University of South Florida

DIGITAL COMMONS Digital Commons @ University of

@ UNIVERSITY OF SOUTH FLORIDA South Florida
USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations
3-3-2008

Development of an FPGA Based Autopilot Hardware Platform for
Research and Development of Autonomous Systems

Wendy Alvis
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

b Part of the American Studies Commons

Scholar Commons Citation

Alvis, Wendy, "Development of an FPGA Based Autopilot Hardware Platform for Research and
Development of Autonomous Systems" (2008). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/118

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/439?utm_source=digitalcommons.usf.edu%2Fetd%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Development of an FPGA Based Autopilot Hardware Platform for Research and

Development of Autonomous Systems

Wendy Alvis

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
Department of Electrical Engineering
College of Engineering
University of South Florida

Co-Major Professor: Wilfrido Moreno, Ph.D.
Co-Major Professor: Kimon Valavanis, Ph.D.
James T. Leffew, Ph.D.

Paris Wiley, Ph.D.

Richard Wallace, Ph.D.
MaryAnne Fields, Ph.D.

Date of Approval:
March 3, 2008

Keywords: Field Programmable Gate Array, unmanned systems, embedded systems,
analog design, UGV

© Copyright 2008, Wendy Alvis

DEDICATION

To God for giving me the strength to get through many sleepless nights, the
stubborn nature that kept me from ever giving up on my goals and the gift of surrounding
me with such wonderful friends and family who encouraged me along the way.

To the light of my life, my daughter Danielle, who so generously gave up time
with her mother in order for me to realize my dream. Her friendship and love is the
greatest gift in my life.

To my husband, my one and only true love and my sole-mate Jim, for putting his
goals on hold in order to support mine. I could not have completed this dream without
his patience, emotional support and financial sacrifices.

To my parents, Jacqueline and Harry Trietley, for always being there to support
and help me over the years.

To my grandmother, Marjorie Bechtold, for all her prayers and unconditional
love; this gave me the self confidence to succeed.

To my sister and her family, Lisa, Andy and Heather Patterson, their words of

friendship and encouragement were always there to bolster me.

ACKNOWLEDGEMENTS

I thank all the caring and supportive professors that I have had the privilege of
working with during my time at the University of South Florida. In particular:

Dr. Leffew; who never turns away a student in need of help,

Dr. Moreno; for all the years as my advisor, encouraging words along the way and

late nights revising work completed at the last minute,

Dr. Valavanis; for introducing me to robotics and his support and advice while

working on my Ph.D.

I thank the staff of the Army Research Lab for the wonderful summer interning in
Maryland, the financial support through a fellowship and their assistance while working
on the autopilot. In particular: Dr Wilkerson for making everything possible and Dr
Fields for going out of her way to be available for advice and trips to Florida.

I thank my closest friends, Kim Piper, Kim Skinner, Kathy Brown and Shashikala
Murthy for their words of encouragement and understanding. An additional thank-you to
Shashi for all the hours spent working with me and her excellent work with System
Generator.

I thank Xilinx, for their generous contribution of software, Ron, of Advanced
Circuits, for the tedious task of assembling the autopilot board and J H Technology, for
the use of their equipment and electrical components.

This research was supported in part by an appointment to the Student Research
Participation Program at the U.S. Army Research Laboratory administered by the Oak
Ridge Institute for Science and Education through an interagency agreement between the
U.S. Department of Energy and the US ARL. This work was also partially supported by

grant ARO W911NF-06-1-0069 and grant SPAWAR N00039-06-C-0062.

TABLE OF CONTENTS

LIST OF TABLES ...ttt ettt e A%
LIST OF FIGURES ...ttt sttt vii
ABSTRACT ...ttt ettt ettt et be et st nbe e eae s Xiii
CHAPTER 1 INTRODUCTIONcooiiiiiiiiiiiiinieeieeteneee ettt ettt 1
CHAPTER 2 RELATED WORKccocoiiiiiiiiiiienceteeet ettt 7
2.1 Commercial AUtOPIIOLScooueriiriiiiiiiiniieeeiere e 7

2.2 Related State of the Art Research.........c..coccoeiiniiiiniiniiinicees 10

2.2.1 Microprocessor/DSP Low Power Autopilots........c.ccceceevueriennennee. 11

2.2.2 Full Computer Implementations..........c.ccecuereereecienieenenneeneeneenne. 12

2.2.3 Implementations Utilizing FPGAS......c..ccccevvvininiiniiiniiicniceee, 14

2.3 Overview of Autopilot Implementationsc..cecereeveriieneeneriicneeneenens 16
CHAPTER 3 AUTOPILOT REQUIREMENTScociiiiiiiiiiiinieienieeceeeeeeee e 18
CHAPTER 4 AUTOPILOT ENVIRONMENT.....cccoiiiiiiiiiriinieiereeeceeeee e 22
4.1 Hardware OVEIVIEWccueeiiriiiiiieiiniieieetesit ettt sttt 22

4.2 Autopilot Software Environment..........c..coccveeviriinienenieneenenicnecneens 25

4.2.1 Hardware Co-Simulation Timing ISSUES........ccccecverienirvicricnenne. 27

4.2.2 FPAA Programming and Utilization..........ccccceveevvervieneenienieneenne. 30

4.2.3 Utilizing Pressure Sensors for Altitude and Velocity 32

4.2.4 Initializing the MicroSD Card........cccccovvieeiiiieciieeiee e, 32

4.2.5 Disabling RS232 POrtSccceviieiieiieeiieieeieeie e 33

4.2.6 Setting Variable Voltage I/O POrts.........ccccovceeveriieniencniieneeeee. 34

4.2.7 Utilizing PWM Output Blockcccoeviieniiiiiiiiiiiieeeeeeee, 34

4.2.8 RS232 Communication SUbSYStemScccceevveeverenieaniienieannen. 36

4.2.9 FPGA RAM Data Acquisition Library Block...........cccccoereennennee. 38

4.2.10 Superstar II GPS Communication Protocolc...ccceeevvenneenee. 40

4.2.11 MicroStrain IMU Communication Protocolc.ccccceennennene. 41
CHAPTER 5 HARDWARE DESIGN.......cciiiiiniiiiiiicieieeeseseeeee et 42
5.1 Processing Hardware Selection...........ccceevueeriienieniieniienieeieeeeeeiee e 42
5.2 Analog INput DeSi@N.....cceeiiiiiiiiiiieieeieee e 44
5.3 Communication Voltage Level Circuitry........ccccovvveververieneenienicneenieneens 46
5.4 Altitude and Velocity Measurement with Pressure Sensors.........c..cccc...... 48
5.5 Data AcquiSition MEMOTY.....cccueeriiiiiieiiieiieeie ettt eiee ettt 51
5.6 Actuator Control Selector CIrCUItIYcccevverierierieneeienieeece et 51
5.6.1 Safety Switch CPLD LOZIC......cocevviiriiniiiiniiiecicnieecceceen 53

5.7 Power SUpply CirCUIIY......cccviiuieiiriiniiiieiieieetcee ettt 55
CHAPTER 6 AUTOPILOT SOFTWARE DESIGN.......cocoiiiiiinininiiieieieieenesieene 57
6.1 FPAA Program LogiC Design.........ccceeviiiiiiiiiiiiieniieieeee e 60
6.2 FPAA Receive Logic Design.......ccocoueiiieiiiiiiiiiieiiieeeeeeee e 62
6.3 Pressure Sensor A/D Logic Desi@n.......cccoeevuiriinienieriienieneeienienieeieneens 64
6.4 Micro Secure Digital Software Design........cc.cccevveviiiiniiniencnicnecnenn, 69
6.5 RS232 L0gIC DESIZN ..ccuviiuiiriiiiiiiiiiesieeeeteeeete ettt 77
6.5.1 RS232 Disable LOZICcceovueriiiiniiniiieniecieieccneceeceecee 77

1

6.5.2 RS232 Send Logic DeSIZNeevuviiiiiiiieiieeiieeiieeieeee e 77

6.5.3 RS232 Receive Logic Designcceeveieiieriiiiiieiiieiieeieeiee e 78

6.5.4 RS232 Down-Sample LOgIC......cceevvirviieiiiiniiiiiieiieeiieee e 82

6.6 Variable I/O Port Voltage Set LOZIC........cceeriieiieniieiieeieeiieeieeeeeee e, 83

6.7 Servo PWM Output LOZICccvieiiiiiiiiciiieiiecie ettt 87

6.8 FPGA RAM Data Acquisition Software Designccceceevveriienienneennen. 90

6.9 GPS Unit Communication Protocol.........c.ccoeeeviirienerieniieneeiieniencenienns 92

6.10 IMU Unit Communication Protocol...........cccceeviriiniiiiniiiniiienicnceens 96
CHAPTER 7 RC-TRUCK IMPLEMENTATIONcccoctiiiiiiniiniieienieneeeeeeieeee e 99
7.1 RC-Truck Controller DeSign.........coceevuiriiriiriiiniinieiienieeeecsieeeeeeeeeene 104

7.1.1 ASCII Data ColleCtionc.cevueeiienieeiieieeieeie e 107

7.1.2 Battery Monitoring DeSign.........cccecueerieriieniieniieiieeieeiee e 112

7.1.3 Double and Float Conversion to Binary........c..ccccceeveeveeneenicnnene 113

7.1.4 Heading Set Point Control...........coceeveviiniriiiniinincnecceiceee 117

7.1.5 Velocity Set Point Controlcccceceevieneriiiniinenicnieeeieneene 120

7.1.6 Servo CONLIOLccveeiiiiiieiieeitee e 121

7.2 RC-Truck Results.........cccoeiiiiiiiiiiiiieecee e 125
CHAPTER 8 CONCLUSIONS ...ttt 133
REFERENCES ...ttt sttt 135
APPENDICES ...ttt sttt ettt 140
Appendix A Details of Commercial Autopilots........ccccecevvenienenicninicnicnene 141
Appendix B Port Connections to the FPGAcccooiiiiiiiniiiiiiee 144

il

Appendix C Detailed Schematics
Appendix D Safety Switch Code

ABOUT THE AUTHORccccconeenee.

v

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Table 9:

Table 10:

Table 11:

Table 12:

Table 13:

Table 14:

Table 15:

Table 16:

Table 17:

Table 18:

Table 19:

LIST OF TABLES

Autopilot SPecIfiCatioNScc.eeviruiiriiiiirieieeeee e 24
RS232 Send Input TIMING ..c..cooveeiiriiiiiiiniceeeee et 38
Single Switch Truth Table........cocooviiiiiiiiiiieeeeee 54
RS232 Bit TIMINGeoutiiiiiiriieieeieeteseee ettt 79
Port Setting Control COUNLETcc.eevviriiriiiiirieieeiert et 85
GPS Information FOrmattingccccocevienieiiiniiniiiiiiineciececeeceee e 93
KeStral by ProCerUs......ccuieuieiiiiiieeieeiteee ettt 141
MP2028 BY MICTOPIIOL ..ottt e 141
Ezi-Nav by Autonomous Unmanned Air Vehicles, (AUAV)ccocveviennns 141
PhoenixX BY O-NavVi ..cc.eoviiiiiiiiiiiiiiicetee s 142
Piccolo IT by Cloudeapcoeevueeieniieiiinieniieieeeceeeeeeee e 142
Microbot by MICTODOTICSeeuvieiiieiieeiiieiie sttt 143
LED and Switch Port ASSIZNMENtScc.cevereirienierieniinieeieneesie e 144
Daughter Board Connector One Safety Switch Connectors.........cc.cceceeuneeeee. 145
Daughter Board Connector ONecoceeeevieeienienenienieneeieneeseeeeeseeees 146
Daughter Board Connector TWO........cccooveriiniriiniiniiniceciceecseeeeseeeee 147
FPAA CONNECLIONS ..ottt ettt 148
TTL I/O Ports One to Three Connectionscceeceereenveeceeneeniereeneenneene 149
TTL I/O Ports Four to Six Connectionsccceeeeeveereeneevieneeneeneeneeneennes 150

Table 20:

Table 21:

Table 22:

Table 23:

Table 24:

Table 25:

FIaSh IMEMOTYeoiiieiiieiie ettt ettt et e e eee 150

Pressure Sensor CONNECHIONSc.uerueerierieriienieeienieenieeeesieenie et siee e 151
FPGA PWM CONNECHIONS. ..c..eeviriieiieiiriieriieteeiiesieete sttt ettt s 151
PWM Output Port CONNECHIONSceeevuieiiieniieeiieniie e eie et 152
Pilot INput CONNECLIONSc.evereiieiieeiiieiieeieeeee et eee ettt e ere e e ereesaee e 153
RS232 CONNECHIONSeonviiiiiieiieiiesiteieeeste ettt 154

vi

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

Figure 19:

LIST OF FIGURES

Autopilot Board OVEIVIEWc..cccueeiiriiiiiiniiniieieetceeee ettt 23
Software Block Diagramcccceoueeiiniiniiiiniinieicniceccceesece e 26
AUtopilot TemMPIate.......ccvieiiiiiieiiee e 28
Simulink System Period Settingccoceeveriiniiiiniiniiieneeeeeeeee e 30
FPAA Program SEttNESccceveerierieniiiiieienieeiesieenieete ettt 31
FPAA Configuration M-Filecocoeviiiiiiiiiiiiniieieceecneeeeeeeee 31
Disabling Pressure SenSOr......c..eeveiiiriiniirienieeieseeeeteee e 32
MicroSD Card Template SubSYStemcccuevueeviiriineriiinieeeieneeieeeeeieeeene 33
RS232 ENABIE ...t 33
: Variable I/O Port SEttNgScc.eoveriieiiiriiniiiiireeieeicreeeeeeseee e 34
PWM Subsystem SEHHNGScceevvirieriiiriinienienieeientesie ettt 35
Setting Input Port TIMING......cc.coveviiriiniiiiirieneeiceeeeeeee e 37
Setting Baud Rate..........coeiviiiiiiiiiiiiiiceeee e 37
RS232 Down-Sample......ccoooiiriiniiiiniiiieieeeeeeneeeeee e 38
Record Data Library Subsystem and Settings.........cccccoceeveevienienenneneeneenne. 39
IMU Communication Library BlocK.........ccccoceviiiiniiniiiniiiiniceeee, 41
Voltage Measurement Circuit for Analog........c..ccoceeeveviineiicnienennenieneene. 46
Adjustable Logic Level CirCUitry.....cuueeevieeiiieeieeeciee e 47
Pressure SenSOr CIrCUITTY ..oeuviieriieeieeeiieeeieeeeiee e e e e e iveeeeaeeeaeeeseaeeeenns 49

vil

Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:

Figure 42:

JaNo RB TN 0 @10) 411 o) H R 52

Safety Switch Block Diagramccoecuieriieiiieiiieiieieciecee e 54
Single SWItCh LOZIC ..cvvieiiiiiieiieeieeieee ettt e 55
FPAA Clock Signal.........cccioiiiiiiiiiiiiiciieee ettt 60
Terminating INPut POTES........ccuiiiiiiiieiiieieeieee e 61
Program FPAA LOZIC......cccieiiieiieiie ettt 62
FPAA A/D Communication Protocolcccccceevininininininiieicicicneenn 63
FPAA RECEIVE LOZIC...ccuuiiiiiiiieiieeie ettt ettt e 63
A/D Communication Block Diagram............cceceeriiienieniiienieniienie e, 65
A/D Converter TIMINGc..ceveriiriirerienieneeie ettt 66
Logic to Generate Convert OULPULccceveriiriereniinieeeiene e 67
A/D ClOCK GENETALOT.......eieuiieiiieiie ettt ettt ettt esaae b e e 67
Pressure Sensor A/D Input LOZIC......cocvevieviiriiniininiinieecieseeeecseeee 68
MicroSD Card RESPONSEccueeuiriiriiiiieieniieieeienetere et 70
MicroSD Card Initialization LOZIC........cccuevieiiiriiniiiiiicecicneeseceeeeeee 70
CMDO SUDSYSEEIM ...c.eveiiiiieiiieiienieeienit ettt 71
CMDO Logic Output SUDSYSEMcceeriiriiiriiiiiiiinienieeieneeieeeee e 73
MicroSD Send CMDS8 SubSYStem.........cceevuerieriiieniiniiieeieneeieeeenieeeeeee 73
MicroSD Receive CMDS8 Response Subsystemcc.cceeeevervenenieneenneenne. 74
MicroSD CMDI1 SUbSYSEIM......coouiriiriiiiieiiniieieeiene e 75
MicroSD CMDI16 SUbSYStEML......c..cccueriiriiriiniiiiieieneeie et 76
RS232 ENable LOZIC....c.eiiuiiiiiiiieiienieeieeeee et 77
Send RS232 ... 78

Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:

Figure 65:

RS232 Receive DIagramcceeevieiiiiiiieiieeiieeie ettt 78
RS232 Receive One Byte.......c.oeouiieiiiiiiiiiieiiecieee ettt 80
RS232 Timer Control LOZIC......cc.eeeiiiiiiiiieiiecie ettt 81
RS232 Receive Byte SUDSYSLEIM ...c.vevvieiiiieiieiieeiieeie et 81
Down-Sampling New Bit LOZIC......c.ccoviiriiieriiiiiieiieeieeiieee e 83
Down-Sampling RS232 Symbolcccoccieiiiiiiiiieiieieeeeceeee e, 83
Variable Port Voltage Set Subsystemccccoecieriiiiieniiiiiieieeeeeee 84
Potentiometer SPT Protocolcccoeviiiniiiiieieiiiiieneneeceeeeeeeee 85
Variable Port Data Output MultipleXer..........ccoevieeiiiiiieniiieieeieeeeeie e 86
PWM Generate Block Diagramc..ccceeveeviiiiiiinicnenciicecicneeneeeee 87
PWM GENETALOT ..ottt e 89
Generated PWM OULPUL....c..coouiiiiiiiieieeieieceetceeeeese et 89
RAM Data AcquiSition LOZICeeeeiiiiiiiiieiieiiieieeeieeeese e 90
Receive Superstar II Library BlocK..........cooceeiiniiniiiiniiniiiiccceeee, 92
Superstar II Receive SubSyStemc..cocueriirienieriiiniiieeicneeeeeseceeeeeene 94
GPS Communication Control Counter Subsystemccccceceeveerereeneenne. 95
GPS Communication Subsystem Update Output Subsystem.............cccc..e. 95
IMU Protocol Library BIOCKc..cccceiiiriiniiiiniiiiiicecceceeceeee 96
MicroStrain Receive Stabilized Euler Angles Subsystemc.ccccceeeneeee. 97
IMU Control Count SUbSYStEIMc...cvueriiriiniiiiinienieeieneeeeee e 97
IMU Send Command SubSyStemcccevuereireeieriineiieeieneeeneenieeeeeaes 98
RC-Truck Model Block Diagram..........cccceeeeeuerieneniiinienenieneenenieneeseene 99
RC-Truck Control SyStem.........cccceriiriiriiriiniiieniceeeeeeree et 100

X

Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:
Figure 85:
Figure 86:
Figure 87:

Figure 88:

Modified RC-Truck Control System.........cccceevieeiienieeiiieiieeieeee e 101
Simulink Implementation of Way Point Generatorccccceevveecveennnnne. 102
RC-Truck Simulation Velocity Outputccceeveiienieeiiieienieeieeieeeene 103
RC-Truck Simulation Heading and Position.............cccoecveeviienieeniienieenenne, 103
Hardware RC-Truck Control SysStem..........ccceeviiiiieniieiiieiieeieeieeieeee 105
RC-Truck with Sensors and Power Supply.......ccccccevvieiieniiieiiinieciiee, 107
Send ASCIL SUDSYSEEIMeeviieiieiieeiieiie ettt 108
Convert to ASCIT SUDSYStEMcovuiiiiiiiiieiieeieetee e 110
Convert Fraction to ASCIL......cccocoiiiiiiiiiiiiiieeeececeee e 111
FPAA Program for Battery MONItOringcccceevveeiieeniiieniiesieeiieeieeeee 112
Program for Battery MONItOrIiNg........cccueeiieeiienieeiieiie e 113
Single and Double Representation Word Format.............ccccceeveniiiinicnennne. 114
Double to Binary CONVersion........c.cccceeiireenierienienienienieeeenieesieeee e 116
Heading Set Point Control Subsystemc..cccceveevieiinienennenieneeieneene 117
Hardware Way Point Generator M-Filecccccociviiiiniininniniieicne 118
Heading Correction SUbSYStemcccueviiriiviirieniiieniiecicneceeceeeee 120
Velocity Set Point SUDSYStEMc..ccoeriiriiiiiiiniiecieececeeeeeeee 121
Servo Control Block Diagram..........ccccecvevievieniiiniininiinicienicneceeeceeee 122
Velocity Limiting M-Filecccooiiiiiiniiiiiccceeeeecee 124
Steering Limiting M-File.......ccccoiiiiiiiniiiiiiiiccccececeece e 125
Velocity Response for Trial One.........ccoceeieveriiiniininiiniineiicecceieneene 126
Trajectory for Trial Oneccccooeviiiiiiiiiiiniiiceeee e 127
Velocity Response for Trial TWOcceevieriiniiiiiniiiiiiciiccceeecceeee 127

Figure 89:
Figure 90:
Figure 91:
Figure 92:
Figure 93:
Figure 94:
Figure 95:
Figure 96:
Figure 97:
Figure 98:
Figure 99:
Figure 100:
Figure 101:
Figure 102:
Figure 103:
Figure 104:
Figure 105:
Figure 106:
Figure 107:
Figure 108:
Figure 109:
Figure 110:

Figure 111:

Trajectory for Trial TWO......ccoveeiieiieiie ettt 128
Velocity Response for Trial Threecooovveeieiiieiieiiiiieeceeeceeee e 128
Trajectory for Trial Three.........cccoevieiiieiieniieieeie e 129
Velocity Response for Trial FOUT........cccoiiiiiiiiiiiiiieiiieic e 129
Trajectory for Trial FOUTcooooiiiiiiiiiieeee e 130
Velocity Response for Trial FIVeccoevviieiiiiiiiiieiiieicceeeceee e 130
Trajectory for Trial FiVe.......cccoooiiiiiiiiiiieeeeee e 131
User LEDs and Switch Locationscccecveveevienienenienienieeieseenceieniens 144
Daughter Board Connector ONe............cccveevvieniieeiieniieeieeiee e eee e 145
Daughter Board Connector TWOcc.ccceriiriiniiniinieienienceeeeceeeeneene 147
Analog INput CONNECLOTS.c..eevuieiiriieriieiiriieieeteete sttt 148
TTL I/O CONNECTOT......couiieiieeiiieiie ettt ettt ettt e eneeas 149
PWM POrt CONNECHIONS.......eeiiieiiieiieeiieeiie ettt ettt 151
PWM Pilot Input Connector..........cocuevierierienienenienieneeieeeeseeee e 153
RS232 CONNECLOT ...t 154
Flash Memory CIrCUILcc.eevuirieriiiinieieeieeit et 155
Variable I/O Port Potentiometer Circuit............cceeveeeieenieniiienieeieeseeeeeen 155
Variable I/O Port Translator and Connector Circuitryccceeceeveereenennee. 156
FPAA CirCUIL.....eeiiiiiieie ettt ettt et sttt 156
FPAA INPUE CIrCUIL ..ottt 157
Safety Switch Power and Clock Circuit.........cccevveveriienieneenienieneniennns 157
Safety Switch CPLD and Connector Circuit..........coceevveveeneeieneenenseennens 158
USEr LED CIICUIIY ..c.eeeuieiiriiiriieiietceit ettt 158

x1

Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:

Figure 121:

Daughter Board Connection CircCUit..........cceecveeruierieeriienieenieenieeieesere e 159

Pressure Sensor CITCUIITYeeveeevieriieeieeiieeie ettt 159
Power SUPPLY CIrCUILTY ...coveeeiiieiieeie ettt 160
RS232 CIICUIL ittt 160
FPGA BankQ COnneECtionscceeverueeierienienienieeieeieenieeiesieesieseesieenens 161
FPGA Bank] COnnectionsccceeerueeiereenienienieniesienieeiesieesieseeseeenens 162
FPGA Bank2 CONNECLIONScc.eeverieeniieieniieieniienieeieeieesieeiesieesieeeesieenenn 163
FPGA Bank3 CONNECtiONScccuereerieeienienienienieenieeitesieeiesieesieeeesieenens 164
FPGA VCC CONNECLIONS ...c.vvenvieniiriiiiieieeiienieeiesite sttt siee e enees 165
FPGA JTAG and Clock CirCUit.......c.ceeevuveeeiieeeiieeeiie e 166

xii

DEVELOPMENT OF AN FPGA BASED HARDWARE PLATFORM FOR
RESEARCH AND DEVELOPMENT OF AUTONOMOUS SYSTEMS
WENDY ALVIS

ABSTRACT

Unmanned vehicles, both ground and aerial, have become prevalent in recent
years. The research community has different needs than the industrial community when
designing a finalized unmanned system since the vehicle, the sensors and the control
design are dynamic and change frequently as new ideas are developed and implemented.

Current autopilot hardware, which is available as on-the-market products and
proposed in research, is sufficient for unmanned systems design. However, this
equipment falls short of being able to accommodate the needs of those in the research
community who must be able to quickly implement new ideas on a flexible platform.

The contribution of this research is the realization of a hardware platform, which
provides for rapid implementation of newly developed theory. Rapid implementation is
gained by providing for software development from within the Simulink environment and
utilizing previously unrealized flexibility in sensor selection. In addition to the
development of the hardware platform, research was performed within Simulink’s System
Generator environment in order to complement the hardware. The software produced
consists of a user template that integrates to the selected hardware. The template creates

a user friendly environment, which provides the end user the capability to develop

Xiil

software algorithms from within the Simulink environment. This capability facilitates the
final step of full hardware implementation.

The major novelty of the research was the overall FPGA based autopilot design.
The approach provided flexibility, functionality and generality. The approach is also
suitable for and applicable to the design of multiple platforms. This research yielded a
first time approach to the development of an unmanned systems autopilot platform by
utilizing:

e Development of programmable voltage level digital Input/Output (I/O), ports,

e Utilization of Field Programmable Analog Arrays (FPAA),

e Hardware capabilities to allow for integration with full computer systems,

e A full Field Programmable Gate Array (FPGA), implementation,

e Full integration of the hardware within Simulink’s System Generator Toolbox.

X1V

CHAPTER 1

INTRODUCTION

Unmanned vehicles are better for the performance of tasks that are considered
“dull”, “dirty” and “dangerous” than piloted crafts. There are many potential uses that
will provide a benefit to society such as traffic monitoring, search and rescue and
monitoring of structures such as dams and bridges. The use of Unmanned Aerial
Vehicles (UAVs), in the military dates back to the 1940s when they were used to fly into
radioactive clouds to collect samples. As technology progressed Unmanned Aerial
Vehicles have evolved into smaller and more efficient aircraft. UAVs have increasingly
demonstrated their benefit to the military. Pioneer has flown reconnaissance missions in
the Persian Gulf, Kosovo, and Bosnia since the early nineties. More recently additional
types of crafts have been developed and have continued to fly these types of missions to
the present, [1].

There is a great deal of work taking place in the research community to make
improvements in the existing technologies. The wide diversity in unmanned vehicle
designs and control as well as diversity in existing autopilots has lead to major
compatibility issues among different platforms. The compatibility issues introduce an
additional challenge to the research community. The platforms, sensors and control
algorithms are dynamic and change frequently as new ideas are developed and

implemented.

A search was completed for pre-developed hardware that would allow for data
acquisition for system identification, testing/implementation of controller design and
flexibility of platform and sensor selection. It was apparent that what is currently
available requires a considerable knowledge of programming digital processing hardware
and embedded control design. In addition, the hardware available only provides for a
very limited choice of sensor selection with each of the specific autopilots.

Within the research community, there are two prevalent forms of processing
platforms. Digital Signal Processor, (DSP), systems exist such as Mini-ITX and full
computing systems such as PC-104. Neither of these implementations fully meets the
needs of the unmanned system researcher. The DSP implementation requires knowledge
of embedded systems design and lacks parallel processing capabilities. The full
computing system requires knowledge in programming real time operating systems in
order to meet tight timing requirements. Some research has been performed, which
considered the inclusion of Field Programmable Gate Arrays, (FPGAs), for additional
flexibility and parallel processing capabilities. Thus far none have included integration
with software providing a higher level of abstraction than Very-high-speed integrated
circuit Hardware Description Language, (VHDL). In addition, the advantages of
hardware-in-the-loop capabilities for design verification have been explored only
minimally.

The DSP and FPGA implementations have the benefit of allowing for precise real
time control. This is a mandatory requirement with autopilot systems and is very

carefully met with this research. However, in order to take advantage of the flexibility

and the parallel processing capabilities that are not available with DSP processors this
precise timing was realized with a FPGA.

The lack of availability of autopilots meeting the research community
requirements was the motivation behind this research. The outcome was a hardware
platform, which provides two major capabilities. The platform provides for a commercial
off-the-shelf, (COT), language to be utilized for both programming and hardware-in-the-
loop simulation. In addition, the platform provides sufficient flexibility to allow a wide
variety of sensors to be available for use with the system under study.

When proposing a new autopilot platform, issues such as sensor integration,
sensor diagnostics, conventional servo and actuator control, as well as switching among,
or modifying control techniques if and when necessary must be taken into consideration.
In other words, consideration should be given to implementing different controllers and
sensor selection based on different mission profiles and selected robotic platforms. Thus,
any proposed design must include an interface module that provides for simulation,
validation and verification before actual implementation. By default, such a design
should be fully interfaced and integrated with MATLAB/Simulink, which provides for a
higher level of abstraction for programming and hardware-in-the-loop capabilities.

Considering vehicle payload limitations, power consumption and requirements,
cost-effectiveness and available ‘space’ on the unmanned vehicle are primary. Given the
fact that real-time control requires very strict and fixed timing for stability purposes, the
embedded system approach is preferred in designing an autopilot. This approach can be
implemented in a much lighter package, which makes it suitable even for miniature

vehicles.

Swarm formation and mission planning algorithms have been successfully
designed on standard computing systems such as the Mini-ITX or PC-104. However,
without an additional autopilot, the programmer must have an extensive knowledge of
real-time operating system programming to ensure the signal processing and control
system meets the timing requirements of the vehicle dynamics. The hardware capability
for full integration with these previously developed systems was designed into the
autopilot. When in use with these systems the autopilot can be programmed to become
the “slave” to the “master” computer and follow specified trajectory commands. This
capability provides researchers familiar with software implementations such as C-
programming running on Linux to continue with their work unimpeded by the difficulty
of implementing real-time programming.

The final area of concern is the protection of the hardware and any surrounding
objects or humans. Hardware failure can have catastrophic effects, especially when such
failures are associated with aerial vehicles. A loss of control with an unmanned
helicopter can very easily cause serious injury or even loss of life. Many systems already
allow for emergency takeover by a human pilot. However, this design can be taken even
further when used with an external computing system. Providing the end user the ability
to design fault detection and emergency control algorithms from within an external
computer provides the system with another form of redundancy. In order to achieve this
form of redundancy an additional safety switch circuit was designed into the autopilot
platform. The safety switch circuit provides for emergency takeover by either a human

pilot or a secondary daughter board. The secondary daughter board can be designed to

communicate with a computer and take control of the actuators under autopilot failure
conditions.

The developed autopilot hardware platform complements the full computing
systems by providing a separate processing system that handles the sensor signals and
actuator outputs. In addition, it has the ability to be used as a standalone platform for
very small scale vehicles. Some systems have been designed with flexibility and ease of
implementation in mind. However, this research resulted in an improvement over what
has been previously proposed or developed by allowing for full integration with Simulink.
The integration with Simulink provides for a higher level of programming abstraction,
hardware-in-the-loop capabilities and full FPGA implementation. These capabilities
maximize parallel processing capabilities, analog signal conditioning, which can be
predefined and initiated through digital communications from the FPGA processor. In
addition, they provide an additional layer of safety by providing for control of the
actuators by either a pilot utilizing a handheld radio or a daughter board.

