angle
graph signals and thereby the local smoothness values associated with the signals vary in
time. As a result, rule-based decision-making from the signatures of multiple random cyber
attacks and clustered cyber attacks becomes difficult. Therefore, a neural network-based

classification has been proposed between the two types of attacks.

5.2.2 Characterization of Cyber Attacks
5.2.2.1 Determining the Number of Cyber Attacks

In this approach, the probability distributions of the second time derivative of the local
smoothness values associated with the voltage angle measurements of each bus ps({) are
estimated from the past data. If the likelihood of the second time-derivative of the local
smoothness value at any time instant at bus/vertex n falls below the threshold fs (i.e.,
psy(s”(n, t)) < bs), cyber stress is declared at bus n at that time. The time instant at which

the attack is detected is denoted as ty.

5.2.2.2  Determining Attack Center and Attack Radius in Clustered Cyber Attacks

After the identification of a cyber attack as a clustered one, it is crucial to determine the
center of the attack and the attack radius to enhance situational awareness and mitigate the
effect of the attack. In this work, the goal is to identify the center of the attack, nc, and the
attack radius, K to help with situational awareness.

Once the center of the attack, nc, is detected, the radius, K of the attack can be estimated
using the fact that a clustered attack of radius K, affects the local smoothness values of the
vertices within the K + 1 neighborhood of the attack center. The radius K can be specified
as:

K = max{D(n¢c,np)} — 1, Vnp €V (5.4)
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such that:

psy (s"(np, ta)) < Osy (5.5)

D(nq, ny) is the hop-distance between the vertices n; and np, within the graph, G.

5.3 Feature Extraction Using GSP

5.3.1 Different Types of GSP-based Features

For the classification using the proposed method, GSP-based features are extracted from
the time-varying graph signals from the moment of detecting the stress, t; to the end of the
stress data window, ty + At,. In our works [27, 26] and our extensive simulations on the
IEEE 118 bus case [62], it is observed that in different cyber and physical stresses, different
scts of features are more suitable in classifications. In this section, different types of GSP-
based features will be presented along with a discussion on their suitability in different cyber
and physical stress scenarios. A technique for reducing the number of features of the same

type has also been proposed.

5.8.1.1 Features Extracted from the Moment of Detection, ty

e Real-number Features: A number of features denoted by feature vector ¢ | are proposed
to be extracted from the graph signal just at the moment of detecting the stress, i.e.,
x(n, tg). An example of such features is the GF'T values of the graph signal at the
moment of detection. In this case, the /—th element of the ¥ , can be expressed as:
U1(1) = X(Ay,, ta), where X is derived from equation (1). The local smoothness values
of the graph signal at the moment of the detection is another set of features of this
type; for which, the /—th element of the ¢ can be expressed as (1) = s(/, ty), where
s can be derived from equation (2). The two aforementioned sets of features capture
information on structure, interdependency, and interactions among the components of

the grid; however, being calculated on a single snapshot of the time-varying graph signal
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(at t = tg), they do not contain the temporal evolution information of the signal values.
Our simulations have shown that features of this type are effective for the classification
between cyber and physical stresses as well as for the classification between abrupt load
changes and transmission line failures but fail to classify among cyber attacks since

the cyber attacks are distinguished mostly by their temporal signatures.

Combination of Real-valued Binary Features: This set of features is especially useful for
the second type of classification between clustered and random multiple cyber attacks.
A total of N+1 input features, fi, f, ... fy41, are considered for the deep learning model.
Among them, the first N features are binary, indicating whether the likelihood of the
second time-derivative of the local smoothness value of a particular bus at the detection
instant is less than a predefined threshold 6,/ (i.e., f; = 1 if py(s”(n, tg)) < 65 and 0
otherwise, for i = 1,2, ... N). The last feature, fy,1, is a real-valued feature representing
x"(n,tg)Lx(n,tq)

the global smoothness of the graph signal, x(n, t;), which is expressed as FUCTOTCIOR

5.3.1.2  Features FExtracted Using GFT of Temporal Statistics

The next type of features considered in this work are calculated by applying GSP tech-

niques (e.g., GFT and local smoothness) over the temporal statistics of x(n, t) during the

time window after the detection of stress. Let T(.) be the operator for determining any

temporal statistics (e.g., mean, standard deviation, and range) of any time-varying graph

signal within a window of time. We denote this type of feature vector by P, One example

of such features can be derived by taking the GFT of the graph signal, which is obtained

by computing the temporal standard deviation of the time derivative of the original graph

signal values at each bus within the stress time window. This feature can be represented by:

Ua(l) = ZT(%X(n, t))up(n), for tg <t <tg+At, (5.6)

n=1
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Here, T(.) signifies the temporal standard deviation of the signal values at each bus. By
containing the temporal information along with the information and interdependency among
the components, these types of features are suitable for classifying cyber attacks with dis-

tinguishable temporal signatures on the time series data.

5.8.1.83 Features Extracted by Taking Temporal Statistics of the Time-Varying GFT Values

The features of the third type involve taking temporal statistics of the GF'T values calcu-
lated at every time instant within At,. For these features, the /—th element of the feature

vector 1/13 can be expressed as:

Us(l) = T(X(A, 1), for ty <t < tg+ Aty (5.7)

Similar, to the previous type of features, features of this type also contain both temporal
and interconnection information and are therefore applicable to the classification of cyber

attacks.

5.3.2 Dimensionality Reduction of the GFT-based Features

All the feature vectors discussed in the previous section, are of dimensionality equal to
the number of buses in the grid, i.e., N. Moreover, the classification of different types of
cyber-attacks requires the combination of different types of features, which makes the di-
mensionality of the classification problem large. The high dimensionality of the feature space
raises the computational cost of implementing the proposed GSP-based learning classifica-
tion technique. However, if the feature set is GFT-based, the dimensionality can be reduced
by taking a smaller subset of the GFT samples, i.e., down-sampling in the graph-frequency
domain. In this work, instead of taking all the GFT samples, K equally spaced GFT values
are considered, where K < N. The equally spaced samples ensure the presence of GFT

samples in all ranges of graph-frequencies and serve as a good representative of the whole
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spectral information. This concept is similar to the concept of down-sampling the discrete
Fourier transform in classical signal processing; however, the analogy is not strictly perfect

due to the localized basis functions of GF'T representation.

5.4 Simulation Details

5.4.1 Two-stage Classification

In this work, all the simulations have been performed on the TEEE 118 bus systems,
using MATPOWER [24]. The load patterns are extracted from the actual daily load profile
from New York Independent Operator (NYISO) [25] and have been added to the default
MATPOWER load demands to create time series data as described in [95]. In total 10,000
different types of physical stresses and cyber attacks are generated using MATPOWER at
different times and different locations of the grid, which are randomly selected with uniform
probability distributions. For the generation of cyber attacks, the time-series-based models
in [26] have been used in which there is no sharp change in the signal values at the attack
onset. For the classification among these cyber attacks presented in this work, we consider,
At, = 10 samples; however, this parameter can be tuned depending on the grid and the
application. For all the classifications, the models are trained with 80% of the data and
tested on the rest of the data.

Among different machine learning classifiers, decision trees, discriminant analysis, an
ensemble method, support vector machine (SVM) with linear and radial basis function (RBF)
kernels, and neural networks have been used. The neural network classifier consists of two
hidden layers with 25 and 10 necurons, respectively, with ReLu activation functions in each

layer. All the classifiers have been implemented using MATLAB classifier functions.

5.4.2 Characterization

The analyses and the proposed techniques described previously have been evaluated using

simulations on the IEEE 118 bus system [62]. The power flow calculations are performed
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in MATPOWER 6.0 [24]. The time-varying bus voltage angle signals are simulated by
introducing time-varying load demand. The patterns of the time variation of load demand
throughout the day have been collected from the New York Independent System Operator
(NYISO) [25] and applied as described in [26]. Different types of cyber attacks are created
according to the attack model as described in [26]. A detailed description of each experiment
and its performances have been presented in the following subsections.

For the classification between multiple random and clustered cyber attacks, the perfor-
mance is evaluated separately for each of the five types (i.e., DoS, FDIA, data-replay, ramp,
and delay attacks) of attacks as well as for different levels of attack intensities. For each case,
a data set was created with 10,000 scenarios. Whether a scenario corresponds to multiple
random cyber attacks or clustered cyber attacks is chosen randomly with equal probabili-
ties. For the multiple random attacks (e.g. p number of attacks), the attack locations (p
locations) are chosen from the 118 buses, with uniform probabilities for all the buses. In
the case of the clustered cyber attack, the attack center (n¢) is chosen randomly from the
118 buses with equal probabilities. The deep learning model for the classification between
the random and the clustered attack consists of 3 hidden dense layers with 256, 128, and 32
neurons, respectively. With the binary cross-entropy loss function, ADAM optimizer, and
an initial learning rate of 0.5 which decreases at a rate of 0.5 exponent of the time step. The

model has been trained and tested in Sci-kit learn [101] with 10-fold cross-validation.

5.5 Performance Evaluation

5.5.1 Performance of the Two-stage Classification

The simulation results show that, in both stages of the classifications, the GSL technique
outperforms direct machine learning-based classification applied to the raw voltage angle
data. Figure 5.2 illustrates the classification accuracy of the different machine learning classi-
fication algorithms for the first-stage binary classification between cyber and physical stresses

using raw voltage angle data and using GSP-based features. Two different candidate feature
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Figure 5.1: Confusion matrix for cyber attack classification using GSL method. A neural
network classifier has been used as the ML classifier.

vectors of the first type (i.e., feature extracted at t;): GFT and local smoothness features are
considered. From the figure, it is observed that both the GFT and local smoothness-based
features outperform the direct classification on raw voltage angle data for all the machine
learning methods for the signal-to-noise ratio of 45dB. Similar results have been obtained for
the abrupt load change vs. line failure classification at the same noise level. However, among
the GSP-based features, the GF'T-based ones are preferable over the local smoothness-based
features, mostly because of two reasons: 1) the GFT-based provide consistent performance at
different noise levels, while the performance of the local smoothness-based ones deteriorates
significantly with increasing noise levels, 2) the dimensionality reduction method discussed
in Section 5.3.2 is only applicable to the GF'T-based features.

For the classification among the cyber attacks on noiseless data, the GSL technique
with the GFT-based sets of features successfully classifies the five types of cyber attacks.
The accuracies of classification using the decision tree and neural network classifiers are,
respectively, 0.814 and 0.813. However, for this classification, multiple sets of features of
different types are required. By observing the performance of different combinations of
the set of features the following set of features are considered to be appropriate for the
classification among the cyber-attacks: Firstly, the GFT of the temporal standard deviation

of the time-derivative signal, S N T(Zx(n, t))up(n), for tg < t < tg + At,. Here, T(.)
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Figure 5.2: Dependency of the classification performance on the noise level of the data.
The decision tree classifier has been used for all the cases.

signifies the temporal standard deviation of the signal values at each bus. Secondly, the
GFT of the temporal standard deviation of the original signal, S>V T (x(n, t))ug,(n), for
tg <t <ty + At,. Thirdly, the GFT of the graph signal, x(n, t;) — x(n, t4 + t,,) calculated
as: Yo [x(n, tg) —x(n, tg+ tw)]ug (n), for ty < t < tq+ At,. Finally, the temporal mean of
XAk, t) for ty <t < ty+At,. Figure 5.1 presents the confusion matrix for the classification
of cyber attacks. The GSL-based classification technique classifies the cyber attacks with
good accuracy except for the relatively higher mis-classification rates between the FDIA and

the delay attack.

