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Abstract

Deep Learning and its applications have become attractive to a lot of research recently

because of its capability to capture important information from large amounts of data. While

most of the work focuses on finding the best model parameters, improving machine learning

performance from data perspective still needs more attention. In this work, we propose

techniques to enhance the robustness of deep learning classification by tackling data issue.

Specifically, our data processing proposals aim to alleviate the impacts of class-imbalanced

data and non- IID data in deep learning classification and federated learning scenarios. In

addition, data pre-processing strategies such that dimensionality reduction is also enhanced

using a proposed deep learning-based technique for a scenario of data privacy preservation.

By conducting several experiments and comparisons, we show that our approaches yield

good performance and constantly outperform many state-of-the-art methods.

vii



Chapter 1: Introduction

In recent decades, deep learning has become successful in many automatic tasks such as

pattern recognition, natural language processing, image and vision computing by extracting

and learning from large amounts of data. While most existing works focus on enhancing

machine learning models to improve task performance, data quality improvement is still in

lacks of attention. There are numerous aspects to look for in order to improve data quality,

such as data augmentation, data dimensionality reduction, data imbalance, missing data,

and feature extraction. In practice, by improving data quality, we could significantly boost

machine learning performance. In this work, we aim to enhance machine learning perfor-

mance by focusing on data processing techniques to alleviate the negative impacts of class

imbalance and non-IID data (not independent and identically distributed). Besides, we also

propose a deep learning-based dimensionality reduction technique to improve classification

accuracy and preserve user privacy simultaneously. Proposed techniques are introduced in

the following chapters. Specifically, Chapter 2 introduces a method to tackle the non-IID

issue in federated learning, which might significantly reduce machine learning performance.

Chapter 3 introduces a class balancing technique that generates synthetic data for minor

classes. This could help deep learning to avoid slow convergence problems and task per-

formance. In Chapter 4, we propose a dimensionality reduction technique based on the

state-of-the-art generative models (i.e., AutoEncoder and Generative Adversarial Network)

to not only improve classification accuracy but also preserve data privacy.
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Chapter 2: Federated Learning for Skewed Distribution

2.1 Introduction

Since the demand for massive data in artificial intelligent machines, the concept of feder-

ated learning (FL) was first introduced in 2017 [69], which is a collaboratively decentralized

learning framework. In contrast to centralized learning approaches (in which datasets are

sent to an aggregator), FL encourages data holders to contribute without the privacy con-

cern of exposing their raw data. For example, several hospitals holding patient records

would participate in a machine learning system to provide better disease predictions via a

FL framework without the concern of privacy disclosure. Since then, FL has been seen in

various applications in different fields [40, 98, 29, 102].

To learn a model utilizing data from multiple clients without directly accessing to clients’

data, authors in [69] introduced Federated Averaging (FedAvg) and demonstrated its robust-

ness. The main idea is that clients (data holders) involve in a model training process by

exchanging local models’ weights instead of exchanging raw data. One of the main concerns

in FL is that the data might come from different sources and have different distributions.

Thus, FL performance is significantly reduced because this violates a fundamental machine

learning assumption that data should be independent and identically distributed (IID). The

FL over non-IID data has been shown in existing works [107, 79, 46, 62, 86, 89, 57, 104] that

its performance deteriorates dramatically. In this work, we focus on tackling the non-IID

data issue in a federated learning system, in which the collected data feature distribution

is skewed. The skewness might be caused by many different reasons. For example, clients

might perform different sampling methods, apply different normalization methods, or sample

using different devices.
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Over the past few years, there have been a number of approaches aiming at reducing

non-IID data impacts. While many current works focus on the skewed label distribution,

there are only limited approaches considering skewed feature distribution data which is

very common in various fields, e.g., medical images collected from different x-ray machines.

Authors in [105] explained the performance reduction as the problem of weight divergence.

They then proposed an alleviation by combining local data with global shared data to train

each client. However, it raises the concern of privacy violation with the shared data. Li

et al. illustrated in their work (FedBN) [59] that Local Batch Normalization would help

to reduce the problem of non-IID data. FedBN suggests clients to not synchronize local

batch normalization parameters with the global model. Sahu et al. introduce FedProx [78]

to solve the weight-divergence issue by proposing a loss function which constrains the local

models to stay close to the global model. FedDNA [24] shares statistical parameters of

models (means and variances) and aims at finding averaging weights for each client’s model

to minimize models’ weights divergence across clients. However, as this only considers the

aggregating weights for each model, the improvement is minor. FedNova [91] suggests to

normalize local weights before synchronizing with the aggregator. FedMA [90], AFL [71]

and PFNM [101] consider combinations of layer-wise parameters and provide an aggregation

of such parameters to alleviate the non-IID issue. In FedRod [16], Chen and Chao deal

with the non-IID issue by learning hyper-networks locally which results in personalized

classifiers for clients and clients’ class distributions. Recently, Tan et al. [88] tackle the non-

IID data issue by exchanging representation vectors of samples in a given class instead of

model’s parameters, enable clients to have personalized model architecture. However, these

suggestions do not directly consider the data distribution skewness at the data level, which

could lead to performance reduction and convergence slowth.

In Federated Learning (FL), when dealing with non-IID data, the primary problem is the

divergence of weights, which worsens as the data distribution becomes more skewed, as found

in [105] by Zhao et al.. According to Zhao et al.’s research, this issue arises due to differences

3



between client individual and global distributions. To address this problem, we proposed

an algorithm that utilizes sample weights to adjust individual client distributions closer to

the global distribution during the training process. However, obtaining global information

across clients is challenging in an FL setting because clients do not allow the exposure of

their raw data. To overcome this challenge, the proposed method implicitly shares statistical

information of client data without revealing the client’s raw data. The method only requires

clients to exchange additional model weights using a typical FL procedure. Once the adjust-

ment weights are acquired, the machine learning model can be trained using a standard FL

framework. The proposed method is demonstrated to improve FL accuracy and significantly

reduce FL communication costs through experiments on three real-world datasets.

Our contributions are as follows:

1. Provide a theoretical base to deal with skewed feature distribution data for federated

learning by adjusting sample weights derived from the machine learning empirical risk.

2. Provide a practical solution to mitigate the problem of learning from non-IID data for

the FL framework without sharing clients’ draw data. It not only helps to improve the

classification accuracy of the global model but also accelerates the model convergence

process, thus minimizing communication costs.

3. Several experiments were conducted on three datasets, including MNIST, non-IID

benchmark dataset FEMNIST and real-world dataset Chest-Xray. The results demon-

strate that the proposed method outperforms other experimental methods in classifi-

cation accuracy and dramatically reduces the communication cost.

4. As the proposed method needs to exchange additional information, we also provide

a theoretical analysis to analyze the potential privacy leakage. We showed that the

leakage information becomes insignificant when the number of clients increases.

5. To our best knowledge, the proposed method is the first method utilizing data distri-

bution information and sample weights to tackle the FL Non-IID issue.

4



The rest of this paper is organized as follows. Section 3.3 introduces our problem in a

scenario where clients hold different distribution datasets. Section 2.3 introduces a neural

network-based model that is leveraged in our work to carry density information. Our pro-

posed solution is introduced in Section 2.4. We provide a privacy leakage analysis in Section

2.5 as the proposed method indirectly exchanges distribution information. Section 3.7 shows

our experimental results and illustrates the proposed method’s performance. Section 3.8

summarizes our study and discusses future work to improve the proposed method.

2.2 Scenario

In this section, we introduce and formulate the scenario of FL with skewed feature dis-

tribution across clients. Our scenario is a learning collaboration between K clients to build

a global classification model that maximizes the global accuracy given arbitrary data. Each

client holds a number of individual records that they are not willing to share with others due

to privacy concerns. This study focus on preventing the performance of the global model

from deteriorating because of the distribution skewness issue [58] across clients.

We denote the data and associated labels held by client k ∈ {1, ...,K} as {(xik , y i
k)}Nk

i=1

where xik ∈ Rd and y i
k ∈ N. Instead of learning each model for every client f (wk) (where

f (·) demotes local inference models and wk is the model’s parameter of the k th client),

the objective is to maximize the performance of a global model g(w) (g(·) approximates

the global inference model and w is the global model’s parameter) that is resilient to data

skewness.

2.3 Preliminary: Masked Autoencoder for Distribution Estimation

The proposed method asks the clients to share additional model weights that carry their

local datasets’ distribution information instead of sharing the raw data. We utilize a neural

network-based density estimation, namely, Masked Autoencoder for Distribution Estimation

(MADE) [34]. This section briefly introduces MADE.

5



MADE is designed to estimate the probability distribution of input components (e.g.,

pixels in an image). MADE assumes input components are dependent instead of independent,

which is relevant in many applications. For example, MADE can decompose the distribution

of an instance x consisting n components x1, x2, x3, ..., xn as follows:

p(x) = p(x1|x2, x3, .., xn) · p(x2|x3, ..., xn)...p(xn−1|xn) · p(xn). (2.1)

In our study, the instances are images and each pixel can be considered as a component.

Thus, n is the size of a flatten image vector.

For MADE implementation, a shallow neural network is utilized. Its input and output

size are equal (similar to an Autoencoder), for example a size of n for the above example. The

main idea is to mimic Equation 2.1 by masking neuron connections across layers to control

the seen and unseen connections to model output. Specifically, MADE poses constraints on

the model that each output component in a certain layer only connects to its dependent

input components in the previous layer. Masks are created based on such principle, and

applied to the weights of the model.

Specifically, MADE assigns each unit in a hidden layer an integer m between 1 and

D − 1, where D is the number of dimensions. Denote m(k) as the maximum number of

units in the previous layer to which the kth hidden unit can connect, the weight mask M

is then formulated as follows: Mk,d = 1m(k)≥d =


1 if m(k) ≥ d

0 otherwise,

for d ∈ {1, ...,D} and

k ∈ {1, ...,K} with K being the number of hidden layer units.

2.4 Federated Learning for Skewed Distribution Using Sample Weights

In this section, we propose a solution to alleviate the negative impact of distribution

skewness across clients for federated learning. The proposed method aims to find weights

for training samples in order to adjust the global distribution. To achieve this goal, we need

6



to exchange some statistical information between clients and the aggregator in a privacy-

preserving manner. The remainder of this section introduces how we design sample weights,

how we exchange statistical information without exposing clients’ raw data, and how we

derive sample weights from achieved information. After achieving weights for the samples,

the training process for machine learning tasks is similar to FedAvg [69]. Our framework is

illustrated in Figure 2.1. The proposed method, namely FedDisk, requires a 2-phase process.

First, clients jointly learn a global density estimation model and their local density models

utilizing MADE models. These models are then used to derive sample weights for the local

training process. Second, the machine learning tasks can be learned by the conventional

FL procedure, with the data skewness issue mitigated by the sample weights from the first

phase.

…

Client 1 Client 𝐾𝐾

Aggregator

211 2

1

2

1 2

1

2

Figure 2.1: FedDisk framework. The proposed framework has two phases. First, local and
global probability density functions (p(x), q(x)) are estimated via MADE models

leveraging FL procedures. Then, the sample weights α are computed by approximating
density ratio via class probability estimation. Second, the machine learning tasks (e.g.,
classification) can be performed similar to a typical FL method (i.e., FedAvg) with the

sample weights acquired from phase 1.
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2.4.1 Sample Weights Design

As we do not have sufficient information about the true distribution, we consider the

combination of all clients’ dataset distribution as our true distribution. Thus, we consider

the probability density function (pdf) of the true distribution as

p(x) =
K∑

k=1

qk(x), (2.2)

where qk(x) represents the pdf of the k th client’s data.

To jointly learn a global model, the system finds the expectation of the loss function

l(g(x), y) with sample x that drawn from the true distribution. The expected loss is formu-

lated by the associated risk [49] as follows:

E[l(g(x), y)] =
∫∫

l(g(x), y)p(y |x)p(x)dxdy , (2.3)

where p(x, y) is the joint pdf of a sample x and its associated label y , and p(y |x) is the

conditional probability of a label y given a sample x. We also assume that for any client k ∈

{1, ...,K} with local data distribution qk(x), the conditional probability of a label y given a

sample x is equivalent to that of the true distribution, namely

qk(y |x) = p(y |x). (2.4)

From Equation 2.2, 2.3, 2.4, and by multiplying with factor qk (x)
qk (x)

= 1, the expected loss

in Equation 2.3 can be expanded as follows:
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E[l(g(x), y)] =
∫∫

l(g(x), y)p(y |x)p(x)dxdy , (2.5)

=

∫∫
l(g(x), y)qk(y |x)

qk(x)

qk(x)
p(x)dxdy (2.6)

=

∫∫
l(g(x), y)qk(x, y)

p(x)

qk(x)
dxdy . (2.7)

The objective of the global model thus amounts to minimize the empirical risk over all

K clients’ datasets:

minimize
g

K∑
k=1

1

Nk

Nk∑
j=1

αj
k l(g(x

j
k), y

j
k)), (2.8)

where xjk , y
j
k are the j th sample and its label. Nk is the number of samples in the k th client’s

dataset. αj
k is the corresponding sample weight computed as

αj
k =

p(x)

qk(x)
=

∑K
i=1 qi(x)

qk(x)
. . (2.9)

Our problem becomes minimizing the summation of the loss functions (Equation 2.8)

over all clients. For each client, the loss function is minimized over local samples with the

corresponding j th sample weight of the client k th, αj
k . The sample weights could be estimated

by the density ratio between the true distribution (global distribution) and the client distri-

butions (local distributions). For each client, the local distribution can be estimated using its

local data. However, the challenge is to achieve the true distribution without having access

to other clients’ data. To solve this, we leverage a neural network-based density estimation

model to learn the global density function via a typical federated learning procedure. Thus,

clients can implicitly exchange some statistical information, while still preserving the privacy

in client data.
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2.4.2 Probability Density Approximation

To estimate global density and preserve client privacy at the same time, we propose to

leverage a neural network-based density estimation so that we can exchange local density

information (via models’ weights) with the aggregator without sharing the raw data. In

this work, we leverage a well-known method, namely, Masked Autoencoder for Distribution

Estimation (MADE, [34]), which is briefly reviewed in Section 2.3. Elaborately, each client

aims to estimate its local probability density qk(x) using its own dataset, and all K clients

jointly estimate the global probability density p(x) = N1

N
q1(x)+...+ Nk

N
qK (x). Learned MADE

models are used to approximate local probability density functions, and the global MADE

model approximates the global probability density. The learning process is described as

follows.

The k th client learns a local density estimation model ldk(ŵk) (where ld(·) approximates

density estimation function with parameter ŵ) using its local data. It then jointly learns a

global density estimation model gd(w̃) (where gd(·) represents the global density function

with the parameter w̃) using the procedure similarly to FedAvg [69]. Specifically, for the local

model density estimation models, each client train a MADE model on its local data until

the loss function can not be improved. For the global density estimation model, each client

trains its data locally for a certain number of iterations, and then model parameters are sent

to an aggregator for the aggregation. Since clients might own different number of samples,

a weight of Nk/N (where Nk and N are the number of samples of the k th client and the the

total number of samples over all clients) is used for adjusting client parameter significance,

similar to FedAvg. After aggregating all clients’ model parameters, the aggregator shares

global model parameters to all clients. The steps are repeated until the validation loss

starts increasing. The global MADE model aggregation from K clients at iteration t can be

described as follows:

w̃ t =
K∑

k=1

Nk

N
w̃ t
k (2.10)
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2.4.3 Sample Weight Approximation

After the local and global density approximations by MADE models are fully learned

( Section 2.4.2), we can estimate sample weights in Equation 2.9. Since MADE models

output vectors of conditional probabilities for each element in the d-dimensional input x, an

intuitive way to compute p(x) is to multiply all the conditional probabilities. However, as

p(x) vanishes when any of the conditional probabilities vanishes, we instead keep the output

as a vector of conditional probabilities (same size as input) and approximate the density ratio

in Equation 2.9 using a class probability estimation method inspired by [70]. The method

aims at training a binary classifier to output a probability that represents the ratio between

p(x) and q(x). The solution detail is described in the rest of this subsection.

After each client receives the final global MADE model and trains its own local MADE,

it starts to evaluate sample weights for its local data. The training data of the k th client, Xk ,

is then fed into both the global MADE (the global MADE is downloaded to clients so that

this step can be done locally) and the local MADE to estimate p(x) and qk(x), respectively.

