Assessing the Impact of Untreated Sewage on the Coral Reef System

off the Coast of Caye Caulker, Belize: Applying the Foram Index

by

Kristen Lynn Emrich

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Environmental Science and Policy College of Arts and Sciences University of South Florida St. Petersburg

> Major Professor: Henry Alegria, Ph.D. Foday Jaward, Ph.D. Barnali Dixon, Ph. D.

> > Date of Approval: November 7, 2014

Keywords: foraminifera, coprostanol, bioindicator, pollution, anthropogenic

Copyright © 2014, Kristen Lynn Emrich

Acknowledgements

This research was made possible by several parties that I would like to acknowledge. First, I would like to thank the University of South Florida St. Petersburg for providing funding towards this project without which it would not have been possible. And for additional funding Center for Science & Policy Applications for the Coatal Environment (C-SPACE). Second, the Environmental Science and Policy department for providing teaching assistantships while I was working on my research. Thank you to Michael Martinez- Colon, who was an integral part of the design and analysis of this research. I would like to thank the Belizean Department of the Environment and Dr. Henry Alegria, Ph. D., my major professor, for providing me with the opportunity to work in a location and field of study which I exceedingly enjoy. I would like to acknowledge my thesis committee, Drs. Barnali Dixon and Foday Jaward for their guidance and support throughout this process. I would also like to acknowledge Dr. Pamela Hallock-Muller for allowing me to use the Reef Indicators Lab for my foraminiferal analysis and Dr. Candice Simmons for providing me with the knowledge and instruction on the GC/MS, without which the analysis of my samples would not have progressed as well. Lastly, I would like to express tremendous gratitude for all the support and encouragement that I have received from everyone in the Environmental Science and Policy Department at the University of South Florida St. Petersburg, as well as my friends and family for their dedication and support of my educational goals and for seeing me through this research.

Dedication

I would like to dedicate this research to all of those people who ever thought about giving up. Please don't give up, you actually do find out that it is worth all the hard work in the end.

I would also like to dedicate this research to my husband and my family for putting up with me throughout the entire process. The long nights and aggravation you put up with while I was finishing this research is what made it possible for me to finish. Without you it wouldn't have happened, not just because of what you have done, but also because of what you knew that I could do and never let me forget it.

Table of Contents

List of Tables	iv
List of Figures	V
Abstract	vi
Abbreviations	viii
Chapter 1: Introduction and Background	
Coral Reefs Reefs in Belize	
Research Question and Objectives	
Chapter 2: Assessing the Presence of Untreated Sewage in the Coastal	7
Environment of Caye Caulker	11
Background	
Methodology	
Study Site and Sample Collection	13
Sterol Analysis	
Sterol Extraction	
Column Chromatography	
Derivitization	
Gas Chromatography/Mass Spectroscopy (GC/MS)	
Quality Assurance/Quality ControlResults	
Discussion	
Chapter 3: Foraminifera as a Bioindicator	
Background	
Methodology and Results	
Grain Size Analysis	
Foraminiferal Analysis	
Discussion	47
Observer A. Determining Determining Conserver States and Conserver	
Chapter 4: Determining Potential Correlation Between Sewage Contamination and Coral Reef Health	
Contamination and Coral Reel Health	
Longitudinal Statistical Analysis	
Conclusions and Future work	
References	

Table of Contents (Continued)

Appendix A: Raw Foraminiferal Data	.74
Appendix B: Raw Sterol Concentration Data	.96
Appendix C: Weight Percent Data (Grain Size)	.99
Appendix D: Raw Environmental Data	131
Appendix E: Extra Tables	134
Appendix F: Extra Figures	135
Appendix G: Additional Pearson Correlations	137

List of Tables

Table 1: Arithmetic Calculations for Each of Three Compounds and Ratios 20
Table 2: Arithmetic Calculations for Five Parameters Assessed Using Foraminifer
Table 3: Averages by Transect for Eight Parameters Using Foraminifera 43
Table 4: Relative Divisions of Diversity and Species Richness
Table 5: Pearson Correlation Coefficients 56
Table E.1: Sterol Concentrations and Ratios by Transect 134
Table G.1: Pearson Correlations for East Side Only
Table G.2: Pearson Correlation by Longitudinal Analysis-Sample 1
Table G.3: Pearson Correlation by Longitudinal Analysis-Sample 2
Table G.4: Pearson Correlation by Longitudinal Analysis-Sample 3
Table G.5: Pearson Correlation by Longitudinal Analysis-Sample 4
Table G.6: Pearson Correlation by Longitudinal Analysis-Sample 5
Table G.7: Pearson Correlation by Longitudinal Analysis-Sample 6
Table G.8: Pearson Correlation by Longitudinal Analysis-Sample 7
Table G.9: Pearson Correlation by Longitudinal Analysis-Sample 8
Table G.10: Pearson Correlation by Longitudinal Analysis-Sample 9
Table G.11: Pearson Correlation by Longitudinal Analysis-Sample 10 139
Table G.12: Pearson Correlation on Opportunistic Species
Table G.13: Pearson Correlation based on Heterotrophic Species
Table G.14: Pearson Correlation based on Symbiont-bearing Species 140

List of Figures

Figure 1: Caye Caulker-Belize
Figure 2: Belizean Surface-water Currents
Figure 3: Sources of Sterols Entering Natural Habitats12
Figure 4: Sampling Sites15
Figure 5: Coprostanol Concentration Distribution22
Figure 6: Coprostanol to Cholesterol Ratio Distribution (R1)24
Figure 7: Coprostanol to Total Sterol Ratio Distribution (R2)25
Figure 8: Mud Percent Distribution
Figure 9: Foram Index Distribution
Figure 10: Foraminiferal Density Distribution42
Figure 11: Shannon Diversity Distribution
Figure 12: Species Richness Distribution46
Figure 13: Overall Cluster Analysis by Taxa51
Figure 14: East Side Cluster Analysis by Taxa52
Figure 15: West Side Cluster Analysis by Taxa52
Figure 16: Northern End Cluster Analysis by Taxa53
Figure 17: Southern End Cluster Analysis by Taxa53
Figure 18: Coprostanol to FI Comparison at Northern End of Caye Caulker
Figure 19: Coprostanol to FI Comparison at Southern End of Caye Caulker
Figure F.1: Northern Ratio Comparison135
Figure F.2: Southern Ratio Comparison136

Abstract

Human raw sewage pollution is one of several environmental concerns in coastal waters of Belize. This study utilizes foraminiferal assemblage distribution in combination with fecal sterols to determine the presence of human sewage and its effects on a coral reef system off the coast of Caye Caulker-Belize. A total of 125 sediment samples were collected off the coast of Caye Caulker. Fecal sterol concentrations (coprostanol), grain analysis (mud percent), foraminiferal ecological indices (species richness, density, and diversity), foraminiferal assemblages, and the FORAM Index (FI) were assessed.

Coprostanol analysis showed higher concentrations nearest the eastern shore of Caye Caulker, with lower concentrations found in proximity to the reef; 20 samples had a concentration of greater than 100 ng/g. Cluster analysis and assemblage show that the east and west side are dominated by *Quinqueloculina* and *Asterigerina* and these clusters are characterized by relative medium species richness and diversity (28 and 2.66 respectively). The FI indicates that the water quality of the area is conducive to reef growth and recovery. However, 37 samples (out of 125) indicate that the area may be experiencing environmental change (per the FI), and points to the need for further evaluation. Pearson correlation analyses of all variables and samples on the east coast of Caye Caulker show a strong positive correlation between coprostanol-mud percent; and a strong negative correlation between coprostanol-FI, and mud percent-FI. This strongly suggests that raw human sewage does have an effect on foraminifers and on coral reefs. When data is assessed longitudinally (i.e. parallel to the coast rather than

from the coast moving offshore) using the same correlation matrix, however, the results showed no correlation among coprostanol, FI and mud percent except for samples 3 and 4 groups. This suggests that further evaluation of local conditions (e.g. groundwater movement, ocean surface conditions, etc.) may be needed to explain the latter results.

Abbreviations

- Cu- copper
- Sb- antimony
- **Ppm** parts per million= $\mu g/g = ng/mg$
- SCUBA- Self Contained Underwater Breathing Apparatus
- DCM- Dichloromethane; Methylene chloride
- HCI- Hydrochloric acid
- Rpms- revolutions per minute
- GC/MS- Gas chromatograph/ Mass Spectrometer
- **IDL-** Instrument Detection Limit
- SIM- Selective Ion Monitoring
- R1- Coprostanol/ Cholesterol
- R2- Coprostanol/ (Coprostanol + Cholestanol)
- CaCO₃- Calcium Carbonate
- DO- Dissolved Oxygen
- FI- FORAM Index
- \mathbf{P}_{s} = Proportion of symbiont-bearing foraminifera; Number of symbiont-bearing/ total individuals
- Po=Proportion of opportunistic foraminifera; number of opportunistic/total individuals
- P_h=Proportion of heterotrophic foraminifera; number of heterotrophic/ total individuals

Chapter 1: Introduction and Background

Coral Reefs

Coral reefs play a vital role in marine ecosystems. Not only do they provide habitat for numerous organisms, they also offer nursery and feeding grounds for various developmental levels of pelagic and coastal marine species (e.g. Humann and DeLoach, 2002). Due to their proximity to coastlines, coral reefs are exposed to a myriad of anthropogenic impacts (e.g. pollution, tourism) and are one of the most reduced and endangered ecosystems in the world (Buddemeier *et al.*, 2011; Hughes, 1994; Padolfi *et al.*, 2003). Numerous studies have shown an extreme susceptibility of corals to minor changes in temperature, pH, organic matter, and agricultural runoff and other environmental changes (Sheppard *et al.*, 2009; Humann and DeLoach, 2002; Bayona and Albaiges, 2006). In addition, many of the problems associated with a decrease in reef health and cover are tied to increased coastal development. Recent models estimate that somewhere between 43% and 82% of current coral reef habitat could be lost by the year 2100 due to anthropogenic impacts of land-based activities (Freeman *et al.*, 2013).

Determining the anthropogenic influence on coastal ecosystems is a very complex endeavor. Multiple pollutants (e.g. sediments, nutrient, pesticides) can have a synergistic effect on an ecosystem or a given pollutant can affect multiple ecosystems. For example, Haynes *et al.* (2007) modeled the fate and transport of pollutants from a particular catchment into the Great Barrier Reef in Australia. This model attempts to identify anthropogenic land activities which may result in increased contamination and pollution through agriculture, fertilizer and pesticide use, sedimentation, and other stressors that result in the degradation of coral reef systems. This model demonstrates the importance of incorporating all factors that could possibly contribute to the fate and transport of pollutants to a coral reef system. In order to understand the overall impact of land-based sources of pollutants on coastal ecosystems it is often necessary to determine the impact of each pollutant or a suite from a spatial and/or temporal perspective.

There have been many studies conducted to assess pollution effects on coral reef systems. Eutrophication (e.g., Costa Jr. *et al.*, 2000), turbidity (e.g., Fabricius *et al.*, 2012), sewage (e.g., Lapointe *et al.*, 1990), sedimentation (e.g., Melbourne-Thomas *et al.*, 2011), and ocean acidification (e.g., Sheppard *et al.*, 2009; Comeau *et al.*, 2013) are some of the major concerns that impact survivorship and health of coral reefs worldwide. Sewage is of special interest because it provides excess nutrients, toxins (e.g., heavy metals), and pathogens that seep through groundwater or moves as runoff into the coastal waters. Excess nutrients can result in algal blooms that will decrease light penetration and increase turbidity, and can cause major changes in the taxonomic richness and composition of coral reefs as well as their health (e.g., Pastorek and Bilyard, 1985; Futch *et al.*, 2011). In areas where sewage contamination is of concern, such as Southeast Florida (Florida Keys), studies have shown that untreated sewage can bring excess nutrients in combination with other viruses and bacteria that can cause damage to coastal reefs (Futch *et al.*, 2011). Costa *et al.* (2000) also found similar results in Bahia-Brazil. Their study concluded that the variation in the algal cover was

2

primarily attributed to the increase in pollution (pathogens, organic material, and nutrients) coming from increased septic tank usage.

There is a critical need to quantify coral reef health in anthropogenicallyimpacted coastal sites with biomonitors in order to better understand the magnitude and effect of pollution. When the overall coral reef structure degrades, the habitats within this ecosystem can be expected to degrade as well due to the intricate relationship between the organisms and the surrounding physicochemical parameters (e.g., temperature, pH, nutrients).

Some examples of biomonitors that have been used include the corals themselves (e.g., Eca *et al.*, 2012), various species of fish and invertebrates (e.g, seabass, gobies; polychaetes, shrimp) for heavy metals (Cacador *et al.*, 2012), pesticides in fish tissues (Waltham *et al.*, 2011), and benthic foraminifera (Hallock *et al.*, 2003; Uthicke and Nobes, 2008). Using biomonitors, scientists are able to interpret the changes in specific individuals of a species, population, or community structure in order to evaluate the effects of contaminants on the ecosystem (e.g., Hallock *et al.*, 2003; Martinez-Colón *et al.*, 2009).

Reefs in Belize

Anthropogenic impacts on the coral reefs of Belize are not well studied. Several studies on Belizean reefs adjacent to Caye Caulker have focused on algal biomass (McClanahan *et al.*, 2002), nutrient (LaPointe, 2004; McCLanahan *et al.*, 2005; Littler *et al.*, 2010) and bioerosion (e.g., Carreiro-Silva *et al.*, 2012.) experimental work, and fish population modeling (Babcock *et al.*, 2013), among others. Of all the studies conducted, only two have addressed direct anthropogenic impact. Castillo *et al.* (2011) studied the

effects of increasing human population on the coral species *Siderastrea siderea*. This study found that forereef colonies of *S. siderea* were more susceptible to environmental stress than backreef and nearshore colonies which may have historically been exposed to higher baseline stressors (*i*e.g., temperature, weather). These results also suggest that sediment and nutrient plumes originating from Guatemala and Honduras may disproportionately impact the Mesoamerican barrier reef system. Prouty et al. (2008) used the incorporation of trace metals in long-lived coral skeletons as a temporal indicator of environmental conditions. This study found increased levels of Cu (copper) and Sb (antimony) over the course or five years that are most likely attributed to freshwater runoff linked to industrial shipping activities off Honduras, thus demonstrating the negative impacts that terrestrial runoff and anthropogenic activities have on coastal water quality. Neither of these studies addressed a specific impact nor did they address the location of our study. However, the study conducted by Prouty et al. (2008) did have one sampling site in close relation to Caye Caulker. Both studies concluded that the increase in human population, and therefore coastal development, has had a negative impact on the coral reef ecosystem and structure.

In recent years there has been a significant increase in the development along the Belizean coastlines due to an influx of tourism traffic (Young 2008), resulting in the Belize Tourism Board enacting the Belize Cruise Tourism Policy that limits the number of tourists to 8000 per day (Diedrich, 2010). The number of overnight tourists increased from approximately 131,000 in 1995 to nearly 290,000 in 2013 while the number of cruise tourists increased from none in 1995 (when cruise ship tourism was nonexistent) to over 700,000 during the same time period (Aaron Lewis, Statistical Institute of Belize, pers. comm.). Much of the increase in coastal populations in Belize can be attributed to tourism, including ecotourism (Lindberg *et al.*, 1996). When tourism traffic is generated through the attraction of endangered ecosystems, it is referred to as ecotourism. Often the income generated from visitation to this ecosystem is used for the ecosystem's management and continued monitoring, which is intended to protect the ecosystem. Corals reefs are one of the main attractions of ecotourists in Belize (Lindberg *et al.*, 1996). An increase in tourism traffic is naturally followed by an increase in the development of hotels and other infrastructure to service the needs of tourists. In the period from 2000 to 2005 alone, employment in the hotel sector of the economy grew by 46% in Belize (Fabro and Rancharan, 2011).

Understanding and documenting the effects of sewage on coral reefs systems of Belize has never been attempted. The significant increase in the development along the Belizean coastlines due to the increase in tourism traffic (Fabro and Rancharan, 2011) and urban growth (Young, 2008) directly translates to an increase in sewage production. Currently, only four population centers in Belize have sewage-treatment facilities: Belize City, Belmopan, San Pedro, and most recently, Mahogany Heights (Fabro and Rancharan, 2011). A high number of urban residents and facilities rely on septic systems and on latrines in rural areas (Young, 2008).

A good location to study sewage pollution is Caye Caulker (Figure 1).

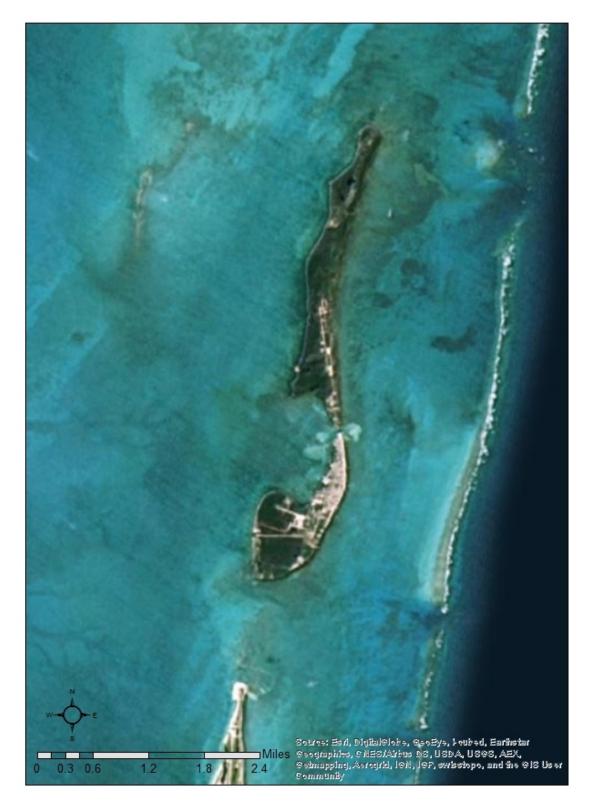
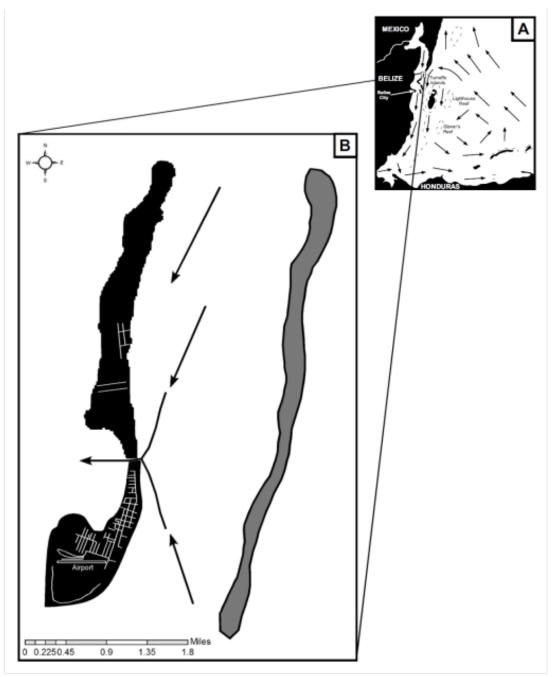



Figure 1: Caye Caulker-Belize.

Caye Caulker is a low lying coralline island and is the second most populated in Belize with 1,500 permanent residents (Fabro and Rancharan, 2011) in an area of approximately 3.35 mi², many of whom are fairly recent immigrants to the island as a result of the increasing tourism activities. Due to its proximity to coral reefs, Caye Caulker receives a significant influx of tourists (Lindberg et al., 1996) adding to the population density of the island. In spite of its growing population, Caye Caulker has no central waste-treatment facilities, leading to concerns that untreated sewage may be harming the environment. A pilot project conducted by Fabro and Rancharan (2011) examined groundwater in Caye Caulker and found high nutrient loads of nitrates (0.9-15.5 ppm), phosphates (0.1-1.5ppm) and high fecal coliform (1 colony/100mL to 160 colonies/100mL) concentrations. Since groundwater migrates offshore towards the reefs (Fabro and Rancharan, 2011), there is potential for environmental degradation of the coral reefs in the area. Water currents in the Caribbean and along the Belizean coastline also make the reefs off the coast of Belize more susceptible to pollutants (Figure 2). Due to the Yucatan Peninsula's coastal configuration, a western bound limb of the Caribbean current travels southward along the Belizean coastline and forms a gyre that falls just east of the mainland (Figure 2). These currents could reduce the flushing that occurs along the reef and the entire coastline of Belize, resulting in concentration of pollutants possibly along the shorelines of many Belizean cayes.

Reefs east of Caye Caulker (Figure 2) are thought to be impacted by sewage pollution (Fabro and Rancharan, 2011) due to their proximity to the coast (< 1 mile), and the bottom condition in the area makes sediment-based environmental assessments appropriate. The sediments surrounding the cayes in Belize are rich in well preserved microorganisms (Foraminifera) (Richardson, 2006 and 2009; Gupta and Machain-

7

Figure 2: Belizean Surface-water Currents. Inset A: General surface ocean circulation around the Belizean coastline. Notice the gyre just off the coast (source: www.web.mit.edu). Inset B: Inferred surface currents between Caye Caulker (black) and the coral reef (gray). White lines in insert B represent anthropogenic development.

Castillo, 1993) that provide the opportunity (for the first time) to apply them as biomonitors (FORAM Index of Hallock *et al.*, 2003) of sewage pollution and coral reef health. Gischler *et al.* (2003) found that the majority of sediments fell between 63µm and 2mm (phi values 0 and 3 respectively), indicating that sediments were between coarse and fine-grained sand. The narrow range of sediment type allows for an easier application of foraminifera as a bioindicator of impacts caused by sewage input and removes another variable that could cause variation in the FI.

The reef off Caye Caulker is very important to the economy to local residents and to the country's economy as a whole. Historically, local fishing industries have been the primary source of income for many locals who have lived on the island of Caye Caulker (Gibson *et al.*, 1998). Now that tourism has shifted the economic focus of the island and the country, it is vital to assess and address the impacts created by an increase in the urban development. Because the country and the local population rely so heavily on the reefs for their continued economic stability, it is imperative to address issues now before the detrimental impacts are beyond repair.

Research Question and Objectives

The question that this research addresses is: Are the coral reefs off the coast of Caye Caulker-Belize experiencing degradation due to the influx of excess nutrients that originate from the seepage of sewage from septic systems into the groundwater of the caye? To answer this question, this project has three objectives: (1) determine the presence of raw sewage in coastal waters off Caye Caulker; (2) implement the FORAM Index as the biomonitor for water quality and, by proxy, coral reef health; and, (3) determine any correlation between the presence of untreated sewage and coral reef

health in order to recommend suitable management practices to the Department of Environment in Belize.

Chapter 2: Assessing the Presence of Untreated Sewage in the Coastal Environment of Caye Caulker

Background

The use of fecal coliform bacteria is the most widely used method to assess raw sewage. However, since coliform bacteria can come from different sources, it is challenging to use it as an anthropogenic indicator (Dutka, 1974; Goodfellow *et al.*, 1977) and even their presence is not absolute proof of raw sewage. On the other hand, the absence of fecal coliform bacteria does not conclusively prove the absence of raw sewage since environmental stress may result in rapid population decline before fecal coliform bacteria can be measured (Rhodes, 1988). An enhanced diagnostic technique is to analyze for the presence of coprostanol (Hatcher and McGillivary, 1979; Brown and Wade, 1984; Pastorek and Bilyard, 1985; Writer *et al.*, 1995; Chan *et al.*, 1998; Peng *et al.*, 2002; Readman *et al.*, 2005; Pratt *et al.*, 2007).

Coprostanol (5 β -cholestan-3 β -ol) is metabolized in the intestinal tract of humans, other upper mammals, or created naturally by the breakdown of cholesterol (Rosenfel and Hellman, 1971; Chan *et al.*, 1998) (Figure 3). Thus, raw sewage containing

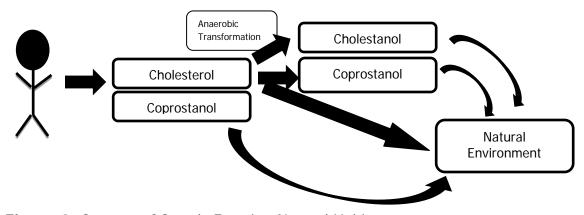
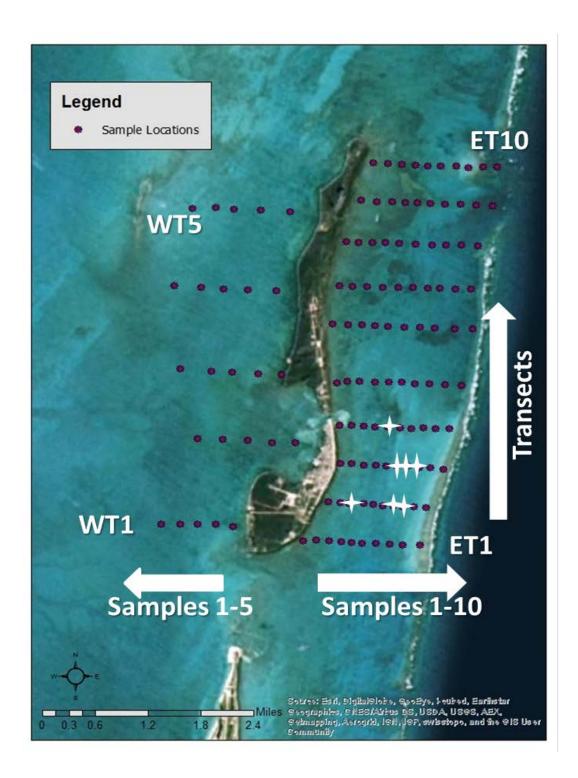


Figure 3: Sources of Sterols Entering Natural Habitats

significant amounts of this chemical can be measured and recorded (Brown and Wade, 1984). Due to its hydrophobicity, coprostanol strongly adsorbs to anoxic sediments and therefore is persistent in the environment (Brown and Wade, 1984; Kelly, 1995; Chan et al., 1998). As a result, sediments can be analyzed for coprostanol to prove that raw sewage must have been present in surrounding waters. Coprostanol alone is not typically used to indicate sewage pollution in coastal areas, due to the sources other than humans from which it can originate, such as in the breakdown of cholesterol (Chan et al. 1998) (Figure 3). However, researchers have shown that raw sewage (whose presence in the environment is indicated by elevated levels of coprostanol) can be conclusively proven to be of human origin by measuring the ratios of either coprostanol to total steroids, coprostanol to (coprostanol + cholestanol) or coprostanol to (cholestanol + cholesterol) (Readman et al., 2005). Due to the lack of standardization among research as to which thresholds indicate sewage contamination, we examined all studies and will be using thresholds that overlap most often among studies. For coprostanol, sediment concentrations exceeding 400ng/g were classified as contaminated; coprostanol to cholesterol ratios exceeding 0.20 and coprostanol to total sterol ratios exceeding 0.30 were classified as contaminated by human sewage.


Studies conducted in the Black Sea (Readman *et al.*, 2005), Chesapeake Bay (Brown and Wade, 1984), Hong Kong (Chan *et al.*, 1998), Brazil (Gutterres-Vilela *et al.*, 2011), and in the Macao estuary (Peng *et al.*, 2002), have used sterols/stanols (e.g., coprostanol) to prove the presence of anthropogenic sewage in coastal areas. In Caye Caulker only one study suggested the possible contamination of the coral reef system from untreated human sewage (Fabro and Rancharan, 2011). This study found nutrients and fecal coliform bacteria in groundwater samples from several wells dug on the island. The authors point out that the groundwater is connected to the surrounding ocean, so there is concern that the nutrients and fecal coliform are being transported to the surrounding ocean and into the nearby reefs.

In order to test this hypothesis, this study was designed to assess levels of three test compounds that indicate the presence of untreated human sewage – coprostanol, cholestanol, and cholesterol. Total levels of coprostanol and ratios as indicated previously were used to determine if untreated human sewage originating from Caye Caulker is being flushed offshore all the way to the coral reefs.

Methodology

Study Site and Sample Collection

Caye Caulker is a low-lying coralline island that sits off the west coast of Belize, accessible by boat and air. The coral reef assessed in this study lies approximately 1 mile west of the island and is frequently visited by both tourists and local residents. To accurately determine the movement of sterols from the island to the reef, 10 transects each with 10 samples were run on the east side of the island spanning from shoreline to reef and 5 transects with 5 samples each were run on the west side of the island spanning approximately 1 mile from the shoreline eastward, for a total of 125 sediment samples (Figure 4).

Figure 4: Sampling Sites. Sites marked by an asterisk indicate sites that were sampled either by SCUBA or free-diving not petite ponar.

Most samples were collected using a petit ponar sampler. However, due to sediment grain size in certain locations, 7 samples were obtained via free-diving or SCUBA diving (See Figure 4 for stars indicating those samples that were taken via SCUBA or free-diving). After collection, samples were placed in acid-washed Nalgene containers and frozen until further evaluation could be performed.

Sterol Analysis

Sterol Extraction

Analysis for sterols followed the methodology established by Isobe et al. (2002). In the laboratory all 125 samples were oven-dried in glass beakers covered with aluminum foil at 50.0° C for 24 hours and returned to the freezer upon completion of drying. From each sample, 10.0 grams of sediment was weighed out and placed in a beaker and a few small pieces of DrieRite were used to remove any residual water from samples being stored in the freezer. All samples were then extracted using a three step process: (1) ultrasonicated with 30 mL of methanol for 60 minutes; (2) ultrasonicated with 30 mL of 1:1 methanol and dichloromethane (DCM) for 60 minutes; and (3) ultrasonicated with 30 mL of DCM for 60 minutes. All three extractions were combined, ultracentrifuged and reduced to approximately 1.0 mL using a rotary evaporator and then reduced further to near dryness using a nitrogen evaporator, before being redissolved in 0.5 mL of 3:1 DCM/hexane to make column chromatography more effective.

16

Column Chromatography

After extraction and redissolution, all samples were processed through a 1 cm i.d. glass chromatographic column to remove the majority of unwanted organics from the samples. The column consisted of 3.0 grams of baked silica topped with ~0.5 grams of anhydrous sodium sulfate. The column was pre-eluted first with 20 mL of DCM followed by 20 mL of hexane after which the concentrated sample was added to the column. Each sample was eluted with three different solvents: (F1) 20 mL a 3:1 mixture of hexane and DCM, (F2) 40 mL of DCM, and (F3) 30 mL of a 3:7 mixture of acetone and DCM. The first elution (F1), 3:1 hexane/ DCM, was collected and stored in the freezer. The second and third elutions (F2 and F3) contained the sterols and were therefore collected and concentrated using a rotary evaporator to ~0.5 mL and stored in the freezer until further analysis was completed.

Derivitization

Due to the fact the three sterols in question, coprostanol, cholestanol, and cholesterol, are polar, it was necessary to perform a derivitization on each sample to reduce their polarities and make them amenable to analysis by gas chromatography. To do this, each sample was first reduced to dryness using a nitrogen evaporator, then to each sample 50µL pyridine and 50µL acetic anhydride were added and allowed to sit at room temperature overnight for the reaction (conversion of the alcohol moiety to an acetate ester) to complete. The following day 200µL of 4M HCl and 500µL of hexane were added to each sample, mixed well and ultracentrifuged (Fisher Scientific Model 225; max rpms of 5100). The upper organic layer (hexane) was removed from the test tube and passed through a miniature column created by using a pipette packed with

17

glass wool and approximately 0.5 grams of anhydrous sodium sulfate to remove any aqueous solution. Two more additions and removals of 500µl of hexane were performed and all three hexane extractions were placed into a chromatography vial. After all three hexane extractions were completed the samples underwent a solvent-exchange using iso-octane resulting in a final volume of 0.5ml. All samples were stored in the freezer until gas chromatography/ mass spectroscopy could be completed.

Gas Chromatography/ Mass Spectroscopy (GC/MS)

The GC/MS used for this study was an Agilent 7890A/ 5975C instrument. Samples were analyzed using a DB-5 column (30m- 250µm- 0.25µm column) using the temperature program: initial temperature of 60°C, hold for 5 minutes, then increase by 6°C per minute until 290°C, and a final temperature of 300°C and hold for 5 minutes. For each target compound, identification involved testing for four ions, their ratios and their retention times using the GC/MS operated in selective ion monitoring (SIM) mode. Coprostanol had a retention time of 41.832 and was identified and quantified using the target ion 370.300, and qualifier ions of 355.3, 215.1, and 276.1. Cholestanol had a retention time of 43.02 and was identified and quantified using the target ion 215.1 and qualifier ions of 370.3, 355.3, and 276.1. Cholesterol had a retention time of 42.866 and was identified and quantified using the target ion 368.3, and qualifier ions 353.3, 247.2, and 215.1.

Quality Assurance/Quality Control

To ensure quality of the concentrations determined several steps were taken. First, the instrument detection limit (IDL) was determined for the compounds. Standards were sequentially diluted by a factor of 10 beginning with 100 ppm and analyzed on the GC/MS until a concentration was reached that could not be reliably reproduced or did not have the required 3:1 signal to noise ratio. Using this method, the limit of detection determined for the three compounds (coprostanol, cholestanol, and cholesterol) was 0.1 ppm. Standards of known concentrations were processed at the beginning and end of all analytical runs, with a solvent blank of hexane and coprostanol standard after every 10 runs to ensure accuracy of data collected. Separate calibration curves were made for each of the three target compounds. For coprostanol, the calibration curve was created from standard solutions with concentrations of 5ppm, 10ppm, 25ppm, 50ppm, and 75ppm. The cholestanol and cholesterol calibration curves were made from standard solutions of 25ppm, 50ppm, 100ppm, 250ppm, and 500ppm. Concentrations were calculated using the instrument's software, which compares the response factors of samples with those in the calibration plots. Calibration curves had r² values of 0.970, 0.998, and 0.971 respectively to coprostanol, cholestanol, and cholesterol.

Results

All 125 sediment samples collected off the coast of Caye Caulker were analyzed for three compounds: coprostanol, cholestanol, and cholesterol (Table 1). Results were assessed to determine mean, minimum, and maximum for each individual sample, as well as calculations for east and west and north and south of Caye Caulker. East and west samples can be differentiated by the "W" or "E" at the beginning of the sample identifier, while north and south are separated by transect number. Transects ET1 through ET4 and WT1 and WT2 were grouped as the southern end of the island, while transects ET5 through ET10 and WT3 through WT5 were grouped as the northern end

19

of the island. The southern end of the island is far more heavily populated and contains almost all hotels.

	Minimum	Maximum	Mean	East Mean	West Mean	North Mean	South Mean
Coprostanol (ng/g)	0.42	721.92	57.12	50.65	82.98	63.41	47.68
<u>Cholesterol (ng/g)</u>	0.17	2773.17	300.66	289.19	346.55	349.39	227.56
Cholestanol (ng/g)	0.46	1450.96	142.47	125.63	209.84	171.09	99.55
Coprostanol/Total Sterol	0.06	4.67	0.31	0.32	0.24	0.31	0.31
Coprostanol/Cholesterol	0.01	18.47	0.38	0.42	0.23	0.47	0.24

Table 1: Arithmetic Calculations for Each of the Three Compounds and Ratios

Table 1: The arithmetic, minimum, maximum, and mean values for all three compounds (coprostanol, cholestanol, and cholesterol). Table includes values found across all samples for minimum and maximum, while means were found for all samples, and each division observed (east, west, north, and south).

Coprostanol levels found ranged from 0.42 ng/g to 721.92 ng/g across all transects (Table 1 and Figure 4), indicating that there is some form of sewage entering the coastal area in Caye Caulker. Three samples out of 125 were determined to exceed the 400 ng/g concentration indicating severe contamination (Figure 4). The remaining 122 samples had coprostanol concentrations of <400ng/g suggesting less severe sewage contamination; 17 had concentrations between 100ng/g and 400 ng/g; 15 samples had concentrations between 50 ng/g and 100 ng/g; and 13 samples had concentrations between 50 ng/g and 100 ng/g; and 13 samples had concentrations between 50 ng/g and 100 ng/g; 2 in particular stand out: ET4S1 and WT3S1. These 2 samples were taken closest to the shoreline and are the closest to the expected travel path of the compounds (see Figure 2). There is a strong current that flows between the northern and southern sections of the island, suggesting that there may be a draw of contamination to these areas as water enters and exits the channel (see Figure 3 for locations of these samples). There is an overall trend that

shows higher levels of coprostanol near the shore of the island, but tapers off quickly as you move away indicating that contamination has not yet reached the reefs (Figure 5). All raw data can be found in Appendix B.

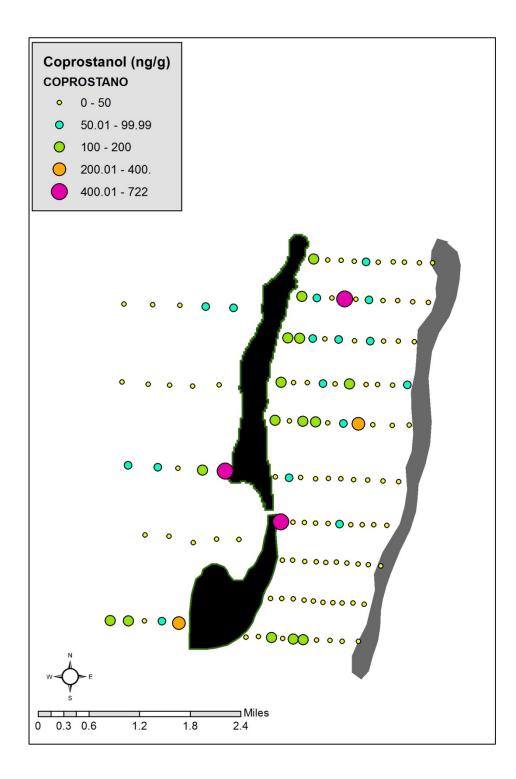


Figure 5: Coprostanol Concentration Distribution

The final step in confirming sewage pollution using coprostanol is the use of sterol/stanol ratios. These ratios indicate whether or not the coprostanol can be attributed to human sewage contamination or to the natural breakdown of cholesterol. The first of two ratios that used was the coprostanol to cholesterol ratio (R1), and the second was the coprostanol to (coprostanol + cholestanol) ratio (R2) (Readman *et al.*, 2005; Brown and Wade, 1984). Using available literature and previous research, it has been determined that if R1 exceeds 0.2 and R2 exceeds 0.3, then concentrations are indicative of raw human sewage. Using these values and the concentrations found, we can state that 43 samples exceeded the R1 ratio and 24 samples exceeded the R2 ratio, confirming that human sewage contamination was present in these samples. If we cross-reference these two ratios 16 samples were found to have values that exceed both ratio limits for contamination. Only a handful of the locations that showed high ratios were found beyond ~ 0.5 miles from the shoreline. This suggests that contamination is originating from the shoreline but is being diluted by the time it gets to the reef area (see figures 6 and 7 for locations and ratios.)

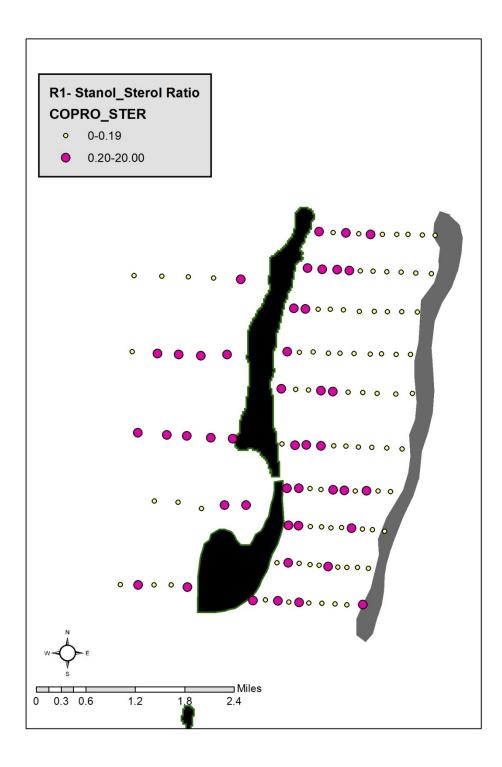


Figure 6: Coprostanol to Cholesterol Ratio Distribution (R1)

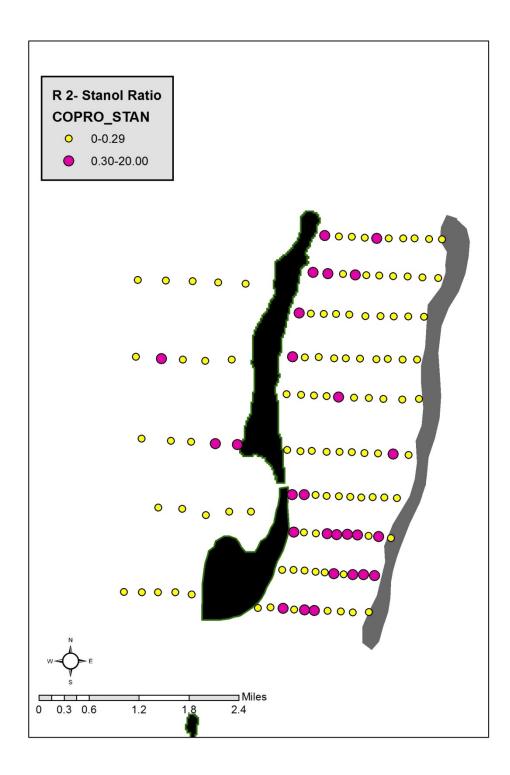


Figure 7: Coprostanol to Total Sterol Ratio Distribution (R2)

Discussion

The coprostanol concentrations and ratios found all suggest that there may be concern for the near-shore reef off the coast of Caye Caulker. Several studies that have been conducted to assess the concentration of coprostanol at sewage discharge have all confirmed that coprostanol levels are highest at the point of discharge (Brown and Wade, 1984; Chan *et al.*, 1998; Peng *et al.*, 2002; Readman *et al.*, 2005) Figures 4, 5, and 6 show that the highest coprostanol concentrations and ratios indicative of sewage are currently found closest to shore where discharge is thought to be occurring, following the expected trend.

Scientists have yet to determine definitive coprostanol concentrations that would indicate "low," "medium," or "high" levels of contamination. Therefore, we used a value between the highest cutoff and the lowest for the severely contaminated and adjusted the thresholds beneath to create relative classifications. Readman *et al.* (2005) used 500ng/g as the threshold for severe contamination while others reported average concentrations ranging from 142ng/g to 390ng/g in severely contaminated areas (Brown and Wade, 1984; Chan *et al.*, 1998; Peng *et al.*, 2002). Writer *et al.* (1995) used a coprostanol concentration of 10ng/g or above as the threshold for areas adversely affected by sewage discharge, but did not set a threshold for severely contaminated areas. Therefore we used the level of 400ng/g or greater as the threshold to indicate severely contaminated areas.

For the concentrations less than 400ng/g we used the separations of 0-50ng/g, 50.01- 99.99ng/g, 100-200ng/g, 200.01-400ng/g, and >400ng/g. These separations were chosen to efficiently show the variation in coprostanol concentrations and to

26

effectively determine relative contamination in the coastal area of Caye Caulker. Using the aforementioned separations, we can conclude that in most cases higher concentrations of coprostanol are found nearer to shore, while lower concentrations are dominant closest to the reef. Coprostanol's hydrophobicity may be the primary cause as to why no contamination is being detected at farther distances from the shoreline – that is, it adsorbs to particulates efficiently and settles as sediments closer to the shoreline. However, if continued input overloads the sediment closest to shore, excess nutrients resulting from sewage discharge could put extra stress on the reef possibly causing degradation and loss of reef cover. It is also important to note that coprostanol, as observed by other studies, has a positive correlation with smaller sediment particles (Hatcher and McGillivary, 1979; Brown and Wade, 1984; Writer *et al.*, 1995). However, upon further evaluation, the grain size in the study area does not greatly vary, suggesting that sediment particle size is not considered to be a major factor in determining local coprostanol concentrations.

Both ratios used in this study have been used by several other researchers, but yet again, there is no consensus regarding which steroids or what ratio thresholds definitively indicate sewage contamination. Therefore, it was again necessary to assess the literature to determine which thresholds would be used. Readman *et al.* (2005) uses ketone ratios (coprostanol / (coprostanol +cholestanone)) of 0.3 to classify a sample as contaminated by human sewage. Therefore, this study used the same threshold for the coprostanol to cholestanol ratio. The coprostanol to cholesterol ratio threshold used was 0.2, based on Brown and Wade (1984) who stated that marine environments only contribute 9.5% of the cholesterol, while constituting 50-80% of fecal sterols. Any variation in cholesterol and coprostanol can then be attributed to their variation in

sources. However, the similarity in their sources, namely sewage, makes them comparable in this ratio. Thirteen out of the 15 samples taken closest to the shoreline indicate sewage contamination by both ratios, suggesting that there is sewage contamination at the closest sampling stations. There were also a higher number of samples that exceeded the ratio thresholds found at the southern end of the island where the population density is higher. Since the area with higher population and development would have a higher number of septic tanks, an increase in coprostanol input to the coastal area was expected and also confirmed.

Chapter 3: Foraminifera as a Bioindicator Background

Foraminifera are single celled protists that secrete a shell made out of CaCO₃. Foraminifers are divided into two main groups based on their life mode: benthic (living in or on substratum) and planktic (living in the water column). These shelled protists can be found in all marine environments from shallow water (i.e., coastal, estuarine) to deep marine (i.e., continental slope) (e.g., Goldstein, 1999), but most importantly, some species are found to be very resilient to natural- and/or anthropogenic-induced environmental stresses.

A series of environmental factors affect the location in which foraminifers in general can thrive. These factors include pH, salinity, dissolved oxygen (DO), sediment type, food supply, taphonomic processes, etc. (Martinez-Colon et al., 2009). Numerous studies have shown that food supply is a limiting factor controlling benthic foraminiferal populations and assemblages (Alve, 1995; Jorissen, 1999; Schönfeld et al., 2012). The amount of food supply (i.e., organic matter) controls several chemical parameters such as DO, alkalinity, pH, among others within the sediments and pore waters (Martinez-Colon *et al.*, 2009). Food supply or organic matter is an important parameter to consider when studying marine environments impacted by sewage as this pollutant potentially serves as a direct or indirect food source to foraminifers. Modeling work conducted by Jorissen (1999) found that excess food supply will reduce the DO in eutrophic settings

resulting in anoxic conditions and in oligotrophic environments (e.g., reefs) will impact the abundance and depth foraminiferal distribution. These conditions are reflected in the dominance and distribution of benthic foraminifers in which epifaunas are replaced by oxygen depleted infaunas and subsequently by dysoxic tolerant infaunas when environments change from oligotrophic to eutrophic conditions.

Benthic foraminifers have been used in pollution studies in coastal environments for the past 50 years as proxies for heavy metal contamination (Samir and El Din, 2001; Frontalini and Coccioni, 2008; Gutterres- Vilela et al., 2011), eutrophication (Seiglie, 1968; Richardson, 2006), water quality, coral reef health (Hallock et al., 2003; Fabricus et al., 2012); sewage (Bandy et al., 1964), and agricultural runoff (Samir and El- Din, 2001; Carnahan et al., 2009), among others. Benthic foraminifers have proven useful in assessment and monitoring of coastal and shelf environments due to their taxonomic diversity, wide distribution, abundance, relatively small size, short reproductive cycles, and because their shells are often well preserved in sediments (Yanko et al., 1999; Martinez-Colon et al., 2009). In addition, the spatial distributions of benthic foraminifers respond very quickly to existing environmental conditions (e.g., Hallock *et al.*, 2003). Foraminiferal faunal composition can be statistically correlated to specific contaminants providing researchers an upper-hand in identifying polluted sites. Benthic foraminifers have been found to respond to pollution gradients (e.g., Schafer, 2000; Tsujimoto et al., 2006; Schönfeld et al., 2012) and their responses translate to drastic faunal successions, stepwise faunal changes, species abundance, and malformations (e.g., Elberling et al., 2003; Martinez-Colon et al., 2009).

However, caution needs to be exercised when using benthic foraminifers as bioindicators. Numerous authors agree that foraminifers react to numerous and

simultaneous confounding environmental factors (Martinez-Colon *et al.*, 2009). In some environments like estuaries, environmental conditions vary so drastically that the foraminiferal assemblage can be affected in the absence of pollutants (Debenay *et al.*, 2000; Murray, 2001) leading to possible misinterpretations. Just because a foraminiferal assemblage has a natural spatial/temporal variability, does not invalidate its response as an indicator of stress (Martinez-Colon *et al.*, 2009). In this situation, it is imperative to understand the natural variability and distribution of assemblages in order to properly assess pollution-induced variations in foraminiferal communities.

Limited studies involving benthic foraminifers have been done in Belizean coastal areas. These studies mainly concentrated their efforts on taxonomy and spatial distribution of assemblages (Richardson, 2000 and 2009; Purdey and Gishler, 2003). Other studies have addressed bleaching episodes on symbiont-bearing larger foraminifera associated with elevated temperatures (Richardson, 2009) or on the distribution effects of epiphytic foraminifera associated with natural eutrophication events (Richardson 2006). Caye Caulker contains a wide array of extant benthic foraminiferal faunas that have not been exploited for their use in environmental studies.

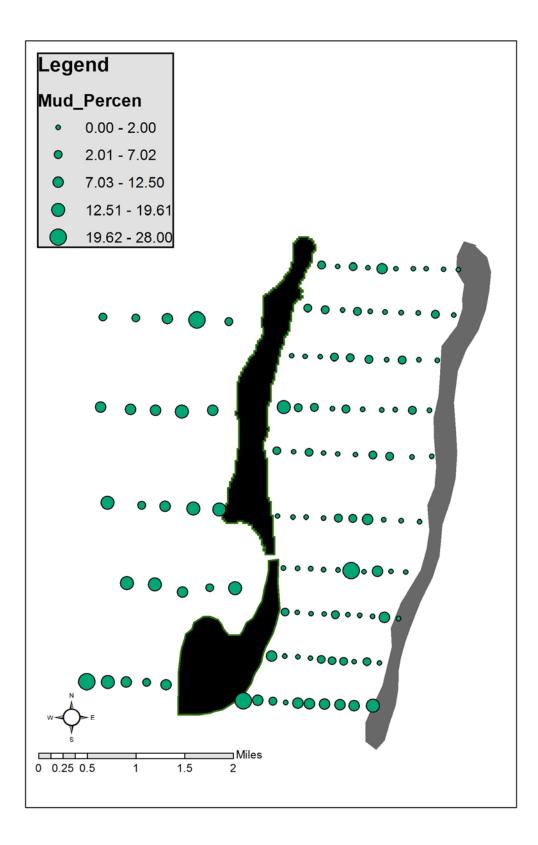
By analyzing the distribution and abundance of benthic foraminifera, we can quantify coral reef health. The FORAM Index (FI), developed by Hallock *et al.* (2003), has been used in many studies worldwide as a very effective bioindicator of coral reef system health. Not only does it indicate water quality, thus act as a proxy for the suitability of a site for coral growth, but it also indicates the suitability of the area to support reef recovery from a detrimental event (Hallock *et al.*, 2003 and 2012). The FI consists of three morphogroups of benthic foraminifera (Hallock *et al.*, 2003). These groups are: (1) symbiont-bearing, (2) stress-tolerant, and (3) other small heterotrophic

taxa. Each of these three groups has differing water quality parameters under which they can persist (Hallock *et al.*, 2012). The study performed by Uthicke and Nobes (2008) indicated that the larger symbiont-bearing foraminifers were indicative of clear water and low nutrient areas, while smaller heterotrophic taxa were indicative of low light, high nutrient conditions. By using these parameters and the proportions in which these foraminiferal morphogroups are present, the FI will determine the suitability of an area for reef growth and health status (Hallock *et al.*, 2003). Studies conducted in Kirimati Island (Carilli and Walsh, 2012), Australia (Fabricius *et al.*, 2012; Uthicke and Nobes, 2008), Indonesia (Natsir and Muchlisin, 2012), Florida (Carnahan *et al.*, 2009), Brazil (Teodoro *et al.*, 2010; Gutterres-Vilela *et al.*, 2011), Puerto Rico (Oliver *et al.*, 2014) and areas throughout the Caribbean (Velasquez *et al.*, 2011), have applied and validated the FI as a biomonitoring tool.

The FI is represented by the following formula (Hallock et al., 2003):

 $FI = (10 X P_s) + (P_o) + (2 X P_h)$

where $P_s = proportion of symbiont- bearing foraminifera, <math>P_o = proportion of stress-$ tolerant foraminifera, and $P_h = proportion of other small, heterotrophic foraminifera. FORAM Index values <2 is indicative of unsuitable conditions for reef growth; values between 2 and 4 indicates marginal conditions for reef growth but unsuitable for reef recovery; and values >4 is indicative of environments conducive for reef growth and recovery. A FI value between 3 and 5 indicates that the area is undergoing environmental change.$


It is not uncommon to use more than one bioindicator or biomonitor to evaluate and address environmental concerns. Using the resulting FI in combination with the presence and source of the fecal sterols addressed in the previous chapter, this study aims to determine the existing conditions of the reef off the coast of Caye Caulker-Belize. In doing so, this study seek to clarify the environmental concerns for an economically and environmentally important ecosystem. In addition to applying the FI, other statistical assessments were conducted on the samples to determine density, diversity, and species richness. The application of these additional evaluations will further enhance the environmental interpretation which the FI provides.

Methodology and Results

Grain Size Analysis

From the original oven-dried samples (see Chapter 2 methods), 5.0 gram sub samples were used for grain size data analysis. All sub samples were wet-sieved using a >63µm sieve to remove all sediment <63µm. This sediment was subsequently re-dried (50°C) and accounted for in the weight percent calculations, by subtracting the mass after wet-sieving from the mass before and recorded as the percent mud. After drying (overnight), the samples were removed and each was passed through a series of dry sieves which separated the sub-sample by the following grain sizes: 2000µm, 1000µm, 500µm, 250µm, 125µm and <62µm, with phi values of-1, 0, 1, 2, 3, and 4, respectively. Each subsequent sieve was weighed to determine the weight percent of each size fraction and recorded for use in later analysis (Appendix C). All fractions were recombined to be used for assemblage analysis.

Grain size analysis was evaluated across all samples and between east and west, and north and south comparisons. The minimum mud percent obtained was 0 and the maximum was 28 (WT5S2), both of which were the only appearance of these values (Table 2). The average mud percent across all samples was 5.3; comparison values between east and west and north and south were, 3.63, 11.95, 4.55, and 6.43, respectively (Figure 8). In no samples was mud the dominant sediment, only 18 samples had a mud percent greater than 10 with the dominant sediment size being medium sand (phi = 2) (Table 3). Raw grain size analysis data, including weight percent, and mud percent can be found in Appendix C.

Foraminiferal Analysis

Foraminiferal assemblages were evaluated by assessing the species present in the collected sediment samples. From the 5.0 gram sub sample, either 1.0 gram was picked for foraminiferal shells or until 200 individuals were reached following Hallock *et al.* (2003) protocols. All foraminiferal shells were placed on sectioned slides for later identification to species, or genus when species identification was not possible.

Several statistical analyses were performed on the foraminiferal data. This data consists of: (1) species richness (number of species per sample); (2) foraminiferal density (number of individuals per gram); (3) FI; and, (4) diversity index $\{H(S) = \sum p_i \ln (p_i)\}$. Cluster analysis was performed on all data after adjustments for distribution and transformations were conducted. The first adjustment was the removal of any species of foraminifers that was not present in at least 5% of samples (minimum 7 samples) (Appendix A). Then data was standardized by calculating the relative abundance of each taxon (Genus) in each of the 125 samples. All taxa data was fourth root transformed (Parker and Arnold, 2003) using Primer 6 software, thus creating a resemblance matrix that generates a cluster dendrogram based on Bray-Curtis similarity (Figure 8). Five cluster analyses were performed: (1) all taxa across all samples; (2) all taxa in transects at the northern end of the island (W3-W5 and ET5-ET10); (3) all taxa in transects at the southern end of the island (WT1 and WT2 and ET1-ET4); (4) all taxa in transects on the east side of the island; and, (5) all taxa in transects on the west side of the island. Each of these clusters was analyzed for foraminiferal assemblages. Finally, a Pearson correlation was performed to determine if any significant trends were found in the data using log transformed data (Parker and Arnold, 2003). Pearson correlation

included the diversity index, foraminiferal density, FI, taxa, species richness, and coprostanol concentrations. Diversity index, species richness, foraminiferal density, and FI were calculated using raw, non-standardized data, while clusters and Pearson correlation analyses were conducted on 5% adjusted data. Mud percent was also used in the correlation matrix analysis. Data on the sterols, sediment size, and foraminiferal relations will be discussed in Chapter 4.

From 125 samples, 20,069 foraminifers were picked, identified and divided into 47 genera and 97 species (Appendix A). Of the 97 species, Archaias angulata, Asterigina carinata, Discorbis rosea, and Quinqueloculina agglutinans were the most abundant, each having more than 1000 total individuals across all samples; 2898, 2475, 2094, and 1903, respectively. Cymballoporetta sp., Laevinopeneraoplis bradyii, Quinqueloculina bicostata, and Quinqueloculina lamarkiana all had greater than 500 individuals but less than 1000; 545, 545, 803, and 576, respectively. Raw data on all foraminiferal counts can be found in Appendix A. Statistical evaluations were conducted on all data including FI and foraminiferal density, the diversity index, grain size analysis, and species richness. Each analysis was performed on each sample with all results available in Appendix D. Comparisons between east and west sides of the island were made as well as north and south. East and west samples can be differentiated by the "W" or "E" at the front of the sample identifier, while north and south are separated by transect number. Transects ET1 through ET4 and WT1 and WT2 were grouped as the southern end of the island, while Transects ET5 through ET10 and WT3 through WT5 were grouped as the northern end of the island.

Throughout all samples the FI value had a minimum value of 2.55 (sample WT3S1), maximum value of 8.28 (sample ET3S5), and an average across all samples of

5.07 (Table 2; Figure 9). East and west side comparison was made as well as north and south, 5.22 versus 4.47 and 4.96 versus 5.24, respectively. There were only 20 samples out of 125 that had an FI value of less than 4, while the remaining 105 samples had FI values of greater than 4, and no samples having an FI of less than 2. In addition, there were 37 samples which had an FI between 3 and 5.

	FI	Foram Density	H(S)	Species Richness	Mud Percent
Minimum	2.55 (WT3S1)	2 (ET6S10)	0.6365 (ET6S10)	2 (ET6S10)	0
Maximum	8.28 (ET3S5)	1396 (WT2S1)	3.33 (WT2S1)	48 (ET5S4)	28
Mean					
Overall	5.07	331	2.6641	28	5.3
Northern	4.96	252	2.61	29	4.55
Southern	5.24	449	2.69	28	6.43
East	5.22	331	2.64	28	3.63
West	4.47	363	2.64	28	11.95

 Table 2: Arithmetic Calculations for Five Parameters Assessed Using

 Foraminifera

Table 2: Arithmetic mean, minimum, and maximum values for the 5 parameters analyzed in regards to the foraminiferal assemblages. Table includes minimums and maximums for all parameters across all samples, mean values across all samples as well as mean values among the four divisions assessed (north, south, east, and west).

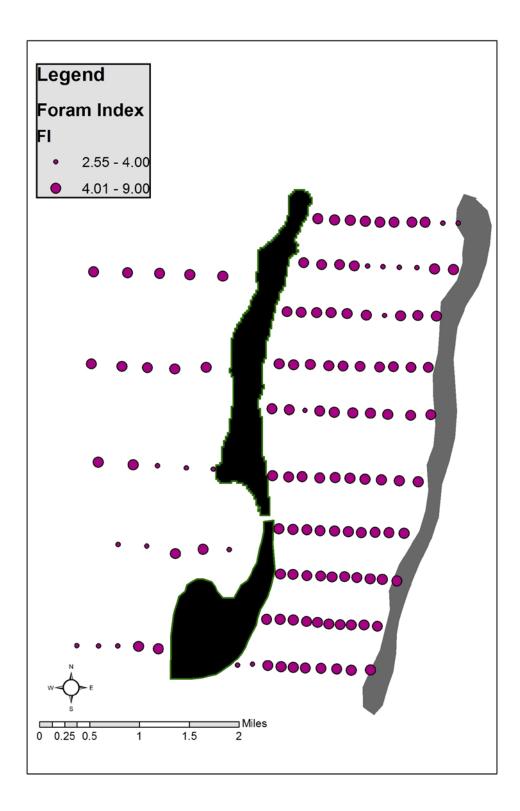


Figure 9: Foram Index Distributrion

The FI is also found to vary greatly based on the environmental conditions of the area being evaluated. When conditions are conducive to reef growth the FI is much higher than in areas where the habitat is not conducive to reef growth. This is often linked to areas affected by anthropogenic impacts. Caye Caulker FI values do not vary significantly among transects or samples. All samples have a FI of greater than 4.00 with the exception of 18 samples. Though these samples had FI values of less than 4.00 (conducive to reef growth), none of them had values below 2.00 which would indicate an area unsuitable for reef growth and recovery. These areas where the FI is less than 4.00 but greater than 2.00 suggest that an environmental change may be occurring (Hallock et al., 2003). Stephenson et al. (2015) found an average FI of 5.6 in a pristine reef environment, while this study found an FI of 5.07 (Table 2) suggesting that the Caye Caulker is not heavily impacted. Narayan and Pandolfi (2010) found a mean FI of 3.38 in an anthropogenically impacted estuary of Australia with a range from 1.1 to 7.6. The lowest FI value found was closest to the output of the river which was being assessed indicating lower FI values can be expected in areas that are experiencing anthropogenic influences. This finding supports the lack of negative impact is reflected in the FI in Caye Caulker samples.

Foraminiferal density (Figure 10) was determined to be wide-ranging with a minimum of 2 ind/g (sample ET6S10) and a maximum of 1396 ind/g (sample WT2S1) with the average foraminiferal density across all samples being 331 ind/g (Table 2). In the east vs. west and north vs. south comparisons values were 331 ind/g, 363 ind/g, 252 ind/g, and 449 ind/g, respectively (Table 2). In the southern end of the island transect 1 (ET1) had samples with the highest densities compared to all other transects.

Therefore, it may be important to note that the southern end average, excluding transect 1, is 365 ind/g (Transect values can be seen in Table 3).

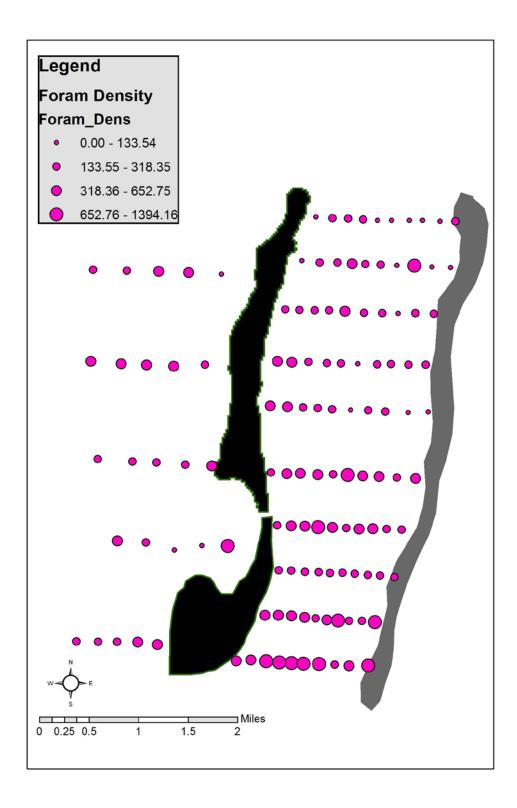


Figure 10: Foraminiferal Density Distribution

Sample	Foram Index	Environmental Change	Reef Condition	Shannon Index	Grain Size - Phi Value	Species Richness	Foram Density	Mud Percent
ET1	4.55	Y	Conducive	3.06	1.80	32	780	9.852
ET2	6.11	N	Conducive	2.57	2.00	25	438	2.943
ET3	6.03	Ν	Conducive	2.38	1.90	21	217	2.732
ET4	5.32	Ν	Conducive	2.83	2.10	35	444	4.4
ET5	5.32	Ν	Conducive	2.96	1.70	40	438	2
ET6	5.15	Ν	Conducive	2.63	1.50	27	195	2.542
ET7	4.91	5Y;5N	Conducive	2.96	2.10	32	210	3.834
ET8	5.42	Ν	Conducive	2.57	1.70	27	205	1.882
ET9	4.77	5Y;5N	Conducive	2.15	1.70	23	248	3.422
ET10	4.63	Y	Conducive	2.30	1.60	23	140	2.787
WT1	3.77	Y	Marginal	2.78	2.60	32	311	12.536
WT2	4.61	Y	Marginal	2.45	1.80	24	418	11.912
WT3	3.83	Y	Marginal	2.78	2.40	30	271	13.566
WT4	4.99	Y	Conducive	2.71	2.20	30	380	11.904
WT5	5.17	Ν	Conducive	2.46	2.40	24	255	9.876

Table 3: Averages by Transect for Eight Parameters Using Foraminifera

Table 3: Average values for each parameter along each transect. It can be seen in the foram density that Transect 1 had a very high average compared to all other transects, however species richness was not largely variable as was foram density. Also, the FI of 6 out of 15 transects indicate that the area is undergoing environmental change and all but 3 transect FI averages indicate that the reef is conducive to reef growth and recovery.

The remaining analyses were used to evaluate diversity, evenness, and species richness. The Shannon Diversity Index was used to evaluate diversity, while species richness was determined separately. Shannon Index values ranged from a minimum of 0.6365 (ET6S10) and a maximum of 3.337 (WT2S1) with an average across all samples of 2.641 (See table 2; Figure 11). Due to the relativity of these values indices between 0.64 and 1.76 were classified as "low" diversity, values from 1.77 to 2.88 were classified as "medium" diversity, and value from 2.89-3.34 were classified as "high" diversity. Only 7 samples were classified as having low diversity, while 79 were classified as medium, and 39 were classified as high. Again, comparisons between the east and west sides of the islands and northern and southern ends were made; the results were 2.64, 2.64, 2.61, and 2.69, respectively, showing little to no difference between the divisions (Table

4). It is important to note that transects 1 and 7 on the east side had a higher occurrence of samples classified as "high" diversity, 9/10 and 8/10, respectively.

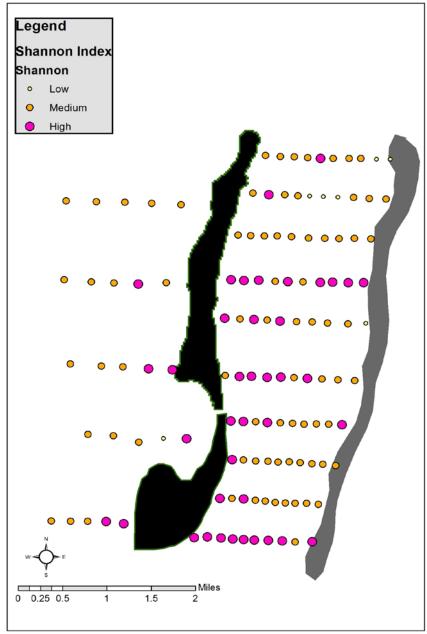


Figure 11: Shannon Diversity Distribution

Relative Divisions	H(S)	Number of Samples classified as each level in H(s)	Species Richness	Number of Samples classified as each level fo Species Richness	
Low	0.64- 1.76	7	2.00-15.00	10	
Medium	1.77-2.88	79	15.01-37.00	68	
High	2.89-3.34	39	37.01-48.00	47	

Table 4: Relative Divisions of Diversity and Species Richness

Table 4: Relative diversities of Shannon Index, H(S), and species richness. The majority of samples fall in the range of "medium" diversity, indicating that there is a normal distribution of diversities among the samples.

Finally, species richness was evaluated across all samples and again, comparisons between east and west and north and south were made. Species richness values ranged from a minimum of 2 (ET6S10) and a maximum of 48 (ET5S4) with an average across all samples of 28 (Table 2; Figure 12). A species richness relative classification was made for this parameter as well. The first classification being "low" species richness included values ranging from 2.00 to 15.00. The second classification ranged from 15.01 to 37.00 and was labeled "medium" species richness. The third and final classification had values that ranged from 37.01 to 48.00 and was labeled as "high" species richness. Ten samples were classified as low species richness, 68 samples were classified as medium species richness, and the remaining 47 were classified as high species richness (Table 4). When comparing the east and west and northern and southern divisions, averages were 28, 28, 29, and 28, respectively (Table 2). In relation to this parameter it is important to note that transects 4 and 5 had the highest occurrences of samples with "high" species richness, 8/10 and 10/10, respectively.

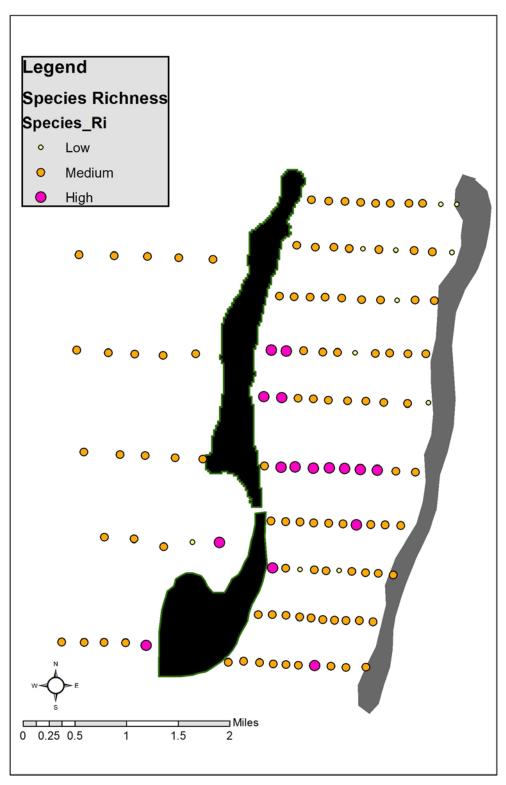


Figure 12: Species Richness Distribution

Discussion

Not all natural marine environments have a unique species distribution by which they can be characterized. Diversity index (Shannon-Index) can vary drastically between natural and anthropogenic impacted sites. Under normal conditions reef are characterized as high diversity environments in relationship to macrofaunas and microfaunas. Caye Caulker diversity values have been classified into three relative divisions (Table 4). There are no clear trends between and within transects (Figure 11) (Table 2) except that in the west side all samples except 7 have a medium diversity, while on the east all samples except 1 have a high diversity along transect 1. Total average values per transect vary between 2.15 to 3.06 (Table 3). This range of "medium" to "high" has been found in other reef environments. In relative pristine settings like Conch Reef in the Florida Keys foraminiferal diversity have mean values of 2.9 (n = 177) (Stephenson *et al.*, 2015); the diversity values of Brazilian reefs range from 2.1 to 3.1 (n = 40) (Fernandes-Barbosa et al., 2009), and from 1.13 to 3.41 (noncalculated) (n = 54) (Oliveira-Silva et al., 2012); and, in areas adjacent to sewage outflow in the Mediterranen's Aegean Sea, the diversity was calculated to have a mean value of 1.76 (n = 40 samples) (Koukousioura *et al.*, 2012). In a transitional environment (i.e. estuaries) in Brazil that is heavily impacted by raw sewage, the foraminiferal diversity is 0.46 (n = 24) (Eichler *et al.*, 2012).

Numerous factors (i.e., sediment size, food, pH, etc.) affect the distribution, diversity and abundance of foraminifers. The west coast of Caye Caulker has overall lower diversity values than the east coast (Figure 11). This corresponds to the ecological adaptation of foraminifers to different substrates. The west coast has four times the

amount of mud-sized sediments than the east coast (Table 2; Figure 8) although the median grain size is sand. Surface currents along Caye Caulker's east coast transport mud size sediments (silt + clay) produced by the reefs towards the west coast through the navigational channel that separates the north and south sides of the Caye (Figure 2). In addition, Caye Caulker serves as a wave barrier in which wave energy is greatly reduced on the west coast allowing for greater deposition and preservation of carbonate mud sediments which allows foraminiferal communities to differ due to different substrates. Another important factor of concern is the presence of sewage in the area as a food source (i.e., excess nutrients and organic matter). Previous studies have found that an increase in foraminiferal abundance and diversity are directly related to food supply (e.g., Alve, 1995; Jorissen, et al., 1999; Martinez-Colon and Hallock, 2010) but an overabundance of food will decrease diversity (Eichler et al., 2012). Other studies have reported a decrease in foraminiferal diversity as distance increases from sewage outfalls (e.g., Seiglie 1971; Mohtaid et al., 2008). Alve (1995) suggested that an increase in food availability and variability in DO will allow populations of opportunistic/stress-tolerant foraminifers (i.e., Ammonia sp.) to dominate the assemblage. The fact that stress tolerant species are in very low numbers and that there is relative constant foraminiferal diversity along the east and west coast transects (Fig 11) suggests that the conditions presently at Caye Caulker reflect those of Conch Reef.