5.5.1.1 Noise Sensitivity of Classification Performance

The classification accuracy for the first-stage classification between the cyber and physical
stresses and the second-stage classification between the abrupt changes of loads and the line
failure (in the case of the prediction as physical stress at the first stage) have been analyzed as
a function of the signal-to-noise ratio (SNR) of the additive noise present in the voltage angle
data. As illustrated in Figure 5.2, for both classifications, the GSL classification technique
with GF'T features outperforms direct machine learning-based classification at all levels of
noise intensity. However, the classification among the cyber-attacks works only on noise-free

data and achieves very limited accuracy for noise levels below 100 dB SNR. This is due to
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the fact that these sophisticatedly designed cyber attacks introduce very small changes in

signal values which are comparable to noise as discussed in [26].

5.5.1.2  Classification Performance with a Reduced Number of Features
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Figure 5.3: Classification performance with reduced numbers of features (by
graph-frequency domain down-sampling). Results for: (a) cyber vs. physical stress
classification, (b) among physical stresses classification, (¢) among cyber stresses
classification. The decision tree classifier has been used as the MIL-based classifier for all
the cases.

Figure 5.3 illustrates the classification performance with the reduced number of GFT-
based features as suggested in Section 5.3.2. From the figure, it is observed that for all the
classification tasks in both stages, it is possible to reduce the number of features using the
graph-frequency domain down-sampling keeping the classification performances at reasonable
levels. As an example, for the first-stage binary classification between cyber and physical
stresses, a classification accuracy of 0.95 is achievable with only 20 GFT features instead
of all the 118 GSP features for the IEEE 118 bus system. It is worth mentioning that

for the classification of cyber attacks, it is required to apply the graph-frequency domain
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down-sampling separately on the four types of GFT-based features mentioned in Section

2.5.1.

5.5.2 C(lassification Performance for Multiple Random Vs. Clustered Cyber Attacks
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Figure 5.4: Dependence of accuracies on attack intensities for FDIA.

For the classification between multiple random and clustered cyber attacks, the perfor-
mance is evaluated separately for each of the five types (i.e., DoS, FDIA, data-replay, ramp,
and delay attacks) of attacks as well as for different levels of attack intensities. For each
case, a data set had been created with 10,000 scenarios. Whether a scenario corresponds
to multiple random cyber attacks or clustered cyber attacks is chosen randomly with equal
probabilities. For the multiple random attacks (e.g. p number of attacks), the attack lo-
cations (p locations) are chosen from the 118 buses, with uniform probabilities for all the
buses. In the case of the clustered cyber attack, the attack center (n¢) is chosen randomly
from the 118 buses with equal probabilities.

The deep learning model for the classification between the random and the clustered
attack consists of 3 hidden dense layers with 256, 128, and 32 neurons, respectively. With the
binary cross-entropy loss function, ADAM optimizer, and an initial learning rate of 0.5 which
decreases at a rate of 0.5 exponent of the time step. The model has been trained and tested in

Sci-kit learn [101] with 10-fold cross-validation. The performance of the classification model
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Table 5.1: Performance Evaluations of Random Vs. Clustered Multiple Cyber Attacks
Classification, and Estimation of Attack Center and Radius.

Attack Accuracy
Type | Random Vs. | Attack Center | Attack Radius
Clustered Locating Estimation
Classification | (Clustered) (Clustered)
DoS 0.851 0.886 0.978
Replay 0.922 0.883 0.955
FDIA | See Figure 5.4 | See Figure 5.4 | See Figure 5.4
Ramp 0.858 0.849 0.973
Delay | See Figure 5.5 | See Figure 5.5 | See Figure 5.5

for the sophistically designed cyber attacks described in equation (2.8) has been summarized
in Table 5.1. The accuracy of the classification signifies the rate of classifying between the
random attack and clustered attack correctly. Since the performance in the case of the FDIA
and the delay attack is dependent on the attack intensities, their performances are illustrated
separately in Figure 5.4 and Figure 5.5, respectively showing the variation with the amount

of change in FDIA, x” and amount of delay (in samples) in delay attack.

5.5.3 Determining n¢c and K in Clustered Cyber Attacks

For the determination of the attack center, nc, and the attack radius K in case of clustered

cyber attack, 10,000 clustered cyber attack scenarios have been considered. In each scenario,
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the attack center, nc, has been chosen from the 118 buses, and the attack radius, K has been
chosen from {1, 2, 3,4}, with equal probability. Five of the nearest neighbors are considered
in the k—NN method for the classification for determining the attack center. Performances
are summarized in Table 5.1, Figure 5.4, and Figure 5.5. The accuracy of determining the
attack center and the attack radius imply the rates of correctly determining the location of

the central bus of the clustered attack and the radius of the attack.
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Chapter 6: Recovery of Missing States and Optimum Meter Placement in

Smart Grid Using Correlation of States and Graph Signal Sampling

°The state estimation in smart grids [103] is an essential function, which enables their
secure and reliable monitoring and operation. However, this critical function is vulnerable to
various forms of cyber attacks (e.g., DoS attacks and FDIA). These attacks can hamper the
availability and integrity of the system state information. Once a cyber attack is detected
and located in the system, the recovery of the state information at the attacked locations
becomes crucial to mitigate their effects.

In this chapter, the state recovery problem has been proposed to be solved by both
the GSP-based approaches and the correlation-based approaches. Under the GSP-based
approach, the two techniques for state recovery have been proposed. The first approach
involves modeling the state recovery problem in smart grids through a graph signal re-
construction framework [104, 105]. The graph signal sampling-reconstruction framework is
effective for the recovery of unobservable signal values of the graph signals band-limited to
a certain graph-frequency. The second GSP-based approach is based on the local and global
smoothness of the graph signal which relaxes the band-limited assumption of the signal.
This chapter also proposes a technique to estimate the time-varying unobservable states of
the smart grid from the time-varying observable states by utilizing the correlations among
the states.

The main contribution of this chapter is:

e The state recovery problem when the buses become unobservable due to, for instance,

cyber attacks (e.g., DoS), failure of the communication link, or the physical failure of

®Portions of this chapter were published in IEEE Xplore [95, 28, 102]. Copyright permissions from the
publishers are included in Appendix B.
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the PMU has been proposed to be solved under graph signal sampling framework. The
band-limitation assumption for the graph signal should be held. This problem can be
fitted to a graph signal sampling-reconstruction framework by considering the buses
that are not affected by the stress in the PMU network as the sampling vertices and
the unobservable buses as the non-sampling vertices. Thus the measurements from the

sampling set of buses can be used to recover the unobservable ones due to the stress.

The above solution has been extended to relax the band-limited graph signal assump-
tion. A novel reconstruction technique based on the statistics of the local smoothness
of the graph signals along with the global smoothness of the graph signals is cast into
an optimization framework. In contrast to many graph signal reconstruction tech-
niques, which assume band-limited signals to be recovered, the proposed technique is

applicable to general graph signals irrespective of their bandwidth.

The optimal PMU placement problem has been discussed and formulated as a sampling
set selection problem in a graph signal sampling framework. To solve the optimization,
a heuristic approach based on the anti-aliasing filter error-based selection criterion is

proposed and evaluated.

Considering the continuous data stream associated with the bus voltage angles as
time series, a state correlation-based technique has been proposed to recover the time-
varying unobservable states using the observable states for a duration of time after the
onset of unobservability. By applying this technique, the state of the power system
can be estimated under various levels of unobservability with good accuracy. The
estimation accuracy in terms of the mean squared error (MSE) has been used to identify
the relative vulnerability of the buses (or PMUs) of the grid and the most vulnerable

time for the unobservability.
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6.1 Related Work

Over the last decade, with the emergence of GSP as a promising field of research, the
reconstruction of graph signals is getting attention from researchers. The topic is often
studied in the context of the non-uniform sampling of the graph signal, [106, 67], and the re-
construction method involves the eigenvector decomposition of the graph shift operators. In
this connection, a large number of works on the graph signal reconstruction are dependent on
the band-limited assumption of the graph signal. For example, Tanaka et al. [107] provides
a detailed discussion on the theory and application of graph signal sampling from a graph-
frequency domain perspective in which the reconstruction process relies on the bandwidth
of the graph signals. Narang and Ortega [66] showed that the spectral domain interpre-
tation for the sampling on k-regular bipartite graphs is analogous to the Nyquist criterion
for down-sampling of classical discrete-time signals. Although this paper considers only a
special kind of simple graph structure, the results are important for the understanding of
graph signal sampling in general. Anis et al. [108] introduced the concept of uniqueness set
to interpret the graph signal counterpart of the Nyquist theorem for arbitrary graphs and
proposed a graph-spectral domain approach for the selection of the optimal sampling-set for
graph signal sampling and reconstruction. Gadde and Ortega [109] presented a probabilistic
interpretation for graph signal sampling. In [67], Chen et al. proposed a sampling theory
for band-limited finite-length graph signals, which ensures perfect reconstruction without
any probability constraints. In the subsequent works [110, 111, 112], the authors presented
extensive analyses on various aspects of graph signal sampling including comparison among
various selection criteria of sampling-set, different techniques of signal recovery, and the-
oretical aspects of the graph signal sampling-reconstruction process. Lorenzo et al. [106]
presented sampling on a randomly generated band-limited graph signal on the IEEE 118 bus
[62] topology, and on an approximately band-limited signal of a road network topology and
studied the effect of different sampling-set selections. Sakiyama et al. [113] applied graph

signal sampling for placing sensors in a network.
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The concept of band-limited assumption is related to the global smoothness of the graph
signal, and in the reconstruction literature minimizing the global smoothness to recover the
missing signal values is widely known [114, 115, 67].

Among the other methods Isufi et al. [116] proposed reconstruction of the missing graph
signal values using graph Wiener filter while the frequency response of the graph Wiener
filter is approximated by ARMA graph filter and implemented distributively. Wang et al.
[105] introduces the concepts of local set in connection with the frame theory and proposed
two local set-based iterative graph signal reconstruction techniques. Mao and Gu [114]
proposed a band-limited graph signal joint detection and reconstruction technique by using
mixed integer linear programming. Romero et al. [117] proposes a kernel-based method for

band-limited graph signal reconstruction.

6.2 State Recovery Using Graph Signal Sampling

Graph signal reconstruction has been an active research area in the GSP [4] domain with
vast potential applications. The goal of the graph signal reconstruction is to estimate the
signal values corresponding to a subset of the vertices, which are unavailable due to the
down-sampling of the original signal or missing measurements (for instance, due to cyber-
attacks). The sampling of graph signals can be considered as taking values corresponding
to a subset of the vertices in the graph signal. For graph signals, analogous concepts and

relations to classical signal processing sampling theorems can be observed.

6.2.1 Problem Formulation

Let A C V be the set of all buses under cyber-attack in the grid at time ts. Our goal is
to estimate the bus voltage angle of any bus i € A at any time instant, t, for t > t4 using
the graph signal reconstruction technique discussed in the previous section. In the graph

signal sampling-reconstruction framework, it is considered that the buses under cyber-attack
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as non-sampling vertices and the buses, which are not under cyber-attack, as the sampling

vertices, Sie., A=V\Sand V\ A=S.
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Figure 6.1: An example of missing PMU measurements recovery by graph signal
reconstruction. (a) The band-limited actual voltage angles measurements, (b) the
measurements under cyber-attack at bus numbers 59 to 64 (shown in dark blue), and (c)
the recovered measurements.