The contribution of this research is a flexible, hardware-in-the-loop capable
platform that benefits the area of unmanned systems design by providing for the rapid
prototyping of new theory. Therefore, a reduction in the time it takes the benefits to
become applicable is realized in both the private and military sectors. The improvements
over previous work have resulted from the novelty of utilizing a full Field Programmable
Gate Array, (FPGA), implementation, which provides full integration with Simulink’s
System Generator Toolbox. Surrounding analog circuitry was developed to provide a
more flexible interface than realized by previous work. The flexible interface was

realized through the development of programmable digital ports along with utilization of

5

Field Programmable Analog Arrays for different analog inputs. In addition, software was
produced to provide for a Simulink template, which integrates with the autopilot
hardware. The software provides a user friendly environment, which provides the end
user to more easily integrate the completed algorithms with the sensor and actuator
hardware.

The developed autopilot platform was tested utilizing an RC-Truck like robot.
Existing software for simple way point following of a robot built for a Traxxis RC-Truck
was implemented on the autopilot. The autopilot was integrated to the servo controllers
of a MicroStrain IMU and a Superstar I GPS unit. The RC-Truck was able to
successfully follow way points, which demonstrated the effectiveness of the hardware

design.

CHAPTER 2

RELATED WORK

There exist several UAV/VTOL autopilot hardware platforms, which are sold as
fully developed systems. These systems have worked well for those in the private sector.
However, the research community has still felt the necessity to develop their own
processing systems. Some were developed as a portion of the overall research and others
were the subject of the research itself. Each of the, on-the-market, autopilots will be
discussed in the context of flexibility, methods of programming, hardware-in-the-loop
capabilities and inclusion of parallel processing capabilities. The research based
processing systems will be discussed as a generality of the different hardware types in
Section 1.1. A more detailed discussion will be presented of the hardware platforms
developed specifically as the subject of the research in Section 2.2. An overview and

comparison of the types of platforms is presented in Section 2.3.

2.1 Commercial Autopilots

There are several autopilots on the market. Most of these autopilots have not
taken into consideration all of the needs of the research community. These autopilots can
be separated into several categories. Autopilots, which are proprietary and lack user
design capabilities. Autopilots, which are very basic in processing power and possess
limited capabilities. Autopilots, which do have flexibility in reprogramming but do not

have all the capabilities of the design presented in this dissertation.

7

Two autopilots, which were designed for use with specific vehicles sold by the
company marketing the entire system, are available. The Generation II by BAI only
provides for minor modification, [2, 3]. The Rotomotion device provides for no
modifications at all, [4]. Only minor details are provided about these designs due to the
proprietary nature of the entire system. Neither is suitable as a platform for research due
to the built in dependency on the company for airframe specific modifications to the
software.

The Kestral by Procerus, [5], and the MP2028 by Micropilot, [3, 6], include user
flexibility designed into the system. Unfortunately, both of these devices are still
proprietary in nature. There are additional input/output ports included in the system
software sold for reprogramming and hardware-in-the-loop capabilities. However, both
designs only provide reprogramming and hardware-in-the-loop capabilities through
proprietary software, which prevents use with Simulink and limits flexibility. Details on
the Kestral are given in Table 7 and the MP2028 details are given in Table 8. Both tables
are presented in Appendix A.

The Ezi-Nav, by Autonomous Unmanned Air Vehicles, was designed to be a low
cost autopilot with minimal capabilities, [3, 7]. It contains eight separate
microprocessors that share the computational load. The Ezi-Nav operates solely with
handheld GPS units and possesses no additional ports for communications with an
external processor or additional sensors. More details for Ez-Nav are provided in Table
9, Appendix A. While the Ezi-Nav has demonstrated successful flights with fixed wing
vehicles, it does not have the flexibility or processing capabilities required by the

research community.

The Phoenix, by O-Navi, is an open source, fully reprogrammable autopilot,
which utilizes a 32MHz, 32-bit Motorola processor, [8, 9]. Phoenix is programmable
through a provided flash kit. However, it still lacks the ability to interact with Simulink
and there is no hardware-in-the-loop capabilities provided for in the design. Details are
presented in Table 10, Appendix A.

The Piccolo II, by Cloudcap, is an open source autopilot designed specifically for
fixed wing vehicles, [3, 10]. Piccolo II possesses sufficient flexibility that
implementation with rotary wing vehicles appears reasonable. Piccolo II is popular with
the research community. The popularity is, most likely, due to its flexibility and ability
to be programmed through Simulink’s Real Time Workshop. In addition, it does allow
for hardware-in-the-loop implementation with Simulink models. However, the computer
running Simulink must be equipped with a CAN interface card. Piccolo II comes close to
meeting the research community’s requirements. However, it lacks the parallel
processing capabilities and flexibility of a full FPGA design. Details of the Piccolo II are
given in Table 11, Appendix A.

Of all the autopilots on the market, the Microbot, by Microbotics, possesses the
most flexibility designed into the system, [11]. It is the only open source design on the
market that includes an FPGA to provide for reconfiguration of up to 32 I/O ports. In
addition, an expansion board provides for two asynchronous serial ports and twelve
analog inputs to be included in the design. Unfortunately, the FPGA is only utilized for
the input and output logic. Most of the autopilot’s programming resides in a single
microprocessor, which does not allow any parallel processing of the main functions.

Another major disadvantage of Microbot is its lack of a design capability for rapid

9

prototyping. While the unit is fully reprogrammable, it does not provide for
programming through Simulink. Additionally, Microbot does not possess any hardware-
in-the-loop capabilities designed into the system. More details are provided in Table 12,
Appendix A.

All of the autopilots, except the Microbot, are limited by a lack of parallel
processing, which is afforded by a FPGA implementation. In addition, none provide
analog input flexibility or have hardware-in-the-loop capabilities with Simulink
specifically incorporated into the design. The Microbot design, with the FPGA being
utilized for sensor sampling and data/servo output, does remove some of the
computational load from the microprocessor. The Microbot design also provides
considerable flexibility across platforms and sensors. While this design is superior to the
others with respect to flexibility, it falls short in simple programming and hardware-in-

the-loop capabilities.

2.2 Related State of the Art Research

The majority of publications studied discussed the processing system as a brief
portion of a larger research project. In these papers two popular methods dominated.
One involved implementing a low power DSP/microprocessor chip such as a Mini-ITX
board. The other involved implementing a full motherboard type system such as the PC-
104 system. The microprocessor and low power DSP chip possess minimal processing
power. Both chips are used primarily for either one specific system, which does not
require complex calculations, or a micro-air vehicle that has minimal payload capacity.
Only the most recent publications have begun to consider the advantages of a FPGA’s

parallel processing and reconfigurable capabilities. Section 2.2.1 will discuss low power
10

processor implementations. Section 2.2.2 will discuss the full motherboard
implementations. Section 2.2.3 will cover what has been accomplished or has been

proposed for full FPGA and hybrid FPGA/DSP implementations.

2.2.1 Microprocessor/DSP Low Power Autopilots

Jung et. al., designed a simplified autopilot for use with a specific fixed wing
aircraft, the Goldberg Decathlon ARF, [12]. The design was performed as a learning lab
tool for undergraduate students at Georgia Tech. A Rabbit 3000 microprocessor was
used along with several sensors. This microprocessor meets the requirements for easy
implementation of simple algorithms, which are used for teaching basic control theory.
However, the Rabbit 3000 does not provide flexibility for use across platforms. A similar
design was developed by Brigham Young University with a fixed wing aircraft fabricated
in foam, [13]. As with the system developed by Georgia Tech, the autopilot was small,
easy to implement and did function properly. However, the autopilot suffered from
inflexibility across platforms. In addition, neither designs provided hardware-in-the-loop
capabilities.

Kahn and Kellogg designed an autopilot system that utilized Microchip’s 16F877
microcontroller for a kite style micro-air vehicle, [14]. Since the system possessed low
dynamics and utilized a minimal amount of sensors, very little processing power was
required. Microchips line of microcontrollers is low cost and easy to program. However,
they possess a maximum clock frequency of 20MHz, a buffer for serial communication
that is limited to three characters and no hardware-in-the-loop capabilities. Microchips
line of products does not meet the requirements specified for the majority of unmanned

systems research.
11

Preliminary designs are presented for an MC68HCS12 microcontroller based
design, [15]. The design focuses on providing a low cost and easy to modify system.
The specific UAV and sensors are not mentioned. However, the processing power and
flexibility across platforms will be limited due to the selection of a microcontroller for
processing as opposed to an FPGA. In addition, there is no mention of intentions to
design, into the system, any hardware-in-the-loop capabilities.

An area of research gaining popularity is the design of micro-air vehicles. The
payload capacity for these systems is quite small, which limits the size and power
consumption of the selected computing system. The majority of researchers in this field
are implementing the algorithms with microcontrollers. The microcontrollers chosen are
primarily from Microchip’s line of processors, [16-18]. Several publications were
studied, which discussed either custom sensor design or vehicle design. However, none
had implemented any onboard processing. Other methods were used for control of the
vehicle. A ground station was used for control processing, [19]. A ground station was
also used for verification of design by simulation, [20-25]. Handheld radio control was
investigated, [26, 27]. A tethered system was connected to a DSP board and MATLAB,
[28]. As new vehicle and sensor designs are developed and become ready for
implementation, a processing platform is required. This requirement further

demonstrates the need for a small research oriented autopilot platform.

2.2.2 Full Computer Implementations
The majority of research publications discussing the design of small scale
unmanned systems present full motherboard systems without dedicated hardware for the

signal processing algorithms and low level controllers. The most popular is the PC-104
12

board running a real-time operating system such as VxWorks® [29] or QNX [30-32].
Lee, et. al., incorporated a full data acquisition card in the design, [32]. Various other
computing systems have been used with real-time operating systems as well, [33, 34].
All of these implementations follow the same basic design principle, external
sensors and hardware with a single standard computing system. This method has been
proven to work successfully. However, great care must be taken in programming the
control system or the precise timing needed for the control of the vehicle dynamics will
not be met. This requires a great deal of knowledge in control systems and in the real-
time programming language. Each function must be given a priority, which allows those
functions with the lowest priorities to be permitted to run only when the highest priorities
have completed. For a final implementation, which is designed only once, this method
may prove acceptable. However, whenever the control system is modified significantly
the entire low level control program changes and the timing issues must be entirely
reconsidered. For example, if PID controllers are replaced by H-infinity feedback
controllers all timing issues would have to be revisited. This potential software redesign
can create longer delays between deriving new theory and implanting it in hardware.
One design did try to solve some of these issues by implementing a two processor
system running on RT-Linux, [35]. The software was designed with a layered approach.
A main board ran an x86 compatible motherboard for the wireless GPS communications
and mission planning. The ATM Mega 163 chip was utilized for real-time flight control
processes. This is the same basic concept of using a dedicated autopilot for the low level

control system, which further argues the need for the hardware platform presented.