All foraminiferal data and analyses indicate that the near-shore reef off the coast of Caye Caulker-Belize is not currently experiencing enough harmful impacts to cause reef degradation, reduction in growth, or the inability to recover. This conclusion is supported by the lack of FI values below 2 and an overwhelming number of samples showing FI values exceeding 4. It is important to note, however, that lower values were

found closer to the shoreline, especially near the break in the sections of the island, which, by the same study, indicates that there could be an issue beginning at the shoreline. Following the trends in decreasing FI values may be important in determining where reef degradation and reduction in corals' ability to grow will occur in the future.

Foraminiferal assemblages varied among the 5 analyzed areas: overall, northern end of the island, southern end of the island, east side and west side. Cluster diagrams were created using PRIMER 6 statistical analysis software. Across all taxa and all samples it appears that 4 clusters are present (Figure 13): (a) dominated by taxa with less than 49 individuals present (*Rosalina* and *Nonion* were the most abundant); (b) Sigmolina, Cibicidoides, Pyrgo, and Crieoelphidium; (c) Peneroplis and Miliolinella; (d) all species in high abundance (Quinqueloculina-3269, Discorbis- 1716, and Asterigerina-1459) and also appeared to be driving the assemblages overall; (e) Valvulina, Textularia, Clauvulina, Planorbulina, Borelis, and Broeckina; (f) Vertebralina, Articulina, Haurina, and Ammonia; and (g) Spiroculina and Pseudohaurina. On the east side of the island, 7 clusters were evident (Figure 14): (a) Rosalina, Borelis, and Pyrgo; (b) this appeared to be the driving cluster on the east side of the island containing taxa that were present in highest abundance such as *Quinqueloculina, Asterigerina,* and on the east side Elphidium; (c) Peneroplis, Discorbis, Amphistegina, Cymballoperetta, Broeckina, and Ammonia were grouped in this cluster; (d) Haurina, Articulina, Vertebralina, Valvulina, and Miliolinella; (e) Planorbulina and Clauvulina; (f) Spiroculina, Wisnerella, Spiroloculina, and Nonion; and, (g) Cibicidoides, Cyclorbiculina, Pseudohaurina, *Sigmoilina*, and *Textularia*. The west side of the island also had 6 clusters (Figure 15), but varied highly from the east side: (a) Haurina, Ammonia, and Cibicidoides; (b) Pyrgo, Cribeoelphidium, Borelis, and Amphistegina; (c) Valvulina, Elphiudium, Sorites, and

Planorbulina; (d) this cluster appeared to be the driving cluster on the west side of the island containing such taxa as *Quiqueloculina, Asterigerina,* and *Discorbis*; (e) this cluster had most of the remaining taxa that had very low similarity and were all heterotrophic; and, (f) Nonion, Cyclorbiculina, and Wisnerella. The northern end of the island showed 8 clusters (Figure 16): (a) Spiroculina, and Ammonia; (b) Valvulina, *Planorbulina, Clauvulina,* and *Textularia* (2 out of 4 being agglutinated); (c) this cluster is one of two that appears to be driving the northern assemblages and includes the taxa Laevipeneroplis, Elphidium, Triloculina, Sorites, and Cymballoperetta; (d) this cluster is dominated by high abundance taxa such as *Quinqueloculina* and *Asterigerina* and is the second cluster that appears to be driving the assemblages at the northern end; (e) Peneroplis, Borelis, Broekina, and Miliolinella; (f) this cluster is dominated by heterotrophic taxa and contains one opportunistic taxa, *Cribeoelphidium*; (g) this cluster is also dominated by heterotrophic taxa and contains one opportunistic taxa, Nonion; and, (h) Wisnerella and Cyclorbiculina. The southern end of the island showed 8 clusters as can be seen in Figure 17. The clusters are: (a) Sorites, Discorbis, Miliolinella, and *Cymballoperetta*; (b) this cluster contained high abundance taxa including Quinqueloculina, Asterigerina, and Laevipeneroplis, and one opportunistic species, *Elphidium* and appeared to be driving the southern assemblages; (c)*Articulina*, Peneroplis, and Amphistegina; (d) Textularia, Planobulina, Borelis, Broeckina, and Clauvulina; (e) Vertebralina, Valvulina, Cibicidoides, Pyrgo, and Cribeoelphidium; (f) Rosalina, Nonion, and Cyclorbiculina; (g) Haurina and Ammonia; and, (h) Sigmoilina, Wisnerella, Spiroculina, Pseudohaurina, and Spiroloculina.

Many similarities were evident among the clusters for the five different divisions However, there are some notable differences. In 4 out of 5 divisions, *Elphidium* was found in the driving assemblage. *Elphidum* was not found in the driving assemblages of east side cluster, therefore, this cluster lacks an opportunistic species. *Quinqueloculina,* being of high abundance (3269 individuals in all samples) was represented in every division's cluster as driving the assemblages.

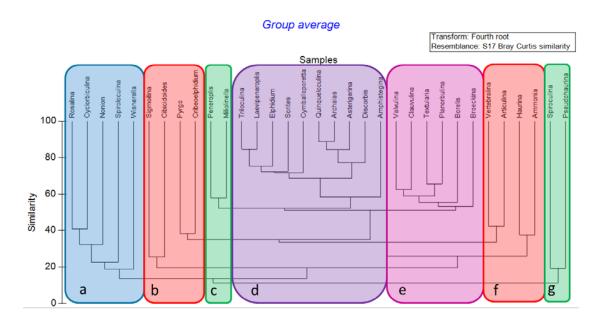


Figure 13: Overall Cluster Analysis by Taxa

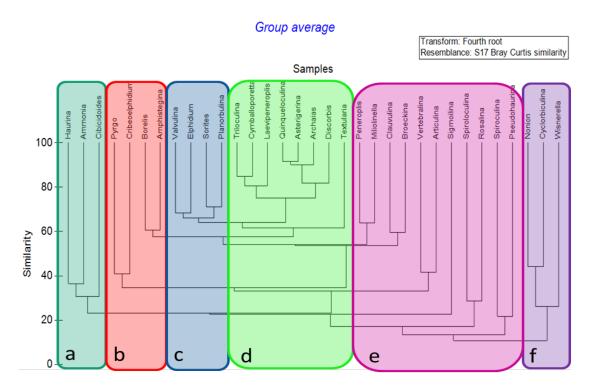
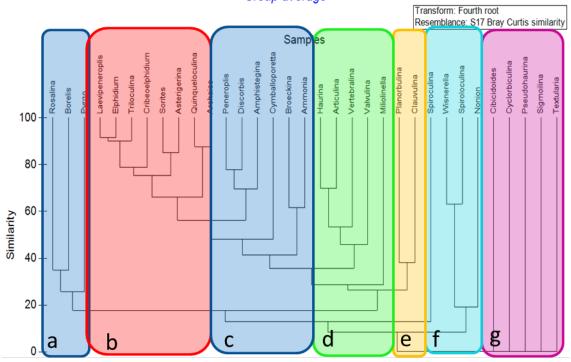



Figure 14: East Side Cluster Analysis by Taxa

Group average

Figure 15: West Side Cluster Analysis by Taxa

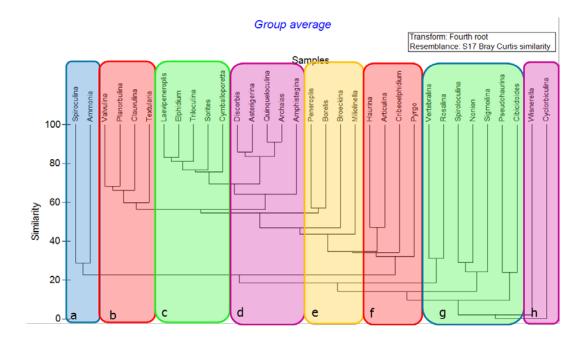


Figure 16: Northern End Cluster Analysis by Taxa

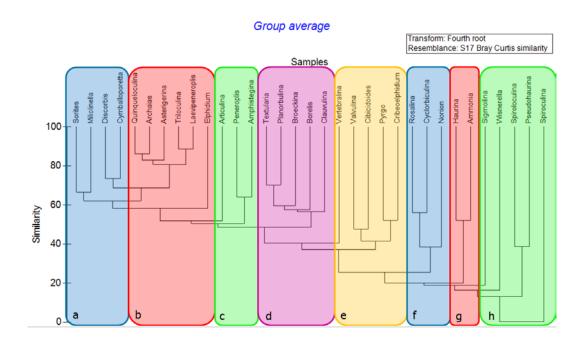


Figure 17: Southern End Cluster Analysis by Taxa

Cluster analysis allows researchers to assess assemblages and how they are associated to one another. In many cases in our study these assemblages are not very different except for when east and west sides of the island are compared. This could be due to several factors including, but not limited to, grain size and pollution. The average phi value for the east and west were 2 and 2, respectively. This means that grain size did not vary overall but could have been much more varied among samples resulting in a change in assemblage. Another factor that could affect the assemblages is the presence of raw sewage. If raw sewage is present in these locations, then assemblages could be greatly affected. Our data show that although assemblages varied, the FI does not indicating that severe degradation has occurred.

Chapter 4: Determining Potential Correlation Between Sewage Contamination and Coral Reef Health

Correlations

One of the main purposes of this study was to compare two different bioassessments in order to gain a more complete understanding of the current condition and state of the Belizean coral reef off the coast of Caye Caulker-Belize. We began by separately applying the FI, a bioindicator, and to determine the presence of raw sewage using a biomarker, coprostanol. The FI provides an effective, simple assessment to determine the current water quality conditions, which serves as a proxy for the state of coral reefs in relation to the reef's ability to grow and recover from external stressors, while coprostanol concentrations can identify whether or not raw sewage (and the pollutants associated with it) is contaminating surface waters. By conducting both of these assessments on the same area we attempted to determine if there was a correlation between the FI and coprostanol concentrations as well as if there were any important correlations among the other diversity indices used in the foraminiferal evaluations (*i.e.* number of individuals per genera, Shannon diversity, species richness) and grain size.

To determine correlations using Pearson correlation, there were several steps that needed to be completed. First, we removed any species that were not present in at least 5% (Parker and Arnold, 2003) of the samples, after which we adjusted

foraminiferal counts to be represented by genera to simplify correlations. Genus level divisions were sufficient at this level of correlation since variations in habitat do not typically vary to species level. Other data that was compiled included: coprostanol concentrations, mud percent, FI, Shannon Index, species richness, and foraminiferal density. All data were compiled into a single spreadsheet and imported into PRIMER 6 for correlation. After importation all data were log transformed, and a resemblance analysis was generated followed by a Pearson correlation analysis. For those values that were determined to be below the detection limit per Parker and Arnold (2003), half the detection limit was used to conduct the Pearson correlation.

Pearson Correlation n=125 r= 0.166	Coprostanol_ Amount	Mud Percent	Foram Index	Shannon Index	Species Richness	Foram Density
Coprostanol_Amount	2					
Mud Percent	0.269698	~				
Foram Index	-0.245005077	-0.30670819	2			
Shannon Index	0.287863308	0.231971767	-0.18756	2		
Species Richness	0.307728093	0.188420819	-0.26173	0.86661	~	
Foram Density	0.088857228	0.178092867	-0.15841	0.575604	0.727045	~

 Table 5: Pearson Correlation Coefficients

Results from the Pearson correlation were evaluated based on n=125 with a correlation coefficient (r-value) of 0.166. All values that were greater than 0.166 were regarded as statistically significant (positively and negatively). As expected, FI had a negative correlation with mud percent (Table 5) since reefs are dominated by sand-sized sediments. This is supported by Hallock *et al.* (2003) who reported that an increase in mud percent is indicative of declining reef environment due to a decrease in water motion. In addition, it is well known that sediment grain size is an important factor in controlling foraminiferal distributions (e.g., Martinez-Colon et al., 2009). In the case of

Caye Caulker, the foraminiferal assemblages are dominated by symbiont-bearing foraminifers (e.g., *Amphistegina*) which thrive in sandy environments.

Coprostanol had significant positive correlation with mud percent and a statistically significant negative correlation with the FI (Table 5). The fate and transport of coprostanol is controlled by its hydrophobicity (inability to dissolve in water) and sequestration by smaller grain size. It is well known that mud (clay + silt combined) is a major transport pathway for numerous pollutants like heavy metals, pesticides, organic pollutants (e.g., Schnoor, J.L., 1996; Martinez-Colon et al., 2009) and coprostanol (Brown and Wade, 1984). Of the 125 samples, none were dominated by mud-sized sediments. This correlation suggests that most of the coprostanol (hence raw sewage) being discharged in Caye Caulker is transported away by surface currents causing limited damage to the reefs. This is supported by the negative correlation between coprostanol and FI. As explained in Chapter 3, the FI is a tool to assess coral reef health and in Caye Caulker the dominant trend of reef condition is that of "conducive for reef growth," (Table 3) although three transects indicate "poor environmental conditions for reef growth and recovery." However, numerous corals showing brown band and black band diseases were observed during the field sampling in Summer 2013 and this could be indicative of initial stages of reef degradation. These diseases are caused by viruses, bacteria, fungi, and increased temperatures. Table 5 shows the positive correlation between coprostanol and Shannon Index, species richness, and foraminiferal density. This correlation could be attributed to the environmental change that the FI values indicate is occurring in the study area. Bandy et al. (1964) found in the periphery of sewage outfalls in California, an increase in foraminiferal abundance (50-500 greater than at point source) related to more sewage-derived nutrients. This could explain why

in Caye Caulker foraminiferal density is high aside from oligotrophic conditions. In comparison, areas heavily impacted by sewage pollution show comparable species richness but lower densities (Teodoro *et al.*, 2010) to those of Caye Caulker. It is expected that to some extent coprostanol (hence raw sewage) is benefiting the foraminiferal community. Since coprostanol concentrations are very low (see Appendix B) suggesting minor sewage pollution, it could serve as a food source. However, Ward et al. (2003) fed the foraminifer *Haynesina germanica* with sewage derived material in control experiments to reduce the selective feeding nature of benthic foraminifers in the natural environment. They found no presence of coprostanol in *H. germanica* suggesting that for this particular species coprostanol has no nutritional value. They did find that this species indeed fed indirectly from sewage by ingesting sewage derived bacteria.

Pearson correlations were also performed on individual genera to determine their correlation to coprostanol, mud percent, foram index, Shannon index, species richness, and foraminiferal density and are displayed by morphogroup (i.e. opportunistic, heterotrophic, and symbiont-bearing). *Ammonia, Elphidium*, and *Cribeoelphidium* were all found to have a statistically significant positive correlation to mud percent and negative correlation to the FI (Appendix G). Since, high mud percent in (i.e. sedimentation) is linked to poorer water quality, and therefore reef conditions, the positive correlation found between the opportunistic taxa and mud percent follows expected trends. Fabricus *et al.* (2012) determined that increased turbidity, which can be caused by finer sediment sizes being suspended in the water column, was the best predictor of diversity in a particular catchment of the Great Barrier Reef in Australia. They found that the higher the turbidity the lower the species diversity in that area. Only *Elphidium* showed a significant positive correlation with coprostanol, however it is

important to note that *Ammonia* was fairly close to the cutoff for statistical significance and further research may be able to tease out a definitive answer on its correlation.

Heterotrophic genera that produced significant correlations included: Haurina, Quinqueloculina, Triloculina, Textularia, and Valvulina (Appendix G). Haurina, Triloculina, and Valvulina all demonstrated significant positive correlation with coprostanol, which could be a function of two factors, food availability and decrease in the number of symbiont-bearing taxa. When nutrients and organic matter increase, which is found to occur with sewage discharge, the population of bacteria and other plankton on which foraminifera feed could increase (Ward *et al.*, 2003). This may however not be accurate for all foraminifers since they have been shown to be selective feeders (Sen-Gupta, 2003; Ward et al., 2003). Ward et al. (2003) investigated two species H. germanica and *Phaeodaytylum tricornutum* and found that only *P. tricornutum* consumed the diatoms that were provided as food. Haurina, Triloculina, and Valvulina all show positive correlation with coprostanol, which could be due to increased food availability or because the number of larger, symbiont-bearing individuals is decreasing. Having a large proportion of heterotrophic foraminifera could be representative of decreased water quality resulting in the reduction of symbiont-bearing individuals residing in the sediment. Therefore as water quality conditions worsen so does the population of symbiont-bearing individuals and the number of heterotrophic increase representing degraded but not poor water quality conditions, and by proxy coral reef health. Textularia show a negative correlation with both mud percent and coprostanol. The negative correlation with coprostanol could be due to *Textularia* being a selective feeder and not feeding on the bacteria and plankton that proliferate in the presence of excess nutrients from sewage discharge, while the negative correlation with mud percent could

be again related to how much coprostanol is present in the sediment. As mentioned before coprostanol sequesters in finer-grained sediment (i.e. mud) and therefore if mud percent increases so does coprostanol as can be seen in the overall Pearson correlation between these two parameters (Table 5). If *Textularia* does not proliferate is the presence of coprostanol than it would be logical to see a negative correlation with mud percent since as mud percent increases so does coprostanol.

In contrast, *Triloculina* has a negative correlation with the FI, while *Textularia* has a positive correlation. Again, knowing the relationship between coprostanol and the FI is inverse, we can conclude that since *Triloculina* has a positive correlation with coprostanol it should have a negative correlation with the FI; and since *Textularia* has a negative correlation with coprostanol it should have a positive correlation with the FI.

The symbiont-bearing foraminifera Pearson correlations also demonstrate expected relationships with the exception of one species (Appendix G). *Asterigerina* and *Laevipeneroplis* have a negative correlation with coprostanol as expected, since as sewage increases so does coprostanol thus causing water quality to decrease. As water quality decreases so does the suitability of the area for symbiont-bearing foraminifera, and by proxy corals. *Amphistegina* and *Asterigerina* also showed negative correlations with mud percent as would be expected since again higher mud percent in associated with poorer water quality and thus reef conditions. Also *Amphistegina, Archaias, Asterigerina,* and *Laevipeneroplis* all showed positive correlations with the FI which per Hallock *et al.* (2003) is what would be expected since symbiont-bearing foraminifera have a large influence on increasing the FI. The one symbiont-bearing taxon that did not follow the expected results was *Sorites*. Though at first this seems contradictory, the availability of food may serve as an explanation. Nowhere in the study area did the FI

indicate poor conditions, meaning that the sewage discharge has not severely impacted the area but is still causing nutrient influx into the system. *Sorites* may be a foraminifer that feeds on the bacteria and other plankton benefitting from this input. Knowing that the conditions are not poor enough to cause major degradation and symbiont-bearing taxa are present, we can hypothesize that the positive correlation seen between *Sorites* and coprostanol could be explained by the increased availability of food which *Sorites* consumes.

Longitudinal Statistical Analysis

A longitudinal statistical analysis of the data was also carried out in an attempt to elucidate any patterns. This involved grouping all samples parallel to the coast rather than was done previously from the coast moving offshore (e.g. all #1 samples were grouped together, all #2 samples were grouped together, etc.). The results are shown in Appendix G. Treated in this manner, the correlations seen between coprostanol and mud percentage (positive) and coprostanol and F1 (negative) when the overall data set is statistically treated and (more significantly) when the East data (on the side where the reefs are located) is statistically treated disappear, and in fact often is contradictory. It is difficult to interpret these results since they would seem to contradict known science (e.g. positive correlation between coprostanol and mud percentage) and since it is not customary to analyze the data for a project of this type in this manner. The results may simply indicate that to treat the data in this manner, it may be necessary to carry out further studies on local ocean currents, groundwater movement and local ocean bottom conditions. We are confident of the previous results when the data was treated in a more conventional manner.

Conclusions and Future Work

The purpose of this research was to provide synergistic information on anthropogenic pollution, specifically sewage pollution, using foraminiferal biomonitors as proxies for coral reef health in order answer the question of whether sewage pollution is affecting coral reef health in the reef system off the coast of Caye Caulker, Belize. The results of this research show: (1) across all samples, transects, and divisions, the FORAM Index indicates that the coastal area off of Caye Caulker is conducive to reef growth and recovery; (2) foraminiferal assemblage variation between the east and west sides of Caye Caulker may be attributed to mud percent; (3) limited variation in grain size (*i.e.* mud percent) suggests little influence on the eastern side (reef side) of the island; (4) higher coprostanol levels were found nearest the shoreline suggesting that the contamination is originating at the shoreline; and (5) both ratios confirmed that the sources of the sewage present (represented by coprostanol) is from untreated human sewage.

We did find a significant negative correlation between coprostanol and the FI. Figures 18 and 19 indicate that where coprostanol concentrations were high, lower FI values are found and conversely, lower coprostanol concentrations are found where high FI values were determined.

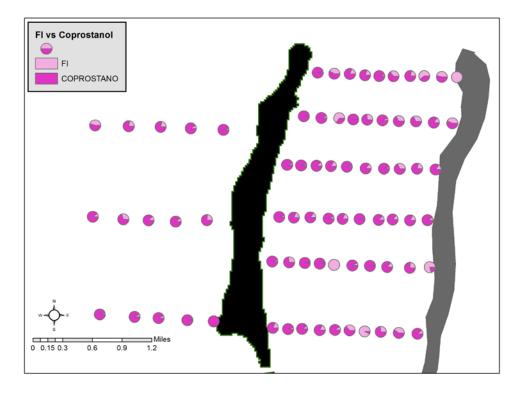


Figure 18: Coprostanol to FI Comparison at Northern End of Caye Caulker

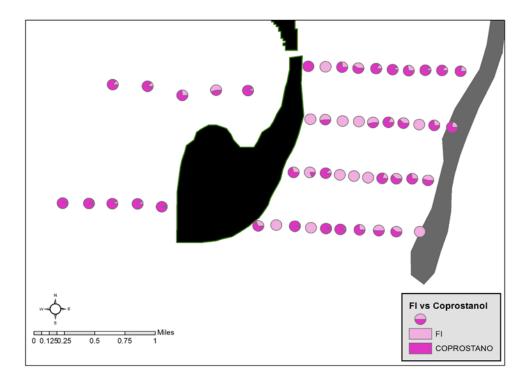


Figure 19: Coprostanol to FI Comparison at Southern End of Caye Caulker

The FI values determined show that the area is conducive to reef growth and recovery and trends followed expected results. In no samples was the FI below 2, but there were variations between assemblages which could be attributed to other factors. For example, there was a negative correlation between mud percent and the FI, following Hallock *et al.* (2003) which suggests poor habitat for reefs and was reflected in the foraminiferal assemblages found in these areas. The separation of mud percent values between the east and west sides of the island were reflected in the FI values that were determined and thus, confirm the correlation between higher mud percent and lower FI values. Limited variation in mud percent on the east side (reef side) of the island suggests little influence on the foraminiferal assemblages found; therefore, variation in foraminiferal assemblages can be attributed to other variables.

This study demonstrates that there was untreated sewage entering the coastal waters of Caye Caulker-Belize. However, further studies must be performed to confirm the movement of the groundwater in Caye Caulker and where it may actually be entering the coastal areas. High concentrations of coprostanol (and high ratios) were found in some places that were not associated with a greater human population, indicating that the movement of groundwater may be affecting the movement of sewage and therefore where is appears on the coastline. Also, the surface currents in the area may be moving pollutants farther south than where our samples were taken, providing opportunity for research to determine where pollutants may be traveling if not found directly offshore of Caye Caulker.

There were a few limitations to this research that, if not absent, may have possibly improved the resolution of the results. First, there was no replicate analysis conducted on any of the samples due to a concern of solvent availability. However, replicate extractions and analyses would have enhance the competence of the results obtained and provide verification of coprostanol concentrations. Second, we did not assess the movement of groundwater or the surface currents of Caye Caulker. A search for this data none yielded no results, providing an opportunity for further research. Finally, extension of transects further south (*i.e.* south of the actual island land mass) could possibly illuminate the cause of variation in transect 1 on the east side of the island since there were conspicuous differences in the statistical values.

The current state of corals on the reef suggests that there are stressors causing concern for reef health. Visual observations of corals during field sampling revealed various diseased specimens which is cause for concern. The presence of disease, in combination with the 37 samples that indicate environmental change, suggests that further evaluation and monitoring may be needed. Further, work to determine the cause of these diseases may disclose other anthropogenic stressors affecting the coral reef system, and may therefore provide a better picture of the impacts affecting the reefs off of Caye Caulker.

References

- Alve, E., 1995, Benthic foraminiferal responses to estuarine pollution: a review. Journal of Foraminiferal Research, 25, p. 190–203.
- Babcock, E. A., Coleman, R., Karnauskas, M., and Gibson, J., 2013. Length-based indicators of fishery and ecosystem status: Glover's Reef Marine Reserve, Belize, Fisheries Research, 147, p. 434-445.
- Bahgat, M., 2011. Factors governing the removal of faecal indicator bacteria in the ecosystem of Lake, Timsah, Egypt, African Journal of Aquatic Science, 36-1, p. 11-18.
- Bandy, O.L., Ingle, J.C., and Resig, J.M., 1964. Foraminifera, Los Angeles county outfall area-California, Limnology and Oceanography, 9-1, p.124-137.
- Bayona, J.M., and Albaiges, J., 2006. Sources and fate of organic contaminants in the marine environment. Hdb Env Chem, 2, p. 323- 370.
- Brown, R.C. and Wade, T.L., 1984. Sedimentary Coprostanol and Hydrocarbon Distribution Adjacent to a Sewage Outfall. Water research 18-5, p. 621-32.
- Buckingham, S., Tipping, E., and Hamilton-Taylor, J., 2008. Dissolved organic carbon in soil solutions: a comparison of collection methods. Soil Use and Management, 24, p. 29-36.
- Buddemeier, R.W., Lane, D.R., and Martinich, J.A., 2011. Modeling Coral Reef Responses and changes in ocean chemistry: Caribbean case study. Climactic Change, 109, p. 375- 397.
- Cacador, I., Costa, J.L., and Duarte, B., 2012. Macroinvertebrates and biomonitors of heavy metal concentration in the Seixal Bay (Tagus estuary): Which species performs better? Ecological Indicators, 19, p. 184-190.
- Carreiro-Silva, M., Kiene, W. E., Golubic, S., and McClanahan, T. R., 2012. Phosphorous and nitrogen effects on microbial euendolithic communities and their bioerosion rates, Marine Pollution Bulletin, 64, p. 602-613.
- Caribbean Tourism Organization (CTO). Annual Tourism Overview. <u>http://www.onecaribbean.org/statistics/annualoverview/{accessed</u> 10-19-14}

- Carilli, J. and Walsh, S., 2012. Benthic Foraminiferal assemblages from Kiritimati (Christmas) Island indicate human-mediated nutrification has occurred over the scale of decades. Marine Ecology-Progress Series, 456, p. 87.
- Carnahan, E.A., Hoare, A.M., Hallock, P., Lidz, B.H., and Reich, C.D., 2009. Foraminiferal assemblages in Biscayne Bay, Florida, USA: Responses to urban and agricultural influence in a subtropical estuary. Marine Pollution Bulletin, 59, p. 221-233.
- Castillo, K. D., Ries, J.B., Weiss, J.M., 2011. Declining coral skeletal extension for forereef coloies of *Siderastrea sidereal* on the Mesoamerican Barrier Reef system, Southern Belize. PLoS ONE, 6-2, p. e14615.
- Chan, K.H., Lam, M.H, Poon, K., and Yeung, H., and Chiu, T.K., 1998. Application of sedimentary fecal stanols and sterols in tracing sewage pollution in coastal waters. Water research 32-1, p. 225-35.
- Comeau, S., Carpenter, R.C., and Edmunds, P.J., 2013. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proceedings of the Royal Society B- Biological Sciences. 280: 753 art. Num. 20122374.
- Costa Jr., O.S., Leao, Z.M.A.N, Nimmo, M., and Attrill, M.J., 2000. Nitrification Impacts on Coral Reefs from Northern Bahia, Brazil. Hydrobiologia 440,1-3, p. 307-15.
- Debanay, J.-P., Guillou, J.J., Redois, F., and Geslin, E., 2000. Distribution trends of foraminiferal assemblages in paralic environments: a base for using foraminifera as bioindicators, *in* Martin, R. E. (ed.), Environmental Micropaleontology: Kluwer Academic/Plenum Publishers, Boston, p. 39–67.
- Diedrich, A., 2010. Cruise ship tourism in Belize: The implications of developing cruise ship tourism in an ecotourism destination, Ocean & Coastal Management, 53, p. 234-244.
- Dutka, B.J., 1974. Coliforms are an inadequate index of water quality. J. Envir Health, 36, p. 39-46.
- Eca, G.F., Mendonca Filho, C.V.S., and Hatje, V., 2012. Corals as biomonitors: application, pre- treatment, and determination of major and trace elements. Quimica Nova, 35-3, p. 581-592.
- Fabricius, K.E., Cooper, T.F., Humphrey, C., Uthicke, S., De'ath, G., Davidson, J., LeGrand, H., Thompson, A., and Schaffelke, B., 2012. A bioindicator system for water quality on inshore coral reefs of the Great Barrier Reef. Marine pollution bulletin, 65-9, p. 320-32.

- Fabro, I.E. and Rancharan, J., 2011. Sewage needs assessment pilot project for Caye Caulker. Belize Environmental Technologies.
- Freeman, L. A., 2013. Coral Reef Habitat Response to Climate Change Scenarios. PLoS ONE, 8-12, p. e82404
- Frontalini, F. and Coccioni, R., 2008. Benthic foraminifera for heavy metal pollution monitoring: A case study from the central Adriatic Sea coast of italy. Estuarine, Coastal, and Shelf Science, 76, p. 404-417.
- Futch, J.C., Griffin, D.W., Banks, K., and Lipp, E.K., 2011. Evaluation of sewage source and fate on southeast Florida coastal reefs. Marine Pollution Bulletin, 62, p. 2308-2316.
- Gibson, J., McField, M., and Wells, S., 1998. Coral reef management in Belize: An approach through integrated coastal zone management. Ocean andCoastal Management, 39.3, p. 229-44. Print.
- Gischler, E., Hauser, I., Heinrich, K., and Scheitel, U., 2003. Characterization of depositional environments in isolated carbonate platforms based on benthic foraminifera, Belize, Central America. Palaios, 18, p. 236-255.
- Goodfellow, R.M., Cardosa, J., Eglinton, G., Dawson, J.P., and Best, G.A., 1977. A faecal sterol survey in the Clyde Estuary, Marine Pollution Bulletin, 8-12, p. 272-276.
- Gupta, B.K.S. and Machain- Castillo, M.L., 1993. Benthic foraminifera in oxygen-poor habitats. Marine Micropaleontology, 20, p. 183-201.
- Gutterres-Vilela, C., Batista, D., Neto, J.A., and Giselli, R.O. . 2011. Benthic foraminifera distribution in a tourist lagoon in Rio de Janiero, Brazil: A response to anthropogenic impacts. Marine Pollution Bulletin, 62, p. 2055-2074.
- Hallock, P., Lidz, B.H., Cockey-Burkhard, E.M., and Donnelly, K.B., 2003. Foraminifera as bioindicators in coral reef assessment and monitoring: The Foram Index. Environmental Monitoring and Assessment, 81, p. 221-238.
- Hatcher, P. and McGillivary, P., 1979. Sewage contamination in the New York Bight: Coprostanol as an indicator. Environmental Science and Techonology, 13.10, p. 1225-1229.
- Haynes, D., Brodie, JWaterhouse, J., Bainbridge, Z., Bass, D., and Hart, B. 2007.Assessment of the water quality and ecosystem health of the Great Barrier Reef (Australia): Conceptual Models. Environmental Management, 40.6, p. 993-1003.

- Hughes, T.P., 1994. Catastrophes, phase shifts and large-scale degradation of a Caribbean coral reef. Science 265, p. 1547–1551.
- Humann, P. and N. DeLoach. Reef Coral Identification: Florida, Caribbean, Bahamas; 2nd Edition. New World Publications. Jacksonville, Fl. 2002.
- Jorissen, F.J., 1999. Benthic foraminiferal microhabitats below the sediment-water interface, in Sen Gupta, B. K. (ed.), Modern Foraminifera: Kluwer Academic Publishers, Boston, p. 191–179.
- Kelly, A.G., 1995. Accumulation and persistence of chlorobiphenyls, organochlorine pesticides and fecal sterols at the Garroch-Head sewage-sludge disposal Site, Firth of Clyde. Environmental Pollution, 88-2, p. 207-17.
- Lapointe, B.E., O'Connell, L.D., and Garrett, G.S., 1990. Nutrient couplings between onsite sewage disposal systems, groundwaters, and nearshore surface waters of the Florida Keys. Biogeochemistry 10.3, Groundwater Inputs to Coastal Waters, p. 289-307.
- LaPointe, B. E., 2004. Correspondence: Phosphorous-rich waters in Glovers Reef, Belize? Marine Pollution Bulletin, 48, p. 193-195.
- Lindberg, K., Enriquez, J., and Sproule, K., 1996. Ecotourism Questioned: Case studies from Belize. Annals of Tourism Research, 23, p. 543-562.
- Littler, M. M., Littler, D. S., and Brooks, B. L., 2010. The effects of nitrogen and phosphorous enrichments on algal community development: Artificial mini-reefs on the Belize Barrier Reef sedimentary lagoon, Harmful Algae, 9, p. 255-263.
- Martinez-Colon, M., Hallock, P., and Green-Ruiz, C., 2009. Strategies for using shallowwater foraminifers as bioindicators of potentially toxic elements: A review. Journal of Foraminiferal Research, 39-4, p. 278-299.
- McClanahan, T. R., Cokos, B. A., and Sala, E., 2002. Algal growth an species composition under experimental control of herbivory, phosphorous and coral abundance in Glovers Reef, Belize, Marine Pollution Bulletin, 44, p. 441-451.
- McClanahan, T. R., Steneck, R. S., Pietri, D., Cokos, B. and Jones, S., 2005. Interaction between inorganic nutrients and organic matter in controlling coral reef communities in Glovers Reef, Belize, Marine Pollution Bulletin, 50, p. 566-575.
- Melbourne-Thomas, J., Johnson, C. R., and Fulton, E.A., 2011. Regional-scale scenario analysis for the Meso-American reef system: Modelling coral reef futures under multiple stressors. Ecological Modelling, 222-10, p. 1756-70.

- Murray, J.W., 2001. The niche of benthic foraminifera, critical thresholds and proxies. Marine Micropaleontology, 41, p. 1–7.
- Natsir, S. M., and Muchlisin, Z. A. 2012. Benthic foraminiferal assemblages in Tambelan Archipelago, Indonesia. Aquaculture, Aquarium, Conservation andLegislation -International Journal of the Bioflux Society (AACL Bioflux) 5.4, p. 259-64.
- Oliver, L.M., Fisher, W.S., Dittmar, J., Hallock, P., Campbell, J., Quarles, R.L., Harris, P., LoBue, C. 2014. Contrasting responses of coral reef fauna and foraminiferal assemblages to human influence in La Parguera, Puerto Rico. Marine Environmental Research, 99, p. 95-105
- Pandolfi, J.M., Bradbury, R.H., Sala, E., Hughes, T.P., Bjorndal, K.A., Cooke, R.G., Macardle, D., McClenahan, L., Newman, M.J.H., Paredes, G., Warner, R.R., and Jackson, J.B.C., 2003. Global trajectories of the long-term decline of coral reef ecosystems. Science, 301, p. 955–958.
- Parker, W.C. and Arnold, A.J. 2003. Quantitative methods of data analysis in foraminiferal ecology *in* Sen Gupta, B.K. (ed.), Modern Foraminifera: Kluwer Academic Publishers, Boston, p. 71-92
- Pastorok, R.A. and Bilyard, G.R., 1985. Effects of sewage pollution on coral-reef communities." Marine Ecology Progress Series, 21.1-2, p. 175-89.
- Peng, X., Zhang, G., Mai, B., Min, Y., and Wang, Z. 2002, Spatial and temporal trend of sewage pollution indicated by coprostanol in Macao Estuary, Southern China. Marine Pollution Bulletin, 45.1-12, p. 295-9.
- Pratt, C., Warnken, J., Leeming, R., Arthur, J.M., and Grice, D.I., 2007. Detection of intermittent sewage pollution in a subtropical, oligotrophic, semi-enclosed embayment system using sterol signatures in sediments. Environmental Science andTechnology, 41-3, p. 792-802.
- Prouty, N. G., Hughen, K.A., and Carilli, J., 2008. Geochemical signature of land-based activities in Caribbean coral surface samples. Coral Reefs, 27-4, p. 727-724.
- Purdey, E.G. and Gischler, E., 2003. The Belize margin revisited. 1. Holocene marine facies. International Journal of Earth Science, 92, p. 532-551.
- Readman, J.W., *et al.* 2005. The use of Steroid markers to assess sewage contamination of the Black Sea." Marine pollution bulletin, 50.3, p. 310-8. Print.
- Rhodes, M.W. and Kator, H., 1988. Survival of *Escherichia coli* in estuarine environments. Appl Environ Microbiology, 54, p. 2902-2907.

- Richardson, S., 2000. Epiphytic foraminifera of the Pelican Cays, Belize: Diversity and distribution. The Natural History of the Pelican Cays. Attol Research Bulletin, 475, p. 208-228.
- Richardson, S., 2006. Response of epiphytic foraminiferal communities to natural eutrophication in seagrass habitats off Man O'War Cay, Belize. Marine Ecology. 27, p. 404-416.
- Richardson, S.L., 2009. An overview of symbiont-bleaching in the epiphytic foraminiferan *Sorites dominicensis*. Smithsonian Contribution to the marine Sciences, 38:429–436
- Rosenfel, R.S. and Hellman, L., 1971. Reduction and esterification of cholesterol and sitosterol by homogenates of feces. Journal of Lipid Research, 12-2, p. 192.
- Samir, A.M. and El-Din, A.B., 2001. Benthic foraminiferal assemblages and morphological abnormalities as pollution proxies in two Egyptian bays. Marine Micropaleontology 41.3-4, p. 193-227.
- Schafer, C.T., 2000. Monitoring nearshore marine environments using benthic foraminifera: some protocols and pitfalls. Micropaleontology, 46, p. 161–169.
- Schnoor, J.L. 1996. Environmental modeling: fate and transport of pollutants in water, air, and soil: Wiley and Sons, New York, 676p.
- Schönfeld, J., Alve, E., Geslin, E., Jorissen, F., Korsun, S., Spezzaferri, S., Members of Fobimo Group, 2012. The FOBIMO (FOraminifeal Bio-Monitoring) initiative- Towards a standardized protocol for soft-bottom benthic foraminiferal monitoring studies. Marine Microapleontology, 94-95, p. 1-13.
- Seigle, G.A., 1975. Foraminifers of Guayanilla Bay and their use as environmental indicators. Revisita Espanola de Micropaleontologia, 7, p. 453-487.
- Sheppard, C.R.C., Davy, S.K., and Pilling, G.M., 2009. The Biology of Coral Reefs. New York: Oxford University Press.
- Teodoro, A.C., Duleba, W., Gubitoso, S., Prada, S.M., Lamparelli, C.C., and Bevilacqua, J.E., 2010. Analysis of foraminifera assemblages and sediment geochemical properties to characterise the environment near Araçá and Saco da Capela domestic sewage submarine outfalls of São Sebastião Channel, São Paulo State, Brazil. Marine Pollution Bulletin, 60, p. 536- 553.
- Tsujimoto, A., Nomura, R., Yasuhara, M., Yamazai, H., and Yoshikawa, S., 2006. Impact of eutrophication on shallow marine benthic foraminifers over the last 150 years in Osaka Bay, Japan. Marine Micropaleontology, 60, p. 258–268.

- Uthicke, S. and Nobes, K., 2008. Benthic foraminifera as ecological indicators for water quality on the Great Barrier Reef. Estuarine, Coastal and Shelf Science, 78.4, p. 763-73.
- Velasquez, J., Lopez-Angarita, J., and Sanchez, J.A., 2011. Evaluation of the FORAM Index in a case of conservation benthic foraminifera as indicators of ecosystem resilience in protected and non-protected coral reefs of the southern Caribbean. Biodiversity and Conservation, 20.14, p. 3591-603.
- Waltham, N.J., Teasdale, P.R., and Connolly, R.M., 2011. Contaminants in water, sediment, and fish biomonitor species from natural and artificial estuarine habitats along the urbanized Gold Coast, Queensland. Journal of Environmental Monitoring, 13, p. 3409-3419.
- Ward, J.N., Pond, D.W., and Murray, J.W., 2003. Feeding of benthic foraminifera on diatoms and sewage-derived organic matter: an experimental application of lipid biomarker techniques. Marine Environmental Research, 56, p. 515–530.
- Writer, J.H., Leenheer, J., Barber, L.B, Amy, G.L., and Chapra, S.C., 1995. Sewage contamination in the upper Mississippi River as measured by the fecal sterol, coprostanol. Water Research, 29.6, p. 1427-36.
- Yanko, V., Arnold, A. J., and Parker, W.C., 1999. Effects of marine pollution on benthic foraminifera. Pages 217-235 in B.K. Sen Gupta, ed. Modern Foraminifera. KluweAcademic Publishers-Netherlands.
- Young, C., 2005. Belize Ecosystems: Threats and challenges to conservation in Belize. Tropical Conservation Science, 1, p. 18-33.

Appendix A: Raw Foraminiferal Data

Opportunistic	*		E		e			*			*	
Species	*	~	dit *		da	F	*	Ê		*	* E	
-	Ammonia sp.**	Astrononion stelligerum	Cribeoelphidium poeyanum**	Elphidium advenum**	E. cf. discordae f	poeyanum	sagrum**	excavatum**	٦	Nonion cf. gratelopui**	Nonion depressulum**	Nonion spp.
	ü	Jor	oel Inu	Elphidium advenum*	dis	ya	<u>n</u>	av	Elphidium spp.**	Nonion cf. gratelopu	n SSI	u S
	Ĕ	llig	be(sya	hid /en		oo	ag	SXC	hid .*:	nio tel	nio Dre	ic
	Am	Ast ste	Cri	ady	ці ц	ш	ц	ш	<mark>Elphidiu</mark> spp. ^{* *}	Noi	Nonion depres:	No
ET1S1	0	0	0	0	1	0	1	0	0	0	0	0
ET1S2	0	0	0	0	2	0	0	0	0	0	0	0
ET1S3	0	1	0	0	0	0	0	0	0	0	3	0
ET1S4	0	3	0	0	0	0	0	0	0	0	0	0
ET1S5	0	1	0	0	0	0	0	0	0	0	2	0
ET1S6	0	0	0	2	0	0	0	0	0	0	6	0
ET1S7	0	0	0	0	0	0	0	0	0	0	0	0
ET1S8	0	0	0	0	0	0	1	0	0	1	0	0
ET1S9	0	0	0	0	0	0	0	0	0	1	0	0
ET1S10	0	0	0	0	0	0	0	0	0	1	1	0
ET2S1	0	0	0	0	2	0	0	0	1	0	7	0
ET2S2	0	0	0	0	0	0	0	0	0	0	1	0
ET2S3	0	0	0	0	3	0	0	0	0	0	0	0
ET2S4	0	0	1	0	2	0	0	0	2	0	0	0
ET2S5	0	0	0	0	0	0	0	0	0	0	0	0
ET2S6	0	0	2	0	0	0	0	0	1	0	0	0
ET2S7	0	0	0	0	4	0	0	0	0	0	0	0
ET2S8	0	0	0	0	2	0	0	0	0	0	0	0
ET2S9	0	0	1	0	0	0	0	0	0	0	0	0
ET2S10	1	0	0	0	0	1	0	0	0	2	0	0
ET3S1	0	1	0	1	0	0	0	0	0	0	0	0
ET3S2	0	0	2	0	0	0	0	0	0	0	0	1
ET3S3	0	0	2	0	0	0	0	0	0	0	0	2
ET3S4	0	0	2	0	0	0	0	0	7	0	0	0
ET3S5	0	0	0	0	0	0	0	0	2	0	0	0
ET3S6	0	0	1	0	0	0	0	0	0	0	0	0
ET3S7	0	0	0	0	0	0	0	0	0	0	0	0
ET3S8	0	0	2	0	0	2	0	0	0	0	0	0
ET3S9	0	0	2	0	0	0	0	0	0	1	0	0
ET3S10	0	0	1	1	0	1	0	0	0	0	0	0
ET4S1	0	0	3	1	1	0	0	2	0	0	0	0
ET4S2 ET4S3	0	0	1	0	0	0	0	1 5		0	0	0
ET4S3 ET4S4	0	0	1	1	0		0		0	0	0	0
ET4S5	0	0	2	4 1	0	0	0	4 0	8	0	0	0
ET4S6	0	0	2	2	0	0	0	3	3 0	0	0	0
ET4S7	0	0	 1	2	0	0	0	3	1	0	0	0
ET4S7 ET4S8	1	0	0	0	0	0	1	3	0	0	0	0
ET4S9	2	0	0	0	0	0	0	3	1	1	0	0
ET4S10	2	0	1	1	0	0	0	3	0	0	0	0
E14310		0			0	U	U	0	U	U	U	U

 ** Indicates that the species was found in at least 5% of samples.

Opportunistic			2		*			*	*			
Species (Continued)	Ammonia sp.**		Cribeoelphidium poeyanum**		E. cf. discordae f. translucens**	c		excavatum**	Elphidium spp.**	×	Nonion depressulum**	
	sp	Astrononion stelligerum	hic n*"	*	or Ser	poeyanum	sagrum**	tu	ds u	Nonion cf. gratelopui**	n	Ъ.
	nia	Astrononior stelligerum	Cribeoelphic poeyanum*	Elphidium advenum*	isc shu	/ar	un.	ava	Ľ	<mark>Nonion cf</mark> gratelopu	su	Nonion spp.
	õ	igi o	eo /ar	idi enu	p .)e	agr	e co	idi	ion elc	ion es	ion
	L L	str tell	rib oe/	<mark>d ≯</mark>	tr. cf	ă			hd	on rat	Nonion depress	on
FTE04						<u>ш</u>	ш	ш ́				Z
ET5S1	1	0	0	1	0	0	0	4	0	0	0	0
ET5S2 ET5S3	0	0	0	0 5	0 1	0	1 0	2	0	0	0	0
ET5S4	1	0	2	5 2	0	0	3	 	0	0	0	0
ET5S5	0	0	1	0	0	0	0	0	3	0	0	0
ET5S6	1	0	0	5	0	0	0	7	4	0	0	0
ET5S7	1	0	0	2	0	0	0	0	1	0	0	0
ET5S8	0	0	1	0	0	0	0	2	3	0	0	0
ET5S9	0	0	0	0	0	0	0	1	0	0	0	0
ET5S10	0	0	0	0	0	0	0	1	0	0	0	0
ET6S1	0	0	0	3	1	0	0	0	2	0	0	0
ET6S2	1	0	0	0	1	0	0	0	5	0	0	0
ET6S3	2	0	0	0	2	0	0	0	4	0	0	0
ET6S4	0	0	0	0	0	0	0	0	0	0	0	0
ET6S5	0	0	1	0	0	0	0	0	3	0	0	0
ET6S6	0	0	0	0	0	0	0	0	0	0	0	0
ET6S7	0	0	0	0	0	0	0	0	0	0	0	0
ET6S8	0	0	0	0	0	0	1	0	0	0	0	0
ET6S9	0	0	0	0	0	0	0	0	1	0	0	0
ET6S10	0	0	0	0	0	0	0	0	0	0	0	0
ET7S1	0	0	1	1	0	0	1	0	3	0	0	0
ET7S2	0	0	0	2	2	0	2	1	0	0	0	0
ET7S3	0	0	1	7	0	0	1	1	1	0	0	0
ET7S4	0	0	0	0	0	0	0	2	0	0	0	0
ET7S5 ET7S6	0	0	1	0	0	0	0	3	1 0	0	0	0
ET7S7	0	0	1	3	0	0	0	3	7	0	0	0
ET7S8	0	0	0	0	1	0	0	1	5	0	0	0
ET7S9	0	0	0	0	0	0	0	0	2	0	0	0
ET7S10	0	0	0	0	0	0	0	0	1	0	0	0
ET8S1	0	0	0	1	0	0	0	0	0	0	0	0
ET8S2	0	0	0	0	0	0	0	0	0	0	0	0
ET8S3	0	0	1	2	1	0	1	0	0	0	0	0
ET8S4	0	0	0	0	0	0	1	1	0	0	0	0
ET8S5	0	0	0	1	1	0	0	1	0	0	0	0
ET8S6	0	0	0	0	0	0	0	0	0	0	0	0
ET8S7	0	0	0	0	0	0	1	0	0	0	0	0
ET8S8	0	0	0	0	0	0	0	0	0	0	0	0
ET8S9	0	0	0	0	0	0	1	0	0	0	0	0
ET8S10	0	0	0	0	0	0	0	0	0	0	0	0
ET9S1	0	0	0	1	0	0	1	0	0	0	0	0
ET9S2 ET9S3	1 0	0	1	1	0	0	0	0	0	0	0	0
E1953 ET9S4	0	0	1	0	0	0	0	0	0	0	0 1	0
E1954 ET9S5	0	0	0	0	0	0	0	0	0	0	0	0
ET9S6	0	0	0	0	0	0	0	0	0	0	0	0
ET930 ET9S7	0	0	0	0	0	0	0	0	0	0	0	0
ET9S8	0	0	0	1	0	0	0	0	0	0	0	0
ET9S9	1	0	0	0	0	0	0	0	1	0	0	0
ET9S10	0	0	0	0	0	0	0	0	0	0	0	0
		~	~		~	5	_ ~ _	3		5	5	

Opportunistic	*		E		a *			*	* *		*	
Species (Continued)	·*.	_	diu *		da(sr	٦	*	*	pp.	*	۲	
	Ammonia sp.**	Astrononion stelligerum	Cribeoelphidium poeyanum**	Elphidium advenum**	E. cf. discordae f. translucens**	poeyanum	sagrum**	excavatum**	Elphidium spp.**	Nonion cf. gratelopui**	Nonion depressulum**	pp.
	nia	Astrononior stelligerum	nu nu	Elphidium advenum	dis(slu	yaı	Lur	ava	iun	<mark>Nonion cf</mark> gratelopu	n SSL	Nonion spp.
	Ĕ	ror Ilig	oec ya	hid	f. (an	eoe	ag	XC	hid	tel	oic	oic
	L	Ast ste	Cril		т tr	ш ш	E. S	Е. е	Elp	Vor gra	Nonion depres	Vor
ET10S1	0	0	0	2	0	0	0	0	0	0	0	0
ET10S2	0	0	0	3	0	0	0	1	0	0	0	0
ET10S3	0	0	1	1	0	0	0	0	0	0	0	0
ET10S4	0	0	0	0	0	0	0	2	0	0	0	0
ET10S5	0	0	0	1	0	0	0	1	0	0	0	0
ET10S6	0	0	0	0	0	0	0	2	0	1	0	0
ET10S7	0	0	0	0	0	0	0	0	0	0	0	0
ET10S8	0	0	0	1	0	0	0	1	0	0	0	0
ET10S9	0	0	0	0	0	0	0	0	0	0	0	0
ET10S10	0	0	0	0	0	0	0	0	0	0	0	0
WT1S1	0	0	0	5	4	0	2	9	0	0	0	0
WT1S2	0	0	4	5	1	0	3	4	0	0	0	0
WT1S3	0	0	2	5	0	0	1	3	0	0	0	0
WT1S4	1	0	2	4	0	0	1	6	0	0	1	0
WT1S5	1	0	0	11	5	0	2	13	0	0	0	0
WT2S1	5	0	3	0	5	0	4	3	0	0	0	0
WT2S2	0	0	0	0	0	0	0	0	0	0	0	0
WT2S3	0	0	1	0	0	0	0	2	0	0	0	0
WT2S4	0	0	3	2	0	0	0	5	0	0	0	0
WT2S5	0	0	5	3	0	0	0	3	0	0	0	0
WT3S1	4	0	3	0	0	0	0	1	0	0	0	0
WT3S2	0	0	9	0	0	0	2	3	0	0	0	0
WT3S3	0	0	5	7	0	0	0	0	0	0	0	0
WT3S4	0	0	2	2	0	0	0	2	0	1	0	0
WT3S5	0	0	3	2	2	1	0	4	0	0	0	0
WT4S1	0	0	1	3	0	0	1	4	0	1	0	0
WT4S2	1	0	6	9	0	0	1	3	0	0	0	0
WT4S3	1	0	4	3	0	0	0	6	0	0	0	0
WT4S4 WT4S5	2 0	0	4	2 3	0	0	0	5 3	0 0	0	0	0 0
WT455 WT5S1	0	0	 1	3	0	0	0	<u> </u>	0	0	0	0
WT5S1 WT5S2	1	0	3	3 11	0	0	0	0	0	0	0	0
WT5S3	1	0	2	5	0	0	0	0	0	0	0	0
WT5S4	0	0	 1	7	0	1	0	0	0	0	0	0
WT5S5	0	0	0	7	0	1	0	0	0	0	0	0
1000	0	0	0	,		1		0	0	0	0	
Total	31	6	107	160	44	7	34	143	73	10	22	3
10101	51	0	107	100	77	1	7	140	75	10	22	5

Symbolnt Bearing							*	*		*		
5							Broeckina orbitolitoides **	Cyclorbiculina compressi**	Laevipeneroplis bradyi**	Laevipeneroplis proteus**		
			*				oide	ore	d	oter	Peneroplis pertusus [∗] *	*
			Archaias angulata**		*		lite	Ē	bra	pro	sns	Sorites marginalis**
			lat		Borelis Pulchra**		ito	8	is	lis	린	าล
	*	*	- B	* *	통		- 2	ina	형	형	<u>e</u>	gi
		sa,	ar	้ย	Ē	<u>e</u>	la (CI I	Jer 🛛	ler	lis	nai
	sot	ĝ	ias	igi	is F	IS S	- Żi	ē	bei	bei	6	SL
	lessonii**	gibbosa**	- El	ter	le l	le l) e	응	Ś	ŝvi	ner	rite
	Α.	A.	Ä	Asterigina	Bo	Borelis sp	Bro	Š	La(Lae	Pe	Sol
ET1S1	0	0	2	0	0	0	0	1	1	0	2	2
ET1S2	0	0	12	9	0	0	0	6	5	0	0	1
ET1S3	0	3	8	11	1	0	0	3	9	0	4	8
ET1S4	0	0	10	17	0	0	0	2	15	0	3	1
ET1S5	0	0	6	29	1	0	0	2	11	0	2	4
ET1S6	0	0	5	24	0	0	0	2	15	0	0	6
ET1S7	0	12	5	23	2	0	5	0	16	15	1	2
ET1S8	0	16	0	20	2	1	9	0	11	0	4	2
ET1S9	0	7	8	25	3	0	9	0	21	0	2	0
ET1S10	0	5	8	17	2	0 0	6	0	5	0	4	4
ET2S1 FT2S2	0	0	29 24	23 37	3	0	3	2	9 15	6	1 0	1 1
ET2S2 ET2S3	0	0	24 29	23	3	0	4	2	15	6	0	1
ET2S3 ET2S4	0	1	29	23 25	0	0	3 1	2	9	24	0	3
ET2S5	0	0	35	36	1	0	4	0	3	10	0	2
ET2S6	0	0	30	25	0	0	1	0	3	7	1	0
ET2S7	1	1	37	50	0	0	0	0	0	, 8	1	1
ET2S8	0	0	17	38	0	0	2	0	2	16	0	3
ET2S9	1	5	23	50	0	0	1	0	2	7	2	0
ET2S10	1	1	0	27	0	0	0	1	3	10	3	5
ET3S1	0	0	12	11	4	0	0	2	12	1	0	3
ET3S2	0	1	22	8	0	0	0	0	32	10	1	2
ET3S3	0	0	30	26	2	0	0	0	1	10	0	0
ET3S4	0	0	29	30	2	0	0	0	0	15	0	1
ET3S5	0	12	48	22	2	0	8	0	75	20	3	1
ET3S6	0	5	29	50	0	0	1	0	0	71	0	2
ET3S7 ET3S8	0	2 4	34 19	31 31	2 1	0	0 0	0	4	22 2	1 0	1 0
ET358 ET359	0	4	19	31 28	0	0	0	0	8	2 16	2	1
ET3S10	0	7	43	20 26	1	0	0	0	3	4	2	3
ET4S1	0	0	31	15	0	0	0	0	2	4	2	4
ET4S2	0	0	25	27	1	0	2	0	6	0	1	0
ET4S3	0	1	25	40	0	0	4	0	4	4	1	0
ET4S4	0	0	22	43	2	0	1	0	9	0	0	0
ET4S5	0	0	33	75	0	0	3	0	7	1	0	1
ET4S6	0	0	28	36	0	0	1	0	6	0	0	1
ET4S7	2	0	38	54	1	0	1	0	4	2	0	4
ET4S8	0	4	28	41	1	0	1	0	3	0	3	1
ET4S9	3	1	42	42	2	0	0	0	4	3	1	2
ET4S10	2	4	18	32	1	0	2	0	7	3	1	0
ET5S1	2	4	43	17	3	0	1	0	1	1	0	0
ET5S2	0	4	30	14	3 5	0	1	0	4	2	3	8
ET5S3	0	<u>3</u>	19	24 43	5 5	0	4	0	3	0	3	4 9
ET5S4 ET5S5	0	2	18 15	43	5	0	0	0	4	3 5	3 1	9 12
ET5S6	0	2	29	46 83	3 1	0	1	0	4	5	0	7
ET5S7	0	0	41	48	3	0	2	0	4	4	3	3
ET5S8	2	2	25	40	0	0	2	0	1	4	1	0
ET5S9	0	1	17	47	1	0	0	0	0	1	0	6
ET5S10	1	0	16	51	0	0	0	0	0	1	1	13
2.0010	1	5	10	51	U	5	0	5	5		•	15

Symboint Bearing							*		is	is		
(Continued)	*	*		*			es '	ina *	ldo	do		*
		sa	*	าล	*	d	ar Did	cul si*	Jer ,	٦er *	** **	lis
	A. lessonii**	A. gibbosa**	Archaias angulata **	Asterigina **	Pulchra**	Borelis sp	broeckina orbitolitoides**	Cyclorbiculina compressi**	Laevipeneroplis bradyi**	Laevipeneroplis proteus**	Peneroplis pertusus**	Sorites marginalis**
	les	gib	cha gul	ter	Pulchra	rel	oec oitc	clo mp	evi ady	evi ote	rtu	Sorites margin
	Ă.	Α.	Ar	As	Pu	Bo	br	cy co	La bra	pr La	Pe Pe	n Sol
ET6S1	0	4	33	38	5	0	1	0	4	1	4	7
ET6S2	0	0	18	58	0		0	0	1	1	1	0
ET6S3	0	0	11	21	0	0	0	0	0	1	1	0
ET6S4	0	0	25	12	1	0	2	0	1	1	1	5
ET6S5	2	3	20	15	1	0	0	0	1	1	1	6
ET6S6	0	3	15	14	2	0	2	0	1	0	2	5
ET6S7	0	3	13	18	0	0	2	0	1	0	2	18
ET6S8	0	11	16	8	1	0	2	0	0	0	0	2
ET6S9	0	5	12	4	0	0	1	0	1	0	0	2
ET6S10	0	2	0	0	0	0	0	0	0	0	0	0
ET7S1	0	12	47	19	2	0	1	0	1	0	2	0
ET7S2	0	0	49	17	1	0	3	0	5	0	2	6
ET7S3	0	2	31	22	2	0	2	0	8	1	5	8
ET7S4	0	2 0	32 19	13	1	0	1	0	0	2	1 0	5
ET7S5	0			23 3	0	0	0	0	0	2	1	12
ET7S6 ET7S7	0 0	0	1 12	3 29	0	0	0	0	0	1	3	0 4
ET7S8	0	0	23	 16	0	0	0	0	0	0	0 0	4
ET7S9	0	0	<u>23</u>	20	0	0	0	0	2	2	3	8
ET7S10	0	9	13	13	1	0	1	0	 1	<u> </u>	0	8
ET8S1	0	3	50	2	2	0	0	0	4	1		3
ET8S2	0	26	39	6	 3	0	0	0	2	2	1	3
ET8S3	2	6	37	15	1	0	0	0	1	2	1	7
ET8S4	0	1	27	0	0	0	0	0	1	2	1	2
ET8S5	2	. 17	9	28	1	0	2	0	0	1	2	7
ET8S6	0	2	13	23	2	0	1	0	1	1	2	2
ET8S7	2	7	17	4	0	0	8	0	1	0	0	4
ET8S8	0	4	16	5	1	0	0	0	0	0	0	3
ET8S9	2	6	22	36	4	0	2	0	4	1	0	11
ET8S10	0	42	8	7	1	0	0	0	0	0	4	0
ET9S1	1	0	28	13	0	0	0	0	1	0	0	2
ET9S2	0	21	37	9	3	0	0	0	3	3	0	10
ET9S3	0	4	22	39	0	0	1	0	0	0	2	1
ET9S4	1	4	22	43	0	0	1	0	3	1	4	1
ET9S5	10	2	6	12	2	0	0	0	0	0	0	0
ET9S6	4	2	3		4	0	1	0	2	0		
ET9S7	0	4	5	3	1	0	0	0	0	0	-	-
ET9S8	0	3	3	26	6	0	0	0	1	0		3
ET9S9	2	3	5	4	1	0	1	0	1	0		
ET9S10	2	0	3	1	0	0	0	0	0	0	0	
ET10S1	0	0	22	10	0	0	0	0	2	0		
ET10S2	2	5	37	25	2	0	0	0	1	1		8
ET10S3	4	1	25	20	0	1	0	0	0	1		
ET10S4	2	1	36	23	0	0	0	0	1	0		
ET10S5	4	4	6	1	1	0	0	0	0	0		
ET10S6	0	0	8 15	15	0	0	0	0	3	1	1	1
ET10S7 ET10S8		0	-	13	1	0	0	0				0
	0	-	21	8	1	-	0	0	1	1		
ET10S9	5	0	3	2	1	0	0	0	0	0		-
ET10S10	20	5	6	11	4	0	1	0	1	1	1	0

<i>Symboint Bearing (Continued)</i>	A. lessonii**	A. gibbosa**	Archaias angulata**		Pulchra**	Borelis sp	Broeckina orbitolitoides**	Cyclorbiculina compressi**	Laevipeneroplis bradyi**	Laevipeneroplis proteus **	Peneroplis pertusus**	Sorites marginalis**
WT1S1	0	1	47	3	0	0	0	0	6	2	1	8
WT1S2	0	0	38	9	0	1	0	0	3	5	0	5
WT1S3	1	0	36	0	0	0	0	0	3	5	0	0
WT1S4	0	0	29	2	0	0	1	0	1	1	0	1
WT1S5	0	1	18	1	0	0	1	0	0	1	0	1
WT2S1	0	6	5	2	0	0	0	0	3	6	6	3
WT2S2	0	0	10	0	0	0	0	0	0	0	0	0
WT2S3	0	0	28	0	0	0	0	0	1	0	0	0
WT2S4	0	0	28	1	0	0	0	0	2	5	1	0
WT2S5	0	0	22	0	0	0	0	0	5	3	2	6
WT3S1	0	0	4	1	0	0	0	0	4	1	0	5
WT3S2	0	0	28	0	0	0	0	0	5	5	0	0
WT3S3	0	0	24	1	0	0	0	0	2	0	1	2
WT3S4	0	0	45	1	0	0	0	0	3	2	2	1
WT3S5	0	0	49	1	0	0	0	0	3	3	0	0
WT4S1	1	0	27	7	0	0	0	0	6	5	1	1
WT4S2	2	7	35	3	0	0	1	0	10	3	2	4
WT4S3	0	5	60	7	4	0	1	0	16	8	1	7
WT4S4	0	0	34	9	0	0	1	0	6	2	1	2
WT4S5	0	0	59	8	0	0	4	0	5	4	0	7
WT5S1	0	1	17	1	0	0	0	0	1	2	0	1
WT5S2	0	2	47	9	0	0	0	0	12	5	4	7
WT5S3	0	5	43	11	0	0	1	0	7	13	5	11
WT5S4	0	4	32	11	0	0	1	0	7	6	1	2
WT5S5	0	2	38	6	0	0	1	0	10	6	1	1
Total	87	373	2898	###	131	3	130	23	545	446	152	394

Other Small				ra	ta		*			ta *	ata	*		*
Heterotrophic -				agi	cat	sp	*.			ett	triŝ	ra,		÷ d
Section 1	*	<u>د</u>	sp	i S	pie	es	a si	s a	ds	oc	i S	mi	*	spi
	na	na a*,	na	ariŝ	a s	pid	linŝ	pir rbi	ira	lop	ü	ois	a *	ois
	culi	uli at:	illi	ĩ	nir	ide	۲u	nlo	dsı	bal	iri H	ork	se	ort
	Articulina mexicana**	Articulina sulcrata**	Articulina sp	Articularia sagra	Bulimina spicata	Cibicidoides sp. **	Clauvulina sp.**	Cornuspira planulorbis	Coruspira sp.	Cymballoporetta* *	Dendritina striata	Discorbis mira**	D. rosea**	Discorbis spp**
ET1S1	Ā E 2	0 SI	0 0	Ā 0	B 0	Cib **	ບ 0	<u>0</u> 0	ت 0	× ُنُ 0	D 1	0	D 1	<u> </u>
ET1S2	2	0	0	0	0	0	0	0	0	1	0	0	1	1
ET1S3	1	0	0	0	0	0	1	0	0	1	0	5	5	0
ET1S4	0	0	0	0	0	0	3	0	0	0	0	0	0	9
ET1S5	0	0	0	0	0	0	0	0	0	5	0	0	0	1
ET1S6	1	0	0	0	0	0	1	0	0	1	0	0	0	3
ET1S7	1	0	0	0	0	0	1	1	0	0	0	0	1	0
ET1S8	0	0	0	0	0	0	2	0	0	0	0	0	9	0
ET1S9	2	0	0	0	0	0	1	0	0	5	0	0	19	5
ET1S10	1	2	0	0	0	0	1	5	0	4	0	0	22	1
ET2S1	4	0	0	0	0	0	3	0	0	3	0	0	1	0
ET2S2	0	0	0	0	0	0	1	0	0	4	1	0	4	0
ET2S3	4	0	0	0	0	0	3	0	0	3	0	0	1	0
ET2S4	0	0	0	0	0	0	1	0	0	0	0	0	1	0
ET2S5	0	0	0	0	0	0	1	0	0	2	0	0	0	0
ET2S6	0	0	0	0	0	2	1	0	0	5	0	0	0	0
ET2S7	0	0	0	0	0	4	1	0	0	9	0	0	2	0
ET2S8	0	0	0	0	0	7	0	0	0	10	0	0	8	0
ET2S9	0	0	0	0	0	0	0	0	0	11	0	0	7	0
ET2S10	0	0	0	0	2	5	0	0	0	17	0	0	14	0
ET3S1	0	0	0	0	0	0	5	0	0	2	3	0	7	4
ET3S2	0	0	0	0	0	0 0	0	0	0	3	0	0	1	0 0
ET3S3 ET3S4	0	0	0	0	0	0	1	0	0	<u></u> 5	0	0	1 0	0
ET3S5	0	1	0	0	0	0	0	0	0	0	0	0	0	0
ET3S6	35	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S7	40	0	0	0	0	0	0	0	0	2	0	0	4	0
ET3S8	30	0	0	0	0	0	0	0	0	5	0	0	5	0
ET3S9	19	0	0	0	0	0	0	0	0	6	0	0	7	0
ET3S10	35	1	0	0	0	0	0	0	0	11	0	0	22	0
ET4S1	1	0	0	0	0	1	4	0	0	8	0	5	11	3
ET4S2	0	0	0	0	0	7	2	0	0	12	0	2	1	2
ET4S3	0	1	0	0	0	8	2	0	0	0	0	3	4	0
ET4S4	0	0	0	0	0	3	3	0	0	4	0	0	7	2
ET4S5	1	0	0	0	0	0	3	0	0	15	0	1	0	3
ET4S6	2	1	0	0	0	0	0	0	0	7	0	0	5	4
ET4S7	1	2	0	0	0	3	0	0	0	14	0	0	4	1
ET4S8	1	0	0	0	0	4	0	0	0	14	0	1	136	1
ET4S9	0	0	0	0	0	4	0	0	0	9	0	0	11	3
ET4S10	1	0	0	0	0	1	0	0	1	6	0	1	11	2
ET5S1	0	0	0	0	0	0	1	0	0	7	0	3	6	4
ET5S2	0	0	0	0	0	0	4	0	0	10	0	3	7	3
ET5S3	2	0	0	0	0	1	0	0	0	5	0	4	9	11
ET5S4	1	0	0	0	0	0	6	0	0	7	0	11	2	2
ET5S5	2	0	0	0	0	1	4	0	0	4	0	8	4	1
ET5S6	4	0	0	0	0	3	2	0	0	9	0	4	1	0
ET5S7	3	0	0	0	0	0	2	0	0	5	0	5 3	4	7
ET5S8	1	1	0	0	0	0	0	0	0	12	0		20	14
ET5S9	1	0	0	0	0	0	0	0	0	13	0	0	13	2
ET5S10	0	1	0	0	U	U	1	0	0	8	0	3	10	2

Other Small						*				*				
Heterotrophic-				Ira	ta		* *			Cymballoporetta**	Dendritina striata	Discorbis mira**		*
Section 1			_	ag	ica	s	sp.		ġ.	ret	Ĭ	ira		*d
(Continued)	*	- *	l sl	a	sp	les	a s	ra vis	a sp.	od	a D	5	*	S
	ina	ina ta *	ina	ari	na	oic	lin	spii orb	oira	llo	tin	bis	ea*	bis
	cul	cul	cul	cul	ā	cid	nvr	snu	dsn	edr	dri	S	ose	Sor
	Articulina mexicana * *	Articulina sulcrata**	Articulina sp	Articularia sagra	Bulimina spicata	Cibicidoides sp.	Clauvulina	Cornuspira planulorbis	Coruspira	yn	en	isc	D. rosea**	Discorbis spp**
ET6S1	4 6 2		> 0	Þ 0	ם 0	ن 0	<u>د</u> 0	<u>р</u> 0	0 0	0 9	0	9	2 4	3
ET6S2	2	0 0	0	0	0	0	5	0	0	9 13	0	9	24 10	3 8
ET6S3	0	0	0	0	0	0	3	0	0	9	0	13	10	0
ET6S4	0	0	0	0	0	0	1	0	0	5	0	3	9	8 3
ET6S5	0	0	0	0	0	0	3	0	0	4	0	5	22	7
ET6S6	0	0	0	0	0	0	3	0	0	4	0	3	27	, 0
ET6S7	0	0	0	0	0	0	2	0	0	3	0	2	22	5
ET6S8	0	0	0	0	0	0	5	0	0	7	0	6	42	30
ET6S9	0	0	0	0	0	0	1	0	0	2	0	3		0
ET6S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET7S1	1	0	0	0	0	0	1	0	0	6	0	9	7	7
ET7S2	0	0	0	0	0	0	2	0	0	9	0	13	7	5
ET7S3	0	0	0	0	0	0	0	0	0	6	0	7	16	9
ET7S4	0	0	0	0	0	0	0	0	0	6	0	4	18	2
ET7S5	0	0	0	0	0	0	1	0	0	10	0	11	14	0
ET7S6	1	0	0	0	0	0	2	0	0	0	0	0	1	1
ET7S7	0	0	0	0	0	0	2	0	0	7	0	3	19	3
ET7S8	2	0	0	0	0	0	3	0	0	5	0	5	18	1
ET7S9	0	0	0	0	0	0	1	0	0	5	0	12	18	0
ET7S10	0	0	0	0	0	0	6	0	0	2	0	6	15	0
ET8S1	0	0	0	0	0	0	1	0	0	2	0	1	7	0
ET8S2	0	0	0	0	0	0	3	0	0	1	0	8	10	0
ET8S3	0	0	0	0	0	0	0	0	0	2	0	7	11	0
ET8S4	0	0	0	0	0	0	0	0	0	9	0	4	12	4
ET8S5	0	0	0	0	0	0	2	0	1	8	0	28	49	0
ET8S6	0	0	0	0	0	0	3	0	0	3	0	6	28	0
ET8S7	0	0	0	0	0	0	12	0	0	1	0	3	16	1
ET8S8	0	0	0	0	0	0	0	0	0	0	0	1	33	0
ET8S9	0	0	0	0	0	0	2	0	0	10	0	10	74	1
ET8S10	0	0	0	0	0	0	0	0	0	1	0		20	1
ET9S1	0	0	0	0	0	0	1	0	0	3	0	2	12	1
ET9S2	0	0	0	0	0	0	7	0	0	4	0	8	28	16
ET9S3	0	0	0	0	0	0	1	0	0	9	0	5 5	25	3 7
ET9S4 ET9S5	0	0	0 0	0 0	0 0	0 0	1 0	0	0	13	0	5	72 130	/
	0	0	0	0	0	0	3	0	0	6 3	0	3	130	6
ET9S6 ET9S7	0	0	0	0	0	0	3 0	0	0	3 1	0	3 0	41	6 1
ET9S8	0	0	0	0	0	0	0	0	0	15	0	5	41	2
ET958 ET959	0	0	0	0	0	0	0	0	0	15	0	5	22	2
ET9S9 ET9S10	0	0	0	0	0	0	0	0	0	0	0	0	22	<u> </u>
E14510	0	U	U	U	U	U	U	0	U	U	U	U	১	I