Denote u as the output vector of density estimation models, and l be the pseudo label

indicating whether it is sampled from the global destination (l = 1) or the local distribution

(l = 0). Each client then trains a binary classifier to differentiate whether the output u comes

from p(x) or qk(x). Outputs of the two MADE models (the sample size of each output is

Nk) are concatenated to a new vector dataset including samples {(ui
k , l

i
k)}2Nk

i=1 , and is used to

train the binary classifier. The conditional probabilities of the binary classification model

h(u,wh) (where u is the input variable , wh is the model parameter) can be approximated as

following:

P(u|l = 0) ∝ qk(x), P(u|l = 1) ∝ p(x). (2.11)
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From Bayes’ rule, we have

p(x)

q(x)
=
P(u|l = 1)

P(u|l = 0)
=

(P(l = 1|u)P(u)
P(l = 1)

)( P(l = 0)

P(l = 0|u)P(u)

)
(2.12)

=
P(l = 1|u)P(l = 0)

P(l = 0|u)P(l = 1)
. (2.13)

We approximate the marginal probability ratio between two distributions ( P(l = 0) and

P(l = 1)) by the number of samples from the two distributions Nk over the concatenated

dataset size (2Nk).Thus, We have P(l=0)
P(l=1)

= Nk

2Nk

2Nk

Nk
= 1.

The density ratio then can be estimated as follows:

p(x)

q(x)
=
P(l = 1|u)
P(l = 0|u) =

P(l = 1|u)
1− P(l = 1|u) . (2.14)

, where P(l = 1|u) is the classifier’s probability-liked output indicating how likely an input

vector u comes from the global probability p(x).

To summarize, the j th training sample of client k , xjk , is fed into the client’s local MADE

model to achieve its corresponding density estimation uj
k . uj

k is then fed into the binary

classification function h(u) to achieve the class probability P(l = 1|uj
k). This is used to

estimate the sample weight αj
k (Equation 2.9) based on Equation 2.14. In words, the binary

classification model h(u,wh) is expected to return higher weights for samples that are likely

belonging to the true distribution and vise versa.

2.4.4 Learning on Skewed Distribution Data

After acquiring sample weights, each client starts to train the model on the local dataset

and corresponding sample weights for a machine learning task (e.g., classification) as a typical

FL framework. In this work, we follow the procedure introduced by FedAvg to learn the
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global model. The aggregator aggregates clients’ local models as follows:

wt =
K∑

k=1

Nk

N
wt

k (2.15)

where wt and wt
k are the global and local model parameter of k th client at the tth iteration.

2.5 Privacy Leakage Analysis

In this section, we discuss the privacy leakage of our method compared to the conventional

FL. Similar to many other works, we utilize additional information to alleviate the negative

impact of non-IID data, i.e., parameters of MADE models. However, these parameters might

contain distribution information of clients’ data. However, we prove that the more clients

are involved in the FL training process, the less our extra information is leaked. Although

clients might have access to the global distribution via the global MADE model, a client

can’t infer other individual local distribution when the number of clients is large. The detail

is described as follows.

Assume each client samples their own data point Ẑk ∼ Qk independently, and let Θ be a

random variable taking values in J1,KK with P[Θ = k] = κk and independent of Ẑk for each

k ∈ J1,KK. Note that ẐΘ ∼ P , and one may quantify the privacy leakage of client k ’s data

through the knowledge of P by the mutual information between Ẑk and ẐΘ, as given by

I (Ẑk ; ẐΘ) ≤ I (Ẑk ; ẐΘ, Θ) = I (Ẑk ; Θ) + I (Ẑk ; ẐΘ|Θ)

= I (Ẑk ; ẐΘ|Θ) =
K∑
i=1

P[Θ = i ]I (Ẑk ; Ẑi)

= κkH(Ẑk).

(2.16)

In other words, the privacy leakage is proportional to κk , which decreases to 0 as long as

κk = O(1/K ) and K →∞.

13



2.6 Experiments

In this section, we conduct several experiments to evaluate the proposed method on non-

IID FL scenarios with three real image datasets (MNIST, Chest-Xray and FEMNIST). Our

FL system goal is to learn a global classifier leveraging data from all clients. The classification

accuracy is used as a metric to evaluate the performance of the proposed method. The

communication cost is evaluated by counting the number of iterations needed for clients

to exchange model parameters with the aggregator. We compare our method with other

state-of-the-art methods, e.i., FedAvg, FedProx, FedBN, and FedROD.

2.6.1 Datasets and Non-IID Setting

In this Section, we describe how datasets are used in our experiments. We categorize

our dataset into two groups, simulated non-IID dataset (MNIST) and real non-IID datasets

(Femnist & Chest-Xray). The first one contains images that have already been combined

together so that our partitioning process is considered for sampling from the same contribu-

tion. Thus, we added different levels of noise to each client to simulate the feature skewness

as inspired by settings in [57], and [88]. The second group’s data are collected from different

sources so that they are considered to be non-IID by nature. All the data are normalized

and clipped to the range of [0,1] before training. Each client’s data is split to 85% and 15%

for training and testing sets, respectively. The detail of the datasets is described as follows.

2.6.1.1 Simulated Non-IID: MNIST

MNIST dataset [23] contains 60,000 (1x28x28) gray scale images of 10 digits (0-9). The

number of unique output labels is 10 representing 10 digits. To mimic feature skewness, we

split data equally into 100 partitions and add different level of noise to each client’s data as

inspried by the skewness simulation in [57]. The noise is drawn from Gaussian distribution

with a mean of 0 and different values of standard deviations. More specifically, the k th client

(k ∈ [0, 99]) is added noise with the variance of k ∗x/100 where x is the added noise variance.
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2.6.1.2 Real Non-IID: Femnist Dataset

FEMNIST dataset is downloaded from https://leaf.cmu.edu/, which is considered a

benchmark dataset for real non-IID data. It contains handwritten images of 62 digits and

characters (corresponding to 62 unique labels) from different writers and strokes. In this

study, we randomly select 100 different writers (each of them owns more than 300 images to

avoid overfitting) and assign their data to 100 clients. The average sample size of clients is

387.47, and the standard deviation is 83.04. All images are resized to a (32x32) grayscale

and normalized to the range of [0,1] before inputting to models.

2.6.1.3 Real Non-IID: Chest Xray Dataset

The Chest-Xray dataset, which contains pneumonia and normal chest Chest-Xray im-

ages, are collected from different sources (i.e., COVID-19 [19], Shenzhen Hospital [47], and

University of California San Diego (UCSD) [51]) with different image sizes, colors and po-

tentially taken from different medical devices. Thus, we consider this dataset non-IID by

nature. After partitioning the data into 100 clients, the mean and standard deviation of the

client sample size are 325.50 and 63.74, respectively. All images are converted to grayscale

and resized to (32x32). There are two unique output labels (binary classification) to predict

chest Chest-Xray images are normal or abnormal.

2.6.1.4 Data Examples

Figure 2.2 provides several sample images from the three datasets. The MNIST dataset

images have various degrees of noise. Besides, the FEMNIST dataset includes images with

different writing styles from various sources. The Chest-Xray dataset comprises images with

varying resolutions and light conditions, etc. This makes them non-IID across clients.
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Figure 2.2: Example images from MNIST, FEMNIST and Chest Xray datasets. They are
collected from different sources and carried a veraity of resolutions, styles or conditions.

2.6.2 Implementation Detail

2.6.2.1 Baselines

We compare our methods with different methods, i.e., FedAvg, FedProx, FedBN, and

FedROD. While most implementation details are taken from the initial parameter sets in

original papers, we also tune suggested parameters and report the results that give the best

values. For FedROD, the results are reported for the hyper-parameter µ of 1. We also tried

other values in the set 1, 5, 10, 20 and found that the results are very similar. For FedProx,

we tuned the parameter µ with the candidates of 0.001, 0.01, 0.1, 1 and reported the value

of 0.01, 1, 0.01 for the three datasets, Chest-Xray, FEMNIST, MNIST, respectively.
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2.6.2.2 Federated Learning Classification Model

We use shallow Convolutional Neural Networks (CNN) for the classification of image

datasets. The models are constructed by two 5x5 convolutional layers (32 and 32 channels

for Chest-Xray, 128 and 128 channels for FEMNIST, 16 and 16 channels for MNIST). Each

convolutional layer is followed by 2x2 max pooling and batch normalization layers. A fully

connected layer with 16 neurons is added on the top of the models. The input and output

sizes are designed to fit each dataset scenario (i.e., image size and the number of unique

labels). We use stochastic gradient descent (SGD) with a learning rate of 0.01 for the

optimizers. Local iterations are set to 2 for all datasets. Global iterations are set to 1500

for FEMNIST and MNIST, and 500 for Chest-Xray.

2.6.2.3 Density Estimation Model (MADE)

Density estimation models (MADE) are constructed by neural networks and the hyper-

parameters are taken directly from the initial setting in the original work [34]. Several

experiments were conducted to select the optimal set of parameters which yield lowest loss

value. The networks include input, output and one hidden layer. The number of neurons in

the hidden layer is tuned from a value set of {30, 50, 100, 200, 300, 400}. The final selected

number of neurons in the hidden layer are 50, 400, 30 for XRAY, FEMNIST and MNIST

datasets, respectively. We noticed that using more neurons than numbers above did not

significantly decrease the validation loss, thus they are the optimal settings. The model’s

input and output sizes are set to the flattened size of images. Specifically, the input and

output size for MNIST and FEMNIST datasets is 784 with image sizes of 28x28 pixels. This

number is 1024 (32x32 pixels) for Chest-Xray dataset. The maximum training iteration is

set to 500, and the training process is stopped when the validation loss starts increasing.

Other hyper-parameters are taken directly from [34].
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2.6.2.4 Sample Weight Approximation

In order to compute the sample weight alpha, we use a shallow, fully connected neural

network to discriminate the density estimation output vectors coming from which of the two

distribution density functions p(x) or q(x). The model contains a 100-neuron hidden layer

with Relu activation function. The output layer contains one neuron with Sigmoid activation

function. All models applied a learning rate of 0.01, and SGD optimization were used in the

training process. The training process is terminated if the loss function is not significantly

reduced.

2.6.3 Results

(a) Chest-Xray (b) FEMNIST (c) MNIST (NoiseVar 0.3)

Figure 2.3: Classification performance over global iterations. Global model’s average test
accuracy during aggregation process. For MNIST dataset, clients’ data were added noise

with the mean of zero and variance of 0.3.
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(a) Chest-Xray (b) FEMNIST (c) MNIST (NoiseVar 0.3)

Figure 2.4: Classification statistics over 100 clients. Test accuracy percentiles, min, max
and median.

2.6.3.1 Classification Accuracy

Figure 2.3 shows the average of the 100 clients’ testing accuracies over training itera-

tions. The shaded regions illustrate the standard deviation over five trials. Overall, FedDisk

significantly outperforms other methods in terms of classification accuracy. For example,

in Figure 2.3a for Chest-Xray dataset, FedDisk with an accuracy of 92% outperforms oth-

ers with the highest accuracy of 90.5%. For FEMNIST dataset (Figure 2.3b), our method

achieved an accuracy of 78% while others only reached the maximum accuracy of 56% (Fe-

dROD). For MNIST, FedDisk reached the accuracy of 54.5% while others only obtained the

highest accuracy of 51.7%.

Figure 2.4 shows the descriptive statistical accuracy results of 100 clients on different

datasets. The colored rectangles contain 50% of client accuracies. The colored rectangular’s

lower and upper edges show the middle values in the first and second half of the sorted

clients’ accuracies (lower quartile and higher quartile). The middle dash is the median value.

The upper and lower dashes represent the min and max clients’ accuracies. Dots illustrate

outliers. Overall, the bars for FedDisk are higher than others, meaning that most clients

archive higher accuracy. Dots are also higher (Figure 2.4a and 2.4b) for FedDisk, showing
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that outlier clients are also improved. Especially, the bar for FEMNIST is significantly raised

for FedDisk, indicating that the proposed method significantly improved for this dataset. It is

clear that the proposed method outperforms compared methods in all experimental datasets,

including real-world non-IID and simulated non-IID settings.

(a) Chest-Xray (b) FEMNIST (c) MNIST (NoiseVar 0.3)

Figure 2.5: Validation and train losses during training the global MADE. The training
processes were stopped if the validation loss starts increasing.

2.6.3.2 Effective Communication Rounds

To have a fair comparision, we use “Effective Communication Rounds” (ECR) to evaluate

effective number of communication iterations for each method. On FedDisk, ECR includes

the communication rounds for exchanging MADE models and classification models. Figure

2.5 show the aggregated training loss and validation loss for the global MADE model over

communication rounds. The global MADE exchanging process stops when the validation loss

starts increasing. For example, the proposed method needs 15 rounds for exchanging global

MADE models in the case of the FEMNIST dataset (Figure 2.5b). The ECR for FedDisk

in the classification phase is calculated with the number of iterations the method needs to
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achieve the highest value among other methods gained. Take the FEMNIST dataset experi-

ment shown in Figure 2.4b for example, FedDisk only needs 105 rounds to reach FedROD’s

accuracy at 57% which is the highest accuracy among other experimental methods. Plus 15

rounds to exchange MADE model, FedDisk only needs a total of 120 rounds to effectively

reach the top comparison method accuracy. Since other methods don’t need to exchange

extra models, the ECRs are calculated by the number of rounds to exchange classification

model until they reach their highest accuracy values.

Table 2.1: Effective Communication Rounds for exchanging model weights.

Model Chest-Xray FEMNIST MNIST
FedDisk MADE 80 15 70
FedDisk Classifier 100 105 85
FedDisk Total 180 120 155

FedAvg Classifier 450 1100 500
FedBN Classifier 457 1255 600
FedProx Classifier 440 1200 800
FedROD Classifier 480 1015 550

Table 2.2: Communication overhead each round per client.

Model Chest-Xray FEMNIST MNIST
FedDisk MADE 102000 614000 47000
FedDisk Classifier 39000 447000 12000
FedAvg Classifier 39000 447000 12000
FedBN Classifier 39000 447000 12000
FedProx Classifier 39000 447000 12000
FedROD Classifier 39000 447000 12000
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Figure 2.6: Summary of Effective Communication Cost over 3 datasets. The Figure shows
that FedDisk is much more efficient in number of communication cost.

(a) Chest-Xray (b) FEMNIST (c) MNIST

Figure 2.7: Global model’s loss over communication rounds. FedDisk loss reduced much
faster than other methods.
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Table 2.1 shows the summary of “Effective Communication Rounds” for the three exper-

imental datasets. FedDisk mechanism has two phases; one is to transfer MADE models, and

the other is to exchange classifiers. The overall FedDisk ECR comprises the communication

rounds in the two phases. As shown in the Table, FedDisk is the most effective method

as it needs many fewer communication rounds to reach the highest accuracy among other

methods. This is because the proposed method only needs a few number communication

rounds for the global MADE model to be converged. Besides, the weight-based adjustment

converges the global classification model much faster than others. For example, the FedDisk

ECR for FEMNIST is only 120 (15 for MADE model exchange plus 105 for classification

model exchange), whereas others take more than 1000 iterations.

2.6.3.3 Effective Communication Cost

To have a comprehensive comparison, the communication cost is estimated for each

method. The cost is comprised of communication rounds and overhead, where the overhead

is measured by the size of transferred data each round between a client and the aggregator.

Since the transferred data mainly contains model weights, our study uses the number of

model weights to estimate the overhead size. Table 2.2 shows the number of model weights

in different scenarios. Note that a client must consume two costs each communication round;

one is for transferring its current model weight, and another is for receiving the updated

weight from the aggregator. Generally, the ”effective communication cost” is then computed

as follows.

C = 2 ∗ Scls ∗ ECRcls (2.17)

, where C is the overall communication cost for one client, Scls is the overhead (number of

transferred classification model weights), and ECRcls is the number of effective communication

rounds. For FedDisk, as it needs to exchange extra MADE in the first phase, the computation
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is adjusted as follows.

CFedDisk = 2 ∗ (SMADE ∗ ECRMADE + Scls ∗ ECRcls), (2.18)

where SMADE and Scls are model sizes needed to be transferred in phase 1 (MADE models)

and phase 2 (classification models), respectively. ECRMADE and ECRcls are the corresponding

effective communication rounds in the two phases. Note that for FedDisk, ECRMADE +

ECRcls = ECR , and ECRcls = ECR for other methods.

Figure 2.6 summarizes effective communication cost. Noticeably, the communication cost

reduced significantly for the FEMNIST dataset under the proposed method, eight times,

from the second lowest cost method of 907,000,000 (FedROD, brown column) to 112,000,000

(FedDisk, green column). The communication cost reduction trend is also applied to other

experimental datasets, Chest-Xray (1.4 times) and MNIST (1.6 times). Thus, the proposed

method improves accuracy and dramatically reduces communication costs, one of the most

critical concerns in Federated Learning. This is because the loss function were reduced

faster as we adjusted using the sample weights. Figure 2.7 demonstrates the global loss

values during training. For FedDisk, the sample weights effectively affect the optimization

function, and the loss reduces much faster, and the accuracies proportionally increase faster.