13

2.2.3 Implementations Utilizing FPGAs

FPGAs are very slowly gaining popularity due to the recent advances in increased
number of gates and simplification of design by the manufacturer’s providing intellectual
properties, IPs. The IPs provide pre-developed functions such as complicated
mathematical calculations and RAM, which would normally be time consuming to
develop utilizing a HDL. Since these advances are fairly recent, there are only a few
publications following the same philosophy of utilization of FPGAs, [9, 36-40].

Klenke combined a 40K FPGA with an 8-bit microprocessor for control of a fixed
wing aircraft with a GPS unit as the only sensor, [39]. The FPGA array was utilized for
the FM aircraft receiver and the servo control. The system worked successfully and
proved to be a simple to implement, inexpensive design. However, it does not possess
the processing power or flexibility required for research across platforms and sensors.

A proposed FPGA based design to provide a system capable of integrating a
propulsion health system with a control system for VTOLSs has been presented, [36].

This design recognized the strength of both a FPGA architecture and integration with
Simulink for programming. However, the proposed design intends to implement the
algorithms running inside the FPGA under a real-time operating system, VxWorks®. In
order to provide user programmability, the intention is to create an ICD along with third
party software for programming. The system will implement a Vibe Card for receiving
some sensor data. With some simple front end analog signal conditioning and A/D
converters, this card can be eliminated and all of the signal processing can be

implemented entirely on the FPGA chip. In addition, the design also includes a Geode

14

DSP processor, which will run a majority of the processes. This aspect of the design
ultimately limits the system to sequential processing for the majority of the processes.

A flexible FPGA/DSP based autopilot has been developed by the Georgia
Institute of Technology, [37, 38]. The project has been completed and tested on two
separate platforms. One system works in conjunction with a “master” computing system
on the GTMax. Another system acts as a stand-alone device on the GTSpy. While a
flexible hardware-proven design is defined, the full strength of the Xilinx line is not
utilized to full advantage. The majority of the processing on-board the Xilinx chip is
performed by a soft core DSP running on the MicroC/OS II real-time operating system.
As a result of the sequential nature of the operating system, many of the tasks cannot be
divided into smaller tasks running in parallel. In addition, the system includes a separate
DSP chip to run any high level processing. This configuration prevents the system from
being fully integrated with Simulink through the use of the System Generator toolbox.

Virginia Commonwealth University has recently demonstrated a successful in
flight test of a FPGA based autopilot. [9]. This autopilot utilized a Suzuku V board
containing a Xilinx II FPGA chip, 32 M Bytes of SDRAM, 8§ M Bytes of flash memory
and an Ethernet interface. The FPGA’s on-chip PowerPC runs a Linux kernel for
implementation of the majority of the processing. The goal of the research was to
demonstrate that the software could be developed in commercial off-the-shelf hardware
and then ported to any other hardware running the same Linux kernel. Since the focus of
the research was not a complete hardware autopilot design, the ability to run processes in
parallel, with the exception of the I/O protocol, was not considered. In addition, it did not

take advantage of the Virtex Il Simulink capabilities for programming and hardware-in-

15

the-loop verification. However, the design does demonstrate the capabilities of the
FPGA as the processing hardware for an autopilot.

Continuing work on the design of an FPGA based control system for a Micro-
Satellite has demonstrated the potential benefits of FPGAs for autopilots, [40]. The
Xilinx series of FPGAs is utilized and full parallel processing utilized. While in-flight
tests have not yet been demonstrated, lab tests have indicated that good timing and

parallel communication with the devices have been obtained.

2.3 Overview of Autopilot Implementations

While standard computing systems have been proven to work successfully, great
care must be taken in programming the control system or the real-time requirements will
not be met. Whenever the control system is entirely changed, which occurs frequently in
research, the entire low level control program changes and the timing issue must be
entirely reconsidered. This leads to a longer design time between deriving new theory
and implanting it in hardware. A solution to this problem is to include a separate
processor. Such an autopilot is presented in this dissertation. The autopilot provides an
off-board system that follows a given trajectory while handling the tight timing
constraints required for sensor integration and control of the vehicle dynamics.

The majority of the systems presented implement a single processor. The
processing power varies depending on the specific chip selected. The single processer
design is at a disadvantage when compared to implementing either a full FPGA or a
hybrid DSP/FPGA design. Since single processor systems cannot operate with parallel
processing, care must be taken to be sure that each of the asynchronous sensor inputs are

sampled at the correct time while also updating the servo outputs. In addition, the
16

majority of the implementations do not allow for Simulink integration or hardware-in-the-
loop verification of the design.

Several of the FPGA implementations have benefited from the flexibility and
parallel processing capabilities of the FPGA with regard to managing I/O functions.
These designs failed to carry the parallel processing capabilities into the majority of the
processes by implementing most of the algorithms within an on-board or external DSP.
The only work that has utilized the full parallel capabilities for flight control was for the
design of a Micro-Satellite. This work did indicate good timing when utilizing the
parallel capabilities of the FPGA implementation. However, it did not explicitly design
Simulink integration into the system.

This research included the benefit of Simulink integration, as with [10], the
flexibility of inputs resulting from utilizing an FPGA, as with [9, 11, 36, 37], and
produced a significant contribution to the field of unmanned systems by including further
capabilities. These capabilities include full FPGA implementation, full integration with
Simulink for both programming and hardware-in-the-loop, programmable signal
conditioning and hardware so the human pilot can easily regain control under failure
conditions. An additional layer of safety was also included. When in operation with a
daughter board and second processing system, the secondary system is able to take over

control of the aircraft servos when a failure in the autopilot has been detected.

17

CHAPTER 3

AUTOPILOT REQUIREMENTS

There are two primary areas of study, which will utilize the autopilot differently.
Specifications for high level mission planning and vision systems differ considerably
from those for system level applications. System level research includes the development
of control systems for vehicle dynamics, development of methods for filtering and
integrating the sensors and development of new micro-air vehicles.

Navigation researchers work directly with the sensor inputs in order to generate
minimal noise and maximum accuracy of certain variables such as position, velocity and
acceleration. Researchers within the area of controller design are investigating the most
promising methods of controlling the dynamics of the vehicle. Both groups require
certain measurements to be available and accurate. The researcher developing the control
algorithms will require that the underlying autopilot platform provide for completed
sensor filtering and integration. This provision ensures that signals have clearly defined
variables and can be utilized within the control loop without modification to filtering and
integration modules.

Researchers investigating micro-air vehicles are concerned with the development
of new platforms requiring custom controller design. In addition, they are very
concerned with the development of new smaller size and low power sensors. This group

will have the same requirements as the control and navigation researchers. Additionally,

18

they are confronted with requirements of providing for various sensor inputs, which
cannot be predetermined, as well as low power and light weight circuitry demands.

Since both the navigation and control researchers will be implementing and
testing algorithms, many of the requirements, which simplify the process, pertain to both
groups. These capabilities include modularity for separation of algorithms, a high level
of abstraction to allow for simplification of design and the ability for hardware-in-the-
loop verification of the software algorithms. The majority of researchers working in this
area utilize Simulink/MATLAB for testing algorithms. Therefore, the ability to program
directly from Simulink is advantageous. Simulink software design is also well suited for
high levels of abstraction and the type of modularity required between the navigation
system and the vehicle control system. In addition, providing for hardware-in-the-loop
simulation directly with Simulink models is beneficial for testing designs without the risk
of loss of hardware. For these reasons, full integration with Simulink is an extremely
valuable aspect of the autopilot platform developed during this research.

The researchers working with navigation systems and vehicle design will require
that data be collected for system identification of the sensors or the dynamics of the
vehicle. This requires that a significant amount of data be stored while the vehicle is in
flight. In addition, the hardware must have the capability to store this information at a
high sampling rate without interrupting the modules controlling the navigation. This
requirement clearly argues for parallel processing capabilities and creates a further
requirement of additional memory for data collection.

When working with high level mission planning or vision research, it is necessary

to be able to send the way points to the navigation modules and have the vehicle follow

19

the trajectories without consideration for designing around tight timing constraints. In
addition, many of the researchers in this area of research prefer to work with systems
such as the Mini-ITX DSP processor or the PC-104 type microprocessor. In order to
meet the needs of this area of research, interaction with this second processing system
must be included in the design. The autopilot must have the ability to send and receive
commands through serial RS232 communication. The software controlling the dynamics
of the vehicle, which provides for trajectory following, is a platform-specific design. The
autopilot platform must provide for rapid development so that once the vehicle is
selected, the navigation and dynamic control system can be quickly finalized. This
capability provides for timely and efficient development of applications such as vision,
swarm formation and mission planning while running on a complete computing system.

When working with aerial vehicles, safety requirements must be given the highest
of priorities. Safety requirements demand as much redundancy for actuator control as
possible. The autopilot produced during this research was developed to work with an
external processor. Therefore, a redundancy of control hardware was already present.
However, additional hardware was incorporated to provide for transfer of actuator control
to either a human interface or a second processing system.

The list of generalized requirements, which were incorporated in the platform
developed during this research includes:

e Integration with MATLAB/Simulink for a higher level of abstraction and

modularity when programming and the capability for hardware-in-the-loop

verification,

20

Adequate memory for data collection for use with system identification
research,

Analog design to allow for reconfigurable cross platform/sensor capabilities,
RS232 communications to provide for integration with a second computing
system,

Parallel processing capabilities & hardware level timing control,

Emergency takeover of servos as an additional layer of safety.

21

CHAPTER 4

AUTOPILOT ENVIRONMENT

When designing the autopilot, careful consideration was given to both hardware
and software capabilities. The hardware was designed to provide for flexibility across
platforms and sensors. The software was designed within the Simulink environment in
order to compliment the hardware. The software provides for both an autopilot hardware
implementation template and an open source library. This chapter presents an overview
of the autopilot hardware and the autopilot’s Simulink software environment. In addition,
a brief description of the templates, available library subsystems and how to implement

them is provided.

4.1 Hardware Overview

The autopilot hardware design included port connections for most standard
hardware utilized on small scale unmanned systems. These include analog inputs,
Transistor-Transistor Logic (TTL) and Input/Output (I/O), ports. In addition, the
autopilot possesses pressure sensors for measuring altitude and forward velocity as well
as Pulse Width Modulated (PWM) outputs for controlling standard servos. The three
analog inputs have additional flexibility. A Field Programmable Analog Array (FPAA)
was incorporated for customized signal conditioning development, which could be
programmed into the FPAA from the FPGA. The TTL I/O ports provide for variable

voltage settings through the use of a digital trim pot, which is also directly programmable

22

from the FPGA. The autopilot board developed and produced during this research is

pictured in Figure 1.