<i>Other Small Heterotrophic- Section 1 (Continued)</i>	Articulina mexicana**	Articulina sulcrata**	Articulina sp	Articularia sagra	Bulimina spicata	Cibicidoides sp. **	Clauvulina sp.**	Cornuspira planulorbis	Coruspira sp.	Cymballoporetta**	Dendritina striata	Discorbis mira**	rosea**	Discorbis spp**
	Ar	Ar su	Ar		Bu	-	Ü	Co plã	ပိ	-	De	Di	O	ä
ET10S1	0	0	0	0	0	0	0	0	0	5	0	1	24	0
ET10S2	0	0	0	0	0	0	0	0	0	3	0	3	63	3
ET10S3	0	0	0	0	0	0	0	0	0	4	0	0	63	3
ET10S4	0	0	0	0	0	0	1	0	0	7	0	0	93	0
ET10S5	1	0	0	0	0	0	3	0	0	2	0	13	27	0
ET10S6	0	0	2	0	0	0	0	0	0	3	0	0	22	0
ET10S7	0	1	0	0	0	0	1	0	0	1	0	0	6	0
ET10S8	0	0	0	0	0	0	1	0	0	0	0	0	13	0
ET10S9	0	0	0	0	0	0	1	0	0	0	0	0	36	0
ET10S10	0	0	0	0	0	0	0	0	0	0	0	0	161	0
WT1S1	5	0	0	0	0	0	1	0	0	0	0	0	1	0
WT1S2	1	0	0	0	0	0	0	0	0	6	0	0	1	0
WT1S3	0	0	0	0	0	0	0	0	0	5	0	0	0	0
WT1S4	2	0	0	0	0	0	0	0	0	0	0	0	0	0
WT1S5	0	0	0	0	0	0	0	0	0	1	0	0	1	0
WT2S1	9	0	0	0	0	0	0	0	0	0	0	7	0	2
WT2S2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT2S3	0	0	0	0	0	0	0	0	0	2	0	0	0	0
WT2S4	1	0	0	0	0	0	1	0	0	0	0	0	0	0
WT2S5	0	0	0	0	0	0	1	0	0	0	0	0	0	1
WT3S1	12	0	0	1	0	0	1	0	0	0	0	0	0	0
WT3S2	3	0	0	0	0	0	0	0	0	0	0	0	0	0
WT3S3	3	0	0	0	0	0	0	0	0	0	0	0	0	1
WT3S4	0	0	0	0	0	0	0	0	0	0	0	0	3	1
WT3S5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT4S1	0	0	0	0	0	0	1	0	0	5	0	0	6	0
WT4S2	0	0	0	0	0	0	0	0	0	1	0	0	0	2
WT4S3	0	0	0	0	0	0	0	0	0	0	0	2	0	0
WT4S4	0	0	0	0	0	0	0	0	0	0	0	0	0	1
WT4S5	0	0	0	0	0	0	0	0	0	3	0	0	0	0
WT5S1	0	0	0	0	0	0	0	0	0	2	0	0	7	1
WT5S2	0	0	0	0	0	0	2	0	0	3	0	0	1	0
WT5S3	2	0	0	0	0	0	1	0	0	1	0	0	3	0
WT5S4	0	0	0	0	0	0	0	0	0	2	0	0	14	0
WT5S5	1	0	0	0	0	0	0	0	0	0	0	0	2	0
Total	246	11	2	1	2	54	153	6	2	545	5	301	2094	246

Other Small Heterotrophic-			Haurina bradyii**		Massilina protea			sp 1**	Miliolinella sp 2**	_			Pseudohaurina**	Pseudotriloculina sp
Section 2			ad	-	pro	_ *	_	l sp	l sp	n	les	* Ja	ILI	SC 1
	s E	sni	p	Haurina sp	ia p	Miliolinella circularis**	MILIOIINEILA Fichteliana	Miliolinella	ella	Monalysidium politum	Neoepinoides	Planorbulina acervalis**	าลน	li.
	ide aru	ban	ina	ina	ilin	lin6 lari	line elia	lin	line	ŠΕ	pin	orb /ali	- op	qot
	Eponides antillarum	E. repanus	n	IL	sse	lio 'cu	fichteliana	lio	lio	Monaly	oe	erv	en	en
	Ер an	ш	Ha		Ĩ	Mi cir	rvii fic	Ξ		ъд	Ne	PI; ac	Ps	
ET1S1	0	0	0	0	0	14	0	6	2	0	0	2	0	1
ET1S2	0	0	0	0	0	14	0	10	0	0	0	0	0	
ET1S3	0	0	0	0	0	3	0	0	6	0	0	0	0	0
ET1S4	0	0	0	0	0	6	0	1	0	0	0	2	0	0
ET1S5	0	0	0	0	0	3	0	1	4		0	3	0	0
ET1S6	0	0	0	0	0	0	0	1	4	1	4	5	0	0
ET1S7	6	0	0	0	0	0	0	7	3		1	2	1	
ET1S8	0	0	0	0	0	2	0	1	0		5	0	0	
ET1S9	0	0	0	1	0	1	0	10	1	0	0	0	1	0
ET1S10	0	0	0	0	0	9 1	0	6	1	0	2	1 5	1	0
ET2S1 ET2S2	0	0	0 0	0	0	3	0	0	0	0	0	5	0	0
ET2S2 ET2S3	0	0	0	0	0	3	0	0	0	0	0	5	0	0
ET2S4	0	0	0	0	0	0	0	0	0	0	0	9	0	0
ET2S5	0	0	0	0	0	4	0	0	0		0	9	0	
ET2S6	0	0	0	0	0	3	0	0	0	0	0	0	0	
ET2S7	0	0	0	0	0	0	0	1	0	0	0	0	0	0
ET2S8	0	0	0	0	0	1	0	0	0	0	0	1	0	0
ET2S9	0	0	0	0	0	0	0	3	0	0	0	2	0	0
ET2S10	0	0	0	0	0	9	1	2	0	0	0	0	0	0
ET3S1	0	0	0	0	0	8	0	2	1		0	1	0	0
ET3S2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S3	0	0	0	0	0	0	0	0	0	0	0	7	0	0
ET3S4	0	0	0	0	0	0	0	0	0		0	4	0	
ET3S5	0	0	0	0	0	0	0	0	0	0	0	1	0	0
ET3S6	0	0	0	0	0	0	0	0	0	0	0	1	0	0
ET3S7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S9	0	0	0	0	0	0	0	3	0	0	0	1	0	0
ET3S10	0	0	0	0	0	1	0	2	0	0	0	2	0	
ET4S1	0	0	0	0	0	0	0	0	1		0	4	0	0
ET4S2	0	0	0	0	0	0	0	2	0	0	0	4	0	0
ET4S3	0	0	0	0	0	0	0	0	0	0	0	4	0	0
ET4S4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
ET4S5	0	0	0	0	0	0	0	0	0		0	1	-	-
ET4S6	0	0	1	0	0	0	0	0	0		0	0	0	0
ET4S7	0	0	3	0	0	2	0	0	0		0	6 0	0	0
ET4S8 ET4S9	0	0	0 4	0	0	1 0	0	2	0		0	0		
ET4S9 ET4S10	0	0	4	0	0	5	0	/ 0	0		0	0	0	
ET5S1	0	0	2	0	0	5 0	0	0	0	0	0	0	0	0
ET5S2	0	0	2	0	0	0	0	0	0		0	0	0	0
ET5S3	0	0	2 4	0	0	0	0	0	0	-	0	1	0	0
ET5S4	0	0	4 1	0	0	0	0	1	0	0	0	4	0	
ET5S5	0	0	3	0	0	1	0	2	0	-	0	7	1	0
ET5S6	0	0	3	0	0	1	1	0	0		0	9	0	0
ET5S7	0	0	3	0	0	1	0	0	2	0	0	4	0	
ET5S8	0	0	0	0	0	5	0	0	0	0	0	14	0	
ET5S9	0	0	0	0	0	5	0	0	0		0	1	0	0
ET5S10	0	0	1	0	0	2	0	0	0		0	12	1	

Other Small			*		e			1 * *	2**				*	la
Heterotrophic-			yii		teá			1	0 2	۲			la *	lin
Section 2			ad		pro	_ *		ı sp	l sp	n	les	* 19	ILI	DCL
	s E	sn	pr	sp	a p	ella s*	sila na	elle	elle	idi	oic	ulii s*	าลเ	rild
	Eponides antillarur	an	na	na	ilin	ine ari	VIIIOIINEIIA fichteliana	ine	ine	Monalysidium politum	Neoepinoides	Planorbulina acervalis**	Pseudohaurina * *	Pseudotriloculina sp
	till	rep	uri	ü	SS	liol cul	li ol hte	liol	liol	Monaly politum	oe	erv	enc	enc
	Eponides antillarum	E. repanus	Haurina bradyii**	Haurina	Massilina protea	Miliolinella circularis**	MIIIOIINEII3 fichteliana	Miliolinella	Miliolinella sp	Mc pol	Ne	Planorbulin: acervalis**	Ps	Ps(sp
ET6S1	0	0	0	0	0	3		2	0	0	0	2	0	0
ET6S2	0	0	0	0	0	4		0	0	0	0	14	1	0
ET6S3	0	0	1	0	0	3	0	0	1	0	0	14	0	0
ET6S4	0	0	0	0	0	0	0	0	0	0	0	9	0	0
ET6S5	0	0	0	0	0	2		0	0	0	0	10	0	0
ET6S6	0	0	0	0	0	0	0	0	0	0	0	8	0	0
ET6S7	0	0	0	0	0	2	0	2	0	0	0	24	0	0
ET6S8	0	0	0	0	0	0		0	0	0	0	6	0	0
ET6S9	0	0	0	0	0	0	0	0	0	0	0	6	0	0
ET6S10	0	0	0	0		0	0	0	0	0	0	0	0	0
ET7S1	0	0	5	0	0	0	0	0	2	0	0	0	0	0
ET7S2	0	0	4	0	0	2	0	0	0	0	0	2	0	0
ET7S3	0	0	0	0	0	3		0	0	0	0	2	0	0
ET7S4	0	0	0	0	0	0		0	0	0	0	2	0	0
ET7S5	0	0	0	0	0	1	0	0	0	0	0	11	0	0
ET7S6	0	0	0	0	0	0		0	0	0	0	1	0	0
ET7S7	6	0	0	0	0	4	0	0	0	0	0	8	1	0
ET7S8	0	0	0	0	0	0	0	0	0	0	0	3	0	0
ET7S9	2	0	0	0	0	0	0	0	0	0	0	12	0	0
ET7S10	0	0	0	0	0	0	0	0	0	0	0	12	0	0
ET8S1	0	0	2	0	0	3		0	0	0	0	1	0	0
ET8S2	0	0	2	0	0	0	0	0	0	0	0	0	0	0
ET8S3	0	0	0	0	0	1	0	0	0	0	0	0	0	0
ET8S4	0	0	2	0	0	0	0	0	0	0	0	0	0	0
ET8S5	0	0	3	0	0	0		0	0	0	0	7	0	0
ET8S6	0	0	0	0	0	0		0	0	0	0	2	0	0
ET8S7	0	0	0	0	0	0	0	0	0	0	0	12	0	0
ET8S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET8S9	0	0	1	0	0	0	0	0	0	0	0	9	0	0
ET8S10	0	0	0	0	0	1	0	0	0	0	0	0	0	0
ET9S1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
ET9S2	0	0	0	0	0	1		0	0	0	0	0		0
ET9S3	0	0	0	0	0	1		0	0	0	0	3	0	0
ET9S4	0	0	0	0	0	0		0	0	0	0	0	0	0
ET9S5	0	0	0	0	0	0		0	0	0	0	0	0	0
ET9S6	0	0	0	0	0	0		0	2	0	0	0	0	0
ET9S7	0	0	0	0	0	0		0	0	0	0	0	0	0
ET9S8	0	0	2	0	0	1		0	2	0	0	1	0	0
ET9S9	0	0	0	0	0	0		0	0	0	0	7	0	0
ET9S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Other Small	5													sp
Heterotrophic-	aru		*		a			*	2**				*	Ja
Section 2	Eponides antillarum		Haurina bradyii**		Massilina protea			sp 1**	d	۶	s		Pseudohaurina * *	Pseudotriloculina sp
	ant	Ś	rac	sp	pre	a **	a a	a s	Miliolinella sp	Monalysidium politum	Neoepinoides	Planorbulina acervalis**	uri	<u>0</u>
	es	repanus	a b	a s	na	Miliolinella circularis**	fichteliana	Miliolinella	lle	rsic	noi	Planorbulin; acervalis**	ha	tri
	bic	pa	ŗ	ü	sili	olir ulai	onr eli	olir	olir	aly um	epi	orl va	opr	ppr
	pot		au	Haurina	las	lilid	cht	lilic	lili	Monaly politum	eo	lan cer	sel	sel
ET10S1	<u>ت</u> 2	<u>ш</u> 0	ד 0	<u>т</u> 0	≥	<u>∪ ≤</u> 0	0 fi	≥ 0	<u>≥</u> 0	<u>≥</u> ₫ 0	2 0	а D 0	ם 0	ہے 0
ET1051 ET1052	0	0	0	0	0	0	0	1	0	0	0	0	0	0
ET10S3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET10S4	0	0	0	0	0	1	0	0	0	0	0	0	0	0
ET10S5	3	0	1	0	0	0	0	0	0	0	0	2	1	0
ET10S6	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET10S7	5	1	0	0	0	0	0	0	0	0	0	0	0	0
ET10S8	0	1	0	0	0	0	0	1	0	0	0	0	0	0
ET10S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET10S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT1S1	1	0	1	0	0	1	0	2	1	0	0	0	0	0
WT1S2	2	1	2	0	0	0	0	0	0	0	0	0	0	0
WT1S3	0	0	0	0	0	2	0	0	0	0	0	0	0	0
WT1S4	0	1	1	0	0	0	0	0	0	0	0	0	0	0
WT1S5	2	0	0	0	0	1	0	0	0	0	0	0	0	0
WT2S1	0	0	5	0	1	0	0	6	8	0	0	0	0	0
WT2S2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT2S3	1	1	0	0	0	0	0	1 0	0	0	0	0	0	0 0
WT2S4 WT2S5	0 0	0 0	1 0	0	1	0	0	0	0	0	0	0	0	0
WT255 WT3S1	1	10	7	0	0	0	0	0	4	0	0	0	0	0
WT3S2	0	10	3	0	1	0	0	0	4	0	0	0	0	0
WT352 WT353	0	2	0	0	0	0	0	0	0	0	0	0	0	0
WT355 WT354	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT3S5	0	0	1	0	0	0	0	0	0	0	0	0	0	0
WT4S1	0	1	0	0	0	0	0	0	0	0	0	1	0	0
WT4S2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT4S3	0	0	5	0	0	0	0	0	0	0	0	0	0	0
WT4S4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT4S5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT5S1	0	0	2	0	2	0	0	0	0	0	0	0	0	0
WT5S2	0	0	0	0	0	0	0	0	0	0	0	3	0	0
WT5S3	0	1	0	0	0	0	0	0	0	0	0	0	0	0
WT5S4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
WT5S5	0	0	3	0	0	0	0	0	0	0	0	1	0	0
Total	31	20		1		143	5	85	45	1	12	330	8	1

<i>Other Small Heterotrophic- Section 3</i>	Pyrgo dentriculata	Pyrgo spp**	Quinqueloculina agglutinans * *	. bicostata**	. bicarinata**	. bosciana**	. candeiana**	Q. crassa f. subcuneata**	. laevigata**	. lamarckiana* *	. occidentalis	. parkeri	. poeyana**	. polygna**
FT404				ġ	ġ	o i 5	ġ		ġ	ö	ġ	ġ	ġ	d
ET1S1	0	0	5 7	4	0		0	0	0	3	0	0	2 1	2
ET1S2 ET1S3	0 0	0	10	1 12	0	18 14	0	2 0	5	5 5	0	0	8	2
ET1S4	0	0	10	12	7	14	0	0	1	5	12	0	0 10	9
ET1S5	0	0	10	10	0	4	0	3	5	4	0	0	0	
ET1S6	0	0	13	19	0	7	6	0	0	0	0	0	1	3
ET1S7	0	0	25	15	0	2	21	0	4	0	0	0	0	8
ET1S8	0	0	2	13	0	1	1	0	0	0	0	0	1	5
ET1S9	0	0	10	0	0	2	0	0	1	0	0	0	0	0
ET1S10	0	0	6	13	0	7	8	0	0	0	0	0	0	0
ET2S1	0	0	9	9	0	0	0	0	0	0	0	0	2	9
ET2S2	0	0	8	12	0	0	0	0	0	2	0	0	3	6
ET2S3	0	0	3	7	0	0	0	0	1	13	0	0	3	7
ET2S4	0	0	0	5	0	0	0	2	0	0	0	0	0	0
ET2S5	0	0	24	0	0	1	0	5	0	0	0	0	0	0
ET2S6	0	1	18	14	0	0	0	3	0	0	0	0	0	0
ET2S7	0	1	36	10	0	2	0	4	0	0	0	0	0	0
ET2S8	0	0	19	0	0	0	1	3	0	0	0	0	0	0
ET2S9	0	2	15	0	0	3	0	2	0	0	0	0	0	0
ET2S10	0	0	6	12	0	3	0	6	0	0	0	0	0	0
ET3S1	0	0	7	10	1	0	0	0	2	10	0	0	0	5
ET3S2	0	2	27	2	0	2	28	2	0	0	0	0	0	0
ET3S3	0	0	28	10	0	0	0	1	0	0	0	0	0	0
ET3S4	0	0	19	14	0	0	0	0	0	0	0	0	0	0
ET3S5	0	0	21	9	0	2	0	6	0	0	0	0	0	0
ET3S6	0	1	19	6	0	0	0	10	0	0	0	0	0	0
ET3S7	0	1	16	11	0	0	0	4	0	0	0	0	0	0
ET3S8	0	0	25	9	0	0	0	1	0	0	0	0	0	0
ET3S9	0	0	19	14	0	1	0	1	0	0	0	0	0	0
ET3S10	0	1	17	4	0	1	0	0	0	0	0	0	0	0
ET4S1	0	4	34	7	0	0	4	4	0	13	0	0	0	2
ET4S2	0	2	24	15	3	1	5	3	0	8	0	0	1	2
ET4S3	0	2	11	13	0	0	1	1	0	9	0	0	0	3
ET4S4	0	0	29	19	0	0	6	2	0	0	0	0	0	1
ET4S5	0	3	22	25	0	2	0	0	0	3	0	0	1	1
ET4S6	0	1	17	18	0	0	1	0	2	2	0	0	0	0
ET4S7	0	1	18	16	0	0	0	0	0	2	0	0	0	3
ET4S8	0	0	20	9	0	0	0	0	0	0	0	0	1	3
ET4S9	0	1	16	11	0	2	1	0	0	0	0	0	0	3
ET4S10	0	0	8	6	1	0	0	0	0	0	0	0	1	2

Other Small Heterotrophic-	Pyrgo dentriculata		a		ų		*			*				
Section 3	icu	*	ulin **	*	a * *	* *	a, a,	*	**	ana	alis		*	*
	enti	* dc	loci ans	tata	nat	ana	sian	a f. ata	gata	.cki	enta	eri	ana	na
	p o	is o	que	bicostata**	bicarinata**	bosciana**	candeiana**	ass une	laevigata**	lamarckiana	occidentalis	parkeri	poeyana**	polygna**
	yrg	Pyrgo spp**	Quinqueloculina agglutinans**			. bc		Q. crassa f. subcuneata*	. Ia	. la			bo i	
FTF04				ġ	ö	ġ	d		ġ	Ö	ġ	ġ	d	d
ET5S1	0	0	14	3 12	0	0	2	2	0	14	0	0		0
ET5S2	0	0	18	12 9		0	4	1	0	24	0	0	2	2 1
ET5S3 ET5S4	0	0	23 20	9 9	2	1	2	3	0	11 15	0	0	1	2
ET5S5	1 0	1	20 16	9	 0	2	 1	0	1	8	0	0	1	 5
ET5S6	0	0	25	23	2	2	2	0	0	12	0	0	0	7
ET5S7	0	0	15	23	1	2	2	0	0	9	0	0		2
ET5S8	0	0	3	3	1	2	1	0	0	5	0	0		0
ET5S9	0	1	18	10	2	0	1	0	0	8	0	0	0	0
ET5S10	1	1	13	4	0	0	1	0	0	3	0	0	3	0
ET6S1	0	1	13	3	3	0		1	0	5	0	0		2
ET6S2	0	2	3	3	1	2	1	0	0	5	0	0	0	0
ET6S3	0	0	3	3	1	2	1	0	0	5	0	0	0	0
ET6S4	0	1	12	2	1	0	0	0	0	1	0	0	0	1
ET6S5	0	0	11	2	0	1	1	0	0	4	0	0	0	2
ET6S6	0	0	6	2	0	0	0	0	0	1	0	0	0	1
ET6S7	0	0	2	0	3	0	0	0	0	0	0	0	1	0
ET6S8	0	0	2	2	1	0	0	0	0	0	0	0	0	0
ET6S9	0	0	2	2	0	0	0	0	0	0	0	0	0	0
ET6S10	0	0	1	0	0	0	0	0	0	0	0	0	0	0
ET7S1	0	4	5	1	0	3	0	5	0	15	0	0	2	2
ET7S2	0	0	11	2	3	2	0	1	0	2	0	0	0	2
ET7S3	0	0	8	4	0	0	0	4	0	5	0	0	0	2
ET7S4	0	1	9	1	0	0	1	0	2	7	0	0	0	1
ET7S5	0	0	8	2	1	0		0	0	4	0	0		1
ET7S6	0	0	4	1	1	0	0	0	0	0	0	0	0	0
ET7S7	0	0	19	8	2	0	2	2	0	6	0	0	2	0
ET7S8	0	1	13	3	1	0	0	0	0	5	0	0		0
ET7S9	0	1	6	5	0	0	0		0	1	0	0		
ET7S10	0	0	9	1	1	0	0	0	0	1	0	0	-	3
ET8S1	0	1	8	0	0	1	2	0	0	8	0	0		
ET8S2	0	0	6	0	0	0	0	2	0	2	0	0	-	1
ET8S3	0	2	6	2	0	0	2	2	0	3	0	0	-	
ET8S4	0	1	6	2	0	0	2	2	0	3	0	0	-	0
ET8S5	0	0	6	3	1	1	1	1	0	3	0	0	1	0
ET8S6	0	2	6	1	0	1	1	0	0	7	0	0	0	0
ET8S7	0	0	8	1	0	0	0	0	0	2	0	1	0	0
ET8S8	0	0	4	0	0	0	1	0	0	0	0	0		0
ET8S9	0	0	3	1	0	0	1	0	0	0	0	1	0	0
ET8S10	0	0	2	0	0	0	0	0	0	1	0	0	0	0

Other Small			a		×		ىد			*				
Heterotrophic- Section 3			* اان	*	+ × ۹	*	a*,	*	*	ana	llis		*	*
Section 5	ata	ь*,	ocr	ata	nat	na	ian	h f. ata'	ata	cki	inta	Ē	na,	la*
	Pyrgo dentriculata	Pyrgo spp**	Quinqueloculina agglutinans * *	bicostata**	bicarinata**	bosciana**	candeiana**	Q. crassa f. subcuneata*	0. laevigata**	Q. lamarckiana**	occidentalis	parkeri	poeyana**	polygna**
	Pyrgo dentric	rgo	inq glu	bic	bic	ŝõd	car	cra	lae	lan	000	par	ŏď	od
	Py dei	Ρy	Qu agi	ġ	ġ	ä	ä	Q. sul	ä	ä	ġ	ä	ä	ä
ET9S1	0	0	7	2	0	0	0	2	0	6	0	0	0	0
ET9S2	0	0	5	2	0	1	2	3	1	4	0	0	3	2
ET9S3	0	0	7	2	0	0	0	0	0	7	0	0	2	2
ET9S4	0	0	0	2	0	0	0	1	0	4	0	0	0	0
ET9S5	0	0	0	0	1	0	0	1	0	1	0	0	0	0
ET9S6	0	0	6	0	0	0	2	0	0	0	0	0	0	3
ET9S7	0	0	2	0	0	0	0	0	0	0	0	0	0	0
ET9S8	0	3	2	0	0	0	1	0	0	0	0	0	0	3
ET9S9	0	0	2	0	0	0	0	0	0	0	0	0	0	3
ET9S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET10S1	0	1	1	0	0	0	0	1	1	3	0	0	0	2
ET10S2	0	1	10	2	1	0	0	1	1	5	0	0	0	3
ET10S3	0	0	5	1	0	1	1	0	0	3	0	0	0	2
ET10S4	0	0	8	3	0	0	0	0	0	2	0	0	1	1
ET10S5	0	0	4	3	1	1	1	0	0	2	0	0	1	3
ET10S6	0	0	6	4	0	0	0	0	0	7	0	0	0	0
ET10S7	0	0	12	1	0	0	4	0	0	0	0	0	0	1
ET10S8	0	0	16	0	0	0	2	0	1	0	0	0	0	0
ET10S9	0	0	7	0	0	0	0	0	0	1	0	0	0	0
ET10S10	0	0	1	1	0	0	1	0	0	2	0	0	0	0
WT1S1	0	0	23	15	1	0	5	4	1	10	0	0	2	0
WT1S2	0	0	35	9	7	1	0	6	0	15	0	0	4	2
WT1S3	0	0	49	14	1	0	0	6	0	0	0	0	3	2
WT1S4	0	0	39	16	0	1	0	1	0	8	0	0	3	3
WT1S5	0	0	38	13	0	1	0	0	0	11	0	0	5	3
WT2S1	0	0	7	8	1	3	0	1	2	11	0	0	5	1
WT2S2	0	0	3	0	0	0	0	0	0	0	0	0	0	0
WT2S3	0	0	18	6	0	0	0	2	0	5	0	0	0	2
WT2S4	0	0	33	12	0	0	0	4	0	16	0	0	1	2
WT2S5	0	1	25	17	0	0	2	3	1	16	0	0	4	0
WT3S1	0	0	21	7	0	3	2	4	2	3	0	0	12	0
WT3S2	3	0	30	9	3	0	2	2	0	13	0	0	1	5
WT3S3	0	0	34	11	0	0	0		2	12	0	0	1	14
WT3S4	0	0	36	6	0	0	6	3	0	18	0	0	1	11
WT3S5	0	2	22	2	0	1	1	1	1	8	0	0	0	6
WT4S1	0	3	38	8	2	1	0	2	2	13	0	0	1	0
WT4S2	0	0	46	3	0	1	0	0	0	12	0	0	1	9
WT4S3	0	2	43	9	0	0	0	0	0	10	0	1	3	4
WT4S4	0	2	46	15	5	0	1	0	0	14	0	0	2	3
WT4S5	0	0	33	5	0	0	3	1	0	20	0	0	0	3
WT5S1	0	0	6	20	0	0	0	0	0	2	0	0	0	0
WT5S2	0	0	41	4	0	1	0	0	1	6	0	0	3	8
WT5S3	0	0	44	10	0	0	1	0	1	0	0	0	2	8
WT5S4	0	0	57	5	1	0	2	0	0	9	0	0	0	0
WT5S5	0	0	32	12	0	0	2	0	0	8	0	0	3	1
Total	5	58	1903	803	68	117	159	142	47	576	12	3	118	244

Other Small										-	_			
Heterotrophic-			*		*	a			*	hra	ica			
Section 4	*	*	na	*	a.	lin		* *(ŗ	lolu	on		.	
	sabulosa**	seminula**	subpoeyana**	tenagos**	Q. tricarinata**	Quinqueloculina spp**	*	Rosalina spp**	Sigmoilina schlumbergeri**	Siphonina pulchra	Spirilina obconica	* 0	Spiroloculina antillarum* *	Spiroloculina rotunda
	ê	in I	0e	go	rir	elc	เล าล ้	ia 9	Sigmoilina schlumber	ina	a c	Spiroculina angulata**	un cul	_ cr
	p	E	dqr	na	ica	nb *	Kosalina floridana	lin	la El	oni	lin	ocu Ilat	olo Iar	Spiroloc rotunda
	SS		SL	te	t	uin *d	osa oric	sa	h l	h	oiri	birc	oirc	tr i
	ġ	ġ	ġ	ġ			flo							
ET1S1	0	4	6	0	0	0	0	1	0	0	0	0	0	0
ET1S2	3	10	2	3	0	0	0	3	0	0	0	0	2	1
ET1S3	2	1	1	5	0	1	0	3	2	0	0	0	0	0
ET1S4	2	5	4	0	0	3	0	4	0	0	0	0	0	0
ET1S5	12	5	5	4	0	0	0	3	0	0	0	0	1	0
ET1S6	2	1	9	1	0	0	0	0	0	0	0	0	0	0
ET1S7	1	1	0	0	0	1	6	0	0	0	2	0	1	0
ET1S8	0	1	0	1	4	7	4	0	0	0	0	0	0	0
ET1S9	0	0	0	3	0	5	0	0	0	0	0	0	1	0
ET1S10	0	1	0	0	2	3	0	0	0	3	0	0	0	0
ET2S1	0	6	0	1	0	9	0	0	0	0	0	0	0	0
ET2S2	0	0	1	2	0	26	0	0	0	0	0	0	0	0
ET2S3	1	0	0	3	0	21	0	0	0	0	0	0	0	0
ET2S4	0	0	0	0	0	5	0	0	0	0	0	0	2	0
ET2S5	0	0	0	0	0	6	0	0	0	0	0	0	0	0
ET2S6	0	0	0	0	0	10	0	0	0	0	0	0	0	0
ET2S7	0	0	0	0	0	1	0	0	0	0	0	0	0	0
ET2S8	0	0	0	0	0	5	0	0	0	0	0	0	0	0
ET2S9	0	0	0	0	0	5	0	0	0	0	0	0	0	0
ET2S10	0	0	0	0	0	8	0	0	0	0	0	0	0	0
ET3S1	4	3	1	1	1	0	0	4	0	0	0	0	0	0
ET3S2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S3	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S4	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S6	0	0	0	0	0	0	0	0	0	0	0	0	1	0
ET3S7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S8	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET3S10	0	0	0	0	0	0	0	2	0	0	0	0	1	0
ET4S1	0	0	2	0	0	0	0	0	0	0	0	0	0	
ET4S2	0	0	5	0	0	0		0	2	0	0	0	0	0
ET4S3	0	0	1	0	2	7	0	0	0	0	0	0	0	0
ET4S4	0	0	3	0	0	3		0	1	0	0	0	0	0
ET4S5	0	0	7	0	0	0		0	1	0	0	0	0	0
ET4S6	0	0	7	0	1	5	0	0	0	0	0	0	0	0
ET4S7	0	1	3	0	0	3		0	0	0	0	0	0	0
ET4S8	0	0	13	0	0	3		0	2	0	0	0	0	0
ET4S9	0	3	3	0	0	0		0	1	0	0	0	0	0
ET4S10	0	5	4	0	0	4	0	0	0	0	0	0	0	0

Other Small										a	a			
Heterotrophic-			*		*	Ja		*	* *	hra	lica			
Section 4	*	*	ana	*	ta *	il,		 * d	eri	nlc	Sor		* ت	ŋ
	Q. sabulosa**	seminula**	subpoeyana**	tenagos**	Q. tricarinata**	Quinqueloculina spp**	*	Rosalina spp**	Sigmoilina schlumbergeri**	Siphonina pulchra	Spirilina obconica	na * *	Spiroloculina antillarum**	Spiroloculina rotunda
	Ë	i	õ	agc	ari	Quinquel spp**	Kosalina floridana**	na	Sigmoilina schlumber	in	าล	Spiroculina angulata * *	rur DCL	a cu
	ab	en	qŋ	en	ric	**	alı ida	ali	e n	Jor	ili	oc ula	olo IIa	
	b. s	Ö.	Ö.	ь Ю	2. t	bp	tos lor	sos	ch ig	ipł	pir	pir Ing	pir	Spiroloc rotunda
ET5S1	0	1	0	0	0	5		0	v v 0	0	0	9 N	a N 0	0
ET5S2	4	0	2	0	0	5		0	0	0	0	1	0	0
ET5S3	0	1	1	0	0	4	0	0	1	0	0	0	0	0
ET5S4	1	3	2	0	0	3		0	0	0	0	1	1	0
ET5S5	0	0	4	0	2	0		0	0	0	0	0	0	0
ET5S6	7	3	2	1	0	2		0	0	0	0	0	0	0
ET5S7	0	0	7	1	0	0		0	0	0	0	0	0	0
ET5S8	0	0	5	1	0	1	0	0	0	0	0	1	0	0
ET5S9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ET5S10	0	0	0	2	0	1		0	0	0	0	0	0	0
ET6S1	0	0	0	0	0	0		0	3	0	0	0	0	0
ET6S2	0	0	5	1	0	1	0	0	0	0	0	1	0	0
ET6S3	0	0	5	1	0	1	0	0	0	0	0	0	0	0
ET6S4	0	0	0	0	0	4	0	0	0	0	0	0	0	0
ET6S5	0	0	1	2	0	0	0	0	1	0	0	0	0	0
ET6S6	0	0	0	0	0	1		0	0	0	0	0	0	0
ET6S7	0	0	0	0	0	0		0	1	0	0	0	0	0
ET6S8	0	0	0	0	0	0		0	0	0	0	1	0	0
ET6S9	0	0	0	0	0	0		0	0	0	0	1	0	0
ET6S10	0	0	0	0	0	0		0	0	0	0	0	0	0
ET7S1	8	3	0	0	0	2		0	0	0	0	0	0	0
ET7S2	1	0	4	0	0	2		2	2	2	0	0	1	0
ET7S3	0	1	0	2 3	1	2	0	0	0	0	0	0	0	0
ET7S4 ET7S5	1	2	0	3 0	0	3 0		0	0	0	0	0	0	0
ET7S6	0 0	2 0	0	0	0	2		0	0 0	0	0	0	2	0
ET7S7	0	4	0	0	0	2	0	0	0	0	0	0	0	0
ET7S8	0	4	0	0	0	7		0	0	0	0	0	0	0
ET7S9	0	0	0	2	0	0		0	0	0	0	0	0	0
ET7S10	0	0	0	5	0	0		0	0	0	0	0	0	0
ET8S1	5	1	0	0	0	5		0	0	0	0	0	0	0
ET8S2	0	0	0	3	0	3		0	0	0	0	0	0	0
ET8S3	0	2	0	0	0	2		0	0	0	0	0	0	0
ET8S4	0	2	0	0	0	2	0	0	0	0	0	0	0	0
ET8S5	0	0	0	3	10	7		0	0	0	0	2	0	0
ET8S6	0	1	1	0	4	0		0	0	0	0	0	0	0
ET8S7	0	0	0	1	22	2		0	0	0	0	1	0	0
ET8S8	0	0	0	0	0	0		0	0	0	0	0	0	0
ET8S9	0	0	0	2	3	0	0	0	4	0	0	0	0	0
ET8S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Other Small										a	a			
Heterotrophic-			*		*	Ja		*	*	hrä	lică			
Section 4	*	* *	ana	*	ta *	llir		* d	eri	nlc	Sor		* 07	9
	sa	ula	eys	sc*	na	OCI	*	sp	la erg	a p	qo	na **	ulin * r	lin
	ğ	seminula * *	subpoeyana**	tenagos**	ari	nel	na	na	nbe nbe	in	na	:uli ata	ocr	oct la
	sab	sen	du	en	ric	* * bu	ida	ali	e r	hor	rili	roc	illa	
	Q. sabulosa**	ö	ö	D. †	Q. tricarinata**	Quinqueloculina spp**	kosalina floridana*	Rosalina spp**	Sigmoilina schlumbergeri**	Siphonina pulchra	Spirilina obconica	Spiroculina angulata * *	Spiroloculina antillarum**	Spiroloculina rotunda
ET9S1	7	1	0	0	0	0	0	0	0	0	0	0	0	0
ET9S2	1	0	0	0	2	0	0	0	0	0	0	0	2	0
ET9S3	0	5	0	2	0	2	0	0	0	0	0	0	0	0
ET9S4	1	3	1	0	0	1	0	0	1	0	0	0	1	0
ET9S5	1	0	0	0	1	1	0	0	0	0	0	0	0	0
ET9S6	0	0	0	0	0	0	0	0	2	0	0	1	0	0
ET9S7	0	0	0	1	0	0	0	0	0	0	0	0	0	0
ET9S8	0	0	0	0	1	0	0	0	0	0	0	1	1	0
ET9S9	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ET9S10	0	0	0	0	1	0	0	0	0	0	0	0	0	0
ET10S1	2	0	0	0	0	0	0	0	0	0	0	0	0	0
ET10S2	5	0	2	0	0	1	0	0	3	0	0	0	1	1
ET10S3	2	0	0	0	0	2	1	0	1	0	0	0	0	0
ET10S4	0	1	1	1	1	2	0	0	0	0	0	0	0	0
ET10S5	0	0	0	0	3	0	0	0	2	0	0	1	0	0
ET10S6	4	0	0	0	0	0	0	0	3	0	0	0	0	0
ET10S7	0	4	0	3	1	0	1	0	0	0	0	0	0	0
ET10S8	0	3	0	1	3	3	0	0	0	0	0	0	0	0
ET10S9	0	0	0	0	1	2	0	0	0	0	0	0	0	0
ET10S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT1S1	23	0	7	2	0	0	0	0	0	0	0	0	0	0
WT1S2 WT1S3	28 30	1	0	3 0	0 0	4	_	0	0	0	0	0	0	0 0
WT1S3 WT1S4	30 25	0 2	0 0	2	0	2	0	0	0	0	0	0	0	0
WT1S4 WT1S5	44	2	0	2	0	0	0	0	0	0	0	0	0	0
WT2S1	29	2	11	0	0	3	0	1	0	0	0	0	0	0
WT2S2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
WT252 WT253	5	2	0	0	0	0	0	0	0	0	0	0	0	0
WT255 WT254	30	1	0	4	0	3	0	0	0	0	0	0	0	0
WT2S5	36	0	0	3	0	1		0	0	0	0	0	0	0
WT3S1	24	0	0	6	0	0	0	0	0	0	0	2	0	0
WT3S2	22	1	0	2	0	1	0	0	0	0	0	0	2	0
WT3S3	11	0	0	0	0	1	1	0	0	0	0	0	0	0
WT3S4	21	1	1	0	0	1	1	0	0	0	0	0	1	0
WT3S5	11	0	0	3	0	0		0	0	0	0	0	0	0
WT4S1	0	0	0	5	0	0		0	0	0	0	0	0	0
WT4S2	14	3	0	0	0	0	1	0	0	0	0	1	0	0
WT4S3	9	1	0	0	0	2	2	0	0	0	0	0	0	0
WT4S4	0	1	0	2	0	0		0	0	0	0	0	0	0
WT4S5	7	0	3	0	0	1		0	0	0	0	0	0	0
WT5S1	0	0	1	0	1	0		0	0	0	0	0	0	0
WT5S2	21	4	1	1	0	0		0	0	0	0	0	0	0
WT5S3	0	3	0	0	0	0		0	0	0	0	0	0	0
WT5S4	3	0	0	0	0	3		0	0	0	0	0	0	0
WT5S5	2	0	0	0	0	1	0	0	0	0	0	0	0	0
Total	473	112	144	95	68	250	26	23	33	5	2	15	21	2

Other Small																
Heterotrophic-	sni					L		f.		*			0			
Section 5	iet	*		*		va	**	la 1	*	ta,	*	*	lds		9	*
	ı ar	ia 1a*	na szi	ta,	aris	eri	ana	and	mo	na	ula	ata	na	a Ina	lin	lla ta *
	ina	Fextularia candeiana	Triloculina bermudezi	carinata**	T. circularis	T. cf. fitteri var meningoi	T. linneiana**	T. linneianna comis	otte	T. tricarinata**	T. trigonula**	variolata**	ulii	Valvulina Oviedoiana	Vertebralina mucro**	Wisnerella auriculata
	ru I	de ćtu	л Л	car	irc	rir.	inr	inr nis	:f ebo	ric	rig	/ar	loc	vu ied	cre	sne
	Spirulina arietus	Textularia candeiana	Tri beı	Τ.	Τ.	T. 6	Т. I	T. linn comis	T. cf sidebottomi**	- -	Ē	Τ.	Triloculina spp	Val	Vertebra mucro**	Wisnerella auriculata**
ET1S1	0	0	4	1	0	0	2	0	0	5	0	0	0	0	0	0
ET1S2	0	0	0	0	0	0	0	0	0	3	1	0	1	0	0	0
ET1S3	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	
ET1S4	0	1	0	0	0	0	1	0	0	0	12	0	0	0	0	
ET1S5	0	1	0	0	0	0	7	0	0	0	16	0	0	0	1	
ET1S6	0	0	0	4	0	0	3	0	0	0	3	0	0	0	0	
ET1S7	2	2	0	0	0	0	5	0	2	0	2	3	0	0	2	
ET1S8	0	1	5	16	0	0	0	0	4	0	7	0	0	1	3	
ET1S9	0	4	0	0	0	0	0	0	0	0	3	0	1	2	0	
ET1S10	0	4	0	0	0	0	2	0	0	0	1	0	0	0	2	
ET2S1	0	4	0	4	0	0	0	0	0	7	3	0	0	0	3	
ET2S2	0	0	0	1	0	0	1	0	0	7	5	0	0	2	0	
ET2S3	0	4	0	5	0	0	0	0	0	0	3	0	0	3	0	
ET2S4	0	8	0	0	0	0	0	0	0	0	1	7	4	0	2	
ET2S5	0	6	0	0	0	0	0	0	0	0	0	2	4	0	2	
ET2S6	0	4	0	0	0	0	0	0	0	0	2	2	6	0	0	
ET2S7	0	2	0	0	0	0	0	0	0	0	1	2	3	0	0	
ET2S8	0	8	0	0	0	0	0	0	0	0	0	0	4	0	0	
ET2S9	0	4	0	0	0	0	0	0	0	0	0	3	6	0	0	
ET2S10	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	1
ET3S1	0	1	0	6	0	2	0	0	0	12	11	0	3	1	0	
ET3S2	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	
ET3S3	0	4	0	0	0	0	0	0	0	0	2	4	6	0	0	
ET3S4	0	3	0	0	0	0	0	0	0	0	0	1	2	0	0	
ET3S5	0	1	0	0	0	0	0	0	0	0	0	5	2	0	2	
ET3S6	0	3	0	0	0	0	0	0	0	0	0	10	0	0	0	
ET3S7	0	8	0	0	0	0	0	0	0	0	0	4	0	0	3	
ET3S8	0	3	0	0	0	2	0	0	0	0	0	0	1	0	0	
ET3S9	0	3	0	0	0	0	0	2	0	0	0	2	10	0	0	
ET3S10	0	0	0	0	0	1	0	2	10	0	0	1	1	0	2	0

Other Small									*							
Heterotrophic-	sn					L		f.	n	*			•			
Section 5	iet	*		*		va	* *	af	tto	ta *	*	*	dds	a	, a	*
	Spirulina arietus		szi	carinata**	T. circularis	T. cf. fitteri var meningoi	T. linneiana**	T. linneianna comis	T. cf sidebottomi**	T. tricarinata**	trigonula**	variolata**	Triloculina spp	Valvulina Oviedoinana	Vertebralina mucro**	Wisnerella auriculata**
	ina	Textularia candeiana	Triloculina bermudezi	ina	ŝ	T. cf. fitte meningoi	lei	leis	ide	ari	lo	iol	uli	Valvulina Oviedoina	Vertebra mucro**	Wisnerella auriculata*
	Ir	xtu nde		car	cir	cf.	linr	nis	cfs	tric	trig	var	ЮС	lvu ied	icre	sne
	Spi	Te	Tri beı	Ξ.	Ξ.	T. e	Т. I	T. linno comis	Τ.	- -	- -	Τ.	Tri	Va Ov	n Ve	aui aui
ET4S1	0	4	0	4	0	2	0	0	0	1	0	0	0	4	0	0
ET4S2	0	1	0	3	0	0	0	0	3	3	0	0	0	1	0	0
ET4S3	0	2	0	1	0	0	0	0	0	1	0	0	0	5	0	0
ET4S4	0	3	0	4	0	0	2	0	2	0	4	0	0		0	
ET4S5	0	5	0	3	0	1	4	0	1	4	0	0	0	2	1	0
ET4S6	0	2	0	5	0	0	4	0	0	0	0	0	0		0	
ET4S7	0	8	0	4	0	8	5	0	2	0	0	0	0		1	0
ET4S8	0	6	0	4	0	2	4	0	0	7	0	0	0		0	1
ET4S9	0	1	0	2	0	1	0	0	0	1	0	0	0	3	0	0
ET4S10	0	0	0	2	0	2	1	0	0	0	1	0	0	1	1	0
ET5S1	0	1	0	5	0	0	3	0	0	1	1	0	0	4	0	0
ET5S2	0	3	0	5	0	1	2	0	0	3	3	0	0	2	0	0
ET5S3	0	1	0	6	0	1	4	0	0	6	1	0	0	5	0	0
ET5S4	0	3	0	2	0	0	1	1	0	6	1	0	0		0	0
ET5S5	0	0	0	5	0	0	4	0	0	4	2	0	0		1	0
ET5S6	0	3	0	0	0	0	4	0	0	4	1	0	0	10	4	0
ET5S7	0	4	0	4	0	0	4	0	0	0	0	0	0	14	0	0
ET5S8	0	4	0	2	0	0	3	0	4	3	1	0	0	7	0	0
ET5S9	0	5	0	1	0	0	5	0	1	6	0	0	0	4	1	0
ET5S10	0	3	0	2	0	0	4	0	2	0	0	0	0	4	0	0
ET6S1	0	1	0	3	0	0	3	0	0	4	0	0	0		1	0
ET6S2	0	4	0	2	0	0	3	0	4	9	1	0	0	7	0	0
ET6S3	0	4	0	2	0	0	3	0	4	3	1	0	0	1	0	0
ET6S4	0	1	0	1	0	0	12	0	1	1	0	0	0	16	0	0
ET6S5	0	1	0	2	0	0	3	0	0	2	0	0	0	2	0	0
ET6S6	0	1	0	1	0	0	10	0	0	0	0	0	0	2	0	0
ET6S7	0	0	0	0	0	0	10	0	0	0	0	0	0		1	0
ET6S8	0	0	0	0	0	0	1	0	0	1	0	0	0	5	0	0
ET6S9	0	0	0	0	0	0	1	0	0	1	0	0	0		0	
ET6S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<i>Other Small Heterotrophic- Section 5</i>	Spirulina arietus	Textularia candeiana**	Triloculina bermudezi	T. carinata**	T. circularis	T. cf. fitteri var meningoi	T. linneiana**	T. linneianna f. comis	T. cf sidebottomi**	T. tricarinata**	T. trigonula**	T. variolata**	Triloculina spp	Valvulina Oviedoinana	Vertebralina mucro**	Wisnerella
ET7S1	0			4	0	0	4		1	0	0	0	0		0	
ET7S2	0			8	0	0	2		4	3	1	0	0	16	1	
ET7S3	0			0	0	0	2	0	0	3	0	0	0	5	0	
ET7S4	0			2	0	0	1		0	0	1	0	0	11	0	
ET7S5	0			2	0	0	5	0	1	0	6	0	0	7	0	
ET7S6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
ET7S7	0			1	0	0	4	0	2	3	0	0	0	4	0	
ET7S8	0	3	0	4	0	0	2	0	0	2	1	0	0	4	0	
ET7S9	0	4	0	1	0	0	2	0	2	0	1	0	0	9	0	
ET7S10	0	2	0	2	0	0	6	0	1	1	0	0	0	17	0	
ET8S1	0	0	0	0	0	4	0	0	0	0	0	0	0	7	0	
ET8S2	0	0	0	2	0	0	2	0	0	2	0	0	0	13	0	
ET8S3	0	0		2	0	0	1	0	1	2	0	0	0		0	
ET8S4	0	0	0	0	0	0	1	0	0	1	0	0	0	4	0	
ET8S5	0			0	0	0	4		0	2	0	0	0	20	0	
ET8S6	0			0	0	0	2		1	0	0	0	0	4	0	
ET8S7	0	2	0	0	0	0	4	0	0	0	0	0	0	86	0	
ET8S8	0			0	0	0	2	0	0	0	0	0	0	14	0	
ET8S9	0	2	0	0	0	0	1	0	0	1	0	0	0	8	0	
ET8S10	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	
ET9S1	0	0	0	1	0	0	2	0	2	4	0	0	0	1	1	
ET9S2	0	0	0	1	0	0	4	2	0	1	0	0	0	2	0	
ET9S3	0			2	0	0	3	0	0	0	0	0	0	3	0	
ET9S4	0	2	0	2	0	0	0	0	2	1	0	0	0	1	0	
ET9S5	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	
ET9S6	0	1	0	2	0	0	1	0	0	1	1	0	0	1	0	
ET9S7	0			0	0	0	0	0	0	0	1	0	0	2	0	
ET9S8	0			0	0	0	4	0	0	0	1	0	0	0	0	
ET9S9	0	0	0	0	0	0	0	0	2	0	0	0	0	3	0	
ET9S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

<i>Other Small Heterotrophic- Section 5</i>	Spirulina arietus	laria eiana**	Triloculina bermudezi	carinata**	T. circularis	T. cf. fitteri var meningoi	T. linneiana**	Inneianna f.	T. cf sidebottomi**	T. tricarinata**	trigonula**	variolata**	Triloculina spp	Valvulina Oviedoinana	Vertebralina mucro**	erella ulata**
	Spirul	Textularia candeiana	Triloculina bermudezi	T. car	T. circ	T. cf. fitte meningoi	T. linr	T. linn comis	T. cf sidebo	T. tric	T. trig	T. var	Triloc	Valvulina Oviedoina	Vertebra mucro**	Wisnerella auriculata*
ET10S1	0	0	0	3	0	0	0	0	0	2	0	0	0	0	0	0
ET10S2	0	0	0	2	0	0	0	0	0	2	0	0	0	0	0	0
ET10S3	0	1	0	0	0	0	2	0	2	1	0	0	0	0	0	
ET10S4	0	0	0	1	0	0	1	0	1	0	0	0	0	0	0	0
ET10S5	0	0	0	0	0	0	1	0	0	3	0	0	0	1	0	0
ET10S6	0	0	0	2	0	0	0	0	1	0	0	0	0	0	0	
ET10S7	0	0	0	0	0	0	4	0	1	3	1	0	0	3	0	0
ET10S8	0	0	0	0	0	0	4	1	0	0	0	0	0	1	0	0
ET10S9	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0
ET10S10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT1S1	0	0	0	4	0	0	6	0	2	3	6	0	0	2	1	0
WT1S2	0	0	0	5	0	0	0	0	0	2	1	0	0	2	2	0
WT1S3	0	0	0	5	0	0	0	0	0	4	2	0	0	0	0	0
WT1S4	0	0	0	6	0	0	4	0	1	8	0	0	0	2	1	0
WT1S5	0	0	0	6	0	0	0	0	1	3	0	0	0	0	0	0
WT2S1	0	0	0	10	0	0	2	0	0	7	2	0	0	0	0	0
WT2S2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WT2S3	0	0	0	5	0	0	1	0	0	1	0	0	0	0	1	0
WT2S4	0	0	0	5	0	0	1	0	0	1	0	0	0	0	1	0
WT2S5	0	0	0	6	0	0	0	0	0	4	1	0	0	2	2	0
WT3S1	0	0	0	7	6	0	3	0	21	0	20	0	0	0	20	0
WT3S2	0	0	0	5	0	0	3	0	4	2	0	0	0	0	1	1
WT3S3	0	0	0	4	0	0	2	0	2	5	0	0	0	3	0	0
WT3S4	0	0	0	8	0	0	0	0	0	2	0	0	0	0	1	0
WT3S5	0	0	0	4	0	0	4	0	3	0	0	0	0	1	2	0
WT4S1	0	0	0	7	0	0	0	0	1	4	1	0	0	0	0	0
WT4S2	0	0	0	10	0	0	2	0	0	5	5	0	0	0	1	0
WT4S3	0	0	2	2	0	0	3	0	0	1	1	0	0	0	0	0
WT4S4	0	0	0	4	0	0	1	0	0	0	0	0	0	0	0	0
WT4S5	0	0	0	4	0	0	6	0	5	4	0	0	0	0	0	
WT5S1	0	0	0	1	0	0	1	0	1	1	0	0	0	0	0	0
WT5S2	0	0	0	0	0	0	0	0	1	1	2	0	0	0	1	0
WT5S3	0	0	0	4	0	0	6	0	0	0	0	0	0	0	0	0
WT5S4	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	0
WT5S5	0	0	0	4	0	0	3	0	1	5	1	0	0	0	0	0
Total	2	187	11	276	6	27	241	9	107	206	157	48	54	431	69	10

Appendix B: Raw Sterol Concentration Data

*Note: All samples that have BDL indicate that the concentration was below the detection limit of 0.1 ppm.

Sample_	ET1S1	ET1S2	ET1S3	ET1S4	ET1S5	ET1S6	ET1S7	ET1S8	ET1S9	ET1S10
Coprostanol	5.92	BDL	148.42	BDL	148.42	133.92	14.92	5.42	9.42	BDL
Cholesterol	23.17	0.17	600.17	1.17	60.17	1203.17	182.67	49.67	99.67	BDL
Cholestanol	44.46	0.96	337.96	2.46	51.46	44.46	241.46	33.96	51.46	0.96
Coprostanol/										
Total Sterol	0.12	0.00	0.31	0.00	0.74	0.75	0.06	0.14	0.15	0.00
<u>Coprostanol/</u>										
<u>Cholesterol</u>	0.26	0.00	0.25	0.00	2.47	0.11	0.08	0.11	0.09	1.75
<u>Sample</u>		ET2S2	<u>ET2S3</u>	<u>ET2S4</u>	ET2S5	<u>ET2S6</u>	<u>ET2S7</u>	ET2S8	<u>ET2S9</u>	ET2S10
<u>Coprostanol</u>	13.92	1.42	46.42	BDL	BDL	BDL	26.92	10.42	17.92	5.92
<u>Cholesterol</u>	100.67	4.67	281.17	0.67	4.67	BDL	208.67	59.17	255.67	274.67
<u>Cholestanol</u>	112.46	8.96	154.46	3.46	0.96	BDL	85.46	2.46	8.96	9.96
<u>Coprostanol/</u>										
<u>Total Sterol</u>	0.11	0.14	0.23	0.00	0.00	0.52	0.24	0.81	0.67	0.37
<u>Coprostanol/</u>										
<u>Cholesterol</u>	0.14	0.30	0.17	0.00	0.00	0.70	0.13	0.18	0.07	0.02
<u>Sample</u>	<u>ET3S1</u>	<u>ET3S2</u>	<u>ET3S3</u>	<u>ET3S4</u>	<u>ET3S5</u>		<u>ET3S7</u>	<u>ET3S8</u>	<u>ET3S9</u>	<u>ET3S10</u>
Coprostanol	BDL	5.42	BDL	BDL	6.92	33.92	10.42	BDL	14.92	18.92
<u>Coprostanol</u> Cholesterol	BDL BDL	5.42 10.17	BDL 14.67	BDL 8.17	6.92 53.67	33.92 197.67	10.42 45.17	BDL 0.67	14.92 116.17	18.92 152.17
<u>Coprostanol</u> Cholesterol Cholestanol	BDL	5.42	BDL	BDL	6.92	33.92	10.42	BDL	14.92	18.92
Coprostanol Cholesterol Cholestanol Coprostanol/	BDL BDL BDL	5.42 10.17 25.96	BDL 14.67 0.46	BDL 8.17 0.46	6.92 53.67 1.96	33.92 197.67 7.46	10.42 45.17 1.46	BDL 0.67 1.46	14.92 116.17 3.96	18.92 152.17 71.96
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol	BDL BDL	5.42 10.17	BDL 14.67	BDL 8.17	6.92 53.67	33.92 197.67	10.42 45.17	BDL 0.67	14.92 116.17	18.92 152.17
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol Coprostanol/	BDL BDL BDL 0.67	5.42 10.17 25.96 0.17	BDL 14.67 0.46 0.00	BDL 8.17 0.46 4.67	6.92 53.67 1.96 0.78	33.92 197.67 7.46 0.82	10.42 45.17 1.46 0.88	BDL 0.67 1.46 0.00	14.92 116.17 3.96 0.79	18.92 152.17 71.96 0.21
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol	BDL BDL BDL	5.42 10.17 25.96	BDL 14.67 0.46	BDL 8.17 0.46	6.92 53.67 1.96 0.78	33.92 197.67 7.46	10.42 45.17 1.46	BDL 0.67 1.46	14.92 116.17 3.96	18.92 152.17 71.96
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol	BDL BDL 0.67 1.30	5.42 10.17 25.96 0.17 0.53	BDL 14.67 0.46 0.00 0.00	BDL 8.17 0.46 4.67 0.00	6.92 53.67 1.96 0.78 0.13	33.92 197.67 7.46 0.82 0.17	10.42 45.17 1.46 0.88 0.23	BDL 0.67 1.46 0.00 0.00	14.92 116.17 3.96 0.79 0.13	18.92 152.17 71.96 0.21 0.12
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample	BDL BDL BDL 0.67 1.30	5.42 10.17 25.96 0.17 0.53 ET4S2	BDL 14.67 0.46 0.00 0.00	BDL 8.17 0.46 4.67 0.00	6.92 53.67 1.96 0.78 0.13 ET4S5	33.92 197.67 7.46 0.82 0.17 <u>ET4S6</u>	10.42 45.17 1.46 0.88 0.23 ET4S7	BDL 0.67 1.46 0.00 0.00	14.92 116.17 3.96 0.79 0.13 ⊑T4S9	18.92 152.17 71.96 0.21 0.12 ET4S10
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol	BDL BDL 0.67 1.30 <u>E14S1</u> 721.92	5.42 10.17 25.96 0.17 0.53 <u>ET4S2</u> BDL	BDL 14.67 0.46 0.00 0.00 <u>E1453</u> 16.92	BDL 8.17 0.46 4.67 0.00 <u>ET4S4</u> 7.42	6.92 53.67 1.96 0.78 0.13 <u>ET4S5</u> 37.92	33.92 197.67 7.46 0.82 0.17 <u>ET4S6</u> 68.42	10.42 45.17 1.46 0.88 0.23 <u>ET4S7</u> 13.92	BDL 0.67 1.46 0.00 0.00 <u>ET4S8</u> 48.92	14.92 116.17 3.96 0.79 0.13 <u>E14S9</u> 39.92	18.92 152.17 71.96 0.21 0.12 <u>ET4S10</u> 21.92
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol Cholesterol	BDL BDL 0.67 1.30 ET4S1 721.92 1334.67	5.42 10.17 25.96 0.17 0.53 ET4S2 BDL BDL	BDL 14.67 0.46 0.00 0.00 <u>ET4S3</u> 16.92 113.67	BDL 8.17 0.46 4.67 0.00 ET4S4 7.42 75.67	6.92 53.67 1.96 0.78 0.13 ET4S5 37.92 156.17	33.92 197.67 7.46 0.82 0.17 <u>ET4S6</u> 68.42 315.67	10.42 45.17 1.46 0.88 0.23 <u>ET4S7</u> 13.92 77.17	BDL 0.67 1.46 0.00 0.00 ET4S8 48.92 165.17	14.92 116.17 3.96 0.79 0.13 ET4S9 39.92 347.67	18.92 152.17 71.96 0.21 0.12 <u>ET4S10</u> 21.92 205.67
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol Cholesterol Cholesterol	BDL BDL 0.67 1.30 <u>E14S1</u> 721.92	5.42 10.17 25.96 0.17 0.53 <u>ET4S2</u> BDL	BDL 14.67 0.46 0.00 0.00 <u>E1453</u> 16.92	BDL 8.17 0.46 4.67 0.00 <u>ET4S4</u> 7.42	6.92 53.67 1.96 0.78 0.13 <u>ET4S5</u> 37.92	33.92 197.67 7.46 0.82 0.17 <u>ET4S6</u> 68.42	10.42 45.17 1.46 0.88 0.23 <u>ET4S7</u> 13.92	BDL 0.67 1.46 0.00 0.00 <u>ET4S8</u> 48.92	14.92 116.17 3.96 0.79 0.13 <u>E14S9</u> 39.92	18.92 152.17 71.96 0.21 0.12 <u>ET4S10</u> 21.92
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol Cholesterol Cholesterol Cholestanol	BDL BDL 0.67 1.30 E1451 721.92 1334.67 430.96	5.42 10.17 25.96 0.17 0.53 <u>ET4S2</u> BDL BDL BDL	BDL 14.67 0.46 0.00 0.00 <u>E14S3</u> 16.92 113.67 62.96	BDL 8.17 0.46 4.67 0.00 <u>ET4S4</u> 7.42 75.67 23.46	6.92 53.67 1.96 0.78 0.13 <u>E14S5</u> 37.92 156.17 99.96	33.92 197.67 7.46 0.82 0.17 <u>ET4S6</u> 68.42 315.67 303.46	10.42 45.17 1.46 0.88 0.23 <u>E14S7</u> 13.92 77.17 53.96	BDL 0.67 1.46 0.00 0.00 <u>6</u> 1458 48.92 165.17 158.96	14.92 116.17 3.96 0.79 0.13 E14S9 39.92 347.67 139.46	18.92 152.17 71.96 0.21 0.12 <u>ET4S10</u> 21.92 205.67 80.46
Coprostanol Cholesterol Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol Cholesterol Cholesterol	BDL BDL 0.67 1.30 ET4S1 721.92 1334.67	5.42 10.17 25.96 0.17 0.53 ET4S2 BDL BDL	BDL 14.67 0.46 0.00 0.00 <u>ET4S3</u> 16.92 113.67	BDL 8.17 0.46 4.67 0.00 ET4S4 7.42 75.67	6.92 53.67 1.96 0.78 0.13 ET4S5 37.92 156.17	33.92 197.67 7.46 0.82 0.17 <u>ET4S6</u> 68.42 315.67	10.42 45.17 1.46 0.88 0.23 <u>ET4S7</u> 13.92 77.17	BDL 0.67 1.46 0.00 0.00 ET4S8 48.92 165.17	14.92 116.17 3.96 0.79 0.13 ET4S9 39.92 347.67	18.92 152.17 71.96 0.21 0.12 <u>ET4S10</u> 21.92 205.67

Sample_	ET5S1	ET5S2	ET5S3	ET5S4	ET5S5	ET5S6	ET5S7	ET5S8	ET5S9	ET5S10
Coprostanol	24.92	92.92	48.42	22.92	48.92	9.42	0.42	13.42	7.92	48.42
<u>Cholesterol</u>	255.17	430.17	182.67	93.17	598.17	56.67	3.67	110.67	154.17	341.67
<u>Cholestanol</u>	102.96	273.46	132.96	75.96	158.96	26.46	1.46	54.96	16.96	192.96
<u>Coprostanol/</u>										
<u> Total Sterol</u>	0.19	0.25	0.27	0.23	0.24	0.26	0.22	0.20	0.32	0.20
Coprostanol/										
<u>Cholesterol</u>	0.10	0.22	0.27	0.25	0.08	0.17	0.11	0.12	0.05	0.14
Sample	ET6S1	ET6S2	ET6S3	ET6S4	ET6S5	ET6S6	ET6S7	ET6S8	ET6S9	ET6S10
Coprostanol	106.42	13.42	153.42	173.42	BDL	55.92	285.92	25.42	17.92	1.92
Cholesterol	224.67	123.67	1308.17	778.67	BDL	540.17	2773.17	187.67	197.67	166.67
Cholestanol	262.96	65.46	460.46	1450.96	0.46	254.46	904.96	73.96	67.46	25.46
Coprostanol/										
Fotal Sterol	0.29	0.17	0.25	0.11	4.67	0.18	0.24	0.26	0.21	0.07
Coprostanol/										
<u>Cholesterol</u>	0.47	0.11	0.12	0.22	1.75	0.10	0.10	0.14	0.09	0.01
Sample	ET7S1	ET7S2	ET7S3	ET7S4	ET7S5	ET7S6	ET7S7	ET7S8	ET7S9	ET7S10
Coprostanol	111.92	21.92	32.92	72.92	22.42	126.42		28.42	23.92	53.92
Cholesterol	204.17	21.92	317.67	584.17	283.67	769.67	284.17	254.17	263.67	874.17
Cholestanol	262.96	78.96	116.96	268.46	127.46	447.46	90.96	102.46	80.96	172.46
Coprostanol/	202.90	78.90	110.90	200.40	127.40	447.40	50.50	102.40	80.90	172.40
Total Sterol	0.30	0.22	0.22	0.21	0.15	0.22	0.24	0.22	0.23	0.24
Coprostanol/	0.50	0.22	0.22	0.21	0.15	0.22	0.24	0.22	0.25	0.24
Cholesterol	0.55	0.10	0.10	0.12	0.08	0.16	0.10	0.11	0.09	0.06
enoresteror	0.55	0.10	0.10	0.12	0.00	0.10	0.10	0.11	0.05	0.00
Sample	ET8S1	ET8S2	ET8S3	ET8S4	ET8S5	ET8S6	ET8S7	ET8S8	ET8S9	ET8S10
Coprostanol	113.92	156.42	53.42	25.92	99.42	29.92		10.42	18.92	
Cholesterol	6.17	641.67	305.17	236.17	840.67	186.67	1841.17	234.67	548.67	398.67
Cholestanol	5.96	688.96	221.46	63.46	360.46	87.46	270.46	45.46	84.46	
Coprostanol/										
Total Sterol	0.95	0.19	0.19	0.29	0.22	0.25	0.20	0.19	0.18	0.19
Coprostanol/										
<u>Cholesterol</u>	18.47	0.24	0.18	0.11	0.12	0.16	0.04	0.04	0.03	0.10
Sample	ET9S1	ET9S2	ET9S3	ET9S4	ET9S5	ET9S6	ET9S7	ET9S8	ET9S9	ET9S10
<u>Coprostanol</u>	180.42	80.42	2.92	406.92	<u>9.92</u>	52.92		7.42	24.92	
Cholesterol	174.17	290.67	12.67	273.67	113.67	457.17	265.67	385.67	419.67	301.17
Cholestanol	85.46	144.46	10.46	267.96	41.46	194.46	30.96	38.96		35.46
Coprostanol/	05.40	144.40	10.40	207.90	41.40	104.40	50.50	50.90	120.40	55.40
Total Sterol	0.68	0.36	0.22	0.60	0.19	0.21	0.19	0.16	0.17	0.20
Coprostanol/	0.00	0.30	0.22	0.00	0.19	0.21	0.19	0.10	0.17	0.20
Cholesterol	1.04	0.28	0.23	1.49	0.09	0.12	0.03	0.02	0.06	0.03

Sample_	ET10S1	ET10S2	ET10S3	ET10S4	ET10S5	ET10S6	ET10S7	ET1058	ET10S9	ET10S10
<u>Coprostanol</u>	184.42	7.42	19.92	19.42	74.92	8.42	18.92	3.42	3.92	BDL
<u>Cholesterol</u>	105.17	77.17	89.67	111.17	325.67	68.17	264.17	380.67	139.67	50.67
<u>Cholestanol</u>	56.96	50.96	59.96	64.96	166.46	34.96	65.46	37.96	21.46	11.46
<u>Coprostanol/</u>										
<u>Total Sterol</u>	0.76	0.13	0.25	0.23	0.31	0.19	0.22	0.08	0.15	0.00
Coprostanol/										
<u>Cholesterol</u>	1.75	0.10	0.22	0.17	0.23	0.12	0.07	0.01	0.03	0.00
<u>Sample</u>	<u>WT1S1</u>	WT1S2	WT1S3	WT1S4	WT1S5	<u>WT2S1</u>	WT2S2	WT2S3	WT2S4	WT2S5
<u>Coprostanol</u>	216.92	57.92	49.92	116.92	182.42	37.42	6.42	13.42	27.92	22.92
<u>Cholesterol</u>	847.17	332.67	266.17	555.17	1894.17	186.67	25.67	94.67	222.67	156.17
<u>Cholestanol</u>	577.96	243.96	204.96	299.96	563.96	139.46	16.96	59.96	106.46	99.96
<u>Coprostanol/</u>										
<u>Total Sterol</u>	0.27	0.19	0.20	0.28	0.24	0.21	0.27	0.18	0.21	0.19
Coprostanol/										
<u>Cholesterol</u>	0.26	0.17	0.19	0.21	0.10	0.20	0.25	0.14	0.13	0.15
Sample_	WT3S1	<u>WT3S2</u>	<u>WT3S3</u>	<u>WT3S4</u>	WT3S5	WT4S1	<u>WT4S2</u>	<u>WT4S3</u>	WT4S4	<u>WT4S5</u>
<u>Coprostanol</u>	660.42	156.92	45.92	50.92	97.92	13.92	37.92	37.42	10.92	49.42
Chalastara				186.17	474.67	FC 17	190.17	400 47		200 6-
<u>Cholesterol</u>	1050.67	572.17	234.17	100.17	4/4.0/	56.17	190.17	190.17	33.67	309.67
<u>Cholesterol</u> Cholestanol	1050.67 878.96		234.17 143.46	189.96	316.96		190.17		33.67 23.96	
Cholestanol										184.96
<u>Cholestanol</u> Coprostanol/	878.96	332.46	143.46	189.96	316.96	47.96	118.96	132.46	23.96	184.96
<u>Cholestanol</u> Coprostanol/ Total Sterol	878.96	332.46	143.46	189.96	316.96	47.96	118.96	132.46	23.96	184.96 0.22
Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol	878.96 0.43 0.63	332.46 0.32 0.27	143.46 0.24 0.20	189.96 0.21 0.27	316.96 0.24 0.21	47.96 0.22	118.96 0.24	132.46 0.22	23.96 0.31	184.96 0.21
<u>Cholestanol</u> Coprostanol/ Total Sterol Coprostanol/	878.96 0.43 0.63	332.46 0.32	143.46 0.24 0.20	189.96 0.21 0.27	316.96 0.24 0.21	47.96 0.22	118.96 0.24	132.46 0.22	23.96 0.31	184.96 0.21
Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol	878.96 0.43 0.63	332.46 0.32 0.27 <u>WT5S2D</u>	143.46 0.24 0.20	189.96 0.21 0.27	316.96 0.24 0.21	47.96 0.22	118.96 0.24	132.46 0.22	23.96 0.31	184.96 0.21
Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample	878.96 0.43 0.63 WT5S1	332.46 0.32 0.27 <u>WT5S2D</u>	143.46 0.24 0.20 <u>WT5S3</u>	189.96 0.21 0.27 <u>WT5S4</u>	316.96 0.24 0.21 <u>WT5S5</u>	47.96 0.22	118.96 0.24	132.46 0.22	23.96 0.31	184.96 0.21
Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol Cholesterol Cholestanol	878.96 0.43 0.63 <u>WT5S1</u> 81.42	332.46 0.32 0.27 <u>WT5S2D</u> 54.42	143.46 0.24 0.20 <u>WT5S3</u> 21.42	189.96 0.21 0.27 <u>WT554</u> 16.92	316.96 0.24 0.21 <u>WT5S5</u> 6.42	47.96 0.22	118.96 0.24	132.46 0.22	23.96 0.31	184.96 0.21
Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol Cholesterol	878.96 0.43 0.63 <u>WT5S1</u> 81.42 163.67	332.46 0.32 0.27 <u>WT5S2D</u> 54.42 333.17	143.46 0.24 0.20 <u>WT5S3</u> 21.42 141.17	189.96 0.21 0.27 <u>WT5S4</u> 16.92 108.17	316.96 0.24 0.21 <u>WT5S5</u> 6.42 38.67	47.96 0.22	118.96 0.24	132.46 0.22	23.96 0.31	184.96 0.21
Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Sample Coprostanol Cholesterol Cholestanol	878.96 0.43 0.63 <u>WT5S1</u> 81.42 163.67	332.46 0.32 0.27 <u>WT5S2D</u> 54.42 333.17	143.46 0.24 0.20 <u>WT5S3</u> 21.42 141.17	189.96 0.21 0.27 <u>WT5S4</u> 16.92 108.17	316.96 0.24 0.21 <u>WT5S5</u> 6.42 38.67	47.96 0.22	118.96 0.24	132.46 0.22	23.96 0.31	184.96 0.21
Cholestanol Coprostanol/ Total Sterol Coprostanol/ Cholesterol Coprostanol Cholestanol Cholestanol Coprostanol/	878.96 0.43 0.63 <u>WT5S1</u> 81.42 163.67 207.96	332.46 0.32 0.27 <u>WT5S2D</u> 54.42 333.17 186.96	143.46 0.24 0.20 <u>WT5S3</u> 21.42 141.17 85.46	189.96 0.21 0.27 <u>WT554</u> 16.92 108.17 58.46	316.96 0.24 0.21 <u>WT5S5</u> 6.42 38.67 23.46	47.96 0.22	118.96 0.24	132.46 0.22	23.96 0.31	0.21