2.7 Conclusion

In this work, we have proposed a FL method to tackle the issue of distribution skewed

data. The technique utilizes a FL framework and a neural network-based density estimation

model to derive training sample weights. This helps to adjust the global distribution without

revealing clients’ raw data. We also provide a privacy analysis for the extra information used

in FedDisk (i.e., the parameters of MADE models) and prove that the leakage information

becomes less important when the number of clients increases. The experimental results show
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that the proposed method not only improves the FL accuracy but also significantly reduces

communication costs.
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Chapter 3: Synthetic Information Towards Maximum Posterior Ratio for Deep

Learning on Class Imbalanced Data

3.1 Introduction

Class imbalance is a common phenomenon; it could be caused by the data collecting

procedure or simply the nature of the data. For example, it is difficult to sample some rare

diseases in the medical field, so collected data for these are usually significantly less than

that for other diseases. This leads to the problem of class imbalance in machine learning.

The chance of rare samples appearing in model training process is much smaller than that

of common samples. Thus, machine learning models tend to be dominated by the majority

class; this results in a higher prediction error rate. Existing work also observed that class

imbalanced data cause a slow convergence in the training process because of the domination

of gradient vectors coming from the majority class [97, 65].

In the last decades, a number of techniques have been proposed to soften the negative

effects of class imbalance for conventional machine learning algorithms by analytically study-

ing particular algorithms and developing corresponding strategies. However, the problem for

heuristic algorithms such as deep learning is often more difficult to tackle. As suggested in

the most recent deep learning with class imbalance survey [50], most of the works are em-

phasizing image data, and studies for other data types are missing. Thus, in this work, we

focus on addressing the issue of tabular data with class imbalance for deep learning mod-

els. We propose a class balancing solution that utilizes entropy-based sampling and data

statistical information. As suggested in the survey ([50]) that techniques for traditional ML

can be extended to deep learning and inspiring by the comparison in a recent relevant work,

Gaussian Distribution Based Oversampling (GDO) [96], we compare the proposed technique
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with other widely-used and recent techniques such as GDO [96], SMOTE [14], ADASYN

[41], Borderline SMOTE [39], Random Oversampling (ROS).

We categorize existing solutions into model-centric and data-centric approaches in which

the first approach aims at modifying machine algorithms, and the latter looks for data

balancing techniques. Perhaps data-centric techniques are more commonly used because

they do not tie to any specific model. In this category, a simple data balancing technique

is to duplicate minority instances to balance the sample quantity between classes, namely

random oversampling (ROS). This can preserve the best data structure and reduce the

negative impact of data imbalance to some degree. However, this puts too much weight on a

very few minority samples; as a result, it causes over-fitting problems in deep learning when

the imbalance ratio becomes higher.

Another widely-used technique in this category is Synthetic Minority Oversampling Tech-

nique (SMOTE) [14], which randomly generates synthetic data on the connections (in Eu-

clidean space) between minority samples. However, this easily breaks data topology, espe-

cially in high-dimensional space, because it can accidentally connect instances that are not

supposed to be connected. In addition, if there are minority samples located in the majority

class, the technique will generate sample lines across the decision boundary, which leads to

distorted decision boundaries and misclassification. To improve SMOTE, Hui Han, et al.

[39] proposed a SMOTE-based technique (Borderline SMOTE), in which they only apply

SMOTE on the near-boundary samples determined by the labels of their neighbors. For

example, if a sample Euclidean space-based group includes samples from other classes, they

can be considered samples near the border. Since this technique is entirely based on Eu-

clidean distance from determining neighbors to generating synthetic data, it performs poorly

in high dimensional space. Similar to SMOTE, if there is any poorly generated sample near

the boundary, it will worsen the problem due to synthetic samples bridges across the bor-

der. Leveraging the same way as SMOTE generates synthetic samples, another widely-used

technique, ADASYN [41], controls the number of generated samples by the number of sam-
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ples in different classes within small groups. Again, this technique still suffers distortion of

the decision boundary if the boundary region is class imbalanced. Additionally, such men-

tioned techniques have not utilized statistical data information. A recent work, Gaussian

Distribution Based Oversampling (GDO) [96], balances data class based on the statistical

information of data instead. However, its strong assumption of data distribution (data follow

Gaussian) reduces the technique’s effectiveness in real data.

To alleviate the negative effects of data imbalance and avoid the drawbacks of existing

techniques, we propose a minority oversampling technique that focuses on balancing the

high-entropy region that provides the most critical information to the deep learning models.

Besides, the technique enhances synthetic data’s chance to fall into the minority class to

reduce model errors. By carefully generating synthetic data near minority samples, our

proposed technique also preserves the best data topology. Besides, our technique does not

need any statistical assumption.

To find informative samples, we leverage an entropy-based deep active learning tech-

nique that is able to select samples yielding high entropy to deep learning models. We

denote the location of informative samples as the informative region. We then balance this

region first, and the remaining data are balanced later so that it would reduce the decision

distortion mentioned earlier. For each minority sample in this region, we safely generate

its synthetic neighbors so that the global data topology is still preserved. However, gener-

ating synthetic samples in this region is risky because it can easily fall across the decision

boundary. Therefore, we find a direction to generate synthetic samples by maximizing their

posterior probability based on Bayes’s Theorem. However, maximizing the posterior proba-

bility is facing infeasible computation in the denominator. To overcome this, we maximize

the posterior ratio instead so that the denominator computation can be avoided. This also

ensures that the synthetic samples are not only close to the minority class but also far from

the majority class. The remaining data are eventually balanced by a similar procedure.
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The proposed technique alleviates the class imbalance problem. Our experiments in-

dicate that we can achieve better classification results over widely-used techniques in all

experimental cases by applying the proposed strategy.

Our work has the following main contributions:

1. Exploring the impact of class imbalance mitigations on deep learning via visualization

and experiments.

2. Proposing a new minority oversampling-based technique, namely Synthetic Information

towards Maximum Posterior Ratio, to balance data classes and alleviate data imbalance

impacts. Our technique is enhanced by the following key points.

(a) Leveraging an entropy-based active learning technique to prioritize the region

that needs to be balanced. It is the informative region where samples provide

high information entropy to the model.

(b) Leveraging Maximum Posterior Ratio and Bayes’s theorem to determine the di-

rection to generate synthetic minority samples to ensure the synthetic data fall

into the minority class and not fall across the decision boundary. To our best

knowledge, this is the first work utilizing the posterior ratio for tackling class

imbalanced data.

(c) Approximating the likelihood in the posterior ratio using kernel density estima-

tion, which can approximate a complicated topology. Thus, the proposed tech-

nique is able to work with large, distributively complex data.

(d) Carefully generating synthetic samples surrounding minority samples so that the

global data topology is still preserved.

3. We applied our technique to 41 real datasets with a diversity of imbalance ratio and

the number of features.
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4. We compare our technique with different widely-used and recent techniques. The

results show that the proposed technique outperforms others.

The rest of this paper is organized as follows. Section 3.2 introduces related concepts

that will be used in this work, i.e., Imbalance Ratio, Macro F1-score, AUC, and Entropy-

based active learning. Section 3.3 will provide more detail on the problem of learning from

an imbalanced dataset. Our proposed solution to balance dataset, Synthetic Information

towards Maximum Posterior Ratio, will be explained comprehensively in Section 3.5. Section

3.6 discusses the technique implementation and complexity. We will show experiments on

different datasets, including artificial and real datasets in Section 3.7. We also discuss

experimental results in the same section. In Section 3.4, we briefly review other existing

works. Section 3.8 concludes the study and discusses future work.

3.2 Preliminaries

In this section, we introduce related concepts that will be used in our work.

3.2.1 Imbalance Ratio (IR)

For binary classification problems, we use imbalance ratio (IR) to depict the data imbal-

ance as it has been widely used. IR is the ratio of the majority class samples to the minority

class’s samples. For example, if a dataset contains 1000 class-A and 100 class-B samples,

the Imbalance Ratio is 10:1.

3.2.2 Evaluation Metrics

In this work, we evaluate balancing data techniques by classification performance. Specif-

ically, we use F1-Score and Area Under the Curve (AUC) as evaluation metrics. We measure

the Macro-averaging for measuring F1-scores in which we compute scores per class and take

the average of all classes with the same weight regardless of how often they appear in the

datasets. These are fair measurements for imbalanced test datasets.
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F1 score is computed based on two factors Recall and Precision as follows:

Recall =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

F1− score =
2 ∗ Recall ∗ Precision
Recall + Precision

, (3.3)

where T and F stand for True and False; P and N stand for Positive and Negative.

We also measure AUC [92] scores as it is an important metric to evaluate imbalanced

data. AUC is derived from Receiver Operating Characteristic curve (ROC). In this work, we

utilize a skit-learn library to compute AUC; the library can be found in sklearn.metrics.auc.

3.2.3 Entropy-based Active Learning

To find informative samples, we leverage entropy-based active learning. The technique

gradually selects batch-by-batch samples that provide high information to the model based

on information entropy theory [84]. The information entropy is quantified based on the

“surprise” to the model in terms of class prediction probability. Take a binary classification,

for example, if a sample is predicted to be 50% belonging to class A and 50% belonging to

class B, this sample has high entropy and is informative to the model. In contrast, if it is

predicted to be 100% belonging to class A, it is certain and gives zero information to the

model. The class entropy E for each sample can be computed as follows.

E (x , θ) = −
n∑
i

Pθ(y = ci |x) logn Pθ(y = ci |x) (3.4)

where Pθ(y = ci |x) is the probability of data x belonging to the ith class of n classes with

current model parameter θ.
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In this work, we consider a dataset containing N pairs of samples X and corresponding

labels y , and a deep neural network with parameter θ. At the first step t(0), we train the

classifier with parameter θ(0) on a random batch of k labeled samples and use the θ(0) to

predict the labels for the rest of the data (we assume their labels are unknown). We then

compute the prediction entropy of each sample based on Equation 3.4. We are now able

to collect the first batch of informative samples by selecting k samples based on the top k

highest entropy. We query labels for this batch and concatenate them to existing labeled

data to train the classifier parameter θ(1) in the next step t(1). Steps are repeated until

the number of informative samples reaches a pre-set informative portion (IP). For example,

IP = 0.3 will select the top 30% high entropy samples as informative samples.

3.3 The Problem of Learning From Imbalanced Datasets

In this section, we review the problem of learning from imbalanced datasets. Although

the problem may apply to different machine learning methods, we focus on deep learning in

this work.

Figure 3.1 illustrates our problem on a binary classification. The imbalance in the infor-

mative region (light blue eclipse) could lead to classification errors. The dashed green line

depicts the expected boundary, while the solid blue line is the model’s boundary. Since the

minority class lacks data in this region, the majority class will dominate the model even

with a few noisy poorly-placed samples, which leads to a shift of the model’s boundary. In

contrast to the study by Ertekin et al. [27] which assumes the informative region is more

balanced by nature and proposes a solution that only classifies over the informative samples,

our assumption is different. We consider the case that the informative region contains highly

imbalanced data, which we believe happens in most real scenarios. The problem could be

more severe in a more complex setting such as high-dimensional and topologically complex

data. Therefore, we proposed a technique to tackle the problem of data imbalance by over-
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Figure 3.1: Learning from imbalanced datasets

sampling the minority class in an informative manner. The detail of our proposed technique

will be described in Section 3.5.

3.4 Related Work

In the last few decades, many solutions have been proposed to alleviate the negative

impacts of data imbalance in machine learning. However, most of them are not efficiently

extended for deep learning. This section reviews algorithms to tackle class-imbalanced data
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that can be extended for deep learning. These techniques can be categorized into three main

categories, i.e., sampling, cost-sensitive, and ensemble learning approaches.

3.4.1 Sampling-based Approach.

Compared to other approaches, resampling techniques have attracted more research at-

tention as they are independent of machine learning algorithms. This approach can be

divided into two main categories, over-sampling, and under-sampling techniques. Such

sampling-based methods e.g., [85], [32], [38], [56], [28] mainly generate a balanced dataset

by either over-sampling the minority class or down-sampling the majority class. Some tech-

niques are not designed for deep learning; however, we still consider them in this work since

they are independent of the machine learning model architecture. In a widely used method,

SMOTE [14], Chawla et al. attempt to oversample minority class samples by connecting

a sample to its neighbors in feature space and arbitrarily drawing synthetic samples along

with the connections. However, one of SMOTE drawbacks is that if there are samples in

the minority class located in the majority class, it creates synthetic sample bridges toward

the majority class [37]. This renders difficulties in differentiation between the two classes.

Another SMOTE-based work, namely Borderline-SMOTE [39] was proposed in which its

method aims to do SMOTE with only samples near the border between classes. The sam-

ples near the border are determined by the labels of its k distance-based neighbors. This

”border” idea is similar to ours to some degree. However, finding a good k is critical for a

heuristic machine learning algorithm such as deep learning, and it is usually highly data-

dependent.

Among specific techniques for deep learning, generating synthetic samples in the minor-

ity class by sampling from data distribution is becoming more attractive as they outper-

form other methods in high dimensional data [61]. Regarding images, several deep learning

generative-based methods have been proposed as deep learning is capable of capturing good

image representations. [77] [22] [72] utilized Variational Autoencoder as a generative model
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to arbitrarily generate images from learned distributions. However, most assumed simple

prior distributions, such as Gaussian for minor classes, tend to simplify data distribution

and might fail in more sophisticated distributions. In addition, most of the works in this

approach tackle image datasets, while our proposed method focuses on tabular datasets as

this is a missing piece in the field [50].

Under the down-sampling category, existing techniques mainly down-sample the majority

class to balance it with the minority class. There are several proposed techniques to simplify

the majority. A straightforward way is to randomly remove the majority class samples.

Other works, e.g., [27], [7] find near-border samples and authors believe the imbalance ratio

in these areas is much smaller than that in the entire dataset. They then classify this small

pool of samples to improve the performance and expedite the training process for the SVM-

based method. However, this method was only designed for SVM-based methods, which

mainly depend on the support vectors. Also, this potentially discards essential information

of the entire dataset because only a small pool of data is used.

3.4.2 Cost-sensitive Learning Approach

Cost-sensitive learning techniques usually require modifications of algorithms on the cost

functions to balance each class’s weight. Specifically, such cost-sensitive techniques put

higher penalties on majority classes and less on minority classes to balance their contribution

to the final cost. For example, [21] provided their designed formula (1−βn)/(1−β) to compute

the weight of each class based on the effective number of samples n and a hyperparameter

β which is then applied to re-balance the loss of a convolutional neural network model.

[45],[76], [67] assign classes’ weights inversely proportional to sample frequency appearing

in each class. Hamed et al. [68] proposed an SVM-based cost-sensitive approach (SVMCS)

that uses svm with a class-weighted loss function.
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3.4.3 Ensemble Learning Approach

Ensemble learning has achieved high performance in classification for its generalizability.

Thus, it could reduce the bias due to class imbalance. Ensemble learning can be constructed

by combining several base classifiers with different sampling-based approaches. In [15, 81],

Chawla et al. and Seiffert et al. proposed variants of ensemble learning in which the data are

balanced based on oversampling method SMOTE and then applying ensemble learning on

balanced data. Similarly, authors in [60] generate cluster-based synthetic data and combine

it with an evolutionary algorithm. Liu et al. in [63] balances the data by applying a fuzzy-

based oversampling technique and building ensemble learning classifiers on this data. Zhou

and Liu in [64] explore a method, namely Easy Ensemble classifier (EE), to perform ensemble

learning on the random under-sampling balanced data.

3.5 Federated Learning for Skewed Distribution Using Sample Weights

To alleviate the negative effects of data imbalance, we propose a comprehensive approach,

Synthetic Information towards Maximum Posterior Ratio (SIMPOR), which aims to generate

synthetic samples for minority classes. We first find the informative region where informative

samples are located and balance this region by creating surrounding synthetic neighbors for

minority samples. The remaining region is then fully balanced by arbitrarily generating

minority samples’ neighbors. We elaborate on how our strategy is developed in the rest of

this section.

3.5.1 Methodology Motivation

As Chazal and Michel mentioned in their work [55], the natural way to highlight the global

topological structure of the data is to connect data points’ neighbors; our proposed method

aligns with their observation by generating surrounding synthetic neighbors for minority

samples to preserve data topology. Thus, our technique not only generates more data for

minority class but also preserve the underlying topological structure of the entire data.

36



Similar to [27] and [7], we believe that informative samples play the most important

role in the prediction success of both traditional machine learning models (e.g., SVM, Naive

Bayes) and modern deep learning approaches (e.g., neural network). Thus, our technique

finds these informative samples and focuses on augmenting minority data in this region. In

this work, we apply an entropy-based active learning strategy mentioned in 3.2.3 to find the

samples that maximize entropy to the model. This strategy is perhaps the most popular

active learning technique and over-performs many other techniques on several datasets [35],

[75] [82].