. 4.2"
DAUGHTER BOARD CONNECTOR USERLEDS

i | o . == £ = . +5VCC
rwagh) R F — X
- SAFETYSWITCH

Xilinx Spartan S 4 POWER SELECT
3ANFPGA : il —

ANALOG H - : == Circuitry F o —_ . —
~ e s e o e B SERVO
XQ (on backy N £ SWi T PWM
o N _ OUTPUT

Altitide® For
Velocity Circuifryr

Y
VARIABLE RS23210
DIGITAL IO

PILOT PWM INPUT
DAUGHTER BOARD CONNECTOR
Figure 1: Autopilot Board Overview

In order to both minimize size and provide custom analog and MEMS sensors to
be developed for use with the autopilot, a stacked board design consisting of a main
board and a secondary daughter board was implemented. The daughter board can be
used for inclusion of application-specific hardware such as custom sensors. This is a
necessary requirement for micro-air vehicles since the small payload capacity requires
extremely small on-board sensors to be utilized.

The FPGA outputs PWM logic to control servos through 3.3V TTL ports. The
autopilot’s servo connectors do not directly connect to the FPGA. The waveform is sent
to the input ports through a Complex Programmable Logic Device (CPLD), which is used
in the safety switch circuitry. This circuitry provides for connections from a handheld

radio receiver for human pilot takeover. In addition, the circuitry also includes PWM and

23

select lines to the daughter board connectors to provide takeover capability from an
external processing system. When a daughter board is not connected, jumpers are used to
disable the second takeover option. While the safety switch was programmed for the
behavior described, JTAG connectors are available on the back of the autopilot board.
This provides for reprogramming of the CPLD in order to gain additional functionality.
One additional pin has a direct connection to the FPGA in order to send information.
This was provided as a tool to assist the programmer.

In addition to the hardware connectors, three user LEDs, one user switch, a power
LED and a programming completed indicator were included on the board. These
hardware assets provide indicators to assist the software developer and provide an
additional logic input to the board. The hardware specifications for the autopilot

developed and produced during this research is presented in Table 1.

Table 1: Autopilot Specifications

1/0 ports and sensors

On-board pressure sensors for altitude and forward speed
Two large signal, single ended analog inputs
One small signal differential analog input
Twenty-Four variable voltage logic inputs
e Input voltage set in blocks of four
e 1.8V to 5V range
Four Tx and 5 Rx RS232 lines
Forty-Six 3.3V I/O FPGA connections to daughter board

Capabilities

On-board MicroSD card for data acquisition memory

A safety switch for servo control

Twelve servo outputs
e All twelve, selectable in sets of six by daughter board, (if present)
e Six critical servos, which can be taken over by a pilot

Simulink programming and hardware-in-the-loop capable

24

The board contains a Xilinx Spartan3-1400AN FPGA, which serves as the
primary processing platform for the autopilot. By selecting from the Xilinx line of
FPGAs, the autopilot was fully interfaced and integrated with Simulink. The
reconfigurable nature of the FPGA provides the programming capabilities, which are
necessary to compliment the flexibility of the hardware design. The hardware flexibility
incorporates the handling of several types of communication protocol. The hardware
accepts various ranges of analog sensor input and data acquisition. The hardware
provides for measurement of altitude and forward speed through on-board pressure
sensors. In addition, the hardware provides for releasing control of the servos to either a

human pilot or a second processing system through the use of a daughter board.

4.2 Autopilot Software Environment

The user of the autopilot will have available, from within the Simulink
environment, hardware protocol subsystems and the standard System Generator building
blocks. In addition to the Simulink/System Generator software tools, the Xilinx’s EDK
environment can be utilized to develop soft core processors capable of running a user-
selectable operating system. The overview of the autopilot’s software environment is
presented in Figure 2.

The available subsystem building blocks were developed specifically for the
peripheral hardware contained on the autopilot. Other high level signal processing
functions such as filtering, sensor integration and controllers can be developed using
standard System Generator blocks. In addition, the soft core processors can contain a
small operating system such as the Slackware version of Linux or VxWorks®. While

this does seem contradictory to the argument for parallel processing, the ability to utilize
25

a DSP structure provides for the implementation of many algorithms, which have been
developed to operate within a specific software environment, such as a wireless
networking protocol. In addition, hardware may be designed into the system that utilizes

Linux drivers without the additional work of developing custom software.

SPARTAN 3AN FPGA

ANADIGM FPAA
CONTROL
LOGIC

PORT VOLTAGE
CONTROL LOGIC

ANADIGM INPUT
COMMUNICATION [l (JSER DEFINED PROGRAMMING, PWM
Locic SUCH AS MISSION PLANNING, jmepp OUTPUTSTO

SERVOS
FILTERING, SENSOR FUSION AND
PRESSURE SENSOR CONTROL ALGORITHMS
AD
COMMUNICATION —»
LOGIC
VARIOUS
COMMUNICATION
LOGIC BUILDING 4_»
BLOCKS
SOFTCORE PROCESSOR WITH REAL
TIME Sggsgggﬁsgsmm COMMUNICATION
AGORITHMS P Wit "MaSTER
[DEVELOPED IN XILINX EDK] PROCESSOR
PROVIDED BUILT IN C-CODE OR
BUILDING BLOCKS SIMULINK LINUX DRIVERS

Figure 2: Software Block Diagram

26

4.2.1 Hardware Co-Simulation Timing Issues

System Generator allows for hardware-in-the-loop simulation by compiling a co-
simulation block that contains the bit stream for programming the FPGA and controls the
JTAG communication. After the hardware co-simulation block is generated, it can be set
to single stepping or free running by double-clicking the block. When single stepping is
selected, Simulink controls the FPGA clock signal and the hardware matches the Simulink
clock cycle, which does not relate to real-time. This is the preferable setting when
communication with external hardware is not required. However, when the autopilot is
to be programmed to interact with external hardware, real-time is required. The ‘free
running’ selection will turn control of the clock over to the FPGA’s 50MHz clock.
Within the system there will be blocks, which must be synchronized by the system clock.
When the System Generator blocks are converted to the FPGA hardware configuration
bit stream, the resulting internal rates are related to the Simulink update rate. The update
rate is provided by equation (1). This relationship was utilized within all the developed

subsystems specifying hardware level timing.

Simulink update rate*hardware clock rate

(1)

hardware update rate = —
Simulink time step

A Simulink autopilot template was developed. The template contains masked
subsystems to:
e program the FPAA,

e receive data from the A/D outputs from the FPAA,

27

e cnable and receive data from the pressure sensors,

e initialize the MicroSD card,

e enable/disable the RS232 ports,

e cnable/disable the variable I/O ports,

e set the desired voltage level

e generate the PWM outputs with selectable frequencies and duty cycles.

With the FPAA, the pressure sensors, all the PWM ports in use and the MicroSD

card enabled the amount of slices utilized was 1362, or 12%. By disconnecting the

outputs, connecting the PWM to logic low and deactivating the FPAA program

subsystem, the unused logic is trimmed during hardware generation. Under these

conditions the utilized slices are reduced to just 526, or 4%. The autopilot template is

presented in Figure 3.

Programs FPAAwith *.bin
file developed in Anadigm’s
graphical software

Receives outputfrom
FPAA'sthree A/D output
ports

Ele

b}

Receives readingsfrom
pressure sensor circuitry

| Rs232 Enable/Disable

Variable voltage port
settings:

» Six ports with fourl/Os

» Enables/DisablesPorts

» Drop-downmenu to set
t01.8,3.3 or5 volt
level

Ready

Controls twelve servos:

» PWMfrequency setby
user

» Inputs are duty cycles
foreach servo control
(0/100)

» Forservosnotin use,
inputof ‘0’ will pull
outputlow 100% of
time

L TR Em I =S
Edt Vew ZJmulation Format Took Help
zd& B - o] ou Nomal v
v
- “} L IM\
S Conmt | | -
e Ml]
P Mll
Pr TPAA paays MIS
oo e ——ofpune |
o=t e — |
e
D
’ badona mn—aim
- =D
_.“m 3
Sgure Sendol wf“”' ! @
{m.‘,
arvoControl
RS$232 ENABLE i
[
Congtare1 -
\D _
aatle 10 Port Set

o

5%

Initializes uSD card:

» Userwrites code that
is enabled by the
‘Ready output’

» Todisable, Inputs set
to logic high with a
constant

Figure 3: Autopilot Template

28

Several library subsystems were developed to accommodate both basic use of the
on-board hardware and the communication requirements for the sensors utilized by the

RC-Truck robot. The subsystems developed thus far include:

an RS232 communication protocol,
¢ initialization the FPGA RAM for data acquisition,
e acommunication protocol to receive latitude and longitude from
the Superstar II GPS unit,
e a communication protocol to receive gyro-stabilized Euler angles
from the MicroStrain IMU unit.

While the library is limited, the open source platform provides for continually
increasing functionality as new software is developed over time by end users.

As a result of the pre-developed hardware level timing a variable declared as
SimP, which defines the System Generator time step, must be specified by the end user.
SimP can be defined either in the MATLAB workspace or the model explorer. Once
defined, SimP is entered into the System Generator block. This provides for the
simulation time step to be modified without affecting the final hardware level timing.
The only restriction on the time step is that it must be less than 10usec. This restriction
results from the communication protocol timing and the resolution of the generated PWM
output. The System Generator block is presented in Figure 4.

Each of the template subsystems provided has a user interface, or mask, in order
to enable/disable and select specific settings, with exception to A/D protocol of the
FPAA. Since the FPAA is disabled through the programming subsystem, the outputs
from the receive subsystem are left unconnected when not in use. When Simulink

29

generates the programming bit stream all the unconnected logic is removed and the inputs

are ignored.

n oy ELETIT LS e I ETATO T P RO o] Srei e i) |_i J a-
r— Milin: Systern Generalor
Complation :
(=) autopiLOT @
Part
Target directory
— e owe)
Synithvests ool : Hardwware description language -
2T v WYHODL v
FPGA clock period (ns) Clock pin kocation :
,‘
System v ok st cloa g
BHOCK 10N GSplay. i
Generate [+ 4 l Apply J l Cancel J [Heip J

Figure 4: Simulink System Period Setting

4.2.2 FPAA Programming and Utilization

The FPAA subsystem program contained in the autopilot template allows the user
to enable the system and enter the name of the workspace variable containing the FPAA
program bit stream. Since the variable is entered into a Simulink block, in the underlying
subsystem, the name must not be left empty. When the FPAA is not utilized, a value of
‘1’ should be entered to prevent a Simulink error flag. When the ‘Enable FPAA’ is not
selected the subsystem holds the outputs constant, which includes the clock signal to the

FPAA. The FPAA program subsystem is presented in Figure 5.

30

LZSonree Biock ParametersaPropram FRARL
Subspstem [maszk)

If subsystem is not enabled, enter 1 for name of program file.

I arder ta program FRAY, zave = bin file in zame directary, the s ‘confi_setupm'
on the file to create neceszzany file for subsystem. The name of the created file must
be enterad below,

Farameters

Enter name of progrann data file
|FF'.-’-'«.-'3«_F'rngram

Enahle FPAM

I OF. ”_ LCancel ”_ Help

Figure 5: FPAA Program Settings

The FPAA subsystem programs the FPAA from a variable, which must be created

within the MATLAB workspace. This is accomplished by first generating a binary

program file with Anadigm’s AnadigmDesigner2 software. Once the binary file is

created an m-file is utilized to read the file into a variable in the workspace. The m-code

is used to create the necessary variable, FPAA, which is displayed in Figure 6.