					-		
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
13-Jul-13	T1S1	50.400	55.600	5.200	54.500	4.100	1.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.100	0.200		3.85%	3.85%	96.15%
18	91.100	91.700	0.600		11.54%	15.38%	84.62%
35	93.400	94.300	0.900		17.31%	32.69%	67.31%
60							
	87.200	88.100	0.900		17.31%	50.00%	50.00%
120	86.200	87.000	0.800		15.38%	65.38%	34.62%
230	85.700	86.200	0.500		9.62%	75.00%	25.00%
PAN	63.300	63.300	1.100		21.15%	96.15%	3.85%
	т	. Mass (Mt)=	5.00	Total %=	96.15%		
		%Error =	-3.85%				
	Semple		B + Sediment	Sadimont	B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)		Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
13-Jul-13	T1S2	29.800	33.800	4.000	33.400	3.600	0.400
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900				2.50%	2.50%	97.50%
		103.000	0.100				
18	91.100	91.500	0.400		10.00%	12.50%	87.50%
35	93.400	94.200	0.800		20.00%	32.50%	67.50%
60	87.200	88.000	0.800		20.00%	52.50%	47.50%
120	86.200	87.000	0.800		20.00%	72.50%	27.50%
230	85.700	86.300	0.600		15.00%	87.50%	12.50%
PAN	63.300	63.400	0.500		12.50%	100.00%	0.00%
	Т	. Mass (Mt)=	4.00	Total %=	100.00%		
		%Error =	0.00%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
Duito	ID	Dountor (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(1011 1011) (g)
13-Jul-13	T1S3	29.700	33.000	3.300	32.900	3.200	0.100
15 501 15	1155			5.500	32.300		
C ia	C ia	Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.000	0.100		3.03%	3.03%	96.97%
18	91.100	91.500	0.400				
35	93.400	94.500			12.12%	15.15%	84.85%
60			1.100		12.12% 33.33%	48.48%	84.85% 51.52%
	87.200	88.100	1.100 0.900				
120	87.200 86.200				33.33%	48.48%	51.52%
120 230		88.100	0.900		33.33% 27.27%	48.48% 75.76%	51.52% 24.24%
	86.200	88.100 86.500	0.900 0.300		33.33% 27.27% 9.09%	48.48% 75.76% 84.85%	51.52% 24.24% 15.15%
230	86.200 85.700 63.300	88.100 86.500 86.000	0.900 0.300 0.300	Total %=	33.33% 27.27% 9.09% 9.09%	48.48% 75.76% 84.85% 93.94%	51.52% 24.24% 15.15% 6.06%
230	86.200 85.700 63.300	88.100 86.500 86.000 63.300 Mass (Mt)=	0.900 0.300 0.300 0.100 3.20	Total %=	33.33% 27.27% 9.09% 9.09% 3.03%	48.48% 75.76% 84.85% 93.94%	51.52% 24.24% 15.15% 6.06%
230	86.200 85.700 63.300	88.100 86.500 86.000 63.300	0.900 0.300 0.300 0.100	Total %=	33.33% 27.27% 9.09% 9.09% 3.03%	48.48% 75.76% 84.85% 93.94%	51.52% 24.24% 15.15% 6.06%
230	86.200 85.700 63.300	88.100 86.500 86.000 63.300 Mass (Mt)=	0.900 0.300 0.300 0.100 3.20	Total %=	33.33% 27.27% 9.09% 9.09% 3.03% 96.97%	48.48% 75.76% 84.85% 93.94% 96.97%	51.52% 24.24% 15.15% 6.06% 3.03%
230 PAN	86.200 85.700 63.300	88.100 86.500 86.000 63.300 Mass (Mt)= %Error =	0.900 0.300 0.300 0.100 3.20	Total %=	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry	48.48% 75.76% 84.85% 93.94% 96.97% Sediment	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN
230	86.200 85.700 63.300 T	88.100 86.500 86.000 63.300 Mass (Mt)=	0.900 0.300 0.300 0.100 3.20 - 3.03%		33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf)
230 PAN	86.200 85.700 63.300 T Sample ID	88.100 86.500 63.300 • Mass (Mt)= %Error = Beaker (g)	0.900 0.300 0.100 3.20 - 3.03% B + Sediment (g)	Sediment (Mi) (g)	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g)	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving)	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g)
230 PAN	86.200 85.700 63.300 T Sample	88.100 86.500 63.300 • Mass (Mt)= %Error = Beaker (g) 28.900	0.900 0.300 0.100 3.20 - 3.03% B + Sediment (g) 34.100	Sediment	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000
230 PAN Date	86.200 85.700 63.300 T Sample ID T1S4	88.100 86.500 63.300 • Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve	0.900 0.300 0.100 3.20 -3.03% B + Sediment (g) 34.100 Mass	Sediment (Mi) (g)	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum %	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum %
230 PAN Date Sieve #	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g)	88.100 86.500 86.000 63.300 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g)	0.900 0.300 0.100 3.20 - 3.03% B + Sediment (g) 34.100 Mass Sediment (g)	Sediment (Mi) (g)	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100 Weight %	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass
230 PAN Date	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g) 102.900	88.100 86.500 63.300 • Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve	0.900 0.300 0.100 3.20 -3.03% B + Sediment (g) 34.100 Mass	Sediment (Mi) (g)	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum %	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum %
230 PAN Date Sieve #	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g)	88.100 86.500 86.000 63.300 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g)	0.900 0.300 0.100 3.20 - 3.03% B + Sediment (g) 34.100 Mass Sediment (g)	Sediment (Mi) (g)	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100 Weight %	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass
230 PAN Date Sieve # 10	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g) 102.900	88.100 86.500 86.000 63.300 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g) 102.900	0.900 0.300 0.100 3.20 -3.03% B + Sediment (g) 34.100 Mass Sediment (g) 0.000	Sediment (Mi) (g)	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00%	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00%	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00%
230 PAN Date Sieve # 10 18	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g) 102.900 91.100	88.100 86.500 86.000 63.300 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g) 102.900 91.300	0.900 0.300 0.100 3.20 -3.03% B + Sediment (g) 34.100 Mass Sediment (g) 0.000 0.200	Sediment (Mi) (g)	33.33% 27.27% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 3.85%	48.48% 75.76% 84.85% 93.94% 96.97% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.85%	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 96.15%
230 PAN Date Sieve # 10 18 35 60	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g) 102.900 91.100 93.400 87.200	88.100 86.500 63.300 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g) 102.900 91.300 94.500 88.700	0.900 0.300 0.100 3.20 -3.03% B + Sediment (g) 34.100 Mass Sediment (g) 0.000 0.200 1.100 1.500	Sediment (Mi) (g)	33.33% 27.27% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 3.85% 21.15% 28.85%	48.48% 75.76% 84.85% 93.94% 96.97% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.85% 25.00% 53.85%	51.52% 24.24% 15.15% 6.06% 3.03% Mineral (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 96.15% 75.00%
230 PAN Date Sieve # 10 18 35 60 120	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g) 102.900 91.100 93.400 87.200 86.200	88.100 86.500 63.300 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g) 102.900 91.300 94.500 88.700	0.900 0.300 0.100 3.20 -3.03% B + Sediment (g) 34.100 Mass Sediment (g) 0.000 0.200 1.100 1.500	Sediment (Mi) (g)	33.33% 27.27% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 3.85% 21.15% 28.85%	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.85% 25.00% 53.85% 82.69%	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 96.15% 95.00% 46.15%
230 PAN Date Sieve # 10 18 35 60 120 230	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g) 102.900 91.100 93.400 87.200 86.200 85.700	88.100 86.500 86.000 63.300 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g) 102.900 91.300 94.500 88.700 88.700	0.900 0.300 0.100 3.20 - 3.03% B + Sediment (g) 34.100 Mass Sediment (g) 0.000 0.200 1.100 1.500 1.500	Sediment (Mi) (g)	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 3.85% 21.15% 28.85% 28.85% 9.62%	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.85% 25.00% 53.85% 82.69% 92.31%	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 96.15% 75.00% 46.15% 17.31%
230 PAN Date Sieve # 10 18 35 60 120	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g) 102.900 91.100 93.400 87.200 86.200 85.700 63.300	88.100 86.500 86.000 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g) 102.900 91.300 94.500 88.700 88.700 88.700 87.700	0.900 0.300 0.100 3.20 -3.03% B + Sediment (g) 34.100 Mass Sediment (g) 0.000 0.200 1.100 1.500 0.500 0.500	Sediment (Mi) (g) 5.200	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% 86.97% 86.97% 96.97% 96.97% 96.97% 96.97% 96.97% 96.97% 96.20% 9.62% 0.00%	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.85% 25.00% 53.85% 82.69%	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 96.15% 75.00% 46.15%
230 PAN Date Sieve # 10 18 35 60 120 230	86.200 85.700 63.300 T Sample ID T1S4 Sieve (g) 102.900 91.100 93.400 87.200 86.200 85.700 63.300	88.100 86.500 86.000 63.300 Mass (Mt)= %Error = Beaker (g) 28.900 Sed+Sieve (g) 102.900 91.300 94.500 88.700 88.700	0.900 0.300 0.100 3.20 - 3.03% B + Sediment (g) 34.100 Mass Sediment (g) 0.000 0.200 1.100 1.500 1.500	Sediment (Mi) (g)	33.33% 27.27% 9.09% 9.09% 3.03% 96.97% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 3.85% 21.15% 28.85% 28.85% 9.62%	48.48% 75.76% 84.85% 93.94% 96.97% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.85% 25.00% 53.85% 82.69% 92.31%	51.52% 24.24% 15.15% 6.06% 3.03% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 96.15% 75.00% 46.15% 17.31%

Appendix C: Weight Percent Data (Grain Size)

Date Sample ID Beaker (g) B + Sediment (g) Sediment (M) (g) Sedimetr wet sieved) (g) Sedimetr wet sieved) (g) 10 102.900 102.900 0.000 2.00% 2.00% 1.600 18 91.100 91.200 0.000 2.00% 2.00% 2.00% 1.000% 1.000% 2.00% 1.000% 1.000% 2.00% 1.000% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% 2.00% 1.000% <t< th=""><th>Add PAN</th><th></th><th>D . D</th><th></th><th></th><th></th><th></th><th></th></t<>	Add PAN		D . D					
ID (g) (M) (g) wet sieved) (g) wet sieved) (g) T155 49.800 54.800 5.000 54.400 4.600 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 0.000 0.00% 0.00% 2.00% 2.00% 35 93.400 94.300 0.900 18.00% 20.00% 48.00% 120 86.200 87.600 1.400 28.00% 76.00% 18.00% 230 85.700 86.400 0.700 14.00% 98.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% T156 50.700 55.700 5.000 55.200 4.500 Setwer (g) (g) Sediment (g) Weight % Ret 10 102.900 0.3200 0.300 6.00% 6.00% 12.00% 12.00% 1		Sediment	B + Dry Sediment (after		B + Sediment	Beaker (a)	Sample	Date
T1S5 49.800 54.800 5.000 54.400 4.600 Sieve # Sieve (g) (g) Sediment (g) Weight % Cum % Ret 10 102.900 102.900 0.000 0.000 0.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 4.8.00% 2.00% 4.8.00% 2.00% 4.8.00% 2.00% 4.8.00% 2.00% 4.8.00% 2.00% 4.8.00% 9.0.00% 2.00% 4.8.00% 9.0.00%	(Mi-Mf) (g)		```	(Mi) (g)	(g)	Beaker (g)	ID	Date
Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight %, Ret Cum %, Ret 10 102.900 0.000 0.00% 0.00% 2.00% 1 35 93.400 94.300 0.900 18.00% 20.00% 1 120 85.200 87.600 1.400 28.00% 48.00% 90.00% 1210 85.200 86.400 0.700 14.400% 90.00% 90.00% 230 35.700 86.400 0.700 14.00% 98.00% 98.00% T.Mass (Mt)= 4.90 Total %= 98.00% 98.00% 98.00% T.Mass (Mt)= 4.90 Total %= 98.00% 98.00% 98.00% T156 50.700 55.700 5.000 55.200 5.000 14.00% 98.00% 98.00% Sieve # Sieve (g) (g) Sediment (g) 6.00% 6.00% 6.00% 1.00% 30.00% 120 86.200 87.300 1.300 22.00%	0.400			5.000	54 800	/9.800	T155	
Sieve # Sieve (g) (g) Sediment (g) Weight %, Ret 10 102.900 102.900 0.000 0.00% 0.00% 10.00% <td></td> <td></td> <td>54.400</td> <td>5.000</td> <td></td> <td></td> <td>1155</td> <td></td>			54.400	5.000			1155	
10 102.900 102.900 0.000 0.00% 0.00% 2.00% 2.00% 2.00% 2.00% 18.00% 2.00% 18.00% 2.00% 18.00% 2.00% 18.00% 2.00% 18.00% 28.00% 48.00% 12.0 86.200 87.600 1.400 28.00% 48.00% 98.00% <t< td=""><td>Cum % Pass</td><td></td><td>Waight %</td><td></td><td></td><td></td><td>Siovo (a)</td><td>Siovo #</td></t<>	Cum % Pass		Waight %				Siovo (a)	Siovo #
18 91.100 91.200 0.100 2.00% 2.00% 2.00% 35 93.400 94.300 0.900 18.00% 20.00% 48.00% 120 85.200 87.600 1.400 28.00% 48.00% 230 85.700 86.400 0.700 14.00% 90.00% PAN 63.300 0.400 8.00% 98.00% 98.00% T.Mass (Mt)= 4.90 Total %= 98.00% 98.00% %Error = -2.00% 50.00 55.700 50.00 55.700 T156 50.700 55.700 50.00 60.00% 60.00% 60.00% 10 102.900 103.200 0.300 6.00% 60.00% 12.00% 1.300 35 93.400 94.300 0.900 18.00% 30.00% 26.00% 56.00% 10.00% 88.00% 98.00% 98.00% 98.00% 98.00% 98.00% 98.00% 98.00% 98.00% 98.00% 98.00% 98.00%			-					
35 93.400 94.300 0.900 18.00% 20.00% 1 60 87.200 88.600 1.400 28.00% 48.00% 1 120 86.200 87.600 0.400 8.00% 98.00% 98.00% PAN 63.300 0.400 8.00% 98.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% Date Sample Beaker (g) B + Sediment (Mi) (g) Sediment (after (MI) (after (WI) (afte	100.00%							
60 87.200 88.600 1.400 28.00% 48.00% 120 120 86.200 87.600 1.400 28.00% 76.00% 12.00% 76.00% 12.00% 90.00%	98.00%							
120 86.200 87.600 1.400 28.00% 76.00% 1 230 85.700 86.400 0.700 14.00% 90.00% 14.00% 90.00% PAN 63.300 63.300 0.400 8.00% 98.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (after (Mi) (g) Sediment (after wet sievel) (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 6.00% 12.00% 18.00% 30.00% 6.00% 6.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 14.00% 30.00% 10.00% 88.00% 10.00% 88.00% 10.00% 88.00% 10.00% 88.00% 10.00% 88.00% 10.00% 88.00% 10.00% 88.00% 10.00% 88.00% 10.00% 10.00% 10.00%	80.00% 52.00%							
230 85.700 86.400 0.700 14.00% 90.00% PAN 63.300 63.300 0.400 8.00% 98.00% VError = -2.00% 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet siewal) (g) Ket Date Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 12.00% 12.00% 35 93.400 94.300 0.900 18.00% 30.00% 6.00% 12.00% 78.00% 120 86.200 87.300 1.100 22.00% 78.00% 22.00% 88.00% T Mass (Mt)= 4.90 Total %= 98.00% 98.00% 98.00% T Mass (Mt)= 4.90 Total %= 98.00% 98.00% 10.00% 98.00% Table Beaker (g) B + Sediment (g) Sediment (after (Mi) (g) Weight % Ret <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
PAN 63.300 63.300 0.400 8.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (atter wet sieved) (g) Sediment (atter (wet sieved) (g) T156 50.700 55.700 5.000 55.200 4.500 10 102.900 103.200 0.300 6.00% 6.00% 6.00% 35 93.400 94.300 0.900 6.00% 56.00% 7.80% 230 85.700 86.200 0.500 10.00% 88.00% PAN 63.300 6.300 5.000 10.00% 88.00% VError = -2.00% 10.00% 88.00% 98.00% T137 49.400 54.400 5.000 53.900 4.500 Sieve # Sieve (g) SedHsieve (g) Sediment (g) Weight % Ret Date Sample ID Beaker (g) B + Sediment (g) Sediment (24.00%							
T. Mass (Mt) 4.90 Total % 98.00% %Error = -2.00% 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (MI) (g) Sediment wet sieved) (g) Sediment (MI) (after wet sieved) (g) Sediment (MI) (after wet sieved) (g) Sediment (MI) (after wet sieved) (g) A.500 Sieve # Sieve (g) Sed.Sieve (g) Sediment (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 6.00% 12.00% 35 93.400 94.300 0.900 18.00% 30.00% 26.00% 56.00% 120 86.200 87.200 86.200 0.500 10.00% 88.00% PAN 63.300 0.500 10.00% 98.00% 98.00% %Error = -2.00% Sediment (MI) (g) Sediment (after wet sieved) (g) Weight % Ret Date Sample ID Beaker (g) B + Sediment (g) 0.00% 0.00% 14.00% 18.00% 10 102.900 10.2.900	10.00%							
%Error = -2.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after (Mi) (g) Sediment (after (MI) (after (wet sieved) (g) T1S6 50.700 55.700 5.000 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 6.00% 12.00% 35 93.400 94.300 0.900 18.00% 30.00% 55.00% 220 85.700 86.200 0.500 110.00% 88.00% 22.00% 230 85.700 86.200 0.500 10.00% 88.00% 22.00% PAN 63.300 63.300 0.500 10.00% 98.00% 4.90 Total %e 98.00% 98.00% 98.00% 4.90 5.000 53.900 4.500 Seter (g) B + Sediment (g) Sediment (g) Sediment (after (MI) (after (wet sieval) 4.90% 7.40 10 102.900	2.00%	98.00%						PAN
Date Sample [D Beaker (g) B + Sediment (g) Sediment (M) (g) B + Dry Sediment (after wet sieved) (g) Sediment (M) (after wet sieved) (g) A Sediment (after wet sieved) (g) 10 102.900 103.200 0.300 5.000 55.200 4.500 10 102.900 103.200 0.300 6.00% 6.00% 78.00% 11 100 91.400 0.300 6.00% 6.00% 12.00% 120 86.200 87.300 1.100 22.00% 78.00% 12.00% 120 86.200 87.300 1.100 22.00% 78.00% 10.00% 120 86.200 87.300 0.500 10.00% 98.00% 10.00% 120 86.200 87.300 1.100 10.00% 98.00% 10.00% 120 86.300 63.300 0.500 10.00% 88.00% 10.00% 10 10.290 0.2900 0.000 5.000 53.900 4.500 120 86.200 87.00			98.00%	Total %=			1	
Date Sample ID Beaker (g) B + Sediment (g) Sediment (MI) (g) Sediment (after wet sievel) (g) (MI) (after wet sievel) (g) T156 50.700 55.700 5.000 55.200 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 6.00% 2.00% 35 93.400 94.300 0.900 18.00% 30.00% 26.00% 56.00% 2.00% 78.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00%					-2.00%	%Error =		
Date Sample ID Beaker (g) B + Sediment (g) Sediment (MI) (g) Sediment (after wet sievel) (g) (MI) (after wet sievel) (g) T156 50.700 55.700 5.000 55.200 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 6.00% 12.00% 35 93.400 94.300 0.900 18.00% 30.00% 12.00% 120 86.200 87.300 1.100 22.00% 78.00% 10.00% 98.00% YAR 63.300 63.300 0.500 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 10.00% 98.00% 10.00% 10.00% 98.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00	Add PAN							
ID (g) (MI) (g) wet sieved) (g) wet sieving) T156 50.700 55.700 5.000 55.200 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 6.00% 6.00% 12.00% 18 91.100 91.400 0.300 6.00% 12.00% 30.00% 60 87.200 88.500 1.300 26.00% 56.00% 12.00% 230 85.700 86.200 0.500 10.00% 98.00% 98.00% PAN 63.300 63.300 0.500 10.00% 98.00% 98.00% Mass Sediment (g) B+ Sediment (Mi) (g) Sediment (Mi) (g) Sediment (Mi) (g) Sediment (Mi) (g) 4.500 Date Sample ID Beaker (g) B+ Sediment (g) Sediment (Mi) (g) 0.00% 4.500 100 102.900 100.00 0.000 0.00% 4.00% 18.00% 10			-	Sediment	B + Sediment	Bookor (a)	Sample	Data
T1S6 50.700 55.700 5.000 55.200 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 12.00% 13 35 93.400 94.300 0.900 18.00% 30.00% 12.00% 13.00% 30.00% 12.00% 18.00% 30.00% 12.00% 78.00% 12.00% 56.00% 12.00% 56.00% 12.00% 78.00% 10.00% 88.00% 10.00% 88.00% 10.00% 88.00% 10.00% 98.00% 10.00% 88.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 98.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% <td>(Mi-Mf) (g)</td> <td></td> <td>,</td> <td>(Mi) (g)</td> <td>(g)</td> <td>Beaker (g)</td> <td>ID</td> <td>Date</td>	(Mi-Mf) (g)		,	(Mi) (g)	(g)	Beaker (g)	ID	Date
Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret 10 102.900 103.200 0.300 6.00% 6.00% 6.00% 12.00% 13 35 93.400 94.300 0.900 18.00% 30.00% 30.00% 12.00% 10.00% 98.00% 10.00% 10.00% 12.00% 10.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00% 12.00	(g) 0.500	e ,	, (0,	5.000	55 700	50 700	T156	
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.200 0.300 6.00% 6.00% 9 18 91.100 91.400 0.300 6.00% 12.00% 1 35 93.400 94.300 0.900 18.00% 30.00% 1 60 87.200 88.500 1.300 22.00% 78.00% 1 230 85.700 86.200 0.500 10.00% 98.00% 1 PAN 63.300 63.300 0.500 10.00% 98.00% 1 Date Sample Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (Mi) (g) wet sieving) T1S7 49.400 54.400 5.000 53.900 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 102.900 0.000 0.00% 0.00% 1 35 93.400 94.100			35.200	5.000			1150	
10 102.900 103.200 0.300 6.00% 6.00% 6.00% 18 91.100 91.400 0.300 6.00% 12.00% 13 35 93.400 94.300 0.900 18.00% 30.00% 1200% 60 87.200 88.500 1.300 26.00% 56.00% 1200% 230 85.700 86.200 0.500 10.00% 88.00% 10.00% 98.00% PAN 63.300 63.300 0.500 10.00% 98.00% 98.00% Weirror = -2.00% 78.00% 10.00% 98.00% 98.00% T1S7 49.400 54.400 5.000 53.900 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 102.900 0.000 0.00% 4.00% 48.00% 120 86.200 87.500 1.300 26.00% 74.00% 48.00% 120 86.200 87.500 1.300 26.00% 74.00% 48.00% 120 86.200<	Cum % Pass		Weight %					Sieve #
18 91.100 91.400 0.300 6.00% 12.00% 1 35 93.400 94.300 0.900 18.00% 30.00% 1 60 87.200 88.500 1.300 26.00% 56.00% 26.00% 78.00% 120 86.200 87.300 1.100 22.00% 78.00% 1 230 85.700 86.200 0.500 10.00% 88.00% 1 PAN 63.300 63.300 0.500 10.00% 88.00% 1 Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (MI) (after (MI) (after wet sieved) (g) 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 102.00 0.000 0.00% 4.00% 18.00% 13.00% 14.00% 18.00% 14.00% 18.00% 12.00% 88.700 1.300 26.00% 74.00% 14.00% 18.00% 10.00% 88.00% 10.00% 88.00% <td>94.00%</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	94.00%		-					
35 93.400 94.300 0.900 18.00% 30.00% 60 87.200 88.500 1.300 26.00% 56.00% 78.00% 120 86.200 87.300 1.100 22.00% 78.00% 78.00% 230 85.700 86.200 0.500 10.00% 88.00% 98.00% PAN 63.300 0.500 10.00% 88.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (after wet sieved) (g) Sediment (after wet sieved) (g) A Sieve # Sieve (g) Sed+Sieve Mass Sediment (g) Weight % Ret 10 102.900 0.200 0.000 0.00% 4.00% 4 35 93.400 94.100 0.700 14.00% 18.00% 4 120 86.200 87.500 1.300 26.00% 74.00% 4 120 86.200 87.500 1.300 26.00% 74.00% 4 120 86.200<	88.00%							
60 87.200 88.500 1.300 26.00% 56.00% 4 120 86.200 87.300 1.100 22.00% 78.00% 78.00% 230 85.700 86.200 0.500 10.00% 88.00% 98.00% PAN 63.300 63.300 0.500 10.00% 98.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (Mf) (after wet sieving) Sediment (Mf) (after wet sieving) A.500 10 102.900 102.900 0.000 0.00% 4.500 18.00% 18.00% 18.00% 18.00% 18.00% 18.00% 18.00% 18.00% 120 86.200 87.500 1.300 26.00% 74.00% 18.00% 120 86.200 87.500 1.300 26.00% 74.00% 120 86.200 87.500 1.300 26.00% 74.00% 120 86.400 0.700	70.00%							
120 86.200 87.300 1.100 22.00% 78.00% 1 230 85.700 86.200 0.500 10.00% 88.00% 10.00% 98.00% PAN 63.300 63.300 0.500 10.00% 98.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (after wet sieved) (g) Wet sieved) (g) Wet sieved) (g) Wet sieved) (g) 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Ret 10 102.900 102.900 0.000 0.000% 0.00% 14.00% 48.00% 12.00% 14.00% 18.00% 12.00% 14.00% 88.00% 14.00% 88.00% 10.00% 14.00% 88.00% 10.00% 14.00% 88.00% 10.00% 14.00% 88.00% 10.00% 14.00% 88.00% 10.00% 14.00% 88.00% 10.00% 14.00% 88.00%	44.00%							
230 85.700 86.200 0.500 10.00% 88.00% PAN 63.300 63.300 0.500 10.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieved) (g) T1S7 49.400 54.400 5.000 53.900 4.500 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 102.900 0.000 0.00% 0.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 230 85.700 86.400 0.700 14.00% 88.00% 1 PAN 63.300 63.300 0.500 10.00% 98.00% 1 Date Sample ID Beaker (g) <	22.00%						1	
PAN 63.300 63.300 0.500 10.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% %Error = -2.00% Sediment B + Dry Sediment (after wet sieved) (g) Sediment (Mt) (after wet sieved) (g) Date Sample ID Beaker (g) B + Sediment (g) Sediment Sediment (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mt) (after wet sieving) A 10 102.900 102.900 0.000 0.00% <	12.00%							
T. Mass (Mt)= 4.90 Total %= 98.00% $\%$ Error = -2.00% %Error = -2.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieved) (g) A Sieve # Sieve (g) (g) Sediment (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieved) (g) A 10 102.900 102.900 0.000 0.00% 0.00% 1 118 91.100 91.300 0.200 44.00% 48.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 230 85.700 86.400 0.700 14.00% 88.00% 1 Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (Mf) (after wet sieved) (g) (Mf) (after wet sieved) (g) (Mf) (after wet sieved) (g) T128 56.000	2.00%							
%Error = -2.00% Beaker (g) B + Sediment (g) B + Sediment (g) B + Dry Sediment (Mi) (g) Sediment (Mi) (g) B + Dry Sediment (Mi) (g) Sediment (Mi) (g) A Date T1S7 49.400 54.400 5.000 53.900 4.500 Cum % Ret 10 102.900 102.900 0.000 0.00% 0.00% 14.00% 18.00% 1 35 93.400 94.100 0.700 14.00% 18.00% 1 10 102.900 0.700 14.00% 18.00% 18.00% 1 35 93.400 94.100 0.700 14.00% 18.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 230 85.700 86.400 0.700 14.00% 88.00% 1 Date ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (After (Wf) (a	2.00%	98.00%		T () 0(PAN
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieved) (g) A T1S7 49.400 54.400 5.000 53.900 4.500 0 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret 10 102.900 102.900 0.000 0.00% 0.00% 1 18 91.100 91.300 0.200 4.00% 48.00% 1 60 87.200 88.700 1.500 30.00% 48.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 230 85.700 86.400 0.700 14.00% 88.00% 1 PAN 63.300 63.300 0.500 10.00% 98.00% 1 Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) (Mi) (after wet sieved) (g) T1S8 56.000			98.00%	Total %=		. ,	-	
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Gammatic Sediment (Mi) (g) T1S7 49.400 54.400 5.000 53.900 4.500 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret 10 102.900 102.900 0.000 0.00% 0.00% 1 18 91.100 91.300 0.200 4.00% 4.00% 4 60 87.200 88.700 1.500 30.00% 48.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 230 85.700 86.400 0.700 14.00% 98.00% 1 PAN 63.300 63.300 0.500 10.00% 98.00% 1 Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) (Mf) (after wet sieved) (g) T1S8 56.000 61.100 5.100 60.700 4.700 1 </td <td></td> <td></td> <td></td> <td></td> <td>-2.00%</td> <td>%Error =</td> <td></td> <td></td>					-2.00%	%Error =		
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sievel) (g) Sediment wet sievel) (g) T1S7 49.400 54.400 5.000 53.900 4.500 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret 10 102.900 102.900 0.000 0.00% 0.00% 1 18 91.100 91.300 0.200 4.00% 4.00% 4 60 87.200 88.700 1.500 30.00% 48.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 230 85.700 86.400 0.700 14.00% 98.00% 1 PAN 63.300 63.300 0.500 10.00% 98.00% 1 Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sievel) (g) (Mf) (after wet sievel) (g) T1S8 56.000 61.100 5.100 60.700 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
ID IS ID ID IS ID ID <thid< th=""> ID ID ID<!--</td--><td>Add PAN</td><td></td><td></td><td>Sediment</td><td>B + Sediment</td><td>Decker (a)</td><td>Sample</td><td>Data</td></thid<>	Add PAN			Sediment	B + Sediment	Decker (a)	Sample	Data
T1S749.400 54.400 5.000 53.900 4.500 Sieve #Sieve (g)Sed+Sieve (g)Mass Sediment (g)Weight %Ret10102.900102.9000.0000.00%0.00%11891.10091.3000.200 4.00% 4.00% 4.00% 13593.40094.1000.70014.00%18.00% 3 6087.20088.7001.500 30.00% 48.00% 3 12086.20087.5001.300 26.00% 74.00% 3 23085.70086.4000.700 14.00% 88.00% 3 PAN63.30063.3000.500 10.00% 98.00% 98.00% VError = -2.00%Beaker (g)DateSample IDBeaker (g)B + Sediment (g) $8 + Dry$ Sediment (after wet sievel) (g)Sediment (after wet sievel) (g)T1S856.00061.1005.10060.7004.700Sieve (g)Sed+Sieve (g)10102.900103.4000.500 9.80% 9.80%	(Mi-Mf)			(Mi) (g)	(g)	Beaker (g)	ID	Date
Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret 10 102.900 102.900 0.000 0.00% 0.00% 1 18 91.100 91.300 0.200 4.00% 4.00% 4 35 93.400 94.100 0.700 14.00% 18.00% 1 60 87.200 88.700 1.500 30.00% 48.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 230 85.700 86.400 0.700 14.00% 88.00% 1 PAN 63.300 63.300 0.500 10.00% 98.00% 1 Mass (Mt)= 4.90 Total %= 98.00% 1 10 102.00 61.100 5.100 60.700 4.700 Mass Sedment (g) B + Sediment (g) Sediment (after wet sievel) (g) Weight % Ret 10 102.900 103.400 0.500 9.80% 9	(g) 0.500	0,		5.000	54 400	49.400	T157	
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 102.900 0.000 0.00% 0.00% 1 18 91.100 91.300 0.200 4.00% 4.00% 4 35 93.400 94.100 0.700 14.00% 18.00% 1 60 87.200 88.700 1.500 30.00% 48.00% 1 120 86.200 87.500 1.300 26.00% 74.00% 1 230 85.700 86.400 0.700 14.00% 98.00% 1 PAN 63.300 63.300 0.500 10.00% 98.00% 1 Date Værror = -2.00% Verror = -2.00% Verror = <			33.900	3.000			1137	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cum % Pass		Waight %				Siovo (a)	Siovo #
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100.00%		-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	96.00%							*
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	82.00%							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52.00%							
230 85.700 86.400 0.700 14.00% 88.00% PAN 63.300 63.300 0.500 10.00% 98.00% T Mass (Mt)= 4.90 Total %= 98.00% Weight % %Error = -2.00% 10.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieved) (g) A T1S8 56.000 61.100 5.100 60.700 4.700 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.400 0.500 9.80% 9.80% 9	26.00%							
PAN 63.300 63.300 0.500 10.00% 98.00% T. Mass (Mt)= 4.90 Total %= 98.00% 98.00% %Error = -2.00% 63.300 63.300 63.300 63.300 63.300 63.300 63.300 98.00% 98.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieving) A (Mi) (after wet sieved) (g) A (Mf) (after wet sieved) (g) A (Mf) (after wet sieving) A (Mf) (after wet sieved) (g) A (Mf)								
T. Mass (Mt)= 4.90 Total %= 98.00% %Error = -2.00% <	12.00% 2.00%							
%Error = -2.00% Beaker (g) B + Sediment (g) Bediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mi) (after wet sieved) (g) A Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) A T1S8 56.000 61.100 5.100 60.700 4.700 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret 10 102.900 103.400 0.500 9.80% 9.80% 9	2.0078	38.0078		Tetel %				FAN
DateSample IDBeaker (g)B + Sediment (g)Sediment (Mi) (g)B + Dry Sediment (after wet sieved) (g)Sediment (Mf) (after wet sieving)A A (Mi) (g)T1S856.00061.1005.10060.7004.700Sieve #Sieve (g)Sed+Sieve (g)Mass Sediment (g)Weight %Ret10102.900103.4000.5009.80%9.80%			30.00%			` (
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Cum % wet sieved) (g) T1S8 56.000 61.100 5.100 60.700 4.700 Sieve # Sieve (g) (g) Mass Sediment (g) Cum % Ret Ret 10 102.900 103.400 0.500 9.80% 9.80% 9					-2.00%	%Error =		
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Cum % wet sieved) (g) T1S8 56.000 61.100 5.100 60.700 4.700 Sieve # Sieve (g) (g) Mass Sediment (g) Cum % Ret Ret 10 102.900 103.400 0.500 9.80% 9.80% 9	Add PAN		D . D					
ID (g) (Mi) (g) wet sieved) (g) wet sieving) T1S8 56.000 61.100 5.100 60.700 4.700 Sieve # Sieve (g) (g) Sed+Sieve Mass Cum % Ret 10 102.900 103.400 0.500 9.80% 9.80% 9				Sediment	B + Sediment	Booker (a)	Sample	Data
T1S8 56.000 61.100 5.100 60.700 4.700 Sieve # Sieve (g) (g) Mass Cum % Ret 10 102.900 103.400 0.500 9.80% 9.80% 9	(Mi-Mf) (g)		```	(Mi) (g)	(g)	Beaker (g)	ID	Date
Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret 10 102.900 103.400 0.500 9.80% 9.80% 9	0.400	0,		5 100	61 100	56,000	T158	
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret 10 102.900 103.400 0.500 9.80% 9.80% 9			00.700	5.100			1130	
10 102.900 103.400 0.500 9.80% 9.80%	Cum % Pass		Weight %				Sieve (a)	Sieve #
	90.20%		_					-
	78.43%	21.57%	9.80% 11.76%		0.600	91.700	91.100	10
								·
	35 20%							2
	35.29%							/
	21.57%							2
	11.76%							
	3.92%	90.08%		Total %				FAN
T. Mass (Mt)= 4.90 Total %= 96.08%			30.00%	rotar %=		. ,	- 1	
%Error = -3.92%					-5.92%			

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
	T1S9	50.700	55.700	5.000	55.200	4.500	0.500
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.100	91.200	0.100		2.00%	2.00%	98.00%
35	93.400	94.100	0.700		14.00%	16.00%	84.00%
60	87.200	88.800	1.600		32.00%	48.00%	52.00%
120	86.200	87.600	1.400		28.00%	76.00%	24.00%
							12.00%
230	85.700	86.300	0.600		12.00%	88.00%	
PAN	63.300	63.300	0.500		10.00%	98.00%	2.00%
	Т	. Mass (Mt)=	4.90	Total %=	98.00%		
		%Error =	-2.00%				
	Comple			Codimont	B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
	T1S10	29.700	34.700	5.000	33.900	4.200	0.800
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)		Sediment (g)		Weight %	Ret	Pass
		(g)			-		
10	102.800	103.000	0.200		4.00%	4.00%	96.00%
18	91.100	91.300	0.200		4.00%	8.00%	92.00%
35	93.400	94.100	0.700		14.00%	22.00%	78.00%
60	87.200	88.500	1.300		26.00%	48.00%	52.00%
120	86.300	86.900	0.600		12.00%	60.00%	40.00%
230	85.700	86.800	1.100		22.00%	82.00%	18.00%
PAN	63.300	63.300	0.800		16.00%	98.00%	2.00%
	т	. Mass (Mt)=	4.90	Total %=	98.00%		
		%Error =	-2.00%				
		/021101 =	-2.0070				
						0 5 4	Add PAN
Dete	Sample	Declary (c)	B + Sediment	Sediment	B + Dry	Sediment	
Date	ID.	Beaker (g)	(a)	(Mi) (α)	Sediment (after	(Mf) (after	(Mi-Mf)
			(g)	(Mi) (g)	wat signed) (a)	wot sigving)	
					wet sieved) (g)	wet sieving)	(g)
13-Jul-13	T2S1	50.500	(9)	5.000	wet sieved) (g) 55.100	wet sieving) 4.600	
13-Jul-13	T2S1	50.500 Sed+Sieve					(g)
13-Jul-13 Sieve #	T2S1 Sieve (g)		55.500			4.600	(g) 0.400
		Sed+Sieve	55.500 Mass		55.100	4.600 Cum %	(g) 0.400 Cum %
Sieve #	Sieve (g)	Sed+Sieve (g)	55.500 Mass Sediment (g)		55.100 Weight %	4.600 Cum % Ret	(g) 0.400 Cum % Pass
Sieve # 10 18	Sieve (g) 102.800 91.000	Sed+Sieve (g) 102.900 91.300	55.500 Mass Sediment (g) 0.100 0.300		55.100 Weight % 1.92% 5.77%	4.600 Cum % Ret 1.92% 7.69%	(g) 0.400 Cum % Pass 98.08% 92.31%
Sieve # 10 18 35	Sieve (g) 102.800 91.000 93.300	Sed+Sieve (g) 102.900 91.300 94.400	55.500 Mass Sediment (g) 0.100 0.300 1.100		55.100 Weight % 1.92% 5.77% 21.15%	4.600 Cum % Ret 1.92% 7.69% 28.85%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15%
Sieve # 10 18 35 60	Sieve (g) 102.800 91.000 93.300 87.200	Sed+Sieve (g) 102.900 91.300 94.400 88.800	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600		55.100 Weight % 1.92% 5.77% 21.15% 30.77%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38%
Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.300 87.200 86.200	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400		55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200		55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62%
Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400	5.000	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)=	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10		55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400	5.000	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)=	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10	5.000	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)=	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00%	5.000 Total %=	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)=	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment	5.000 Total %=	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% B + Dry Sediment (after	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92%
Sieve # 10 18 35 60 120 230 PAN	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)= %Error =	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00%	5.000 Total %=	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% B + Dry	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92%
Sieve # 10 18 35 60 120 230 PAN	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)= %Error =	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment	5.000 Total %=	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% B + Dry Sediment (after	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf)
Sieve # 10 18 35 60 120 230 PAN Date	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 49.600	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% B + Dry Sediment (after wet sieved) (g)	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000	(g) 0.400 Cum % Pass 98.08% 92.31% 40.38% 1.346% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13	Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T Sample ID T2S2	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% B + Dry Sediment (after wet sieved) (g) 54.600	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum %	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum %
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve #	Sieve (g) 102.800 91.000 93.300 86.200 85.700 63.300 T Sample ID T2S2 Sieve (g)	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g)	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g)	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% B + Dry Sediment (after wet sieved) (g) 54.600 Weight %	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10	Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T Sample ID T2S2 Sieve (g) 102.800	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g) 102.800	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g) 0.000	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% 98.08% B + Dry Sediment (after wet sieved) (g) 54.600 Weight % 0.00%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00%
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18	Sieve (g) 102.800 91.000 93.300 85.200 85.700 63.300 T Sample ID T2S2 Sieve (g) 102.800 91.000	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g) 102.800 91.200	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g) 0.000 0.200	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% 98.08% B + Dry Sediment (after wet sieved) (g) 54.600 Weight % 0.00% 5.00%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 5.00%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 95.00%
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35	Sieve (g) 102.800 91.000 93.300 85.700 63.300 T Sample ID T2S2 Sieve (g) 102.800 91.000 93.300	Sed+Sieve (g) 102.900 91.300 94.400 88.800 85.900 63.300 .Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g) 102.800 91.200 94.500	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g) 0.000 0.200 1.200	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% 98.08% 98.08% 98.08% 98.00% 54.600 Weight % 0.00% 5.00% 30.00%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 5.00%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 95.00% 65.00%
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18	Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T Sample ID T2S2 Sieve (g) 102.800 91.000	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g) 102.800 91.200	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g) 0.000 0.200	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% 98.08% B + Dry Sediment (after wet sieved) (g) 54.600 Weight % 0.00% 5.00%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 5.00%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 95.00%
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35	Sieve (g) 102.800 91.000 93.300 85.700 63.300 T Sample ID T2S2 Sieve (g) 102.800 91.000 93.300	Sed+Sieve (g) 102.900 91.300 94.400 88.800 85.900 63.300 .Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g) 102.800 91.200 94.500	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g) 0.000 0.200 1.200	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% 98.08% 98.08% 98.08% 98.00% 54.600 Weight % 0.00% 5.00% 30.00%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 5.00%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 95.00% 65.00%
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35 60	Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T Sample ID T2S2 Sieve (g) 102.800 91.000 93.300 87.200	Sed+Sieve (g) 102.900 91.300 94.400 88.800 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g) 102.800 91.200 94.500 89.300	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g) 0.000 0.200 1.200 2.100	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% 98.08% 98.08% 98.08% 98.00% 54.600 Weight % 0.00% 5.00% 30.00% 52.50%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 5.00% 87.50%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 95.00% 65.00% 12.50%
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T Sample ID T2S2 Sieve (g) 102.800 91.000 93.300 87.200 86.200	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 .Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g) 102.800 91.200 94.500 89.300 87.600	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g) 0.000 0.200 1.200 2.100 1.400	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% 98.08% 98.08% 98.08% 98.00% 54.600 Weight % 0.00% 54.600 Weight % 0.00% 52.50% 35.00%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 5.000 S.00% 87.50% 122.50%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 1.3.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 65.00% 12.50% -22.50%
Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID T2S2 Sieve (g) 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.300 94.400 88.800 87.600 85.900 63.300 . Mass (Mt)= %Error = Beaker (g) 49.600 Sed+Sieve (g) 102.800 91.200 94.500 89.300 87.600	55.500 Mass Sediment (g) 0.100 0.300 1.100 1.600 1.400 0.200 0.400 5.10 2.00% B + Sediment (g) 54.600 Mass Sediment (g) 0.000 0.200 1.200 1.200 2.100 1.400 0.100	5.000 Total %= Sediment (Mi) (g)	55.100 Weight % 1.92% 5.77% 21.15% 30.77% 26.92% 3.85% 7.69% 98.08% 98.08% B + Dry Sediment (after wet sieved) (g) 54.600 Weight % 0.00% 5.00% 30.00% 52.50% 35.00% 2.50%	4.600 Cum % Ret 1.92% 7.69% 28.85% 59.62% 86.54% 90.38% 98.08% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 5.00% 35.00% 87.50% 122.50% 125.00%	(g) 0.400 Cum % Pass 98.08% 92.31% 71.15% 40.38% 13.46% 9.62% 1.92% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 95.00% 65.00% 12.50%

Date Sample Deckor (g) Beskor (g) (h) Beskor (g) (h) Beskor (g) (h) Beskor (g) (h) Sediment (h) Beskor (g) (h) Sediment (g) Sediment (g) Sediment (h) Sedime								Add PAN
LD (B)	Data	Sample	Rookor (a)	B + Sediment	Sediment	B + Dry Sodimont (offor	Sediment	
13-Jul-13 T253 50.400 55.400 5.000 55.300 4.900 0.100 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 102.800 0.000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 90.91% Ret Pass 20 85.700 86.000 0.300 90.90% 148.48% 48.48% 48.48% 20 85.700 86.000 0.300 90.9% 148.48% 48.48% 210 86.200 0.300 90.9% 148.48% 48.48% 211 Sample Beaker (g) H Sediment Sediment (g) Sediment (g) 151.52% 51.52% 13-Jul-13 T254 50.700 55.700 5.000 55.700 5.000 0.000 1.92% 1.92% 90.93% 1.92% 90.93% 1.92% 90.38% 90.94% 90.94% 90.94% 90.94% 90.94% 90.94% 90.94% 90.94% 90.94% 90.94% 90.94% 90.94% 90.94% <td>Date</td> <td>ID</td> <td>Beaker (g)</td> <td>(g)</td> <td>(Mi) (g)</td> <td></td> <td></td> <td></td>	Date	ID	Beaker (g)	(g)	(Mi) (g)			
Sieve # Sieve (g) Sed High (g) Weight %, Ret Cum %, Pass Pass 10 102.800 10.2800 10.000 0.000 <td>40.1.1.40</td> <td></td> <td>=0.100</td> <td>== 100</td> <td>= 000</td> <td></td> <td>0,</td> <td></td>	40.1.1.40		=0.100	== 100	= 000		0,	
Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 10.2800 10.2800 10.000 10.07% <td>13-Jul-13</td> <td>1253</td> <td>50.400</td> <td>55.400</td> <td>5.000</td> <td>55.300</td> <td>4.900</td> <td>0.100</td>	13-Jul-13	1253	50.400	55.400	5.000	55.300	4.900	0.100
10 102.800 102.800 0.000 18 91.000 91.300 0.300 9.09% 9.00% 10.00 0.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.			Sed+Sieve	Mass			Cum %	
18 91.000 91.300 0.300 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 9.09% 14.8.8% 18.18% 118.18% 118.18% 118.18% 118.18% 118.18% 118.18% 118.18% 12.33.39% 3.333 93.300 9.09% 148.48% 448.48% <	Sieve #	Sieve (g)		Sediment (g)		Weight %	Ret	Pass
35 93.300 94.700 1.400 60 87.200 86.900 0.700 1.818/6 118.18% -18.18% 120 86.200 86.000 0.300 9.09% 148.48% -48.48% PAN 63.300 63.300 0.100 3.33% 15.52% -48.48% PAN 63.300 63.300 0.00% 3.33% 15.52% -48.48% Date Sample Beaker (g) B + Sediment (g) Total ‰ 151.52% -48.48% Sizeve # Sizeve (g) Sed.5izev Mass Sediment (a) Sediment (a) -48.48% 13.Jul-13 T254 50.700 55.700 5.000 55.700 50.00 0.000 1.92% 19.23% 19.	10	102.800	102.800	0.000		0.00%	0.00%	100.00%
60 87.200 89.400 2.200 120 86.200 86.900 0.700 230 85.700 86.000 0.300 PAN 63.300 0.100 3.03% 139.39% -39.39% Date Sample Beaker (g) B + Sediment (M) (g) 3.03% 151.52% -51.52% 13-Jul-13 TZ54 50.700 55.700 5.000 55.700 5.000 0.00% 13-Jul-13 TZ54 50.700 55.700 5.000 55.700 5.000 0.000 10 102.800 102.900 0.100 1.92% 1.92% 1.92% 9.82% 220 85.700 85.800 0.700 36.54% 46.15% 3.85% 0.00% 96.15% 3.85% 9.62% 90.38% 9.62% 90.38% 1.92% 96.15% 3.85% 0.000 1.92% 96.15% 3.85% 1.129% 96.15% 3.85% 0.000% 96.15% 3.85%	18	91.000	91.300	0.300		9.09%	9.09%	90.91%
120 86.200 86.900 0.700 21.21% 139.39% -48.48% -48.48% PAN 63.300 63.300 0.100 3.03% 151.52% -51.52% Date Sample Beaker (g) B + Sediment (g) Sediment (after (M) (aft	35	93.300	94.700	1.400		42.42%	51.52%	48.48%
120 86.200 86.900 0.700 21.21% 139.39% -43.93% 230 85.700 86.000 0.300 9.09% 148.48% -48.48% PAN 63.300 63.300 0.00% 3.03% 151.52% -51.52% Date Sample Beaker (g) B + Sediment (g) Sediment (M) (g) Sediment (M) Sediment (M) Sedimen	60	87.200	89.400	2.200		66.67%	118.18%	-18.18%
230 85.700 86.000 0.300 9.0% 148.48% 48.48% 48.48% 48.48% 48.48% 48.48% 48.48% 48.48% 48.48% 48.48% 48.48% 51.52%	120							
PAN 63.300 63.300 0.100 3.03% 151.52% -51.52% T. Mass (M)= 5.00 Total %= 151.52% -51.52% WError = 0.00% %Error = 0.00% Mass (M) Sediment (after (M) (M) (g) (M) Date Date Beaker (g) B + Sediment (G) Sediment (after (M) (g) Sediment (after (M) (g) Md PAN 13Jul-13 T254 50.700 55.700 5.000 55.700 5.000 0.000 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 1.92% 1.92% 98.08% 120 85.200 85.900 0.100 36.54% 46.15% 3.85% 230 85.700 85.800 0.000 1.92% 96.15% 3.85% Mass (M)= 5.00 Total %= 96.15% 3.85% 120 86.410 1.200 6.200 52.00 52.00 52.00 0.00% <td< td=""><td>230</td><td>85.700</td><td></td><td>0.300</td><td></td><td>9.09%</td><td>148.48%</td><td>-48.48%</td></td<>	230	85.700		0.300		9.09%	148.48%	-48.48%
T. Mass (Mt)= 5.00 Total %= 151.52% V&Error = 0.00% Sediment (g) B + Dry Sediment (after (Mi) (g) Sediment wet sieved) (g) Add PAN (M) (after wet sieved) (g) 13-Jul-13 T254 50.700 5.000 55.700 5.000 0.000 14 91.000 91.400 0.100 1.92% 1.92% 98.08% 15 93.300 95.200 1.900 36.54% 46.15% 93.38% 10 102.800 10.900 0.100 34.62% 80.77% 19.23% 120 86.200 86.900 0.700 34.62% 94.23% 5.7% 121 86.300 63.300 0.000 1.92% 96.15% 3.85% V&Error = 0.00% 5.200 55.200 5.200 5.000 0.000 13-Jul-13 T255 50.200 55.400 5.200 55.200 5.000 0.200 13-Jul-13 T255 50.200 55.400 5.200 5.000 0.200% 2.00								
%Error = 0.00% B Sediment (g) B + Dry Sediment (g) Sediment (M) (g) Sediment vet sieved)(g) Mdd PAN (M(M) (ghr wet sieved)(g) 13-Jul-13 T254 50.700 55.700 5.000 55.700 5.000 0.000 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 1.92% 1.92% 98.08% 18 91.000 95.200 1.900 36.54% 46.15% 53.85% 60 87.200 85.900 0.700 1.92% 96.15% 3.85% 7. Mass (M)= 5.00 Total %= 96.15% 3.85% 93.00 95.200 5.00 5.200 55.00 0.00% 96.15% 3.85% 120 86.700 85.90 0.00% 96.15% 3.85% (M) (m) (M) (wet siewed) (g) (Wet siewed) (g) Vet siewed) (g) Vet siewed) (g) Vet siewed) (g) 2.00% 2.00% 2.00% 2.00% 2.00% </td <td>.,</td> <td></td> <td></td> <td></td> <td>Total %-</td> <td></td> <td>101102/0</td> <td>51152/0</td>	.,				Total %-		101102/0	51152/0
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment sediment (after wet sievel) (g) Add PAN (Mi) (after wet sievel) (g) 13-Jul-13 T254 50.700 55.700 5.000 55.000 5.000 0.000 Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 10.2.900 0.1000 1.92% 1.92% 98.08% 18 91.000 91.400 0.400 7.69% 9.62% 90.38% 35 93.300 95.200 1.900 34.62% 80.77% 19.23% 120 86.200 63.300 0.000 1.92% 96.15% 3.85% 7 Mass (Mi)= 5.00 Total %= 96.15% 3.85% 913-Jul-13 T255 50.200 5.200 55.200 50.00 0.200 120 86.200 87.100 0.900 14.00% 16.00% 84.00% 13-Jul-13 T255 50.200 55.200 55.200		•	()			131.3270		
Date Sample D Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sievel) (g) Sediment (g) Sediment (Mi) (g) 13-Jul-13 T254 50.700 55.700 5.000 55.700 5.000 0.000 100.2.800 102.900 0.100 1.92% Neight % Ret Pass 113 91.000 91.400 0.400 7.69% 9.62% 90.38% 60 87.200 85.300 0.700 13.46% 94.23% 5.77% 230 85.700 85.300 0.000 0.00% 96.15% 3.85% PAN 63.300 63.300 0.000 0.00% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) Cum % Ret Pass 13-Jul-13 T255 50.200 55.400 5.200 50.000 0.200% 120 86.200 87.700 86.100 0.400 32.00% 2.00% 2.00% 2.0			%Error =	0.00%				
Date Sample D Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sievel) (g) Sediment (g) Sediment (Mi) (g) 13-Jul-13 T254 50.700 55.700 5.000 55.700 5.000 0.000 100.2.800 102.900 0.100 1.92% Neight % Ret Pass 113 91.000 91.400 0.400 7.69% 9.62% 90.38% 60 87.200 85.300 0.700 13.46% 94.23% 5.77% 230 85.700 85.300 0.000 0.00% 96.15% 3.85% PAN 63.300 63.300 0.000 0.00% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) Cum % Ret Pass 13-Jul-13 T255 50.200 55.400 5.200 50.000 0.200% 120 86.200 87.700 86.100 0.400 32.00% 2.00% 2.00% 2.0								
Date D Beaker (g) (g) (Mi) (g) Sediment (after Wet sieved (g) (Mi) (g) Wet sieved (g) Wet sieved (g) (Mi) (g) 13-Jul-13 T254 50.700 55.700 5.000 55.700 5.000 0.000 Sieve # Sieve (g) (g) Scheiment (g) Weight % Ret Pass 10 102.800 102.900 0.100 1.92% 9.62% 90.38% 35 93.300 95.200 1.900 36.54% 46.15% 53.85% 60 87.200 85.900 0.100 1.92% 96.15% 3.85% 7230 85.700 85.800 0.100 1.92% 96.15% 3.85% PAN 63.300 6.300 0.000 0.00% 96.15% 3.85% 13-4wer (g) Beaker (g) (g) Sediment (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 5.200 55.200 5.000 0.200% 1		Sample		B + Sediment	Sediment			
13-Jul-13 T2S4 50.700 55.700 5.000 5.000 0.000 Sieve (g) Sed+Sieve (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 1.92% 98.08% 1.92% 98.08% 35 93.300 95.200 1.900 36.54% 46.15% 53.85% 60 87.200 89.000 1.800 34.62% 80.77% 19.23% 230 85.700 85.300 0.000 0.000% 96.15% 3.85% PAN 63.300 63.300 0.000 0.00% 96.15% 3.85% Date Sample Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 2.00% 2.00% 80.00% 2.00% 80.00% 2.00% 80.00% 2.00% 80.00% 2.00% 80.00% 2.00% 80.00% 2.00% 2.00% 80.00% 2.00	Date		Beaker (g)	(g)	(Mi) (g)	,		
Sieve # Sieve (g) Sed + Sieve (g) Mass Sediment (g) 10 102.800 100.900 0.100 1.92% 1.92% 1.92% 98.08% 35 93.300 95.200 1.900 36.54% 46.15% 53.85% 60 87.200 89.000 1.800 34.62% 80.77% 19.23% 120 86.200 86.900 0.700 13.46% 94.23% 5.77% 230 85.700 85.800 0.100 1.92% 96.15% 3.85% PAN 63.300 0.300 0.000 0.00% 96.15% 3.85% 0.102.800 102.800 102.900 55.00 55.200 55.000 0.200 10 102.800 102.900 0.100 14.00% 84.00% 52.00% 10.00% 98.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2						, (6,	0,	
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 1.92% 1.92% 98.68% 31 91.300 95.200 1.900 36.54% 46.15% 53.85% 60 87.200 85.000 0.800 34.62% 90.38% 5.77% 230 85.700 85.800 0.100 1.92% 96.15% 3.85% PAN 63.300 63.300 0.000 0.00% 96.15% 3.85% Date Sample Beaker (g) B + Sediment (g) 96.15% Sediment (M/I) (after (M/I) (after (wet sieved) (g) wet sieving) 0.00% 13-Jul-13 T2S5 50.200 55.400 52.200 55.200 0.00% 0.00% 13 91.000 91.700 0.700 14.00% 16.00% 84.00% 52.00% 60.08 32.00% 10.00% 24.00% 92.00% 10.00% 24.00% 52.00% 60.03 32.00% 10.00% 20.00% <td>13-Jul-13</td> <td>T2S4</td> <td>50.700</td> <td>55.700</td> <td>5.000</td> <td>55.700</td> <td>5.000</td> <td>0.000</td>	13-Jul-13	T2S4	50.700	55.700	5.000	55.700	5.000	0.000
10 102.800 102.900 0.100 1.92% 1.92% 98.08% 18 91.000 95.200 1.900 36.54% 46.15% 90.38% 60 87.200 89.000 1.800 34.62% 80.77% 19.23% 120 86.200 85.900 0.700 13.46% 94.23% 5.77% 230 85.700 85.800 0.000 0.00% 96.15% 3.85% PAN 63.300 0.000 1.92% 96.15% 3.85% 0.00% 96.15% 3.85% 96.15% 3.85% 13-Jul-13 T255 50.200 55.400 5.200 55.200 50.000 0.200 14 010.800 102.900 0.100 2.00% 48.00% 52.00% 32.00% 48.00% 52.00% 120 86.200 87.100 0.700 14.00% 16.00% 84.00% 2.00% 120 86.200 87.100 0.400 8.00% 98.00% 2.00%			Sed+Sieve				Cum %	Cum %
18 91.000 91.400 0.400 7.69% 9.62% 90.38% 35 93.300 95.200 1.900 36.54% 46.15% 53.85% 60 87.200 89.000 1.800 36.54% 46.15% 53.85% 120 86.200 86.900 0.700 13.46% 94.23% 5.77% 230 85.700 85.800 0.100 1.92% 96.15% 3.85% PAN 63.300 63.300 0.000% 96.15% 3.85% More and and another	Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
35 93.300 95.200 1.900 36.54% 46.15% 53.85% 60 87.200 89.000 1.800 34.62% 80.77% 19.23% 120 86.200 85.700 85.800 0.100 13.46% 94.23% 5.77% 230 85.700 63.300 0.000 0.00% 96.15% 3.85% PAN 63.300 63.300 0.000 0.00% 96.15% 3.85% T Mass (Mt)= 5.00 Total %= 96.15% 3.85% 0.00% %Error = 0.00% 96.15% 3.85% 13-Jul-13 T255 50.200 55.400 5.200 55.000 0.200 10 102.800 102.900 0.100 2.00% 2.00% 84.00% 120 86.200 87.100 0.900 14.00% 16.00% 84.00% 120 86.200 85.700 86.100 0.400 8.00% 98.00% 2.00% 120 86.300	10	102.800	102.900	0.100		1.92%	1.92%	98.08%
60 87.200 89.000 1.800 34.62% 80.77% 19.23% 120 86.200 85.900 0.700 13.46% 94.23% 5.77% 230 85.700 85.800 0.100 1.92% 96.15% 3.85% PAN 63.300 0.000 Total %= 96.15% 3.85% %Error = 0.00% 0.00% 96.15% 3.85% %Error = 0.00% 5.200 55.200 5.200 5.200 5.200 5.200 5.200 5.200 0.200 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 14.00% 16.00% 84.00% 120 86.200 87.100 0.900 18.00% 98.00% 12.00% 22.00% 28.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.00% 22.0	18	91.000	91.400	0.400		7.69%	9.62%	90.38%
120 86.200 86.900 0.700 13.46% 94.23% 5.77% 230 85.700 85.800 0.100 1.92% 96.15% 3.85% PAN 63.300 63.300 0.000 0.00% 96.15% 3.85% Mass (Mt)= 5.00 Total ½ 96.15% 3.85% Mass (Mt)= 0.00% 96.15% 3.85% Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (Mi) (g) 13-Jul-13 T255 50.200 55.400 5.200 55.200 50.000 0.200 Sieve # Sieve (g) (g) Sediment (g) 2.00% Ret Pass 10 102.800 102.900 0.100 2.00% 2.00% 98.00% 2.00% 120 86.200 87.100 0.900 18.00% 90.00% 100.00% 28.00% 2.00% 28.00% 2.00% 28.00% 2.00% 28.00% 2.00% 28.00% 2.00% 28.00% 2.00%	35	93.300	95.200	1.900		36.54%	46.15%	53.85%
120 86.200 86.900 0.700 13.46% 94.23% 5.77% 230 85.700 85.800 0.100 1.92% 96.15% 3.85% PAN 63.300 63.300 0.000 0.00% 96.15% 3.85% Mass (Mt)= 5.00 Total %= 96.15% 3.85% Mass (Mt)= 0.00% 96.15% 3.85% Sample Date Sample Beaker (g) B + Sediment (g) Sediment (Mi) (g) 0.200 Sieve # Sieve (g) Sed.5ieve Mass Sediment (g) Cum % Pass 10 102.800 102.900 0.100 2.00% 2.00% 98.00% 35 93.300 94.900 1.600 32.00% 48.00% 52.00% 120 86.200 87.100 0.900 18.00% 90.00% 100.00% 120 86.200 87.100 0.200 40.00% 102.00% 2.00%	60	87.200	89.000	1.800		34.62%	80.77%	19.23%
230 85.700 85.800 0.100 1.92% 96.15% 3.85% PAN 63.300 63.300 0.000 0.00% 96.15% 3.85% T. Mass (Mt)= 5.00 Total %= 96.15% 3.85% %Error = 0.00% 96.15% 3.85% %Error = 0.00% 96.15% 3.85% %Error = 0.00% 96.15% 96.15% Date Sample ID Beaker (g) B + Sediment (g) Sediment (after wet sieved) (g) Sediment (ffer wet sieved) (g) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S5 50.200 55.400 5.200 55.000 0.200 18 91.000 91.700 0.700 14.00% 16.00% 84.00% 120 86.200 87.100 0.900 18.00% 90.00% 100.00% 120 86.200 87.100 0.400 82.00% 22.00% 22.00% 120 86.200 87.100 0.400 82.00% 20.00% 22.00%			86,900					
PAN 63.300 63.300 0.000 Total %= 96.15% 3.85% T. Mass (Mt)= 5.00 Total %= 96.15% 4 4 Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (M) (after wet sieved) (g) Add PAN Sieve # Sieve (g) Ged+Sieve Sed.*Sieve Mass Sediment (g) Weight % Cum % Ret Add PAN 10 102.800 102.900 0.100 2.00% 2.00% 8.00% 32.00% 48.00% 52.00%								
T. Mass (Mt)= 5.00 Total %= 96.15% %Error = 0.00% Sediment (Mi) (g) Sediment (Mi) (g) Sediment (Mi) (g) Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S5 50.200 55.400 5.200 55.000 0.200 Sieve # Sieve (g) (g) Mass Sediment (g) Weight % Cum % Cum % 10 102.800 102.900 0.100 2.00% 28.00% 28.00% 18 91.000 91.700 0.700 32.00% 48.00% 52.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% 13-Jul-13 T256 50.200 55.400 5.200 55.200 5.000 0.200 13-Jul-13 T256 50.200 55.400 5.200 50.000								
%Error = 0.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Add PAN (Mi) (after wet sieved) (g) 13-Jul-13 T2S5 50.200 55.400 5.200 55.200 0.00% Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 2.00% 2.00% 98.00% 18 91.000 91.700 0.700 14.00% 16.00% 84.00% 230 85.700 88.400 1.200 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 120 86.200 87.100 0.400 8.00% 12.00% 28.00% 2.00% 120 86.200 87.100 0.400 8.00% 98.00% 2.00% 120 86.100 0.400 8.00% 98.00% 2.00% 2.00% 13-Jul-					Total %-		50.1570	3.0370
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after (Mi) (g) Sediment wet sieved) (g) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S5 50.200 55.400 5.200 55.200 50.00 0.200 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 2.00% 2.00% 98.00% 35 93.300 94.900 1.600 32.00% 48.00% 52.00% 120 86.200 87.100 0.900 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 98.00% 2.00% 120 86.200 87.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% Verror = -1.92% Mass Sediment (Mi) (g) Sediment (Mi) (g) (Mi - Mf) (g) (g) 13-Jul-13 T2S6		•				30.1370		
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sievel) (g) (Mi) (after wet sievel) (g) (Mi)-(After wet sievel) (g) 13-Jul-13 T2S5 50.200 55.400 5.200 50.00 0.200 Sieve # Sieve (g) Sedi-Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 2.00% 2.00% 84.00% 52.00% 35 93.300 94.900 1.600 32.00% 48.00% 52.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% 120 86.200 87.100 0.200 4.00% 102.00% -2.00% PAN 63.300 63.200 5.10 Total %= 102.00% -2.00% 13-Jul-13 T256 50.200 55.400 5.200 55.200 5.000 0.200			70E1101 =	0.00%				
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sievel) (g) (Mi) (after wet sievel) (g) (Mi)-(After wet sievel) (g) 13-Jul-13 T2S5 50.200 55.400 5.200 50.00 0.200 Sieve # Sieve (g) Sedi-Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 2.00% 2.00% 84.00% 52.00% 35 93.300 94.900 1.600 32.00% 48.00% 52.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% 120 86.200 87.100 0.200 4.00% 102.00% -2.00% PAN 63.300 63.200 5.10 Total %= 102.00% -2.00% 13-Jul-13 T256 50.200 55.400 5.200 55.200 5.000 0.200								
ID ID IO IO <thio< th=""> IO IO IO<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td>Codimont</td><td>Add PAN</td></thio<>							Codimont	Add PAN
13-Jul-13 T2S5 50.200 55.400 5.200 55.200 5.000 0.200 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Cum % Pass 10 102.800 102.900 0.100 2.00% 2.00% 98.00% 18 91.000 91.700 0.700 32.00% 48.00% 52.00% 60 87.200 88.400 1.200 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% Weight % Weight % Weight % Sediment (Mi) (g) 102.00% -2.00% 13-Jul-13 T2S6 50.200 55.400 5.200 55.000 0.200 Sieve (g) (g) Sediment (g) Weight % Ret Pass	Data	Sample	Rookor (a)	B + Sediment	Sediment	~		
Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Pass 10 102.800 102.900 0.100 2.00% 2.00% 98.00% 18 91.000 91.700 0.700 14.00% 16.00% 84.00% 35 93.300 94.900 1.600 32.00% 48.00% 52.00% 60 87.200 88.400 1.200 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 48.00% 102.00% -2.00% Mass (Mi) = 5.10 Total %= 102.00% -2.00% Mass Sediment (g) B + Dry Sediment (Mi) (g) Kift Mift Midd PAN (Mi-Mf) 13-Jul-13 TZS6 50.200 55.400 5.200 50.00 0.200	Date		Beaker (g)			Sediment (after	(Mf) (after	(Mi-Mf)
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 102.900 0.100 2.00% 2.00% 98.00% 18 91.000 91.700 0.700 14.00% 16.00% 84.00% 35 93.300 94.900 1.600 32.00% 48.00% 52.00% 60 87.200 88.400 1.200 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% T Mass (Mt)= 5.10 Total %e 102.00% -2.00% Date Sample Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) (Mf) (after wet sieved) (g) (Wf) (Mf) (after wet sieved) (g) Pass 10 102.800 103.200 55.400		ID		(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf) (g)
10 102.800 102.900 0.100 2.00% 2.00% 98.00% 18 91.000 91.700 0.700 14.00% 16.00% 84.00% 35 93.300 94.900 1.600 32.00% 48.00% 52.00% 60 87.200 88.400 1.200 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% -2.00% Ja-Jul-13 T2S6 50.200 55.400 5.200 55.200 0.200 0.200 Sieve g Sed+Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00%		ID	50.200	(g) 55.400	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000	(Mi-Mf) (g) 0.200
18 91.000 91.700 0.700 14.00% 16.00% 84.00% 35 93.300 94.900 1.600 32.00% 48.00% 52.00% 60 87.200 88.400 1.200 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% Mass Sediment (Mi) (g) Sediment (After wet sieved) (g) Mdd PAN (Mi-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 5.000 0.200 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 80.00% 92.00% 18 <td>13-Jul-13</td> <td>ID T2S5</td> <td>50.200 Sed+Sieve</td> <td>(g) 55.400 Mass</td> <td>(Mi) (g)</td> <td>Sediment (after wet sieved) (g) 55.200</td> <td>(Mf) (after wet sieving) 5.000 Cum %</td> <td>(Mi-Mf) (g) 0.200 Cum %</td>	13-Jul-13	ID T2S5	50.200 Sed+Sieve	(g) 55.400 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 55.200	(Mf) (after wet sieving) 5.000 Cum %	(Mi-Mf) (g) 0.200 Cum %
35 93.300 94.900 1.600 32.00% 48.00% 52.00% 60 87.200 88.400 1.200 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% 2.00% T. Mass (Mt)= 5.10 Total %= 102.00% 2.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieving) (Mi)-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.000 0.200 Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% <td>13-Jul-13 Sieve #</td> <td>ID T2S5 Sieve (g)</td> <td>50.200 Sed+Sieve (g)</td> <td>(g) 55.400 Mass Sediment (g)</td> <td>(Mi) (g)</td> <td>Sediment (after wet sieved) (g) 55.200 Weight %</td> <td>(Mf) (after wet sieving) 5.000 Cum % Ret</td> <td>(Mi-Mf) (g) 0.200 Cum % Pass</td>	13-Jul-13 Sieve #	ID T2S5 Sieve (g)	50.200 Sed+Sieve (g)	(g) 55.400 Mass Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret	(Mi-Mf) (g) 0.200 Cum % Pass
60 87.200 88.400 1.200 24.00% 72.00% 28.00% 120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% %Error = -1.92% -2.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) Add PAN (Mi (after wet sieving) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 50.000 0.200 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass Pass 10 102.800 103.200 0.400 1.000 22.00% 40.00% 60.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.	13-Jul-13 Sieve # 10	ID T2S5 Sieve (g) 102.800	50.200 Sed+Sieve (g) 102.900	(g) 55.400 Mass Sediment (g) 0.100	(Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00%
120 86.200 87.100 0.900 18.00% 90.00% 10.00% 230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% Mass (Mt)= 5.10 Total %= 102.00% -2.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (after wet sieved) (g) Ket reiseving) (Mi) (g) 13-Jul-13 T256 50.200 55.400 5.200 55.200 50.00 0.200 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% <td>13-Jul-13 Sieve # 10 18</td> <td>ID T2S5 Sieve (g) 102.800 91.000</td> <td>50.200 Sed+Sieve (g) 102.900 91.700</td> <td>(g) 55.400 Mass Sediment (g) 0.100 0.700</td> <td>(Mi) (g)</td> <td>Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00%</td> <td>(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00%</td> <td>(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00%</td>	13-Jul-13 Sieve # 10 18	ID T2S5 Sieve (g) 102.800 91.000	50.200 Sed+Sieve (g) 102.900 91.700	(g) 55.400 Mass Sediment (g) 0.100 0.700	(Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00%
230 85.700 86.100 0.400 8.00% 98.00% 2.00% PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieving) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 50.00 0.200 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 1.000 8.00% 82.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 0.20	13-Jul-13 Sieve # 10 18	ID T2S5 Sieve (g) 102.800 91.000 93.300	50.200 Sed+Sieve (g) 102.900 91.700	(g) 55.400 Mass Sediment (g) 0.100 0.700	(Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00%
PAN 63.300 63.300 0.200 4.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% WError = -1.92% Total %= 102.00% Add PAN Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieving) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 5.000 0.200 Sieve # Sieve (g) (g) Mass Sediment (g) Mess Netwer Sediment (Mi) Mess Netwer Cum % Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300	13-Jul-13 Sieve # 10 18 35 60	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200	(Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00%
T. Mass (Mt)= 5.10 Total %= 102.00% %Error = -1.92% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieving) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 0.200 Sieve # Sieve (g) (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 0.200 4.00% 10.00% 0.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200	(Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00%
%Error -1.92% Beaker (g) B + Sediment (g) B + Dry Sediment (after wet sieved) (g) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 5.000 0.200 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900	(Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 10.00%
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieving) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 5.000 0.200 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400	(Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 10.00% 2.00%
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieving) Add PAN (Mi-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 5.000 0.200 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 8.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 10.00% 2.00%
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Min (after wet sieval) (g) (Mi) (after wet sieving) (Mi-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 0.200 Sieve # Sieve (g) Gamma (g) Mass Sediment (g) Meight % Cum % Ret Cum % Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.200 4.00% 100.00% 0.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)=	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 8.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 10.00% 2.00%
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sieved) (g) (Mi) (after wet sieving) (Mi)-Mf) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 5.000 0.200 Sieve # Sieve (g) (g) Mass Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)=	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 8.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 10.00% 2.00%
ID (g) ((MI) (g) wet sieved) (g) wet sieving) (g) 13-Jul-13 T2S6 50.200 55.400 5.200 55.200 0.200 Sieve # Sieve (g) (g) Mass Cum % Cum % Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)=	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92%	(Mi) (g) 5.200 Total %=	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 8.00% 4.00% 102.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00% 102.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 10.00% 2.00% -2.00%
13-Jul-13 T2S6 50.200 55.400 5.200 55.200 5.000 0.200 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T T Sample	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error =	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment	(Mi) (g) 5.200 Total %= Sediment	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 8.00% 4.00% 102.00% B + Dry	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00% 102.00% Sediment	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 10.00% 2.00% -2.00% Add PAN
Sieve # Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Cum % Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T T Sample	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error =	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment	(Mi) (g) 5.200 Total %= Sediment	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 102.00% B + Dry Sediment (after	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00% 102.00% Sediment (Mf) (after	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 10.00% 2.00% -2.00% Add PAN (Mi-Mf)
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g)	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g)	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00% 102.00% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 2.00% -2.00% -2.00% Add PAN (Mi-Mf) (g)
10 102.800 103.200 0.400 8.00% 8.00% 92.00% 18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.200	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00% 102.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.000	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 2.00% 2.00% -2.00% 2.00% Add PAN (Mi-Mf) (g) 0.200
18 91.000 91.500 0.500 10.00% 18.00% 82.00% 35 93.300 94.400 1.100 22.00% 40.00% 60.00% 60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00% T. Mass (Mt)= 5.00 Total %= 100.00% 100.00% 100.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID T2S6	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.200 Sed+Sieve	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 90.00% 90.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum %	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 28.00% 2.00% -2.00% -2.00% -2.00% Mi-Mf) (g) 0.200 Cum %
35 93.300 94.400 1.100 22.00% 40.00% 60.00% 60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00% T. Mass (Mt)= 5.00 Total %= 100.00% 4.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve #	ID T2S5 Sieve (g) 102.800 91.000 93.300 86.200 85.700 63.300 T Sample ID T2S6 Sieve (g)	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.200 Sed+Sieve (g)	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g)	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 8.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 72.00% 90.00% 98.00% 102.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 28.00% 2.00% -2.00% -2.00% -2.00% Mi-Mf) (g) 0.200 Cum % Pass
60 87.200 88.700 1.500 30.00% 70.00% 30.00% 120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00% T. Mass (Mt)= 5.00 Total %= 100.00% 4.00% 100.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID T2S6 Sieve (g) 102.800	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.200 Sed+Sieve (g) 103.200	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.400	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight % 8.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 90.00% 90.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 8.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 28.00% 2.00% -2.00% -2.00% -2.00% (Mi-Mf) (g) 0.200 Cum % Pass 92.00%
120 86.200 87.000 0.800 16.00% 86.00% 14.00% 230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00% T. Mass (Mt)= 5.00 Total %= 100.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T2S6 Sample ID T2S6 Sieve (g) 102.800 91.000	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.200 Sed+Sieve (g) 103.200 91.500	(g) 55.400 Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.400 0.500	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight % 8.00% 10.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 90.00% 98.00% 102.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 8.00% 18.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 2.00% 2.00% -2.00% 4.00% (Mi-Mf) (g) 0.200 Cum % Pass 92.00% 82.00%
230 85.700 86.200 0.500 10.00% 96.00% 4.00% PAN 63.300 63.300 0.200 4.00% 100.00% 0.00% T. Mass (Mt)= 5.00 Total %= 100.00% 4.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T2S6 Sample ID T2S6 Sieve (g) 102.800 91.000 93.300	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.200 Sed+Sieve (g) 103.200 91.500 94.400	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.400 0.500 1.100	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight % 8.00% 10.00% 22.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 90.00% 90.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 8.00% 18.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 28.00% 2.00% 2.00% -2.00% Mi-Mf) (g) 0.200 Cum % Pass 92.00% 82.00%
PAN 63.300 63.300 0.200 4.00% 100.00% 0.00% T. Mass (Mt)= 5.00 Total %= 100.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35 60	ID T2S5 Sieve (g) 91.000 93.300 87.200 86.200 85.700 63.300 T2S6 Sample ID T2S6 Sieve (g) 102.800 91.000 93.300 87.200	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.200 Sed+Sieve (g) 103.200 91.500 94.400 88.700	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.400 0.500 1.100 1.500	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight % 8.00% 10.00% 22.00% 30.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 90.00% 90.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 8.00% 18.00% 18.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 28.00% 2.00% -2.00% -2.00% 4.00% (Mi-Mf) (g) 0.200 Cum % Pass 92.00% 82.00% 60.00%
T. Mass (Mt)= 5.00 Total %= 100.00%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35 60 120	ID T2S5 Sieve (g) 91.000 93.300 87.200 86.200 85.700 63.300 T2S6 Sample ID T2S6 Sieve (g) 102.800 91.000 93.300 87.200 86.200	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.200 Sed+Sieve (g) 103.200 91.500 94.400 88.700 87.000	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.400 0.500 1.100 1.500 0.800	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 32.00% 24.00% 18.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight % 8.00% 10.00% 22.00% 30.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 48.00% 90.00% 90.00% 98.00% 102.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 8.00% 18.00% 40.00% 70.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 52.00% 28.00% 28.00% 2.00% -2.00% -2.00% Cum % Pass 92.00% 82.00% 82.00% 30.00% 14.00%
	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35 60 120 230	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T2S6 Sample ID T2S6 Sieve (g) 102.800 91.000 93.300 87.200 85.700	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = %Error = Sed+Sieve (g) 103.200 91.500 94.400 88.700 88.700 86.200	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.400 0.500 1.100 1.500 0.800 0.500	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 24.00% 8.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight % 8.00% 10.00% 22.00% 30.00% 16.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 90.00% 90.00% 98.00% 102.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 8.00% 18.00% 18.00% 96.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 28.00% 10.00% 2.00% -2.00% -2.00% 0.200 Cum % Pass 92.00% 82.00% 60.00% 30.00% 14.00%
%Error = -3.85%	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35 60 120 230	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 63.300 T2S6 Sample ID T2S6 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = %Error = Sed+Sieve (g) 103.200 91.500 94.400 88.700 88.700 86.200 63.300	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.400 0.500 1.100 1.500 0.800 0.500 0.200	(Mi) (g) 5.200 Total %= Sediment (Mi) (g) 5.200	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 24.00% 8.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight % 8.00% 10.00% 22.00% 30.00% 16.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 90.00% 90.00% 98.00% 102.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 8.00% 18.00% 18.00% 96.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 28.00% 10.00% 2.00% -2.00% -2.00% 0.200 Cum % Pass 92.00% 82.00% 60.00% 30.00% 14.00%
	13-Jul-13 Sieve # 10 18 35 60 120 230 PAN Date 13-Jul-13 Sieve # 10 18 35 60 120 230	ID T2S5 Sieve (g) 102.800 91.000 93.300 87.200 86.200 63.300 T2S6 Sample ID T2S6 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	50.200 Sed+Sieve (g) 102.900 91.700 94.900 88.400 87.100 86.100 63.300 Mass (Mt)= %Error = %Error = Sed+Sieve (g) 103.200 91.500 94.400 88.700 88.700 86.200 63.300	(g) Mass Sediment (g) 0.100 0.700 1.600 1.200 0.900 0.400 0.200 5.10 -1.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.400 0.500 1.100 1.500 0.800 0.500 0.200	(Mi) (g) 5.200 Total %= Sediment (Mi) (g) 5.200	Sediment (after wet sieved) (g) 55.200 Weight % 2.00% 14.00% 24.00% 8.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.200 Weight % 8.00% 10.00% 22.00% 30.00% 16.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 2.00% 16.00% 90.00% 90.00% 98.00% 102.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 8.00% 18.00% 18.00% 96.00%	(Mi-Mf) (g) 0.200 Cum % Pass 98.00% 84.00% 28.00% 10.00% 2.00% -2.00% -2.00% 0.200 Cum % Pass 92.00% 82.00% 60.00% 30.00% 14.00%