3.5.2 Generating Minority Synthetic Data

A synthetic neighbor x ′ and its label y ′ can be created surrounding a minority sample

x by adding a small random vector v to the sample, x ′ = x + v . This lays on the d-sphere

surface centered by x , and the d-sphere’s radius is set by the length of vector v⃗ , |⃗v |. It

is, however, critical to generate synthetic data in the informative region because synthetic

samples can unexpectedly jump across the decision boundary. This can be harmful to models

as this might create outliers and reduce the model’s performance. Therefore, we safely find

vector v⃗ towards the minority class, such as v⃗0 and v⃗1 depicted in Figure 3.1. Our technique

is described via a binary classification scenario as follows.

Let’s consider a binary classification problem between majority class A and minority class

B. From the Bayes’ theorem, the posterior probabilities p(y ′ = A|x ′) or p(y ′ = B |x ′) can

be used to present the probabilities that a synthetic sample x ′ belongs to class A or class

B, respectively. Let the two posterior probabilities be f0 and f1; they can be expressed as

follows.

p(y ′ = A|x ′) = p(x ′|y ′ = A) p(A)

p(x ′)
= f0 (3.5)

p(y ′ = B |x ′) = p(x ′|y ′ = B) p(B)

p(x ′)
= f1 (3.6)
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As mentioned earlier, we would like to generate each synthetic data x ′ that maximizes the

probability of x ′ belonging to the minority class B and minimizes the chance x ′ falling into

the majority class A. Thus, we propose a technique that maximizes the fractional posterior

f ,

f = f1/f0 (3.7)

=
p(x ′|y ′ = B) p(B)

p(x ′|y ′ = A) p(A)
. (3.8)

We use non-parametric kernel density estimates (KDE) to approximate the likelihoods

p(x ′|y ′ = A) and p(x ′|y ′ = B) as KDE is flexible and does not require specific assumptions

about the data distribution. One can use a parametric statistical model such as Gaussian to

approximate the likelihood; however, it oversimplifies the data and does not work effectively

with topological complex data, especially in high dimensions. In addition, parametric models

require an assumption about the distribution of data which is difficult in real-world problems

since we usually do not have such information. On the other hand, KDE only needs a kernel

working as a window sliding through the data. Among different commonly used kernels for

KDE, we choose Gaussian Kernel as it is a powerful continuous kernel that would also eases

the derivative computations for finding optima.

Additionally, we assume prior probabilities of observing samples in class A (p(A)) and

class B (p(B)) (in Equation 3.8) are constant. Hence, these probabilities do not affect our

algorithm in terms of generating synthetic neighbors for minority samples because we only

determine the relative direction between the minority and the majority class. Thus, they

can be canceled out at the end of the equation reduction.

We reduce Equation 3.8 as follows. Let XA and XB be the subsets of dataset X which

contain samples of class A and class B, XA = {x : y = A} and XB = {x : y = B}. NA and NB

are the numbers of samples in XA and XB . d is the number of data dimensions. h presents
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the width parameter of the Gaussian kernel. The posterior ratio for each synthetic sample

x ′ then can be estimated as follows:

f =
p(x ′|y ′ = B) p(B)

p(x ′|y ′ = A) p(A)
(3.9)

∝
1
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∑NB
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. (3.12)

Because we want to generate neighbors for each minority sample that maximizes Function

f in Equation 3.12, we examine points lying on the sphere centered at the minority sample

with a small radius r . As a result, we can find a vector v⃗ so that it can be added to the

sample to generate a new sample. The relationship between a synthetic sample x ′ and a

minority sample can be described as follows,

x⃗ ′ = x⃗ + v⃗ , (3.13)

where |⃗v | = r , and r is sampled from a Gaussian distribution,

r ∼ N (0, (αR)2), (3.14)

where αR is the standiviation of the Gaussian distribution and 0 < α <= 1.
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The range parameter R is relatively small and computed as the average distance of a

minority sample x to its k-nearest neighbors. This will ensure that the generated sample will

be surrounding the minority sample. The Gaussian distribution with the mean of zero and

the standiviation αR controls the distance between the synthetic samples and the minority

sample. The standiviation is tuned from 0 to R by a coefficient α ∈ (0, 1]. The larger the α

is, the farther synthetic data created from its original sample. Consider a minority sample

x and its k-nearest neighbors in the Euclidean space, R can be computed as follows:

R =
1

k

k∑
1

||x − xj ||, (3.15)

where ||x − xj || is the Euclidean distance between a minority sample x and its jth neighbor.

k is a parameter indicating selected number of neighbors.

Figure 3.2 depicts a demonstration of finding 3 synthetic samples from 3 minority samples.

In fact, one minority can be re-sampled to generate more than one synthetic sample. For

a minority sample x0, we find a synthetic sample x ′0 by maximizing the objective function

f (x ′0), x
′
0 ∈ X with a constraint that the Euclidean length of v⃗0 equals to a radius r0, ||v⃗0|| = r0

or ||x⃗ ′0 − x⃗0|| = r0 (derived from Equation 3.13).

The problem can be described as a constrained optimization problem. For each minority

sample x , we find a synthetic sample x ′ ∈ Rd lying on the d-sphere centered at x with radius

r and maximizing function in Equation 3.12,

max
x ′

f (x ′) s.t. ||x⃗ ′ − x⃗ || = r . (3.16)

Interestingly, the problem in Equation3.16 can be solved numerically. Function f (x) in

Equation 3.12 is defined and continuous for x ′ ∈ (−∞, +∞) because all of the exponen-

tial components (Gaussian kernels) are continuous and greater than zero. In addition, the
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Figure 3.2: Demonstration on how SIMPOR generates three synthetic samples x ′0, x
′
1, x

′
2,

from three minority samples x0, x1, x2, by maximizing the Posterior Ratio.

constraint, ||x⃗ ′ − x⃗ || = r , which contains all points on the sphere centered at x with radius

r is a closed set ([5]). Thus, a maximum exits as proved in [4]. To enhance the diversity

of synthetic data, we accept either the global maximum or any local maximum so that the

synthetic samples will not simply go to the same direction.

We solve the problem in Equation 3.16 by using the Projected Gradient Ascent approach

in which we iteratively update the parameter to go up the gradient of the objective function.

A local maximum is found if the objective value cannot be increased by any local update.

For simplification, we rewrite the problem in Equation 3.16 by shifting the origin to the
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considered minority sample. The problem becomes finding the maximum of function f (x ′),

x ′ ∈ Rd , constrained on a d-sphere, i.e., ||x ′|| = r . Our solution can be described in Algorithm

3.1. After shifting the coordinates system, we start by sampling a random point on the

constraint sphere (line 1 − 2). The gradient of the objective function at time t, gt(x
′
t), is

computed and projected onto the sphere tangent plane as pt (line 4−5). It is then normalized

and used for update a new x ′t+1 by rotating a small angle lr ∗ θ (line 6− 7). The algorithm

stops when the value of f (x ′) is not increased by any update of x ′. We finally shift to the

original coordinates and return the latest x ′t .

Algorithm 3.1 Sphere-Constrained Gradient Ascent for Finding Maximum

Input: A minority sample x0, objective function f (x ,X )
Parameter:
r : The radius of the sphere centered at x0
θ : Sample space θ ∈ [0, 2π]
lr : Gradient ascent learning rate
Output: An local maximum x ′

1: Shift the Origin to x0
2: Randomly initiate x ′t on the sphere with radius r
3: while converge condition do
4: Compute the gradient at x ′t

gt(x
′
t) = ∇f (x ′t)

5: Project the gradient onto the sphere tangent plane
pt = gt − (gt · x ′t)xt

6: Normalize projected vector
pt = pt/||pt ||

7: Update x ′ on the constrained sphere
x ′t+1 = x ′tcos(lr ∗ θ) + ptsin(lr ∗ θ)

8: end while
9: Shift back to the Origin
10: return x ′t
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To reduce the chance of misplacing synthetic samples on another class region because

of noisy borderline and mislabeled minority samples, we set a policy for rejecting minority

candidates which are selected for oversampling. The idea is to reject candidates surrounded

mainly by other class samples. More specifically, we count the labels of the candidate’s k-

nearest neighbors and reject this candidate if there exists a class that its’ number of samples

is greater than the number of the minority samples). For example, the candidate is rejected

when a class-A sample is selected for generating synthetic data, and its 5-nearest neighbors

contain four class-B samples and one class-A sample. This is to avoid selecting mislabeled

samples and noisy borderline samples for oversampling.

3.5.3 Algorithm

Our strategy can be described in Algorithm 3.2. The algorithm takes an imbalanced

dataset as its input and results in a balanced dataset which is a combination of the original

dataset and synthetic samples. We first choose an active learning method AL(·) and find a

subset of informative samples S by leveraging entropy-based active learning (lines 1−2). We

then generate synthetic data to balance S . For each random sample xci in S and belonging

to minority class c , we randomly sample a small radius r and find a synthetic sample that

lies on the sphere centered at xci and maximizes the posterior ratio in Equation 3.12 (lines

3 − 11). The process is repeated until the informative set S is balanced. Similarly, the

remaining region is balanced, which can be described in the pseudo-code from line 12 to line

20. The final output of the algorithm is a balanced dataset D ′.

3.6 Algorithm Time Complexity

The costly part of SIMPOR is that each synthetic sample requires computing a kernel

density estimation of the entire dataset. Elaborately, let n be the number of samples of the

dataset. In the worst case, the numbers of samples of minority and majority class are NB = 1

and NA = n − 1, respectively. We need to generate n − 2 synthetic samples to balance the
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Algorithm 3.2 SIMPOR

Input: Original Imbalance Dataset D including data X and labels y .
Parameter: MA is the majority class, MI is a set of other classes.
k : Number of neighbors of the considered sample which determines the maximum range of
the sample to its synthetic samples.
α: preset radius coefficient Count(c ,P) : A function to count class c sample number in
population P .
G (x0, f , r) : Algorithm 3.1, which returns a synthetic sample on sphere centered at x0 with
radius r and maximize Equation 3.12.
Output: Balanced Dataset D ′ including {X ′, y ′}
1: Select an Active Learning Algorithm AL()
2: Query a subset of informative samples S ∈ D using AL: s ← AL(D)
{Balance the informative region}

3: for c ∈ MI do
4: while Count(c , S) ≤ Count(MA, S) do
5: Select a random xci ∈ S
6: Reject and reselect xci if its label is dominated among k-nearest labels
7: Compute maximum range R based on k-nearest neighbors
8: Randomly sample a radius r ∼ N (0,αR)
9: Generate a synthetic neighbor x ′ from xci : x

′ = G (xci , f , r)
10: Append x ′ to D ′

11: end while
12: end for
{Balance the remaining region}

13: for c in MI do
14: while Count(c ,D ′) ≤ Count(MA,D ′) do
15: Select a random xcj ∈ {X − S}
16: Compute maximum range R based on k
17: Randomly sample a radius r ∼ N (0,αR)
18: Generate a synthetic neighbor x ′ of xcj
19: Append x ′ to D ′

20: end while
21: end for
22: return

44



dataset completely. Since each generated sample must loop through the entire dataset of

size n to estimate the density, the algorithm complexity is O(n2).

Although generating synthetic data is only a one-time process, and this does not affect

the classification efficiency in the testing phase, we still try to alleviate its weakness by

providing parallelized implementations to reduce the time complexity to O(n). Specifically,

each exponential component in Equation 3.12 is computed parallelly, utilizing GPU or CPU

threads. Ellaborately, Equation 3.12 can be rewritten as NB components of e
1
2
(
x−XBi

h
)2 and

NA components of e
1
2
(
x−XAi

h
)2 . Fortunately, they are all independent and can be processed

parallelly. Thus, with a sufficient hardware resource, the consumption time for the kernel

density estimation of each synthetic data point is then reduced by NA+NB = n times, which

significantly simplifies the complexity to O(n).

3.7 Experiments

In this section, we explore the techniques via binary classification problems on an artifi-

cial dataset (i.e., Moon) and 41 real-world datasets (i.e., KEEL, UCI, Credit Card Fraud).

Samples in Moon have two features, while other datasets contain various numbers of features

and imbalance ratios. Dataset details are described in Table 3.1. The implementation steps

to balance datasets follow Algorithm 3.2. To evaluate our proposed balancing technique,

we compare the classification performance to different widely-used and state-of-the-art tech-

niques. More specifically, We compare SIMPOR to SMOTE [14], Borderline-SMOTE [39],

ADASYN [41], Random Oversampling (ROS), Gaussian Distribution Based Oversampling

(GDO) [96], SVMCS [68], EE [64]. To evaluate the classifications performance for skewed

datasets, we measure widely-used metrics, i.e., F1-score and Area Under The Curve (AUC).

3.7.1 Experimental Setup

This section describes the general settings and implementation details for the experimen-

tal techniques.
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Table 3.1: Dataset description.

dataset #samples #features IR
glass1 214 9 1.8 (138:76)
wisconsin 683 9 1.9 (444:239)
pima 768 8 1.9 (500:268)
glass0 214 9 2.1 (144:70)
yeast1 1484 8 2.5 (1055:429)
haberman 306 3 2.8 (225:81)
vehicle1 846 18 2.9 (629:217)
vehicle2 846 18 2.9 (628:218)
vehicle3 846 18 3.0 (634:212)
creditcard 1968 30 3.0 (1476:492)
glass-0-1-2-3 vs 4-5-6 214 9 3.2 (163:51)
vehicle0 846 18 3.3 (647:199)
ecoli1 336 7 3.4 (259:77)
new-thyroid1 215 5 5.1 (180:35)
new-thyroid2 215 5 5.1 (180:35)
ecoli2 336 7 5.5 (284:52)
glass6 214 9 6.4 (185:29)
yeast3 1484 8 8.1 (1321:63)
ecoli3 336 7 8.6 (301:35)
page-blocks0 5472 10 8.8 (4913:559)
yeast-2 vs 4 514 8 9.0 (463:51)
yeast-0-5-6-7-9 vs 4 528 8 9.4 (477:51)
vowel0 988 13 10.0 (898:90)
glass-0-1-6 vs 2 192 9 10.3 (175:17)
glass2 214 9 11.6 (197:17)
yeast-1 vs 7 459 7 14.3 (429:30)
glass4 214 9 15.5 (201:13)
ecoli4 336 7 15.8 (316:20)
page-blocks-1-3 vs 4 472 10 15.9 (444:28)
abalone9-18 731 8 16.4 (689:42)
yeast-1-4-5-8 vs 7 693 8 22.1 (663:30)
glass5 214 9 22.8 (205:9)
yeast-2 vs 8 482 8 23.1 (462:20)
car eval 4 1728 21 25.6 (1663:65)
wine quality 4898 11 25.8 (4715:183)
yeast me2 1484 8 28.0 (1433:51)
yeast4 1484 8 28.1 (1433:51)
yeast-1-2-8-9 vs 7 947 8 30.6 (917:30)
yeast5 1484 8 32.7 (1440:44)
yeast6 1484 8 41.4 (1449:35)
abalone19 4174 8 129.4 (689:42)
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3.7.1.1 SIMPOR Settings

In order to find the informative subset, we leverage entropy-based active learning. We first

utilize a neural network model playing a role as a classifier to find high-entropy samples. The

detailed steps are introduced in Subsection 3.2.3. The model contains two fully connected

hidden layers with relu activation functions and 100 neurons in each layer. The output layer

applies the soft-max activation function. The model is trained in a maximum of 300 epochs

with an early stop option until the loss does not change after updating weights. The model

is trained firstly on a random set of data; this model is then used to predict the remaining

data and compute the sample entropy. We select the top 30 percent of high-entropy samples

(IP=0.3) for the informative subsets. Note that the classifier for finding informative subsets

differs from the classifiers for the evaluation after all balancing techniques are applied to the

data.

To solve the optimization problem in Equation 3.16 for finding optima (this differs from

the classification optimization for the evaluation) introduced in Section 3.5.2, we use a gra-

dient ascent method with the gradient rate of 1e − 5 and the maximum iteration of 300.

3.7.1.2 Evaluation Classification Settings

Considering each imbalanced dataset as a classification problem, we use the classification

testing performance for the technique comparison. Each dataset is randomly split into two

parts, 80% for training and 20% for testing. The classifiers are trained on training sets after

applying the techniques. The results are reported on the raw testing sets (There isn’t any

technique applied on the testing sets; thus, they are also possibly class imbalanced). We

use F1-score and AUC for the evaluation metrics as they are suitable and widely used to

evaluate imbalanced data. Reported testing results for each dataset are the averages of 5

experimental trials.

The classifiers are constructed by neural networks with the input and output sizes corre-

sponding to the number of datasets’ features and unique labels. We use the same classifier
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structure (number of hidden layers, number of neurons in each layer, learning rate, opti-

mizer) for all compared datasets. The detail of neural network implementation is described

in Table 3.2. For baseline technique settings, we follow the experimental parameter sets in

[96] as we share very similar datasets and comparison techniques.