Ton s L

&id = fopen('FPAL . bhin'); 3Fconfige.bin created by Anadicgwlesignerz

FPLR = fread(fid, 'ubitd'); % reads file into workspace

FRALp=decZhin (FPLL) ; % declares MATLLE wariable containing binary walues
FRLb=reshape (FPLL',[],11: % reshapes wariable to correct format
FRALR=hinZdec (FPLL): % converts back to decimal so 3imilink can recoghni=e
FPAA=[FPAL; 1]: % add last one to stop output port on 'logic high!

Figure 6: FPAA Configuration M-File

The binary file is first read into MATLAB and then rearranged from an 8-bit word

length to a 1-bit length. In order to reformat the word length, the ‘1°s and ‘0’s are

declared as binary. After reshaping, they are re-declared as decimal values. The final

step is to add a trailing one that is required to hold the output line high after the last bit is

transmitted.

31

4.2.3 Utilizing Pressure Sensors for Altitude and Velocity

Two on-board pressure sensors were incorporated in the design of the autopilot
platform. The pressure sensors provide for the measurement of altitude and forward
velocity. The pressure sensors produce an analog signal, which is sent to a dual A/D
converter. The template subsystem reads the two 16-bit values into the FPGA. The
resolution of the calculations for altitude and velocity are user dependent. Therefore,
logic was not created to convert altitude and velocity. In addition, the end user may wish
to reduce the number of gates by implementing the 16-bit values directly in the controller
algorithms. The subsystem contains a mask, which will disable the system by tying all

the outputs to the A/D converter to logic high. The subsystem is presented in Figure 7.

W Suires Hlusle Marais s Visssirs Sailsur i Q]
Subsyztem [mazk)]

Output iz 16 bit reading from the pressure sensors

Parameters

Dizable

[oK l l LCancel] l Help

Figure 7: Disabling Pressure Sensor

4.2.4 Initializing the MicroSD Card

Since there are many potential uses for the MicroSD card, the only logic included
in the library is the sequence of instructions, which must be sent in order to initialize the
card. The hardware ports were incorporated inside the template subsystem and can be
accessed through the ports of the subsystem. When the card is not in use the input ports

must be connected to a logic high constant. The card will still initialize but it will not

32

receive any further commands. When the card is in use the user must wait for logic high
out of the Ready port before sending any commands. The output from the card is

available through the Dout port. The MicroSD card is presented in Figure 8.

1 CLE
Dot
Constant
033
ol Feady |

ushk
Figure 8: MicroSD Card Template Subsystem

4.2.5 Disabling RS232 Ports
The RS232 ports can be enabled or disabled from within the template. The
mechanism for manipulating RS232 enable is presented in Figure 9.
W Eluele Mz iars: 15250 B [ABLE ﬂ
Subsypstem [mazk)

Farameters

Enable R5232 Parts

[Ok l [LCancel] ’ Help] Apply

Figure 9: RS232 Enable

When disabled the FPGA output ports enabling the RS232 IC are held at logic
low. This holds the I/O lines out of the autopilot at high impedance. When in use, the

user can utilize the library blocks provided for the communication protocol.

33

4.2.6 Setting Variable Voltage 1/0 Ports

The template subsystem, which controls the variable I/O port settings, contains an
enable and a voltage select available in six sets of four communication lines. The
subsystem for I/O control is presented in Figure 10. When disabled, the voltage
translator IC holds the autopilot I/O pins at high impedance. When enabled, the user can

set the voltage to any of the predefined values of 1.8V, 3.3V or 5V.

3 |

L BloskParametereaVaniati a0 Port et ﬂ
Subsystem [mazk)

If enable iz rot selected the 10 potts will be high impedance.

Paramebers

Port 1 Enable
Porl 1 Voltage <5 Yolts> V|

2 o2 V2 |
Por 2 Violtage

Port 3 Enable

Por 3 Voltage <1.8 Volts>» |
Fort 4 Enable

Par 4 Valtage <5 Valtz»
Fort 5 Enable
Porl 5 Voltage <3.3 Vo> V]
Port & Enable

Por 6 Voltage <1.8 Vaolts: V|

| ok |[concel |[Hep | sepy

Figure 10: Variable I/O Port Settings

4.2.7 Utilizing PWM Output Block
The PWM template subsystem controls the generation of the signals to the 12

output ports. The output signals are generated by converting a duty cycle input, 0 to

34

100%, into the output square wave signal. Specification of a specific frequency between
20Hz and 100Hz, an initial duty cycle and specification of hardware or simulation timing,
is user selectable. When simulation is selected the PWM frequency is matched to the
simulation time steps. When hardware implementation is selected a conversion is
included to set the PWM generated to the hardware clock. If the user sets the input to a
constant of 100 the output lines are all held logic high. The PWM subsystem parameters

are presented in Figure 11.

rﬂ I T e AT ST P e e RS T Lo o] B_I
Subsyilem [mask) L

Gersrates a Pl duby cypcle at the specihed PWM clock equency
T boe rastes ot ignial Comimg inbo the Bhock st be b than of aogual

o 14100]
Dusty cpcle rpudt i3 goven a5 a rumber between 0 .and 100,

Farametess

Type of mpbementation |
Simuirk: Pesiod

SimP

Froqusnciy of Senv Outpat 1
100

Iritaal Doty Cpcdas of Serso 1
1]

Fresquesncy of Senvo Output 2
B33 L

gl Dty Cycle of Servo 2
50

Fresguenciy of 5eeva Output 3
100

Iritial Dy Cycle of Servo 3
50

Frequency of Senvo Output 4
w5

Indial Dudy Cycde of Servo 4
50

Fresquasncy of 5envnn Oulpud 5
100

Irutaal Dty Cpche of Sero 5
50

Frsruwsnaas rd S e Muirast B bl

| ok [Coeel || Heo | ook
Figure 11: PWM Subsystem Settings

35

4.2.8 RS232 Communication Subsystems

Separate library subsystems were developed for sending and receiving eight bit
data with no parity and a stop bit of one. The receive function provide the user a
capability to select from a list of baud rates, which includes 9600, 57600, 38400, 56200
and 115200 bps. The send function also provides for the same communication baud
rates. However, the rate is set by the inputs to the subsystem.

The receive subsystem over-samples the port at the clock frequency of the
autopilot, which is S0OMHz. This prevents an incoming byte from being misread due to
clock drift or jitter. This works well for receiving data. However, it creates a very fast
update rate within the System Generator. In some cases, where the incoming data is
followed by only simple logic, this may not pose an issue. In other cases it sets up a
timing requirement, which the hardware may not be able to meet. Therefore, a library
subsystem was developed, which down-samples the output to the actual baud rate.

The library subsystem that receives the RS232 data from the I/O port has one
input and two output ports. The input is the autopilot hardware port, which receives the
bit level input and must be set to the clock rate under the mask. Entering the variable
SimP will make the necessary clock adjustment for a rate of 20ns. This process is
presented in Figure 12.

The two outputs from the subsystem consist of the received 8-bit character and a
1-bit flag. The 1-bit flag is held logic high for one clock cycle when a new character has
been received. The baud rate is set with the drop-down menu as demonstrated in Figure

13

36

W [X]

ODeES & i » 200 Marmal ~|| 3
300 (Alie Gaiz sy L) A=

Gakeway in block, Converts inputs of type Simulink integer, double
and Fixed point to ¥ilinx fixed point bype.

Hardware nates: In hardware these blocks become top level input

ports,
Constant RxA1 OutPort

Basic Implementation
Cukput bype:

() Boolean () Signed (2's comp) () Unsigned
Murnber of bits | 16

Einary poink 14
Cuankization:

Truncake Round {unbiased: +/- Inf)
Ready 100% Crverflow:

‘Wrap Saturake Flag as errar
Sample petiod | SimP

Sirmnulation

Owerride with doubles

[OK H Cancel H Help H Apply

Figure 12: Setting Input Port Timing

E Fune o Bloee Mz iara: Halayai s m‘

Subsystem [mazsk)]

Parameters

Baud Rate <115200: [l
<9600
<19200:
<384003
<5E700:

Figure 13: Setting Baud Rate

The down-sample RS232 library subsystem has two inputs and two outputs,
which correspond to the outputs of the subsystem receiving the RS232 data. The 8-bit
received data and the flag from the receive RS232 block are down-sampled to the
selected baud rate and passed out of the function. The output rate is selected by the same

style of drop-down menu as the receive subsystem. This process is presented in Figure

14.
37

Sym

R |—pw] data

MM

new Sym

—] Svm =ym ——

L gl Hewsym Mewsym ————

FecieveRS232

DownszampleRS232

Figure 14: RS232 Down-Sample

The RS232 library subsystem, which sends the 8-bit data, has two inputs and one

output port. The first input port, termed ascii,

holds the 8-bit character to be sent. The

second, termed Out EN, holds a logic in, which sends the character when equal to one.

The inputs set the rate of the blocks contained within the subsystem and must correspond

correctly to the selected baud rate. The output

port, termed BIT, is connected to the

selected hardware port. This includes the RS232 ports and the variable level logic ports,

which can be used with TTL to USB converters for receipt of the RS232 protocol. The

settings are listed in Table 2.

Table 2: RS232 Send Input Timing

Baud Rate, Bits Per Second | Input Rate, Seconds
1900 1.042(10%)

19,200 5.208(10%

34,800 2.604(10%

56,700 1.736(10%

115,200 8.68(105)

4.2.9 FPGA RAM Data Acquisition Library Block

When developing the correct logic design for communicating with external

hardware the testing of the protocol must be performed with the co-simulation block set

to free running. This setting will insure that the hardware timing is implemented

38

correctly. Since the update of the JTAG port is much slower than any standard
communication rate, this prevents hardware-in-the-loop verification from being utilized.
This library subsystem was developed as a solution to that issue. Values occurring within
the FPGA are stored within RAM memory. When the memory is full the values are sent
to the JTAG port at a rate, which is more acceptable. The rate must be determined by the
end user. This is due to the fact that longer word lengths require more time to receive.
Once the data has been received through the JTAG port, the values can be graphed by
any MATLAB method for analysis.

The library subsystem allows for two inputs to be recorded and also includes an
enable port so that the data can be saved at a specific time. The outputs from the
subsystem are each connected to a JTAG System Generator block, termed Gateway Out.
These outputs are the address, addr, and the two recorded strings of data, data and datal.

These outputs are presented in Figure 15.

