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L E T T E R TO TH E ED I TOR

Questions concerning the proximal origin of SARS‐CoV‐2

1 | SUMMARY

There is a consensus that severe acute respiratory syndrome cor-

onavirus 2 (SARS‐CoV‐2) originated naturally from bat coronaviruses

(CoVs), in particular RaTG13. However, the SARS‐CoV‐2 host trop-

ism/adaptation pattern has significant discrepancies compared with

other CoVs, raising questions concerning the proximal origin of

SARS‐CoV‐2. The flat and nonsunken surface of the sialic acid‐
binding domain of SARS‐CoV‐2 spike protein (S protein) conflicts

with the general adaptation and survival pattern observed for all

other CoVs. Unlike RaTG13, SARS‐CoV‐2 recombination presumably

occurred between the S1/S2 domains of S protein enabling host furin

protease utilization. Although millions of recorded cases have been

recorded globally, SARS‐CoV‐2 S protein does not have any apparent

further recombination, placing it in conflict with the recombination

models of other CoVs. Similarly, the S protein receptor‐binding do-

main (RBD) of SARS‐CoV‐2 has not accumulated high‐frequency
nonsynonymous substitutions, differentiating SARS‐CoV‐2 from

other CoVs that have positive selection/adaptation mutations in

their RBDs.

2 | DISCUSSION

Andersen et al.1 documented the possible natural origin of SARS‐
CoV‐2 from BatCoV RaTG13.2 SARS‐CoV‐2 is the seventh zoonotic

CoV virus capable of infecting humans, but the first and only human

coronavirus (HCoV) with pandemic potential.3 Bat or rodent CoVs

demonstrate certain specific changes in the S protein RBD, as well as

the S protein glycan‐binding N‐terminal domain (NTD), during host

tropism/adaptation.4,5 SARS‐CoV‐2, unlike other CoVs, does not

have those signature changes, suggesting that these RBD and NTD

subdomains are of very recent origin.

The “Canyon Hypothesis” explains the development of canyons,

depression zones, or cavities on the surfaces of influenza virus, hu-

man rhinovirus, and Meningo viruses.6 In CoVs (except SARS‐CoV‐2),
the S protein NTD domain has several predicted glycan‐binding do-

mains, with a common feature being the hidden localization of these

glycan‐binding domains to cavities to limit their access to antibodies

and immune cells.5 This pattern of CoVs is thought to be an evolu-

tionary measure to restrict the recognition of these active sites by

host immune system.4

HCoVs can evade detection by host glycan‐binding immune re-

ceptors. Comparative genomic analysis of six HCoVs with their

corresponding native bat or rodent CoVs suggests compatibility with

the “Canyon Hypothesis” resulting from various adaptive S protein

NTD nonsynonymous mutations near or at the glycan‐binding do-

main which are predicted to result in these NTD domains being

hidden below the protein surface.5 The predicted flat, nonsunken

pattern of the SARS‐CoV‐2 S protein NTD glycan‐binding domains

conflicts with this evolutionary host tropism/adaptation strategy.7

A template‐switching mechanism is presumably responsible for

the high rate of RNA recombination in CoVs. In host cells, CoV RNAs

show discontinuous RNA synthesis materialized by pauses of the

RNA‐dependent complex and subsequent jumps to downstream

template acceptor sequences. This process results in subgenomic

minus‐strand RNAs which serve as templates for subgenomic mes-

senger RNAs. Due to the mechanistic similarity to recombination,

this process might be at the origin of recombinant CoVs co‐opting
other CoV or even host‐related sequences.8 Instances include the

mouse hepatitis coronavirus S protein NTD sialic acid‐binding do-

main, likely arising from recombination of viral RNA with human

galectin RNA sequences.8

The furin recognition motif present at the SARS‐CoV2 S1/S2

junction has no analogy in other “linage B” beta‐coronaviruses, in-
cluding neither pangolin‐CoV nor RaTG13.1 This indicates that the

S protein S1/S2 junction is not a hot spot for RNA recombination

termination that depends on a pattern swapping templates

(copy‐choice).8 In addition, clinical isolates of SARS‐CoV‐2 S protein

have not indicated any further recombination in this S1/S2 area,

suggesting that the addition of a motif for S1/S2 site furin cleavage

constituted a unique recombination occurrence. Finally, the

CoV‐unique insertion of four aminoacids creating a novel RRAR furin

cleavage site introduces two arginine codons CGG–CGG, whose

usage is extremely rare in CoVs, further supporting the hypothesis of

a unique recombination occurrence.

HCoVs have high‐frequency “hot spots” for nonsynonymous amino

acid replacements that can possibly create a positive selection for host
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tropism/adaptation, resistance to neutralizing antibodies, or immune

evasion.2 Interestingly, clinical SARS‐CoV‐2 isolates to date have only a

single high‐frequency nonsynonymous mutation, D614G, in their

S protein.9 Based on currently known mutation rates and patterns in

clinical isolates of SARS‐CoV‐2, the S protein does not appear to be a

mutational “hot spot” for SARS‐CoV‐2, unlike other human CoVs.

SARS‐CoV‐2 is the seventh HCoV, but the first HCoV with pan-

demic potential. SARS‐CoV disappeared without a pandemic, and MERS‐
CoV is mostly endemic to the Arabian Peninsula with some additional

limited traveler infections resulting in outbreaks in South Korea.3,4

These unique features of SARS‐CoV‐2 raise several questions concern-

ing the proximal origin of the virus that require further discussion.
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