111



6.2.2 State Recovery Using Graph Signal Sampling

The unobservable states are recovered by the methods described in Chapter 2. In this
case, the reconstruction method developed in [67] has been implemented. Figure 6.1 shows
an example of the missing voltage angle recovery using graph signal sampling. Figure 6.2
illustrates how the location of the attack affects the recovery performance. Using this ap-
proach, it can be observed that clustered cyber attacks can cause more recovery errors than
random attacks of the same size. Moreover, the vulnerable locations in the grid can be

identified from the buses with higher reconstruction errors.
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Figure 6.2: Recovery errors in cyber-attack. Clustered attacks introduce larger errors than
random attacks of the same size.
6.3 State Recovery Using Global and Local Smoothness Graph Signal

In this work, a graph signal reconstruction technique based on the smoothness prop-

erty of the power systems’ graph signals has been proposed. The global smoothness [63]

of the graph signal x(n) is defined as Sgppar = 5;7"; and quantifies the overall amount of
fluctuations from vertices to vertices (which also relates to the bandwidth or the amount of
high-frequency components in the signals). Note that smaller values of global smoothness
represent smoother signals. Under the assumptions of a smooth graph signal, the reconstruc-

tion of the graph signal can be formulated with the goal of identifying values that minimize
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the global smoothness of the recovered graph signal. Since the power system graph signals
are generally smooth [31, 22], the global smoothness can be one of the criteria for the power
system’s graph signal recovery. However, the global smoothness of a graph signal is a global
parameter and therefore lacks local information about how signal values vary within local
neighborhoods of vertices. The local smoothness of a graph signal is described for each
vertex of the graph signal by s(n) = % x(n) # 0, where /(n) is the n—th element of
the vector, Lx and L is the Laplacian matrix. The local smoothness specifies the amount of
fluctuation of the signal values from one vertex to its neighboring vertices. The concept of
the local smoothness of a graph signal is an analogous concept to instantaneous frequency,
which quantifies the rate of change in signals at each time instant [63]. By incorporating the
local smoothness of the graph signal in the recovery process, the knowledge about the local
dynamics in the grid can be utilized in addition to the global dynamics to achieve better
recovery performance and more robust estimation.

Our extensive simulations of power systems have shown that the local smoothness values
of the power system’s graph signal vary notably over vertices. By collecting and analyzing
the measurement data for each vertex in the system, the probability distribution of the local
smoothness values at each vertex, ps,((), can be obtained. In this work, p, ({) is characterized

for bus voltage angle graph signals using data collected from our simulations.

6.3.1 Recovery Technique

The state information recovery technique for the power system’s graph signal is formu-
lated as an optimization framework for maximizing the likelihood of the local smoothness
values at all the vertices while minimizing the global smoothness of the graph signal. This

optimization problem can be cast into the following formulation:

max  Ps s,..sy(5(M),s(n2), ... s(nn)) — ASgiobar, (6.1)
x(na),nacA
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where X is the Lagrange multiplier. The joint distribution of the local smoothness for all
the buses, ps,.s,...sy(C1, G2, ... (n) is computationally infeasible to compute from the marginal
distributions, ps,(¢). However, maximizing the likelihood of the local smoothness values
at each bus would serve a similar purpose. Therefore, an alternative objective function is
proposed by maximizing the minimum likelihood value of local smoothness from all the buses

along with minimizing the global smoothness.

max [mnin ps,(s(n))] — ASiobar, (6.2)

x(na),npaeA

Our simulation data analyses have shown that the probability distribution of the local
smoothness values at each bus does not follow any standard distribution. However, to
simplify and solve this optimization problem, in this work the local smoothness values at
bus n is assumed to follow a normal distribution with mean value y, and standard deviation
on. Due to this assumption, maximizing the likelihood of local smoothness values ps,(s(n)) at
each bus in equation (6.2) takes the form of minimizing the absolute value of the normalized

local smoothness, z, = %:“” and the optimization problem can be expressed as:

. s(n) —
min  [max |M|] + ASGlobal- (6.3)
x(ng),na€A” n Op

The optimization in equation (6.3) is non-linear and proposed to be solved this optimization
problem using the surrogate optimization method [118] to obtain the global minimum.
6.3.2 Simulation and Results

6.3.2.1 Experimental Setup

For validation of the proposed method and evaluating the state recovery performance,
simulations have been done on the IEEE 118 bus system [62]. The power system graph

signals, i.e., the bus voltage angle of each bus, have been obtained by simulating the power
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flow using MATPOWER [24]. A load pattern collected from the NYISO [25] is added to
the default MATPOWER  load to create a variation of load in the system as described in
[95]. For evaluating the state recovery performance, fifty random scenarios are considered
for each fixed number of unobservable buses, which can represent the buses under the cyber
attack. The unobservable buses are chosen randomly with a uniform distribution from all

the buses of the system except the reference bus.

6.3.2.2  FEstimating the Probability Distributions of the Local Smoothness

The local smoothness values of the buses, i.e., s(n) values, associated with the voltage
angle graph signals are calculated for a large number of simulated graph signals for the IEEE
118 bus system. Omnce the local smoothness values are calculated using simulated graph
signals, the probability distribution of the local smoothness values at each bus, ps,((), are
estimated empirically from the calculated local smoothness values. The actual distribution
of the local smoothness values is intractable; however, our experiments have shown that
assuming a normal distribution for local smoothness values at bus n with mean u, and
standard deviation o, provides reasonable accuracy for the state recovery. Nonetheless, the
parameters of the distributions need to be updated regularly to avoid the effect of data-drift

[94] that can deteriorate the reconstruction performance.

6.3.2.3 Solving the Optimization Problem

In this work, the optimization problem in equation (6.3) has been solved by the surrogate
optimization method [118] using MATLAB optimization toolbox [119]. The lower bounds
and upper bounds of the values of x(n4) are considered as fi.,, — 30y, , and p,,, + 30y, ,
respectively, where p, —and oy, are the mean value and the standard deviation of the
graph signal values at vertices ny, estimated from the past measurement data ( simulated
data). The value of the Lagrange polynomial, A decides the relative importance of the

global smoothness and the local dynamics to reconstruct graph signals values. For all the
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simulations in this work, the value of X is considered to be 5,000. Depending on the system,

the value of A can be tuned to obtain the desired performance.

6.3.2.4 State Recovery Performance Analysis

The performance of the proposed method has been illustrated in Figure 6.3 in terms of the
absolute error against the total number of unobservable buses (i.e., the number of buses under
cyber attack). The mean absolute error and the maximum absolute error are the average
value and the maximum value of recovery error over all the unobservable buses, respectively.
The first metric is important for evaluating the general performance of the recovery method
and the second one is important for evaluating the suitability of the proposed recovery
method in certain power system applications demanding a standard state estimation accuracy
at each bus.

As can be observed from the figure, the proposed method provides promising performance
for recovering the missing states. The results also confirm that the error in recovery grows

with the number of unobservable buses in the system.
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Figure 6.3: State recovery error using the proposed PMU placement method for different
numbers of unobservable buses in the system.
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6.3.2.5 Comparison with Other Reconstruction Methods

As discussed earlier, the reconstruction method applied in our previous work [28], which
is based on matrix operation (including matrix inversion), is only applicable for graph signals
that are perfectly band-limited to N, frequency components, where N, is the cardinality of
the sampling set. For this reason, in [28], an anti-aliasing filter is applied to the originally
approximately band-limited graph signals to discard the insignificant frequency components
beyond Ns frequency components to make perfectly band-limited signals. The presence of
components beyond N frequency components (even very small) leads to the computation
of ill-conditioned matrices resulting in total failure to estimate the missing states. Figure
6.4(a) illustrates an example of a voltage angle graph signal, which is not band-limited (as
ground truth for the experiment). In this example, the buses 59 to 64 in the IEEE 118
bus system are considered unobservable buses. In Figure 6.4(b) the missing signal values
at unobservable buses are recovered using the direct matrix operation method discussed
in [28], which fails to estimate the missing states in comparison to ground-truth states in
Figure 6.4(a). However, the proposed method in the current work, which incorporates the
global and local dynamics of the grid, is capable of estimating the missing signal values with
notable accuracy as illustrated in 6.4(c). This example confirms that the applicability of the
proposed method does not rely on the band-limited assumption of the graph signal to be
recovered. The relaxation of the band-limited assumption makes this method applicable to
many scenarios in power grids; particularly in cases where the resulted graph signals are not
band-limited.

In [28], it has been shown that the major part of the error in the sampling-reconstruction
process is introduced in the band-limiting process by the anti-aliasing graph filter. By
avoiding the anti-aliasing filter error, the reconstruction error can be further reduced by the

proposed method.
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118



6.4 Optimum Measurement Device Placement

The optimal PMU placement problem involves selecting a subset of the buses for mount-
ing PMUs to collect component measurements. In practice, a PMU can measure the complex
voltage of the bus on which it is mounted, the currents entering or leaving through all the
branches connected to the bus, and the instantaneous frequency of operation. In this work,
only the bus voltage angles are considered for the reconstruction of the signal and the evalu-
ation of PMU placement strategies. The key objective is to collect the maximum amount of
data reflecting the grid dynamics to provide observability of the state of the system with the
minimum number of PMUs. Based on various requirements of monitoring functions in the
power system, various PMU placement techniques have been proposed in the literature [79].
In this work, the PMU placement problem within the graph signal sampling-reconstruction
framework has been studied to find the GSP-based optimal placement of PMUs for the re-
construction of the state of the whole system. The theoretical minimum number of required
PMUs depends on the smoothness of the graph signal associated with the PMU measure-
ment values (e.g., voltage magnitude, angle, frequency, etc.). If the graph signal at any time
instant is band-limited to B graph frequency components, the theoretical minimum number
of PMUs to be placed for the perfect recovery of the graph signal at each time instant is
B. However, since the graph signals in power grids are not ideally band-limited, we design
and use the anti-aliasing filters to analyze the reconstruction performance as a function of
B. The value of B can be selected depending on the required precision of estimation and the

details of the high-frequency components of the graph signal.

6.4.1 Sampling Set Selection in Power System Graph Signal Sampling

Since the optimum measurement device (e.g., PMU) placement problem is formulated
as a sampling set selection problem under the graph signal sampling framework, here the
sampling set selection problem is studied first. In this work, several criteria for the selection

of the sampling set, S, have been implemented and a novel sampling-set selection criterion
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has been proposed based on the average error introduced by the anti-aliasing filter calculated
from the historical data in different buses. To present the selection criteria, let us define an
operator, .%# that operates on a finite-length real-valued vector to obtain the indices of the
values sorted in descending order. For example, consider a vector, q = [77 92 28 55]T,
then #(q) =[2 1 4 3]". Next, various selection criteria would be discussed. Note that
except for the random selection criterion, the rest of the sampling-set selection strategies are
new techniques proposed and evaluated for the sampling of power grid graph signals in this

work.

6.4.1.1 Random Selection of S

Among the N vertices, Ny vertices are selected randomly (based on the uniform distribu-

tion over the vertices) to be sampled as discussed in [111, 120].