Table 3.2: Classification model settings for each dataset.

Method Parameter

SIMPOR k neighbors=5, r distribtuion=Gaussian(0,1), IP=0.3
GDO k neighbors=5, d=1
SMOTE k neighbors=5, sampling strategy=‘auto’,random state=None
BL-SMOTE k neighbors=5, sampling strategy=‘auto’, random state=None
ADASYN k neighbors=5, sampling strategy=‘auto’, random state=None
EE #estimators=10, Estimater=AdaBoostClassifier
ROS sampling strategy=‘auto’, random state=None, shrinkage=None

Classifier Parameter

Architecture neuron/layer=100, #layers=3
Optimization optimizer=‘adam’, epochs=200, batch size=32, learning rate=0.1,

reduce lr loss(factor=0.9,epsilon=1e-4,patience=5)

3.7.2 SIMPOR on Artificial Moon Dataset

We implement techniques on an artificial 2-dimension dataset for demonstration pur-

poses. We first generate the balanced synthetic MOON dataset using sklearn package. The

generated MOON contains 3000 samples labeled in two classes, and each instance has two

numerical features with values ranging from 0 to 1. We then make the dataset artificially

imbalanced with an Imbalance Ratio of 7:1 by randomly removing 1285 samples from one

class. As a result, the training dataset becomes imbalanced, as visualized in Figure 3.3.

Figure 3.4 captures the classification for different techniques. We also visualize the model

decision boundaries to provide additional information on how the classification models are

affected. We use a fully connected neural network described in Table 3.2 to classify the data.
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Figure 3.3: Artificial class imbalanced Moon dataset with IR of 7:1.

Table 3.3: Classification result on Moon dataset.

Metric SIMPOR SMOTE BL-SMOTE ROS ADASYN GDO
F1-score 0.883 0.824 0.827 0.830 0.785 0.817
AUC 0.961 0.957 0.955 0.959 0.955 0.959
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(a) SIMPOR. (b) GDO. (c) SMOTE.

(d) Random Over Sampling. (e) BorderlineSMOTE. (f) ADASYN.

Figure 3.4: Data and model decision boundary visualization for Moon dataset.

From the visualization shown in Figure 3.4 and the classification performance results

in Table 3.3, it is clear that SIMPOR performs better than others by up to 12% on F1-

score and 0.6% on AUC. We can see that the Random Over Sampling technique (Figure

3.4d) which randomly duplicates minority samples might push the boundary towards the

majority because the samples near the border carry significant weights. Due to the fact that

SMOTE does not take the informative region into account, unbalanced data in this area

lead to a severe error in decision boundary. In Figures 3.4f and 3.4e, BorderlineSMOTE

(BL-SMOTE) and ADASYN focus on the area near the model’s decision boundary, but

they inherit a drawback from SMOTE; any noise or mislabeled samples can, unfortunately,

create very dense bridges crossing the expected border and lead to decision errors. Figure

3.4b shows that GDO also generates local gaussian groups of samples near the boder and

thus create errors. This phenomenon might cause by a few mis-labeled sample points. In

contrast, by generating neighbors of minority samples in the direction towards the minority
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class and balancing the informative region, SIMPOR (Figure 3.4a) helps the classifier to

make a better decision with a solid smooth decision boundary. Poorly-placed synthetic

samples are significantly less than that of others.

3.7.3 SIMPOR on Forty-one Real Datasets

In this section, we compare the proposed technique on 41 real two-class datasets with a

variable number of features and Imbalance Ratios, i.e., KEEL datasets [3, 30], UCI datasets

fetched from Sklearn tool [2, 54] and Credit Card Fraud [1] dataset. Since the original

Credit Card Fraud contains a large number of banking normal and fraud transaction samples

(284,807) which significantly reduces our experimental efficiency, we reduced the dataset size

by randomly removing normal class transactions to reach an imbalance ratio of 3.0. Other

datasets are kept as their original versions after removing bad samples (containing Null

values). The datasets are described in Table 3.1.

3.7.3.1 Classification Results

Table 3.4, 3.5, 3.6 and 3.7 show the classification F1-score, AUC, Precision, and Re-

call results, respectively. The highest scores for each dataset are highlighted in bold style.

We also provide the summary of the F1 and AUC scores by “winning times” scores. We

count the number of datasets for which a technique achieves the highest scores among the

compared techniques and name this number “winning times”. For convention, if more than

two techniques share the same highest score, the winning times will be increased for each

technique. Figure 3.5 shows a summary of winning times.

As we can see from the table, the proposed technique outperforms others on both eval-

uation metrics, F1-score and AUC. More specifically, SIMPOR hits 24 F1-score winning

times and 31 AUC winning times. Its number of F1-score winning times at 24 tripled the

second winner (ADASYN) at 8, and its AUC winning times at 31 is far from the second

AUC winners (GDO, EE, SVMCS) at 7.
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Table 3.4: F1-score over different datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN ROS SVMCS EE

glass1 0.746 0.694 0.709 0.720 0.702 0.699 0.724 0.705
wisconsin 0.967 0.972 0.966 0.963 0.965 0.967 0.964 0.962
pima 0.754 0.733 0.716 0.728 0.737 0.731 0.740 0.749
glass0 0.817 0.786 0.798 0.794 0.776 0.778 0.801 0.817
yeast1 0.718 0.689 0.700 0.699 0.689 0.697 0.702 0.705
haberman 0.591 0.614 0.617 0.611 0.625 0.585 0.600 0.608
vehicle1 0.759 0.784 0.790 0.791 0.789 0.773 0.754 0.768
vehicle2 0.973 0.933 0.938 0.968 0.973 0.958 0.971 0.970
vehicle3 0.759 0.758 0.742 0.753 0.730 0.750 0.738 0.749
creditcard 0.953 0.942 0.947 0.944 0.943 0.945 0.952 0.950
glass-0-1-2-3 vs 4-5-6 0.916 0.922 0.926 0.925 0.927 0.919 0.909 0.919
vehicle0 0.960 0.948 0.954 0.962 0.968 0.967 0.972 0.960
ecoli1 0.835 0.827 0.835 0.821 0.819 0.818 0.849 0.838
new-thyroid1 0.957 0.956 0.957 0.957 0.963 0.963 0.957 0.957
new-thyroid2 0.940 0.978 0.934 0.940 0.940 0.940 0.934 0.934
ecoli2 0.908 0.864 0.902 0.866 0.865 0.882 0.900 0.900
glass6 0.926 0.888 0.870 0.908 0.896 0.880 0.894 0.905
yeast3 0.878 0.833 0.856 0.846 0.843 0.854 0.870 0.877
ecoli3 0.847 0.811 0.826 0.798 0.733 0.815 0.832 0.840
page-blocks0 0.907 0.894 0.897 0.894 0.880 0.906 0.890 0.907
yeast-2 vs 4 0.881 0.842 0.868 0.859 0.861 0.878 0.795 0.786
yeast-0-5-6-7-9 vs 4 0.802 0.763 0.718 0.801 0.753 0.742 0.771 0.782
vowel0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
glass-0-1-6 vs 2 0.661 0.707 0.686 0.694 0.740 0.712 0.482 0.539
glass2 0.638 0.710 0.775 0.757 0.789 0.743 0.621 0.615
yeast-1 vs 7 0.784 0.681 0.619 0.638 0.609 0.613 0.770 0.738
glass4 0.904 0.845 0.855 0.853 0.855 0.853 0.853 0.865
ecoli4 0.900 0.857 0.872 0.880 0.865 0.872 0.888 0.888
page-blocks-1-3 vs 4 0.974 0.948 0.965 0.971 0.977 0.959 0.992 0.992
abalone9-18 0.716 0.729 0.735 0.735 0.751 0.748 0.792 0.805
yeast-1-4-5-8 vs 7 0.489 0.620 0.571 0.585 0.615 0.630 0.489 0.489
glass5 0.927 0.909 0.906 0.855 0.824 0.927 0.665 0.664
yeast-2 vs 8 0.832 0.703 0.712 0.708 0.691 0.747 0.832 0.832
car eval 4 1.000 0.975 0.995 0.990 0.995 0.995 1.000 0.997
wine quality 0.743 0.680 0.665 0.660 0.660 0.677 0.673 0.659
yeast me2 0.697 0.695 0.707 0.686 0.686 0.657 0.730 0.717
yeast4 0.743 0.693 0.650 0.682 0.668 0.677 0.731 0.740
yeast-1-2-8-9 vs 7 0.762 0.637 0.604 0.615 0.618 0.608 0.738 0.731
yeast5 0.843 0.844 0.889 0.888 0.892 0.882 0.827 0.830
yeast6 0.767 0.748 0.684 0.774 0.741 0.738 0.758 0.763
abalone19 0.498 0.517 0.541 0.524 0.537 0.533 0.498 0.498
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Table 3.5: AUC result over different datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN ROS SVMCS EE

glass1 0.817 0.794 0.801 0.776 0.779 0.794 0.795 0.783
wisconsin 0.996 0.995 0.995 0.993 0.994 0.995 0.995 0.996
pima 0.849 0.825 0.818 0.811 0.816 0.820 0.832 0.834
glass0 0.897 0.878 0.877 0.870 0.866 0.873 0.882 0.882
yeast1 0.810 0.777 0.785 0.784 0.770 0.785 0.799 0.801
haberman 0.724 0.680 0.680 0.669 0.678 0.676 0.699 0.693
vehicle1 0.901 0.903 0.907 0.901 0.895 0.893 0.911 0.909
vehicle2 0.998 0.994 0.972 0.994 0.997 0.998 0.997 0.996
vehicle3 0.892 0.869 0.880 0.876 0.841 0.877 0.879 0.876
creditcard 0.974 0.973 0.967 0.963 0.969 0.966 0.971 0.972
glass-0-1-2-3 vs 4-5-6 0.992 0.990 0.985 0.986 0.976 0.990 0.988 0.988
vehicle0 0.994 0.993 0.993 0.994 0.993 0.994 0.995 0.994
ecoli1 0.956 0.949 0.954 0.945 0.948 0.940 0.954 0.953
new-thyroid1 0.997 0.999 0.998 0.998 0.997 0.997 0.998 0.998
new-thyroid2 0.998 0.999 0.998 0.998 0.998 0.998 0.999 0.999
ecoli2 0.959 0.951 0.955 0.936 0.948 0.955 0.949 0.953
glass6 0.905 0.956 0.925 0.876 0.890 0.936 0.926 0.946
yeast3 0.974 0.960 0.963 0.956 0.954 0.953 0.974 0.974
ecoli3 0.902 0.892 0.886 0.883 0.833 0.889 0.885 0.895
page-blocks0 0.986 0.988 0.983 0.984 0.985 0.987 0.983 0.983
yeast-2 vs 4 0.982 0.975 0.958 0.969 0.948 0.961 0.949 0.930
yeast-0-5-6-7-9 vs 4 0.918 0.914 0.864 0.908 0.879 0.815 0.891 0.892
vowel0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
glass-0-1-6 vs 2 0.868 0.849 0.892 0.871 0.893 0.895 0.870 0.885
glass2 0.903 0.903 0.918 0.906 0.924 0.903 0.900 0.897
yeast-1 vs 7 0.870 0.816 0.738 0.783 0.742 0.755 0.825 0.817
glass4 0.992 0.975 0.977 0.979 0.969 0.957 0.985 0.982
ecoli4 0.988 0.979 0.985 0.981 0.981 0.946 0.986 0.986
page-blocks-1-3 vs 4 0.998 0.999 0.999 0.999 0.999 0.998 0.999 0.999
abalone9-18 0.898 0.925 0.935 0.919 0.932 0.921 0.916 0.921
yeast-1-4-5-8 vs 7 0.801 0.770 0.692 0.705 0.704 0.741 0.746 0.747
glass5 1.000 0.996 0.995 0.988 0.990 0.951 0.995 0.995
yeast-2 vs 8 0.823 0.737 0.783 0.789 0.772 0.763 0.797 0.787
car eval 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
wine quality 0.859 0.802 0.752 0.787 0.756 0.782 0.826 0.825
yeast me2 0.920 0.903 0.875 0.864 0.848 0.871 0.896 0.905
yeast4 0.907 0.893 0.805 0.836 0.821 0.809 0.854 0.858
yeast-1-2-8-9 vs 7 0.823 0.767 0.709 0.729 0.710 0.752 0.784 0.770
yeast5 0.993 0.991 0.993 0.992 0.993 0.993 0.992 0.993
yeast6 0.968 0.940 0.851 0.944 0.935 0.936 0.956 0.952
abalone19 0.806 0.640 0.672 0.675 0.683 0.669 0.780 0.784
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Table 3.6: Precision results over 41 datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN ROS SVMCS EE

glass1 0.755 0.695 0.714 0.720 0.701 0.699 0.729 0.714
wisconsin 0.965 0.965 0.962 0.959 0.961 0.964 0.963 0.960
pima 0.762 0.727 0.713 0.722 0.731 0.727 0.747 0.755
glass0 0.816 0.774 0.790 0.780 0.764 0.766 0.796 0.813
yeast1 0.734 0.676 0.688 0.685 0.676 0.688 0.722 0.725
haberman 0.628 0.607 0.614 0.600 0.614 0.581 0.643 0.646
vehicle1 0.760 0.767 0.778 0.785 0.774 0.756 0.774 0.784
vehicle2 0.967 0.916 0.955 0.969 0.968 0.948 0.970 0.964
vehicle3 0.768 0.733 0.736 0.739 0.719 0.738 0.745 0.751
creditcard 0.959 0.945 0.952 0.950 0.951 0.956 0.971 0.964
glass-0-1-2-3 vs 4-5-6 0.911 0.894 0.924 0.924 0.921 0.913 0.909 0.920
vehicle0 0.966 0.926 0.951 0.952 0.965 0.955 0.965 0.962
ecoli1 0.845 0.819 0.815 0.795 0.799 0.803 0.848 0.840
new-thyroid1 0.960 0.940 0.960 0.960 0.963 0.963 0.960 0.960
new-thyroid2 0.963 0.976 0.961 0.963 0.963 0.963 0.961 0.961
ecoli2 0.924 0.839 0.903 0.851 0.851 0.867 0.915 0.915
glass6 0.976 0.926 0.929 0.984 0.959 0.949 0.982 0.984
yeast3 0.885 0.778 0.819 0.814 0.821 0.815 0.871 0.883
ecoli3 0.856 0.748 0.773 0.739 0.679 0.763 0.847 0.859
page-blocks0 0.927 0.846 0.865 0.844 0.824 0.865 0.929 0.921
yeast-2 vs 4 0.897 0.821 0.873 0.864 0.865 0.894 0.739 0.803
yeast-0-5-6-7-9 vs 4 0.839 0.715 0.731 0.775 0.767 0.726 0.822 0.833
vowel0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
glass-0-1-6 vs 2 0.713 0.636 0.661 0.671 0.730 0.750 0.465 0.535
glass2 0.692 0.643 0.718 0.701 0.724 0.696 0.642 0.625
yeast-1 vs 7 0.944 0.631 0.589 0.623 0.577 0.601 0.932 0.904
glass4 0.945 0.784 0.875 0.898 0.875 0.898 0.942 0.918
ecoli4 0.902 0.795 0.848 0.862 0.838 0.848 0.877 0.877
page-blocks-1-3 vs 4 0.997 0.908 0.937 0.948 0.959 0.927 0.986 0.986
abalone9-18 0.837 0.658 0.650 0.672 0.685 0.676 0.942 0.933
yeast-1-4-5-8 vs 7 0.479 0.571 0.548 0.561 0.566 0.581 0.479 0.479
glass5 0.995 0.852 0.961 0.869 0.842 0.971 0.687 0.687
yeast-2 vs 8 0.883 0.674 0.656 0.688 0.629 0.736 0.883 0.883
car eval 4 1.000 0.954 0.990 0.981 0.990 0.990 1.000 1.000
wine quality 0.809 0.658 0.673 0.650 0.674 0.684 0.767 0.719
yeast me2 0.788 0.609 0.662 0.661 0.657 0.620 0.922 0.887
yeast4 0.859 0.614 0.604 0.637 0.613 0.632 0.815 0.888
yeast-1-2-8-9 vs 7 0.989 0.580 0.564 0.602 0.577 0.592 0.988 0.988
yeast5 0.835 0.748 0.833 0.840 0.835 0.816 0.859 0.836
yeast6 0.827 0.645 0.616 0.740 0.658 0.691 0.831 0.810
abalone19 0.497 0.510 0.513 0.506 0.506 0.517 0.497 0.497
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Table 3.7: Recall results over 41 datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN ROS SVMCS EE