			-				
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(3)	()(3)	wet sieved) (g)	wet sieving)	(g)
	T2S7	50.100	55.300	5.200	55.100	5.000	0.200
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.900	0.100		2.00%	2.00%	98.00%
18	91.000	91.200	0.200		4.00%	6.00%	94.00%
35	93.300	94.000	0.700		14.00%	20.00%	80.00%
60							
	87.200	89.000	1.800		36.00%	56.00%	44.00%
120	86.200	88.300	2.100		42.00%	98.00%	2.00%
230	85.700	86.000	0.300		6.00%	104.00%	-4.00%
PAN	63.300	63.300	0.200		4.00%	108.00%	-8.00%
	Т	. Mass (Mt)=	5.40	Total %=	108.00%		
		%Error =	3.85%				
	. .				B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	,	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
	T2S8	50.700	55.700	5.000	55.600	4.900	0.100
Sieve #	Sieve (g)	Sed+Sieve	Mass Sediment (g)		Weight %	Cum % Ret	Cum % Pass
	,	(g)			-		
10	102.800	102.900	0.100		1.96%	1.96%	98.04%
18	91.000	91.300	0.300		5.88%	7.84%	92.16%
35	93.300	94.600	1.300		25.49%	33.33%	66.67%
60	87.200	89.300	2.100		41.18%	74.51%	25.49%
120	86.200	87.100	0.900		17.65%	92.16%	7.84%
230	85.700	85.900	0.200		3.92%	96.08%	3.92%
PAN	63.300	63.300	0.100		1.96%	98.04%	1.96%
	т	. Mass (Mt)=	5.00	Total %=	98.04%		
		%Error =	0.00%				
		/0	0.0070				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
Date	ID	Dealter (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	
16 101 12	T250	40,400	E4 E00	E 100	,,	0,	(g)
15-Jul-13	T2S9	49.400	54.500	5.100	54.200	4.800	0.300
		Sed+Sieve	Mass	5.100	54.200	4.800 Cum %	0.300 Cum %
15-Jul-13 Sieve #	T2S9 Sieve (g)			5.100	,,	4.800	0.300
		Sed+Sieve	Mass	5.100	54.200	4.800 Cum %	0.300 Cum %
Sieve #	Sieve (g)	Sed+Sieve (g)	Mass Sediment (g)	5.100	54.200 Weight %	4.800 Cum % Ret	0.300 Cum % Pass
Sieve # 10	Sieve (g) 102.800	Sed+Sieve (g) 102.900	Mass Sediment (g) 0.100	5.100	54.200 Weight % 2.00%	4.800 Cum % Ret 2.00%	0.300 Cum % Pass 98.00%
Sieve # 10 18	Sieve (g) 102.800 91.000	Sed+Sieve (g) 102.900 91.400	Mass Sediment (g) 0.100 0.400	5.100	54.200 Weight % 2.00% 8.00%	4.800 Cum % Ret 2.00% 10.00%	0.300 Cum % Pass 98.00% 90.00%
Sieve # 10 18 35	Sieve (g) 102.800 91.000 93.300	Sed+Sieve (g) 102.900 91.400 94.200	Mass Sediment (g) 0.100 0.400 0.900	5.100	54.200 Weight % 2.00% 8.00% 18.00%	4.800 Cum % Ret 2.00% 10.00% 28.00%	0.300 Cum % Pass 98.00% 90.00% 72.00%
Sieve # 10 18 35 60	Sieve (g) 102.800 91.000 93.300 87.200	Sed+Sieve (g) 102.900 91.400 94.200 89.000	Mass Sediment (g) 0.100 0.400 0.900 1.800	5.100	54.200 Weight % 2.00% 8.00% 18.00% 36.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00%
Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.300 87.200 86.200	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000	5.100	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400	5.100 Total %=	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 8.00%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)=	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90		54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 8.00%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300		54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 8.00%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)=	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90		54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 8.00% 2.00%
Sieve # 10 18 35 60 120 230 PAN	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error =	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90		54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 8.00% 2.00% Add PAN
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)=	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92%	Total %=	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 2.00% 2.00% Add PAN (Mi-Mf)
Sieve # 10 18 35 60 120 230 PAN Date	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g)	Mass Sediment (g) 0.100 0.400 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g)	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g)	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving)	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 8.00% 2.00% Add PAN (Mi-Mf) (g)
Sieve # 10 18 35 60 120 230 PAN	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment	Total %=	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 2.00% 2.00% Add PAN (Mi-Mf) (g) 0.000
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID T2S10	Sed+Sieve (g) 102.900 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve	Mass Sediment (g) 0.100 0.400 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum %	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 8.00% 2.00% Add PAN (Mi-Mf) (g) 0.000 Cum %
Sieve # 10 18 35 60 120 230 PAN Date	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID T2S10 Sieve (g)	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g)	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight %	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 2.00% 2.00% Add PAN (Mi-Mf) (g) 0.000
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID T2S10	Sed+Sieve (g) 102.900 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve	Mass Sediment (g) 0.100 0.400 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum %	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 8.00% 2.00% Add PAN (Mi-Mf) (g) 0.000 Cum %
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve #	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID T2S10 Sieve (g)	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g)	Mass Sediment (g) 0.100 0.400 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g)	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight %	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 2.00% 2.00% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve # 10	Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300 T Sample ID T2S10 Sieve (g) 102.800	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800	Mass Sediment (g) 0.100 0.400 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.000	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight % 0.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 16.00% 8.00% 2.00% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00%
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve # 10 18	Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T Sample ID T2S10 Sieve (g) 102.800 91.000	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Ærror = %Ærror = 50.400 Sed+Sieve (g) 102.800 91.100	Mass Sediment (g) 0.100 0.400 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.000 0.100	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight % 0.00% 2.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 2.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 8.00% 2.00% 2.00% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 98.00%
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve # 10 18 35 60	Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T Sample ID T2S10 Sieve (g) 102.800 91.000 93.300 87.200	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.100 93.600 88.100	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.000 0.100 0.300 0.900	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight % 0.00% 2.00% 6.00% 18.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 2.00% 8.00% 26.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 8.00% 2.00% Cum % Pass 100.00% 98.00% 92.00% 74.00%
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.300 87.200 85.700 63.300 T Sample ID T2S10 Sieve (g) 102.800 91.000 93.300 87.200	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.100 93.600 88.100 88.300	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.000 0.100 0.300 0.900 2.100	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight % 0.00% 2.00% 6.00% 18.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 2.00% 8.00% 26.00% 68.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 8.00% 2.00% Cum % Pass 100.00% 98.00% 92.00% 74.00% 32.00%
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 63.300 T T Sample ID T2S10 Sieve (g) 102.800 91.000 93.300 87.200 86.200	Sed+Sieve (g) 102.900 91.400 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.100 93.600 88.100 88.300 87.200	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.000 0.100 0.300 0.900 2.100 1.500	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight % 0.00% 2.00% 6.00% 18.00% 42.00% 30.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 2.00% 8.00% 26.00% 68.00% 98.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 2.00% 2.00% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 98.00% 92.00% 74.00% 32.00%
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.300 87.200 86.200 63.300 T T Sample ID T2S10 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.100 93.600 88.100 88.300 87.200 63.300	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.000 0.100 0.300 0.900 2.100 1.500 0.000	Total %= Sediment (Mi) (g) 5.000	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight % 0.00% 2.00% 6.00% 18.00% 42.00% 30.00% 0.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 2.00% 8.00% 26.00% 68.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 8.00% 2.00% Cum % Pass 100.00% 98.00% 92.00% 74.00% 32.00%
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 63.300 T T Sample ID T2S10 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.100 93.600 88.100 88.300 88.300 87.200 63.300	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.000 0.100 0.300 0.900 2.100 1.500 0.000 4.90	Total %= Sediment (Mi) (g)	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight % 0.00% 2.00% 6.00% 18.00% 42.00% 30.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 2.00% 8.00% 26.00% 68.00% 98.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 2.00% 2.00% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 98.00% 92.00% 74.00% 32.00%
Sieve # 10 18 35 60 120 230 PAN Date 15-Jul-13 Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.300 87.200 86.200 63.300 T T Sample ID T2S10 Sieve (g) 102.800 91.000 93.300 87.200 86.200 85.700 63.300	Sed+Sieve (g) 102.900 94.200 89.000 87.200 86.100 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.100 93.600 88.100 88.300 87.200 63.300	Mass Sediment (g) 0.100 0.400 0.900 1.800 1.000 0.400 0.300 4.90 -3.92% B + Sediment (g) 55.400 Mass Sediment (g) 0.000 0.100 0.300 0.900 2.100 1.500 0.000	Total %= Sediment (Mi) (g) 5.000	54.200 Weight % 2.00% 8.00% 18.00% 36.00% 20.00% 8.00% 6.00% 98.00% B + Dry Sediment (after wet sieved) (g) 55.400 Weight % 0.00% 2.00% 6.00% 18.00% 42.00% 30.00% 0.00%	4.800 Cum % Ret 2.00% 10.00% 28.00% 64.00% 84.00% 92.00% 98.00% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 2.00% 8.00% 26.00% 68.00% 98.00%	0.300 Cum % Pass 98.00% 90.00% 72.00% 36.00% 2.00% 2.00% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 100.00% 98.00% 92.00% 74.00% 32.00%

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	в + Sediment (g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(9)	(1011) (g)	wet sieved) (g)	wet sieving)	(g)
	T3S1	50.400	55.600	5.200	55.400	5.000	0.200
0: #	O (())	Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.900	0.100		1.92%	1.92%	98.08%
18	91.000	91.500	0.500		9.62%	11.54%	88.46%
35	93.400	94.800	1.400		26.92%	38.46%	61.54%
60	87.100	88.800	1.700		32.69%	71.15%	28.85%
120	86.200	87.000	0.800		15.38%	86.54%	13.46%
230	85.700	86.100	0.400		7.69%	94.23%	5.77%
PAN	63.300	63.300	0.200		3.85%	98.08%	1.92%
	т	. Mass (Mt)=	5.10	Total %=	98.08%		
		%Error =	-1.92%				
					D . Dr.	O a alliana a sa t	Add PAN
Data	Sample	Decker (a)	B + Sediment	Sediment	B + Dry	Sediment	
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
	T3S2	49.600	54.600	5.000	54.500	4.900	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
18	91.100	91.300	0.200		5.00%	5.00%	95.00%
35	93.400	94.500	1.100		27.50%	32.50%	67.50%
60	87.100	89.000	1.900		47.50%	80.00%	20.00%
120	86.200	87.300	1.100		27.50%	107.50%	-7.50%
230	85.700	86.200	0.500		12.50%	120.00%	-20.00%
PAN	63.300	63.300	0.100		2.50%	122.50%	-22.50%
FAN				T () 0(122.30/8	-22.30/8
		. Mass (Mt)=	4.90	Total %=	122.50%		
		%Error =	-2.00%				
	. .				B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
	T3S3	50.700	55.700	5.000	55.700	5.000	0.000
	1333			5.000	33.700		
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.900	0.100		3.03%	2 0 2 0/	
					3.03%	3.03%	96.97%
18	91.100	91.500	0.400		12.12%	3.03%	96.97% 84.85%
_		91.500	0.400		12.12%	15.15%	84.85%
35	93.400	91.500 94.900	0.400 1.500		12.12% 45.45%	15.15% 60.61%	84.85% 39.39%
35 60	93.400 87.100	91.500 94.900 88.800	0.400 1.500 1.700		12.12% 45.45% 51.52%	15.15% 60.61% 112.12%	84.85% 39.39% -12.12%
35 60 120	93.400 87.100 86.200	91.500 94.900 88.800 87.300	0.400 1.500 1.700 1.100		12.12% 45.45% 51.52% 33.33%	15.15% 60.61% 112.12% 145.45%	84.85% 39.39% -12.12% -45.45%
35 60 120 230	93.400 87.100 86.200 85.700	91.500 94.900 88.800 87.300 85.900	0.400 1.500 1.700 1.100 0.200		12.12% 45.45% 51.52% 33.33% 6.06%	15.15% 60.61% 112.12% 145.45% 151.52%	84.85% 39.39% -12.12% -45.45% -51.52%
35 60 120	93.400 87.100 86.200	91.500 94.900 88.800 87.300	0.400 1.500 1.700 1.100		12.12% 45.45% 51.52% 33.33%	15.15% 60.61% 112.12% 145.45%	84.85% 39.39% -12.12% -45.45%
35 60 120 230	93.400 87.100 86.200 85.700 63.300	91.500 94.900 88.800 87.300 85.900	0.400 1.500 1.700 1.100 0.200	Total %=	12.12% 45.45% 51.52% 33.33% 6.06%	15.15% 60.61% 112.12% 145.45% 151.52%	84.85% 39.39% -12.12% -45.45% -51.52%
35 60 120 230	93.400 87.100 86.200 85.700 63.300	91.500 94.900 88.800 87.300 85.900 63.300 • Mass (Mt)=	0.400 1.500 1.700 1.100 0.200 0.000 5.00	Total %=	12.12% 45.45% 51.52% 33.33% 6.06% 0.00%	15.15% 60.61% 112.12% 145.45% 151.52%	84.85% 39.39% -12.12% -45.45% -51.52%
35 60 120 230	93.400 87.100 86.200 85.700 63.300	91.500 94.900 88.800 87.300 85.900 63.300	0.400 1.500 1.700 1.100 0.200 0.000	Total %=	12.12% 45.45% 51.52% 33.33% 6.06% 0.00%	15.15% 60.61% 112.12% 145.45% 151.52%	84.85% 39.39% -12.12% -45.45% -51.52%
35 60 120 230	93.400 87.100 86.200 85.700 63.300	91.500 94.900 88.800 87.300 85.900 63.300 • Mass (Mt)=	0.400 1.500 1.700 1.100 0.200 0.000 5.00	Total %=	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52%	15.15% 60.61% 112.12% 145.45% 151.52% 151.52%	84.85% 39.39% -12.12% -45.45% -51.52% -51.52%
35 60 120 230 PAN	93.400 87.100 86.200 85.700 63.300	91.500 94.900 88.800 87.300 85.900 63.300 Mass (Mt)= %Error =	0.400 1.500 1.700 1.100 0.200 0.000 5.00	Total %=	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry	15.15% 60.61% 112.12% 145.45% 151.52% Sediment	84.85% 39.39% -12.12% -45.45% -51.52% -51.52% Add PAN
35 60 120 230	93.400 87.100 86.200 85.700 63.300 T	91.500 94.900 88.800 87.300 85.900 63.300 • Mass (Mt)=	0.400 1.500 1.700 0.200 0.000 5.00 0.00%		12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after	15.15% 60.61% 112.12% 145.45% 151.52% 151.52% Sediment (Mf) (after	84.85% 39.39% -12.12% -45.45% -51.52% Add PAN (Mi-Mf)
35 60 120 230 PAN	93.400 87.100 86.200 85.700 63.300 T Sample ID	91.500 94.900 88.800 87.300 85.900 63.300 Mass (Mt)= %Error = Beaker (g)	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g)	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g)	15.15% 60.61% 112.12% 145.45% 151.52% 151.52% Sediment (Mf) (after wet sieving)	84.85% 39.39% -12.12% -45.45% -51.52% -51.52% Add PAN (Mi-Mf) (g)
35 60 120 230 PAN	93.400 87.100 86.200 85.700 63.300 T Sample	91.500 94.900 88.800 87.300 85.900 63.300 Mass (Mt)= %Error =	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment	Sediment	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after	15.15% 60.61% 112.12% 145.45% 151.52% 151.52% Sediment (Mf) (after	84.85% 39.39% -12.12% -45.45% -51.52% Add PAN (Mi-Mf)
35 60 120 230 PAN	93.400 87.100 86.200 85.700 63.300 T Sample ID	91.500 94.900 88.800 87.300 85.900 63.300 Mass (Mt)= %Error = Beaker (g)	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g)	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g)	15.15% 60.61% 112.12% 145.45% 151.52% 151.52% Sediment (Mf) (after wet sieving)	84.85% 39.39% -12.12% -45.45% -51.52% -51.52% Add PAN (Mi-Mf) (g)
35 60 120 230 PAN	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4	91.500 94.900 88.800 87.300 63.300 Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800	15.15% 60.61% 112.12% 145.45% 151.52% Sediment (Mf) (after wet sieving) 5.300	84.85% 39.39% -12.12% -45.45% -51.52% Add PAN (Mi-Mf) (g) 0.000
35 60 120 230 PAN Date	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g)	91.500 94.900 88.800 87.300 63.300 Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g)	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g)	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight %	15.15% 60.61% 112.12% 145.45% 151.52% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret	84.85% 39.39% -12.12% -45.45% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass
35 60 120 230 PAN Date Sieve # 10	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800	91.500 94.900 88.800 87.300 63.300 Mass (Mt)= %Error = %Error = 50.500 Sed+Sieve (g) 102.900	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92%	15.15% 60.61% 112.12% 145.45% 151.52% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92%	84.85% 39.39% -12.12% -45.45% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08%
35 60 120 230 PAN Date Sieve # 10 18	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800 91.100	91.500 94.900 88.800 87.300 63.300 • Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g) 102.900 91.400	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100 0.300	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92% 5.77%	15.15% 60.61% 112.12% 145.45% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92% 7.69%	84.85% 39.39% -12.12% -51.52% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 92.31%
35 60 120 230 PAN Date Sieve # 10	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800	91.500 94.900 88.800 87.300 63.300 Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g) 102.900 91.400 94.800	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100 0.300 1.400	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92% 5.77% 26.92%	15.15% 60.61% 112.12% 145.45% 151.52% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92%	84.85% 39.39% -12.12% -45.45% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08%
35 60 120 230 PAN Date Sieve # 10 18	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800 91.100	91.500 94.900 88.800 87.300 63.300 • Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g) 102.900 91.400	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100 0.300	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92% 5.77%	15.15% 60.61% 112.12% 145.45% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92% 7.69%	84.85% 39.39% -12.12% -51.52% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 92.31%
35 60 120 230 PAN Date Sieve # 10 18 35	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800 91.100 93.400	91.500 94.900 88.800 87.300 63.300 Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g) 102.900 91.400 94.800	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100 0.300 1.400	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92% 5.77% 26.92%	15.15% 60.61% 112.12% 145.45% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92% 7.69% 34.62%	84.85% 39.39% -12.12% -51.52% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 92.31% 65.38%
35 60 120 230 PAN Date Sieve # 10 18 35 60 120	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800 91.100 93.400 87.100 86.200	91.500 94.900 88.800 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g) 102.900 91.400 94.800 89.500	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100 0.300 1.400 2.400 0.700	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92% 5.77% 26.92% 46.15% 13.46%	15.15% 60.61% 112.12% 145.45% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92% 7.69% 34.62% 80.77% 94.23%	84.85% 39.39% -12.12% -51.52% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 92.31% 65.38% 19.23% 5.77%
35 60 120 230 PAN Date Sieve # 10 18 35 60 120 230	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800 91.100 93.400 87.100 86.200 85.700	91.500 94.900 88.800 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g) 102.900 91.400 94.800 89.500 86.900	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100 0.300 1.400 2.400 0.700 0.300	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92% 5.77% 26.92% 46.15% 13.46% 5.77%	15.15% 60.61% 112.12% 145.45% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92% 7.69% 34.62% 80.77% 94.23% 100.00%	84.85% 39.39% -12.12% -51.52% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 92.31% 65.38% 19.23% 5.77% 0.00%
35 60 120 230 PAN Date Sieve # 10 18 35 60 120	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800 91.100 93.400 87.100 86.200 85.700 63.300	91.500 94.900 88.800 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g) 102.900 91.400 94.800 89.500 86.900 86.000 63.300	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100 0.300 1.400 2.400 0.700 0.300 0.300 0.000	Sediment (Mi) (g) 5.300	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92% 5.77% 26.92% 46.15% 13.46% 5.77% 0.00%	15.15% 60.61% 112.12% 145.45% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92% 7.69% 34.62% 80.77% 94.23%	84.85% 39.39% -12.12% -51.52% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 92.31% 65.38% 19.23% 5.77%
35 60 120 230 PAN Date Sieve # 10 18 35 60 120 230	93.400 87.100 86.200 85.700 63.300 T Sample ID T3S4 Sieve (g) 102.800 91.100 93.400 87.100 86.200 85.700 63.300	91.500 94.900 88.800 85.900 63.300 Mass (Mt)= %Error = Beaker (g) 50.500 Sed+Sieve (g) 102.900 91.400 94.800 89.500 86.900	0.400 1.500 1.700 0.200 0.000 5.00 0.00% B + Sediment (g) 55.800 Mass Sediment (g) 0.100 0.300 1.400 2.400 0.700 0.300	Sediment (Mi) (g)	12.12% 45.45% 51.52% 33.33% 6.06% 0.00% 151.52% B + Dry Sediment (after wet sieved) (g) 55.800 Weight % 1.92% 5.77% 26.92% 46.15% 13.46% 5.77%	15.15% 60.61% 112.12% 145.45% 151.52% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 1.92% 7.69% 34.62% 80.77% 94.23% 100.00%	84.85% 39.39% -12.12% -51.52% -51.52% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 92.31% 65.38% 19.23% 5.77% 0.00%

Date Sieve # \$ 10 18 35 60 120 230 PAN	Sample ID T3S8 Sieve (g) 102.800 91.100 93.400 87.100 86.200 85.600 63.300	85.800 63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.300 94.600 89.700 87.100 85.800 63.300 Mass (Mt)=	0.100 0.100 5.10 0.00% B + Sediment (g) 555.700 Mass Sediment (g) 0.000 0.200 1.200 2.600 0.200 0.900 0.200 0.200 0.100	Total %= Sediment (Mi) (g) 5.300	2.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 0.00% 3.92% 23.53% 50.98% 17.65% 3.92% 1.96% 101.96%	100.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.92% 27.45% 78.43% 96.08% 100.00% 101.96%	0.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 96.08% 72.55% 21.57% 3.92% 0.00% -1.96%
Sieve # 5 10 18 35 60 120 230	63.300 T. Sample ID T3S8 Sieve (g) 102.800 91.100 93.400 87.100 86.200 85.600 63.300	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.300 94.600 89.700 87.100 85.800 63.300	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass Sediment (g) 0.000 0.200 1.200 2.600 0.900 0.200 0.200 0.100	Sediment (Mi) (g) 5.300	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 0.00% 3.92% 23.53% 50.98% 17.65% 3.92% 1.96%	102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.92% 27.45% 78.43% 96.08% 100.00%	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 96.08% 72.55% 21.57% 3.92% 0.00%
Sieve # 5 10 18 35 60 120 230	63.300 T. Sample ID T3S8 Sieve (g) 102.800 91.100 93.400 87.100 86.200 85.600	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.300 94.600 89.700 87.100 85.800	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass Sediment (g) 0.000 0.200 1.200 2.600 0.900 0.200	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 0.00% 3.92% 23.53% 50.98% 17.65% 3.92%	102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.92% 27.45% 78.43% 96.08% 100.00%	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 96.08% 72.55% 21.57% 3.92% 0.00%
Sieve # 5 10 18 35 60 120	63.300 T. Sample ID T3S8 Sieve (g) 102.800 91.100 93.400 87.100 86.200	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.300 94.600 89.700 87.100	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass Sediment (g) 0.000 0.200 1.200 2.600 0.900	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 0.00% 3.92% 23.53% 50.98% 17.65%	102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.92% 27.45% 78.43% 96.08%	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 96.08% 72.55% 21.57% 3.92%
Sieve # \$ 10 18 35 60	63.300 T. Sample ID T3S8 Sieve (g) 102.800 91.100 93.400 87.100	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.300 94.600 89.700	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass Sediment (g) 0.000 0.200 1.200 2.600	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 0.00% 3.92% 23.53% 50.98%	102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.92% 27.45% 78.43%	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 96.08% 72.55% 21.57%
Sieve # \$	63.300 T. Sample ID T3S8 Sieve (g) 102.800 91.100 93.400	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.300 94.600	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass Sediment (g) 0.000 0.200 1.200	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 0.00% 3.92% 23.53%	102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.92% 27.45%	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 96.08% 72.55%
Sieve # S 10 18	63.300 T. Sample ID T3S8 Sieve (g) 102.800 91.100	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800 91.300	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass Sediment (g) 0.000 0.200	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 0.00% 3.92%	102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 3.92%	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 96.08%
Sieve # S 10	63.300 T. Sample ID T3S8 Sieve (g) 102.800	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 102.800	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass Sediment (g) 0.000	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 0.00%	102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00%	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00%
Sieve # S	63.300 T. Sample ID T3S8 Sieve (g)	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g)	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass Sediment (g)	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600 Weight %	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass
	63.300 T Sample ID T3S8	63.300 Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve	0.100 5.10 0.00% B + Sediment (g) 55.700 Mass	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 55.600	Sediment (Mf) (after wet sieving) 5.200 Cum %	-2.00% Add PAN (Mi-Mf) (g) 0.100 Cum %
Date	63.300 T. Sample ID	63.300 Mass (Mt)= %Error = Beaker (g)	0.100 5.10 0.00% B + Sediment (g)	Sediment (Mi) (g)	2.00% 102.00% B + Dry Sediment (after wet sieved) (g)	102.00% Sediment (Mf) (after wet sieving)	-2.00% Add PAN (Mi-Mf) (g)
Date	63.300 T. Sample	63.300 Mass (Mt)= %Error =	0.100 5.10 0.00% B + Sediment	Sediment	2.00% 102.00% B + Dry Sediment (after	102.00% Sediment (Mf) (after	-2.00% Add PAN (Mi-Mf)
	63.300	63.300 Mass (Mt)=	0.100 5.10	Total %=	2.00%		-2.00%
	63.300	63.300 Mass (Mt)=	0.100 5.10	Total %=	2.00%		
	63.300	63.300	0.100	Total %=	2.00%		
PAN	85.700	85.800	0.100		2.00%	100.00%	0.00%
230	05 700	05 000	0.100				0.000/
120	86.200	87.300	1.100		22.00%	98.00%	2.00%
60	87.100	89.500	2.400		48.00%	76.00%	24.00%
35	93.400	94.700	1.300		26.00%	28.00%	72.00%
18	91.100	91.200	0.100		2.00%	2.00%	98.00%
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
Sieve # S	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
	T3S7	50.400	55.500	5.100	55.400	5.000	(g) 0.100
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf)
					R + Dn/	Sediment	Add PAN
		%Error =	1.85%				
	т.	Mass (Mt)=	5.50	Total %=	110.00%		
PAN	63.300	63.300	0.100		2.00%	110.00%	-10.00%
230	85.700	85.900	0.200		4.00%	108.00%	-8.00%
120	86.200	87.300	1.100		22.00%	104.00%	-4.00%
60	87.100	89.600	2.500		50.00%	82.00%	18.00%
35	93.400	94.700	1.300		26.00%	32.00%	68.00%
18	91.100	91.300	0.200		4.00%	6.00%	94.00%
10	102.800	102.900	0.100		2.00%	2.00%	98.00%
	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
	T3S6	50.200	55.600	5.400	55.500	wet sieving) 5.300	(g) 0.100
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after	Add PAN (Mi-Mf)
		%Error =	0.00%				
	т.	Mass (Mt)=	5.10	Total %=	102.00%		
PAN	63.300	63.300	0.300		6.00%	102.00%	-2.00%
230	85.700	85.900	0.200		4.00%	96.00%	4.00%
120	86.200	86.500	0.300		6.00%	92.00%	8.00%
60	87.100	88.600	1.500		30.00%	86.00%	14.00%
35	93.400	95.500	2.100		42.00%	56.00%	44.00%
18	91.100	91.700	0.600		12.00%	14.00%	86.00%
10	102.800	102.900	0.100		2.00%	2.00%	98.00%
Sieve # S	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
	T3S5	50.200	55.300	5.100	55.000	4.800	0.300
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
Date	Sample	Beaker (g)	B + Sediment		B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(9/		wet sieved) (g)	wet sieving)	(g)
	T3S9	50.000	55.000	5.000	54.600	4.600	0.400
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.000	0.200		4.00%	4.00%	96.00%
18	91.100	91.500	0.400		8.00%	12.00%	88.00%
35	93.400	94.900	1.500		30.00%	42.00%	58.00%
60	87.100	88.500	1.400		28.00%	70.00%	30.00%
120	86.200	86.700	0.500		10.00%	80.00%	20.00%
230	85.700	86.300	0.600		12.00%	92.00%	8.00%
PAN	63.300	63.300					0.00%
PAN			0.400	T . (. 0(8.00%	100.00%	0.00%
	-	. Mass (Mt)=	5.00	Total %=	100.00%		
		%Error =	0.00%				
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
	T3S10	25.200	30.500	5.300	30.400	5.200	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
18	91.100	91.400	0.300		6.00%	6.00%	94.00%
35	93.400	94.600	1.200		24.00%	30.00%	70.00%
60	87.100	88.700	1.600		32.00%	62.00%	38.00%
120	86.200	87.600	1.400		28.00%	90.00%	10.00%
230	85.700	86.400	0.700		14.00%	104.00%	-4.00%
PAN	63.300	63.300	0.100		2.00%	106.00%	-6.00%
17.00	03.300	03.300	5.30	Total %=	106.00%	100.0070	0.0070
		%Error =	0.00%		100.0078		
		7aE1101 =	0.00%				
					D . Dr.	C a diana a st	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	
Date	ID	Beaker (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(Mi-Mf)
26-Dec-13	T4S1	28.500	33.500	5.000	33.500	5.000	(g) 0.000
20-Dec-13	1431			3.000	55.500		
C :	C iana (m)	Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.000	0.200		3.85%	3.85%	96.15%
18	91.000	91.600	0.600		11.54%	15.38%	84.62%
35	93.400	94.500	1.100		21.15%	36.54%	63.46%
60	87.200	88.700	1.500		28.85%	65.38%	34.62%
120	85.600	87.200	1.600		30.77%	96.15%	3.85%
230	86.200	86.200	0.000		0.00%	96.15%	3.85%
PAN	63.200	63.200	0.000		0.00%	96.15%	3.85%
	т	. Mass (Mt)=	5.00	Total %=	96.15%		
		%Error =	0.00%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
26-Dec-13	T4S2	30.000	35.500	5.500	35.500	5.500	0.000
-0 DCC 13						Cum 9/	Cum %
20 200 13		Sed+Sieve	Mass				
Sieve #	Sieve (g)	Sed+Sieve (g)	Mass Sediment (g)		Weight %	Cum % Ret	Pass
					Weight % 0.00%		Pass 100.00%
Sieve #	Sieve (g) 102.800	(g) 102.800	Sediment (g) 0.000		0.00%	Ret 0.00%	100.00%
Sieve # 10 18	Sieve (g) 102.800 91.000	(g) 102.800 91.500	Sediment (g) 0.000 0.500		0.00% 12.50%	Ret 0.00% 12.50%	100.00% 87.50%
Sieve # 10 18 35	Sieve (g) 102.800 91.000 93.400	(g) 102.800 91.500 94.500	Sediment (g) 0.000 0.500 1.100		0.00% 12.50% 27.50%	Ret 0.00% 12.50% 40.00%	100.00% 87.50% 60.00%
Sieve # 10 18 35 60	Sieve (g) 102.800 91.000 93.400 87.200	(g) 102.800 91.500 94.500 88.800	Sediment (g) 0.000 0.500 1.100 1.600		0.00% 12.50% 27.50% 40.00%	Ret 0.00% 12.50% 40.00% 80.00%	100.00% 87.50% 60.00% 20.00%
Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.400 87.200 85.600	(g) 102.800 91.500 94.500 88.800 87.900	Sediment (g) 0.000 0.500 1.100 1.600 2.300		0.00% 12.50% 27.50% 40.00% 57.50%	Ret 0.00% 12.50% 40.00% 80.00% 137.50%	100.00% 87.50% 60.00% 20.00% -37.50%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 87.200 85.600 86.200	(g) 102.800 91.500 94.500 88.800 87.900 86.200	Sediment (g) 0.000 0.500 1.100 1.600 2.300 0.000		0.00% 12.50% 27.50% 40.00% 57.50% 0.00%	Ret 0.00% 12.50% 40.00% 80.00% 137.50%	100.00% 87.50% 60.00% 20.00% -37.50%
Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.400 87.200 85.600 86.200 63.300	(g) 102.800 91.500 94.500 88.800 87.900 86.200 63.300	Sediment (g) 0.000 1.100 1.600 2.300 0.000 0.000	Total %	0.00% 12.50% 27.50% 40.00% 57.50% 0.00% 0.00%	Ret 0.00% 12.50% 40.00% 80.00% 137.50%	100.00% 87.50% 60.00% 20.00% -37.50%
Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 87.200 85.600 86.200 63.300	(g) 102.800 91.500 94.500 88.800 87.900 86.200	Sediment (g) 0.000 0.500 1.100 1.600 2.300 0.000	Total %=	0.00% 12.50% 27.50% 40.00% 57.50% 0.00%	Ret 0.00% 12.50% 40.00% 80.00% 137.50%	100.00% 87.50% 60.00% 20.00% -37.50%

120 230 PAN	86.200 63.300	86.200 63.300 Mass (Mt)=	0.000 1.400 5.00	Total %=	0.00% 28.00% 100.00%	72.00% 100.00%	28.00% 0.00%
120 230	86.200	86.200					
120 230	86.200	86.200					
120					-		
	85.600	86.400	0.800		16.00%	72.00%	28.00%
60	87.200	88.700	1.500		30.00%	56.00%	44.00%
35	93.400	94.500	1.100		22.00%	26.00%	74.00%
18	91.000	91.200	0.200		4.00%	4.00%	96.00%
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
26-Dec-13	T4S6	29.600	34.600	(ivii) (g) 5.000	wet sieved) (g) 33.200	wet sieving) 3.600	(g) 1.400
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
		%Error =	0.00%				
	т	. Mass (Mt)=	5.00	Total %=	100.00%		
PAN	63.300	63.300	0.100		2.00%	100.00%	0.00%
230	86.200	86.200	0.000		0.00%	98.00%	2.00%
120	85.600	87.300	1.700		34.00%	98.00%	2.00%
60	87.200	89.200	2.000		40.00%	64.00%	36.00%
35	93.400	94.400	1.000		20.00%	24.00%	76.00%
18	91.000	91.200	0.200		4.00%	4.00%	96.00%
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass		· · ·	Cum %	Cum %
26-Dec-13	T4S5	28.400	33.400	5.000	wet sieved) (g) 33.300	wet sieving) 4.900	(g) 0.100
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					B + Dry	Sediment	Add PAN
		%Error =	0.00%				
	Т	. Mass (Mt)=	5.00	Total %=	96.15%		
PAN	63.300	63.300	0.000		0.00%	96.15%	3.85%
230	86.200	86.200	0.000		0.00%	96.15%	3.85%
120	85.600	87.700	2.100		40.38%	96.15%	3.85%
60	87.200	89.200	2.000		38.46%	55.77%	44.23%
35	93.400	94.100	0.700		13.46%	17.31%	82.69%
18	91.000	91.200	0.200		3.85%	3.85%	96.15%
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
20-086-13	T4S4	28.200 Sed+Sieve	33.200 Mass	3.000	33.200	5.000 Cum %	0.000 Cum %
Date 26-Dec-13	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf) (g)
Dei	Sample	Deels ()	B + Sediment	Sediment	B + Dry	Sediment	Add PAN
		%Error =	-2.00%				
		. Mass (Mt)=	4.90	Total %=	148.48%		
PAN	63.300	63.300	0.000		0.00%	148.48%	-48.48%
230	86.200	86.300	0.100		3.03%	143.43%	-48.48%
120	85.600	87.000	1.400		42.42%	145.45%	-45.45%
<u> </u>	93.400 87.200	94.800 88.800	1.400		42.42%	54.55% 103.03%	45.45%
<u>18</u> 35	91.000	91.400 94.800	0.400		12.12% 42.42%	12.12%	87.88% 45.45%
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
.	.	Sed+Sieve	Mass			Cum %	Cum %
26-Dec-13	T4S3	29.600	34.600	5.000	34.600	5.000	0.000
	U		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
Date	Sample ID	Beaker (g)	B + Sediment		Sediment (after	(Mf) (after	(Mi-Mf)
	Somolo		R I Sodimont	Sodimont	B + Dry	Sediment	Add PAN

Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
26-Dec-13	ID T4S7	28.600	(g) 33.600	(Mi) (g) 5.000	wet sieved) (g) 33.500	wet sieving) 4.900	(g) 0.100
20-Det-15	1457			5.000	55.500		
Sieve #	Sieve (g)	Sed+Sieve (g)	Mass Sediment (g)		Weight %	Cum % Ret	Cum % Pass
10	102.800	102.900	0.100		2.00%	2.00%	98.00%
18	91.000	91.200	0.200		4.00%	6.00%	94.00%
35	93.400	94.600	1.200		24.00%	30.00%	70.00%
60	87.200	89.200	2.000		40.00%	70.00%	30.00%
120	85.600	87.000	1.400		28.00%	98.00%	2.00%
230	86.200	86.200	0.000		0.00%	98.00%	2.00%
PAN	63.300	63.300	0.100		2.00%	100.00%	0.00%
		. Mass (Mt)=	5.00	Total %=	100.00%	100.0070	0.0070
		%Error =	0.00%	Total /0=	100.0070		
		/021101 =	0.0070				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	(g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	() (g)
26-Dec-13	T4S8	28.300	33.300	5.000	32.800	4.500	0.500
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
18	91.000	91.300	0.300		5.88%	5.88%	94.12%
35	93.400	94.700	1.300		25.49%	31.37%	68.63%
60	87.200	89.300	2.100		41.18%	72.55%	27.45%
120	85.600	86.400	0.800		15.69%	88.24%	11.76%
230	86.200	86.200	0.000		0.00%	88.24%	11.76%
PAN	63.300	63.300	0.500		9.80%	98.04%	1.96%
TAN		. Mass (Mt)=	5.00	Total %=	98.04%	30.0470	1.90%
	•	%Error =	0.00%	10121 /0=	50.0478		
		/aL1101 =	0.0078				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	(g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	() (g)
26-Dec-13	T4S9	30.000	35.000	5.000	35.000	5.000	0.000
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.000	0.200		4.00%	4.00%	96.00%
18	91.000	91.600	0.600		12.00%	16.00%	84.00%
35	93.400	95.200	1.800		36.00%	52.00%	48.00%
60	87.200	88.900	1.700		34.00%	86.00%	14.00%
120	85.600	86.300	0.700		14.00%	100.00%	0.00%
230	86.200	86.200	0.000		0.00%	100.00%	0.00%
PAN	63.300	63.300	0.000		0.00%	100.00%	0.00%
	т	. Mass (Mt)=	5.00	Total %=	100.00%		
		%Error =	0.00%				
					B + Dry	Sediment	Add PAN
Data	Sample		B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
Date		Beaker (a)					
Date	ID	Beaker (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	
26-Dec-13		28.600	(g) 33.600	(Mi) (g) 5.000			(g) 0.100
	ID	28.600	33.600		wet sieved) (g)	wet sieving) 4.900	(g) 0.100
	ID T4S10	28.600 Sed+Sieve	33.600 Mass		wet sieved) (g)	wet sieving)	(g)
26-Dec-13	ID T4S10 Sieve (g)	28.600 Sed+Sieve (g)	33.600		wet sieved) (g) 33.500	wet sieving) 4.900 Cum %	(g) 0.100 Cum % Pass
26-Dec-13 Sieve #	ID T4S10 Sieve (g) 102.800	28.600 Sed+Sieve (g) 103.000	33.600 Mass Sediment (g) 0.200		wet sieved) (g) 33.500 Weight %	wet sieving) 4.900 Cum % Ret	(g) 0.100 Cum %
26-Dec-13 Sieve # 10	ID T4S10 Sieve (g) 102.800 91.000	28.600 Sed+Sieve (g)	33.600 Mass Sediment (g) 0.200 0.600		wet sieved) (g) 33.500 Weight % 4.00% 12.00%	wet sieving) 4.900 Cum % Ret 4.00%	(g) 0.100 Cum % Pass 96.00%
26-Dec-13 Sieve # 10 18	ID T4S10 Sieve (g) 102.800 91.000 93.400	28.600 Sed+Sieve (g) 103.000 91.600 95.100	33.600 Mass Sediment (g) 0.200 0.600 1.700		wet sieved) (g) 33.500 Weight % 4.00% 12.00% 34.00%	wet sieving) 4.900 Cum % Ret 4.00% 16.00% 50.00%	(g) 0.100 Cum % Pass 96.00% 84.00% 50.00%
26-Dec-13 Sieve # 10 18 35 60	ID T4S10 Sieve (g) 102.800 91.000 93.400 87.200	28.600 Sed+Sieve (g) 103.000 91.600 95.100 88.500	33.600 Mass Sediment (g) 0.200 0.600 1.700 1.300		wet sieved) (g) 33.500 Weight % 4.00% 12.00% 34.00% 26.00%	wet sieving) 4.900 Cum % Ret 4.00% 16.00% 50.00% 76.00%	(g) 0.100 Cum % Pass 96.00% 84.00% 50.00% 24.00%
26-Dec-13 Sieve # 10 18 35 60 120	ID T4S10 Sieve (g) 102.800 91.000 93.400 87.200 85.600	28.600 Sed+Sieve (g) 103.000 91.600 95.100 88.500 86.700	33.600 Mass Sediment (g) 0.200 0.600 1.700 1.300 1.100		wet sieved) (g) 33.500 Weight % 4.00% 12.00% 34.00% 26.00% 22.00%	wet sieving) 4.900 Cum % Ret 4.00% 16.00% 50.00% 76.00% 98.00%	(g) 0.100 Cum % Pass 96.00% 84.00% 50.00% 24.00% 2.00%
26-Dec-13 Sieve # 10 18 35 60	ID T4S10 Sieve (g) 102.800 91.000 93.400 87.200	28.600 Sed+Sieve (g) 103.000 91.600 95.100 88.500	33.600 Mass Sediment (g) 0.200 0.600 1.700 1.300		wet sieved) (g) 33.500 Weight % 4.00% 12.00% 34.00% 26.00%	wet sieving) 4.900 Cum % Ret 4.00% 16.00% 50.00% 76.00%	(g) 0.100 Cum % Pass 96.00% 84.00% 50.00% 24.00%
26-Dec-13 Sieve # 10 18 35 60 120 230	ID T4S10 Sieve (g) 102.800 91.000 93.400 87.200 85.600 86.200 63.300	28.600 Sed+Sieve (g) 103.000 91.600 95.100 88.500 86.700 86.200 63.300	33.600 Mass Sediment (g) 0.200 0.600 1.700 1.300 1.100 0.000 0.100	5.000	wet sieved) (g) 33.500 Weight % 4.00% 12.00% 34.00% 26.00% 22.00% 0.00% 2.00%	wet sieving) 4.900 Cum % Ret 4.00% 16.00% 50.00% 76.00% 98.00% 98.00%	(g) 0.100 Cum % Pass 96.00% 84.00% 50.00% 24.00% 2.00% 2.00%
26-Dec-13 Sieve # 10 18 35 60 120 230	ID T4S10 Sieve (g) 102.800 91.000 93.400 87.200 85.600 86.200 63.300	28.600 Sed+Sieve (g) 103.000 91.600 95.100 88.500 86.700 86.200	33.600 Mass Sediment (g) 0.200 0.600 1.700 1.300 1.100 0.000		wet sieved) (g) 33.500 Weight % 4.00% 12.00% 34.00% 26.00% 22.00% 0.00%	wet sieving) 4.900 Cum % Ret 4.00% 16.00% 50.00% 76.00% 98.00% 98.00%	(g) 0.100 Cum % Pass 96.00% 84.00% 50.00% 24.00% 2.00% 2.00%

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
26-Dec-13	T5S1	29.600	34.600	5.000	34.600	5.000	0.000
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.100	0.300		5.77%	5.77%	94.23%
18	91.000	91.600	0.600		11.54%	17.31%	82.69%
35	93.400	94.800	1.400		26.92%	44.23%	55.77%
60	87.100	89.100	2.000		38.46%	82.69%	17.31%
120	85.700	86.400	0.700		13.46%	96.15%	3.85%
230	86.200	86.200	0.000		0.00%	96.15%	3.85%
PAN	63.300	63.300	0.000		0.00%	96.15%	3.85%
	т	. Mass (Mt)=	5.00	Total %=	96.15%		
		%Error =	0.00%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
Date	ID	Beaker (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	
26 Dec 12	TEOO	20,400	24.400	F 000	, (6,	0,	(g)
26-Dec-13	T5S2	29.400	34.400	5.000	34.300	4.900	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
18	91.000	91.400	0.400		10.00%	10.00%	90.00%
35	93.400	94.700	1.300		32.50%	42.50%	57.50%
60	87.100	88.900	1.800		45.00%	87.50%	12.50%
120	85.700	87.100	1.400		35.00%	122.50%	-22.50%
230	86.200	86.200	0.000		0.00%	122.50%	-22.50%
PAN	63.300	63.300	0.100		2.50%	125.00%	-25.00%
	т	. Mass (Mt)=	5.00	Total %=	125.00%		
		%Error =	0.00%				
	O a manda			O a alian a at	B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)			(Mi-Mf)
Date 26-Dec-13		Beaker (g) 28.300			Sediment (after	(Mf) (after	
	ID	28.300	(g) 33.300	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000	(Mi-Mf) (g) 0.000
26-Dec-13	ID T5S3	28.300 Sed+Sieve	(g) 33.300 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 33.300	(Mf) (after wet sieving) 5.000 Cum %	(Mi-Mf) (g) 0.000 Cum %
26-Dec-13 Sieve #	ID T5S3 Sieve (g)	28.300 Sed+Sieve (g)	(g) 33.300 Mass Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret	(Mi-Mf) (g) 0.000 Cum % Pass
26-Dec-13 Sieve # 10	ID T5S3 Sieve (g) 102.800	28.300 Sed+Sieve (g) 102.800	(g) 33.300 Mass Sediment (g) 0.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00%
26-Dec-13 Sieve # 10 18	ID T5S3 Sieve (g) 102.800 91.000	28.300 Sed+Sieve (g) 102.800 91.300	(g) 33.300 Mass Sediment (g) 0.000 0.300	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91%
26-Dec-13 Sieve # 10 18 35	ID T5S3 Sieve (g) 102.800 91.000 93.400	28.300 Sed+Sieve (g) 102.800 91.300 94.600	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55%
26-Dec-13 Sieve # 10 18	ID T5S3 Sieve (g) 102.800 91.000	28.300 Sed+Sieve (g) 102.800 91.300	(g) 33.300 Mass Sediment (g) 0.000 0.300	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91%
26-Dec-13 Sieve # 10 18 35	ID T5S3 Sieve (g) 102.800 91.000 93.400	28.300 Sed+Sieve (g) 102.800 91.300 94.600	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55%
26-Dec-13 Sieve # 10 18 35 60	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06%
26-Dec-13 Sieve # 10 18 35 60 120	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)=	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90	(Mi) (g) 5.000	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000	(Mi) (g) 5.000	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)=	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90	(Mi) (g) 5.000	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 89.100 87.100 86.200 63.300 Mass (Mt)= %Error =	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90	(Mi) (g) 5.000	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% Sediment	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% Add PAN
26-Dec-13 Sieve # 10 18 35 60 120 230	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300 T	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)=	(g) Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00%	(Mi) (g) 5.000 Total %=	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date	ID T5S3 102.800 91.000 93.400 87.100 85.700 86.200 63.300 T Sample ID	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g)	(g) Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g)	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300 T T Sample	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 89.100 87.100 86.200 63.300 Mass (Mt)= %Error =	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment	(Mi) (g) 5.000 Total %= Sediment	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300 T Sample ID T5S4	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g)	(g) Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g)	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date	ID T5S3 102.800 91.000 93.400 87.100 85.700 86.200 63.300 T Sample ID	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600	(g) Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g) 33.600	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48% -48.48% (Mi-Mf) (g) 0.000
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13	ID T5S3 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.300 T Sample ID T5S4	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve	(g) Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum %	(Mi-Mf) (g) 0.000 Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% (Mi-Mf) (g) 0.000 Cum %
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve #	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 86.200 63.300 T Sample ID T5S4 Sieve (g) 102.800	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% (Mi-Mf) (g) 0.000 Cum % Pass 98.08%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve # 10 18	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 86.200 63.300 T Sample ID T5S4 Sieve (g) 102.800 91.000	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900 91.500	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.500	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight % 1.92% 9.62%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 1.92% 11.54%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 88.46%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve # 10 18 35	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 86.200 63.300 T5 Sample ID T5S4 Sieve (g) 102.800 91.000 93.400	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900 91.500 94.200	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.500 0.800	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight % 1.92% 9.62% 15.38%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 1.92% 11.54% 26.92%	(Mi-Mf) (g) 0.000 Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% (Mi-Mf) (g) 0.000 Cum % Pass 98.08% 88.46% 73.08%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve # 10 18 35 60	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 86.200 63.300 T Sample ID T5S4 Sieve (g) 102.800 91.000 93.400 87.100	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900 91.500 94.200 88.500	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.500 0.800 1.400	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight % 1.92% 9.62% 15.38% 26.92%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 1.92% 11.54% 26.92% 53.85%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% 0.000 Cum % Pass 98.08% 88.46% 73.08%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve # 10 18 35 60 120 120	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 63.300 T5 Sample ID T5S4 Sieve (g) 102.800 91.000 93.400 85.700	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900 91.500 94.200 88.500 87.800	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.500 0.800 1.400 2.100	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight % 1.92% 9.62% 15.38% 26.92% 40.38%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 1.92% 11.54% 26.92% 53.85% 94.23%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% 0.000 Cum % Pass 98.08% 88.46% 73.08% 46.15% 5.77%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve # 10 18 35 60 120 230	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 86.200 63.300 T5S4 Sample ID T5S4 Sieve (g) 102.800 91.000 93.400 85.700 85.700 86.200	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900 91.500 94.200 88.500 87.800 86.300	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.500 0.800 1.400 2.100 0.100	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight % 1.92% 9.62% 15.38% 26.92% 40.38% 1.92%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 1.92% 11.54% 26.92% 53.85% 94.23%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% 0.000 Cum % Pass 98.08% 88.46% 73.08% 46.15% 5.77% 3.85%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve # 10 18 35 60 120 120	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 63.300 T5 Sample ID T5S4 Sieve (g) 102.800 91.000 93.400 85.700	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900 91.500 94.200 88.500 87.800	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.500 0.800 1.400 2.100	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight % 1.92% 9.62% 15.38% 26.92% 40.38%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 9.09% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 1.92% 11.54% 26.92% 53.85% 94.23%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% -48.48% 0.000 Cum % Pass 98.08% 88.46% 73.08% 46.15% 5.77%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve # 10 18 35 60 120 230	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 63.300 T5S4 Sample ID T5S4 Sieve (g) 102.800 91.000 93.400 85.700 85.700 86.200 63.300	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900 91.500 94.200 88.500 87.800 86.300	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.500 0.800 1.400 2.100 0.100	(Mi) (g) 5.000 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight % 1.92% 9.62% 15.38% 26.92% 40.38% 1.92%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 1.92% 11.54% 26.92% 53.85% 94.23%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% 0.000 Cum % Pass 98.08% 88.46% 73.08% 46.15% 5.77% 3.85%
26-Dec-13 Sieve # 10 18 35 60 120 230 PAN Date 26-Dec-13 Sieve # 10 18 35 60 120 230	ID T5S3 Sieve (g) 91.000 93.400 87.100 85.700 63.300 T5S4 Sample ID T5S4 Sieve (g) 102.800 91.000 93.400 85.700 85.700 86.200 63.300	28.300 Sed+Sieve (g) 102.800 91.300 94.600 89.100 87.100 86.200 63.300 Mass (Mt)= %Error = %Error = Beaker (g) 28.600 Sed+Sieve (g) 102.900 91.500 94.200 88.500 87.800 86.300 63.300	(g) 33.300 Mass Sediment (g) 0.000 0.300 1.200 2.000 1.400 0.000 4.90 -2.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.500 0.800 1.400 2.100 0.100 0.500 0.800	(Mi) (g) 5.000 Total %= Sediment (Mi) (g) 5.000	Sediment (after wet sieved) (g) 33.300 Weight % 0.00% 9.09% 36.36% 60.61% 42.42% 0.00% 0.00% 148.48% B + Dry Sediment (after wet sieved) (g) 33.600 Weight % 1.92% 9.62% 15.38% 26.92% 40.38% 1.92% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 0.00% 45.45% 106.06% 148.48% 148.48% 148.48% 148.48% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 1.92% 11.54% 26.92% 53.85% 94.23%	(Mi-Mf) (g) 0.000 Cum % Pass 100.00% 90.91% 54.55% -6.06% -48.48% -48.48% -48.48% -48.48% 0.000 Cum % Pass 98.08% 88.46% 73.08% 46.15% 5.77% 3.85%

230 PAN	63.300 T	63.300 Mass (Mt)= %Error =	0.400 4.90 -2.00%	Total %=	7.84% 96.08%	96.08%	3.92%
				_		96.08%	3.92%
	66 - · ·	ee	e		and the second sec	0.0	
	86.200	86.200	0.000		0.00%	88.24%	11.76%
120	85.700	87.300	1.600		31.37%	88.24%	11.76%
60	87.100	88.900	1.800		35.29%	56.86%	43.14%
35	93.400	94.200	0.800		15.69%	21.57%	78.43%
18	91.000	91.200	0.200		3.92%	5.88%	94.12%
10	102.800	102.900	0.100		1.96%	1.96%	98.04%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
20-080-13	1000	25.200 Sed+Sieve	30.200 Mass	3.000	23.800	4.600 Cum %	0.400 Cum %
Date 26-Dec-13	ID T5S8	25.200	(g) 30.200	(Mi) (g) 5.000	Sediment (after wet sieved) (g) 29.800	(Mf) (after wet sieving) 4.600	(Mi-Mf) (g) 0.400
Data	Sample	Beaker (q)	B + Sediment	Sediment	B + Dry Sodimont (after	Sediment	
		%Error =	-2.00%				
	т	. Mass (Mt)=	4.90	Total %=	98.00%		
PAN	63.300	63.300	0.200		4.00%	98.00%	2.00%
230	86.200	86.200	0.000		0.00%	94.00%	6.00%
120	85.700	86.500	0.800		16.00%	94.00%	6.00%
60	87.200	88.000	0.800		16.00%	78.00%	22.00%
35	93.400	94.600	1.200		24.00%	62.00%	38.00%
10 18	102.800 91.000	103.800 91.900	1.000 0.900		20.00% 18.00%	20.00% 38.00%	80.00% 62.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	
Siovo #	Siove (a)	Sed+Sieve	Mass Sodimont (g)		Waight %	Cum %	Cum % Pass
26-Dec-13	T5S7	29.600	34.600	5.000	34.400	4.800	0.200
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	(Mi-Mf)
					D · D=	C a alizza e va t	Add PAN
		%Error =	0.00%				
		Mass (Mt)=	5.00	Total %=	100.00%		
PAN	63.300	63.300	0.200		4.00%	100.00%	0.00%
230	86.200	86.200	0.000		0.00%	96.00%	4.00%
120	87.100	87.500	1.800		36.00%	60.00% 96.00%	40.00%
35 60	93.400 87.100	94.400 88.900	1.000 1.800		20.00% 36.00%	24.00%	76.00%
18	91.000	91.200	0.200		4.00%	4.00%	96.00%
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
26-Dec-13	ID T5S6	29.700	(g) 34.700	(Mi) (g) 5.000	wet sieved) (g) 34.500	wet sieving) 4.800	(g) 0.200
Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
		%Error =	0.00%				
	Т	. Mass (Mt)=	5.00	Total %=	100.00%		
PAN	63.300	63.300	0.200		4.00%	100.00%	0.00%
230	86.200	86.200	0.000		0.00%	96.00%	4.00%
120	85.700	86.900	1.200		24.00%	96.00%	4.00%
60	87.100	87.900	0.800		16.00%	72.00%	28.00%
35	93.400	91.700	0.800		14.00%	40.00% 56.00%	44.00%
10 18	91.000	91.700	0.700		26.00% 14.00%	40.00%	74.00% 60.00%
Sieve #	Sieve (g) 102.800	(g) 104.100	Sediment (g) 1.300		Weight %	Ret 26.00%	Pass 74.00%
Siovo #	Siovo (a)	Sed+Sieve	Mass Sodimont (g)		Waight %	Cum %	Cum %
26-Dec-13	T5S5	28.700	33.700	5.000	33.500	4.800	0.200
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	(Mi-Mf)

					D . Dr.	Q a allow a set	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	(Mi-Mf)
Duto	ID	Boarton (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(IVII IVII) (g)
26-Dec-13	T5S9	29.400	34.400	5.000	34.400	5.000	0.000
20 Dec 15	1000			5.000	54.400		
Sieve #	Sieve (g)	Sed+Sieve (g)	Mass Sediment (g)		Weight %	Cum % Ret	Cum % Pass
10		102.800			0.00%	0.00%	100.00%
-	102.800		0.000				
18	91.000	91.400	0.400		8.00%	8.00%	92.00%
35	93.400	94.700	1.300		26.00%	34.00%	66.00%
60	87.100	89.000	1.900		38.00%	72.00%	28.00%
120	85.700	87.100	1.400		28.00%	100.00%	0.00%
230	86.200	86.200	0.000		0.00%	100.00%	0.00%
PAN	63.300	63.300	0.000		0.00%	100.00%	0.00%
	Т	. Mass (Mt)=	5.00	Total %=	100.00%		
		%Error =	0.00%			-	
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
26	TFO 10	20,000	22,600	5 000	wet sieved) (g)	wet sieving)	(g)
26-Dec-13	T5S10	28.600	33.600	5.000	33.600	5.000	0.000
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.000	0.200		4.00%	4.00%	96.00%
18	91.000	91.500	0.500		10.00%	14.00%	86.00%
35	93.400	94.700	1.300		26.00%	40.00%	60.00%
60	87.100	89.300	2.200		44.00%	84.00%	16.00%
120	85.700	86.500	0.800		16.00%	100.00%	0.00%
230	86.200	86.200	0.000		0.00%	100.00%	0.00%
PAN	63.300	63.300	0.000		0.00%	100.00%	0.00%
	т	. Mass (Mt)=	5.00	Total %=	100.00%		
		%Error =	0.00%				
	0 and 1 a		D. Carlins and	O a all'ana a sa t	B + Dry	Sediment	Add PAN
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(9)	(WII) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T6S1	28.500	33.600	5.100	33.300	4.800	0.300
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.000	0.200		3.85%	3.85%	96.15%
18	91.000	91.600	0.600		11.54%	15.38%	84.62%
35	93.400	94.400	1.000		19.23%	34.62%	65.38%
60	87.200	88.500	1.300		25.00%	59.62%	40.38%
120	85.600	87.000	1.400		26.92%	86.54%	13.46%
230	86.200	86.300	0.100		1.92%	88.46%	11.54%
PAN	63.300	63.300	0.300		5.77%	94.23%	5.77%
	Т	. Mass (Mt)=	4.90	Total %=	94.23%		
		%Error =	-3.92%				
			-	_	B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	,	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T6S2	29.200	34.300	5.100	34.300	5.100	0.000
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.800	0.000		0.00%	0.00%	100.00%
18	91.000	91.200	0.200		5.00%	5.00%	95.00%
			0.900		22.50%	27.50%	72.50%
35	93.400	94.300					
35 60	93.400 87.200	94.300 88.900			42.50%	70.00%	30.00%
60	87.200	88.900	1.700		42.50% 55.00%	70.00% 125.00%	30.00% -25.00%
60 120	87.200 85.600	88.900 87.800	1.700 2.200		55.00%	125.00%	-25.00%
60 120 230	87.200 85.600 86.200	88.900 87.800 86.200	1.700 2.200 0.000		55.00% 0.00%	125.00% 125.00%	-25.00% -25.00%
60 120	87.200 85.600 86.200 63.300	88.900 87.800 86.200 63.300	1.700 2.200 0.000 0.000	Total %-	55.00% 0.00% 0.00%	125.00%	-25.00%
60 120 230	87.200 85.600 86.200 63.300	88.900 87.800 86.200	1.700 2.200 0.000	Total %=	55.00% 0.00%	125.00% 125.00%	-25.00% -25.00%