6.4.1.2 Degree-based Selection of S

The vertices with higher node-degree are selected to be sampled first. Let, d be the
vector form of the graph signal d(n), where d(n) indicates the node-degree of the n—th

vertex. Hence, if d’ = .7 (d) then the sampling-set can be defined as:

S={v,€V:ne {First Ns elements of d'}}. (6.4)

6.4.1.3 Page-rank-based Selection of S

The vertices with higher page-rank centrality measure values are selected to be sampled
first. Let p be the vector form of the graph signal p(n), where p(n) indicates the page-rank

value of the n—th vertex. If p’ = .7 (p), the sampling-set can be defined as:

S={v,eV:ne {First N; elements of p'}}. (6.5)
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Figure 6.5: Relative performance of different selection criteria of the sampling-set, S in
terms of the mean absolute reconstruction error (in dB).

6.4.1.4 Load Demand-based Selection of S

Let ¢ be the vector form of the graph signal /(n), where /(n) indicates the load demand

of the n—th bus. If ¢ = .%({) then the sampling-set can be defined as:

S={v,€V:ne {First N; elements of ('}}. (6.6)

6.4.1.5 Anti-Aliasing Filter Error-based Selection of S

According to this criterion for selecting S, data on the output of anti-aliasing filtering
applied to instances of the system’s graph signals have been collected. The vertices are then
sorted based on the average amount of error introduced by the filter. From the sorted set,
the vertices with the largest average errors are selected as the sampling set, S. The rationale
behind this criterion is that as the anti-aliasing filter discards the high graph-frequency com-
ponents from a graph signal, the vertices with a larger amount of errors are corresponding to
the regions where signal values are rapidly changing with respect to the neighboring vertices.
As such, retaining the values on those vertices keeps the overall sampling-reconstruction er-
ror lower. Let a be the vector form of the graph signal, where a(n) indicates the average

error caused by the anti-aliasing filter at the n—th bus. If a’ = .%(a) then the sampling-set
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1S:

S={v,€V:ne{First Ny elements of a'}}. (6.7)

Figure 6.5 illustrates the performance of the sampling-reconstruction process for these
criteria in terms of the mean absolute sampling-reconstruction error expressed in (dB) for a
different number of sampling vertices, Ns. It can be observed that the performance of the
bus load demand-based criterion is quite similar to the uniform random selection of sampling
nodes [111, 120]. However, the topology-based criteria (node degree and page-rank based)
performs better than the random selection and load-demand-based criterion. The proposed
criterion based on anti-aliasing filter error outperforms both the load demand-based and the

topology-based criteria.

6.4.2 Optimum PMU Placement as an Optimization Problem

Let us consider P C V to be the set of all the buses with PMUs mounted on them and
representing the sampling set, §. The reconstruction process is equivalent to estimating
the measurements of the buses with no PMU from the measurements of the PMU buses.
Mathematically, this process can be captured in the form of x.(p’) = Z(x(p)), Vp €
P, Vp' € V\ P, where #Z represents the estimation function described in Chapter 2 that
estimates the measurements of the buses with no PMUs from the measurement of the PMU
buses. In this framework, the PMU placement problem can be formulated as an optimization
problem of minimizing the graph signal reconstruction error with the minimum number of

PMUs as follows:
. N /\12
min 37 Bee(p) — (PP + AP (6.9)

p'EV\P
where A is the Lagrange multiplier and |P| denotes the cardinality of the set P. In the
practical setting, in addition to minimizing the error of estimating the measurement values at
the buses with no PMUs, several aspects are to be considered regarding the observability and

implementation issues. These aspects can be considered as the constraints of the optimization
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problem in (6.8). In this work, two of these aspects are being considered as examples: 1)
since placing a PMU at one bus ensures full observability of the voltage angle of its 1—hop
neighbors, if a PMU is placed at bus n, the 1—hop neighbors of n are not considered as
PMU bus, 2) a radial bus (i.e., vertex with degree 1) is not considered as a PMU bus [16].
The optimization in (6.8) can be expanded based on the reconstruction process discussed
in Section 2.5.2 and shown to be an NP-hard problem [106]. Here, a heuristic is proposed
for sampling-set selection based on the anti-aliasing filter error criterion described in the
previous subsection 6.4.1.5. According to this technique, we consider buses one by one for
placing PMUs in the sequence of the vector, a’. If a bus is a radial one or is at 1—hop
distance of an already placed PMU, the bus will be skipped and the next bus is considered

for placing a PMU.

6.4.3 Results
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Figure 6.6: Error of reconstruction in PMU placement setting.

Figure 6.6 illustrates the mean absolute reconstruction errors as a function of the number
of PMU placed in the grid for directly applying the anti-aliasing filter error-based criterion
and for the modification of the anti-aliasing filter error-based criterion considering the two
previously stated aspects of PMU placement. According to the modified criterion, when

some of the buses are equipped with PMUs, the voltage angle of their 1— hop neighbors can
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be directly calculated using Kirchhoft’s law, and the voltage angles of the rest of the buses are
estimated using the graph signal reconstruction method. In Figure 6.6, the mean absolute
reconstruction errors for the modified case are calculated for the unobservable buses only.
From Figure 6.6 the number of PMUs can be chosen depending on the desired application and
the budget. In our case, it is suggested to place 36 PMUs in IEEE 118 bus system according
to the modified anti-aliasing filter error-based criterion with an average error of 0.5° for the
non-PMU bus voltage estimation, which is acceptable for many applications (e.g. real-time
performance monitoring and trending, small-signal stability monitoring, voltage stability

monitoring/assessment, etc [121]).

6.5 State Recovery Using State Correlation

6.5.1 System and Attack Models
6.5.1.1 Power System Model

In this work, the power transmission system has been modeled as the sets of buses, trans-
mission lines (branches), and their interconnections. V is the set of all the buses (vertices)
in an N bus system as stated in the previous sections. It is assumed that there are PMUs
in all the buses. Therefore, the measurements of all the bus voltage phasors are collected
by the PMUs at a suitable sampling rate and sent to the control center. This assumption
may not be realistic in today’s smart grids as the PMUs are generally optimally placed [122]
to minimize the cost and maximize the observability. Designing and developing data-driven
methods similar to the one discussed here with optimally placed PMUs is prospective future

work.

6.5.1.2 DoS Attack Model

It is assumed that the DoS attacks on the communication system of the power grid result

in the unavailability of the data (time series of measured parameters) from a subset of the

124



PMUs associated with the buses, B. A C V be the set of buses, which their associated PMUs
arc under the DoS attack, and let us consider, |A] = M. Let, x(t) denote any electrical
attribute (e.g., voltage or phase angles) from a PMU at time t, where, k € B. If a DoS
attack occurs at time t,, then, the attack is modeled by assuming the unobservability of

xk(t) for t > t,.

6.5.2 Method

The goal of the estimation method in this work is to estimate the state of the components,
which their PMUs are under attack, from the state of the rest of the components collected
by the rest of the PMUs. Specifically, it is assumed that the time series of the states of
electrical attributes x;(t), where, i € V'\ A is available except for buses in the attack set, A.
In the estimation method, the time series of unknown (unobservable) buses for t > t, due
to DoS attack is denoted by y;(t), where, j € A.

The relationship between the known and unknown states is proposed to be defined as

follows:
N—M
yi(t) = wiki(t). (6.9)
i=1

For M DoS attacks on M buses, equation (6.9) will result in a system of equations as
follows:

y(t) = Wx(t), (6.10)

where y(t) and x(t) are vectors with elements representing the time derivative of the time
series corresponding to unknown and known buses, respectively.

Here, the time derivative of a state variable under the DoS attack has been estimated as
the weighted sum of the time derivatives of the rest of the parameters. The weights come
from the correlations between any state outside the attack zone and the attacked state. The
rationale behind estimating the time derivative of the state first instead of directly estimating

the state is: it has been observed that although the states vary significantly in terms of the
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actual values, there exist very strong correlations among several states in their changing
pattern with time.

The matrix W, contains the bus-to-bus correlation of the electrical attributes among the
buses under DoS attack and the buses that are not under the attack. Any element of W is
represented as:

Wi = e"’f", (611)

where r; is the correlation coefficient between y;(t) and x;(t) for the last t. moments before

the DoS attack:

ta

rii = / xi(t)y;(t)dt. (6.12)

s—te
Since the DoS attack is considered to be on the communication layer of the smart grid,
therefore, no physical attack or topology changes is assumed. Moreover, we consider the
correlation among the PMUs just before the DoS attack happens. As a result, the correlation
among the PMUs before the attack and after the attack can be considered unchanged. It is
true that if the DoS attack continues for a long period, the estimation accuracy decreases
because the correlation among the PMUs changes within this period due to the change in
loads. Besides, if any physical attack is masked by the DoS attack, our technique may not
perform well because the correlation among the PMUs will be changed due to the physical
attack.

The reason behind taking the exponential of correlation coefficients is to emphasize the
highly correlated buses and to de-emphasize the barely correlated buses. However, the set
of weights also depends on the scalar parameter, a. Here, the value of a is empirically
selected and the effect of choosing different values for parameter a has been illustrated in
the simulation and result section. However, the determination of the value of a from the
topology of the grid and system properties directly or indirectly can be prospective future

work.
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For the discrete-time realization of the continuous-time time series, the derivative of a
time series at t can be considered as the backward difference system: £ (t) = f; — f;_1, where,
f; is the sampled value of the time series f at time t, and f,_; is the previous sampled value.
According to this notion, the equation (6.10) can be written in the following form:

Y: = Y1 T W(x: — X 1) (6.13)

The sampled value of the attacked states at the moment of the attack (t,), denoted by Y,
can be considered as the initial value and assumed to be known. During the attack interval,

the values are updated by:
Y, =Y, , TWX —x,,) t>t. (6.14)

6.5.3 Simulations and Results

The simulations have been run on the IEEE 14 bus system [123] and IEEE 118 bus system
[62]. The load patterns are collected from the New York Independent System Operator
(NYISO) [25]. The NYISO consists of eleven regions. The load profiles are normalized
within 0 to 1 and added with the default constant loads of the eleven load buses of the IEEE
14 bus case to generate the load profile time series. For the IEEE 118 bus case, there are
not enough load data since there are 91 load buses in this system. Therefore, the available
data for the different regions are combined to synthesize load profiles for those 91 load buses
similar to [89]. By combining three different regions to synthesize one new load profile by
taking the average, it is possible to create (131) = 165 such combinations. Out of the 165
profiles, the first 91 are considered as the load profile of the 91 load buses of the IEEE 118
bus system.

In the NYISO data, the load is measured every five minutes. However, these data are

linearly interpolated to generate time series of 0.033 Hz sampling rate. MATPOWER, 6.0
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[24] has been used to simulate the power flow for both the IEEE 14 bus and 118 bus cases.

The details of the simulation have been discussed in the following subsections:

6.5.3.1 Correlation Among PMU Time Series

As discussed in Section 6.5.2, the time-series data from the PMUs under DoS attack
are estimated from the correlations among the PMU data, which arise from the physical
dynamics of the power system. Figure 6.7 illustrates the correlations among the voltage
angle PMU data for the IEEE 118 bus case. From the figure, it is clear that some of the
PMU data have very strong correlations among them. In this figure, correlations have been
shown only for the buses, which have physical connections among themselves. However,
PMUs installed in the buses having no connections may still have correlations due to the

physics of the electricity and power flows.

* -6.94705¢-13

Figure 6.7: Relative correlations among the PMUs of the physically connected buses in
terms of voltage angles for IEEE 118 bus case.