glass1 0.738 0.693 0.705 0.719 0.702 0.698 0.718 0.697
wisconsin 0.969 0.978 0.969 0.967 0.969 0.970 0.966 0.964
pima 0.746 0.740 0.720 0.734 0.744 0.735 0.734 0.742
glass0 0.818 0.799 0.807 0.809 0.789 0.792 0.807 0.821
yeast1 0.702 0.702 0.713 0.713 0.702 0.706 0.683 0.685
haberman 0.559 0.622 0.621 0.623 0.638 0.590 0.565 0.578
vehicle1 0.759 0.802 0.803 0.798 0.806 0.792 0.738 0.755
vehicle2 0.978 0.951 0.926 0.967 0.979 0.968 0.972 0.975
vehicle3 0.751 0.785 0.749 0.768 0.742 0.762 0.732 0.750
creditcard 0.947 0.940 0.942 0.938 0.936 0.935 0.933 0.936
glass-0-1-2-3 vs 4-5-6 0.924 0.951 0.929 0.927 0.935 0.925 0.909 0.919
vehicle0 0.954 0.972 0.957 0.973 0.970 0.980 0.979 0.959
ecoli1 0.828 0.837 0.857 0.849 0.841 0.837 0.851 0.838
new-thyroid1 0.953 0.972 0.953 0.953 0.963 0.963 0.953 0.953
new-thyroid2 0.920 0.981 0.910 0.920 0.920 0.920 0.910 0.910
ecoli2 0.893 0.891 0.902 0.883 0.882 0.897 0.885 0.885
glass6 0.888 0.854 0.819 0.843 0.841 0.821 0.823 0.840
yeast3 0.871 0.897 0.895 0.881 0.869 0.896 0.869 0.871
ecoli3 0.841 0.886 0.886 0.867 0.797 0.875 0.822 0.824
page-blocks0 0.888 0.948 0.932 0.951 0.945 0.952 0.856 0.894
yeast-2 vs 4 0.867 0.868 0.865 0.856 0.858 0.865 0.868 0.805
yeast-0-5-6-7-9 vs 4 0.770 0.827 0.706 0.832 0.763 0.759 0.728 0.740
vowel0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
glass-0-1-6 vs 2 0.625 0.807 0.725 0.727 0.760 0.709 0.500 0.545
glass2 0.602 0.797 0.853 0.833 0.875 0.803 0.607 0.607
yeast-1 vs 7 0.678 0.744 0.654 0.656 0.647 0.626 0.662 0.628
glass4 0.873 0.921 0.848 0.830 0.848 0.830 0.786 0.832
ecoli4 0.904 0.936 0.900 0.901 0.899 0.900 0.902 0.902
page-blocks-1-3 vs 4 0.952 0.993 0.996 0.996 0.997 0.995 0.999 0.999
abalone9-18 0.631 0.819 0.846 0.814 0.835 0.842 0.693 0.716
yeast-1-4-5-8 vs 7 0.500 0.689 0.600 0.615 0.688 0.697 0.500 0.500
glass5 0.875 0.988 0.865 0.848 0.813 0.898 0.650 0.648
yeast-2 vs 8 0.797 0.778 0.802 0.767 0.783 0.790 0.797 0.797
car eval 4 1.000 0.998 1.000 0.999 1.000 1.000 1.000 0.994
wine quality 0.689 0.704 0.657 0.672 0.647 0.672 0.602 0.608
yeast me2 0.627 0.811 0.763 0.714 0.719 0.706 0.610 0.609
yeast4 0.663 0.795 0.705 0.735 0.734 0.732 0.667 0.643
yeast-1-2-8-9 vs 7 0.620 0.710 0.652 0.629 0.667 0.630 0.589 0.580
yeast5 0.862 0.972 0.959 0.951 0.963 0.965 0.819 0.836
yeast6 0.735 0.894 0.777 0.812 0.854 0.805 0.706 0.730
abalone19 0.500 0.525 0.574 0.546 0.581 0.552 0.500 0.500
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Figure 3.5: Winning times over 41 datasets.

3.7.3.2 Statistical Test

To further evaluate the effectiveness of the technique, we also performed a Wilcoxon

Signed Rank Test [20] on the 41 dataset results (F1 score and AUC). Wilcoxon hypothesis

test is relevant to our study as it is a non-parametric statistical test and does not require

a specific distribution assumption for the results. On the other hand, 41 data points (cor-

responding to 41 datasets results) are sufficient to support this test. Our null hypothesis is

that the difference between the proposed technique results and those of the other technique

is insignificant. Wilcoxon signed-rank test outputs are computed over the 41 dataset results

and return a p-value for each technique pair. We then compare the p-value with the sig-

nificant value α = 0.05. Suppose the p-value is smaller than α. In that case, the evidence

is sufficient to reject the hypothesis, which means the proposed technique does make a sig-

nificant difference from the others, and vice versa. Table 3.8 shows the Wilcoxon p-value

results.
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Table 3.8: Wilcoxon signed rank hypothesis test results.

p-value

SIMPOR vs. F1-score AUC

GDO 4.96E-03 4.99E-05
SMOTE 2.32E-02 1.27E-04
BL SMOTE 2.90E-02 3.06E-06
ADASYN 3.30E-02 1.35E-05
ROS 1.39E-02 5.58E-05
SVMCS 1.44E-03 5.80E-05
EE 2.82E-03 3.33E-04

As we can see from Table 3.8, the p-values are all smaller than the critical value of

0.05. Thus, the null hypothesis can be rejected as the supporting evidence is sufficient. In

other words, the statistical result shows that the proposed technique makes a significant

improvement compared to others.

3.7.3.3 Data Visualization

To explore more on how the techniques perform, we visualize the generated data by

projecting them onto lower dimension space (i.e., one and two dimensions) using the Principle

Component Analysis technique (PCA) [31]. Data’s 2-Dimension (2D) plots and 1-Dimension

histograms are presented along with a hard-to-differentiate ratio (HDR) for each technique.

A hard-to-differentiate ratio is defined as the ratio of intersection between 2 classes in the 1D

histogram to the total of minority samples (HDR = No. Intersection samples
No.Minority samples

). This ratio is expected

to be as small as 0% if the two classes are well separated; in contrast, 100% indicates that the

two classes are unable to be distinguished in the projected 1D space. Other than HDR, we

show the absolute numbers of Minority, Majority, and Intersection samples for each technique

in the bottom tables. From the plots, we observe how the data are distributed in 2D space

and quantify samples that are hard to be differentiated in the 1D space histograms.

57



Minority Majority Inter. HDR
515 515 92 8.93%

(a) SIMPOR.

Minority Majority Inter. HDR
516 515 299 29.00%

(b) GDO.

Minority Majority Inter. HDR
520 520 288 27.69%

(c) SMOTE.

Minority Majority Inter. HDR
517 517 254 24.56%

(d) BorderlineSMOTE.

Minority Majority Inter. HDR
516 517 307 29.72%

(e) ADASYN.

Minority Majority Inter. HDR
515 515 272 26.41%

(f) ROS.

Figure 3.6: Abalone9-18: Generated training data projected onto 2-dimension space and
their histograms in 1-Dimension space using Principle Component Analysis dimension
reduction technique. The bottom tables illustrate the number of samples in two classes,
1-Dimension histogram intersection between 2 classes, and the hard-to-differentiate ratio

between the number of intersectional samples to the number of minority samples
(HDR = Inter .

Minority
100%).

58



To save space, we only show the plot of one dataset (i.e., Abalone9-18 dataset) in Figure

3.6. Many other datasets are observed to have similar patterns. We observe that the proposed

technique does not poorly generate synthetic samples as many as other techniques do. HDR

results show that SIMPOR achieves the least number of hard-to-differentiate ratio at 8.93%.

As shown in the 2D visualization sub-figures, other techniques poorly place synthetic data

crossed the other class. This causes by outliers or noises near the border between the two

classes that other techniques do not pay attention to and mistakenly create more noise. In

contrast, SIMPOR safely produces synthetic data towards the minority class by maximizing

the posterior ratio; thus, it can reduce the number of poorly-placed samples.

3.7.3.4 Processing Time

To explore more on how the techniques perform, we record the data processing time of

resampling-based methods over 41 datasets. We don’t compare to the other approaches,

i.e., cost-sensitive learning and ensemble learning, because they only need negligible data

processing time as they focus on classifiers other than improving the data. The processing

time was recorded from our machine, which uses an Intel i7 32-thread processor and two

NVIDIA 3090 Ti GPUs. Table 3.9 shows the recorded processing time over 41 datasets.

Overall, our technique takes longer than other techniques as we have to compute the kernel

estimation for each data point as mentioned in Section 3.6. From the table, GDO is the

second slower technique, and ROS is the fastest one among compared ones. In other words,

the proposed technique is slower, but it provides better F1 and AUC scores than others.

3.7.4 Empirical Study on the Impact of Radius Factor r

In this section, we study how the classification performance is impacted by different

generation radius factor r in Equation 3.14. The classification performance is measured

under different distribution settings of the radius r as it controls how far synthetic data are

generated from its original minority sample. We use different parameters for the Gaussian
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Table 3.9: Processing time over 41 datasets.

SIMPOR GDO SMOTE BL-SMOTE ADASYN ROS

glass1 0.1147 0.0576 0.0020 0.0033 0.0032 0.0007
wisconsin 2.0805 0.1769 0.0024 0.0044 0.0046 0.0007
pima 0.2032 0.2066 0.0025 0.0049 0.0050 0.0006
glass0 0.2157 0.0553 0.0023 0.0035 0.0036 0.0009
yeast1 0.2457 0.4749 0.0035 0.0108 0.0104 0.0008
haberman 0.0517 0.1560 0.0022 0.0033 0.0036 0.0008
vehicle1 0.4365 0.1237 0.0025 0.0059 0.0059 0.0007
vehicle2 6.2913 0.1512 0.0029 0.0053 0.0061 0.0010
vehicle3 0.2821 0.1237 0.0024 0.0060 0.0061 0.0007
creditcard 2.1200 0.3783 0.0087 0.0184 0.0182 0.0017
glass-0-1-2-3 vs 4-5-6 0.3376 0.0459 0.0023 0.0035 0.0035 0.0008
vehicle0 7.3645 0.1198 0.0024 0.0054 0.0058 0.0007
ecoli1 0.0418 0.0337 0.0010 0.0018 0.0017 0.0004
new-thyroid1 0.5352 0.0304 0.0015 0.0024 0.0024 0.0006
new-thyroid2 0.3881 0.0359 0.0025 0.0033 0.0031 0.0009
ecoli2 0.2516 0.0266 0.0011 0.0017 0.0016 0.0004
glass6 0.3196 0.0268 0.0014 0.0025 0.0023 0.0006
yeast3 0.1374 0.2422 0.0023 0.0060 0.0059 0.0009
ecoli3 0.0658 0.0378 0.0015 0.0025 0.0024 0.0006
page-blocks0 7.9654 2.0918 0.0045 0.0143 0.0138 0.0015
yeast-2 vs 4 2.4310 0.0624 0.0017 0.0028 0.0028 0.0007
yeast-0-5-6-7-9 vs 4 0.0868 0.0632 0.0016 0.0029 0.0027 0.0007
vowel0 4.7675 0.1312 0.0018 0.0039 0.0037 0.0008
glass-0-1-6 vs 2 0.0482 0.0207 0.0013 0.0023 0.0022 0.0006
glass2 0.0501 0.0227 0.0013 0.0024 0.0024 0.0006
yeast-1 vs 7 0.4697 0.0420 0.0017 0.0026 0.0026 0.0007
glass4 0.1141 0.0197 0.0012 0.0024 0.0023 0.0006
ecoli4 0.1087 0.0310 0.0015 0.0024 0.0024 0.0006
page-blocks-1-3 vs 4 1.8742 0.0445 0.0015 0.0027 0.0026 0.0007
abalone9-18 2.9722 0.0716 0.0015 0.0028 0.0026 0.0006
yeast-1-4-5-8 vs 7 0.0881 0.0673 0.0017 0.0031 0.0028 0.0006
glass5 0.2815 0.0241 0.0017 0.0033 0.0036 0.0008
yeast-2 vs 8 0.1239 0.0441 0.0016 0.0027 0.0028 0.0007
car eval 4 0.4381 0.1746 0.0026 0.0066 0.0049 0.0012
wine quality 0.1622 0.8587 0.0030 0.0144 0.0137 0.0015
yeast me2 0.1060 0.1379 0.0018 0.0042 0.0039 0.0008
yeast4 0.1083 0.1386 0.0018 0.0041 0.0039 0.0008
yeast-1-2-8-9 vs 7 0.0924 0.0757 0.0017 0.0031 0.0030 0.0008
yeast5 0.1188 0.1312 0.0019 0.0037 0.0040 0.0008
yeast6 0.0613 0.1419 0.0018 0.0037 0.0036 0.0008
abalone19 0.0890 0.3161 0.0022 0.0053 0.0054 0.0012
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distribution N (µ, (αR)2). Particularly, we fix the mean value to zero and change α from 0.2

to 1 with steps of 0.2 so that the Gaussian standard deviation αR will range from 0.2R to R.

To save space, we arbitrarily select 5 datasets to conduct this experiment. The classification

results are shown in Figure 3.7.

The result figure shows that the classification performance is not very sensitive to the r

factor with the radius distribution standard deviation between 0.6R and R. While there are

only small changes within the α range from 0.6 to 1, the performance is increasing in the

range from 0.2 to 0.6 (i.e., ecoli1, abalone9-18,yeast4). These observations suggest us to use

α from 0.6 to 1 for the selected datasets.

Figure 3.7: F1-score and AUC results with varying Gaussian standard deviation.

3.7.5 Empirical Study on the Impact of Informative Portion

This section studies the empirical impact of the informative portion (IP) in Section 3.2.3.

This portion works as a threshold to adjust how many samples are taken into consideration

of informative samples. To save space, we study five datasets used in Section 3.7.4. Different

values of IP ranging from 0.1 to 1 are applied, and the classification performance results are

shown in Figure 3.8.
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As we observe from the figure, while the performance is not significantly affected to

datasets achieved high performance (new-thyroid1, ecoli1), there are obvious peaks within

the IP values of (0.2, 0.6) in both F1-score and AUC score for other datasets (abalone9-18,

glass0, yeast4). This suggests that tuning IP for each dataset between a range of (0.2, 0.6)

could achieve higher performance. For example, by adjusting IP from 0.1 to 0.3 in ablalone9-

18 dataset experiment, we can increase the performance by 5% for both F1-score and AUC

score.

Figure 3.8: F1-score and AUC results with varying informative portion IP.

3.8 Conclusion

We propose a data balancing technique by generating synthetic data for minority samples

maximizing the posterior ratio to embrace the chance they fall into the minority class and

do not fall across the expected decision boundary. While maximizing the posterior ratio,

we use kernel density estimation to estimate the likelihood so that it is able to work with

complex distribution data without requiring data distribution assumptions. In addition, our

technique leverage entropy-based active learning to find and balance the most informative

samples. This is important to improve model performance as shown in our experiments on

62



41 real-world datasets. For future work, we would like to investigate the class imbalance for

image data type and enhance our technique to adapt to image datasets.
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Chapter 4: AutoGAN-Based Dimension Reduction for Privacy Preservation 1

4.1 Introduction

Machine Learning (ML) is an important aspect of modern applications that rely on big

data analytics (e.g., an on-line system collecting data from multiple data owners). However,

these applications are progressively raising many different privacy issues as they collect

different types of data on a daily basis. For example, many types of data are being collected

in smart cities such as patient records, salary information, biological characteristics, Internet

access history, personal images and so on. These types of data then can be widely used in

daily recommendation systems, business data analysis, or disease prediction systems which

in turn affect the privacy of individuals who contributed their sensitive data. Considering

a multi-level access control system of a company using biometric recognition (e.g., face

recognition, fingerprint) for granting permission to access data resources, the company staff

members may concern their biological information being vulnerable to adversaries. Even

though the utility of these biometric features can be effectively used in machine learning

tasks for authentication purpose, leaking this information might lead to privacy breaches.

For example, an adversary could utilize them to determine the members’ identities.

Several tools and methods have been developed to preserve the privacy in machine

learning applications, such as homomorphic encryption [11, 26, 42], secure multi-party

computing [100, 83], differential privacy (DP) [12, 103, 74, 6, 94], compressive privacy

[108, 18, 17, 106, 52, 53, 95] and so on. Typically, differential privacy-based methods aim at

preventing leaking individual information caused by queries. However, they are not designed

to serve large number of queries since they require adding huge amount of noise to preserve

1This chapter was published in Journal of Neurocomputing. Permission is included in Appendix A.
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privacy, thus significantly decreasing the ability to learn meaningful information from data.

On the other hand, homomorphic encryption-based methods can be used to privately eval-

uate a function over encrypted data by a third party without accessing to plain-text data,

hence the privacy of data owners can be protected. However, due to the high computational

cost and time consumption, they may not work with a very large dataset, normally required

in ML applications.