60 120 230 PAN	85.600 86.200 63.300 T	86.300 86.200 63.300 Mass (Mt)=	0.700 0.000 0.100 5.00	Total %=	0.00% 2.00% 100.00%	98.00% 98.00% 100.00%	2.00% 2.00%
120 230	86.200	86.200	0.000		0.00%	98.00%	2.00%
120							
120		86.300	0.700			50.0070	2.0070
·			0 700		14.00%	98.00%	2.00%
·	87.200	88.500	1.300		26.00%	84.00%	16.00%
35	93.400	94.900	1.500		30.00%	58.00%	42.00%
18	91.000	91.700	0.700		14.00%	28.00%	72.00%
10	102.800	103.500	0.700		14.00%	14.00%	86.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	ID T6S6	29.600	(g) 34.600	(Mi) (g) 5.000	wet sieved) (g) 34.500	wet sieving) 4.900	(g) 0.100
Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
		%Error =	0.00%				
	Т	. Mass (Mt)=	5.40	Total %=	108.00%		
PAN	63.300	63.300	0.100		2.00%	108.00%	-8.00%
230	86.200	86.200	0.000		0.00%	106.00%	-6.00%
120	85.600	86.800	1.200		24.00%	106.00%	-6.00%
60	87.200	89.200	2.000		40.00%	82.00%	18.00%
35	93.400	94.900	1.500		30.00%	42.00%	58.00%
18	91.000	91.300	0.300		6.00%	12.00%	88.00%
10	102.800	103.100	0.300		6.00%	6.00%	94.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	T6S5	28.200	33.600	5.400	33.500	5.300	(g) 0.100
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	Add PAN (Mi-Mf)
			-2.00%	l			
	I	. Mass (Mt)= %Error =	4.90 -2.00%	i utal %=	34.23%		
FAN			4.90	Total %=	94.23%	34.2370	5.77%
PAN	86.200 63.300	86.200 63.300	0.000		0.00%	94.23%	5.77% 5.77%
120 230	85.600	86.400	0.800		15.38%	94.23% 94.23%	5.77%
60	87.200	88.600	1.400		26.92%	78.85%	21.15%
35	93.400	95.100	1.700		32.69%	51.92%	48.08%
18	91.000	91.700	0.700		13.46%	19.23%	80.77%
10	102.800	103.100	0.300		5.77%	5.77%	94.23%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
0	O i a una (m)	Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	T6S4	28.200	33.200	5.000	33.200	5.000	0.000
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	Add PAN (Mi-Mf) (g)
		%Error =	-1.96%				
	I	Mass (Mt)=	5.00	Total %=	151.52%		
PAN	63.300	63.300	0.200	Total 9/	6.06%	151.52%	-51.52%
230	86.200	86.200	0.000		0.00%	145.45%	-45.45%
120	85.600	86.700	1.100		33.33%	145.45%	-45.45%
60	87.200	88.300	1.100		33.33%	112.12%	-12.12%
35	93.400	94.400	1.000		30.30%	78.79%	21.21%
18	91.000	91.900	0.900		27.27%	48.48%	51.52%
10	102.800	103.500	0.700		21.21%	21.21%	78.79%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
o. <i>"</i>	.	Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	T6S3	29.500	34.600	5.100	34.400	4.900	0.200
					wet sieved) (g)	wet sieving)	(g)
Date	ID	Beaker (g)	в + Sediment (g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN

PAN	63.300 T	63.300 Mass (Mt)=	0.000 5.00	Total %=	100.00%	100.0070	0.0070
PAN	63.300	63.300	0.000		0.0070	100.0070	0.0070
	62 200	C2 200	0.000		0.00%	100.00%	0.00%
230	86.200	86.300	0.100		2.00%	100.00%	0.00%
120	85.600	85.700	0.100		2.00%	98.00%	2.00%
60	87.200	87.300	0.100		2.00%	96.00%	4.00%
35	93.400	95.200	1.800		36.00%	94.00%	6.00%
18	91.000	93.600	2.600		52.00%	58.00%	42.00%
10	102.800	103.100	0.300		6.00%	6.00%	94.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	T6S10	29.800	34.900	5.100	wet sieved) (g) 34.900	wet sieving) 5.100	(g) 0.000
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
		%Error =	-2.00%				
	Т	. Mass (Mt)=	4.90	Total %=	98.00%		
PAN	63.300	63.300	0.100	T . 4 . 1 . 4 .	2.00%	98.00%	2.00%
230	86.200	86.300	0.100		2.00%	96.00%	4.00%
120	85.600	86.100	0.500		10.00%	94.00%	6.00%
60	87.200	88.200	1.000		20.00%	84.00%	16.00%
35	93.400	95.100	1.700		34.00%	64.00%	36.00%
18	91.000	92.000	1.000		20.00%	30.00%	70.00%
10	102.800	103.300	0.500		10.00%	10.00%	90.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	T6S9	28.500	33.500	5.000	33.400	4.900	(g) 0.100
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	Add PAN (Mi-Mf) (g)
		%Error =	0.00%	· · · · · · · ·			
		. Mass (Mt)=	5.00	Total %=	98.04%		
PAN	63.300	63.300	0.200		3.92%	98.04%	1.96%
230	86.200	86.300	0.100		1.96%	94.12%	5.88%
120	85.600	86.100	0.500		9.80%	92.16%	7.84%
35 60	93.400 87.200	95.300 88.900	1.900 1.700		37.25% 33.33%	49.02% 82.35%	17.65%
18 25	91.000	91.300	0.300			11.76%	88.24% 50.98%
10	102.800	103.100	0.300		5.88% 5.88%	5.88%	94.12%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
.		Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	T6S8	28.500	33.500	5.000	33.300	4.800	0.200
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	Add PAN (Mi-Mf) (g)
			0.00%				
	I.	. Mass (Mt)= %Error =	5.20 0.00%	Total %=	104.00%		
PAN	63.300	63.300	0.300	T . (.) 0(6.00%	104.00%	-4.00%
230	86.200	86.200	0.000		0.00%	98.00%	2.00%
120	85.600	86.200	0.600		12.00%	98.00%	2.00%
60	87.200	88.500	1.300		26.00%	86.00%	14.00%
35	93.400	94.500	1.100		22.00%	60.00%	40.00%
18	91.000	91.700	0.700		14.00%	38.00%	62.00%
10	102.800	104.000	1.200		24.00%	24.00%	76.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
27 9011 21		Sed+Sieve	Mass	5.200	5 11000	Cum %	Cum %
27-Jan-14	T6S7	29.400	34.600	5.200	34.300	4.900	(g) 0.300
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf)
Data	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(9)	(WII) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T7S1	28.600	33.700	5.100	32.900	4.300	0.800
			Mara			0	
0	O ((())	Sed+Sieve	Mass			Cum %	Cum % Pass
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	
10	102.800	103.000	0.200		3.85%	3.85%	96.15%
18	91.000	91.400	0.400		7.69%	11.54%	88.46%
35	93.400	94.100	0.700		13.46%	25.00%	75.00%
60	87.200	88.500	1.300		25.00%	50.00%	50.00%
120	85.700	87.200	1.500		28.85%	78.85%	21.15%
230	86.200	86.200	0.000		0.00%	78.85%	21.15%
							5.77%
PAN	63.300	63.300	0.800	_	15.38%	94.23%	5.77%
	т.	. Mass (Mt)=	4.90	Total %=	94.23%		
		%Error =	-3.92%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment		Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T7S2	30.000	35.200	5.200	35.000	5.000	0.200
27-3411-14	1752			5.200	33.000		
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.100	0.300		7.50%	7.50%	92.50%
18	91.000	91.600	0.600		15.00%	22.50%	77.50%
35	93.400	94.800	1.400		35.00%	57.50%	42.50%
60	87.200	88.500	1.300		32.50%	90.00%	10.00%
120			1.100				
	85.700	86.800			27.50%	117.50%	-17.50%
230	86.200	86.300	0.100		2.50%	120.00%	-20.00%
PAN	63.300	63.300	0.200		5.00%	125.00%	-25.00%
	Т	. Mass (Mt)=	5.00	Total %=	125.00%		
		%Error =	-3.85%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	(3)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(, (g)
27-Jan-14	T7S3	29.500	34.700	5.200	34.500	5.000	0.200
27-3411-14	1733			5.200	34.300		
		Sed+Sieve	Mass			Cum %	
Sieve #			- ·· · · · ·				Cum %
0.000 #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	Sieve (g) 102.800	(g) 103.000	Sediment (g) 0.200		Weight % 6.06%		
					-	Ret	Pass
10	102.800	103.000	0.200		6.06%	Ret 6.06%	Pass 93.94%
10 18 35	102.800 91.000	103.000 91.500 94.400	0.200 0.500 1.000		6.06% 15.15% 30.30%	Ret 6.06% 21.21% 51.52%	Pass 93.94% 78.79%
10 18 35 60	102.800 91.000 93.400 87.200	103.000 91.500 94.400 88.800	0.200 0.500 1.000 1.600		6.06% 15.15% 30.30% 48.48%	Ret 6.06% 21.21% 51.52% 100.00%	Pass 93.94% 78.79% 48.48% 0.00%
10 18 35 60 120	102.800 91.000 93.400 87.200 85.700	103.000 91.500 94.400 88.800 87.400	0.200 0.500 1.000 1.600 1.700		6.06% 15.15% 30.30% 48.48% 51.52%	Ret 6.06% 21.21% 51.52% 100.00% 151.52%	Pass 93.94% 78.79% 48.48% 0.00% -51.52%
10 18 35 60 120 230	102.800 91.000 93.400 87.200 85.700 86.200	103.000 91.500 94.400 88.800 87.400 86.200	0.200 0.500 1.000 1.600 1.700 0.000		6.06% 15.15% 30.30% 48.48% 51.52% 0.00%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52%	Pass 93.94% 78.79% 48.48% 0.00% -51.52%
10 18 35 60 120	102.800 91.000 93.400 87.200 85.700 86.200 63.300	103.000 91.500 94.400 88.800 87.400 86.200 63.300	0.200 0.500 1.000 1.600 1.700 0.000 0.200		6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06%	Ret 6.06% 21.21% 51.52% 100.00% 151.52%	Pass 93.94% 78.79% 48.48% 0.00% -51.52%
10 18 35 60 120 230	102.800 91.000 93.400 87.200 85.700 86.200 63.300	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)=	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20	Total %=	6.06% 15.15% 30.30% 48.48% 51.52% 0.00%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52%	Pass 93.94% 78.79% 48.48% 0.00% -51.52%
10 18 35 60 120 230	102.800 91.000 93.400 87.200 85.700 86.200 63.300	103.000 91.500 94.400 88.800 87.400 86.200 63.300	0.200 0.500 1.000 1.600 1.700 0.000 0.200	Total %=	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52%	Pass 93.94% 78.79% 48.48% 0.00% -51.52%
10 18 35 60 120 230	102.800 91.000 93.400 87.200 85.700 86.200 63.300	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)=	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20	Total %=	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52%	Pass 93.94% 78.79% 48.48% 0.00% -51.52%
10 18 35 60 120 230	102.800 91.000 93.400 87.200 85.700 86.200 63.300 T	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)=	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00%		6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52%	Pass 93.94% 78.79% 48.48% 0.00% -51.52%
10 18 35 60 120 230	102.800 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)=	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment	Sediment	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58%	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -57.58%
10 18 35 60 120 230 PAN	102.800 91.000 93.400 87.200 85.700 86.200 63.300 T	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)= %Error =	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00%		6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -51.52% -57.58% Add PAN (Mi-Mf)
10 18 35 60 120 230 PAN Date	102.800 91.000 93.400 87.200 85.700 63.300 T Sample ID	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)= %Error = Beaker (g)	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g)	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g)	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving)	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -51.52% -57.58% Add PAN (Mi-Mf) (g)
10 18 35 60 120 230 PAN	102.800 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	103.000 91.500 94.400 88.800 87.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.000	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100	Sediment	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -51.52% -57.58% Add PAN (Mi-Mf) (g) 0.100
10 18 35 60 120 230 PAN Date 27-Jan-14	102.800 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T7S4	103.000 91.500 94.400 88.800 87.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum %	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -51.52% -57.58% (Mi-Mf) (g) 0.100 Cum %
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	102.800 91.000 93.400 87.200 85.700 63.300 T Sample ID T7S4 Sieve (g)	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g)	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g)	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight %	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -51.52% (-57.58% (-57.58% (-57.58%) (-
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	102.800 91.000 93.400 85.700 86.200 63.300 T Sample ID T7S4 Sieve (g) 102.800	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g) 103.300	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g) 0.500	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight % 9.62%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 9.62%	Pass 93.94% 78.79% 48.48% -51.52% -51.52% -57.58% (Mi-Mf) (g) 0.100 Cum % Pass 90.38%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	102.800 91.000 93.400 87.200 85.700 63.300 T Sample ID T7S4 Sieve (g)	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g)	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g)	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight %	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -51.52% (-57.58% (-57.58% (-57.58%) (-
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	102.800 91.000 93.400 85.700 86.200 63.300 T Sample ID T7S4 Sieve (g) 102.800	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g) 103.300	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g) 0.500	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight % 9.62%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 9.62%	Pass 93.94% 78.79% 48.48% -51.52% -51.52% -57.58% (Mi-Mf) (g) 0.100 Cum % Pass 90.38%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	102.800 91.000 93.400 85.700 86.200 63.300 T Sample ID T7S4 Sieve (g) 102.800 91.000	103.000 91.500 94.400 88.800 87.400 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g) 103.300 91.800	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g) 0.500 0.800	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight % 9.62% 15.38%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 9.62% 25.00%	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -51.52% (Mi-Mf) (g) 0.100 Cum % Pass 90.38% 75.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	102.800 91.000 93.400 85.700 86.200 63.300 T T Sample ID T7S4 Sieve (g) 102.800 91.000 93.400 87.200	103.000 91.500 94.400 88.800 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g) 103.300 91.800 94.900 88.400	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g) 0.500 0.800 1.500	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight % 9.62% 15.38% 28.85% 23.08%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 9.62% 25.00% 53.85% 76.92%	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -57.58% Mi-Mi (Mi-Mf) (g) 0.100 Cum % Pass 90.38% 75.00% 46.15%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	102.800 91.000 93.400 85.700 86.200 63.300 T S Sample ID T7S4 Sieve (g) 102.800 91.000 93.400 87.200	103.000 91.500 94.400 88.800 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g) 103.300 91.800 94.900 88.400 86.700	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g) 0.500 0.800 1.500 1.200 1.200 1.000	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight % 9.62% 15.38% 28.85% 23.08% 19.23%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 9.62% 25.00% 53.85% 76.92% 96.15%	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -57.58% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 90.38% 75.00% 46.15% 23.08%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	102.800 91.000 93.400 85.700 86.200 63.300 T S Sample ID T7S4 Sieve (g) 102.800 91.000 93.400 85.700 86.200	103.000 91.500 94.400 88.800 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g) 103.300 91.800 94.900 88.400 86.700 86.200	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g) 0.500 0.800 1.500 1.200 1.200 1.000 0.000	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight % 9.62% 15.38% 28.85% 23.08% 19.23% 0.00%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 9.62% 25.00% 53.85% 76.92% 96.15%	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -57.58% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 90.38% 75.00% 46.15% 23.08%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	102.800 91.000 93.400 85.700 86.200 63.300 T S Sample ID T7S4 Sieve (g) 102.800 91.000 93.400 85.700 86.200 63.300	103.000 91.500 94.400 88.800 87.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g) 103.300 91.800 94.900 88.400 86.700 86.200 63.300	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g) 0.500 0.800 1.500 1.200 1.200 1.000 0.000 0.100	Sediment (Mi) (g) 5.100	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight % 9.62% 15.38% 28.85% 23.08% 19.23% 0.00% 1.92%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 9.62% 25.00% 53.85% 76.92% 96.15%	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -57.58% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 90.38% 75.00% 46.15% 23.08%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	102.800 91.000 93.400 85.700 86.200 63.300 T S Sample ID T7S4 Sieve (g) 102.800 91.000 93.400 85.700 86.200 63.300	103.000 91.500 94.400 88.800 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.000 Sed+Sieve (g) 103.300 91.800 94.900 88.400 86.700 86.200	0.200 0.500 1.000 1.600 1.700 0.000 0.200 5.20 0.00% B + Sediment (g) 33.100 Mass Sediment (g) 0.500 0.800 1.500 1.200 1.200 1.000 0.000	Sediment (Mi) (g)	6.06% 15.15% 30.30% 48.48% 51.52% 0.00% 6.06% 157.58% B + Dry Sediment (after wet sieved) (g) 33.000 Weight % 9.62% 15.38% 28.85% 23.08% 19.23% 0.00%	Ret 6.06% 21.21% 51.52% 100.00% 151.52% 151.52% 151.52% 151.52% 151.52% 151.52% 157.58% Sediment (Mf) (after wet sieving) 5.000 Cum % Ret 9.62% 25.00% 53.85% 76.92% 96.15%	Pass 93.94% 78.79% 48.48% 0.00% -51.52% -57.58% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 90.38% 75.00% 46.15% 23.08%

27-Jan-14 Sieve # S	Sample ID						
27-Jan-14 Sieve # S			B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Sieve # S		Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
Sieve # S			(9)	() (9)	wet sieved) (g)	wet sieving)	(g)
	T7S5	29.400	34.600	5.200	34.400	5.000	0.200
L		Sed+Sieve	Mass			Cum %	Cum %
	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
					-		
	102.800	103.000	0.200		4.00%	4.00%	96.00%
18	91.000	91.500	0.500		10.00%	14.00%	86.00%
35	93.400	94.500	1.100		22.00%	36.00%	64.00%
60	87.200	88.500	1.300		26.00%	62.00%	38.00%
120	85.700	87.500	1.800		36.00%	98.00%	2.00%
	86.200	86.200	0.000		0.00%	98.00%	2.00%
PAN	63.300	63.300	0.200		4.00%	102.00%	-2.00%
	т.	Mass (Mt)=	5.10	Total %=	102.00%		
		%Error =	-1.92%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
Dato	ID	Dounter (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	. ,
27.1	7700	20,000	24.000	6.000	, (0,	0,	(g)
27-Jan-14	T7S6	28.000	34.000	6.000	33.900	5.900	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve # S	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	104.100	1.300		26.00%	26.00%	74.00%
	91.000	92.000	1.000		20.00%	46.00%	54.00%
	93.400	94.900	1.500		30.00%	76.00%	24.00%
	87.200	88.400	1.200		24.00%	100.00%	0.00%
120	85.700	86.400	0.700		14.00%	114.00%	-14.00%
230	86.200	86.200	0.000		0.00%	114.00%	-14.00%
PAN	63.300	63.300	0.100		2.00%	116.00%	-16.00%
	т	Mass (Mt)=	5.80	Total %=	116.00%		
		()		Total /a=	110.0070		
		%Error =	-3.33%				
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)			
Date		Beaker (g) 28.300			Sediment (after	(Mf) (after	(Mi-Mf)
Date	ID T6S7	28.300	(g) 33.500	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000	(Mi-Mf) (g) 0.200
27-Jan-14	ID T6S7	28.300 Sed+Sieve	(g) 33.500 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 33.300	(Mf) (after wet sieving) 5.000 Cum %	(Mi-Mf) (g) 0.200 Cum %
27-Jan-14 Sieve # S	ID T6S7 Sieve (g)	28.300 Sed+Sieve (g)	(g) 33.500 Mass Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret	(Mi-Mf) (g) 0.200 Cum % Pass
27-Jan-14 Sieve # S 10	ID T6S7 Sieve (g) 102.800	28.300 Sed+Sieve (g) 103.000	(g) 33.500 Mass Sediment (g) 0.200	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00%
27-Jan-14 Sieve # S 10 18	ID T6S7 Sieve (g) 102.800 91.000	28.300 Sed+Sieve (g) 103.000 91.300	(g) 33.500 Mass Sediment (g) 0.200 0.300	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00%
27-Jan-14 Sieve # S 10 18	ID T6S7 Sieve (g) 102.800	28.300 Sed+Sieve (g) 103.000	(g) 33.500 Mass Sediment (g) 0.200	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00%
27-Jan-14 Sieve # S 10 1 18 35	ID T6S7 Sieve (g) 102.800 91.000	28.300 Sed+Sieve (g) 103.000 91.300	(g) 33.500 Mass Sediment (g) 0.200 0.300	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00%
Date 27-Jan-14 Sieve # S 10 1 18 35 60 60	ID T6S7 Sieve (g) 102.800 91.000 93.400	28.300 Sed+Sieve (g) 103.000 91.300 94.000	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 48.00% 2.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 85.700 86.200	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 48.00% 2.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 48.00% 2.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)=	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 48.00% 2.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 48.00% 2.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)=	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 48.00% 2.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300 T.	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)=	(g) Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92%	(Mi) (g) 5.200 Total %=	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 48.00% 2.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)=	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment	(Mi) (g) 5.200 Total %= Sediment	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00% 98.00% 102.00%	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 48.00% 2.00% 2.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300 T.	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)= %Error =	(g) Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92%	(Mi) (g) 5.200 Total %=	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00% 98.00% 102.00% Sediment	(Mi-Mf) (g) 0.200 Cum % Pass 96.00% 90.00% 78.00% 2.00% 2.00% 2.00% -2.00% Add PAN (Mi-Mf)
Date 27-Jan-14 Sieve # S 10 18 35 60 120 230 PAN Date	ID T6S7 3ieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300 T. Sample ID	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)= %Error = Beaker (g)	(g) Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g)	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00% 98.00% 102.00% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 2.00% 2.00% 2.00% -2.00% Add PAN (Mi-Mf) (g)
Date 27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.100	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200	(Mi) (g) 5.200 Total %= Sediment	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 98.00% 98.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.100	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 2.00% 2.00% 2.00% 2.00% 2.00% (Mi-Mf) (g) 0.000
Date 27-Jan-14 Sieve # S 10 18 35 60 120 230 PAN Date 27-Jan-14	ID T6S7 3ieve (g) 102.800 91.000 93.400 87.200 85.700 85.700 63.300 T. Sample ID T6S8	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.100 Sed+Sieve	(g) Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum %	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 2.00% 2.00% 2.00% -2.00% Com (Mi-Mf) (g) 0.000 Cum %
Date 27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # Sieve #	ID T6S7 3ieve (g) 102.800 91.000 93.400 87.200 85.700 85.700 63.300 T. Sample ID T6S8 Sieve (g)	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.100 Sed+Sieve (g)	(g) Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g)	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 52.00% 98.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 2.00% 2.00% 2.00% -2.00% Com% (Mi-Mf) (g) 0.000 Cum % Pass
Date 27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # Sieve #	ID T6S7 3ieve (g) 102.800 91.000 93.400 87.200 85.700 85.700 63.300 T. Sample ID T6S8	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 88.000 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.100 Sed+Sieve	(g) Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum %	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 2.00% 2.00% 2.00% -2.00% Com (Mi-Mf) (g) 0.000 Cum %
Date 27-Jan-14 Sieve # S 10 1 18 1 35 60 120 2 230 PAN Date 2 Date 3 Sieve # S 10 1	ID T6S7 3ieve (g) 102.800 91.000 93.400 87.200 85.700 85.700 63.300 T. Sample ID T6S8 Sieve (g)	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.100 Sed+Sieve (g)	(g) Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g)	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 52.00% 98.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 2.00% 2.00% 2.00% -2.00% Com% (Mi-Mf) (g) 0.000 Cum % Pass
Date 27-Jan-14 Sieve # S 10 18 35 60 120 230 PAN 9 Date 10 Sieve # S 10 18 10 18	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T6S8 Sieve (g) 102.800 91.000	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.100 Sed+Sieve (g) 103.000 91.500	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g) 0.200 0.500	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200 Weight % 3.92% 9.80%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 52.00% 98.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 3.92% 13.73%	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 2.00% 2.00% 2.00% -2.00% (Mi-Mf) (g) 0.000 Cum % Pass 96.08% 86.27%
Date 27-Jan-14 Sieve # S 10 18 35 60 120 230 PAN 9 Date 10 Sieve # S 10 18 10 18 35 10 18 35	ID T6S7 Sieve (g) 102.800 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID T6S8 Sieve (g) 102.800 91.000 93.400	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 28.100 Sed+Sieve (g) 103.000 91.500 94.800	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g) 0.200 0.500 1.400	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200 Weight % 3.92% 9.80% 27.45%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 98.00% 98.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 3.92% 13.73% 41.18%	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 48.00% 2.00% 2.00% 2.00% -2.00% 0.00% 48.00% 2.00% 2.00% 0.00% 0.00% 0.000 Cum % Pass 96.08% 86.27% 58.82%
Date 27-Jan-14 Sieve # S 10 1 18 1 35 60 120 2 230 PAN Date 1 Date 1 Sieve # S 10 1 Sieve # S 10 1 10 1 10 1 18 35 60 0	ID T6S7 Sieve (g) 102.800 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T6S8 Sieve (g) 102.800 91.000 93.400 87.200	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 63.300 Mass (Mt)= %Error = 8eaker (g) 28.100 Sed+Sieve (g) 103.000 91.500 94.800	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g) 0.200 0.500 1.400 1.800	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200 Weight % 3.92% 9.80% 27.45% 35.29%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 22.00% 98.00% 98.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 3.92% 13.73% 41.18% 76.47%	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 48.00% 2.00% 2.00% 2.00% -2.00% -2.00% (Mi-Mf) (g) 0.000 Cum % Pass 96.08% 86.27% 58.82% 23.53%
Date 27-Jan-14 Sieve # S 10 1 18 1 35 60 120 2 230 PAN Date 3 Date 3 27-Jan-14 3 Sieve # S 10 1 18 35 60 120	ID T6S7 Sieve (g) 102.800 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID T6S8 Sieve (g) 102.800 91.000 93.400 85.700 85.700	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 63.300 Mass (Mt)= %Error = %Error = 28.100 Sed+Sieve (g) 103.000 91.500 94.800 89.000	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g) 0.200 0.500 1.400 1.800 1.200	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200 Weight % 3.92% 9.80% 27.45% 35.29% 23.53%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 52.00% 98.00% 98.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 3.92% 13.73% 41.18% 76.47% 100.00%	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 48.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 48.02% 9.00% Cum % Pass 96.08% 86.27% 58.82% 23.53% 0.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # Sieve # 10 18 10 11 12 12 13 14 15 16 17 18 35 60 120 230	ID T6S7 Sieve (g) 102.800 91.000 93.400 85.700 85.700 63.300 T6S8 Sieve (g) 102.800 91.000 93.400 85.700 85.700 85.700 85.700 85.700	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 Mass (Mt)= %Error = %Error = 8eaker (g) 28.100 Sed+Sieve (g) 103.000 91.500 94.800 89.000 86.900 86.200	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g) 0.200 0.500 1.400 1.800 1.200 0.000	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 46.00% 0.00% 46.00% 0.00% 46.00% 0.00% 8 + Dry Sediment (after wet sieved) (g) 33.200 Weight % 3.92% 9.80% 27.45% 35.29% 23.53% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 22.00% 52.00% 98.00% 98.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 3.92% 13.73% 41.18% 76.47% 100.00%	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 48.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 48.02% 96.08% 86.27% 58.82% 23.53% 0.00%
Date 27-Jan-14 Sieve # S 10 18 35 60 120 230 PAN 9 Date 9 27-Jan-14 9 Sieve # S 10 11 Sieve # S 10 11 18 35 60 120 120 120	ID T6S7 Sieve (g) 102.800 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID T6S8 Sieve (g) 102.800 91.000 93.400 85.700 85.700	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 63.300 Mass (Mt)= %Error = %Error = 28.100 Sed+Sieve (g) 103.000 91.500 94.800 89.000	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.000 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g) 0.200 0.500 1.400 1.800 1.200	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 30.00% 46.00% 0.00% 4.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.200 Weight % 3.92% 9.80% 27.45% 35.29% 23.53%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 10.00% 52.00% 98.00% 98.00% 98.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 3.92% 13.73% 41.18% 76.47% 100.00%	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 48.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 48.02% 9.00% Cum % Pass 96.08% 86.27% 58.82% 23.53% 0.00%
Date 27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # Sieve # 10 18 10 11 12 12 13 14 15 16 17 18 35 60 120 230	ID T6S7 Sieve (g) 102.800 91.000 93.400 85.700 85.700 63.300 T6S8 Sieve (g) 102.800 91.000 91.000 93.400 85.700 85.700 85.700 85.700 85.700	28.300 Sed+Sieve (g) 103.000 91.300 94.000 88.700 88.000 86.200 63.300 Mass (Mt)= %Error = %Error = 8eaker (g) 28.100 Sed+Sieve (g) 103.000 91.500 94.800 89.000 86.900 86.200	(g) 33.500 Mass Sediment (g) 0.200 0.300 0.600 1.500 2.300 0.200 5.10 -1.92% B + Sediment (g) 33.200 Mass Sediment (g) 0.200 0.500 1.400 1.800 1.200 0.000	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 4.00% 6.00% 12.00% 46.00% 0.00% 46.00% 0.00% 46.00% 0.00% 8 + Dry Sediment (after wet sieved) (g) 33.200 Weight % 3.92% 9.80% 27.45% 35.29% 23.53% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 4.00% 22.00% 52.00% 98.00% 98.00% 98.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 3.92% 13.73% 41.18% 76.47% 100.00%	(Mi-Mf) (g) 0.200 Pass 96.00% 90.00% 78.00% 48.00% 2.00% 2.00% 2.00% 2.00% 2.00% 2.00% 48.02% 96.08% 86.27% 58.82% 23.53% 0.00%

PAN	63.200 T	63.200 Mass (Mt)=	0.000 4.90	Total %=	0.00% 122.50%	122.50%	-22.50%
						122.50%	-22.50%
230	86.200	86.200	0.000		0.00%	122.50%	-22.50%
120	85.700	86.400	0.700		17.50%	122.50%	-22.50%
60 120	87.100	88.700	1.600		40.00%	105.00%	-5.00%
35	93.400	95.100	1.700		42.50%	65.00%	35.00%
18	91.000	91.700	0.700		17.50%	22.50%	77.50%
10	102.800	103.000	0.200		5.00%	5.00%	95.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	T8S2	30.100	35.100	5.000	35.100	5.000	(g) 0.000
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	Add PAN (Mi-Mf)
		%Error =	-3.70%				
	Т	. Mass (Mt)=	5.20	Total %=	100.00%		
PAN	63.200	63.200	0.100		1.92%	100.00%	0.00%
230	86.200	86.200	0.000		0.00%	98.08%	1.92%
120	85.700	87.300	1.600		30.77%	98.08%	1.92%
60	87.100	88.500	1.400		26.92%	67.31%	32.69%
35	93.400	94.700	1.300		25.00%	40.38%	59.62%
18	91.000	91.700	0.700		13.46%	15.38%	84.62%
10	102.800	102.900	0.100		1.92%	1.92%	98.08%
Sieve #	Sieve (g)	(g)	Mass Sediment (g)		Weight %	Ret	Pass
∠7-jd∏-14	1001	Sed+Sieve	54.000 Mass	5.400	54.300	5.300 Cum %	Cum %
27-Jan-14	T8S1	29.200	34.600	5.400	wet sieved) (g) 34.500	wet sieving) 5.300	(g) 0.100
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
		%Error =	1.64%				
		. Mass (Mt)=	6.20	Total %=	124.00%	12	200/0
PAN	63.300	63.300	0.100		24.00%	122.00%	-22.00%
230	85.700	86.500	1.200		24.00%	98.00%	-22.00%
60 120	87.200 85.700	88.600 86.500	1.400 0.800		28.00% 16.00%	82.00% 98.00%	18.00% 2.00%
35	93.400 87.200	95.000 88.600	1.600		32.00%	54.00%	46.00%
18	91.000	91.700	0.700		14.00%	22.00%	78.00%
10	102.800	103.200	0.400		8.00%	8.00%	92.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
		Sed+Sieve	Mass			Cum %	Cum %
27-Jan-14	T6S10	28.400	34.500	6.100	wet sieved) (g) 34.400	wet sieving) 6.000	(g) 0.100
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
		%Error =	-3.70%				
	T	Mass (Mt)=	5.20	Total %=	104.00%		
PAN	63.300	63.300	0.200		4.00%	104.00%	-4.00%
230	86.200	86.300	0.100		2.00%	100.00%	0.00%
120	85.700	87.500	1.800		36.00%	98.00%	2.00%
60	87.200	88.300	1.100		22.00%	62.00%	38.00%
35	93.400	94.400	1.000		20.00%	40.00%	60.00%
18	91.000	91.700	0.700		14.00%	20.00%	80.00%
10	102.800	103.100	0.300		6.00%	6.00%	94.00%
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
27 5011 14	1000	Sed+Sieve	Mass	5.400	33.400	Cum %	Cum %
27-Jan-14	T6S9	28.200	33.600	5.400	33.400	5.200	(g) 0.200
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf)
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(3/	() (3)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T8S3	29.600	34.700	5.100	34.600	5.000	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.000	0.200		6.06%	6.06%	93.94%
18	91.000	91.700	0.700		21.21%	27.27%	72.73%
35	93.400	95.000	1.600		48.48%	75.76%	24.24%
60	87.100	88.500	1.400		42.42%	118.18%	-18.18%
120	85.700	86.800	1.100		33.33%	151.52%	-51.52%
230	86.200	86.300	0.100		3.03%	154.55%	-54.55%
PAN	63.200	63.200	0.100		3.03%	157.58%	-57.58%
	т	. Mass (Mt)=	5.20	Total %=	157.58%		
		%Error =	1.96%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
Date	ID	Deaker (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	
27 Jan 14	TOC 4	20,400	24 700	F 200			(g)
27-Jan-14	T8S4	29.400	34.700	5.300	34.500	5.100	0.200
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	102.900	0.100		1.92%	1.92%	98.08%
18	91.000	91.500	0.500		9.62%	11.54%	88.46%
35	93.400	95.000	1.600		30.77%	42.31%	57.69%
60	87.100	88.900	1.800		34.62%	76.92%	23.08%
120	85.700	86.800	1.100		21.15%	98.08%	1.92%
230	86.200	86.200	0.000		0.00%	98.08%	1.92%
PAN	63.200	63.200	0.200	_	3.85%	101.92%	-1.92%
	т	. Mass (Mt)=	5.30	Total %=	101.92%		-
		%Error =	0.00%				
	Comple		B + Sediment		B + Dry	Sediment	Add PAN
Date	Sample ID	Beaker (g)		Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	
27-Jan-14	T8S5					mot oloning)	(g)
		29.500	34.800	5.300	34.600	5.100	(g) 0.200
	1000			5.300		5.100	0.200
Sieve #		Sed+Sieve	Mass	5.300	34.600	5.100 Cum %	0.200 Cum %
Sieve #	Sieve (g)	Sed+Sieve (g)	Mass Sediment (g)	5.300	34.600 Weight %	5.100 Cum % Ret	0.200 Cum % Pass
10	Sieve (g) 102.800	Sed+Sieve (g) 103.100	Mass Sediment (g) 0.300	5.300	34.600 Weight % 6.00%	5.100 Cum % Ret 6.00%	0.200 Cum % Pass 94.00%
10 18	Sieve (g) 102.800 91.000	Sed+Sieve (g) 103.100 91.400	Mass Sediment (g) 0.300 0.400	5.300	34.600 Weight % 6.00% 8.00%	5.100 Cum % Ret 6.00% 14.00%	0.200 Cum % Pass 94.00% 86.00%
10 18 35	Sieve (g) 102.800 91.000 93.400	Sed+Sieve (g) 103.100 91.400 94.600	Mass Sediment (g) 0.300 0.400 1.200	5.300	34.600 Weight % 6.00% 8.00% 24.00%	5.100 Cum % Ret 6.00% 14.00% 38.00%	0.200 Cum % Pass 94.00% 86.00% 62.00%
10 18 35 60	Sieve (g) 102.800 91.000 93.400 87.100	Sed+Sieve (g) 103.100 91.400 94.600 88.600	Mass Sediment (g) 0.300 0.400 1.200 1.500	5.300	34.600 Weight % 6.00% 8.00% 24.00% 30.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00%
10 18 35 60 120	Sieve (g) 102.800 91.000 93.400 87.100 85.700	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400	5.300	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00%
10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000	5.300	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00%
10 18 35 60 120	Sieve (g) 102.800 91.000 93.400 87.100 85.700	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400	5.300	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00%
10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000	5.300 Total %=	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00%
10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200		34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00%
10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 63.200	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00		34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00%
10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 63.200	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 -5.66%	Total %=	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00% 0.00%
10 18 35 60 120 230 PAN	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T Sample	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 Mass (Mt)= %Error =	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 -5.66% B + Sediment	Total %=	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00% 0.00% Add PAN
10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 63.200	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 -5.66%	Total %=	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after	0.200 Cum % Pass 94.00% 62.00% 32.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf)
10 18 35 60 120 230 PAN Date	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T Sample ID	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 Mass (Mt)= %Error = Beaker (g)	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 -5.66% B + Sediment (g)	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g)	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving)	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00% 0.00% Add PAN (Mi-Mf) (g)
10 18 35 60 120 230 PAN	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T Sample	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 28.600	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 -5.66% B + Sediment (g) 34.000	Total %=	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200	0.200 Cum % Pass 94.00% 86.00% 62.00% 32.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200
10 18 35 60 120 230 PAN Date 27-Jan-14	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T Sample ID T8S6	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 5.00 -5.66% B + Sediment (g) 34.000 Mass	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum %	0.200 Cum % Pass 94.00% 62.00% 32.00% 4.00% 0.00% A.00% 0.00% A.00% 0.00% Cum %
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	Sieve (g) 102.800 91.000 93.400 85.700 85.700 63.200 63.200 T Sample ID T8S6 Sieve (g)	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g)	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g)	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight %	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret	0.200 Cum % Pass 94.00% 62.00% 32.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass
10 18 35 60 120 230 PAN Date 27-Jan-14	Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T Sample ID T8S6	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 5.00 -5.66% B + Sediment (g) 34.000 Mass	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 4.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum %	0.200 Cum % Pass 94.00% 62.00% 32.00% 4.00% 0.00% A.00% 0.00% A.00% 0.00% Cum %
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	Sieve (g) 102.800 91.000 93.400 85.700 85.700 63.200 63.200 T Sample ID T8S6 Sieve (g)	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g)	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g)	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight %	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret	0.200 Cum % Pass 94.00% 62.00% 32.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	Sieve (g) 102.800 91.000 93.400 85.700 85.700 63.200 63.200 T Sample ID T8S6 Sieve (g) 102.800	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 63.200 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000	Mass Sediment (g) 0.300 0.400 1.200 1.500 1.400 0.000 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g) 0.200	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 4.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 4.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass 96.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	Sieve (g) 102.800 91.000 83.400 85.700 86.200 63.200 T Sample ID T8S6 Sieve (g) 102.800 91.000	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 .Mass (Mt)= %Error = %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.600	Mass Sediment (g) 0.300 0.400 1.200 1.500 0.200 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g) 0.200 0.600	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 4.00% 12.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 4.00% 16.00%	0.200 Cum % Pass 94.00% 62.00% 32.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass 96.00% 84.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	Sieve (g) 102.800 91.000 83.400 85.700 86.200 63.200 T Sample ID T8S6 Sieve (g) 102.800 91.000 93.400 87.100	Sed+Sieve (g) 103.100 91.400 94.600 88.600 87.100 86.200 63.200 . Mass (Mt)= %Error = %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.600 94.900 88.900	Mass Sediment (g) 0.300 0.400 1.200 1.500 0.200 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g) 0.200 0.600 1.500 1.800	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 4.00% 12.00% 30.00% 36.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 4.00% 16.00% 46.00% 82.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass 96.00% 84.00% 54.00% 18.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 83.400 85.700 86.200 63.200 T Sample ID T8S6 Sieve (g) 102.800 91.000 93.400 85.700	Sed+Sieve (g) 103.100 94.600 88.600 87.100 86.200 63.200 . Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.600 94.900 88.900 86.700	Mass Sediment (g) 0.300 0.400 1.200 1.500 0.200 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g) 0.200 0.600 1.500 1.800 1.000	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 4.00% 12.00% 30.00% 36.00% 20.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 4.00% 16.00% 82.00% 102.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass 96.00% 84.00% 54.00% 18.00% -2.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 85.700 86.200 63.200 T Sample ID T8S6 Sieve (g) 102.800 91.000 93.400 85.700 86.200	Sed+Sieve (g) 103.100 94.600 88.600 87.100 86.200 63.200 . Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.600 94.900 88.900 86.700 86.300	Mass Sediment (g) 0.300 0.400 1.200 1.500 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g) 0.200 0.600 1.500 1.800 1.800 1.000	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 4.00% 12.00% 30.00% 36.00% 2.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 4.00% 16.00% 46.00% 82.00% 102.00%	0.200 Cum % Pass 94.00% 62.00% 32.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass 96.00% 84.00% 54.00% 18.00% -2.00% -4.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	Sieve (g) 102.800 91.000 93.400 85.700 86.200 63.200 T Sample ID T8S6 Sieve (g) 102.800 91.000 93.400 85.700 86.200 63.200	Sed+Sieve (g) 103.100 94.600 88.600 87.100 86.200 63.200 • Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.600 94.900 88.900 86.700 86.300 63.200	Mass Sediment (g) 0.300 0.400 1.200 1.500 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g) 0.200 0.600 1.500 1.800 1.800 1.000 0.100 0.200	Total %= Sediment (Mi) (g) 5.400	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 4.00% 12.00% 30.00% 36.00% 20.00% 2.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 4.00% 16.00% 82.00% 102.00%	0.200 Cum % Pass 94.00% 86.00% 62.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass 96.00% 84.00% 54.00% 18.00% -2.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	Sieve (g) 102.800 91.000 93.400 85.700 86.200 63.200 T Sample ID T8S6 Sieve (g) 102.800 91.000 93.400 85.700 86.200 63.200	Sed+Sieve (g) 103.100 94.600 88.600 87.100 86.200 63.200 . Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.600 94.900 88.900 86.700 86.300	Mass Sediment (g) 0.300 0.400 1.200 1.500 0.200 5.00 -5.66% B + Sediment (g) 34.000 Mass Sediment (g) 0.200 0.600 1.500 1.800 1.800 1.000	Total %= Sediment (Mi) (g)	34.600 Weight % 6.00% 8.00% 24.00% 30.00% 28.00% 0.00% 4.00% 100.00% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 4.00% 12.00% 30.00% 36.00% 2.00%	5.100 Cum % Ret 6.00% 14.00% 38.00% 68.00% 96.00% 96.00% 100.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 4.00% 16.00% 46.00% 82.00% 102.00%	0.200 Cum % Pass 94.00% 62.00% 32.00% 4.00% 4.00% 0.00% Add PAN (Mi-Mf) (g) 0.200 Cum % Pass 96.00% 84.00% 54.00% 18.00% -2.00% -4.00%

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	Ē		(9)	(1011) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T8S7	28.000	33.200	5.200	33.200	5.200	0.000
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
			,		-		
10	102.800	103.100	0.300		6.00%	6.00%	94.00%
18	91.000	91.600	0.600		12.00%	18.00%	82.00%
35	93.400	95.300	1.900		38.00%	56.00%	44.00%
60	87.100	88.600	1.500		30.00%	86.00%	14.00%
120	85.700	86.500	0.800		16.00%	102.00%	-2.00%
230	86.200	86.300	0.100		2.00%	104.00%	-4.00%
PAN	63.200	63.200	0.000		0.00%	104.00%	-4.00%
FAN				Tatal 0/		104.0078	-4.00%
	1	. Mass (Mt)=	5.20	Total %=	104.00%		
		%Error =	0.00%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T8S8	29.500	34.800	5.300	34.600	5.100	0.200
Sierre #	Cieve (a)	Sed+Sieve	Mass		Maint 0/	Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.800	103.000	0.200		3.92%	3.92%	96.08%
18	91.000	91.500	0.500		9.80%	13.73%	86.27%
35	93.400	95.700	2.300		45.10%	58.82%	41.18%
60	87.100	88.800	1.700		33.33%	92.16%	7.84%
120	85.700	85.900	0.200		3.92%	96.08%	3.92%
230	86.200	86.400	0.200		3.92%	100.00%	0.00%
PAN	63.200	63.200	0.200		3.92%	103.92%	-3.92%
	т	. Mass (Mt)=	5.30	Total %=	103.92%		
		%Error =	0.00%				
					B + Drv	Sediment	Add PAN
Date	Sample	Beaker (q)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf) (g)
Date 27-Jan-14		28.300	(g) 33.500		Sediment (after	(Mf) (after wet sieving) 5.200	(Mi-Mf) (g) 0.000
27-Jan-14	ID T8S9	28.300 Sed+Sieve	(g) 33.500 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 33.500	(Mf) (after wet sieving) 5.200 Cum %	(Mi-Mf) (g) 0.000 Cum %
	ID	28.300	(g) 33.500	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.200	(Mi-Mf) (g) 0.000
27-Jan-14	ID T8S9	28.300 Sed+Sieve	(g) 33.500 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 33.500	(Mf) (after wet sieving) 5.200 Cum %	(Mi-Mf) (g) 0.000 Cum %
27-Jan-14 Sieve #	ID T8S9 Sieve (g)	28.300 Sed+Sieve (g)	(g) 33.500 Mass Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight %	(Mf) (after wet sieving) 5.200 Cum % Ret	(Mi-Mf) (g) 0.000 Cum % Pass
27-Jan-14 Sieve # 10	ID T8S9 Sieve (g) 102.800 91.000	28.300 Sed+Sieve (g) 103.200 91.700	(g) 33.500 Mass Sediment (g) 0.400 0.700	(Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00%
27-Jan-14 Sieve # 10 18 35	ID T8S9 Sieve (g) 102.800 91.000 93.400	28.300 Sed+Sieve (g) 103.200 91.700 94.600	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200	(Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00%
27-Jan-14 Sieve # 10 18 35 60	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00%
27-Jan-14 Sieve # 10 18 35 60 120	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800	(Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 Mass (Mt)=	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.800 0.000 0.000 5.10	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 Mass (Mt)=	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92%	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 54.00% 14.00% -2.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T Sample	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 . Mass (Mt)= %Error =	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.800 0.000 0.000 5.10	(Mi) (g) 5.200 Total %= Sediment	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 46.00% 102.00% 102.00% 102.00% Sediment	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00% -2.00% -2.00% Add PAN
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 Mass (Mt)=	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92%	(Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 46.00% 102.00% 102.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00% -2.00% -2.00% Add PAN (Mi-Mf)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 85.700 63.200 T Sample ID	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 63.200 . Mass (Mt)= %Error = Beaker (g)	(g) Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g)	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 46.00% 102.00% 102.00% 102.00% 102.00% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 54.00% -2.00% -2.00% -2.00% -2.00% Add PAN (Mi-Mf) (g)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T Sample	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 . Mass (Mt)= %Error =	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 0.000 5.10 -1.92% B + Sediment	(Mi) (g) 5.200 Total %= Sediment	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 46.00% 102.00% 102.00% 102.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00% -2.00% -2.00% Add PAN (Mi-Mf)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 85.700 63.200 T Sample ID	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 63.200 . Mass (Mt)= %Error = Beaker (g)	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 46.00% 102.00% 102.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum %	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00% -2.00% -2.00% -2.00% -2.00% (Mi-Mf) (g) 0.000 Cum %
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 85.700 63.200 T Sample ID	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 46.00% 102.00% 102.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% -2.00% -2.00% -2.00% -2.00% Add PAN (Mi-Mf) (g) 0.000
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 T Sample ID T8S10	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 46.00% 102.00% 102.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum %	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00% -2.00% -2.00% -2.00% -2.00% (Mi-Mf) (g) 0.000 Cum %
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 63.200 T Sample ID T8S10 Sieve (g) 102.800	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% 14.00% -2.00% -2.00% -2.00% -2.00% -2.00% (Mi-Mf) (g) 0.000 Cum % Pass 94.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 63.200 T Sample ID T8S10 Sieve (g) 102.800 91.000	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.300	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300 0.300	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 102.00% 102.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.00% 12.00%	(Mi-Mf) (g) 0.000 Cum % Pass 92.00% 78.00% 54.00% -2.00% -2.00% -2.00% -2.00% -2.00% (Mi-Mf) (g) 0.000 Cum % Pass 94.00% 88.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 7 T Sample ID T8S10 Sieve (g) 102.800 91.000 93.400	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.300 95.200	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300 0.300 1.800	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 40.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00% 6.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00% 102.00% 102.00% 102.00% 5.200 Cum % Ret 6.00% 12.00% 48.00%	(Mi-Mf) (g) 0.000 Pass 92.00% 54.00% 14.00% -2.00% -2.00% -2.00% -2.00% 0.000 Min-Mf) (g) 0.000 Cum % Pass 94.00% 88.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 86.200 63.200 7 T Sample ID T8S10 Sieve (g) 102.800 91.000 93.400 87.100	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.300 95.200 89.500	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300 0.300 0.300 1.800 2.400	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 0.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00% 6.00% 36.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00% 102.00% 102.00% 102.00% 102.00% 102.00% 102.00% 102.00% 8ediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.00% 12.00% 48.00% 96.00%	(Mi-Mf) (g) 0.000 Pass 92.00% 54.00% 14.00% -2.00% -2.00% -2.00% -2.00% 0.000 Cum % Pass 94.00% 88.00% 52.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 120	ID T8S9 Sieve (g) 91.000 93.400 87.100 85.700 86.200 63.200 T Sample ID T8S10 Sieve (g) 102.800 91.000 93.400 85.700	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.300 95.200 89.500	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300 0.300 1.800 2.400 0.300	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 0.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00% 6.00% 48.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00% 102.00% 102.00% Cum % Ret 6.00% 12.00% 48.00% 96.00%	(Mi-Mf) (g) 0.000 Pass 92.00% 54.00% 14.00% -2.00% -2.00% -2.00% Add PAN (Mi-Mf) (g) 0.000 Cum % Pass 94.00% 88.00% 52.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 63.200 63.200 T Sample ID T8S10 Sieve (g) 102.800 91.000 93.400 85.700 86.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.300 95.200 89.500	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300 0.300 1.800 2.400 0.300 0.300 0.300	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 0.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00% 6.00% 36.00% 48.00% 6.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00% 102.00% 102.00% Cum % Ret 6.00% 12.00% 48.00% 96.00% 102.00%	(Mi-Mf) (g) 0.000 Pass 92.00% 54.00% 14.00% -2.00% -2.00% -2.00% Mi-Mf) (g) 0.000 Cum % Pass 94.00% 88.00% 52.00% 4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 120	ID T8S9 Sieve (g) 91.000 93.400 87.100 85.700 86.200 63.200 T Sample ID T8S10 Sieve (g) 102.800 91.000 93.400 85.700	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.300 95.200 89.500	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300 0.300 1.800 2.400 0.300	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 0.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00% 6.00% 48.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00% 102.00% 102.00% Cum % Ret 6.00% 12.00% 48.00% 96.00%	(Mi-Mf) (g) 0.000 Pass 92.00% 78.00% 54.00% 14.00% -2.00% -2.00% -2.00% 78.00% 84.00% 88.00% 52.00% 4.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 63.200 7 Sample ID T8S10 Sieve (g) 102.800 91.000 93.400 85.700 85.700 86.200 63.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 . Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.300 95.200 89.500 86.000 86.300	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300 0.300 1.800 2.400 0.300 0.300 0.300	(Mi) (g) 5.200 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 40.00% 0.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00% 6.00% 36.00% 48.00% 6.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00% 102.00% 102.00% Cum % Ret 6.00% 12.00% 48.00% 96.00% 102.00%	(Mi-Mf) (g) 0.000 Pass 92.00% 54.00% 14.00% -2.00% -2.00% -2.00% Mi-Mf) (g) 0.000 Cum % Pass 94.00% 88.00% 52.00% 4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T8S9 Sieve (g) 102.800 91.000 93.400 87.100 85.700 63.200 7 Sample ID T8S10 Sieve (g) 102.800 91.000 93.400 85.700 85.700 86.200 63.200	28.300 Sed+Sieve (g) 103.200 91.700 94.600 89.100 86.500 86.200 63.200 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.300 95.200 89.500 86.000 86.300 63.200	(g) 33.500 Mass Sediment (g) 0.400 0.700 1.200 2.000 0.800 0.000 5.10 -1.92% B + Sediment (g) 34.500 Mass Sediment (g) 0.300 0.300 1.800 2.400 0.300 0.300 1.800 2.400 0.300 0.100 0.000	(Mi) (g) 5.200 Total %= Sediment (Mi) (g) 5.200	Sediment (after wet sieved) (g) 33.500 Weight % 8.00% 14.00% 24.00% 16.00% 0.00% 0.00% 102.00% B + Dry Sediment (after wet sieved) (g) 34.500 Weight % 6.00% 36.00% 48.00% 6.00%	(Mf) (after wet sieving) 5.200 Cum % Ret 8.00% 22.00% 46.00% 86.00% 102.00% 102.00% 102.00% 102.00% Cum % Ret 6.00% 12.00% 48.00% 96.00% 102.00%	(Mi-Mf) (g) 0.000 Pass 92.00% 54.00% 14.00% -2.00% -2.00% -2.00% Mi-Mf) (g) 0.000 Cum % Pass 94.00% 88.00% 52.00% 4.00%

							Add PAN
Data	Sample	Decker (a)	B + Sediment	Sediment	B + Dry	Sediment	
Date	D	Beaker (g)	(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf)
						0,	(g)
27-Jan-14	T9S1	29.500	34.600	5.100	34.300	4.800	0.300
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.000	0.100		1.92%	1.92%	98.08%
18	91.000	91.700	0.700		13.46%	15.38%	84.62%
35	93.400	94.600	1.200		23.08%	38.46%	61.54%
60	87.200	88.700	1.500		28.85%	67.31%	32.69%
120	85.700	86.800	1.100		21.15%	88.46%	11.54%
230	86.200	86.300	0.100		1.92%	90.38%	9.62%
PAN	63.300	63.300	0.300		5.77%	96.15%	3.85%
		. Mass (Mt)=	5.00	Total %=	96.15%		
	-	%Error =	-1.96%	10101.70			
		/aLITOT =	-1.50 /8				
					D · Dr.	C a diana a st	Add PAN
Date	Sample	Bookor (a)	B + Sediment	Sediment	B + Dry Sodimont (offor	Sediment	
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf)
27 1	TOOO	20,200	22,000	F 700	, (0,	0,	(g)
27-Jan-14	T9S2	28.200	33.900	5.700	33.500	5.300	0.400
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.000	0.100		2.50%	2.50%	97.50%
18	91.000	91.800	0.800		20.00%	22.50%	77.50%
35	93.400	94.800	1.400		35.00%	57.50%	42.50%
60	87.200	88.700	1.500		37.50%	95.00%	5.00%
120	85.700	87.100	1.400		35.00%	130.00%	-30.00%
230	86.200	86.200	0.000		0.00%	130.00%	-30.00%
PAN	63.300	63.300	0.400		10.00%	140.00%	-40.00%
	т	. Mass (Mt)=	5.60	Total %=	140.00%		
		%Error =	-1.75%				
		%Error =	-1.75%				
		%Error =	-1.75%			Sediment	Add PAN
Date	Sample		-1.75% B + Sediment	Sediment	B + Dry Sediment (after	Sediment	Add PAN
Date	Sample ID	%Error = Beaker (g)		Sediment (Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	Beaker (g)	B + Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf) (g)
Date 27-Jan-14		Beaker (g) 29.400	B + Sediment (g) 34.500		Sediment (after	(Mf) (after wet sieving) 5.000	(Mi-Mf) (g) 0.100
27-Jan-14	ID T9S3	Beaker (g) 29.400 Sed+Sieve	B + Sediment (g) 34.500 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 34.400	(Mf) (after wet sieving) 5.000 Cum %	(Mi-Mf) (g) 0.100 Cum %
27-Jan-14 Sieve #	ID T9S3 Sieve (g)	Beaker (g) 29.400 Sed+Sieve (g)	B + Sediment (g) 34.500 Mass Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret	(Mi-Mf) (g) 0.100 Cum % Pass
27-Jan-14 Sieve # 10	ID T9S3 Sieve (g) 102.900	Beaker (g) 29.400 Sed+Sieve (g) 103.100	B + Sediment (g) 34.500 Mass Sediment (g) 0.200	(Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94%
27-Jan-14 Sieve # 10 18	ID T9S3 Sieve (g) 102.900 91.000	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500	(Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79%
27-Jan-14 Sieve # 10 18 35	ID T9S3 Sieve (g) 102.900 91.000 93.400	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200	(Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42%
27-Jan-14 Sieve # 10 18 35 60	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700	(Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09%
27-Jan-14 Sieve # 10 18 35 60 120	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700 1.300	(Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700 1.300 0.100	(Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52%
27-Jan-14 Sieve # 10 18 35 60 120	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700 1.300 0.100 0.100	(Mi) (g) 5.100	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700 1.300 0.100	(Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700 1.300 0.100 0.100	(Mi) (g) 5.100	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 . Mass (Mt)=	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700 1.300 0.100 0.100 5.10	(Mi) (g) 5.100	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 . Mass (Mt)=	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.700 1.300 0.100 0.100 5.10 0.00%	(Mi) (g) 5.100	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 . Mass (Mt)=	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.700 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment	(Mi) (g) 5.100 Total %= Sediment	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 88.900 87.000 86.300 63.300 Mass (Mt)= %Error =	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.700 1.300 0.100 0.100 5.10 0.00%	(Mi) (g) 5.100	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Add PAN
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 88.900 87.000 86.300 63.300 Mass (Mt)= %Error =	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.700 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment	(Mi) (g) 5.100 Total %= Sediment	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% -54.55% Add PAN (Mi-Mf)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID T9S3 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g)	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.700 1.300 0.100 0.100 5.10 0.00% B + Sediment (g)	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Add PAN (Mi-Mf) (g)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID T9S3 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.700 1.700 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Add PAN (Mi-Mf) (g) 0.300
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14	ID T9S3 Sieve (g) 102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S4	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700 1.700 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum %	(Mi-Mf) (g) 0.100 Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Add PAN (Mi-Mf) (g) 0.300 Cum %
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	ID T9S3 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID T9S4 Sieve (g)	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g)	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.700 1.700 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g)	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum % Ret	(Mi-Mf) (g) 0.100 Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Add PAN (Mi-Mf) (g) 0.300 Cum % Pass
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T9S4 Sieve (g) 102.900 91.000	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.300	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.700 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.300	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300 Weight % 1.92% 5.77%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum % Ret 1.92% 7.69%	(Mi-Mf) (g) 0.100 Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% (Mi-Mf) (g) 0.300 Cum % Pass 98.08% 92.31%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T9S4 Sieve (g) 102.900 91.000 93.400	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.300 93.800	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.700 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.300 0.400	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300 Weight % 1.92% 5.77% 7.69%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum % Ret 1.92% 7.69% 15.38%	(Mi-Mf) (g) 0.100 Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% M Mi-Mf) (g) 0.300 Cum % Pass 98.08% 92.31%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	ID T9S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T9S4 Sieve (g) 102.900 91.000 93.400 87.200	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.300 93.800 89.200	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 1.200 1.200 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.300 0.400 2.000	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300 Weight % 1.92% 5.77% 7.69% 38.46%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum % Ret 1.92% 7.69% 15.38% 53.85%	(Mi-Mf) (g) 0.100 Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% M Mi-Mf) (g) 0.300 Cum % Pass 98.08% 92.31% 84.62%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	ID T9S3 Sieve (g) 102.900 93.400 87.200 85.700 86.200 63.300 T Sample ID T9S4 Sieve (g) 102.900 91.000 93.400 85.700	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.300 93.800 89.200 87.400	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 1.200 1.200 1.700 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.300 0.400 2.000 1.700	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300 Weight % 1.92% 5.77% 7.69% 38.46% 32.69%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum % Ret 1.92% 7.69% 15.38% 53.85% 86.54%	(Mi-Mf) (g) 0.100 Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Add PAN (Mi-Mf) (g) 0.300 Cum % Pass 98.08% 92.31% 84.62% 46.15%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T9S3 Sieve (g) 102.900 93.400 87.200 85.700 86.200 63.300 T Sample ID T9S4 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.300 93.800 89.200 87.400 86.200	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.200 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.300 0.400 2.000 1.700 0.000	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300 Weight % 1.92% 5.77% 7.69% 38.46% 32.69% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 150.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum % Ret 1.92% 7.69% 15.38% 53.85% 86.54%	(Mi-Mf) (g) 0.100 Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Add PAN (Mi-Mf) (g) 0.300 Cum % Pass 98.08% 92.31% 84.62% 46.15% 13.46%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	ID T9S3 Sieve (g) 102.900 93.400 87.200 85.700 86.200 63.300 T Sample ID T9S4 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.300 93.800 89.200 87.400 86.200 63.300	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.200 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.300 0.400 2.000 1.700 0.300	(Mi) (g) 5.100 Total %= Sediment (Mi) (g) 5.000	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300 Weight % 1.92% 5.77% 7.69% 38.46% 32.69% 0.00% 5.77%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 57.58% 109.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum % Ret 1.92% 7.69% 15.38% 53.85% 86.54%	(Mi-Mf) (g) 0.100 Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Add PAN (Mi-Mf) (g) 0.300 Cum % Pass 98.08% 92.31% 84.62% 46.15% 13.46%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T9S3 Sieve (g) 102.900 93.400 87.200 85.700 86.200 63.300 T Sample ID T9S4 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.100 91.500 94.600 88.900 87.000 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.600 Sed+Sieve (g) 103.000 91.300 93.800 89.200 87.400 86.200	B + Sediment (g) 34.500 Mass Sediment (g) 0.200 0.500 1.200 1.200 1.200 1.300 0.100 0.100 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.100 0.300 0.400 2.000 1.700 0.000	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.400 Weight % 6.06% 15.15% 36.36% 51.52% 39.39% 3.03% 3.03% 154.55% B + Dry Sediment (after wet sieved) (g) 33.300 Weight % 1.92% 5.77% 7.69% 38.46% 32.69% 0.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 6.06% 21.21% 150.09% 148.48% 151.52% 154.55% Sediment (Mf) (after wet sieving) 4.700 Cum % Ret 1.92% 7.69% 15.38% 53.85% 86.54%	(Mi-Mf) (g) 0.100 Cum % Pass 93.94% 78.79% 42.42% -9.09% -48.48% -51.52% -54.55% Cum % (Mi-Mf) (g) 0.300 Cum % Pass 98.08% 98.08% 92.31% 84.62% 46.15% 13.46%

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	.5		(9)	() (9)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T9S5	28.500	33.600	5.100	33.500	5.000	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.100	0.100		2.00%	2.00%	98.00%
35	93.400	94.800	1.400		28.00%	30.00%	70.00%
60	87.200	89.600	2.400		48.00%	78.00%	22.00%
120	85.700	86.700	1.000		20.00%	98.00%	2.00%
230	86.200	86.200	0.000		0.00%	98.00%	2.00%
PAN	63.300	63.300	0.100		2.00%	100.00%	0.00%
	Т	. Mass (Mt)=	5.00	Total %=	100.00%		
		%Error =	-1.96%				
	Comple			Codimont	B + Dry	Sediment	Add PAN
Date	Sample ID	Beaker (g)	B + Sediment	Sediment (Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	Ш		(g)	(IVII) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T9S6	29.300	34.600	5.300	34.500	5.200	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.000	0.100		2.00%	2.00%	98.00%
10							
	91.000	91.300	0.300		6.00%	8.00%	92.00%
35	93.400	94.400	1.000		20.00%	28.00%	72.00%
60	87.200	89.200	2.000		40.00%	68.00%	32.00%
120	85.700	87.200	1.500		30.00%	98.00%	2.00%
230	86.200	86.400	0.200		4.00%	102.00%	-2.00%
PAN	63.300	63.300	0.100		2.00%	104.00%	-4.00%
	т	. Mass (Mt)=	5.20	Total %=	104.00%		
		%Error =	-1.89%				
	<u> </u>				B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	,	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T9S7	29.400	34.500	5.100	34.400	5.000	
							0.100
		Cod. Ciova	Maga				0.100
Siovo #	Sieve (a)	Sed+Sieve	Mass Sediment (g)			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Cum % Ret	Cum % Pass
10	102.900	(g) 103.700	Sediment (g) 0.800		Weight % 16.00%	Cum % Ret 16.00%	Cum % Pass 84.00%
10 18	102.900 91.000	(g) 103.700 91.900	Sediment (g) 0.800 0.900		Weight % 16.00% 18.00%	Cum % Ret 16.00% 34.00%	Cum % Pass 84.00% 66.00%
10 18 35	102.900 91.000 93.400	(g) 103.700 91.900 95.500	Sediment (g) 0.800 0.900 2.100		Weight % 16.00% 18.00% 42.00%	Cum % Ret 16.00% 34.00% 76.00%	Cum % Pass 84.00% 66.00% 24.00%
10 18 35 60	102.900 91.000 93.400 87.200	(g) 103.700 91.900 95.500 88.000	Sediment (g) 0.800 0.900 2.100 0.800		Weight % 16.00% 18.00% 42.00% 16.00%	Cum % Ret 16.00% 34.00% 76.00% 92.00%	Cum % Pass 84.00% 66.00% 24.00% 8.00%
10 18 35 60 120	102.900 91.000 93.400 87.200 85.700	(g) 103.700 91.900 95.500 88.000 85.900	Sediment (g) 0.800 0.900 2.100 0.800 0.200		Weight % 16.00% 18.00% 42.00% 16.00% 4.00%	Cum % Ret 16.00% 34.00% 76.00% 92.00% 96.00%	Cum % Pass 84.00% 66.00% 24.00% 8.00% 4.00%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200	(g) 103.700 91.900 95.500 88.000 85.900 86.400	Sediment (g) 0.800 2.100 0.800 0.200 0.200		Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 4.00%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00%	Cum % Pass 84.00% 66.00% 24.00% 8.00% 4.00% 0.00%
10 18 35 60 120	102.900 91.000 93.400 87.200 85.700	(g) 103.700 91.900 95.500 88.000 85.900	Sediment (g) 0.800 0.900 2.100 0.800 0.200		Weight % 16.00% 18.00% 42.00% 16.00% 4.00%	Cum % Ret 16.00% 34.00% 76.00% 92.00% 96.00%	Cum % Pass 84.00% 66.00% 24.00% 8.00% 4.00%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.700 91.900 95.500 88.000 85.900 86.400	Sediment (g) 0.800 2.100 0.800 0.200 0.200	Total %≔	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 4.00%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00%	Cum % Pass 84.00% 66.00% 24.00% 8.00% 4.00% 0.00%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300	Sediment (g) 0.800 2.100 0.800 0.200 0.200 0.200 0.100	Total %=	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 4.00% 2.00%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00%	Cum % Pass 84.00% 66.00% 24.00% 8.00% 4.00% 0.00%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)=	Sediment (g) 0.800 2.100 0.800 0.200 0.200 0.100 5.10	Total %=	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 4.00% 2.00%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00%	Cum % Pass 84.00% 66.00% 24.00% 8.00% 4.00% 0.00%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)=	Sediment (g) 0.800 2.100 0.800 0.200 0.200 0.100 5.10 0.00%		Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00%	Cum % Pass 84.00% 66.00% 24.00% 8.00% 4.00% 0.00%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)=	Sediment (g) 0.800 0.900 2.100 0.800 0.200 0.200 0.100 5.10 0.00% B + Sediment	Sediment	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 4.00% 2.00%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00%	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN
10 18 35 60 120 230 PAN	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error =	Sediment (g) 0.800 2.100 0.800 0.200 0.200 0.100 5.10 0.00%		Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00% B + Dry	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% Sediment	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN (Mi-Mf)
10 18 35 60 120 230 PAN	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = Beaker (g)	Sediment (g) 0.800 0.900 2.100 0.800 0.200 0.200 0.100 5.10 0.00% B + Sediment (g)	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g)	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% Sediment (Mf) (after wet sieving)	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN (Mi-Mf) (g)
10 18 35 60 120 230 PAN	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.300	Sediment (g) 0.800 2.100 0.800 0.200 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600	Sediment	Weight % 16.00% 18.00% 42.00% 4.00% 4.00% 2.00% 102.00% B + Dry Sediment (after	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% Sediment (Mf) (after wet sieving) 5.200	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN (Mi-Mf) (g) 0.100
10 18 35 60 120 230 PAN Date 27-Jan-14	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T9S8	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve	Sediment (g) 0.800 0.900 2.100 0.800 0.200 0.200 0.100 5.10 5.10 B + Sediment (g) 33.600 Mass	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 4.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum %	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum %
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	102.900 91.000 93.400 87.200 85.700 63.300 T Sample ID T9S8 Sieve (g)	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g)	Sediment (g) 0.800 0.900 2.100 0.800 0.200 0.100 5.10 5.10 B + Sediment (g) 33.600 Mass Sediment (g)	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 4.00% 2.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight %	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S8 Sieve (g) 102.900	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 102.900	Sediment (g) 0.800 0.900 2.100 0.800 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.000	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00%	Cum % Pass 84.00% 66.00% 24.00% 4.00% -2.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S8 Sieve (g) 102.900 91.000	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 102.900 91.100	Sediment (g) 0.800 0.900 2.100 0.200 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.000 0.100	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 4.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 1.96%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 1.96%	Cum % Pass 84.00% 66.00% 24.00% 4.00% -2.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 98.04%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S8 Sieve (g) 102.900 91.000 93.400	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 102.900 91.100 93.600	Sediment (g) 0.800 0.900 2.100 0.200 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.000 0.100 0.100	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 1.96% 3.92%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 1.96% 5.88%	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 98.04% 94.12%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S8 Sieve (g) 102.900 91.000 93.400 87.200	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = 8eaker (g) 28.300 Sed+Sieve (g) 102.900 91.100 93.600	Sediment (g) 0.800 0.900 2.100 0.200 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.000 0.100 0.200 2.800	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 1.96% 3.92% 54.90%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 1.96% 5.88% 60.78%	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 98.04% 94.12% 39.22%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S8 Sieve (g) 102.900 91.000 93.400	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 102.900 91.100 93.600	Sediment (g) 0.800 0.900 2.100 0.200 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.000 0.100 0.100	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 1.96% 3.92%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 1.96% 5.88%	Cum % Pass 84.00% 66.00% 24.00% 4.00% 0.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 98.04% 94.12%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S8 Sieve (g) 102.900 91.000 93.400 87.200	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = 8eaker (g) 28.300 Sed+Sieve (g) 102.900 91.100 93.600	Sediment (g) 0.800 0.900 2.100 0.200 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.000 0.100 0.200 2.800	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 1.96% 3.92% 54.90%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 1.96% 5.88% 60.78%	Cum % Pass 84.00% 66.00% 24.00% 4.00% -2.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 98.04% 94.12% 39.22%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S8 Sieve (g) 102.900 91.000 93.400 85.700	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = 8eaker (g) 28.300 Sed+Sieve (g) 102.900 91.100 93.600 90.000 87.700	Sediment (g) 0.800 0.900 2.100 0.200 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.000 0.100 0.200 2.800 2.000	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 4.00% 4.00% 2.00% 102.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 1.96% 3.92% 54.90% 39.22%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 1.96% 5.88% 60.78% 100.00%	Cum % Pass 84.00% 66.00% 24.00% 4.00% -2.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 98.04% 94.12% 39.22% 0.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T9S8 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.700 91.900 95.500 88.000 85.900 86.400 63.300 Mass (Mt)= %Error = 8eaker (g) 28.300 Sed+Sieve (g) 102.900 91.100 93.600 90.000 87.700 86.300	Sediment (g) 0.800 0.900 2.100 0.200 0.200 0.100 5.10 0.00% B + Sediment (g) 33.600 Mass Sediment (g) 0.000 0.100 0.200 2.800 2.000 0.100	Sediment (Mi) (g)	Weight % 16.00% 18.00% 42.00% 16.00% 4.00% 2.00% 102.00% 102.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 1.96% 3.92% 54.90% 39.22% 1.96%	Cum % Ret 16.00% 34.00% 92.00% 96.00% 100.00% 102.00% 102.00% Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 0.00% 1.96% 5.88% 60.78% 100.00%	Cum % Pass 84.00% 66.00% 24.00% 4.00% -2.00% -2.00% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 100.00% 98.04% 94.12% 39.22% 0.00% -1.96%