6.5.3.2  FEstimation of PMU Time Series Under Single and Multiple DoS Attacks

Figure 6.8(a) illustrates the estimation of the voltage angle time series of bus 86 of the
IEEE 118 bus system when only the PMU associated with that bus is under DoS attack.

The red curve represents the estimated time series based on the method presented in Section
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Figure 6.8: Estimation of bus voltage angle under single DoS attack. (a) Bus 86 for IEEE
118 bus system. (b) Bus 7 for IEEE 14 bus system.

6.5.2 and the blue line represents the ground truth, while the DoS attack occurred at t,, it is
represented by the black vertical line. The estimated time series seems to track the ground
truth quite accurately. The mean squared error, in this case, is 8.8631 x 10~* degree. The
value of a is empirically selected as 300. However, the accuracy of the estimation depends
on the proper choice of a, which has been discussed later in this section. Figure 6.8(b) shows
similar results for bus 7 for IEEE 14 bus system. The estimation of voltage magnitude time
series has been shown in Figure 6.9.

The accuracy of the estimation of PMU data deteriorates when a larger number of nearby

PMUs go under a DoS attack. Figure 6.10 illustrates the estimation of voltage angle at
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Figure 6.9: Estimation of bus voltage magnitude under DoS attack at bus no. 86 for IEEE

118 bus system.

the PMU associated with bus number 86, respectively, for the failure of 2, 8, 16, and 32

PMUs including the PMU associated with bus 86. It is clear that although the accuracy of

the estimation decreases with the increase in the number of DoS attacks, this method can

estimate the PMU data even for a large number of DoS attacks. Figure 6.11 illustrates the

relation between the Mean squared error and the number of PMUs under the DoS attack

for three types of distribution of attacks: uniform, clustered, and inhibition.
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Figure 6.11: Mean squared error vs. number of DoS attacks (average over all possibilities).

6.5.3.3 Most Vulnerable Combination of Attacks

The most vulnerable PMU for the initial DoS attack from the attackers’ point of view
can be identified on the basis of the largest mean squared error (MSE) of estimation of the
voltage angle under the single DoS attack. The relative vulnerability of the PMUs of the
IEEE 118 bus system has been represented in Figure 6.12 by the node colors. For example,
from the attackers’ perspective, it is possible to create more unobservability in the power

system by launching a DoS attack on a red node (e.g. node 82) in Figure 6.12.
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Figure 6.12: Relative vulnerability of the PMU locations for initial DoS attack on the basis
of MSE for IEEE 118 bus system.
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6.5.3.4 Parameter a Values

The choice of the parameter a has a significant impact on the accuracy of the estimator.
Figure 6.13 illustrates the effect of parameter a on the estimation. Here, the value of the
parameter a is kept fixed for all buses. From Figure 6.13 it can be inferred that a value
between 200 and 500 can be a good choice. When the bus voltage to be estimated has strong
correlations with only a few numbers of bus voltages, then larger values of a, work better
(the weights for the barely-correlated buses would be negligible compared to the weights for
the strongly correlated buses). However, a small value of parameter a would work better,

when that bus has significant correlations with many buses.
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Figure 6.13: The effect of the parameter a on the estimation of bus voltage angles in IEEE
118 bus system.

6.5.8.5 Most Vulnerable Time for the DoS Attack

The moment when the DoS attack initiates also impacts the estimation accuracy. This is
because the correlations among the bus parameters vary in time. This variation comes from
the variation in the load profile at the load buses throughout the day. Figure 6.14 represents
the MSE in the cases of DoS attacks at different times of the day. The two profiles are
from two different days, however, show the same pattern. It can be inferred from the two

figures that in terms of the MSE, the most vulnerable time for the initiation of the attack
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is during the end of office hours when the load fluctuation is very high. From the attackers’
perspective, the highest amount of unobservability can be created by initiating DoS attacks

during this period.
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Figure 6.14: The effect of the attack time on the estimation of bus voltage angles in IEEE
118 bus system.
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Chapter 7: GSP-based Grid Perturbation Analysis

6GSP has emerged as a prominent field that focuses on the analysis of structured data
over the graph domain. Recently, GSP has found applications in the analysis of power system
data by representing the power system as a graph and its measurements over the graph as
graph signals [22, 26].

By extending the theories and tools of classical signal processing to the irregular graph
domain, GSP facilitates imparting explicit information about the topology, connectivity, and
interactions among the components of the grid in the analysis of data. Detection, localization,
and classification of anomalies, attacks, and stresses in the electric grid [22, 26, 125], state
estimation and recovery [47, 102, 126], estimation of load current variability in the presence
of distributed generators [48], and load disaggregation [127] are examples of applications of
GSP in addressing problems in power systems.

Analyzing power grid data through the lens of GSP has revealed that signatures and
patterns of stresses in the system are embedded in various properties and features related
to the system’s graph signals [26, 27]. In this work, the focus is on understanding the
features and patterns in power systems graph signals due to abrupt changes in the load
demand or generated power in a single bus. Although fluctuation of load demand within an
acceptable range is normal and perpetual in the power system, understanding the patterns
of load change is important for situational awareness, particularly in the context of smart
grids with intermittent and low-inertia loads [128]. A typical scenario is the charging of
electrical vehicles (EVs) as a load added to the grid (G2V technology) [129]. Since the

load demand associated with the charging of the EVs is more probable to be clustered

SPortions of this chapter were published in arxiv [124]. Copyright permissions from the publishers are
included in Appendix B.
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geographically [130], a monotonous increase of load demand at a particular bus can be a
common situation. Another origin of the monotonous increase in load demand can be the
load-altering cyber attacks purposefully launched by adversaries [131, 132]. The abrupt
changes in the generation of real power are not common in traditional power systems but
are possible in modern power grids when a large number of renewable energy resources
are connected to the grid by converters [128]. In this work, a general approach has been
considered, from the GSP perspective, to analyze the effect of changes in the load demand
or generated real power at a particular bus, modeled as single bus perturbation, without
explicitly modeling the cause of perturbation.

The first presented study is focused on understanding how a single bus perturbation
spreads through the power grid depending on the strength and the location of the pertur-
bation. The analysis of the spreadability of a bus perturbation is important from several
perspectives in the context of grid stability and reliability analysis. A more spreadable per-
turbation can affect a large number of components (e.g., buses, transmission lines), even
at distant locations from the perturbation point, and introduces stresses in the grid that
may even lead to cascading failures or blackouts. Here, a GSP-based measure is defined
to quantify the spreadability of the perturbation depending on its strength and location.
This spreadability measure is also useful for planning the placement of low-inertia loads and
generators in the grid.

In addition to understanding the spreadability, it is important to understand how the
perturbation affects other graph signal features to gain an improved situational awareness
under stress. For instance, power system graph signals, especially the bus voltage angle
graph signal, are generally smooth during normal grid operation [22, 26, 27]; however, the
local and global smoothness properties of the graph signals vary under stress. This study
focuses on understanding how the global and local smoothness values associated with the
power system graph signals are affected as a function of the perturbation strength and

location. The relation between the proposed spreadability measure and local and global
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smoothness features of graph signals has also been explored and it has been shown that
certain smoothness parameters associated with the difference graph signals (before and after
perturbation) can be estimators of spreadability of the perturbations.

The effects of single bus perturbation on the power system graph signals have been
derived analytically using the DC power flow model and simulated using AC power flow
model to verify the properties in more realistic scenarios. The presented analytical approach
shows that the proposed measure of spreadability does not depend on the perturbation
strength, but rather depends on the location of the perturbation. Our experiment based on
the AC power flow model closely supports this property. Moreover, the presented analytical
analysis shows that the global smoothness of the bus voltage angle graph signal is a quadratic
function of the increasing load demand (or generated real power) at a particular bus. Based
on this analysis, there is a critical value of input power at each bus beyond which the global
smoothness begins to decrease and further increase in the input power leads to divergence
of the power flow equations. Failing of power flow convergence, although arises from various
issues, is an indicator of a stressed system. The presented analytical study shows that
the critical load (or generation) at each bus for which the global smoothness is maximized
depends on the topology.

The main contributions of this article have been summarized below:

e A quantitative measure of the spreadability of a perturbation has been proposed and
the properties of this measure have been analyzed theoretically under the DC power
flow model and verified using the AC power flow model. The proposed measure has

been compared with an existing network-science-based spreadability metric.

e The global smoothness of the voltage angle graph signal has been shown to follow a
quadratic function of the perturbation strength with a maximum, defined as the critical
perturbation. It is shown that this critical point suggests approaching the power flow
model divergence, which although can arise from various issues, is an indicator of an

unstable grid.
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e This work studied the global and local smoothness properties of the difference graph
signal of the bus voltage angles before and after the perturbation. The studies show
that under DC plow flow assumptions these smoothness parameters are independent of
the perturbation strength and can be suitable for comparing perturbations at different
locations of the grid. The results of the simulation with AC power flow support this
property approximately and it has been shown that these smoothness parameters can

be estimators of the spreadability of perturbations depending on their locations.

7.1 Related Work

The effects of perturbations in the electrical grid has been studied from various perspec-
tives in the literature. The stability of the grid after the perturbation, the dependency on the
perturbation location, the propagation of the effect of perturbation through the system, and
the identification of vulnerable locations in the grid are some of the topics of interest in this
domain. A number of works analyze the effects of perturbation from the complex network
perspective using the concept of Basin stability [133, 134] using the frequency measurements
in the grid. For example, Wolff et. al. [133] analyzed the effect of perturbation of a single
node (bus) in the electric grid based on the Basin stability of the grid, which is evaluated
in terms of the return time of the grid to the steady-state after the perturbation. This
work defines perturbation as the direct change of voltage phase angle and angular frequency
at the perturbation bus. Menck and Kurths [134] identify the weaker buses due to small
perturbations in the grid based on Basin stability.

The propagation of spatio-temporal signals through the system (as a complex network)
has been studied by several authors. Hens et. al. [135] provide a generalized theoretical
analysis of how spatio-temporal signals propagate in time through complex networks de-
pending on the topology and dynamic mechanisms of interactions among the vertices. A
few works studied the spreading of disturbance in the electric power grid. For example,

Molner et. al. [136] proposed a heuristic technique to relate the spread of oscillations due
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to the variable renewable resources to the network structure. Nnoli and Kettemann [137]
analyzed the propagation of disturbance in the clectric grid depending on the topology of
the grid, its inertia, and heterogeneity. In [138], the authors considered a network science
based approach to quantify the spreadability of a single perturbation in the grid depending
on the perturbation location.

As discussed earlier, the impact analysis of grid perturbations can be useful in several
scenarios in the modern power grids including the integration of distributed energy resources
(DERs) and electric vehicle charging stations. Although in most cases, the problems do not
directly correspond to the single vertex perturbation, the single perturbation analysis can
be useful for the simplification of such problems. In the current literature, the issues related
to the integration of EVs and DERs have been studied using various methods. Vasilij et.
al. [139] developed a model for the worst-case analysis of the impact of placing EV charging
stations in the grid, which involves observing the impact of the placement of charging stations
on voltage profile and line loading.

The current work presents a generalized approach to analyze the impact of a single
perturbation in the grid. Moreover, unlike the Basin stability-based analyses, this work does
not consider the frequency data and only considers the impact of the perturbation on the bus
voltage angle data. The current work adds a GSP-perspective into the analysis to directly

impart the topology and interconnection into the analysis.