In this study, we consider an access control system collecting dimension-reduced face im-

ages of staff members to perform authentication task and to provide permission for members

who would like to access company’s data resources (Figure 4.1). We propose a non-linear

dimension reduction framework to decrease data dimension for the authentication purpose

mentioned above and to protect against an adversary from reconstructing member images.

Firstly, we introduce ϵ-DR Privacy as a theoretical tool for dimension reduction privacy

evaluation. It evaluates the reconstruction distance between original data and reconstructed

data of a dimension reduction (DR) mechanism. This approach encourages a DR mechanism

to enlarge the distance as high distance yields high level of privacy. While other methods

such as differential privacy-based methods rely on inference uncertainty to protect sensitive

data, ϵ-DR Privacy is built on reconstruction error to evaluate privacy. Therefore, unlike

differential privacy methods, ϵ-DR Privacy is not negatively impacted by the number of

queries. Secondly, as detailed in Section 4.3, we recommend a privacy-preserving framework

Autoencoder Generative Adversarial Nets-based Dimension Reduction Privacy (AutoGAN-

DRP) for enhancing data owner privacy and preserving data utility. The utility herein is

evaluated via machine learning task performance (e.g., classification accuracy).

Our dimension reduction (DR) framework can be applied to different types of data and

used in several practical applications without heavy computation of encryption and impact

of query number. The proposed framework can be applied directly to the access control

system mentioned above. More elaboratively, face images are locally collected, nonlinearly

compressed to achieve DR, and sent to the authentication center. The server then performs
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classification tasks on the dimension-reduced data. We assume the authentication server is

semi-honest, that is to say it does not deviate from authenticating protocols while being

curious about a specific member’s identity. Our DR framework is designed to resist against

reconstruction attacks from a strong adversary who obtains the training dataset and the

transformation model.

During the stage of experiments, we implemented our framework to evaluate dimension-

reduced data in terms of accuracy of the classification tasks, and we attempted to reconstruct

original images to examine the capacity of adversaries. We performed several experiments on

three facial image datasets in both gray-scale and color, i.e., the Extended Yale Face Database

B [33], AT&T [80], and CelebFaces Attributes Dataset (CelebA) [66]. The experiment results

illustrate that with only seven reduced dimensions our method can achieve accuracies of 93%,

90%, and 80% for AT&T, YaleB, and CelebA respectively. Further, our experiments show

that at the accuracies of 79%, 80% and 73% respectively, the reconstructed images could

not be recognized by human eyes. In addition, the comparisons shown in Section 4.6 also

illustrate that AutoGAN-DRP is more resilient to reconstruction attacks compared to related

works. Our work has two main contributions:

1. To analytically support privacy guarantee, we introduce ϵ-DR Privacy as a theoretical

approach to evaluate privacy preserving mechanism.

2. We propose a non-linear dimension reduction framework for privacy preservation mo-

tivated by Generative Adversarial Nets [36] and Auto-encoder Nets [9].

The rest of this chapter is organized as follows. Section 4.2 summarizes state-of-the-art

privacy preservation machine learning (PPML) techniques and reviews knowledge of deep

learning methods including generative adversarial neural nets and Auto-encoder. Section

4.3 describes the privacy problem through a scenario of a facial recognition access control

system, introduces the definition of ϵ-DR Privacy to evaluate DR-based privacy preserving

mechanisms, and presents our framework AutoGAN-based Dimension Reduction for Privacy
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Preservation. Section 4.4 presents and discusses our experiment results over three different

face image datasets. Section 4.5 compares AutoGAN-DRP to a similar work GAP in terms

of reconstruction error and classification accuracy. Section 4.6 demonstrates reconstructed

images over AutoGAN-DRP and other privacy preservation techniques (i.e., Differential

Privacy and Principle Component Analysis). Finally, the conclusion and future work are

mentioned in Section 4.7.

4.2 Related Work

4.2.1 Literature Review

Machine learning privacy preservation methods are categorized into two main approaches.

Cryptographic approach applies to the scenarios where the data owners do not wish to expose

their plain-text sensitive data while asking for machine learning services from a third-party.

The most common tool used in this approach is fully homomorphic encryption that supports

multiplication and addition operations over encrypted data, which enabling the ability to

perform a more complex function. However, the high cost of the multiplicative homomorphic

operations renders it difficult to be applied on machine learning tasks. In order to avoid

multiplicative homomorphic operations, additive homomorphic encryption schemes are more

widely used in privacy preserving machine learning (PPML). However, the limitation of the

computational capacity in additive homomorphic schemes narrows the ability to apply on

particular ML techniques. Thus, such additive homomorphic encryption-based methods in

[11, 26, 10, 43] are only applicable to simple machine learning algorithms such as decision tree

and naive bayes. In Hesamifard’s work [42],the fully homomorphic encryption is applied to

perform deep neural networks over encrypted data, where the non-linear activation functions

are approximated by polynomials.

In secure multi-party computing (SMC), multiple parties collaborate to compute func-

tions without revealing plain-text to other parties. A widely-used tool in SMC is garbled

circuit [100], a cryptographic protocol carefully designed for two-party computation, in which
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they can jointly evaluate a function over their sensitive data without the trust of each other.

In [8], Mohammad introduced a SMC protocol for principal component analysis (PCA)

which is a hybrid system utilizing additive homomorphic and garbled circuit. In secret shar-

ing techniques [83], a secret s is distributed over multiple pieces n also called shares, where

the secret can only be recovered by a sufficient amount of t shares. A good review of se-

cret sharing-based techniques and encryption-based techniques for PPML is given in [73].

Although these encryption-based techniques can protect the privacy in particular scenarios,

their computational cost is a significant concern. Furthermore, as [73] elaborated, the high

communication cost also poses a big concern for both techniques.

The other category is Non-Cryptographic approach. For example, Differential Privacy

(DP) [25] aims to prevent membership inference attacks. DP considers a scenario that an ad-

versary infers a member’s information based on the difference of outputs of a ML mechanism

before and after the member join a database. The database with the member’s information

and without the member’s information can be considered as two neighbor databases which

differ by at most one element. DP adds noise to the outputs of the ML mechanism to result

in similar outputs from the two neighbor databases. Thus, adversaries cannot differentiate

the difference between the two databases. A mechanism M satisfies ϵ-differential privacy if

for any two neighbor databases D and D ′, and any subset S of the output space of M satis-

fies Pr [M(D) ∈ S ] ≤ eϵPr [M(D ′) ∈ S ]. The similarity of query outputs protects a member

information from such membership inference attacks. The similarity is guaranteed by the

parameter ϵ in a mechanism in which the smaller ϵ provides a better level of privacy preser-

vation. [12, 103, 13, 93, 99] propose methods to guarantee ϵ-differential privacy by adding

noise to outcome of the weights w ∗ = w + η, where η drawn from Laplacian distribution

and adding noise to the objective function of logistic regression or linear regression models.

[74, 6] satisfy differential privacy by adding noise to the objective function while training a

deep neural network using stochastic gradient descent as the optimization algorithm.
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In addition, there are existing works proposing differential privacy dimension reduction.

One can guarantee ϵ-differential privacy by perturbing dimension reduction outcome. Prin-

cipal component analysis (PCA) whose output is a set of eigenvectors is a popular method

in dimension reduction. The original data is then represented by its projection on those

eigenvectors, which keeps the largest variance of the data. One can reduce the data dimen-

sion by eliminating insignificant eigenvectors which contain less variance, and apply noise

on the outcome to achieve differential privacy[94]. However, the downside of these methods

is that they are designed for specific mechanisms and datasets and not working well with

the others. For example, record-level differential privacy is not effectively used with image

dataset as shown in [44]. Also, the amount of added noise is accumulative based on the

number of queries so that this approach usually leads to low accuracy results with a high

number of queries.

Similar to our work, Generative Adversarial Privacy (GAP) [18] is a perturbation method

utilizing the minimax algorithm of Generative Adversarial Nets to preserve privacy and to

keep utility of image datasets. GAP perturbs data within a specific l2 distance constraint

between original and perturbed data to distort private class labels and at the same time

preserve non-private class labels. However, it does not protect the images themselves, and

an adversary can visually infer private label (e.g., identity) from images. In contrast, our

method protects an image by compressing it into a few dimension vector and then transferring

without clearly exposing the original image.

4.2.2 Preliminaries

To enhance the distance between original and reconstructed data in our DR system, we

utilize the structure of Generative Adversarial Network (GAN) [36] for data perturbation

and deep Auto-encoder [9] for data reconstruction. The following sections briefly review

Auto-encoder and GAN.
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4.2.2.1 Auto-encoder

Auto-encoder is aimed at learning lower dimension representations of unsupervised data.

Auto-encoder can be used for denoising and reducing data dimension. It can be implemented

by two neural network components: encoder and decoder. The encoder and decoder perform

reverse operations. The input of the encoder is the original data while the output of the

decoder is expected to be similar to the input data. The middle layer extracts latent represen-

tation of original data that could be used for dimension reduction. An Auto-encoder training

process can be described as a minimization problem of the auto-encoder’s loss function L(·):

L(x , g(f (x))) (4.1)

where x is input data, f(·) is an encoding function, and g(·) is a decoding function.

4.2.2.2 GAN

Generative Adversarial Nets is aimed at approximating distribution pd of a dataset via

a generative model. GAN simultaneously trains two components generator G and discrim-

inator D, and the input of G is sampled from a prior distribution pz(z) through which G

generates fake samples similar to the real samples. At the same time, D is trained to dif-

ferentiate between fake samples and real samples, and send feedback to G for improvement.

GAN can be formed as a two-player minimax game with value function V(G,D):

min
G

max
D

V (G ,D) =Ex∼pd [log(D(x))]+

Ez∼pz [log(1− D(G (z)))]

(4.2)

The two components, Generator and Discriminator can be built from neural networks

(e.g., fully connected neural network, convolutional neural network). The goal of G is to

reduce the accuracy of D. Meanwhile, the goal of D is to differentiate fake samples from
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real samples. These two components are trained until the discriminator cannot distinguish

between generated samples and real samples.

4.3 Methodology

In this section, we first describe the problem and threat model, then we introduce a

definition of DR-Privacy and our dimensionality reduction method (AutoGAN-DRP).

Member 1

Member n

Web Server 1

Web Server 2

Web Server 3

Database 1

Database 2

Member 1
Authenticating Requests

{Facial Features}Member n
Authenticating Requests

{Facial Features}

Authentication 
Center

Adversary

Member 1 Access

Member n Access

Face Reconstruction

Figure 4.1: Attack model.
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4.3.1 Problem Statement

We introduce the problem through the practical scenario mentioned in Section 4.1. Figure

4.1 briefly describes the entire system in which staff members (clients) in a company request

access to company resources, such as websites and data servers through a face recognition

access control system. For example, if member n requests to access web server 2, the local

device first takes a facial photo of the member by an attached camera, locally transforms

it into lower dimension data, and sends to an authentication center. The authentication

server then obtains the low dimensional data and determines member access eligibility by

using a classifier without clear face images of the requesting member. We consider that the

system has three levels of privileges (i.e., single level, four-level, eight-level) corresponding to

three groups of members. We assume the authentication server is semi-honest (it obeys work

procedure but might be used to infer personal information). If the server is compromised, an

adversary in the authentication center can reconstruct the face features to achieve plain-text

face images and determine members’ identity.

4.3.2 Threat Model

In the above scenario, we consider that a strong adversary who has access to the model

and training dataset attempts to reconstruct the original face images for inferring a specific

member’s identity. Our attack model can be represented in Figure 4.1. The adversary

utilizes training data and facial features to identify a member identity by reconstructing

the original face images using a reconstructor in an auto-encoder. Rather than using fully

connected neural network, we implement the auto-encoder by convolutional neural network

which more effective for image datasets. Our goal is to design a data dimension reduction

method for reducing data dimension and resisting full reconstruction of original data.
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4.3.3 ϵ-Dimension Reduction Privacy (ϵ-DR Privacy)

Input Space Output Space

𝑥

𝑥′𝑅(𝑥′)

𝐹(𝑥)

𝑑𝑖𝑠𝑡 𝑥, ො𝑥

ො𝑥

Figure 4.2: DR projection and reconstruction.

We introduce the Dimension Reduction Privacy (DR-Privacy), and define a formal defi-

nition of the ϵ-DR Privacy to mathematically quantify/evaluate the mechanisms designed to

preserve the DR-Privacy via dimension reduction. The DR-Privacy aims to achieve privacy-

preserving via dimension reduction, which refers to transforming the data into a lower di-

mensional subspace, such that the private information is concealed while the underlying

probabilistic characteristics are preserved, which can be utilized for machine learning pur-

poses. To quantify the DR-Privacy and guide us to design such DR functions, we define

ϵ-DR Privacy as follows.

Definition 1: (ϵ-DR Privacy) A Dimension Reduction Function F (·) satisfies ϵ-DR

Privacy if for each i.i.d. m-dimension input sample x drawn from the same distribution D,

and for a certain distance measure dist(·), we have

E[dist(x , x̂)] ≥ ϵ (4.3)

where E[·] is the expectation, ϵ ≥ 0, x ′ = F (x), x̂ = R(x ′), and R(·) is the Reconstruction

Function.
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Figure 4.3: AutoGAN-DRP

For instance, as shown in Fig. 4.2, given original data x , our framework utilizes certain

dimension reduction function F (x) to transform the original data x into the transformed

data x ′. The adversaries aim to design a corresponding reconstruction function R(x ′) such

that the reconstructed data x̂ would be closed/similar to the original data x . DR-Privacy

aims to design/develop such dimension reduction functions, that the distance between the

original data and its reconstructed data would be large enough to protect the privacy of the

data owner.

4.3.4 AutoGAN Dimension Reduction for Privacy Preserving

We propose a deep learning framework for transforming face images to low dimensional

data which is hard to be fully reconstructed. The framework can be presented in Figure 4.3.

We leverage the structure of an auto-encoder [9] which contains encoder and decoder (in

this work, we called them generator and re-constructor) in order to reduce data dimension.

More specifically, the low dimensional representations are extracted from the middle layer
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of the auto-encoder (the output of the generator). The dimension-reduced data can be sent

to the authentication server as an authentication request. We consider an adversary as a

re-constructor implemented by a decoder. To resist against fully reconstructing images, the

framework utilizes a discriminator in GAN [36] to direct reconstructed data to a designated

target distribution with an assumption that the target distribution is different from our data

distribution. In this work, the target distribution is sampled from Gaussian distribution

and the mean is the average of training data. After projecting data into a lower dimension

domain, the re-constructor is only able to partially reconstruct the data. Therefore, the ad-

versary might not be able to recognize an individual’s identity. To maintain data utility, we

also use feedback from a classifier. The entire framework is designed to enlarge the distance

between original data and its reconstruction to preserve individual privacy and retain sig-

nificant data information. The dimension-reduced transformation model is extracted from

the framework and provided to clients for reducing their face image dimensions. The clas-

sification model will be used in an authentication center that classifies whether a member’s

request is valid to have access (1) or not (0).

We formulate the problem as follows: Let X be the public training dataset. (xi , yi) is the

ith sample in the dataset in which each sample xi has d features and a ground truth label yi .

The system is aimed at learning a dimension reduction transformation F (·) which transforms

the data from d dimensions to d ′ dimensions in which d ′ ≪ d . Let X ′ be the dataset in lower

dimension domain. The dimension-reduced data should keep significant information to work

with different types of machine learning tasks and should resist against the reconstruction

or inference from data owner information.

Our proposed framework is designed to learn a DR function F (·) that projects data onto

low dimension space and preserves privacy at certain value of ϵ. The larger distance implies

higher level of privacy. Figure 4.3 presents our learning system in which the dimension-

reduced data X ′ is given by a generator G . Since X ′ is expected to be accurately classified

by a classifier C , the generator improves by receiving feedback from the classifier via the
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classifier’s loss function LC . We use a binary classifier for single-level authentication system

and multi-class classifiers for multi-level authentication system. The classifier loss function is

defined as the cross entropy loss of the ground truth label y and predicted label ŷ as follows.

LC = −
n∑

i=1

m∑
j=1

yij log(ŷij) (4.4)

where m denotes the number of classes and n denotes the number of samples.

To evaluate data reconstruction and enlarge the reconstruction distance, a re-constructor

R is trained as a decoder in an auto-encoder and sends feedback to the generator via its

loss function LR . The re-constructor plays its role as an aggressive adversary attempting to

reconstruct original data by using known data. The loss function of R is the mean square

error of original training data (x) and reconstructed data (x̂), as displayed in (4.5) as follows

LR =
n∑

i=1

(xi − x̂i)
2 (4.5)

To direct the reconstructed data to a direction that reveals less visual information, the

generator is trained with a discriminator D as a minimax game in GAN. The motivation is

to direct reconstructed data to a certain target distribution (e.g., normal distribution). To

ensure a distance, the target distribution should be different to training data distribution.