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(9)	(111) (9)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T9S9	28.200	33.500	5.300	33.300	5.100	0.200
	.	Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.700	0.800		16.00%	16.00%	84.00%
18	91.000	92.100	1.100		22.00%	38.00%	62.00%
35	93.400	94.500	1.100		22.00%	60.00%	40.00%
60	87.200	88,400	1.200		24.00%	84.00%	16.00%
120	85.700	86.400	0.700		14.00%	98.00%	2.00%
230	86.200	86.400	0.200		4.00%	102.00%	-2.00%
PAN	63.300	63.300	0.200		4.00%	106.00%	-6.00%
	т	. Mass (Mt)=	5.30	Total %=	106.00%		
		%Error =	0.00%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
Date	ID	Dealter (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	
		20 700			=.	0,	(g)
27-Jan-14	T9S10	29.700	34.900	5.200	34.800	5.100	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	104.500	1.600		32.00%	32.00%	68.00%
18	91.000	92.800	1.800		36.00%	68.00%	32.00%
35	93.400	94.500	1.100		22.00%	90.00%	10.00%
60	87.200	87.400	0.200		4.00%	94.00%	6.00%
120	85.700	85.900	0.200		4.00%	98.00%	2.00%
230	86.200	86.400	0.200		4.00%	102.00%	-2.00%
PAN	63.300	63.300	0.100		2.00%	104.00%	-4.00%
	т	. Mass (Mt)=	5.20	Total %=	104.00%		
		%Error =	0.00%				
		78LITOT =	0.00 /8				
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(9)	() (3)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T10S1	28.100	33.400	5.300	33.200	5.100	0.200
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (a)	Sed+Sieve (a)	Mass Sediment (q)		Weight %	Cum % Ret	Cum % Pass
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	(g) 103.200	Sediment (g) 0.300		5.77%	Ret 5.77%	Pass 94.23%
10 18	102.900 91.000	(g) 103.200 91.500	Sediment (g) 0.300 0.500		5.77% 9.62%	Ret 5.77% 15.38%	Pass 94.23% 84.62%
10 18 35	102.900 91.000 93.400	(g) 103.200 91.500 94.300	Sediment (g) 0.300 0.500 0.900		5.77% 9.62% 17.31%	Ret 5.77% 15.38% 32.69%	Pass 94.23% 84.62% 67.31%
10 18 35 60	102.900 91.000 93.400 87.200	(g) 103.200 91.500	Sediment (g) 0.300 0.500 0.900 2.200		5.77% 9.62%	Ret 5.77% 15.38%	Pass 94.23% 84.62% 67.31% 25.00%
10 18 35	102.900 91.000 93.400	(g) 103.200 91.500 94.300	Sediment (g) 0.300 0.500 0.900		5.77% 9.62% 17.31%	Ret 5.77% 15.38% 32.69%	Pass 94.23% 84.62% 67.31%
10 18 35 60	102.900 91.000 93.400 87.200	(g) 103.200 91.500 94.300 89.400	Sediment (g) 0.300 0.500 0.900 2.200		5.77% 9.62% 17.31% 42.31%	Ret 5.77% 15.38% 32.69% 75.00%	Pass 94.23% 84.62% 67.31% 25.00%
10 18 35 60 120	102.900 91.000 93.400 87.200 85.700	(g) 103.200 91.500 94.300 89.400 86.900	Sediment (g) 0.300 0.500 0.900 2.200 1.200		5.77% 9.62% 17.31% 42.31% 23.08%	Ret 5.77% 15.38% 32.69% 75.00% 98.08%	Pass 94.23% 84.62% 67.31% 25.00% 1.92%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200	Total %	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08%	Pass 94.23% 84.62% 67.31% 25.00% 1.92%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 • Mass (Mt)=	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30	Total %=	5.77% 9.62% 17.31% 42.31% 23.08% 0.00%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08%	Pass 94.23% 84.62% 67.31% 25.00% 1.92%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200	Total %=	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08%	Pass 94.23% 84.62% 67.31% 25.00% 1.92%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 • Mass (Mt)=	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30	Total %=	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92%	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92%
10 18 35 60 120 230 PAN	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 Mass (Mt)= %Error =	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00%		5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment	Pass 94.23% 84.62% 67.31% 25.00% 1.92%
10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 • Mass (Mt)=	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment	Sediment	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92%
10 18 35 60 120 230 PAN	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 Mass (Mt)= %Error =	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00%		5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92% Add PAN
10 18 35 60 120 230 PAN	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 Mass (Mt)= %Error =	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment	Sediment	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92% -1.92% Add PAN (Mi-Mf)
10 18 35 60 120 230 PAN Date	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 29.800	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g)	Ret 5.77% 15.38% 32.69% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92% Add PAN (Mi-Mf) (g) 0.100
10 18 35 60 120 230 PAN Date 27-Jan-14	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S2	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum %	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92% -1.92% Model PAN (Mi-Mf) (g) 0.100 Cum %
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	102.900 91.000 93.400 87.200 85.700 63.300 T Sample ID T10S2 Sieve (g)	(g) 103.200 91.500 94.300 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g)	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g)	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight %	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92% -1.92% Model PAN (Mi-Mf) (g) 0.100 Cum % Pass
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S2 Sieve (g) 102.900	(g) 103.200 91.500 94.300 89.400 86.900 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 103.000	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50%	Pass 94.23% 84.62% 67.31% 25.00% 1.92% 1.92% -1.92% -1.92% M (Mi-Mf) (g) 0.100 Cum % Pass 97.50%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T10S2 Sieve (g) 102.900 91.000	(g) 103.200 91.500 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 103.000 91.200	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100 0.200	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50% 5.00%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50% 7.50%	Pass 94.23% 84.62% 67.31% 25.00% 1.92% 1.92% -1.92% -1.92% M Mi-Mf) (g) 0.100 Cum % Pass 97.50% 92.50%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S2 Sieve (g) 102.900	(g) 103.200 91.500 94.300 89.400 86.900 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 103.000	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50%	Pass 94.23% 84.62% 67.31% 25.00% 1.92% 1.92% -1.92% -1.92% Min-Mf) (g) 0.100 Cum % Pass 97.50%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T10S2 Sieve (g) 102.900 91.000	(g) 103.200 91.500 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 103.000 91.200	Sediment (g) 0.300 0.500 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100 0.200	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50% 5.00%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50% 7.50%	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92% -1.92% Add PAN (Mi-Mf) (g) 0.100 Cum % Pass 97.50% 92.50%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	102.900 91.000 93.400 87.200 85.700 63.300 T Sample ID T1052 Sieve (g) 102.900 91.000 93.400 87.200	(g) 103.200 91.500 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = %Error = 8eaker (g) 29.800 Sed+Sieve (g) 103.000 91.200 90.200	Sediment (g) 0.300 0.500 0.900 2.200 1.200 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100 0.200 0.800 3.000	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50% 5.00% 20.00% 75.00%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50% 7.50% 27.50%	Pass 94.23% 84.62% 67.31% 25.00% 1.92% -1.92% -1.92% 400 (Mi-Mf) (g) 0.100 Cum % Pass 97.50% 92.50% 72.50%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T1052 Sieve (g) 102.900 91.000 93.400 85.700	(g) 103.200 91.500 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = %Error = 8eaker (g) 29.800 Sed+Sieve (g) 103.000 91.200 94.200 86.800	Sediment (g) 0.300 0.500 0.900 2.200 1.200 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100 0.200 0.800 3.000 1.100	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50% 5.00% 20.00% 75.00% 27.50%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50% 7.50% 27.50% 102.50%	Pass 94.23% 84.62% 1.92% 1.92% -1.92% 4.192% 0.100 Mi-Mf) (g) 0.100 Cum % Pass 97.50% 92.50% 72.50% -2.50%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	102.900 91.000 93.400 85.700 86.200 63.300 T Sample ID T1052 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200	(g) 103.200 91.500 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = %Error = 8eaker (g) 29.800 Sed+Sieve (g) 103.000 91.200 94.200 90.200 86.800 86.200	Sediment (g) 0.300 0.500 0.900 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100 0.200 0.800 3.000 1.100 0.000	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50% 5.00% 20.00% 75.00% 27.50% 0.00%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50% 7.50% 27.50% 102.50% 130.00%	Pass 94.23% 84.62% 1.92% 1.92% -1.92% 4.1.92% 7.1.92% 92.50% 92.50% 92.50% 92.50% -2.50% -30.00%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	102.900 91.000 93.400 85.700 86.200 63.300 T T Sample ID T1052 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.200 91.500 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = %Eror = 8eaker (g) 29.800 Sed+Sieve (g) 103.000 91.200 94.200 94.200 86.800 86.200 63.300	Sediment (g) 0.300 0.500 0.900 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100 0.200 0.800 3.000 1.100 0.000 0.100	Sediment (Mi) (g) 5.400	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50% 5.00% 20.00% 75.00% 27.50% 0.00% 2.50%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50% 7.50% 27.50% 102.50%	Pass 94.23% 84.62% 1.92% 1.92% -1.92% 4.192% 0.100 Mi-Mf) (g) 0.100 Cum % Pass 97.50% 92.50% 72.50% -2.50%
10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	102.900 91.000 93.400 85.700 86.200 63.300 T T Sample ID T1052 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	(g) 103.200 91.500 89.400 86.900 86.200 63.300 Mass (Mt)= %Error = %Error = 8eaker (g) 29.800 Sed+Sieve (g) 103.000 91.200 94.200 90.200 86.800 86.200	Sediment (g) 0.300 0.500 0.900 2.200 1.200 0.000 0.200 5.30 0.00% B + Sediment (g) 35.200 Mass Sediment (g) 0.100 0.200 0.800 3.000 1.100 0.000	Sediment (Mi) (g)	5.77% 9.62% 17.31% 42.31% 23.08% 0.00% 3.85% 101.92% B + Dry Sediment (after wet sieved) (g) 35.100 Weight % 2.50% 5.00% 20.00% 75.00% 27.50% 0.00%	Ret 5.77% 15.38% 32.69% 75.00% 98.08% 98.08% 101.92% Sediment (Mf) (after wet sieving) 5.300 Cum % Ret 2.50% 7.50% 27.50% 102.50% 130.00%	Pass 94.23% 84.62% 1.92% 1.92% -1.92% 4.192% 0.100 Mi-Mf) (g) 0.100 Cum % Pass 97.50% 92.50% 72.50% -2.50%

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			,		wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T10S3	28.500	33.800	5.300	33.600	5.100	0.200
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.100	0.100		3.03%	3.03%	96.97%
35	93.400	94.300	0.900		27.27%	30.30%	69.70%
60	87.200	90.200	3.000		90.91%	121.21%	-21.21%
120	85.700	86.600	0.900		27.27%	148.48%	-48.48%
230	86.200	86.400	0.200		6.06%	154.55%	-54.55%
PAN	63.300	63.300	0.200		6.06%	160.61%	-60.61%
FAN				Tatal 0(100.0178	-00.0178
	•	. Mass (Mt)=	5.30	Total %=	160.61%		
		%Error =	0.00%				
						-	
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T10S4	29.600	34.700	5.100	34.600	5.000	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.000	0.100		1.92%	1.92%	98.08%
18	91.000	91.100	0.100		1.92%	3.85%	96.15%
35	93.400	94.000	0.600		11.54%	15.38%	84.62%
60	87.200	90.200	3.000		57.69%	73.08%	26.92%
120	85.700	86.800	1.100		21.15%	94.23%	5.77%
230	86.200	86.300	0.100		1.92%	96.15%	3.85%
PAN	63.300	63.300	0.100		1.92%	98.08%	1.92%
		. Mass (Mt)=	5.10	Total %=	98.08%		
		%Error =	0.00%				
		, 3– , 1 –	0.0070				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (a)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment	Add PAN
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf) (g)
Date 27-Jan-14		28.300	(g) 33.900		Sediment (after	(Mf) (after wet sieving) 5.000	(Mi-Mf) (g) 0.600
27-Jan-14	ID T10S5	28.300 Sed+Sieve	(g) 33.900 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 33.300	(Mf) (after wet sieving) 5.000 Cum %	(Mi-Mf) (g) 0.600 Cum %
27-Jan-14 Sieve #	ID T10S5 Sieve (g)	28.300 Sed+Sieve (g)	(g) 33.900 Mass Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret	(Mi-Mf) (g) 0.600 Cum % Pass
27-Jan-14 Sieve # 10	ID T10S5 Sieve (g) 102.900	28.300 Sed+Sieve (g) 104.000	(g) 33.900 Mass Sediment (g) 1.100	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00%
27-Jan-14 Sieve # 10 18	ID T10S5 Sieve (g) 102.900 91.000	28.300 Sed+Sieve (g) 104.000 91.600	(g) 33.900 Mass Sediment (g) 1.100 0.600	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00%
27-Jan-14 Sieve # 10 18 35	ID T10S5 Sieve (g) 102.900 91.000 93.400	28.300 Sed+Sieve (g) 104.000 91.600 94.400	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00%
27-Jan-14 Sieve # 10 18 35 60	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00%
27-Jan-14 Sieve # 10 18 35 60 120	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 1.100	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 20.00% 22.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 1.100 0.200	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 20.00% 22.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00%
27-Jan-14 Sieve # 10 18 35 60 120	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 1.100 0.200 0.600	(Mi) (g) 5.600	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 20.00% 22.00% 4.00% 12.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)=	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 1.000 0.200 0.600 5.60	(Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 20.00% 22.00% 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 1.100 0.200 0.600	(Mi) (g) 5.600	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 20.00% 22.00% 4.00% 12.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)=	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 1.000 0.200 0.600 5.60	(Mi) (g) 5.600	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 20.00% 22.00% 4.00% 12.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00%	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00% 0.00% -12.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error =	(g) Mass Sediment (g) 1.100 0.600 1.000 1.000 1.100 0.200 0.600 5.60 0.00%	(Mi) (g) 5.600 Total %=	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 112.00% B + Dry	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% Sediment	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)=	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment	(Mi) (g) 5.600 Total %= Sediment	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 12.00% B + Dry Sediment (after	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% Sediment (Mf) (after	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00% 0.00% -12.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID T10S5 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g)	(g) Mass Sediment (g) 1.100 0.600 1.000 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment (g)	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 12.00% 12.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00% -12.00% -12.00% Add PAN (Mi-Mf) (g)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error =	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment	(Mi) (g) 5.600 Total %= Sediment	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 12.00% B + Dry Sediment (after	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% Sediment (Mf) (after	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 46.00% 4.00% 0.00% -12.00% Add PAN (Mi-Mf)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID T10S5 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g)	(g) Mass Sediment (g) 1.100 0.600 1.000 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment (g)	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 12.00% 12.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 26.00% 4.00% -12.00% -12.00% Add PAN (Mi-Mf) (g)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID T10S5 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300 T Sample ID	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300	(g) Mass Sediment (g) 1.100 0.600 1.000 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment (g) 34.300	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 12.00% 12.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% Sediment (Mf) (after wet sieving) 4.900	(Mi-Mf) (g) 0.600 Cum % Pass 78.00% 66.00% 46.00% 46.00% -12.00% -12.00% Add PAN (Mi-Mf) (g) 0.100
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14	ID T10S5 Sieve (g) 102.900 91.000 93.400 85.700 85.200 63.300 T10S6	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve	(g) Mass Sediment (g) 1.100 0.600 1.000 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 112.00% 112.00% B + Dry Sediment (after wet sieved) (g) 34.200	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% 112.00% Sediment (Mf) (after wet sieving) 4.900 Cum %	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 26.00% 4.00% 0.00% -12.00% Mi-Mf) (g) 0.100 Cum %
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S6 Sieve (g)	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g)	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass Sediment (g)	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 112.00% 112.00% B + Dry Sediment (after wet sieved) (g) 34.200 Weight %	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% 112.00% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 26.00% 4.00% 0.00% -12.00% Mi-Mf) (g) 0.100 Cum % Pass
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T10S6 Sample ID T10S6 Sieve (g) 102.900	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass Sediment (g) 0.200	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 20.00% 20.00% 22.00% 4.00% 12.00% 112.00% B + Dry Sediment (after wet sieved) (g) 34.200 Weight % 4.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 100.00% 112.00% 112.00% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret 4.00%	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 26.00% 4.00% 0.00% -12.00% 7.12.00% (Mi-Mf) (g) 0.100 Cum % Pass 96.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T10S6 Sample ID T10S6 Sieve (g) 102.900 91.000	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.100	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.200 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass Sediment (g) 0.200 0.100	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 20.00% 20.00% 22.00% 4.00% 12.00% 112.00% 112.00% B + Dry Sediment (after wet sieved) (g) 34.200 Weight % 4.00% 2.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 100.00% 112.00% 112.00% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret 4.00% 6.00%	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 26.00% 4.00% 0.00% -12.00% 712.00% (Mi-Mf) (g) 0.100 Cum % Pass 96.00% 94.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T10S6 Sample ID T10S6 Sieve (g) 102.900 91.000 93.400	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.100 94.000	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass Sediment (g) 0.200 0.100 0.600	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 20.00% 20.00% 22.00% 4.00% 12.00% 112.00% B + Dry Sediment (after wet sieved) (g) 34.200 Weight % 4.00% 2.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 100.00% 112.00% 112.00% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret 4.00% 6.00% 18.00%	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 26.00% 4.00% 0.00% -12.00% 7.12.00% (Mi-Mf) (g) 0.100 Cum % Pass 96.00% 94.00% 82.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	ID T10S5 Sieve (g) 102.900 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S6 Sieve (g) 102.900 91.000 93.400 87.200	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.100 94.000 89.700	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass Sediment (g) 0.200 0.100 0.600 2.500	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 20.00% 20.00% 22.00% 4.00% 12.00% 112.00% B + Dry Sediment (after wet sieved) (g) 34.200 Weight % 4.00% 2.00% 12.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% 112.00% 112.00% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret 4.00% 6.00% 18.00%	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 26.00% 4.00% 0.00% -12.00% 70.00% -12.00% 0.00% 9.00% 82.00% 82.00% 32.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 120	ID T10S5 Sieve (g) 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S6 Sieve (g) 102.900 91.000 93.400 85.700	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.100 94.000 89.700 87.100	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass Sediment (g) 0.200 0.100 0.600 2.500 1.400	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 20.00% 20.00% 22.00% 4.00% 12.00% 12.00% B + Dry Sediment (after wet sieved) (g) 34.200 Weight % 4.00% 2.00% 12.00% 50.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% 112.00% 112.00% 6.00% Ret 4.900 Cum % Ret 4.900 Cum % Ret 4.900 6.00% 18.00% 96.00%	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 26.00% 4.00% -12.00% -12.00% 6 -12.00% 0.00% 9.00% 9.00% 94.00% 82.00% 32.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T10S6 Sample ID T10S6 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.100 94.000 89.700 87.100 86.300	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass Sediment (g) 0.200 0.100 0.600 2.500 1.400 0.100	(Mi) (g) 5.600 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 22.00% 4.00% 12.00% 12.00% B + Dry Sediment (after wet sieved) (g) 34.200 Weight % 4.00% 2.00% 12.00% 50.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% 112.00% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret 4.00% 6.00% 18.00% 96.00% 98.00%	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 46.00% 4.00% -12.00% -12.00% Pass 96.00% 94.00% 82.00% 32.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T10S6 Sample ID T10S6 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300	28.300 Sed+Sieve (g) 104.000 91.600 94.400 88.200 86.800 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.300 Sed+Sieve (g) 103.100 91.100 91.000 89.700 87.100 86.300 63.300	(g) 33.900 Mass Sediment (g) 1.100 0.600 1.000 1.000 0.600 5.60 0.00% B + Sediment (g) 34.300 Mass Sediment (g) 0.200 0.100 0.600 2.500 1.400 0.100 0.100	(Mi) (g) 5.600 Total %= Sediment (Mi) (g) 5.000	Sediment (after wet sieved) (g) 33.300 Weight % 22.00% 12.00% 20.00% 20.00% 22.00% 4.00% 12.00% 12.00% B + Dry Sediment (after wet sieved) (g) 34.200 Weight % 4.00% 2.00% 12.00% 50.00% 28.00% 2.00%	(Mf) (after wet sieving) 5.000 Cum % Ret 22.00% 34.00% 54.00% 74.00% 96.00% 100.00% 112.00% 112.00% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret 4.00% 6.00% 18.00% 96.00% 98.00%	(Mi-Mf) (g) 0.600 Pass 78.00% 66.00% 46.00% 46.00% 4.00% -12.00% -12.00% Pass 96.00% 94.00% 82.00% 32.00%

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T10S7	30.000	35.400	5.400	35.300	5.300	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.500	0.500		10.00%	10.00%	90.00%
35	93.400	95.600	2.200		44.00%	54.00%	46.00%
60	87.200	89.000	1.800		36.00%	90.00%	10.00%
120	85.700	86.200	0.500		10.00%	100.00%	0.00%
230	86.200	86.400	0.200		4.00%	104.00%	-4.00%
	63.300		0.200				-6.00%
PAN		63.300			2.00%	106.00%	-0.00%
	Т.	. Mass (Mt)=	5.30	Total %=	106.00%		
		%Error =	-1.85%				
	Somplo		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	Sample ID	Beaker (g)	в + Sediment (g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(9)	(1011) (g)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	T10S8	28.100	33.200	5.100	33.100	5.000	0.100
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.000	0.100		1.96%	1.96%	98.04%
10	91.000	91.400	0.400		7.84%	9.80%	90.20%
35	93.400	95.400	2.000		39.22%	49.02%	50.98%
60	87.200	89.200	2.000		39.22%	88.24%	11.76%
120	85.700	86.000	0.300		5.88%	94.12%	5.88%
230	86.200	86.300	0.100		1.96%	96.08%	3.92%
PAN	63.300	63.300	0.100		1.96%	98.04%	1.96%
	Т	. Mass (Mt)=	5.00	Total %=	98.04%		
		%Error =	-1.96%				
		%Error =	-1.96%				
		%Error =			B + Drv	Sediment	Add PAN
Date	Sample		B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	
Date	Sample ID	%Error = Beaker (g)		Sediment (Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	Beaker (g)	B + Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf) (g)
Date 27-Jan-14		Beaker (g) 29.400	B + Sediment (g) 34.700		Sediment (after	(Mf) (after wet sieving) 5.300	(Mi-Mf) (g) 0.000
27-Jan-14	ID T1059	Beaker (g) 29.400 Sed+Sieve	B + Sediment (g) 34.700 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 34.700	(Mf) (after wet sieving) 5.300 Cum %	(Mi-Mf) (g) 0.000 Cum %
27-Jan-14 Sieve #	ID T10S9 Sieve (g)	Beaker (g) 29.400 Sed+Sieve (g)	B + Sediment (g) 34.700 Mass Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight %	(Mf) (after wet sieving) 5.300 Cum % Ret	(Mi-Mf) (g) 0.000 Cum % Pass
27-Jan-14 Sieve # 10	ID T10S9 Sieve (g) 102.900	Beaker (g) 29.400 Sed+Sieve (g) 103.000	B + Sediment (g) 34.700 Mass Sediment (g) 0.100	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00%
27-Jan-14 Sieve # 10 18	ID T10S9 Sieve (g) 102.900 91.000	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00%
27-Jan-14 Sieve # 10 18 35	ID T10S9 Sieve (g) 102.900 91.000 93.400	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00%
27-Jan-14 Sieve # 10 18 35 60	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00% 102.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00% 102.00% 104.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 66.00% 102.00% 104.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -4.00%
27-Jan-14 Sieve # 10 18 35 60 120	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00% 102.00% 104.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100	(Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 66.00% 102.00% 104.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.000	(Mi) (g) 5.300	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 66.00% 102.00% 104.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 85.800 86.300 63.300 Mass (Mt)=	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.000 5.30	(Mi) (g) 5.300	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 66.00% 102.00% 104.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T1059 Sieve (g) 102.900 91.000 93.400 87.200 85.700 85.700 86.200 63.300 T	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 85.800 86.300 63.300 Mass (Mt)=	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.5.30 0.00%	(Mi) (g) 5.300 Total %=	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 66.00% 102.00% 104.00% 106.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -4.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error =	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment	(Mi) (g) 5.300 Total %= Sediment	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00% 102.00% 104.00% 106.00% 106.00% Sediment	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -6.00% -6.00% Add PAN
27-Jan-14 Sieve # 10 18 35 60 120 230	ID T1059 Sieve (g) 102.900 91.000 93.400 87.200 85.700 85.700 86.200 63.300 T	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 85.800 86.300 63.300 Mass (Mt)=	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.5.30 0.00%	(Mi) (g) 5.300 Total %=	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 66.00% 102.00% 104.00% 106.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -6.00% -6.00% -6.00% Add PAN (Mi-Mf)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error =	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment	(Mi) (g) 5.300 Total %= Sediment	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00% 102.00% 104.00% 106.00% 106.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -6.00% -6.00% Add PAN
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID T1059 Sieve (g) 102.900 91.000 93.400 87.200 85.700 85.700 85.200 63.300 T Sample ID	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g)	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.100 0.5.30 0.00% B + Sediment (g)	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00% 102.00% 104.00% 106.00% 106.00% Sediment (Mf) (after wet sieving)	(Mi-Mf) (g) 0.000 Pass 98.00% 94.00% 34.00% -2.00% -4.00% -6.00% -6.00% Add PAN (Mi-Mf) (g)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14	ID T1059 Sieve (g) 102.900 91.000 93.400 87.200 85.700 85.700 63.300 T Sample ID	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.100 0.100 0.100 B + Sediment (g) 33.500	(Mi) (g) 5.300 Total %= Sediment	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00% 102.00% 104.00% 106.00% 106.00% Sediment (Mf) (after wet sieving) 5.100	(Mi-Mf) (g) 0.000 Pass 98.00% 94.00% 34.00% -2.00% -4.00% -6.00% -6.00% -6.00% (Mi-Mf) (g) (g)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	ID T1059 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S10 Sieve (g)	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g)	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment ((Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight %	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 102.00% 104.00% 106.00% 106.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret	(Mi-Mf) (g) 0.000 Pass 98.00% 94.00% 34.00% -2.00% -4.00% -6.00% -6.00% -6.00% (Mi-Mf) (g) 0.000 Cum % Pas
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S10 Sieve (g) 102.900	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g) 102.900	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 102.00% 104.00% 106.00% 106.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 0.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% -2.00% -4.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T1 Sample ID T10S10 Sieve (g) 102.900 91.000	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g) 102.900 91.100	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000 0.100	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 102.00% 104.00% 106.00% 106.00% 106.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 0.00% 2.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% -2.00% -4.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00% -6.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	ID T10S9 Sieve (g) 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S10 Sieve (g) 102.900 91.000 93.400	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g) 102.900 91.100 94.000	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000 0.100 0.100	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 2.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 102.00% 106.00% 106.00% 106.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 0.00% 2.00% 14.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% -2.00% -4.00% -6.0
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	ID T10S9 Sieve (g) 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID Sample ID Sieve (g) 102.900 91.000 93.400 87.200	Beaker (g) 29.400 Sed+Sieve (g) 103.000 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g 102.900 91.100 94.000 91.500	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000 0.100 0.100 0.100 0.100 0.100	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 2.00% 12.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 102.00% 106.00% 106.00% 106.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 0.00% 2.00% 14.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% -2.00% -4.00% -6.0
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	ID T10S9 Sieve (g) 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID T10S10 Sieve (g) 102.900 91.000 93.400	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g) 102.900 91.100 94.000	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000 0.100 0.100 0.100 0.100	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 60.00% 2.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 102.00% 106.00% 106.00% 106.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 0.00% 2.00% 14.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% -2.00% -4.00% -6.0
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	ID T10S9 Sieve (g) 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID Sample ID Sieve (g) 102.900 91.000 93.400 87.200	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 85.800 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g) 102.900 91.100 94.000 91.500 85.800 86.300	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000 0.100 0.100 0.100 0.100 0.100	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 2.00% 12.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 102.00% 106.00% 106.00% 106.00% Sediment (Mf) (after wet sieving) 5.100 Cum % Ret 0.00% 2.00% 14.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% 34.00% -2.00% -4.00% -6.00% -6.00% -6.00% -6.00% 0.000 Cum % Pas 100.00% 98.00% 86.00% 0.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	ID T10S9 Sieve (g) 91.000 93.400 87.200 85.700 86.200 63.300 T Sample ID Sample ID Sieve (g) 102.900 91.000 93.400 85.700	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g) 102.900 91.100 94.000 85.800	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000 0.100 0.100 0.100 0.100	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 36.00% 2.00% 0.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 2.00% 12.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 6.00% 66.00% 102.00% 106.00% 106.00% 106.00% 106.00% 5.100 Cum % Ret 0.00% 2.00% 14.00% 100.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 94.00% -2.00% -4.00% -6.00% -6.00% -6.00% -6.00% (Mi-Mf) (g) 0.000 Cum % Pas 100.00% 98.00% 86.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T10S10 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 85.800 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g) 102.900 91.100 94.000 91.500 85.800 86.300	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000 0.100 0.100 0.100 0.100 0.100	(Mi) (g) 5.300 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 36.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 2.00% 12.00% 86.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 102.00% 104.00% 106.00% 106.00% 106.00% 106.00% 5.100 Cum % Ret 0.00% 14.00% 100.00% 104.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 34.00% -2.00% -6.00% -6.00% -6.00% -6.00% -6.00% 0.00% 0.000 Cum % Pas 100.00% 98.00% 86.00% 0.00% -2.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID T10S9 Sieve (g) 102.900 91.000 93.400 87.200 85.700 86.200 63.300 T10S10 Sieve (g) 102.900 91.000 93.400 85.700 85.700 86.200 63.300	Beaker (g) 29.400 Sed+Sieve (g) 103.000 91.200 96.400 89.000 85.800 85.800 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.400 ed+Sieve (g) 102.900 91.100 94.000 91.500 85.800 86.300 63.300	B + Sediment (g) 34.700 Mass Sediment (g) 0.100 0.200 3.000 1.800 0.100 0.100 0.100 0.100 0.000 5.30 0.00% B + Sediment (g) 33.500 ass Sediment (0.000 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100	(Mi) (g) 5.300 Total %= Sediment (Mi) (g) 5.100	Sediment (after wet sieved) (g) 34.700 Weight % 2.00% 4.00% 36.00% 2.00% 2.00% 0.00% 106.00% B + Dry Sediment (after wet sieved) (g) 33.500 Weight % 0.00% 2.00% 12.00% 86.00% 2.00%	(Mf) (after wet sieving) 5.300 Cum % Ret 2.00% 66.00% 102.00% 104.00% 106.00% 106.00% 106.00% 106.00% 5.100 Cum % Ret 0.00% 14.00% 100.00% 104.00%	(Mi-Mf) (g) 0.000 Cum % Pass 98.00% 34.00% -2.00% -6.00% -6.00% -6.00% -6.00% -6.00% 0.00% 0.000 Cum % Pas 100.00% 98.00% 86.00% 0.00% -2.00%

Date Description (m)		63.300	63.300 . Mass (Mt)=	5.30	Total %=		101.92%	-1.92%
D (M)		63.300	63.300				101.92%	-1.92%
D (M)				0.000		45 200/	101 020/	1 0 20/
D (M) (M) (W1 sieve) (g) wet sieve(g) (g) wet sieve(g) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 10 102.900 10.200 0.000 0.000 0.000 10.000 10.200 10.000 10.000 10.000 10.000 10.000 10.000 11.54% 17.7% 57.7% 59.62% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 220 85.700 87.600 1.900 36.54% 13.46% 76.22% 23.08% 1.92% 7.Mass (Mt)= 5.10 Total % 98.08% 1.92% 23.08% 1.92% Date Sample Beaker (g) B + Sediment (g) Sediment (g) 80.00% 10.00% 0.00% 0.00% 0.00% 0.00% 0.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00%<	222	86 200	86.400	0.200		3.85%	86.54%	13.46%
D (M) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve (g) 6(g) Sedment (g) Weight %. Ret Pass 10 102.900 0.000 0.000 0.00% 0.00% 0.00% 10.50% 10.56% 86.54% 13.46% 19.2% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% 19.2% 27-Jan-14 WT152 28.300 33.300 5.00 33.000 4.700 0.300 10 102.900 10.2900 1.500 37.50% 67.50% 32.50% 72.50% 72.50% <t< td=""><td>120</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	120							
D (m)	-							
D (m)	-							
ID (M)	-							
ID (m)								
ID (g) (M) (g) wet siewed) (g) wet siewed) (g) wet siewed) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sed-Sieve Mass Weight % Ret Pass 10 102.900 0.0000 0.0004 0.00% 0.0006 10.000.05% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 98.08% 1.92% 120 85.700 67.00 0.500 96.62% 23.08% 40.38% 59.62% 230 86.200 86.700 0.500 96.62% 11.54% 98.08% 1.92% T Mass (Mt) 5.10 Total % 98.08% 1.92% 10.10.47% (Mi) (a) (Mi) (a) (Mi) (a) (Mi) (a) (Mi) (a) (Mi) (a) 10.00 30.00 4.700 0.300 1.700 2.50% <t< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td></t<>				,				
ID (g) (M) (g) wet siewed) (g) wet siewed) (g) wet siewed) (g) 27-Jan-14 WT1S1 29,500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sed-Sieve Mass Weight % Ret Pass 10 102.900 0.000 0.000 0.00% 0.00% 10.000.05% 18 91.000 91.300 0.600 11.54% Pass 23.08% 40.33% 59.62% 120 85.700 87.600 1.900 96.52% 86.54% 13.46% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% Vetror = -1.92% Sediment (after (M) (a) Sediment (M) (after (M) (a) (M) (a) (M) (a) 1.92% Date Sample Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00%								
ID (g) (M) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.601 10 102.900 102.900 0.000 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 54.23% 20 85.700 87.600 1.900 36.54% 76.92% 23.08% 210 85.700 63.300 0.600 11.54% 98.08% 13.46% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% PAN 63.300 63.200 33.300 5.000 33.000 4.700 0.300 27-Jan-14 WT1S2 28.300 3.300 5.000 33.000 4.700 0.300 10 102.900 0.2900 0.300 7.50% <td>27-Jan-14</td> <td>WT1S4</td> <td>49.600</td> <td>54.900</td> <td>5.300</td> <td>, (6,</td> <td></td> <td></td>	27-Jan-14	WT1S4	49.600	54.900	5.300	, (6,		
ID (g) (MI) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) 64.51eve Mass Cum % Ret Cum % 10 102.900 102.900 0.000 0.00% 0.00% 0.00% 18 91.000 91.300 0.300 36.54% 75.77% 94.23% 230 85.200 87.600 1.900 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 0.600 11.54% 98.08% 1.92% Date B Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) Add PAN 10 102.900 102.900 0.000 33.000 4.700 0.300 35 93.400 94.300 0.300 7.50% 7.50% 92.50%	Date		Beaker (g)			Sediment (after	(Mf) (after	(Mi-Mf)
ID (g) (MI) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) 64.51eve Mass Cum % Ret Cum % 10 102.900 102.900 0.000 0.00% 0.00% 0.00% 18 91.000 91.300 0.300 36.54% 75.77% 94.23% 230 85.200 87.600 1.900 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 0.600 11.54% 98.08% 1.92% Date B Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) Add PAN 10 102.900 102.900 0.000 33.000 4.700 0.300 35 93.400 94.300 0.300 7.50% 7.50% 92.50%			%⊨rror =	0.00%				
ID (g) (MI) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 10 102.900 102.900 0.000 0.00% 0.00% 0.00% 0.00% 18 91.000 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 0.600 11.54% 98.08% 1.92% VError = -1.92% Vet sieved (g) wet sieved (g) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% <td< th=""><th></th><th>1</th><th></th><th></th><th>rotar‰=</th><th>103.04%</th><th></th><th></th></td<>		1			rotar‰=	103.04%		
ID (g) (M) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sediment (g) Weight% Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 100.00% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 0.600 11.54% 98.08% 1.92% Z-Jan-14 WT1S2 28.300 33.300 5.000 30.00 4.700 0.300 10 102.900 10.2900 0.300 37.50% 7.50% 92.50% 31 91.000 91.300 0.300 37.50% 7.50% 92.50%	FAN				Total %		103.04%	-03.04%
ID OB (g) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% T Mass (Mt)= 5.10 Total %= 98.08% 1.92% Date Sed-Sieve Mass Sediment (g) Sediment (g) 0.00% 0.00% 0.00% 10 102.900 100.000 0.300 7.50% 7.50% 92								
ID OB (g) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 36.54% 10.38% 59.62% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% 7 Mass (Mt)= 5.10 Total %= 98.08% 1.92% Date Sample Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) 0.000% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
ID Ob (g) (Mi) (g) wet sieved) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sed+Sieve Mass Weight % Ret Pass 10 102.900 102.900 0.000 0.000 5.77% 5.77% 94.23% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 120 85.700 87.600 1.900 36.54% 76.92% 23.08% 120 85.700 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% 7 Mass (Mt)= 5.10 Total % 98.08% 1.92% 27-Jan-14 WT152 28.300 33.300 5.000 33.000 4.700 0.300 10 102.900 102.900 0.000<								
ID OS (g) (Mi) (g) wet sieved) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sed+Sieve Mass 94.000 0.600 0.00% 0.00% 100.00% 100.00% 18 91.000 94.000 0.600 5.77% 5.77% 94.23% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 120 85.700 85.600 1.900 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 96.62% 86.54% 13.46% PAN 63.300 6.600 11.54% 98.08% 1.92% Z7-Jan-14 WT152 28.300 33.300 5.000 33.000 4.700 0.300 Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
ID IO IOO IIO IOO IIO IOO IIO IOO IIO IOO IIO IOO IIO IIO IIOO IIO IIOO IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII								
ID								
ID (g) (Mi) (g) wet sieved) (g) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 120 85.700 87.600 1.900 36.54% 76.92% 23.08% 230 86.200 87.700 0.500 9.62% 86.54% 13.46% PAN 63.300 6.600 11.54% 98.08% 1.92% 27-Jan-14 WT152 28.300 33.300 5.000 33.000 4.700 0.300 10						_		
ID (g) (Mi) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve (g) (g) (g) Sediment (g) Weight % Cum % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 20 85.700 87.600 1.900 36.54% 76.92% 23.08% 120 85.700 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 0.600 11.54% 98.08% 1.92% Z7-Jan-14 WT1S2 28.300 33.300 5.000 33.000 4.700 0.300 Sieve (g) Sed-Sieve Mass Sediment (after MdPAN (Mi).(g)<								
ID (g) (M) (g) wet sieved) (g) weight % Ret Pass 10 102.900 102.900 0.000 11.54% 17.31% 82.69% 23.08% 40.38% 59.62% 23.08% 40.38% 59.62% 23.08% 13.46% 13.46% 13.46% 13.46% 13.46% 13.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% 14.46% <td>27-Jan-14</td> <td>WT1S3</td> <td>29.800</td> <td>35.200</td> <td>5.400</td> <td>, (0,</td> <td>0,</td> <td></td>	27-Jan-14	WT1S3	29.800	35.200	5.400	, (0,	0,	
ID So (g) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.700 1.200 23.08% 40.38% 59.62% 120 85.700 87.600 1.900 36.54% 13.46% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% Verror = -1.92% Mass Sediment (Mi) (g) Sediment (Mi) (g) Weight % Add PAN (Mi-Afr) (g) J210 Sample ID Beaker (g) B + Sediment (g) Weight % Ret <t< td=""><td>Date</td><td></td><td>Beaker (g)</td><td></td><td></td><td>Sediment (after</td><td>(Mf) (after</td><td>(Mi-Mf)</td></t<>	Date		Beaker (g)			Sediment (after	(Mf) (after	(Mi-Mf)
ID ID <thid< th=""> ID ID ID<!--</td--><td></td><td></td><td></td><td></td><td></td><td>B ± Dp/</td><td>Sediment</td><td>Add PAN</td></thid<>						B ± Dp/	Sediment	Add PAN
ID (g) (Mi) (g) wet sieved) (g) wet sievel) (g) wet sievel) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 120 85.700 87.600 1.900 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 9.62% 86.54% 1.3.46% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% 27-Jan-14 WT1S2 28.300 33.300 5.000 33.000 4.			%Error =	0.00%				
ID (g) (Mi) (g) wet sieved) (g) wet sievel) (g) wet sievel) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Sed+Sieve Sediment (g) Mass Sediment (g) Weight % Ret Pass 10 102.900 0.000 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 120 85.700 87.600 1.900 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 0.600 11.54% 98.08% 1.92% Curr WError = -1.92% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Weight % Ret		т			Total %=	125.00%		
ID (g) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Mass Weight % Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 120 85.700 87.600 1.900 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 63.300 5.10 Total %= 98.08% 1.92% 27-Jan-14 WT152 28.300 33.300 5.000 33.000 4.700 0.300	PAN	63.300	63.300	0.300		7.50%	125.00%	-25.00%
ID Sed+Sieve Mass Sediment (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 120 85.700 87.600 1.900 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 9.62% 86.54% 13.46% PAN 63.300 63.300 0.600 11.54% 98.08% 1.92% Date ID		86.200						
ID ID <thid< th=""> ID ID ID<!--</td--><td>120</td><td>85.700</td><td>86.800</td><td>1.100</td><td></td><td>27.50%</td><td>95.00%</td><td>5.00%</td></thid<>	120	85.700	86.800	1.100		27.50%	95.00%	5.00%
ID ID <thid< th=""> ID ID ID<!--</td--><td>60</td><td>87.200</td><td>88.700</td><td>1.500</td><td></td><td>37.50%</td><td>67.50%</td><td>32.50%</td></thid<>	60	87.200	88.700	1.500		37.50%	67.50%	32.50%
ID ID <thid< th=""> ID ID ID<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thid<>								
ID ID <thid< th=""> ID ID ID<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thid<>								
ID ID <thid< th=""> ID ID ID<!--</td--><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></thid<>						-		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sieve #	Sieve (a)				Weight %		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	27-Jan-14	WT1S2			5.000	33.000		
ID ID <thid< th=""> ID ID ID<!--</td--><td>Date</td><td></td><td>Beaker (g)</td><td></td><td></td><td>Sediment (after</td><td>(Mf) (after</td><td>(Mi-Mf)</td></thid<>	Date		Beaker (g)			Sediment (after	(Mf) (after	(Mi-Mf)
ID ID <thid< th=""> ID ID ID<!--</td--><td></td><td></td><td>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</td><td></td><td></td><td></td><td></td><td></td></thid<>			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
ID ID <thid< th=""> ID ID ID<!--</td--><td></td><td>I</td><td></td><td></td><td>10tal /0=</td><td>55.56 /6</td><td></td><td></td></thid<>		I			10tal /0=	55.56 /6		
ID ID (g) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Mass Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 120 85.700 87.600 1.900 36.54% 76.92% 23.08% 230 86.200 86.700 0.500 9.62% 86.54% 13.46%					Total %-		30.00/0	1.32/0
ID ID (g) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Mass Cum % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62% 120 85.700 87.600 1.900 36.54% 76.92% 23.08%								
ID ID (g) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Mass Cum % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.400 1.200 23.08% 40.38% 59.62%								
ID ID <thid< th=""> ID ID ID<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thid<>								
ID ID <thid< th=""> ID ID ID<!--</td--><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thid<>								
ID (G) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sieve # Sieve (g) (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00%								
ID(g)(Mi) (g)(wet sieved) (g)(wet sieving)(g)27-Jan-14WT1S129.50034.7005.20034.1004.6000.600Sieve #Sieve (g)Sed+SieveMassCum % RetCum % Pass								
ID (G) (Mi) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT1S1 29.500 34.700 5.200 34.100 4.600 0.600 Sed+Sieve Mass Cum % Cum % Cum %						-		
ID (g) (Mi) (g) wet sieved) (g) wet sieving) (g)								
$ID \qquad (g) \qquad (Mi) (g) \qquad (X \land Y \land $	27-Jan-14	WT1S1	29.500	34.700	5.200	34.100	4.600	0.600
				(g)		wet sieved) (g)	wet sieving)	
Data Sample Backer (a) B + Sediment Sediment Sediment (offer (MA) (offer (MA))	Date		Beaker (g)			Sediment (after	(Mf) (after	(Mi-Mf)

Dete	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID.	Beaker (g)	(g)	(Mi) (g)	Sediment (after wet sieved) (q)	(Mf) (after	(Mi-Mf)
		50.400	== =00	= 000	, (6,	wet sieving)	(g)
27-Jan-14	WT1S5	50.400	55.700	5.300	54.500	4.100	1.200
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.300	0.300		6.00%	6.00%	94.00%
35	93.400	94.100	0.700		14.00%	20.00%	80.00%
60	87.200	88.200	1.000		20.00%	40.00%	60.00%
120	85.700	86.800	1.100		22.00%	62.00%	38.00%
230	86.200	87.200	1.000		20.00%	82.00%	18.00%
PAN	63.300	63.300	1.200		24.00%	106.00%	-6.00%
			5.30	Total %=	106.00%	100.0076	0.0070
	•	. Mass (Mt)=			100.00%		
		%Error =	0.00%				
_	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
27-Jan-14	WT2S1	50.400	55.500	5.100	54.600	4.200	0.900
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.200	0.200		3.85%	3.85%	96.15%
35	93.400	93.800	0.400		7.69%	11.54%	88.46%
60	87.200	88.000	0.800		15.38%	26.92%	73.08%
120	86.200	87.900	1.700		32.69%	59.62%	40.38%
230		86.800	1.100		21.15%	80.77%	
	85.700 63.300						19.23%
PAN		63.300	0.900	_	17.31%	98.08%	1.92%
	T	. Mass (Mt)=	5.10	Total %=	98.08%		
		%Error =	0.00%				
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
			(9)	() (3)	wet sieved) (g)	wet sieving)	(g)
27-Jan-14	WT2S2	52.600	57.600	5.000	57.400	4.800	0.200
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	104.000	1.100		27.50%	27.50%	72.50%
18	91.000	92.500	1.500		37.50%	65.00%	35.00%
35	93.400	94.300	0.900		22.50%	87.50%	12.50%
60	87.200	87.700	0.500		12.50%	100.00%	0.00%
120	86.200	86.600	0.400		10.00%	110.00%	-10.00%
230	85.700	86.000	0.300		7.50%	117.50%	-17.50%
PAN	63.300				1.30/0	111.30/0	11.30/0
PAN			0 200			122 E0%	22 E0%
		63.300	0.200	Total 0/	5.00%	122.50%	-22.50%
		. Mass (Mt)=	4.90	Total %=		122.50%	-22.50%
				Total %=	5.00%	122.50%	-22.50%
		. Mass (Mt)=	4.90	Total %=	5.00% 122.50%		
	Т	. Mass (Mt)= %Error =	4.90 -2.00%		5.00% 122.50% B + Dry	Sediment	Add PAN
Date		. Mass (Mt)=	4.90 -2.00% B + Sediment	Sediment	5.00% 122.50% B + Dry Sediment (after	Sediment (Mf) (after	
	T Sample ID	Mass (Mt)= %Error = Beaker (g)	4.90 -2.00% B + Sediment (g)	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	Add PAN (Mi-Mf) (g)
Date 27-Jan-14	T Sample	. Mass (Mt)= %Error =	4.90 -2.00% B + Sediment	Sediment	5.00% 122.50% B + Dry Sediment (after	Sediment (Mf) (after	Add PAN (Mi-Mf)
	T Sample ID	Mass (Mt)= %Error = Beaker (g)	4.90 -2.00% B + Sediment (g)	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	Add PAN (Mi-Mf) (g)
	T Sample ID	. Mass (Mt)= %Error = Beaker (g) 50.400	4.90 -2.00% B + Sediment (g) 56.000	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving) 5.200	Add PAN (Mi-Mf) (g) 0.400
27-Jan-14	T Sample ID WT2S3	. Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve	4.90 -2.00% B + Sediment (g) 56.000 Mass	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600	Sediment (Mf) (after wet sieving) 5.200 Cum %	Add PAN (Mi-Mf) (g) 0.400 Cum %
27-Jan-14 Sieve #	T ID WT2S3 Sieve (g)	. Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g)	4.90 -2.00% B + Sediment (g) 56.000 Mass Sediment (g)	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600 Weight %	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret	Add PAN (Mi-Mf) (g) 0.400 Cum % Pass
27-Jan-14 Sieve # 10 18	T Sample ID WT2S3 Sieve (g) 102.900 91.000	. Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 103.100 92.000	4.90 -2.00% B + Sediment (g) 56.000 Mass Sediment (g) 0.200 1.000	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 6.06%	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.06% 36.36%	Add PAN (Mi-Mf) (g) 0.400 Cum % Pass 93.94% 63.64%
27-Jan-14 Sieve # 10 18 35	T Sample ID WT2S3 Sieve (g) 102.900 91.000 93.400	. Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 103.100 92.000 95.100	4.90 -2.00% B + Sediment (g) 56.000 Mass Sediment (g) 0.200 1.000 1.700	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 6.06% 30.30% 51.52%	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.06% 36.36% 87.88%	Add PAN (Mi-Mf) (g) 0.400 Cum % Pass 93.94% 63.64% 12.12%
27-Jan-14 Sieve # 10 18 35 60	T Sample ID WT2S3 Sieve (g) 102.900 91.000 93.400 87.200	. Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 103.100 92.000 95.100 88.200	4.90 -2.00% B + Sediment (g) 56.000 Mass Sediment (g) 0.200 1.000 1.700 1.000	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 6.06% 30.30% 51.52% 30.30%	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.06% 36.36% 87.88% 118.18%	Add PAN (Mi-Mf) (g) 0.400 Cum % Pass 93.94% 63.64% 12.12% -18.18%
27-Jan-14 Sieve # 10 18 35 60 120	T Sample ID WT2S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200	Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 103.100 92.000 95.100 88.200 86.900	4.90 -2.00% B + Sediment (g) 56.000 Mass Sediment (g) 0.200 1.000 1.700 1.000 0.700	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 6.06% 30.30% 51.52% 30.30% 21.21%	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.06% 36.36% 87.88% 118.18% 139.39%	Add PAN (Mi-Mf) (g) 0.400 Cum % Pass 93.94% 63.64% 12.12% -18.18% -39.39%
27-Jan-14 Sieve # 10 18 35 60 120 230	T Sample ID WT2S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700	Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 103.100 92.000 95.100 88.200 86.900 86.200	4.90 -2.00% B + Sediment (g) 56.000 Mass Sediment (g) 0.200 1.000 1.700 1.000 0.700 0.500	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 6.06% 30.30% 51.52% 30.30% 21.21% 15.15%	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.06% 36.36% 87.88% 118.18% 139.39% 154.55%	Add PAN (Mi-Mf) (g) 0.400 Cum % Pass 93.94% 63.64% 12.12% -18.18% -39.39% -54.55%
27-Jan-14 Sieve # 10 18 35 60 120	T Sample ID WT2S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 103.100 92.000 95.100 88.200 86.900 86.200 63.300	4.90 -2.00% B + Sediment (g) 56.000 Mass Sediment (g) 0.200 1.000 1.700 1.000 0.700 0.500 0.400	Sediment (Mi) (g) 5.600	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 6.06% 30.30% 51.52% 30.30% 21.21% 15.15% 12.12%	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.06% 36.36% 87.88% 118.18% 139.39%	Add PAN (Mi-Mf) (g) 0.400 Cum % Pass 93.94% 63.64% 12.12% -18.18% -39.39%
27-Jan-14 Sieve # 10 18 35 60 120 230	T Sample ID WT2S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	Mass (Mt)= %Error = Beaker (g) 50.400 Sed+Sieve (g) 103.100 92.000 95.100 88.200 86.900 86.200	4.90 -2.00% B + Sediment (g) 56.000 Mass Sediment (g) 0.200 1.000 1.700 1.000 0.700 0.500	Sediment (Mi) (g)	5.00% 122.50% B + Dry Sediment (after wet sieved) (g) 55.600 Weight % 6.06% 30.30% 51.52% 30.30% 21.21% 15.15%	Sediment (Mf) (after wet sieving) 5.200 Cum % Ret 6.06% 36.36% 87.88% 118.18% 139.39% 154.55%	Add PAN (Mi-Mf) (g) 0.400 Cum % Pass 93.94% 63.64% 12.12% -18.18% -39.39% -54.55%

Date Sample D Besker (g) B + Sediment (g)								
Date D Beaker (g) (g) (g) (g) (m) (g)		Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
27-Jan-14 WT284 50.700 55.900 5.200 45.000 45.000 0.700 Sieve # Sieve (g) Sed-Sieve Mass 5.000 45.000 0.700 Sieve # Sieve (g) Sed-Sieve Mass 5.000 45.000 0.700 10 302.900 10.000 1.400 0.400 7.6% 9.62% 90.83% 35 93.400 94.400 0.400 7.73% 86.5% 90.33% 120 86.200 87.300 1.100 17.31% 86.5% 13.46% 21.15% 69.23% 30.07% 30.07% 30.07% 30.07% 23.00 85.00 5.20 Total % 100.00% 0.00% 27-Jan-14 WT255 49.400 54.600 5.200 53.700 4.300 0.900 31.400 94.200 0.600 5.200 53.700 4.300 0.900 31.00 1.000 91.400 5.00 10.000% 0.00% 0.00%	Date		Beaker (g)					(Mi-Mf)
Sieve # Sieve (g) Sed ment (g) 10 102.900 103000 0.100 11 102.900 103000 0.100 11 102.900 103000 0.100 11 11.000 1.92% 1.92% 1.92% 120 86.200 87.300 1.100 21.15% 48.08% 51.92% 120 85.700 86.600 0.900 17.31% 46.54% 13.46% PAN 63.300 63.300 0.700 13.46% 100.00% 100.00% Vertror = 0.00% 13.46% 100.00% 0.900 13.46% 100.00% 27-1an-14 VT255 49.400 54.60 5.200 53.700 4.300 0.900 10 102.900 10.000 94.000 0.900 0.00% 0.00% 0.00% 11 102.900 10.000 10.000% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 10.000% </td <td></td> <td></td> <td></td> <td>(9)</td> <td>(1011) (g)</td> <td>wet sieved) (g)</td> <td>wet sieving)</td> <td>(g)</td>				(9)	(1011) (g)	wet sieved) (g)	wet sieving)	(g)
Sieve # Sieve (g) Sed ment (g) 10 102.900 103000 0.100 11 102.900 103000 0.100 11 102.900 103000 0.100 11 11.000 1.92% 1.92% 1.92% 120 86.200 87.300 1.100 21.15% 48.08% 51.92% 120 85.700 86.600 0.900 17.31% 46.54% 13.46% PAN 63.300 63.300 0.700 13.46% 100.00% 100.00% Vertror = 0.00% 13.46% 100.00% 0.900 13.46% 100.00% 27-1an-14 VT255 49.400 54.60 5.200 53.700 4.300 0.900 10 102.900 10.000 94.000 0.900 0.00% 0.00% 0.00% 11 102.900 10.000 10.000% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 10.000% </td <td>27-Jan-14</td> <td>WT2S4</td> <td>50.700</td> <td>55.900</td> <td>5.200</td> <td>55.200</td> <td>4.500</td> <td></td>	27-Jan-14	WT2S4	50.700	55.900	5.200	55.200	4.500	
Sieve # Sieve # Sieve (p) (q) Sediment (g) Weight %. Ret Pass. 10 102.900 103.000 0.100 1.92%. 1.92%. 98.08%. 35 93.400 94.300 0.000 1.737%. 26.92%. 73.08%. 10 87.200 88.300 1.100 21.15%. 69.23%. 30.87%. 120 86.200 87.300 1.100 21.15%. 69.23%. 30.77%. 230 85.700 86.600 0.900 17.31%. 86.54%. 31.46%. Date Sample Beaker (g) B. + Sediment (g) 100.00%. 4.300 0.900 27.1an-14 WT255 49.400 54.600 5.200 33.700 4.300 0.900 310 10.00 91.400 0.400 8.00%. 8.00%. 92.00%. 8.00%. 92.00%. 8.00%. 92.00%. 8.00%. 92.00%. 8.00%. 92.00%. 8.00%. 92.00%. 8.00%. 92.00%. 8.00%. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
10 102.900 102.000 0.100 18 91.000 91.400 0.400 35 93.400 94.300 0.900 120 86.200 87.200 1.100 120 86.200 87.300 1.100 120 86.200 87.300 1.100 121 195 48.08% 51.92% 20 86.200 87.300 1.100 13.45% 100.00% 13.46% 100.00% 7.33% 86.54% 13.46% 100.00% 9.400 54.600 5.200 53.700 43.00 10 102.900 102.900 0.000 8.00% 8.00% 10 102.900 102.900 0.000 8.00% 8.00% 9.200% 110 102.900 102.900 0.000 8.00% 8.00% 9.200% 120 86.200 87.300 1.100 22.00% 64.00% 36.00% 120 86.200 87.300	.	.						
18 91.000 94.400 0.400 35 93.400 94.300 0.900 17.31% 26.92% 73.08% 10 86.200 87.300 1.100 21.15% 48.08% 51.208% 1230 85.700 86.600 0.900 17.31% 85.54% 13.46% PAN 63.300 0.700 13.46% 100.00% 0.00% VETror = 0.00% 13.46% 100.00% 0.00% VETror = 0.00% 13.46% 100.00% 0.00% 10 102.900 102.900 0.000 5.200 53.700 4.300 0.900 18 91.000 91.400 0.400 5.200 53.700 4.000.00% 8.00% 8.00% 9.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.000% 10.0000% 10.000% 10.000% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>						_		
35 93.400 94.300 0.900 120 86.200 87.300 1.100 21.15% 48.08% 51.92% 120 86.200 87.300 1.100 21.15% 48.08% 51.92% 230 85.700 86.600 0.900 17.31% 86.54% 13.46% PAN 63.300 6.300 0.700 13.46% 100.00% 100.00% Z7-Jan-14 WT2S5 49.400 5.4600 5.200 53.700 4.300 0.900 10 102.900 10.2900 0.000 0.00% 0.	10	102.900	103.000	0.100		1.92%	1.92%	98.08%
60 87.200 88.300 1.100 21.15% 48.08% 51.92% 120 86.200 87.300 1.100 21.15% 69.23% 30.77% 230 85.700 86.600 0.900 13.46% 100.00% 0.00% 7. Mass (M)= 5.20 Total %= 100.00% 10.00% 0.00% 27-Jan-14 WT2S5 49.400 54.600 5.200 53.700 4.300 0.900 35 93.400 94.200 0.000 80.0% 8.00% 8.00% 9.000 91.400 0.400 8.00% 8.00% 8.00% 10.00.0% 10.00.0% 22.00% 64.00% 56.00% 16.00% 22.00% 64.00% 56.00% 10.00.0% 10.0	18	91.000	91.400	0.400		7.69%	9.62%	90.38%
120 86.200 87.300 1.100 21.15% 69.23% 30.77% 230 85.700 86.600 0.900 17.31% 86.54% 13.46% PAN 63.300 63.300 0.700 13.46% 100.00% 000% Date Sample Beaker (g) B + Sediment (g) Sediment (a) Sediment (after wet sieved) (g) M(f) (after wet sieved) (g) (g) 27-Jan-14 WT2S5 49.400 54.600 5.200 53.700 4.300 0.900 10 102.900 102.900 0.400 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 10.00%	35	93.400	94.300	0.900		17.31%	26.92%	73.08%
120 86.200 87.300 1.100 21.15% 69.23% 30.77% 230 85.700 86.600 0.900 17.31% 86.54% 13.46% PAN 63.300 63.300 0.700 13.46% 100.00% 000% Date Sample Beaker (g) B + Sediment (g) Sediment (a) Sediment (after wet sieved) (g) M(f) (after wet sieved) (g) (g) 27-Jan-14 WT2S5 49.400 54.600 5.200 53.700 4.300 0.900 10 102.900 102.900 0.400 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 8.00% 10.00%	60	87.200	88.300	1.100		21.15%	48.08%	51.92%
230 85.700 86.600 0.900 17.31% 86.54% 13.46% 100.00% T. Mass (Mt)= S.20 Total %= 100.00% 0.00% %Error = 0.00% 100.00% 0.00% 27.Jan-14 WT2S5 49.400 54.600 5.20 53.700 4.300 A.300 A.300 A.300 A.300 A.300 A.300 M.300% B + Dry Sediment (Mt) (after (Mt) (mt) (mt) M.330 A.300								
PAN 63.300 63.300 0.700 13.46% 100.00% 0.00% T. Mass (Mt)= 5.20 Total %= 100.00% 0.00% %Error = 0.00% %Error = 0.00% 400.00% 0.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) Sediment (g) M(I) (ahr wet sievel (g) Add PAN (MI) (ahr wet sievel (g) 27-Jan-14 WT2S5 49.400 54.600 5.200 53.700 4.300 0.900 10 102.900 102.900 0.000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% Pass 10 102.900 102.900 0.800 18.00% 42.00% 58.00% 18.00% 102.00% 58.00% 16.00% 20.00% 84.00% 16.00% 20.00% 64.00% 16.00% 102.00% 20.00% 84.00% 100.00% 102.00% 20.00% 84.00% 100.00% 102.00% 20.00% 84.00% 10.000 100.00% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
T. Mass (Mt)= 5.20 Total %= 100.00% WError = 0.00% %Error = 0.00% 27-Jan-14 WT2S5 49.400 54.600 5.200 53.700 4.300 0.000% 310 102.900 102.900 0.0000 0.0000 0.00% 100.00% 76.00% 76.00% 76.00% 76.00% 76.00% 76.00% 76.00% 76.00% 102.00% 76.00% 102.00% 76.00% 102.00% 76.00% 100.00% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
MError = 0.00% Add PAN Date Sample ID B + Sediment (9) Sediment (9) B + Dry Sediment (after (M) (after	PAN	63.300	63.300	0.700		13.46%	100.00%	0.00%
Date Sample ID Beaker (g) B + Sediment (g) Sediment Sediment (g) B + Dry Sediment (after wet sievel) (g) Sediment wet sievel) (g) Mid PAR (Mi - Mf) (g) 27-Jan-14 WT2S5 49.400 54.600 5.200 53.700 4.300 0.900 Sieve (g) (g) Sediment (g) 0.000 0.		Т	. Mass (Mt)=	5.20	Total %=	100.00%		
Date Sample ID Beaker (g) B B + Sediment (g) Sediment (M) Sediment (g) Sediment (M) Sediment (g) Sediment (M) (g)			%Error =	0.00%				
Date Sample ID Beaker (g) B B + Sediment (g) Sediment (M) Sediment (g) Sediment (M) Sediment (g) Sediment (M) (g)								
Date Sample ID Beaker (g) B B + Sediment (g) Sediment (M) Sediment (g) Sediment (M) Sediment (g) Sediment (M) (g)						B i Dn/	Sodimont	Add PAN
ID No. (g) (Mi) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) wet sieved) (g) (g) 27-Jan-14 WT2S5 49.400 54.600 5.200 53.700 4.300 0.900 10 102.900 102.900 0.000 0.00% 0.00% 100.00% Pass 18 91.000 94.200 0.800 16.00% 24.00% 56.00% 32.00% 64.00% 36.00% 22.00% 64.00% 36.00% <td>Data</td> <td>Sample</td> <td>Rookor (a)</td> <td>B + Sediment</td> <td>Sediment</td> <td>-</td> <td></td> <td></td>	Data	Sample	Rookor (a)	B + Sediment	Sediment	-		
27-Jan-14 WT2S5 49.400 54.600 5.200 53.700 4.300 0.900 Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Weight % Ret Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 94.200 0.800 16.00% 24.00% 76.00% 60 87.200 88.100 0.900 18.00% 42.00% 58.00% 230 85.700 86.700 1.000 22.00% 64.00% 36.00% PAN 63.300 63.300 0.900 18.00% 102.00% -2.00% V=rror = -1.92% 9 9 9 -2.00% 64.00% 106.00% 27-Jan-14 WT351 29.300 34.400 5.100 33.400 4.100 1.000 10 102.900 102.900 0.000 0.000% 0.000% 10.00% 9 9 9 9 9 9 9 9	Date	ID	Deaker (g)	(g)	(Mi) (g)			
Sieve # Seeve (g) Sed. Mass Weight % Cum % Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 0.00% 100.00% 11						, (0,	0,	
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 100.00% 35 93.400 94.200 0.800 16.00% 24.00% 76.00% 60 87.200 88.100 0.900 18.00% 42.00% 58.00% 120 86.200 87.300 1.100 22.00% 64.00% 16.00% 230 85.700 86.700 1.000 20.00% 84.00% 16.00% 24.00% 76.00% 36.00% 102.00% 20.00% 84.00% 16.00% 7.0 85.700 86.700 1.000 20.00% 84.00% 16.00% 9.0 9.000 9.000 100.00% 20.00% 84.00% 16.00% 101 102.900 102.900 34.400 5.100 33.400 4.000 1.000 18 91.000 91.300 0.300 5.77% 5.77%	27-Jan-14	WT2S5	49.400	54.600	5.200	53.700	4.300	0.900
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 100.00% 35 93.400 94.200 0.800 16.00% 24.00% 76.00% 60 87.200 88.100 0.900 18.00% 42.00% 58.00% 120 86.200 87.300 1.100 22.00% 64.00% 16.00% 230 85.700 86.700 1.000 20.00% 84.00% 16.00% 24.00% 76.00% 36.00% 102.00% 20.00% 84.00% 16.00% 7.0 85.700 86.700 1.000 20.00% 84.00% 16.00% 9.0 9.000 9.000 100.00% 20.00% 84.00% 16.00% 101 102.900 102.900 34.400 5.100 33.400 4.000 1.000 18 91.000 91.300 0.300 5.77% 5.77%			Sed+Sieve	Mass			Cum %	Cum %
10 102.900 102.900 0.000 0.00% 0.00% 0.00% 100.00% 18 91.000 91.400 0.400 0.800 8.00% 22.00% 62.00% 92.00% 62.00% 92.00% 64.00% 36.00% 22.00% 64.00% 36.00% 22.00% 64.00% 36.00% 22.00% 64.00% 36.00% 22.00% 64.00% 36.00% 22.00% 64.00% 36.00% 22.00% 64.00% 36.00% 20.00% 84.00% 16.00% 22.00% 64.00% 36.00% 20.00% 84.00% 16.00% 20.00% 84.00% 16.00% 20.00% 84.00% 16.00% 20.00% 84.00% 16.00% 20.00% 84.00% 16.00% 20.00% 84.00% 16.00% 20.00% 84.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% 10.00% <td< td=""><td>Sieve #</td><td>Sieve (a)</td><td></td><td></td><td></td><td>Weight %</td><td></td><td></td></td<>	Sieve #	Sieve (a)				Weight %		
18 91.000 91.400 0.400 35 93.400 94.200 0.800 16.00% 24.00% 76.00% 60 87.200 88.100 0.900 18.00% 42.00% 76.00% 120 86.200 87.300 1.100 22.00% 64.00% 36.00% 230 85.700 86.700 1.000 20.00% 84.00% 102.00% -2.00% PAN 63.300 0.900 18.00% 102.00% -2.00% 64.00% 36.00% -2.00% 0 T. Mass (Mt)= 5.10 Total % 102.00% 102.00% -2.00% 27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.001 100.00% 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>						_		
35 93.400 94.200 0.800 16.00% 24.00% 76.00% 60 87.200 88.100 0.900 18.00% 42.00% 58.00% 230 85.700 86.700 1.000 22.00% 64.00% 36.00% 230 85.700 86.700 1.000 22.00% 64.00% 36.00% 20.00% 84.00% 16.00% 20.00% 84.00% 16.00% 7. Mass (Mt)= 5.10 Total %= 102.00% 102.00% 102.00% 27-Jan-14 WTS1 29.300 34.400 5.100 33.400 4.100 1.000 35< 93.400								
60 87.200 88.100 0.900 18.00% 42.00% 58.00% 120 86.200 87.300 1.100 22.00% 64.00% 36.00% 230 85.700 86.700 1.000 22.00% 84.00% 16.00% PAN 63.300 63.300 0.900 18.00% 102.00% 102.00% T. Mass (Mt)= 5.10 Total %= 102.00% 102.00% 102.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) Sediment (g) Weight % Add PAN 101 102.900 102.900 34.400 5.100 33.400 4.100 1.000 110 102.900 102.900 0.000 0.00% 0.00% 10.00% 10.00% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 120 86.200 87.300 1.000 21.15% 63.46% 36.54% 120 86.200 87.300 <								
120 86.200 87.300 1.100 22.00% 64.00% 36.00% 230 85.700 86.700 1.000 20.00% 84.00% 16.00% PAN 63.300 63.300 0.900 18.00% 102.00% -2.00% T. Mass (M)= 5.10 Total %= 102.00% -2.00% %Error = -1.92% Sediment (Mi) (g) Sediment (after wet sieved) (g) wet sievel) (Mi-Mf) 27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.100 1.000 Sieve # Sieve (g) Sed+Sieve Mass Sediment (g) 0.00% 0.00% 0.00% 100.00% 10 102.900 102.900 0.000 0.000 5.77% 5.77% 94.23% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 120 86.200 87.300 1.000 19.23% 96.15% 3.85% 120 86.300 63.300 1.000 19.2								
230 85.700 86.700 1.000 20.00% 84.00% 16.00% PAN 63.300 63.300 0.900 18.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% %Error = -1.92% 102.00% 102.00% -2.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (Mi) (g) Sediment (Mi) (g) 27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.100 1.000 Sieve # Sieve (g) Sed.*Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 10.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 1.300 120.386.37% 96.15% 3.85% 27-J	60	87.200	88.100	0.900		18.00%	42.00%	58.00%
PAN 63.300 63.300 0.900 18.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% %Error = -1.92% 102.00% -2.00% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (Mi) (g) Sediment (Mi) (g) 27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.100 1.000 10 102.900 0.0000 0.0000 0.00%<	120	86.200	87.300	1.100		22.00%	64.00%	36.00%
PAN 63.300 63.300 0.900 Total %= 18.00% 102.00% -2.00% T. Mass (Mt)= 5.10 Total %= 102.00% -2.00% %Error = -1.92% %Error = -1.92% Add PAN Date Sample ID Beaker (g) B + Sediment (g) Sediment (after (Mi) (g) Sediment (after wet sieved) (g) Sediment Weight % Add PAN Sieve # Sieve (g) Gg Sediment (g) Sediment (g) Weight % Ret Pass 10 102.900 0.2.900 0.000 0.00% <td>230</td> <td>85.700</td> <td>86.700</td> <td>1.000</td> <td></td> <td>20.00%</td> <td>84.00%</td> <td>16.00%</td>	230	85.700	86.700	1.000		20.00%	84.00%	16.00%
T. Mass (Mt)= 5.10 Total %= 102.00% %Error = -1.92% Add PAN Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieved) (g) Add PAN (Mi-Mf) 27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.100 1.000 Sieve # Sieve (g) (g) Sed.Sieve Sediment (g) Wass Cum % Ret Cum % Pass 10 102.900 102.900 0.000 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 19.23% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (Mf) (after wet sieved) (g) Add PAN (Mi-Mf) 10 102.900 102.900	PAN	63,300	63,300	0.900		18.00%	102.00%	-2.00%
%Error = -1.92% Add PAN Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment sediment (after (Mi) (g) Add PAN (Mi) (After wet sieved) (g) 27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.100 1.000 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.660 11.54% 17.31% 82.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 19.23% 96.15% 3.85% PAN 63.300 1.000 19.23% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (g) <					Total %-			
Date Sample ID Beaker (g) B + Sediment (g) Sediment (MI) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieved) (g) Add PAN (Mi-Mf) wet sieved) (g) 27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.100 1.000 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 60 87.200 88.500 1.300 21.05% 63.46% 36.54% 230 85.700 86.400 0.700 19.23% 96.15% 3.85% PAN 63.300 1.000 19.23% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (Mi) (after wet sieved) (g) Add PAN (Mi-Mf) 10 102.900 102.900 0.000 33.800 4.300 <		•	. ,			102.00 /8		
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) (Mi) (after wet sieved) (g) Sieve # Sieve (g) Sed+Sieve Mass Weight % Ret Pass 10 102.900 102.900 0.000 0.000 0.00% 100.00% 18 91.000 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 1.000 Total %= 96.15% 4dd PAN Date Sample ID Beaker (g) B+ Sediment (g) Sediment (Mi) (g) Sediment (Mi) (g) Cum % <td></td> <td></td> <td>%Error =</td> <td>-1.92%</td> <td></td> <td></td> <td></td> <td></td>			%Error =	-1.92%				
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) (Mi) (after wet sieved) (g) Sieve # Sieve (g) Sed+Sieve Mass Weight % Ret Pass 10 102.900 102.900 0.000 0.000 0.00% 100.00% 18 91.000 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% Date Sample ID Beaker (g) B+ Sediment (g) Sediment (Mi) (g) Cum %								
Date ID Beaker (g) (g) (Mi) (g) Sediment (after wet sieved) (g) (Mi) (after wet sieved) (g) (Mi) (after wet sieved) (g) 27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.100 1.000 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 60 87.200 88.500 1.300 25.00% 42.31% 57.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 19.23% 96.15% 3.85% PAN 63.300 1.000 19.23% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (f) (Mi) (after wet sieved) (g) Weight % Ret Pass 10 <td></td> <td>Sampla</td> <td></td> <td>P . Sodimont</td> <td>Sodimont</td> <td>B + Dry</td> <td>Sediment</td> <td>Add PAN</td>		Sampla		P . Sodimont	Sodimont	B + Dry	Sediment	Add PAN
27-Jan-14 WT3S1 29.300 34.400 5.100 33.400 4.100 1.000 Sieve # Sieve (g) (g) Sed+Sieve Mass Weight % Ret Pass 10 102.900 102.900 0.000 0.000 0.00% 0.00% 100.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Weight % Ret Mdd PAN (Mi (Affred wet sieved) (g) 0.900 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 </td <td>Date</td> <td></td> <td>Beaker (g)</td> <td></td> <td></td> <td>Sediment (after</td> <td>(Mf) (after</td> <td>(Mi-Mf)</td>	Date		Beaker (g)			Sediment (after	(Mf) (after	(Mi-Mf)
Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Cum % Pass 10 102.900 102.900 0.000 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 25.00% 42.31% 57.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (after wet sieved) (g) Mdd PAN (Mi -Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve (g) (g) Se		ID		(g)	(IVII) (G)	wet sieved) (g)	wet sieving)	(g)
Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Cum % Pass 10 102.900 102.900 0.000 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 25.00% 42.31% 57.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (after wet sieved) (g) Mdd PAN (Mi -Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve (g) (g) Se	27-Jan-14	WT3S1	29.300	34,400	5.100	33 400	4,100	1 000
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 25.00% 42.31% 57.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 1.000 19.23% 96.15% 3.85% Date %Error = -1.96% 4/d4 PAN Date Sample ID Beaker (g) B + Sediment (g) Sediment (f) Sediment (f) M(i+Aff) (Mi -Aff) (Mi -Aff) 10 102.900 102.900 34.700 5.200 33.800 4.300 0.900								1.000
10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 25.00% 42.31% 57.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% McFror = -1.96% Mass (Mt)= 5.00 Total %= 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Kift error wet sieving) (Mi - Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 36 91.000 91.500 0.500 12.50%	.		.		0.100	33.400		
18 91.000 91.300 0.300 5.77% 5.77% 94.23% 35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 25.00% 42.31% 57.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% 0 %Error = -1.96% 96.15% 3.85% 96.15% 3.85% 0 %Error = -1.96% Sediment (Mi) (g) Sediment (after wet sieved) (g) (Mi - Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve g Sed+Sieve (g) Mass Sediment (g) Sediment (Mi) 0.00% 0.00% 100.00% 10 102.900 102.900 0.000 12.50% 12.		C iana (n)			0.200		Cum %	Cum %
35 93.400 94.000 0.600 11.54% 17.31% 82.69% 60 87.200 88.500 1.300 25.00% 42.31% 57.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% Memory Sediment (g) MError = -1.96% -1.96% -1.96% -1.96% -1.96% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (Mi) (g) Sediment (Mf) (after wet sieved) (g) Add PAN (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00%			(g)	Sediment (g)		Weight %	Cum % Ret	Cum % Pass
60 87.200 88.500 1.300 25.00% 42.31% 57.69% 120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% Mass (Mt)= 5.00 Total %= 96.15% Add PAN Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) B + Dry Sediment (Mf) (after wet sieving) (MI) (after wet sieving) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve (g) Sed+Sieve Mass Mass Meight % Ret Pass 10 102.900 102.900 0.000 12.50% 12.50% 12.50% 87.50% 120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800			(g)	Sediment (g)		Weight %	Cum % Ret	Cum %
120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% T. Mass (Mt)= 5.00 Total %= 96.15% 3.85% Mass (Mt)= 5.00 Total %= 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) B + Dry Sediment (after wet sieved) (g) Sediment (after wet sieving) Add PAN (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 120 86.200 87.200 1.000 22.50% 52.50% 47.50% 120 86.200 87.200 <td>10</td> <td>102.900</td> <td>(g) 102.900</td> <td>Sediment (g) 0.000</td> <td></td> <td>Weight % 0.00%</td> <td>Cum % Ret 0.00%</td> <td>Cum % Pass 100.00%</td>	10	102.900	(g) 102.900	Sediment (g) 0.000		Weight % 0.00%	Cum % Ret 0.00%	Cum % Pass 100.00%
120 86.200 87.300 1.100 21.15% 63.46% 36.54% 230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% Mass (Mt)= 5.00 Total %= 96.15% 3.85% Mass (Mt)= 5.00 Total %= 96.15% 3.85% Date Sample ID Beaker (g) B + Sediment (g) Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) Add PAN (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 120 86.200 87.200 1.000 22.50% 52.50% 47.50% 120 86.200 87.2	10 18	102.900 91.000	(g) 102.900 91.300	Sediment (g) 0.000 0.300		Weight % 0.00% 5.77%	Cum % Ret 0.00% 5.77%	Cum % Pass 100.00% 94.23%
230 85.700 86.400 0.700 13.46% 76.92% 23.08% PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% T. Mass (Mt)= 5.00 Total %= 96.15% 3.85% %Error = -1.96% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment (after wet sieved) (g) Add PAN (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% 230 85.700 86.800 1.100 27.50% 105.00% -5	10 18 35	102.900 91.000 93.400	(g) 102.900 91.300 94.000	Sediment (g) 0.000 0.300 0.600		Weight % 0.00% 5.77% 11.54%	Cum % Ret 0.00% 5.77% 17.31%	Cum % Pass 100.00% 94.23% 82.69%
PAN 63.300 63.300 1.000 19.23% 96.15% 3.85% T. Mass (Mt)= 5.00 Total %= 96.15%	10 18 35 60	102.900 91.000 93.400 87.200	(g) 102.900 91.300 94.000 88.500	Sediment (g) 0.000 0.300 0.600 1.300		Weight % 0.00% 5.77% 11.54% 25.00%	Cum % Ret 0.00% 5.77% 17.31% 42.31%	Cum % Pass 100.00% 94.23% 82.69% 57.69%
T. Mass (Mt)= 5.00 Total %= 96.15% %Error = -1.96% Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieving) Add PAN (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.	10 18 35 60 120	102.900 91.000 93.400 87.200 86.200	(g) 102.900 91.300 94.000 88.500 87.300	Sediment (g) 0.000 0.300 0.600 1.300 1.100		Weight % 0.00% 5.77% 11.54% 25.00% 21.15%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46%	Cum % Pass 100.00% 94.23% 82.69% 57.69% 36.54%
%Error = -1.96% Add PAN Date Sample ID Beaker (g) ID B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieved) (g) Add PAN (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) (g) Mass Sediment (g) Weight % Ret Pass Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% 230 85.700 86.800 1.100 27.50% 125.00% -27.50% PAN 63.300 63.300 0.900 22.50%	10 18 35 60 120 230	102.900 91.000 93.400 87.200 86.200 85.700	(g) 102.900 91.300 94.000 88.500 87.300 86.400	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700		Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92%	Cum % Pass 100.00% 94.23% 82.69% 57.69% 36.54% 23.08%
Date Sample ID Beaker (g) ID B + Sediment (g) Sediment (Mi) (g) B + Dry Sediment (after wet sieved) (g) Sediment (Mf) (after wet sieving) Add PAN (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50%	10 18 35 60 120 230	102.900 91.000 93.400 87.200 86.200 85.700 63.300	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000		Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92%	Cum % Pass 100.00% 94.23% 82.69% 57.69% 36.54% 23.08%
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sieved) (g) (Mf) (after wet sieving) (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Mass Sediment (g) Cum % Ret Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% 230 85.700 86.800 1.100 27.50% 125.00% -27.50% PAN 63.300 <	10 18 35 60 120 230	102.900 91.000 93.400 87.200 86.200 85.700 63.300	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00		Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92%	Cum % Pass 100.00% 94.23% 82.69% 57.69% 36.54% 23.08%
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sieved) (g) (Mf) (after wet sieving) (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Mass Sediment (g) Cum % Ret Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% 230 85.700 86.800 1.100 27.50% 125.00% -27.50% PAN 63.300 <	10 18 35 60 120 230	102.900 91.000 93.400 87.200 86.200 85.700 63.300	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)=	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00		Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92%	Cum % Pass 100.00% 94.23% 82.69% 57.69% 36.54% 23.08%
Date Sample ID Beaker (g) B + Sediment (g) Sediment (Mi) (g) Sediment wet sieved) (g) (Mf) (after wet sieving) (Mi-Mf) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Mass Sediment (g) Cum % Ret Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% 230 85.700 86.800 1.100 27.50% 125.00% -27.50% PAN 63.300 <	10 18 35 60 120 230	102.900 91.000 93.400 87.200 86.200 85.700 63.300	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)=	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00		Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92%	Cum % Pass 100.00% 94.23% 82.69% 57.69% 36.54% 23.08%
ID (g) (wfl) (g) wet sieved) (g) wet sieving) (g) 27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50%	10 18 35 60 120 230	102.900 91.000 93.400 87.200 86.200 85.700 63.300 T	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)=	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96%	Total %=	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15%	Cum % Pass 100.00% 94.23% 82.69% 57.69% 36.54% 23.08%
27-Jan-14 WT3S2 29.500 34.700 5.200 33.800 4.300 0.900 Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Cum % Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 27.50% 105.00% -5.00% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50%	10 18 35 60 120 230 PAN	102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)= %Error =	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment	Total %=	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% Sediment	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% Add PAN
Sieve # Sieve (g) Sed+Sieve (g) Mass Sediment (g) Weight % Cum % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50%	10 18 35 60 120 230 PAN	102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)= %Error =	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment	Total %=	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% Sediment (Mf) (after	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% Add PAN (Mi-Mf)
Sieve # Sieve (g) (g) Sediment (g) Weight % Ret Pass 10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50%	10 18 35 60 120 230 PAN Date	102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)= %Error = Beaker (g)	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g)	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g)	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% Sediment (Mf) (after wet sieving)	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% Add PAN (Mi-Mf) (g)
10 102.900 102.900 0.000 0.00% 0.00% 100.00% 18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50% T. Mass (Mt)= 5.10 Total %= 127.50% -27.50%	10 18 35 60 120 230 PAN Date	102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.500	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g)	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% Sediment (Mf) (after wet sieving) 4.300	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% Add PAN (Mi-Mf) (g) 0.900
18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50% T. Mass (Mt)= 5.10 Total %= 127.50% -27.50%	10 18 35 60 120 230 PAN Date 27-Jan-14	102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT3S2	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.500 Sed+Sieve	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum %	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum %
18 91.000 91.500 0.500 12.50% 12.50% 87.50% 35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50% T. Mass (Mt)= 5.10 Total %= 127.50% -27.50%	10 18 35 60 120 230 PAN Date 27-Jan-14	102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT3S2	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.500 Sed+Sieve	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g)	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum %	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum %
35 93.400 94.100 0.700 17.50% 30.00% 70.00% 60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50% T. Mass (Mt)= 5.10 Total %= 127.50% -27.50%	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT3S2 Sieve (g)	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.500 Sed+Sieve (g)	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g)	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight %	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum %
60 87.200 88.100 0.900 22.50% 52.50% 47.50% 120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 0.900 22.50% 127.50% 127.50% -27.50% T. Mass (Mt)= 5.10 Total %= 127.50% - -	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	102.900 91.000 93.400 87.200 85.700 63.300 T Sample ID WT3S2 Sieve (g) 102.900	(g) 102.900 91.300 94.000 88.500 87.300 63.300 Mass (Mt)= %Error = Beaker (g) 29.500 Sed+Sieve (g) 102.900	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00%
120 86.200 87.200 1.000 25.00% 77.50% 22.50% 230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50% T. Mass (Mt)= 5.10 Total %= 127.50% - 27.50% - - - - - - - - - - - - - - - - -	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	102.900 91.000 93.400 87.200 85.700 63.300 T Sample ID WT3S2 Sieve (g) 102.900 91.000	(g) 102.900 91.300 94.000 88.500 87.300 63.300 Mass (Mt)= %Error = Beaker (g) 29.500 Sed+Sieve (g) 102.900 91.500	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000 0.500	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00% 12.50%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00% 12.50%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00% 87.50%
230 85.700 86.800 1.100 27.50% 105.00% -5.00% PAN 63.300 63.300 0.900 22.50% 127.50% -27.50% Image: Comparison of the system of the syste	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	102.900 91.000 93.400 87.200 85.700 63.300 T Sample ID WT3S2 Sieve (g) 102.900 91.000 93.400	(g) 102.900 91.300 94.000 88.500 87.300 63.300 Mass (Mt)= %Error = 8eaker (g) 29.500 Sed+Sieve (g) 102.900 91.500 94.100	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000 0.500 0.700	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00% 12.50% 17.50%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00% 12.50% 30.00%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00% 87.50% 70.00%
PAN 63.300 63.300 0.900 22.50% 127.50% -27.50% T. Mass (Mt)= 5.10 Total %= 127.50% -27.50%	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	102.900 91.000 93.400 87.200 85.700 63.300 T Sample ID WT3S2 Sieve (g) 102.900 91.000 93.400 87.200	(g) 102.900 91.300 94.000 88.500 87.300 63.300 Mass (Mt)= %Error = 8eaker (g) 29.500 Sed+Sieve (g) 102.900 91.500 94.100	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000 0.500 0.700 0.900	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% 8 + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00% 12.50% 17.50% 22.50%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00% 12.50% 30.00%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00% 87.50% 70.00%
T. Mass (Mt)= 5.10 Total %= 127.50%	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	102.900 91.000 93.400 87.200 85.700 63.300 T S ample ID WT3S2 Sieve (g) 102.900 91.000 93.400 87.200 86.200	(g) 102.900 91.300 94.000 88.500 87.300 63.300 Mass (Mt)= %Error = %Error = %Error = %Ersor (g) 29.500 Sed+Sieve (g) 102.900 91.500 94.100 88.100	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000 0.500 0.500 0.700 0.900 1.000	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00% 12.50% 17.50% 22.50%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00% 12.50% 30.00%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00% 87.50% 22.50%
	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	102.900 91.000 93.400 87.200 85.700 63.300 T S ample ID WT3S2 Sieve (g) 102.900 91.000 93.400 87.200 86.200	(g) 102.900 91.300 94.000 88.500 87.300 63.300 Mass (Mt)= %Error = %Error = %Error = %Ersor (g) 29.500 Sed+Sieve (g) 102.900 91.500 94.100 88.100	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000 0.500 0.500 0.700 0.900 1.000	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00% 12.50% 17.50% 22.50%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00% 12.50% 30.00%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00% 87.50% 22.50%
	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	102.900 91.000 93.400 87.200 85.700 63.300 T S ample ID WT3S2 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700	(g) 102.900 91.300 94.000 88.500 87.300 63.300 Mass (Mt)= %Error = %Error =	Sediment (g) 0.000 0.300 0.600 1.300 1.100 0.700 1.000 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000 0.500 0.500 0.700 1.000 1.000 1.000	Total %= Sediment (Mi) (g)	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00% 12.50% 17.50% 22.50%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00% 12.50% 30.00% 52.50% 77.50%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00% 87.50% 22.50%
	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	102.900 91.000 93.400 86.200 85.700 63.300 T Sample ID WT3S2 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	(g) 102.900 91.300 94.000 88.500 87.300 86.400 63.300 Mass (Mt)= %Error = 8eaker (g) 29.500 Sed+Sieve (g) 102.900 91.500 94.100 88.100 88.100 86.800 63.300	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000 0.500 0.500 0.700 1.000 1.000 1.100 0.900	Total % = Sediment (Mi) (g) 5.200	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00% 12.50% 12.50% 22.50% 22.50%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00% 12.50% 30.00% 52.50% 77.50%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00% 87.50% 22.50% -5.00%
	10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	102.900 91.000 93.400 86.200 85.700 63.300 T Sample ID WT3S2 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	(g) 102.900 91.300 88.500 87.300 86.400 63.300 Mass (Mt)= %Error = Beaker (g) 29.500 Sed+Sieve (g) 102.900 91.500 94.100 88.100 88.100 88.100 86.800 63.300 Mass (Mt)=	Sediment (g) 0.000 0.300 1.300 1.100 0.700 1.000 5.00 -1.96% B + Sediment (g) 34.700 Mass Sediment (g) 0.000 0.500 0.500 0.700 0.500 0.700 1.000 1.000 1.100 0.900 1.100	Total % = Sediment (Mi) (g) 5.200	Weight % 0.00% 5.77% 11.54% 25.00% 21.15% 13.46% 19.23% 96.15% B + Dry Sediment (after wet sieved) (g) 33.800 Weight % 0.00% 12.50% 12.50% 22.50% 22.50%	Cum % Ret 0.00% 5.77% 17.31% 42.31% 63.46% 76.92% 96.15% 96.15% Sediment (Mf) (after wet sieving) 4.300 Cum % Ret 0.00% 12.50% 30.00% 52.50% 77.50%	Cum % Pass 100.00% 94.23% 82.69% 36.54% 23.08% 3.85% 3.85% Add PAN (Mi-Mf) (g) 0.900 Cum % Pass 100.00% 87.50% 22.50% -5.00%