7.2 Mathematical Representation of Perturbation and Associated Electrical At-

tributes

7.2.1 Power System Graph Signals

An electric power grid with N buses and M transmission lines has been modeled as a
weighted undirected graph, G = (V,£,W). The buses of the grid are considered as the
vertices of the V = {v;, v, ..., vy}, whereas the transmission lines are considered as the

edges, £ = {ej : (i,j) € V x V}, and therefore, |V| = N and |E| = M, where |.| denotes the
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cardinality of the set. The element w;; of the weight matrix, W is the weight corresponding
to the edge, e;. The vertices corresponding to the buses with generators (i.e. energy sources)
and loads are denoted by S C V and £ C V. The Laplacian matrix L associated with the
graph G with elements /; is defined as: [; = Zszl wj, if i = j and [j = —wj;, otherwise.
In the GSP literature, the weights are defined in various ways, for instance, based on the
geographical and physical relational aspects, depending on the applications. In this work,
the weights w;; are defined such that the Laplacian matrix, L represents the imaginary part
of the admittance matrix of the grid which is related to the transmission line parameters of
the grid.

The graph signal x(v,), written as x(n) for simplicity, can be considered as a mapping
of the vertices of the graph to real-number space, x : V — R and can represent various
electrical attributes associated with the buses of the grid. The signal values of x(n) arranged
in a vector form would be denoted by x. In this article, the graph signal x(n) at a particular
time instant t is denoted as x(n, t).

Let us consider 0(n), the bus voltage angle graph signal that represents the angles of the
voltage phasors at each bus. While any or combination of electrical attributes at each bus can
be considered, here the focus will be on the voltage angle graph signal 6(n) to evaluate the
state of the power system without the direct information on the transient aspects through the
fluctuations in voltage magnitudes and frequency. Moreover, bus voltage angle measurements
are directly related to the load demands, which are important in this study. The generated
real power and the real power demand at each bus are denoted by the generated power graph
signal, pg(n) and load demand graph signal, ps(n), respectively. Note that p,(n) = 0 for

neV\S and pg(n) =0 for n € V\ L. The input power graph signal is denoted by p(n),

where p(n) = pg(n) — pg(n).
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7.2.2 DC Power Flow Model

The DC power flow model [24] describes a linear relationship between the input power
and the bus voltage angle, described by the equation p = Bf, where B is the susceptance
matrix (imaginary part of the admittance matrix) of the grid with element b; at the i—th
row and j—th column. Knowing the topology, the bus voltages can be computed from the

active power input based on 6 = B_IE and can be represented in a graph signal form as:

0(n) = ZBHJP(J) (7.1)

where §j is the element of B! at the i—th row and the j—th column. In this work, the
linearity of the DC power flow model facilitates analytical investigation of the properties
of the graph signals. However, since the DC power flow model is an approximation of the
power flow in power systems, in certain cases, the results from this model may deviate from
the real scenarios. Nevertheless, through the graph signal analysis, we will show that the
DC power flow assumption can still provide key information that can reveal the state of the
system. Whenever necessary, in this work, the AC power flow model is utilized for numerical

verification of the state of the system through MATPOWER [24].

7.2.3 Smoothness of Graph Signals

The global smoothness of a graph signal is a measurement of the overall amount of vertex-
to-vertex fluctuations in the graph signal [63]. The global smoothness value associated with
graph signal, x(n) is defined as [63]:

TLx ZIN:]. jN—l Lyx(i)x(j)

S = , 7.9
& x7x > k=1 X2(k) 72

where x is the signal values of x(n) arranged in a vector form. A small value of g, indicates

a smooth graph signal, whereas increasing values of g, indicate the increasing vertex-to-
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vertex fluctuations of signal values [63]. The bus voltage angle graph signal #(n) in normal
conditions is generally smooth with a small value of gj.

The local smoothness [63] of a graph signal x(n) is defined by the following equation
and represents how rapidly the value of a graph signal changes from each vertex n to its

neighboring vertices:
21:1 Loex(k)
x(n)

Our previous analyses of the local smoothness for the bus voltage angle graph signals in

h(n) = x(n) #0, (7.3)

power systems in [26, 102] have revealed that the voltage angle graph signals is smoother
at certain locations in the grid depending on the topology and interconnections among the
components of the system.

The global and local smoothness of graph signals are important features in the vertex
domain that can allow analyzing some of the behavior and properties of the signals and
the system they represent. Deviation from nominal ranges of these parameters can be an
indication of an anomaly [26]. In the power system context, the anomalies may indicate
a stressed system due to cyber attacks or physical events, such as line outages, generator
trips, and abrupt load changes. In our previous works, local and global smoothness of
bus voltage angle graph signals (i.e., gy and lp(n)) have been utilized for the detection [26],
location identification [26], characterization (determining whether clustered or random stress,
determination of cyber-attack centers and radii) [29], and classification [30] of these stresses
in the power system. The current work provides a focused study on the changing pattern of
global and local smoothness values of different graph signals under single bus perturbation
due to, for instance, abrupt changes in load demand or generation. Through this study, the
spread of the effects of perturbation in the system will also be investigated through graph
signal properties. Understanding the properties of stresses and their spread can support
power system monitoring and planning, for instance, for predicting the grid instability due to
load and generator changes, the effects of renewable energy resources on the system state, and

for analyzing the effect of loads connected through grid-following and grid-forming inverters.
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7.2.4 Single Bus Perturbation

A single bus perturbation % at the vertex (i.e., bus), v, € SUL is defined by an abrupt
change of value in the bus input at time t, and can be defined in the power graph signal

form as:

p(u, t,) = p(u, t, — €) + Ap,(u), (7.4)

where € is a very small amount of time. The perturbation graph signal Ap,(n) can be

modeled as a Kronecker Delta [140] graph signal:

Apy(n) = 18,(n), (7.5)

where 6,(n) is the Kronecker delta graph signal defined as: d,(v) = 1 and 6,(n) = 0, for
n # u and 7 is a scalar called perturbation strength associated with the perturbation, % .
Therefore, Ap,(u) = 7. A positive value of v at the generator-only bus (i.e., v, € S\ £)
indicates an increase in generated real power while a positive value of v at load-only bus
(i.e., v, € £\ S) indicates an increase in the real power load demand. The value of v in
buses with both generators and loads (i.e., v, € S N L) can be described by the increase
and decrease of both generations and loads. However, in this work, only one change at a
time (i.e., either an increase or decrease in generated power or load demand) is considered.
It is also assumed that the inertia of the grid is negligible in response to the perturbation,
% . This assumption is reasonable for the modern and future grids, where renewable energy
resources are connected to the grid with inverters and loads are connected with converters.

In this work, the effects of the perturbation % on the voltage angle graph signal, 6(n)
are evaluated. Let the difference voltage angle graph signal due to the perturbation % at

bus u at time t, be defined as:

Ab,(n) = |0(n, t,) —O(n, t, —¢€)

, (7.6)
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where € is a small value. The signal values of the graph signal Af,(n) have a direct relation
with the perturbation strength, . Therefore, for a better understanding of the dependency
on the perturbation location a normalized version of Af,(n) has been considered. The

normalized difference voltage angle graph signal is defined as:

() = B0ln), ()

where 1,(n) is expressed in degree/mega — watt.
Property 1. Considering the DC Power flow model, the 1,(n) depends only on the topology.

Proof: Substituting the definition of #(n) from equation (7.1) into equation (7.6):

N N

Zﬁnjp U, tu) — Zﬁnjp(’.v ty — €)

J=1 J=1

= Zﬁjj PG ts) =P Uty —€)]

Afy(n) =

N
= > Bajlpu(n)
j=1

(7.8)
N
=1 Buy8uli)
j=1
= |vBnu|, (using the property of Kronecker Delta).
Next, substituting Af,(n) into equation(7.7) leads to:
|7 Bnul
Yu(n) = == = [Bnul- (7.9)

7]

This property shows that ¢,(n) does not depend on +, under the DC power flow assumption.
The normalized difference in voltage angle before and after the perturbation depends only

on the location of the perturbation. In other words, the location of the perturbation affects
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1,(n) according to the topology of the grid, which captures the interconnections among the
buses and the electrical distances between the components. Since the power system dynamics
deviate from the DC power flow model, this property may not hold accurately in real power
grids, nevertheless, it indicates that the effect of perturbation in the grid predominantly
depends on its location rather than its strength. This property is important as it can be
used for instance, for identifying the vulnerable buses with respect to perturbation issues,
which is important for stability, maintenance, and resilience planning.

The perturbation % affects the bus attributes of the perturbed bus, v, € S U L as well
as the other buses (v € V,v # v,) in the system. The effects of the perturbation spread
throughout the grid (similar to a stone causing ripples in the water). However, the effects are
more complex in the power systems because of their irregular topology (i.e., non-Euclidean
vertex domain) and complex interconnections based on the physics of electricity. While it
is expected that the attributes of the nearby (geographical and topological) buses of the
perturbed bus v, get affected more than the far-away buses, deviation from this expectation
is very common. In other words, the relationship between the geographical/topological
distance and the perturbation effects is irregular. In the next section, the spreadability of the
perturbation %/ is studied in terms of the location of the perturbation and the perturbation

strength.

7.3 Effects of Single Bus Perturbation

7.3.1 Spreadability of Single Bus Perturbation

For analyzing the spreadability of perturbation %/ in the grid in terms of the bus at-
tributes, we propose to evaluate the changes introduced in the bus voltage angle graph
signal at the buses at different hop-distances from the perturbed bus, v,. The mean of the
signal values of 1(n) at all the vertices at K — hop distance from the perturbed bus v, spec-

ifies how the buses at K — hop distance are affected on average by the perturbation. This
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can be expressed as:

S — > wu(n), (7.10)

(K)
NE S

where N © V is the set of the K— hop neighbors of v,. According to Property 1, ¥,(n)
does not depend on the perturbation strength, QZE,K) also does not depend on the perturbation

strength under DC power flow assumptions.
Corollary 1.1. Under the DC Power flow assumption, the @EK) depends only on the topology.

Proof: Substituting ¢,(n) from equation (7.9) into equation (7.10) results :

T S S ) (7.11)

(K)
NP S

Therefore, under DC power flow model z/_zf,K) does not depend upon the perturbation strength,

o

~, rather depends upon the perturbation location, v,. As such, ¢’ can be calculated from

the susceptance matrix, B!, O

0.1
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— Using AC power Flow
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Figure 7.1: Average of the values of normalized difference voltage angle graph signal at
3-hop distance from the perturbation bus v, = 100 for IEEE 118 bus system.

Figure 7.1 shows gz?ﬁ,%, the average of the values of normalized difference voltage angle
graph signal calculated from the equation § = B~!p (DC power flow model) at K = 3— hop

distance from the perturbed bus number 100 of the IEEE 118 bus system. It can be observed
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that 1/_1:(1:3%, is independent of the perturbation strength, . The results obtained from the AC
power flow model in MATPOWER show a similar property, i.e., very weak dependence
of &{32) on . For the AC model results the value shows a slight variation (around 0.008
degree/ MW) from the value obtained using DC power flow model.