The discriminator aims to differentiate the reconstructed data from samples of the target

distribution. The loss function of D (LD) can be defined as a cross-entropy loss of ground

truth labels (0 or 1) t and prediction labels t̂ shown in (4.6).

LD = −
n∑

i=1

(ti log(t̂i) + (1− ti) log(1− t̂i)) (4.6)
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The optimal generator parameter θ∗ is given by the optimization problem of the generator

loss function LG :

minimize
θ

LG (θ) = αmin
ϕ
LC − βmin

ω
LD − γmin

φ
LR + C(ϵ) (4.7)

where θ, ϕ, ω, and φ are the model parameters of the generator, classifier, discriminator,

and re-constructor respectively. α, β, and γ are weights of components in the objective

function of the generator and can be freely tuned. C(ϵ) is a constraint function with respect

to hyper-parameter ϵ, as to be elaborated in the following subsection.

4.3.5 Optimization with Constraint

In order to meet a certain level of reconstruction distance, we consider the constrained

problem:

minimize
θ

LG (θ)

s.t Ex∼pd [dist(x , x̂)] ≤ ϵ
(4.8)

The optimization problem above can be approximated as an unconstrained problem [48]:

minimize
θ

(LG (θ) + γC(ϵ)) (4.9)

where γ is a penalty parameter and C is a penalty function

C(ϵ) = max(0,Ex∼pd [dist(x , x̂)]− ϵ) (4.10)

Note that C is nonnegative, and C(θ) = 0 iff the constraint in (4.8) is satisfied.

4.3.6 Training Algorithms
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Algorithm 4.1 Algorithm for stochastic gradient descent training of ϵ -DR Privacy.

Input: Training dataset X .
Parameter: learning rate αr ,αd ,αc ,αg , training steps nr , nd , nc , ng
A constraint for ϵ-DR

Output: Transformation Model
Initialization.

1: for n global training iterations do
2: Randomly sample a mini batch from target distribution and label t.
3: Randomly sample mini batch of data x and corresponding label y
4: for i = 0 to nr iterations do
5: Update the Reconstruction:

φi+1 = φi − αr∇φLR(φi , x)
6: end for
7: for j = 0 to nd iterations do
8: Update the Discriminator parameter:

ωj+1 = ωj − αd∇ωLD(ωj , x, t)
9: end for
10: for k = 0 to nc iterations do
11: Update the Classifier parameter:

ϕk+1 = ϕk − αc∇ϕLC (ϕk , x, y)
12: end for
13: for l = 0 to ng iterations do
14: Update the Generator parameter:

θl+1 = θl − αg∇θLG (θl , x, t, y)
15: end for
16: end for
17: return

Algorithm 4.1 describes the training process of AutoGAN-DRP. The framework contains

four components, and they are trained one by one (lines 4-15) within one global training

step. After sampling batches from target distribution and data for inputs of the models (lines

2-3), we then train the four components. First, the re-constructor is trained in nr iterations

while other components’ parameters are fixed (lines 4-6). Second, the discriminator is trained

(lines 7-9). Third, the classifier is trained in nc iterations (lines 10-12). Fourth, the generator

is trained in ng iterations (lines 13-15). After training each component in their number of

local training steps, the above training process is repeated until it reaches the number of
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global training iterations (lines 1-16). In our setting, the numbers of local training iterations

(nc , nr , nd , ng ) are much smaller than the number of global iterations n.

4.4 Experiments and Discussion
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Figure 4.4: Accuracy for different number of reduced dimensions.
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Figure 4.5: Average distance measurement result.
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Table 4.1: Implementation information
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In this section, we demonstrate our experiments over three popular supervised face image

datasets: the Extended Yale Face Database B [33], AT&T [80], and CelebFaces Attributes

Dataset (CelebA) [66]. To comprehensively evaluate our method performance, we also con-

duct experiments with different generator and re-constructor structures, different types of

classifications (binary and multi-class classification), different numbers of reduced dimen-

sions. The effectiveness of the method is then evaluated in terms of utility and privacy.

4.4.1 Experiment Setup

The Extended Yale Face Database B (YaleB) contains 2,470 grayscale images of 38 human

subjects under different illumination conditions and their identity label. In this dataset, the

image size is 168×192 pixels. The AT&T dataset has 400 face images of 40 subjects. For

convenience, we resize each image of these two dataset to 64×64 pixels. CelebA is a color

facial image dataset containing 202,599 images of 10,177 subjects. 1,709 images of the first

80 subjects are used for our experiment. Each image is resized to 64×64×3 pixels. All pixel

values are scaled to the range of [0,1]. We randomly select 10% of each subject’s images for

validation and 15% for testing dataset.

The generator and re-constructor in Figure 4.3 are implemented by three different struc-

tures. Specifically, we follow the architecture of recent powerful models VGG19, VGG16

[87] and a basic convolutional network (CNN). We modify the models to adapt to our data

size (64×64). Discriminator and Classifier are built on fully connected neural network and

convolutional network respectively. Leaky ReLU is used for activation function in hidden

layers. We use linear activation function for generator’s output layers and softmax activa-

tion functions for other components’ output layers. Each component is trained in 5 local

iterations (nr , ng , nd , nc), and the entire system is trained in 500 global iterations (n). The

target distribution is drawn from Gaussian distribution (with the covariance value of 0.5 and

the mean is the average of the training data). Table 4.1 provides detail information of neural

networks’ structures and other implementation information.
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To evaluate the reliability, we test our framework with different levels of authentica-

tion corresponding to binary classification (single-level) and multi-class classification (multi-

level). For the single-level authentication system, we consider half of the subjects in the

dataset are valid to access company’s resources while the rest are invalid. We randomly di-

vide the dataset into two groups of subjects and labels their images to (1) or (0) depending

on their access permission. For the cases of multi-level authentication system, we divide the

subjects into four groups and eight groups. Therefore, the authentication server becomes

four-class and eight-class classifier respectively.

4.4.2 Utility

We use accuracy metric to evaluate the utility of dimension-reduced data. The testing

dataset is tested with the classifier extracted from our framework. Different structures of

Generator and re-constructor are applied including VGG19, VGG16, basic CNN on different

privilege levels which correspond to multi-class classification. Figure 4.4 illustrates the ac-

curacies for different dimensions from three to seven over the three facial datasets. Overall,

the accuracies improve when the number of dimension increases. The accuracies on the two

gray image datasets (AT&T and Yale B) reaches 90% and higher when using VGG with

only seven dimensions. This accuracy figure for Celeba is smaller, but it still reaches 80%.

In general, VGG19 structure performs better than using VGG16 and basic CNN in terms

of utility due to the complexity (table 4.1) and adaptability to image datasets of VGG19.

As the dimension number is reduced from 4,096 (64×64) to 7, we can achieve a compression

ratio of 585 yet achieve accuracy of 90% for the two gray datasets and 80% for the color

dataset. This implies our method could gain a high compression ratio and maintain a high

utility in terms of accuracy. During conducting experiments we also observe that the accu-

racy could be higher if we keep the original resolution of images. However, for convenience

and reducing the complexity of our structure, we resize images to the size of 64×64 pixels.
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4.4.3 Privacy

In this study, the Euclidean distance is used to measure the distance between original

and reconstructed images: dist(x , x̂) = ||x − x̂ ||2. Figure 4.5 illustrates the average distances

between original images and reconstructed images on testing data with different ϵ constraints

(other setting parameters: seven dimensions, single-level authentication, and VGG19 struc-

ture). The achieved distances (red lines) are larger than the hyper-parameter ϵ (black dotted

lines) where ϵ is less than 0.035 for AT&T, 0.052 for YaleB and 0.067 for CelebA. Thus, our

framework can satisfy ϵ-DR with ϵ of above values. Due to the fact that the re-constructor

obtained some information (we consider the adversary can reach the model and the training

data), we can only set the distance constraint ϵ within a certain range as shown in 4.5. The

intersection between the red line and the dotted black line points out the largest distance our

framework can achieve. Since the mean of the target distribution is set to be the same as the

mean of training dataset, reconstructed images will be close to the mean of training dataset

which we believe it will enlarge the distance and expose less individual information. Thus,

the range of epsilon can be estimated base on the expectation of the distance between testing

samples and the mean of training data. In addition, the first section of Table 4.2 demon-

strates some samples and their corresponding reconstructions in single-level authentication

and seven dimensions with different achieved accuracies and distances. The reconstructed

images could be nearly identical, thus making it visually difficult to recognize the identity

of an individual.

4.5 Comparison to GAP[18]

In this section, we compare the proposed framework with GAP, which shares many

similarities. At first, we attempt to visualize AutoGAN-DRP and GAP by highlighting their

similarities and differences. Then, we exhibit our experiment results of the two methods on

the same dataset.
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In terms of similarities, AutoGAN-DRP and GAP are utilizing minimax algorithms of

Generative Adversarial Nets, applying the state-of-the-art convolution neural nets for im-

age datasets, considering l2 norm distance (i.e., distortion in GAP, privacy measurement

in AutoGAN-DRP) between the original images and reconstructed images. Specifically,

both GAP and AutoGAN-DRP consider the reconstruction distance between original and

reconstructed images. In GAP this distortion refers to the Euclidean between original and

privatized images, and AutoGAN-DRP denotes the distance as the Euclidean distance be-

tween original and reconstructed images. In this context, the distance and distortion refer

to the same measurement and have the same meaning. To be consistent, we use the term

distance to present this measurement in the rest of this section.

However, there are also distinctions between GAP and AutoGAN-DRP. In GAP, the

adversary aims to identify a private label (e.g., gender) which should be kept secret while

AutoGAN-DRP aims to visually protect the owner’s face images by enlarging the reconstruc-

tion distance. Thus, instead of considering a private label in loss function of the generator in

GAP, AutoGAN-DRP is aimed at driving the reconstructed data into a target distribution

using a discriminator.

Figure 4.6 illustrates the visualization of AutoGAN-DRP and GAP. In AutoGAN-DRP,

privacy is assessed based on how well an adversary can reconstruct the original data and mea-

sured by the distance between original and reconstructed data. The dimension-reduced data

is reconstructed using the state-of-the-art neural network (an Auto-encoder). The larger the

distance is, the more privacy can be achieved. Further, if the reconstructed images are blurry,

privacy can be preserved since it is hard to visually determine an individual identity. The

data utility is quantified by the accuracy of the classification tasks over dimension-reduced

data which captures the most significant data information. Meanwhile, GAP perturbs im-

ages with a certain distortion constraint to achieve privacy. It evaluates data utility by the

classification accuracy of non-private label and assesses privacy by the classification accuracy

of private label. Similar to AutoGAN-DRP, the high distortion is most likely to yield high
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Figure 4.6: AutoGAN-DRP and GAP visualization.

level of privacy. In GAP, however, high distortion might dramatically reduce the classifica-

tion accuracy of non-private label. This might be caused by the high correlation between

private and non-private labels. This difference enables AutoGAN-DRP to preserve more

utility than GAP at the same distortion level, as the experiment result (depicted in Figure

4.7) reveals.
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Figure 4.7: GENKI Facial Expression Vs AutoGAN-DRP Distance.

In the experiment, we reproduce a prototype of Transposed Convolutional Neural Nets

Privatizer (TCNNP) in GAP using materials and source code provided by [18]. We also mod-

ify our framework to make it as similar to TCNNP as possible. Specifically, a combination

of two convolutional layers with ReLU activation function and two fully connected neural

network layers are used for implementing the Generator similar to TCNNP. Our Classifier is

constructed on two convolutional layers and two fully connected hidden layers similar to the

Adversary in GAP. We also test our framework on GENKI, the same dataset with GAP. The

utility is evaluated by the accuracy of facial expression classification (a binary classification).

It should be noted that our framework have been shown to work on different datasets with
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multi-class classification, which is more challenging and comprehensive. Figure 4.7 shows the

accuracy results of GAP and AutoGAN-DRP for GENKI dataset. AutoGAN-DRP achieves

distances ranging from 0.037 to 0.039 for different dimensions from one to seven. At the

same range of distance (distortion per pixel), GAP achieves accuracy of only 72% while

AutoGAN-DRP gains accuracy rates starting from 77% to 91% for different number of di-

mensions. It becomes evident that our method can achieve higher accuracy than that of

GAP at the same distortion level.

4.6 Visual Comparison to Privacy Preserving Techniques

In this section, we compare AutoGAN-DRP with other privacy preserving methods in

terms of ability to visually identify client’s identities. We choose the widely used tool for

privacy preserving Differential Privacy (DP) [25] and another privacy preservation method

utilizing dimensionality reduction technique (i.e., Principle Component Analysis [31] ).

In these experiments, we implement AutoGAN-DRP following VGG19 structure for the

Generator and Re-constructor, and other setting parameters (e.g., number of hidden layers,

learning rate, optimization) are shown in Table 4.1. The images are reduced to seven dimen-

sions for different values of ϵ-DR to achieve different distances and accuracies. The datasets

are grouped into two groups corresponding to a binary classifier.

For implementing DP, we first generate a classifier on the authentication server by training

the datasets with a VGG19 binary classifier (the structure of hidden layers is similar to our

Generator in Table 4.1). The testing images are then perturbed using differential privacy

method. Specifically, Laplace noise is added to the images with the sensitivity coefficient of

1 (it is computed by the maximum range value of each pixel [0,1]) and different DP epsilon

parameters (this DP epsilon is different from our ϵ-DR). The perturbed images are then sent

to the authentication server and fed to the classifier. We visually compare the perturbed

images of this method with AutoGAN.
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Table 4.2: Sample visualization of AutoGAN, DP, PCA over three datasets

AT&T YaleB CelebA
Acc 0.93 0.79 0.65 0.90 0.80 0.69 0.73 0.66 0.59
Dist 0.0116 0.0198 0.0245 0.0184 0.0246 0.0585 0.0513 0.0531 0.06618
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P

Org (7) (7) (7) Org (7) (7) (7) Org (7) (7) (7)
Acc 0.69 0.63 0.57 0.68 0.60 0.58 0.62 0.59 0.56
Dist 0.0164 0.0313 0.0405 0.0149 0.0314 0.0407 0.0200 0.0418 0.0509
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Org (11) (8) (7) Org (11) (8) (7) Org (11) (8) (7)
Acc 0.90 0.75 0.60 0.87 0.83 0.71 0.71 0.68 0.57
Dist 0.0197 0.0264 0.0348 0.0228 0.0266 0.0287 0.0362 0.0379 0.0511

P
C

A

Org (15) (7) (5) Org (15) (7) (5) Org (15) (7) (5)
Acc : Average accuracy on testing data
Dist: Average Euclidean distance between original images and reconstructed/perturbed images
Org : Original images
(.) Experiment parameters: epsilon for DP and number of reduced dimensions for PCA and AutoGAN-DRP

1
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In addition, we follow instruction in FRiPAL [108] in which the clients reduce image di-

mension using Principle Component Analysis (PCA) and send reduced features to the server.

FRiPAL claims that by reducing image dimension, their method can be more resilient to

reconstruction attacks. The experiments are conducted with different number of reduced

dimension. The images are reconstructed using Moore–Penrose inverse method with as-

sumption that an adversary has assess to the model. The classification accuracy is evaluated

using a classifier which has similar structure to AutoGAN’s classifier.

Table 4.2 shows image samples and results over the three datasets. Overall, AutoGAN-

DRP is more resilient to reconstruction attacks compared to the other two techniques. For

instance, at the accuracy of 79% on AT&T dataset, 80% on YaleB, and 73% on CelebA, we

cannot distinguish entities from the others. For DP method, the accuracy decreases when

the DP epsilon decreases (adding more noise), and the perturbed images become harder to

recognize. However, at a low accuracy 57%, we are still able to distinguish identities by

human eyes. The reason is that DP noise does not focus on the important visual pixels.

For PCA, the accuracy also goes down when the number of dimensions decreases and the

distances increase. Since PCA transformation is linear and deterministic, the original infor-

mation can be significantly reconstructed using the inverse transformation deriving from the

model or training data. Thus, at the accuracy of 75% on AT&T, 71% on YaleB, and 68%

on CelebA, we still can differentiate individuals. Overall, our proposed method shows the

advantage in securing the data while retaining high data utility.

4.7 Conclusion

In this work, we introduce a mathematical tool ϵ-DR to evaluate privacy preserving

mechanisms. We also propose a non-linear dimension reduction framework. This framework

projects data onto lower dimension domain in which it prevents reconstruction attacks and

preserves data utility. The dimension-reduced data can be used effectively for the machine

learning tasks such as classification. In our future works, we plan to extend the framework

89



to adapt with different types of data, such as time series and categorical data. We will apply

different metrics to compute the distance other than l2 norm and investigate the framework

on several applications in security systems and data collaborative contributed systems.
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