Appendix C	(Continu	led)
------------	----------	------

	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
27-Jan-14	WT3S3	28.200	33.800	5.600	33.200	5.000	0.600
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.200	0.300		9.09%	9.09%	90.91%
18	91.000	91.600	0.600		18.18%	27.27%	72.73%
35	93.400	94.400	1.000		30.30%	57.58%	42.42%
60	87.200	88.300	1.100		33.33%	90.91%	9.09%
120	86.200	87.300	1.100		33.33%	124.24%	-24.24%
230	85.700	86.600	0.900		27.27%	151.52%	-51.52%
PAN	63.300	63.300	0.600		18.18%	169.70%	-69.70%
		Mass (Mt)=	5.60	Total %=	169.70%		
		%Error =	0.00%	10101 /0-			
		78E1101 =	0.0078				
					D . Dr.	O a dian a st	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	
Date	ID	Beaker (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(Mi-Mf)
27 Jan 14	WT3S4	28.200	22,400	5.200	, (6,		(g)
27-Jan-14	W1334	28.200	33.400	3.200	33.200	5.000	0.200
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.300	0.300		5.77%	5.77%	94.23%
35	93.400	94.700	1.300		25.00%	30.77%	69.23%
60	87.200	88.700	1.500		28.85%	59.62%	40.38%
120	86.200	87.000	0.800		15.38%	75.00%	25.00%
230	85.700	86.700	1.000		19.23%	94.23%	5.77%
PAN	63.300	63.300	0.200		3.85%	98.08%	1.92%
	т	. Mass (Mt)=	5.10	Total %=	98.08%		
		%Error =	-1.92%				
		,					
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
Duit	ID	Dounton (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(iui iui) (g)
27-Jan-14	WT3S5	29.300	34.800	5.500	33.900	4.600	0.900
27 9011 11				3.500	55.500		
Sieve #	Sieve (g)	Sed+Sieve (g)	Mass Sediment (g)		Maight 9/	Cum %	Cum %
10	Oleve (g)						Pase
10	102 000				Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	102.900 91.600	0.000 0.600		0.00% 12.00%	0.00% 12.00%	100.00% 88.00%
35	91.000 93.400	102.900 91.600 94.400	0.000 0.600 1.000		0.00% 12.00% 20.00%	0.00% 12.00% 32.00%	100.00% 88.00% 68.00%
35 60	91.000 93.400 87.200	102.900 91.600 94.400 88.200	0.000 0.600 1.000 1.000		0.00% 12.00% 20.00% 20.00%	0.00% 12.00% 32.00% 52.00%	100.00% 88.00% 68.00% 48.00%
35 60 120	91.000 93.400 87.200 86.200	102.900 91.600 94.400 88.200 87.200	0.000 0.600 1.000 1.000 1.000		0.00% 12.00% 20.00% 20.00% 20.00%	0.00% 12.00% 32.00% 52.00% 72.00%	100.00% 88.00% 68.00% 48.00% 28.00%
35 60 120 230	91.000 93.400 87.200 86.200 85.700	102.900 91.600 94.400 88.200 87.200 86.600	0.000 0.600 1.000 1.000 1.000 0.900		0.00% 12.00% 20.00% 20.00% 20.00% 18.00%	0.00% 12.00% 32.00% 52.00% 72.00% 90.00%	100.00% 88.00% 68.00% 48.00% 28.00% 10.00%
35 60 120	91.000 93.400 87.200 86.200 85.700 63.300	102.900 91.600 94.400 88.200 87.200 86.600 63.300	0.000 0.600 1.000 1.000 0.900 0.900		0.00% 12.00% 20.00% 20.00% 20.00% 18.00% 18.00%	0.00% 12.00% 32.00% 52.00% 72.00%	100.00% 88.00% 68.00% 48.00% 28.00%
35 60 120 230	91.000 93.400 87.200 86.200 85.700 63.300	102.900 91.600 94.400 88.200 87.200 86.600	0.000 0.600 1.000 1.000 1.000 0.900	Total %=	0.00% 12.00% 20.00% 20.00% 20.00% 18.00%	0.00% 12.00% 32.00% 52.00% 72.00% 90.00%	100.00% 88.00% 68.00% 48.00% 28.00% 10.00%
35 60 120 230	91.000 93.400 87.200 86.200 85.700 63.300	102.900 91.600 94.400 88.200 87.200 86.600 63.300	0.000 0.600 1.000 1.000 0.900 0.900	Total %=	0.00% 12.00% 20.00% 20.00% 20.00% 18.00% 18.00%	0.00% 12.00% 32.00% 52.00% 72.00% 90.00%	100.00% 88.00% 68.00% 48.00% 28.00% 10.00%
35 60 120 230	91.000 93.400 87.200 86.200 85.700 63.300	102.900 91.600 94.400 88.200 87.200 86.600 63.300 Mass (Mt)=	0.000 0.600 1.000 1.000 0.900 0.900 5.40	Total %=	0.00% 12.00% 20.00% 20.00% 20.00% 18.00% 18.00%	0.00% 12.00% 32.00% 52.00% 72.00% 90.00%	100.00% 88.00% 68.00% 48.00% 28.00% 10.00%
35 60 120 230	91.000 93.400 87.200 86.200 85.700 63.300 T	102.900 91.600 94.400 88.200 87.200 86.600 63.300 Mass (Mt)=	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82%		0.00% 12.00% 20.00% 20.00% 20.00% 18.00% 18.00%	0.00% 12.00% 32.00% 52.00% 72.00% 90.00%	100.00% 88.00% 68.00% 48.00% 28.00% 10.00%
35 60 120 230	91.000 93.400 87.200 86.200 85.700 63.300 T Sample	102.900 91.600 94.400 88.200 87.200 86.600 63.300 Mass (Mt)=	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment	Sediment	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00%	0.00% 12.00% 32.00% 52.00% 72.00% 90.00% 108.00%	100.00% 88.00% 68.00% 48.00% 28.00% 10.00% -8.00%
35 60 120 230 PAN	91.000 93.400 87.200 86.200 85.700 63.300 T	102.900 91.600 94.400 88.200 87.200 86.600 63.300 Mass (Mt)= %Error =	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82%		0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% B + Dry	0.00% 12.00% 32.00% 52.00% 72.00% 90.00% 108.00%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN
35 60 120 230 PAN	91.000 93.400 87.200 86.200 85.700 63.300 T Sample	102.900 91.600 94.400 88.200 87.200 86.600 63.300 Mass (Mt)= %Error =	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment	Sediment	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% B + Dry Sediment (after	0.00% 12.00% 32.00% 52.00% 72.00% 90.00% 108.00% Sediment (Mf) (after	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf)
35 60 120 230 PAN Date	91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% B + Dry Sediment (after wet sieved) (g)	0.00% 12.00% 32.00% 52.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500
35 60 120 230 PAN Date	91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S1	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% B + Dry Sediment (after wet sieved) (g)	0.00% 12.00% 32.00% 52.00% 90.00% 108.00% Sediment (Mf) (after wet sieving)	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g)
35 60 120 230 PAN Date 27-Jan-14 Sieve #	91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S1 Sieve (g)	102.900 91.600 94.400 88.200 87.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g)	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g)	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 18.00% 108.00% B + Dry Sediment (after wet sieved) (g) 32.900 Weight %	0.00% 12.00% 32.00% 52.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass
35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	91.000 93.400 87.200 85.700 63.300 T Sample ID WT4S1 Sieve (g) 102.900	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 103.200	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g) 0.300	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% B + Dry Sediment (after wet sieved) (g) 32.900 Weight % 5.77%	0.00% 12.00% 32.00% 52.00% 72.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret 5.77%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass 94.23%
35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	91.000 93.400 87.200 86.200 63.300 T Sample ID WT4S1 Sieve (g) 102.900 91.000	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 103.200 91.500	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g) 0.300 0.500	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% B + Dry Sediment (after wet sieved) (g) 32.900 Weight % 5.77% 9.62%	0.00% 12.00% 32.00% 52.00% 72.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret 5.77% 15.38%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass 94.23% 84.62%
35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	91.000 93.400 87.200 86.200 63.300 T Sample ID WT4S1 Sieve (g) 102.900 91.000 93.400	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 103.200 91.500 94.300	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g) 0.300 0.500 0.900	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% 108.00% Sediment (after wet sieved) (g) 32.900 Weight % 5.77% 9.62% 17.31%	0.00% 12.00% 32.00% 52.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret 5.77% 15.38% 32.69%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass 94.23% 84.62% 67.31%
35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S1 Sieve (g) 102.900 91.000 93.400 87.200	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 103.200 91.500 94.300	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g) 0.300 0.500 0.900 1.300	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% Sediment (after wet sieved) (g) 32.900 Weight % 5.77% 9.62% 17.31% 25.00%	0.00% 12.00% 32.00% 72.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret 5.77% 15.38% 32.69% 57.69%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass 94.23% 84.62% 67.31% 42.31%
35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	91.000 93.400 87.200 85.700 63.300 T Sample ID WT4S1 Sieve (g) 102.900 91.000 93.400 87.200 86.200	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 103.200 91.500 94.300 88.500 87.200	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g) 0.300 0.500 0.900 1.300 1.000	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% B + Dry Sediment (after wet sieved) (g) 32.900 Weight % 5.77% 9.62% 17.31% 25.00% 19.23%	0.00% 12.00% 32.00% 52.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret 5.77% 15.38% 32.69% 57.69% 76.92%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass 94.23% 84.62% 67.31% 42.31% 23.08%
35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	91.000 93.400 87.200 85.700 63.300 T Sample ID WT4S1 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 103.200 91.500 94.300 88.500 87.200 86.300	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g) 0.300 0.500 0.900 1.300 1.000 0.600	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% Sediment (after wet sieved) (g) 32.900 Weight % 5.77% 9.62% 17.31% 25.00% 19.23% 11.54%	0.00% 12.00% 32.00% 52.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret 5.77% 15.38% 32.69% 57.69% 76.92% 88.46%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass 94.23% 84.62% 67.31% 42.31% 23.08% 11.54%
35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	91.000 93.400 87.200 85.700 63.300 T Sample ID WT4S1 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 103.200 91.500 94.300 88.500 87.200 86.300 63.300	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g) 0.300 0.500 0.900 1.300 1.000 0.600 0.500	Sediment (Mi) (g) 5.100	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% 108.00% Sediment (after wet sieved) (g) 32.900 Weight % 5.77% 9.62% 17.31% 25.00% 19.23% 11.54% 9.62%	0.00% 12.00% 32.00% 52.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret 5.77% 15.38% 32.69% 57.69% 76.92%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass 94.23% 84.62% 67.31% 42.31% 23.08%
35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	91.000 93.400 87.200 85.700 63.300 T Sample ID WT4S1 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	102.900 91.600 94.400 88.200 86.600 63.300 Mass (Mt)= %Error = Beaker (g) 28.300 Sed+Sieve (g) 103.200 91.500 94.300 88.500 87.200 86.300	0.000 0.600 1.000 1.000 0.900 0.900 5.40 -1.82% B + Sediment (g) 33.400 Mass Sediment (g) 0.300 0.500 0.900 1.300 1.000 0.600	Sediment (Mi) (g)	0.00% 12.00% 20.00% 20.00% 18.00% 18.00% 108.00% Sediment (after wet sieved) (g) 32.900 Weight % 5.77% 9.62% 17.31% 25.00% 19.23% 11.54%	0.00% 12.00% 32.00% 52.00% 90.00% 108.00% Sediment (Mf) (after wet sieving) 4.600 Cum % Ret 5.77% 15.38% 32.69% 57.69% 76.92% 88.46%	100.00% 88.00% 68.00% 28.00% 10.00% -8.00% Add PAN (Mi-Mf) (g) 0.500 Cum % Pass 94.23% 84.62% 67.31% 42.31% 23.08% 11.54%

· · · · ·							Add PAN
Date	Sample	Bookor (a)	B + Sediment	Sediment	B + Dry	Sediment	
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf)
			22.522	= = 0.0	, (0,	0,	(g)
27-Jan-14	WT4S2	28.100	33.600	5.500	32.800	4.700	0.800
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.500	0.500		12.50%	12.50%	87.50%
35	93.400	94.400	1.000		25.00%	37.50%	62.50%
60	87.200	88.400	1.200		30.00%	67.50%	32.50%
120	86.200	87.200	1.000		25.00%	92.50%	7.50%
230	85.700	86.600	0.900		22.50%	115.00%	-15.00%
PAN	63.300	63.300	0.800		20.00%	135.00%	-35.00%
		. Mass (Mt)=	5.40	Total %=	135.00%	100.0070	33.0070
		%Error =	-1.82%	10101 /0-			
		/aError =	-1.02 /0				
					D . Dat	Q a diana a st	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	B + Dry Sediment (after	Sediment (Mf) (after	
Date	ID	Beaker (g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(Mi-Mf)
27 1	M/T400	20,000	25.400	F (00)			(g)
27-Jan-14	WT4S3	29.800	35.400	5.600	34.700	4.900	0.700
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.300	0.300		9.09%	9.09%	90.91%
35	93.400	94.100	0.700		21.21%	30.30%	69.70%
60	87.200	88.500	1.300		39.39%	69.70%	30.30%
120	86.200	87.600	1.400		42.42%	112.12%	-12.12%
230	85.700	86.800	1.100		33.33%	145.45%	-45.45%
PAN	63.300	63.300	0.700		21.21%	166.67%	-66.67%
		Mass (Mt)=	5.50	Total %=	166.67%		
	-	%Error =	-1.79%		100.01 /0		
		70EIT01 =	-1.79%				
Data	Sample	Booker (a)	B + Sediment	Sediment	B + Dry Sodimont (offer	Sediment	Add PAN
Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
	ID		(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf) (g)
Date 27-Jan-14		28.600	(g) 33.700		Sediment (after	(Mf) (after wet sieving) 4.500	(Mi-Mf) (g) 0.600
27-Jan-14	ID WT4S4	28.600 Sed+Sieve	(g) 33.700 Mass	(Mi) (g)	Sediment (after wet sieved) (g) 33.100	(Mf) (after wet sieving) 4.500 Cum %	(Mi-Mf) (g) 0.600 Cum %
27-Jan-14 Sieve #	ID WT4S4 Sieve (g)	28.600 Sed+Sieve (g)	(g) 33.700 Mass Sediment (g)	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight %	(Mf) (after wet sieving) 4.500 Cum % Ret	(Mi-Mf) (g) 0.600 Cum % Pass
27-Jan-14 Sieve # 10	ID WT4S4 Sieve (g) 102.900	28.600 Sed+Sieve (g) 102.900	(g) 33.700 Mass Sediment (g) 0.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00%
27-Jan-14 Sieve # 10 18	ID WT4S4 Sieve (g) 102.900 91.000	28.600 Sed+Sieve (g) 102.900 91.300	(g) 33.700 Mass Sediment (g) 0.000 0.300	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23%
27-Jan-14 Sieve # 10 18 35	ID WT4S4 Sieve (g) 102.900 91.000 93.400	28.600 Sed+Sieve (g) 102.900 91.300 94.200	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85%
27-Jan-14 Sieve # 10 18	ID WT4S4 Sieve (g) 102.900 91.000	28.600 Sed+Sieve (g) 102.900 91.300	(g) 33.700 Mass Sediment (g) 0.000 0.300	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69%
27-Jan-14 Sieve # 10 18 35 60 120	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69% 36.54%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69%
27-Jan-14 Sieve # 10 18 35 60 120	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69% 36.54%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000	(Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600	(Mi) (g) 5.100	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)=	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90	(Mi) (g) 5.100	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)=	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92%	(Mi) (g) 5.100 Total %=	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 21.15% 19.23% 11.54% 94.23%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31%
27-Jan-14 Sieve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T T Sample	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)=	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment	(Mi) (g) 5.100 Total %= Sediment	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% Sediment	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% Add PAN
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error =	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92%	(Mi) (g) 5.100 Total %=	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 21.15% 19.23% 11.54% 94.23% B + Dry	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% 5.77% Add PAN (Mi-Mf)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T T Sample	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error =	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g)	(Mi) (g) 5.100 Total %= Sediment	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 21.15% 19.23% 11.54% 94.23% B + Dry Sediment (after	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% 5.77% Add PAN (Mi-Mf) (g)
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 21.15% 19.23% 11.54% 94.23% B + Dry Sediment (after wet sieved) (g)	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% Sediment (Mf) (after wet sieving) 4.900	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% 17.31% 5.77% 4.00 (Mi-Mf) (g) 0.600
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S5	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 21.15% 19.23% 11.54% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% Sediment (Mf) (after wet sieving) 4.900 Cum %	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% 5.77% 4.00 (Mi-Mf) (g) 0.600 Cum %
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S5 Sieve (g)	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g)	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g)	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight %	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% 5.77% 4.00 5.77% 4.00 (Mi-Mf) (g) 0.600 Cum % Pass
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S5 Sieve (g) 102.900	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret 0.00%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% 5.77% 36.54% (Mi-Mf) (g) 0.600 Cum % Pass 100.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T T Sample ID WT4S5 Sieve (g) 102.900 91.000	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900 91.500	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000 0.500	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% 94.23% Sediment (Mf) (after wet sieving) 4.900 Cum % Ret 0.00% 10.00%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% 4.577% Add PAN (Mi-Mf) (g) 0.600 Cum % Pass 100.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	ID WT4S4 Sieve (g) 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S5 Sieve (g) 102.900 91.000 93.400	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900 91.500 94.700	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000 0.500 1.300	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00% 10.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% 94.23% 94.23% 94.23% 0.00% Cum % Ret 0.00% 10.00% 36.00%	(Mi-Mf) (g) 0.600 Cum % Pass 100.00% 94.23% 94.23% 57.69% 36.54% 17.31% 5.77% 36.54% 17.31% 5.77% Add PAN (Mi-Mf) (g) 0.600 Cum % Pass 100.00% 90.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 85.700 63.300 T T Sample ID WT4S5 Sieve (g) 102.900 91.000 93.400 87.200	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900 91.500 94.700 88.600	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000 0.500 1.300 1.400	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 21.15% 19.23% 11.54% 94.23% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00% 10.00% 26.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% 94.23% 94.23% 94.23% 0.00% Cum % Ret 0.00% 10.00% 36.00%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 94.23% 94.23% 57.69% 36.54% 17.31% 5.77% Add PAN (Mi-Mf) (g) 0.600 Cum % Pass 100.00% 90.00% 64.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	ID WT4S4 Sieve (g) 91.000 93.400 87.200 86.200 85.700 63.300 7.7 Sample ID WT4S5 Sieve (g) 102.900 91.000 93.400 87.200 86.200	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900 91.500 94.700 88.600 87.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000 0.500 1.300 1.400 1.100	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 21.15% 94.23% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00% 10.00% 26.00% 22.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% 94.23% 94.23% 94.23% 94.23% 0.00% Cum % Ret 0.00% 10.00% 36.00% 86.00%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% Add PAN (Mi-Mf) (g) 0.600 Cum % Pass 100.00% 90.00% 64.00% 36.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 63.300 63.300 T Sample ID WT4S5 Sieve (g) 102.900 91.000 93.400 87.200 85.700	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900 91.500 94.700 88.600 87.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000 0.500 1.300 1.400 1.100 0.500	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54% 94.23% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00% 10.00% 26.00% 28.00% 22.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% 94.23% 94.23% 94.23% 94.23% 0.00% Cum % Ret 0.00% 10.00% 36.00% 96.00%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% Add PAN (Mi-Mf) (g) 0.600 Cum % Pass 100.00% 64.00% 36.00%
27-Jan-14 Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120	ID WT4S4 Sieve (g) 91.000 93.400 87.200 86.200 85.700 63.300 7.7 Sample ID WT4S5 Sieve (g) 102.900 91.000 93.400 87.200 86.200	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900 91.500 94.700 88.600 87.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000 0.500 1.300 1.400 1.100	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 21.15% 94.23% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00% 10.00% 26.00% 22.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% 94.23% 94.23% 94.23% 94.23% 0.00% Cum % Ret 0.00% 10.00% 36.00% 86.00%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% Add PAN (Mi-Mf) (g) 0.600 Cum % Pass 100.00% 90.00% 64.00%
27-Jan-14 Sie ve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sie ve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S5 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900 91.500 94.700 88.600 87.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000 0.500 1.300 1.400 1.100 0.500	(Mi) (g) 5.100 Total %= Sediment (Mi) (g)	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 21.15% 19.23% 11.54% 94.23% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00% 10.00% 28.00% 22.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% 94.23% 94.23% 94.23% 94.23% 0.00% Cum % Ret 0.00% 10.00% 36.00% 96.00%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% X 4.00% Q Q Q Q Q Q Q Q Q Q
27-Jan-14 Sie ve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sie ve # 10 18 35 60 120 230	ID WT4S4 Sieve (g) 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT4S5 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.600 Sed+Sieve (g) 102.900 91.300 94.200 88.300 87.300 86.700 63.300 Mass (Mt)= %Error = Beaker (g) 29.800 Sed+Sieve (g) 102.900 91.500 94.700 88.600 87.300 86.200 63.300	(g) 33.700 Mass Sediment (g) 0.000 0.300 0.800 1.100 1.100 1.000 0.600 4.90 -3.92% B + Sediment (g) 35.300 Mass Sediment (g) 0.000 0.500 1.300 1.400 1.100 0.500 0.600	(Mi) (g) 5.100 Total % = Sediment (Mi) (g) 5.500	Sediment (after wet sieved) (g) 33.100 Weight % 0.00% 5.77% 15.38% 21.15% 19.23% 11.54% 94.23% 94.23% B + Dry Sediment (after wet sieved) (g) 34.700 Weight % 0.00% 10.00% 26.00% 28.00% 22.00%	(Mf) (after wet sieving) 4.500 Cum % Ret 0.00% 5.77% 21.15% 42.31% 63.46% 82.69% 94.23% 94.23% 94.23% 94.23% 94.23% 94.23% 0.00% Cum % Ret 0.00% 10.00% 36.00% 96.00%	(Mi-Mf) (g) 0.600 Pass 100.00% 94.23% 78.85% 57.69% 36.54% 17.31% 5.77% Add PAN (Mi-Mf) (g) 0.600 Cum % Pass 100.00% 64.00% 36.00%

-							
Data	Sample	Decker (a)	B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	ID	Beaker (g)	(g)	(Mi) (g)	Sediment (after	(Mf) (after	(Mi-Mf)
					wet sieved) (g)	wet sieving)	(g)
27-Jan-14	WT5S1	28.500	33.800	5.300	33.600	5.100	0.200
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	103.300	0.400		7.69%	7.69%	92.31%
18	91.000	91.900	0.900		17.31%	25.00%	75.00%
35	93.400	95.200	1.800		34.62%	59.62%	40.38%
60	87.200	88.500	1.300		25.00%	84.62%	15.38%
120	86.200	86.500	0.300		5.77%	90.38%	9.62%
230	85.700	86.100	0.400		7.69%	98.08%	1.92%
PAN	63.300	63.300	0.200		3.85%	101.92%	-1.92%
	T.	. Mass (Mt)=	5.30	Total %=	101.92%		
		%Error =	0.00%				
					B + Dry	Sediment	Add PAN
Date	Sample	Beaker (g)	B + Sediment	Sediment	Sediment (after	(Mf) (after	(Mi-Mf)
	ID	(g)	(g)	(Mi) (g)	wet sieved) (g)	wet sieving)	(m. m.)
27-Jan-14	WT5S2	28.100	33.600	5.500	32.200	4.100	1.400
27-3411-14	VV1332			5.500	32.200		
		Sed+Sieve	Mass			Cum %	Cum %
Sieve #	Sieve (g)	(g)	Sediment (g)		Weight %	Ret	Pass
10	102.900	102.900	0.000		0.00%	0.00%	100.00%
18	91.000	91.200	0.200		5.00%	5.00%	95.00%
35	93.400	93.900	0.500		12.50%	17.50%	82.50%
60	87.200	88.100	0.900		22.50%	40.00%	60.00%
120	86.200	87.300	1.100		27.50%	67.50%	32.50%
230	85.700	87.000	1.300		32.50%	100.00%	0.00%
PAN	63.300	63.300	1.400		35.00%	135.00%	-35.00%
PAN						155.00%	-33.00%
	1.	. Mass (Mt)=	5.40	Total %=	135.00%		
		%Error =	-1.82%				
	Sample		B + Sediment	Sediment	B + Dry	Sediment	Add PAN
Date	Sample	Deelver (a)	D + Seumeni				
1	חו	Beaker (g)	(a)		Sediment (after	(Mf) (after	(Mi-Mf)
	ID	beaker (g)	(g)	(Mi) (g)	Sediment (after wet sieved) (g)	(Mf) (after wet sieving)	(Mi-Mf) (g)
27-Jan-14	ID WT5S3	28.400	(g) 34.400		,		
27-Jan-14		28.400	34.400	(Mi) (g)	wet sieved) (g)	wet sieving) 5.400	(g) 0.600
	WT5S3	28.400 Sed+Sieve	34.400 Mass	(Mi) (g)	wet sieved) (g) 33.800	wet sieving) 5.400 Cum %	(g) 0.600 Cum %
Sieve #	WT5S3 Sieve (g)	28.400 Sed+Sieve (g)	34.400 Mass Sediment (g)	(Mi) (g)	wet sieved) (g) 33.800 Weight %	wet sieving) 5.400 Cum % Ret	(g) 0.600 Cum % Pass
Sieve #	WT5S3 Sieve (g) 102.900	28.400 Sed+Sieve (g) 103.000	34.400 Mass Sediment (g) 0.100	(Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03%	wet sieving) 5.400 Cum % Ret 3.03%	(g) 0.600 Cum % Pass 96.97%
Sieve # 10 18	WT5S3 Sieve (g) 102.900 91.000	28.400 Sed+Sieve (g) 103.000 91.400	34.400 Mass Sediment (g) 0.100 0.400	(Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12%	wet sieving) 5.400 Cum % Ret 3.03% 15.15%	(g) 0.600 Cum % Pass 96.97% 84.85%
Sieve # 10 18 35	WT5S3 Sieve (g) 102.900 91.000 93.400	28.400 Sed+Sieve (g) 103.000 91.400 94.400	34.400 Mass Sediment (g) 0.100 0.400 1.000	(Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55%
Sieve # 10 18 35 60	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700	(Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55% 3.03%
Sieve # 10 18 35	WT5S3 Sieve (g) 102.900 91.000 93.400	28.400 Sed+Sieve (g) 103.000 91.400 94.400	34.400 Mass Sediment (g) 0.100 0.400 1.000	(Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55% 3.03% -42.42%
Sieve # 10 18 35 60	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700	(Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55% 3.03%
Sieve # 10 18 35 60 120	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500	(Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55% 3.03% -42.42%
Sieve # 10 18 35 60 120 230	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600	(Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61%
Sieve # 10 18 35 60 120 230	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)=	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90	(Mi) (g) 6.000	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61%
Sieve # 10 18 35 60 120 230	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600	(Mi) (g) 6.000	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61%
Sieve # 10 18 35 60 120 230	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)=	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90	(Mi) (g) 6.000	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79%	(g) 0.600 Cum % Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79%
Sieve # 10 18 35 60 120 230 PAN	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error =	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90	(Mi) (g) 6.000	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 178.79% B + Dry	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN
Sieve # 10 18 35 60 120 230	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)=	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67%	(Mi) (g) 6.000 Total %=	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18% 178.79% B + Dry Sediment (after	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN (Mi-Mf)
Sieve # 10 18 35 60 120 230 PAN	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = Beaker (g)	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g)	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18% 18.18% B + Dry Sediment (after wet sieved) (g)	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving)	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN (Mi-Mf) (g)
Sieve # 10 18 35 60 120 230 PAN	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g) 34.400	(Mi) (g) 6.000 Total %= Sediment	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18% 178.79% B + Dry Sediment (after	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN (Mi-Mf) (g) 0.300
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT5S4	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500 Sed+Sieve	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum %	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN (Mi-Mf) (g) 0.300 Cum %
Sieve # 10 18 35 60 120 230 PAN	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g) 34.400	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18% 18.18% B + Dry Sediment (after wet sieved) (g)	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN (Mi-Mf) (g) 0.300
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT5S4	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500 Sed+Sieve	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum %	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN (Mi-Mf) (g) 0.300 Cum %
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve #	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT5S4 Sieve (g)	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500 Sed+Sieve (g)	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g)	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight %	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN (Mi-Mf) (g) 0.300 Cum % Pass
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300 T Sample ID WT5S4 Sieve (g) 102.900	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500 Sed+Sieve (g) 102.900	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g) 0.000	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret 0.00%	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% Add PAN (Mi-Mf) (g) 0.300 Cum % Pass 100.00%
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 63.300 T. Sample ID WT5S4 Sieve (g) 102.900 91.000 93.400	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500 Sed+Sieve (g) 102.900 91.400 94.700	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g) 0.000 0.400 1.300	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 7.69% 25.00%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret 0.00% 7.69% 32.69%	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% 4 4 4 4 4 4 4 4 4 4 9 0.300 Cum % Pass 100.00% 92.31% 67.31%
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 63.300 T. Sample ID WT5S4 Sieve (g) 102.900 91.000 93.400 87.200	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500 Sed+Sieve (g) 102.900 91.400 94.700 89.200	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g) 0.000 0.400 1.300 2.000	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 7.69% 25.00% 38.46%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret 0.00% 7.69% 32.69% 71.15%	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% 4.42.42% -60.61% -78.79% 0.300 (Mi-Mf) (g) 0.300 Cum % Pass 100.00% 92.31% 67.31% 28.85%
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 120	WT5S3 Sieve (g) 102.900 91.000 93.400 85.700 63.300 T. Sample ID WT5S4 Sieve (g) 102.900 91.000 93.400 86.200	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = Beaker (g) 28.500 Sed+Sieve (g) 102.900 91.400 94.700 89.200 87.300	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g) 0.000 0.400 1.300 2.000 1.100	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 7.69% 25.00% 38.46% 21.15%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret 0.00% 7.69% 32.69% 71.15% 92.31%	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% 4 Mi-Mf) (g) 0.300 Cum % Pass 100.00% 92.31% 67.31% 28.85%
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 63.300 T. Sample ID WT5S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = %Error = Beaker (g) 28.500 Sed+Sieve (g) 102.900 91.400 94.700 89.200 87.300 86.400	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g) 0.000 0.400 1.300 2.000 1.100 0.700	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 7.69% 25.00% 38.46% 21.15% 13.46%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret 0.00% 7.69% 32.69% 71.15% 92.31% 105.77%	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% 4 4 4 4 4 4 4 0.100 (Mi-Mf) (g) 0.300 Cum % Pass 100.00% 92.31% 67.31% 28.85% 7.69% -5.77%
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 120	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 63.300 T. Sample ID WT5S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = %Error = Beaker (g) 28.500 Sed+Sieve (g) 102.900 91.400 94.700 89.200 87.300 86.400 63.300	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g) 0.000 0.400 1.300 2.000 1.100 0.700 0.300	(Mi) (g) 6.000 Total %= Sediment (Mi) (g) 5.900	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 7.69% 25.00% 38.46% 21.15% 13.46% 5.77%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret 0.00% 7.69% 32.69% 71.15% 92.31%	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% 4 Add PAN (Mi-Mf) (g) 0.300 Cum % Pass 100.00% 92.31% 67.31% 28.85%
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 63.300 T. Sample ID WT5S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = %Error = Beaker (g) 28.500 Sed+Sieve (g) 102.900 91.400 94.700 89.200 87.300 86.400	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g) 0.000 0.400 1.300 2.000 1.100 0.700	(Mi) (g) 6.000 Total %= Sediment (Mi) (g)	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 7.69% 25.00% 38.46% 21.15% 13.46%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret 0.00% 7.69% 32.69% 71.15% 92.31% 105.77%	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% 4 4 4 4 4 4 4 0.100 (Mi-Mf) (g) 0.300 Cum % Pass 100.00% 92.31% 67.31% 28.85% 7.69% -5.77%
Sieve # 10 18 35 60 120 230 PAN Date 27-Jan-14 Sieve # 10 18 35 60 120 230	WT5S3 Sieve (g) 102.900 91.000 93.400 87.200 85.700 63.300 T. Sample ID WT5S4 Sieve (g) 102.900 91.000 93.400 87.200 86.200 85.700 63.300	28.400 Sed+Sieve (g) 103.000 91.400 94.400 88.900 87.700 86.300 63.300 Mass (Mt)= %Error = %Error = Beaker (g) 28.500 Sed+Sieve (g) 102.900 91.400 94.700 89.200 87.300 86.400 63.300	34.400 Mass Sediment (g) 0.100 0.400 1.000 1.700 1.500 0.600 5.90 -1.67% B + Sediment (g) 34.400 Mass Sediment (g) 0.000 0.400 1.300 2.000 1.100 0.700 0.300	(Mi) (g) 6.000 Total %= Sediment (Mi) (g) 5.900	wet sieved) (g) 33.800 Weight % 3.03% 12.12% 30.30% 51.52% 45.45% 18.18% 18.18% 178.79% B + Dry Sediment (after wet sieved) (g) 34.100 Weight % 0.00% 7.69% 25.00% 38.46% 21.15% 13.46% 5.77%	wet sieving) 5.400 Cum % Ret 3.03% 15.15% 45.45% 96.97% 142.42% 160.61% 178.79% Sediment (Mf) (after wet sieving) 5.600 Cum % Ret 0.00% 7.69% 32.69% 71.15% 92.31% 105.77%	(g) 0.600 Pass 96.97% 84.85% 54.55% 3.03% -42.42% -60.61% -78.79% 4 4 4 4 4 4 4 0.100 (Mi-Mf) (g) 0.300 Cum % Pass 100.00% 92.31% 67.31% 28.85% 7.69% -5.77%

Date	Sample ID	Beaker (g)	B + Sediment (g)	Sediment (Mi) (g)	B + Dry Sediment (after wet sieved) (g)	Sediment (Mf) (after wet sieving)	Add PAN (Mi-Mf) (g)
27-Jan-14	WT5S5	30.000	35.900	5.900	35.600	5.600	0.300
Sieve #	Sieve (g)	Sed+Sieve (g)	Mass Sediment (g)		Weight %	Cum % Ret	Cum % Pass
10	102.900	103.000	0.100		2.00%	2.00%	98.00%
18	91.000	91.500	0.500		10.00%	12.00%	88.00%
35	93.400	94.700	1.300		26.00%	38.00%	62.00%
60	87.200	89.000	1.800		36.00%	74.00%	26.00%
120	86.200	87.400	1.200		24.00%	98.00%	2.00%
230	85.700	86.400	0.700		14.00%	112.00%	-12.00%
PAN	63.300	63.300	0.300		6.00%	118.00%	-18.00%
	Т	. Mass (Mt)=	5.90	Total %=	118.00%		
		%Error =	0.00%				

	Foram	Environmental	Reef	Shannon	Grain Size ·	Species	Foram
Sample	Index	Change	Condition	Index	Phi Value	Richness	Density
ET1S1	2.74	Y	Marginal	3.101	2	30	432.16
ET1S2	3.96	Y	Marginal	2.998	2	30	451.18
ET1S3	4.34	Y	Conducive	3.194	1	32	873.63
ET1S4	4.24	Y	Conducive	3.109	2	31	958.33
ET1S5	4.50	Y	Conducive	3.0075	2	32	1286.76
ET1S6	4.68	Y	Conducive	2.967	2	31	798.97
ET1S7	5.14	Ν	Conducive	3.136	2	40	1097.44
ET1S8	5.29	Ν	Conducive	3.099	1	34	171.99
ET1S9	5.89	N	Conducive	2.819	2	28	454.28
ET1S10	4.69	Y	Conducive	3.198	2	36	1276.92
ET2S1	5.79	Ν	Conducive	3.032	2	31	349.61
ET2S2	6.12	N	Conducive	2.741	2	28	412.28
ET2S3	5.78	N	Conducive	2.919	2	29	391.68
ET2S4	6.86	N	Conducive	2.421	1	21	375.35
ET2S5	6.73	Ν	Conducive	2.319	1	19	185.99
ET2S6	5.78	N	Conducive	2.481	2	21	528.09
ET2S7	6.33	N	Conducive	2.22	3	23	787.88
ET2S8	6.23	N	Conducive	2.399	2	18	182.16
ET2S9	6.69	N	Conducive	2.391	2	29	258.33
ET2S10	4.84	Y	Conducive	2.782	3	27	905.06
ET3S1	4.37	Y	Conducive	3.317	2	38	191.49
ET3S2	6.06	N	Conducive	2.236	2	19	149.00
ET3S3	5.89	N	Conducive	2.325	2	14	190.28
ET3S4	6.53	N	Conducive	2.153	2	17	212.03
ET3S5	8.28	N	Conducive	2.113	2	17	215.87
ET3S6	7.16	N	Conducive	2.031	2	15	289.10
ET3S7	6.08	N	Conducive	2.305	2	18	230.02
ET3S8	5.44	N	Conducive	2.265	2	17	143.82
ET3S9	5.13	N	Conducive	2.505	1	20	247.52
ET3S10	5.39	N	Conducive	2.586	2	30	297.72
ET4S1	4.37	Y	Conducive	3.041	3	35	280.87
ET4S2	4.78	Y	Conducive	3.009	3	36	382.06
ET4S3	5.74	N	Conducive	2.815	2	32	580.40
ET4S4	5.04	N	Conducive	2.967	3	31	922.37
ET4S5	6.04	N	Conducive	2.582	2	35	652.75
ET4S6	5.46	N	Conducive	2.775	2	30	231.08
ET4S7	5.67	N	Conducive	2.865	2	38	480.00
ET4S8	4.05	Y	Conducive	2.519	2	36	394.34
ET4S9	6.09	N	Conducive	2.821	1	36	289.96
ET4S10	5.96	N	Conducive	2.935	1	37	224.12
ET5S1	5.67	N	Conducive	2.861	2	33	238.20
ET5S2	4.73	Y	Conducive	3.235	2	41	405.19
ET5S3	4.62	Y	Conducive	3.262	2	42	473.48
ET5S4	5.12	N	Conducive	3.181	3	48	374.67

Appendix D: Raw Environmental Data

	Foram	Environmental	Reef	Shannon	Grain Size -	Snecies	Foram
Sample	Index	Change	Condition	Index	Phi Value	Richness	Density
ET5S5	5.52	N	Conducive	3.025	-1	42	318.35
ET5S6	5.40	N	Conducive	2.842	2	42	950.59
ET5S7	5.81	N	Conducive	2.995	1	39	325.16
ET5S8	5.03	N	Conducive	2.863	2	38	647.48
ET5S9	5.39	N	Conducive	2.598	2	37	316.84
ET5S10	5.92	N	Conducive	2.753	2	34	330.08
ET6S1	5.67	N	Conducive	3.003	3	39	528.76
ET6S2	5.14	N	Conducive	2.832	3	38	362.20
ET6S3	3.89	Y	Marginal	3.152	1	36	164.64
ET6S4	4.91	Y	Conducive	2.885	1	30	175.31
ET6S5	4.79	Y	Conducive	3.028	2	34	189.58
ET6S6	5.09	N	Conducive	2.75	1	25	128.98
ET6S7	5.14	N	Conducive	2.726	2	25	176.53
ET6S8	4.13	Y	Conducive	2.558	1	23	173.06
ET6S9	5.37	N	Conducive	2.694	1	21	52.63
ET6S10	7.33	N	Conducive	0.6365	0	2	1.72
ET7S1	5.51	N	Conducive	3.026	3	39	358.23
ET7S2	5.14	N	Conducive	3.157	1	45	348.98
ET7S3	5.58	Ν	Conducive	3.112	3	37	225.49
ET7S4	5.24	Ν	Conducive	2.872	1	34	158.16
ET7S5	4.91	Ν	Conducive	2.977	3	31	239.08
ET7S6	4.40	Y	Conducive	2.557	1	15	25.40
ET7S7	4.14	Y	Conducive	3.101	3	35	239.82
ET7S8	4.47	Y	Conducive	2.938	2	29	157.65
ET7S9	4.89	Y	Conducive	2.916	3	28	173.91
ET7S10	4.87	Y	Conducive	2.94	1	29	169.79
ET8S1	6.02	N	Conducive	2.635	3	29	189.02
ET8S2	6.62	N	Conducive	2.615	1	26	213.93
ET8S3	6.29	N	Conducive	2.823	1	32	196.94
ET8S4	4.90	Y	Conducive	2.817	2	28	145.40
ET8S5	4.33	Y	Conducive	2.853	2	37	378.45
ET8S6	5.11	N	Conducive	2.764	2	30	143.63
ET8S7	3.57	Y	Marginal	2.504	1	28	241.21
ET8S8	4.76	Y	Conducive	2.18	1	14	96.89
ET8S9	5.15	N	Conducive	2.574	2	30	289.87
ET8S10	7.45	N	Conducive	1.92	2	16	152.97
ET9S1	5.48	N	Conducive	2.687	2	27	133.54
ET9S2	5.62	N	Conducive	2.957	2	36	264.13
ET9S3	5.53	N	Conducive	2.73	2	29	183.88
ET9S4	5.14	N	Conducive	2.381	2	31	463.47
ET9S5	3.45	Y	Marginal	1.228	2	15	216.15
ET9S6	3.97	Y	Marginal	1.759	2	26	237.53

	Foram	Environmental	Reef	Shannon	Grain Size	Species	Foram
Sample	Index	Change	Condition	Index	Phi Value	Richness	Density
ET9S7	3.68	Ŷ	Marginal	1.57	1.00	13.00	61.92
ET9S8	3.72	Y	Marginal	1.94	2.00	27.00	847.74
ET9S9	4.41	Y	Conducive	2.31	2.00	17.00	58.82
ET9S10	6.67	Ν	Conducive	1.96	0.00	8.00	14.84
ET10S1	5.21	Ν	Conducive	2.37	2.00	19.00	108.27
ET10S2	5.28	Ν	Conducive	2.61	2.00	33.00	245.36
ET10S3	4.92	Y	Conducive	2.30	2.00	27.00	186.84
ET10S4	4.66	Y	Conducive	2.05	2.00	25.00	227.77
ET10S5	4.02	Y	Conducive	3.01	1.00	34.00	112.28
ET10S6	4.66	Y	Conducive	2.51	2.00	19.00	93.44
ET10S7	5.15	Ν	Conducive	2.88	1.00	28.00	93.50
ET10S8	5.16	Ν	Conducive	2.50	1.00	23.00	99.90
ET10S9	3.42	Υ	Marginal	1.66	1.00	12.00	49.62
T10S10	3.85	Y	Marginal	1.11	2.00	14.00	185.00
WT1S1	4.40	Y	Conducive	3.01	3.00	38.00	371.15
WT1S2	4.16	Y	Conducive	3.03	2.00	37.00	449.92
WT1S3	3.93	Y	Marginal	2.48	2.00	23.00	217.43
WT1S4	3.50	Y	Marginal	2.80	3.00	34.00	230.26
WT1S5	2.84	Y	Marginal	2.59	3.00	26.00	286.52
WT2S1	3.24	N	Marginal	3.34	3.00	39.00	1394.16
WT2S2	7.71	N	Conducive	1.12	0.00	4.00	20.91
WT2S3	4.69	Y	Conducive	2.36	1.00	21.00	110.89
WT2S4	3.74	Y	Marginal	2.65	2.00	28.00	214.44
WT2S5	3.65	Y	Marginal	2.80	3.00	29.00	347.37
WT3S1	2.55	Y	Marginal	3.09	2.00	33.00	552.24
WT3S2	3.67	Y	Marginal	2.91	4.00	32.00	202.63
WT3S3	3.50	Y	Marginal	2.75	2.00	28.00	167.30
WT3S4	4.32	Y	Conducive	2.60	2.00	30.00	235.29
WT3S5	5.09	Y	Conducive	2.54	2.00	28.00	195.27
WT4S1	4.34	Y	Conducive	2.80	2.00	33.00	212.02
WT4S2	4.55	Y	Conducive	2.94	2.00	34.00	377.14
WT4S3	5.84	N	Conducive	2.82	3.00	34.00	641.03
WT4S4	4.64	Y	Conducive	2.51	2.00	25.00	325.82
WT4S5	5.56	N	Conducive	2.48	2.00	23.00	345.26
WT5S1	4.35	Y	Conducive	2.40	1.00	21.00	69.38
WT5S2	5.29	N	Conducive	2.60	5.00	28.00	483.41
WT5S3	6.01	N	Conducive	2.48	2.00	24.00	336.28
WT5S4	5.77	Y	Marginal	2.69	2.14	32.97	251.81
WT5S5	5.78	Y	Marginal	2.69	2.15	33.14	242.52

Transect	Coprostanol	Cholestanol	Cholesterol	Coprostanol/ Total Sterol	Coprostanol/ Cholesterol
manscer	coprostanoi	enorestanoi	enoresteror	Total Sterol	enoresteror
ET1	46.57	221.97	80.96	0.06	0.45
ET2	12.17	118.92	38.66	0.15	0.15
ET3	8.82	59.77	11.46	0.81	0.17
ET4	97.62	279.02	135.31	0.31	0.28
ET5	31.77	222.62	103.71	0.24	0.15
ET6	83.32	630.02	356.66	0.64	0.31
ET7	52.37	404.97	174.91	0.22	0.15
ET8	61.67	523.97	200.61	0.28	1.95
ET9	78.22	269.42	97.01	0.30	0.34
ET10	34.02	161.22	57.06	0.23	0.27
WT1	124.82	779.07	378.16	0.24	0.18
WT2	21.62	137.17	84.56	0.21	0.17
WT3	202.42	503.57	372.36	0.29	0.32
WT4	29.92	155.97	101.66	0.24	0.23
WT5	36.12	156.97	112.46	0.23	0.23

Table E.1: Sterol Concentrations and Ratios by Transect

Appendix E: Extra Tables

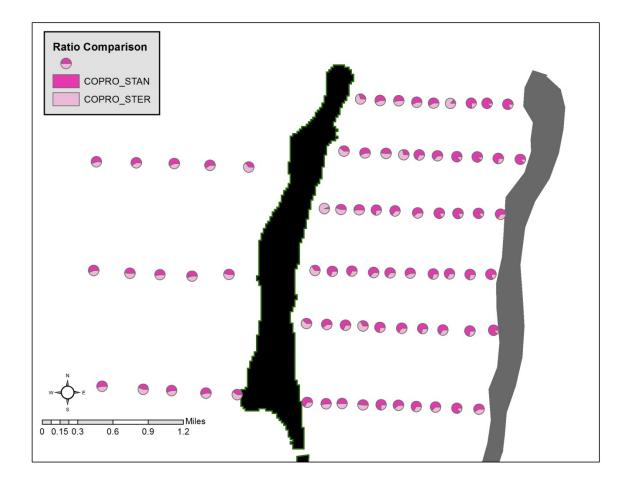
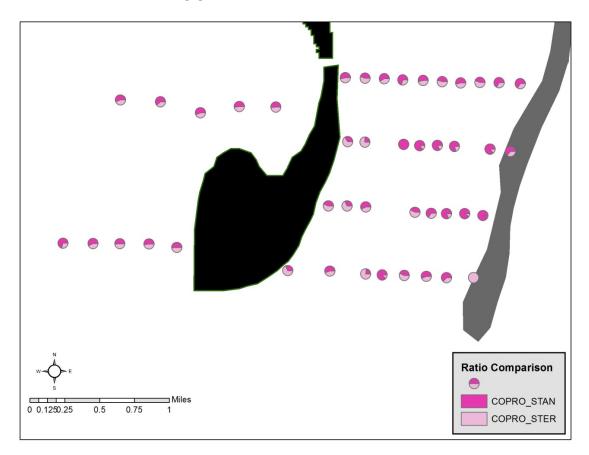



Figure F.1: Northern Ratio Comparison

Appendix F (Continued)

Figure F.2: Southern Ratio Comparison

Appendix G: Additional Pearson Correlations

	Coprostanol_	Mud	Foram	Shannon	Species	Foram
n=100; r= .195	Amount	Percent	Index	Index	Richness	Density
Coprostanol_Amount						
Mud Percent	0.481530173					
Foram Index	-0.621108034	-0.45798				
Shannon Index	0.500433658	0.515761	-0.65487			
Species Richness	0.465118273	0.479385	-0.57919	0.98148		
Foram Density	0.341970063	0.602601	-0.40564	0.828752	0.804981	

Table G.1: Pearson Correlation for East Side Only

 Table G.2: Pearson Correlation by Longitudinal Analysis-Sample 1

S1; n=10; r=0.576	Coprostanol	Mud Percent	FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	-0.35167188					
FORAM Index	0.39589157	-0.31242				
Shannon Diversity	-0.5503473	0.186763	-0.41595			
Species Richness	-0.22884997	0.007527	-0.02389	0.850484		
Foram Density	-0.20328196	0.330169	-0.25092	0.676949	0.70305	

Table G.3: Pearson Correlation by Longitudinal Analysis-Sample 2

S2; n=10; r=0.576	Coprostanol		FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	0.04166603					
FORAM Index	0.33942927	-0.50798				
Shannon Diversity	0.17637116	0.259178	-0.63175			
Species Richness	0.24634739	0.118162	-0.49407	0.88396		
Foram Density	-0.28002992	0.05201	-0.66651	0.819661	0.65689	

S3; n=10; r=0.576	Coprostanol	Mud Percent	FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	0.46288219					
FORAM Index	-0.5839544	-0.32237				
Shannon Diversity	0.72514848	0.146062	-0.44341			
Species Richness	0.70520102	0.302036	-0.40058	0.799715		
Foram Density	0.37786326	-0.3034	-0.17283	0.477037	0.298853	

Table G.4: Pearson Correlation by Longitudinal Analysis-Sample 3

Figure G.5: Pearson Correlations by Longitudinal Analysis-Sample 4

S4; n=10; r=0.576	Coprostanol	Mud Percent	FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	0.62533114					
FORAM Index	-0.33307744	-0.24057				
Shannon Diversity	0.07433811	-0.29735	-0.44576			
Species Richness	0.46829342	0.083589	-0.59509	0.755812		
Foram Density	-0.35655759	-0.34319	-0.21768	0.299942	0.208075	

Table G.6: Pearson Correlations by Longitudinal Analysis-Sample 5

S5; n=10; r=0.576	Coprostanol	Mud Percent	FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	0.50040007					
FORAM Index	-0.38910118	0.029513				
Shannon Diversity	0.38362217	0.36682	0.07447			
Species Richness	0.57497757	0.117499	-0.2104	0.866327		
Foram Density	0.53860693	-0.01273	0.00583	0.198986	0.308728	

Table G.7: Pearson Correlations by Longitudinal Analysis-Sample 6

S6; n=10; r=0.576	Coprostanol		FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	0.19594371					
FORAM Index	-0.3465137	0.114163				
Shannon Diversity	0.05337761	0.503001	0.027621			
Species Richness	-0.02451397	0.523628	-0.17024	0.470434		
Foram Density	-0.33525285	0.400509	0.349323	0.122489	0.622599	

S7; n=10; r=0.576	Coprostanol	Mud Percent	FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	-0.25644987					
FORAM Index	-0.2457343	0.556692				
Shannon Diversity	0.04699586	0.324894	0.2739			
Species Richness	-0.0957212	0.317846	0.218431	0.928835		
Foram Density	-0.05288737	0.438726	0.50959	0.46203	0.599246	

Table G.8: Pearson Correlations by Longitudinal Analysis-Sample 7

Figure G.9: Pearson Correlations by Longitudinal Analysis-Sample 8

S8; n=10; r=0.576	Coprostanol	Mud Percent	FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	0.13257006					
FORAM Index	-0.52085509	-0.10858				
Shannon Diversity	0.26824439	0.02479	0.248237			
Species Richness	0.4219051	0.185128	-0.34783	0.601738		
Foram Density	0.27951457	0.074253	-0.47613	-0.1326	0.624433	

Table G.10: Pearson Correlations by Longitudinal Analysis-Sample 9

S9; n=10; r=0.576	Coprostanol		FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	0.12369558					
FORAM Index	0.49146355	0.303713				
Shannon Diversity	0.62963839	0.268109	0.720703			
Species Richness	0.42713622	-0.1115	0.802898	0.779956		
Foram Density	0.14259405	0.141438	0.695693	0.579553	0.806464	

Table G.11: Pearson Correlations by Longitudinal Analysis-Sample 10

S10; n=10; r=0.576	Coprostanol	Mud Percent	FORAM Index		Species Richness	Foram Density
Coprostanol						
Mud Percent	-0.1792367					
FORAM Index	0.31916517	-0.2457				
Shannon Diversity	0.49859883	0.527196	-0.26541			
Species Richness	0.44172299	0.388694	-0.49404	0.906341		
Foram Density	0.16721015	0.333456	-0.6239	0.776966	0.920052	

Pearson Correlation >125 samples: 0.166	Ammonia	Cribro-elphidium Elphidium			
Coprostanol_Amount	0.157067	-	0.216649		
Mud Percent	0.191217	0.305961	0.304136		
Foram Index	-0.234524	-0.155647	-0.232687		
Shannon Index	0.175430	-	0.367910		
Species Richness	0.175795	-	0.379410		
Foram Density	0.168136	-	0.200988		

 Table G.12: Pearson Correlations on Opportunistic Species

Table G.13: Pearson Correlations based on Heterotrophic Species

Coprostanol_Amount	Haurina	Quinquelo- culina	Triloculina	Textularia	Valvulina
Coprostanol_Amount	0.277768	-	0.206516	-0.232316	0.194078
Mud Percent	-	0.365684	0.306869	-0.270788	-0.328947
Foram Index	-	-0.157010	-0.224250	0.304486	-
Shannon Index	0.260789	0.362758	0.634125	-	0.192351
Species Richness	0.327895	0.193315	0.550625	-	0.216495
Foram Density	-	0.185683	0.406087	0.251977	-

Table G.14: Pearson Correlations based on Symbiont-bearing Species

<i>Pearson Correlation >125 samples: 0.166</i>	Amphistegina	Archaias	Asterigerina	Laevipene- roplis	Sorites
Coprostanol_Amount	-	-	-0.202509	-0.194448	0.256167
Mud Percent	-0.164517	-	-0.420035	0.167341	-
Foram Index	0.193358	0.387389	0.446744	0.343834	-
Shannon Index	-0.387895	-	0.161006	0.233913	0.352253
Species Richness	-0.305688	-	0.220778	-	0.277361
Foram Density	-0.329540	-	0.247851	0.398665	-