The values of QZEK) show a decreasing trend as a function of K as illustrated in Figure
7.2 when calculated using the AC power flow model in MATPOWER. This behavior is
expected as the effects of perturbation should spread and diminish from the source of the
perturbation (i.e., v,). Our experiments show that this decreasing trend is non-uniform over
the grid and varies significantly depending on the location of the perturbation. Generally,
a larger value of zZE,K) at a far-away bus (i.e., a higher value of K) from the perturbation
source indicates larger spreadability of the perturbation. Therefore, a flatter IEEK)VS. K curve
indicates greater spreadability of the perturbation. As such, to quantify the spreadability
we propose to consider the slope of the best-fitted line (Figure 7.2, red straight line) to the
79vs. K curve as the spreadability measure, s. To this end, the spreadability measure due

to the perturbation, % at bus v, can be expressed as:

1
S0, 0P, P

s(u) = (7.12)

where . [15&1),155,2), _E,D)] denotes the negative slope of best-fitted lines to the points:
[0, 382, ... o).

Corollary 1.2. Considering the DC' Power flow model, s(u) depends only on the location of

perturbation, U .

Proof: Since sz,K) is independent of v as proved in equation (7.11), from equation (7.12), it
can be shown that s(uv) is independent of v and only a function of the perturbation location
v, under DC power flow assumptions. O

Figure 7.3(a) shows the spreadability measurement, s(u) due to perturbation in different

perturbation locations, v, € LU S for a fixed perturbation strength. Although according
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Figure 7.2: Average of the values of normalized difference voltage angle graph signal at
different hop distances from the perturbation bus v, = 65 for IEEE 118 bus system.

to the DC power flow model, our proposed measurement of spreadability s(u) is strictly
independent of the strength of perturbation, our simulation with the more realistic AC
power flow model exhibits very small dependency on the perturbation strength and depends
mostly on the perturbation location aligning with the theoretical analysis. Figure 7.3(a)
illustrates how the effect of load perturbation in different load buses spreads through the grid
as reflected in the bus voltage angle difference graph signals. This result can become useful
in several real-life applications related to the maintenance, planning, and reliability of the
smart grid. Firstly, it indicates the vulnerable buses for perturbation which the perturbation
can cause a more spreadable event in the grid and cause greater damage. For example, from
Figure 7.3(a) it is observable that the impact of a load perturbation at bus number 116 of the
IEEE 118 bus system is spreadable through the grid than a load perturbation at any other
bus in the grid. This observation can be useful for the planning of placement of renewable
generations and low-inertia loads in the grid. Certain locations in the grid can be avoided
from the consideration of renewable integration or EV connection depending on the analysis
of the spreadability.

For comparing the results for the spreadability measure, s(u) we have calculated the
spreadability introduced in [138] in our case of load perturbation which is developed using

a network-science-based approach and considering the difference voltage angle graph signal
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A, as the mean displacement vector as defined in [138]. According to the definition of

spreadability in [138], the spreadability, s'(u) can be defined as:

N

s'(u) = C'(u) ) £0.(1)

i—1 m@(vm i) (7.13)

where, (v, v;) is the shortest path length between the perturbation bus v, and all the buses
v; € V calculated from the graph G'(V, £) which can be obtained by ignoring the weights
of the graph G but containing same sets of vertices and edges, and C'(u) is the modified

normalized closeness centrality as proposed in [138]:

o N
C'(n) = S ) (7.14)

Corollary 1.3. Considering the DC Power flow model, s'(u) is independent of the pertur-

bation strength .

Proof: By plugging the expression of Af,(n) from the equation (7.8) to the equation (7.14)
we obtain:
N
|/3iu|

s'(u) = C'(v) Z W@(vu, V), (7.15)

The terms C'(u) and Z(v,, v;) is calculated from the unweighted graph G’ for a certain per-
turbation location v, and therefore, depends only upon the interconnections among the buses
of the grid while the ; terms are related to the electrical parameters of the transmission line.
Therefore, for a particular electrical grid, s’(u) depends on the location of the perturbation
and is independent of the perturbation strength. O

Our proposed GSP-based spreadability measurement s(n) and the network-science-based
spreadability s’(u) shows similarity up to a certain level for a perturbation of 50 MW real
power load perturbation at every bus as illustrated in Figure 7.3(a) and Figure 7.3(b). The
similarity is quantified by a Spearman’s correlation coefficient [141] of 0.8562 with no tied

rank and a p — value of 0.
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Figure 7.3: Spreadability indices for a load perturbation of 50 MW in different buses of
IEEE 118 bus system. The Spreadability indices are calculated as in (a) equation (7.12)
which is our proposed measure of spreadability, (b) equation (7.15) which is proposed in
Buttner et. al. [138]. The MATPOWER default loads and generations are considered as
the pre-perturbation real power, p(n, t, — €). The similarity between (a) and (b) from
visual inspection might be challenging, however, their similarity can be justified by the
Spearman rank correlation coefficient of 0.8562.

The spreadability metric s(n) provides a relative measure of how the effect of a single
perturbation can spread through the electric grid depending on the location of the perturba-
tion. This metric is important in analyzing the effects of perturbation in the grid, which can
also be helpful in determining the optimum location for placing renewable sources and bat-
teries [142]. In addition to evaluating the spreadability due to perturbations, it is important
to evaluate other graph signal properties, which may be affected by the perturbations and
may encode important information about the behavior of the system under perturbation.
The global smoothness of graph signals describes the variation of values over buses in an
aggregate form. Next, the effects of perturbation on the global smoothness of the bus voltage
angle graph signals are discussed. In this analysis, load changes are considered as the main

kind of perturbation.

Property 2. Under the DC Power flow assumption, the global smoothness of the voltage

angle graph signal is a quadratic function of the increased load.
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Proof: Let us start by writing the definition of the global smoothness for the voltage angle

graph signal ¢ and use the DC power flow model to expand the definition of 8 as follows:

67LY
8o = 070

(B~'p)' L (B'p)

- T
(TB g) T(B 'p) (7.16)
p'(B) LB'p

- ET(B—I)T B-lp

_P'Qp
P'Rp

Here, Q = (B1)" LB ! and R = (B~1)” B!, both contain topological information and are
independent of p. Since the other elements of the vector p, except the u—th element, are the
same before and after the perturbation, % (as described in Section 7.2), gy is a quadratic
function of the real power p(u, t,) at the perturbed bus v, € V. Specifically, from equation

(7.4) and equation (7.5), the global smoothness can be written as:

g@ 0.8 p2 (U, tu)
= go o< [p? (U, ty — €) +v* + 2vp (u, t, — €)] (7.17)

= gy < v* +27p (u, t, —€)

Therefore, gy is a quadratic function of 7. Figure 7.4 shows gy as a function of pertur-
bation strength v for load perturbation at bus number 16 of the 118 TEEE bus systems.
The values of gy are calculated using equation (7.2) with the values of #(n) obtained from
the AC power flow model in MATPOWER. Although Property 2 is derived under the DC
power flow assumption, Figure 7.4 shows that it also holds for the AC power flow (although
with some numerical deviation). The quadratic form of gy as the function of perturbation
strength can have important implications. For instance, our experiments have shown that an

increasing trend in gy may indicate a stressed system. Specifically, the power grid bus voltage
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Figure 7.4: Global smoothness of the bus voltage angle graph signal as a function of
perturbation strength in case of real-power load perturbation at bus 102 of IEEE 118 bus
system calculated using AC power flow in MATPOWER. At the critical perturbation, .
the global smoothness is maximum and begins to drop beyond it. Any increase of
perturbation strength beyond +,. the power flow becomes non-convergent.

angle graph signal is generally smooth over the vertices under normal operating conditions
[26, 22]. Therefore the value of gy generally stays small, while the actual value depends on
several factors, such as the system topology, load demand, and generation amount in the
system. From Figure 7.4 it can be observed that when the load is increasing continually at
a particular bus, initially gy increases with the increasing load, which indicates increasing
fluctuations of signal values from vertex-to-vertex until the perturbation strength reaches a
critical point 7. (associated with a critical load demand of py (u)) for the perturbed bus,
v,. Increasing the load beyond this critical point results in decreasing values of gy, which
in general can indicate smoother signal and normal grid conditions. However, in this par-
ticular case, the decrease in the global smoothness after reaching its maximum suggests a
stressed system, and the issue of non-convergence of the AC power flow calculations rise in
this phase. Moreover, the increase of, pg(v), i.e., v, at the perturbed bus increases the power

flow through a number of transmission lines. Increasing the size of perturbation can lead to

overloading of transmission lines and outages and in severe cases cascading failures.

Application 2.1. Determining the critical value of perturbation strength, v for smooth grid

operation.
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The critical value of the perturbation strength, ~, which also corresponds to the critical

load size at bus v, can be identified based on the maximum values of gy as follows:

ag@ _ 8g9
Ip(u)lpy(w)=pa.(u)  Op(u) ly=rc

~0 (7.18)

By substituting equation (7.16) into equation (7.18) and applying the rules of matrix differ-

entiation:
0gp
Ip(u)

08p
Ip(u)

By solving the equation for p(u) which is the same as the u—th element of p the value of

p'Qp-~<(p"Rp) = p"Rp-=<(p"Qp) (7.19)

real power for which gy is maximum can be obtained, and therefore the critical perturbation
strength v, can be obtained by equation (7.5).

Figure 7.4 shows gy for monotonous load increase at bus 17 of the IEEE 118 bus system
(which is purely a load bus). The result presented in this figure suggests that the perturbation
strength of 7. = 631.8MW results in the maximum gy value and corresponds to our defined
critical load. This critical load advises on a stressed system for which the power flow non-
convergence based on the numerical results occurred at the perturbation strength of ~v,. =

848.9 corresponding to a load size of 853.9 MW.

Property 3. Under the DC Power flow assumption the global smoothness of the difference

voltage angle graph signal, A0 is independent of the perturbation strength.

Proof: Following the definition of global smoothness in equation (7.2), the global smooth-
ness of the difference bus voltage angle graph signal Af,(n) before and after the perturbation

9 can be written as: \ N
2;21 Ejzl LIJAHU(I)AGU(J)
Sohy A62(k)

By substituting the Af,(n) from the result expressed in equation (7.8) we obtain:

8no = (7.20)
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Figure 7.5: The absolute value of global smoothness of the difference bus voltage angle
graph signal before and after the perturbation as a function of perturbation strength ~.
Both analytical (under DC power flow assumption) and simulation (using AC power flow)
results are shown for (a) load perturbation in bus number 8 and (b) generation
perturbation in bus number 10 of IEEE 118 bus system. The results show that |gag| is
purely independent for the DC power assumption based power flow calculation using

p = B6 and shows a very slight dependency on ~ for more realistic AC power flow based
simulation in both perturbation cases.

T Ll Bul 1Bl
N Bl Bl

_ EINII ZJNI]. Lij |/Biu6jul

S Bl

Since there is no v present on the right-hand side of the equation, gay does not depend on

8no
(7.21)

the perturbation strength but rather depends on the topology of the network. O

This GSP-based property associated with both real power load perturbation (Figure
7.5(a)) and real power generation perturbation (Figure 7.5(b)) has been justified by simu-
lation on IEEE 118 bus system. From Figure 7.5 it can be observed that in perturbations
in both cases, power flow calculation using p = Bf under DC power flow yields purely hor-
izontal |gap| vs. v curve which indicates strict independence of perturbation strength. The
more realistic AC power flow also justifies this property, however, shows a slight dependency
on perturbation strength.

This property enables gag to be a GSP-based indicator for comparing perturbation in
different locations in the grid. Figure 7.6 shows the values for gag for a perturbation of

v = 50MW in each of the load buses of the IEEE 118 bus system. It is clear that load
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Figure 7.6: Global smoothness of the difference bus voltage angle graph signal before and
after the perturbation for the same amount of load perturbation v = 50MW in each of the
load buses of IEEE 118 bus system.

perturbations of the same strength on different buses have different degrees of effects in the
grid which is reflected in the graph signal Af(n) and its smoothness. Since the graph sig-
nal Af(n) by being a difference graph signal before and after the perturbation, inherently
contains time evolution information to a certain degree and can be indicators of spreading
patterns of the effect of perturbations. This can also be understood from the visual re-
semblance of the bar diagram of gay in Figure 7.6 with the bar diagram of our proposed
spreadability measure, s(u) in Figure 7.3. The similarity between gag and s(u) can be also
justified by the cosine similarity of 0.8281 and Spearman rank correlation co-efficient of 0.61
for v = 50MW perturbations in all the load buses of IEEE 118 bus system. Therefore, the
GSP-based parameter gag can be an indicator of locational dependency of perturbations in
the grid, especially to estimate the spreadability of the perturbation effects. Similar results

can be observed in the local smoothness of the graph signal Af,(n).

Property 4. Under the DC Power flow assumption the local smoothness of the difference

voltage angle graph signal at any verter, A0 is independent of the perturbation strength.

Proof: From equation (7.3), the local smoothness at bus n of the difference bus voltage

angle graph signal Af,(n) before and after the perturbation % :
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N LoA0,(K)

laon) = ==

,A0,(n) #0 (7.22)

By substituting the Af,(n) from equation (7.8) we obtain:

ZQI::[ Lnklfyﬁku| _ 221:1 Lnk|Bku|

/ = -
aoln) = = g B

NIOEX (7.23)

Equation (7.23) provides the local smoothness values of A#,(n) at any vertex, v, of the
graph. The local smoothness values at the perturbation bus can be obtained by putting

n = u in equation (7.23):
ZLV:1 Lukﬁku
Buu

which is independent of the perturbation strength. O

 Buy # 0 (7.24)

IAQ(U) =
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Figure 7.7: Local smoothness values at the perturbation vertex of the difference bus
voltage angle graph signal before and after the perturbation for the same amount of load
perturbation v = 50MW in each of the load buses of IEEE 118 bus system.

The independence of the perturbation strength makes /ag(u) suitable for analysis of lo-
cational dependence of perturbations in the grid similar to gag. Similar to gag, the local
smoothness value of the difference bus voltage angle graph signal before and after the pertur-
bation evaluated at the perturbation point can be served as an estimator of the spreadability

of the perturbation effect. Figure 7.7 shows the values of local smoothness at the perturba-
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tion vertices due to the same amount of load perturbation v = 50MW at each load bus of
the TEEE 118 bus system. The bar diagram of Iag(u) seems similar to the bar diagram of our
proposed spreadability measure, s(u) for the IEEE 118 bus system. The cosine similarity
and the Spearman rank correlation coefficient between s(u) and /ag(u) for 50 MW pertur-
bations are, respectively, 0.8925 and 0.66, which justifies Iag(u) as a GSP-based estimator of

perturbation spreads.
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Chapter 8: Conclusion and Future Work

This dissertation discusses the importance of situational awareness in the context of mod-
ern smart grids. By utilizing graph signal processing and energy data analytic techniques,
several specific problems related to the security and reliability of the smart grid are stud-
ied. The main goal was to capture the dynamic interactions among the components of the
grid from the available data using analytical tools and apply the knowledge to improve the
security and reliability of smart grids. The experimental results show that the proposed
techniques provide very effective solutions to the security and reliability-related problems
in power systems in specific situations with the available data. Moreover, the proposed
techniques are analytically evaluated and verified using simulation-based analysis. There
are several directions in which the research in this dissertation can be extended to further
improve situational awareness in ever-evolving smart grids. This chapter concludes the dis-
sertation with concluding remarks on all the considered applications and discusses future

work scopes in each direction.

8.1 Concluding Remarks

In this dissertation, the problem of detecting different cyber attacks and physical anoma-
lies and stresses has been studied by using both the state-correlation approach and the
GSP-based analysis. For both approaches, the power system states (i.e., bus voltage angles)
are considered as multivariate time series. In the state-correlation-based approach, it has
been shown that the instantaneous correlation matrix, which captures the correlation among
the state of the components, bears important information about the dynamics and stresses

in the system. Visualizing the instantaneous correlation matrix image can provide a simple
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yet effective tool for detecting and locating stresses in the real-time monitoring of the power
grid. Further, a k—NN classification method has been developed using features extracted
from the instantaneous correlation matrix to detect various types of cyber-attacks as well as
single-line failures in the system. The presented method shows promising performance and
sheds light on the importance of the correlation information among the state of components
in the system. In the GSP-based approach, energy graph signals are utilized to represent
and analyze the power grid’s measurement data for reliability and security evaluation of
the system under various stresses. The physical structure of the power grid has been used
to define the graph domain with the measurements associated with the grid as the graph
signals. The effects of the cyber and physical stresses on the graph signals have been studied
in the vertex domain, graph-frequency domain, and joint vertex-frequency domain of the
graph signals. Based on the observations from the effects of stresses, novel techniques for
detecting and locating stresses from the vertex-frequency energy distributions, and the lo-
cal smoothness of graph signals have been proposed and compared with existing GSP and
non-GSP methods. It is shown that the proposed techniques can detect challenging stresses
with no abrupt changes at the onset. Moreover, the techniques can perform well in locating
the stresses.

Once a stress or anomaly is detected and located in the smart grid, its characterization,
and classification are crucial for the prompt mitigation of the damage, as well as for per-
ceiving the intention and strategy of the attacker. It has been shown that along with the
detection and locating of the cyber stresses in the grid, the GSP-based features extracted
from the graph signals associated with the electrical attributes of the buses at the moment
of detection or its temporal vicinity are effective for their characterization and classification.
A two-stage classification framework for classifying cyber and physical stresses in the smart
grid has been proposed based on the learning of the power system’s graph signal features.
This approach involves combining GSP-based feature extraction and machine learning-based

classification methods. The first stage classifies between cyber and physical stresses, while
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the second stage involves classification among different physical stresses or among cyber
attacks depending on the predicted class at the first stage. Various GSP-based features
are designed to capture both the topological and connectivity information of the system as
well as the temporal information in the signals into the machine learning methods. The
experimental results show that the proposed GSP-based learning technique outperforms the
machine learning-based classification techniques that are directly applied to the measurement
data, for different levels of signal noise. A technique for reducing the number of GFT-based
features has also been proposed based on down-sampling the graph frequency domain for
efficient implementation of the classification techniques. Moreover, it has been shown that
the GSP-based features, especially the local smoothness-based features are effective in clas-
sifying clustered and random multiple cyber attacks and estimating the center and radius of
the clustered attacks.

For recovering bus voltage angle graph signal values at the unobservable buses at a single
time instant using the signal values at the observable buses, the graph signal sampling-
reconstruction framework has been utilized under the band-limited graph signal assump-
tions. This technique successfully recovers missing signal values with good accuracy. For
relaxing the band-limitation assumption, our further work proposes a novel technique for
reconstructing graph signals for the power system’s state recovery problem. The proposed
technique specifically utilizes the local dynamics of the system through the local smoothness
of the system’s graph signals. The statistics of the local smoothness measures along with the
assumption of globally smooth graph signals are used to formulate an optimization problem
for the state recovery problem. The key advantage of the proposed technique is that it re-
laxes the band-limited signal assumption for reconstructing graph signals. Simulation results
for the IEEE 118 bus system show promising accuracy and performance in recovering the
unobservable states. For recovering states for a duration of time, a state-correlation-based
approach has been proposed in which the time-varying states inside the unobservable zone

from the dynamic states of components outside the attack zone by using the correlations
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among the states. The accuracy of the estimation is compared using the mean squared error
(MSE) between the estimated time series and the ground truth for the DoS duration. The
MSEs for the different numbers of unobservable states have been compared. The relative
vulnerability of the locations of the PMUs and the relative vulnerability of the time of the
day from the attackers’ perspective have been analyzed based on the calculated MSEs.

The optimum sensor (e.g., PMU) placement strategy in the grid has also been studied
under the graph signal sampling-reconstruction framework by considering it as a sampling
set selection problem. Several criteria based on the topology and power-dynamical properties
of the electric grid for selecting the sampling set have been studied to evaluate their effects
on the graph signal reconstruction performance. Specifically, a criterion based on the anti-
aliasing filter error has been proposed that minimizes the reconstruction error of sampling.
The anti-aliasing filter error-based criterion modified according to the power grid reality has
been proposed for PMU placement to minimize the measurement reconstruction error.

The work on single-bus perturbation presents a GSP-based analysis of the effect of the
real-power perturbation associated with a single bus on the electric grid in terms of how the
effects of the perturbation spread throughout the grid and how the associated graph signals
behave depending on the location and strength of the perturbation. This work is based on a
few assumptions (e.g., DC power flow) and considers a perturbation model, which is simple
and generic. Nevertheless, this work provides interesting and important insights into the
effects of perturbation in the grid and opens the door to viewing many modern-day electric

grid problems as perturbation analysis using GSP.

8.2 Future Work

In this section, the future research scopes in the studied applications have been discussed.
The scopes include implementing the proposed techniques on more challenging stress scenar-
ios and more detailed system and data models, considering larger electric grids, and solving

problems related to computational resources. In the case of large data availability, many
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problems with the GSP measurement model can also be explored with the training-based

graph neural networks (GNN).

8.2.1 Detection and Location Identification of Cyber and Physical Stresses

There are a few directions in which the detection and location identification research can
be extended considering both the state correlation-based and the GSP-based approaches.
Noise effect analysis on the performance of the GSP-based methods can be an interesting
topic for future studies. In the current works, only the noise, implicitly present in the load
profiles, is considered. Secondly, stresses causing topology changes are not considered in this
GSP-based work and future studies can, for instance, consider GSP-based methods based
on dynamic graphs to detect and locate such stresses. Future research on the proposed
VFED technique can lead to new developments with computationally efficient implementa-
tion techniques or the development of complementing techniques, such as augmented graphs
with reduced domain and grid partitioning, to allow VFED application to a smaller model

for stress localization.

8.2.2 Characterization and Classification of Cyber and Physical Stresses

New and diverse physical stresses and cyber attacks can be considered for classification
and characterization. The characterization of physical stresses with the determination of
stress center and root cause analysis can be future work direction. For sophisticated cyber
attacks, a deeper characterization can be considered by estimating the parameters of the

attack models.

8.2.3 Recovery of the Unobservable States and Optimum Placement of Measurement De-

vices

Extending this study for recovering the states of the grid under topology change and

cyber-physical attack under optimum PMU placement can be considered as prospective
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future work. Moreover, the PMU placement strategy can be studied from other observability
perspectives (e.g., fault detection) considering different clectrical attributes (e.g., current and

frequency).

8.2.4 Characterization of Single Bus Perturbation in Smart Grids

This work can be extended in several directions to make the approach suitable for analyz-
ing various complex dynamics in power systems. Perturbation analysis using graph signals
beyond bus voltage angle (e.g., instantaneous frequency, rate of change of frequency, injected
real or reactive power, etc.) would be a prospective extension of the current work for better
capturing of the grid dynamics. Considering grid inertia in GSP-based analysis is another
research direction that can be explored. The critical load value and the divergence points
analyzed in this work can be related to the instability, islanding, and collapse of the grid, and
associated GSP parameters (e.g., smoothness) can be predictors of grid conditions. Future

research may include exploring these relationships.
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