B Finie o) Hluele Marauiz e fECONDY J

Subzypstem [maszk)

Farameters

memory length

230000 EM_Fd addr
bitz
18 oo data
dowin zampling oo datal
300000
RECORD
[ak] [LCancel] [Help] Apply

Figure 15: Record Data Library Subsystem and Settings

The available settings are the memory length, the number of bits associated with

the length and the down sampling value. The number of bits must be set to correspond to

39

the word length so the associated RAM is compiled correctly. The down-sampling value

is the ratio of the output rate to the input rate.

4.2.10 Superstar Il GPS Communication Protocol

The Superstar II GPS has several user selectable settings. The one, which must be
selected through the GPS provided Starview software, used to implement this library
block is receive LLA in binary format at 1900 baud. This sends information
corresponding to the status of the receiver, position and velocity measurements. Not all
of the information received from the GPS unit is sent to subsystem output ports. Output
ports receive only the values of interest for simple navigation. The navigation data
required consists of latitude, longitude, altitude, North velocity, East velocity, vertical
velocity and the number of satellites used. The latitude and longitude are in double
precision format. The altitude and velocities are in single precision format. The number
of satellites exists as a standard 4-bit binary value. The final output is a 1-bit flag, which
is held high for one update clock duration, when new measurement information is
available. Since the baud rate of the communication block is 1900 bps, the corresponding
output from the subsystem has an update rate of 1.042ms, with new measurements
available at SHz. The only input to the function is the autopilot port selected to receive
the GPS output. The RS232 library subsystem is utilized inside the GPS subsystem.
Therefore, the port must be set to the hardware clock rate. The GPS unit is one example
where the RS232 protocol is used with a TTL logic level. The correct voltage setting is

3.3V and can be set within the variable port setting of the template.

40

4.2.11 MicroStrain IMU Communication Protocol

The MicroStrain IMU sends information using the RS232 protocol and voltage
levels. The 8-bit value is sent in binary, rather than ASCII. The library subsystem waits
five seconds for the IMU to initialize. After the IMU initializes the library subsystem
requests the IMU to continuously send the gyro-stabilized Euler angles. The 16-bit
values are sent eight bits at a time. A checksum value is included for the 16-bit values.
The subsystem combines the received 8-bit characters into the 16-bit measurement and
calculates the checks sum. If the checksum is correct, the subsystem outputs the 16-bit
values. These values include yaw, pitch, roll, ticks and a checksum error flag.

An RS232 subsystem was utilized to establish the communication protocol
without the down-sample block. Therefore, the Simulink update rate on the subsystem’s
outputs is 5S0MHz. The information is sent by the IMU as soon as it is available. The
specification sheet guarantees SO0Hz. However, for a request of stabilized angles, it tends
to be closer to 70Hz. The user may select any of the RS232 ports to connect to the IMU
send, CMDtoIMU, IMU receive and IMUin, ports. Figure 16 displays the subsystem,

which was used with the RC-Truck control.

rall f

pitch

yaw

R] INlLin

Nmm ticks [

chsumerr f

ChiDita IhAL || T2
nmim

Continuous GyroStabalized
Euler Angles from
hicroStrain U

Figure 16: IMU Communication Library Block

41

CHAPTER 5

HARDWARE DESIGN

The autopilot requires dedicated hardware surrounding the FPGA in order to
provide use with external devices such as sensors and actuators. In order to provide for
use across multiple platforms, flexible interfaces must exist between the various hardware
modules and specific hardware modules, which provide the necessary spectrum of
capabilities, must exist. Flexible interfaces between the TTL logic inputs and the FPGA
are mandatory. In addition, A/D conversion hardware must exist with flexible interfaces
to the pressure sensors, which measure altitude and velocity. Hardware modules must be
provided to realize a range of customizable analog signal conditioning and provide for
RS232 communication. Dedicated hardware must provide separate circuitry for servo
control selection. In addition, sufficient memory must be provided to satisfy a range of

data acquisition requirements.

5.1 Processing Hardware Selection

An autopilot utilizing a full FPGA implementation is a novelty in the area of
unmanned systems. The full FPGA implementation was selected since it provides a
broader range of design alternatives to satisfy an expanded set of platform capabilities.
Design with full FPGA provides more design versatility than DSP processors or even
hybrid DSP/FPGA implementations. The full FPGA implementation provides flexibility

and the ability to process different algorithms in parallel such as wireless networking,

42

vision algorithms, sensor integration and vehicle control implementation. The processor
hardware architecture is reconfigurable. Therefore, each signal and variable can be
represented using different numbers of bits as required. This allows for higher sampling
rates, better accuracy and high computation speed with low power consumption. FPGAs
operate at a very high frequency. When the FPGA is combined with parallel
computational structures, computational speeds as much as 100 times greater than those
possible with digital signal processors are realizable. The computational speed of the
DSP is limited since its operation is sequential, [41, 42].

An additional advantage of a full FPGA design is the existence of a natural
migration to micro-air vehicles. Once the prototype is developed and the design verified,
the power and size of the processing system can be reduced by implementing the tested
VHDL algorithm in a system-on-chip design.

Xilinx manufactures FPGA products and has had the foresight to work with
Mathworks. This collaboration provides for programming from within Simulink’s
graphical language, which provides hardware-in-the-loop capabilities. Working in
conjunction with Mathworks, Xilinx has developed the System Generator toolbox, which
provides the Xilinx FPGAs the capability of full integration with MATLAB/Simulink.
This functionality facilitates high level abstractions to be directly compiled into an
FPGA. In addition, the toolbox directly provides for hardware-in-the-loop simulation.
The simulation with Simulink requires a standard USB or JTAG parallel port connection
for synchronizing the FPGA clock to Simulink time.

The FPGA selected was the Spartan3-1400AN. This FPGA houses logic building

blocks for 11,264 slices, 32 multipliers, 176K of distributed RAM, a 576K RAM block

43

and 1.4M system gates. Although the Spartan series does not include embedded

PowerPCs, Xilinx’s EDK program can be utilized to provide soft core DSPs.

5.2 Analog Input Design

As with any system involving sensors, there will be analog inputs, which require
signal conditioning before being sampled by an A/D converter, for use in the processor.
This leads to the challenge of including flexibility with the analog circuitry design in
order to allow the same circuit to be used with different sensors. In the recent past this
challenge could have only been accomplished by providing for the physical interchange
of various analog components. However, the recent development of digital
potentiometers, programmable operational amplifiers and Field Programmable Analog
Arrays has facilitated the design of flexible analog circuitry. All of these components
were considered for designing programmable analog signal conditioning. Digital
potentiometers were considered for use along with either a static or programmable
operational amplifier. The disadvantage of this method is the board space required for
the components and the lack of analog filtering. Currently, the selection of digitally
controlled capacitors is also very limited

The FPAA provides for programmable analog filtering and requires less board
space. Two types of FPAAs are currently available. There are FPAAs that operate in
discrete time and those that operate in continuous time. Discrete time FPAAs utilize
switching capacitors to implement the resistance required in the circuit. The continuous
time FPAAs utilize switches to provide for different interconnections of the components,

[43]. It was determined that either would work well for this application. However, after

44

a search of currently available FPAAs it was found that Anadigm produces a discrete
time FPAA, which possesses some desirable features.

The AN231E04 includes 8-bit internal A/D converters, which can directly convert
the conditioned signal to the TTL format required by the FPGA. It also comes with user-
friendly software that allows the design to be tested in simulation and a binary file to be
generated. The binary file can be utilized directly by the FPGA for programming during
autopilot initialization. Each chip provides up to 38 CAMs, which are predefined analog
circuits, and up to three A/D outputs. The CAMs include functions such as filtering,
inverted gain and limited gain.

The chips do have some limitations associated with the input signal. The chip
utilizes a +1.5V internal reference for circuit common in order to provide for AC signal
inputs. In addition, the input is limited to 3V. The +1.5V reference creates an issue with
ground referenced signals. However, with some initial voltage division and software
design, ground referenced signals can be accommodated.

The autopilot design provides one input for small signal, less than 3V, differential
sensors, which can be connected directly to the FPAA’s input ports and two large signals
up to 26V. Voltage division was used to reduce the larger signals by a factor of 8.96.
The FPAA measures the input voltage with respect to the 1.5V reference. However,
since the internal A/D is utilized, this can be compensated for within the FPGA software
when the 8-bit received value is converted to the input voltage.

Figure 17 displays the external circuitry for the two large signal inputs, one small
signal input and the AnadigmDesigner2 software configuration. V;,; and Vj,, accept two

input voltages, which are ground referenced and less than 26 V. V,; accepts one small

45

signal voltage to be measured. The magnitude of the small signal must be less than 3V.
The internal configuration of the FPAA utilizes a low pass filter for the large signal
inputs and a gain stage for the small signal input. These circuits are followed by the three
A/D converters to provide the TTL outputs to the FPGA. The FPAA signal conditioning
blocks can be utilized to remove noise and adjust the gain of the measured voltage in

order to obtain better resolution from the A/D converters.

215K
) m
\/iang«M $27K rr&'z-‘ﬂ_ o B e et g o — A/D Output

=‘_H o ===) A/DOutput

215K

= ..
: I, . +|_\ m-m. "0C.g
W T > | B

27K
Vin3 H B G- B B - |
‘ Clock

: :
- o — . A/D Output

Figure 17: Voltage Measurement Circuit for Analog

5.3 Communication Voltage Level Circuitry

Two types of communication are available to the user of the autopilot.
TTL/CMOS is available at 5V, 3.3V or 1.8V and the RS232 level. There is no universal
circuitry that can accommodate both RS232 and TTL. The two are defined as a specific
type of I/O port.

The TTL I/O lines interface with a bi-directional voltage level translator, which is
Texas Instrument’s TXB0104. The IC has an electrical requirement for the set of four

I/O signals to be less than or equal to the voltage after translation. By utilizing the

46

FPGA’s 1.8V logic level ports and treating the input as the higher translation level, any
TTL voltage between 1.8V and 5V can be accepted. A digital potentiometer, which is
programmed through the FPGA processor, is used to set the logic level on the input port.

The process is presented in Figure 18.

5V

100K DIGITAL

POTENTIOMETER
PROGRAMMABLE LOGIC 1.8V LOGIC
LEVEL VOLTAGE LEVEL VOLTAGE

27.0K 1.8V
RESISTOR

LEVEL
1.8,3.3 OR 5V —| TRANSLATOR —— 1.8V BIDIRECTIONAL
BIDIRECTIONAL LOGIC LINES

LOGIC LINES

Figure 18: Adjustable Logic Level Circuitry

RS232 communication is older than TTL and does not operate at the standard 5V,
3.3V or 1.8V logic levels, which are now much more popular with processors. The
voltage representing logic high can range from +5V to +15V while the logic low
representation varies from -5V to -15V. There are several standard ICs that contain
internal charge pumps to allow for the negative voltage levels from a single 3.3V power
supply. The MAX650 was selected and provides 5 inputs and 4 outputs while requiring
only four external capacitors.

In order to minimize board space, USB connectors were not directly included on
the board. It is important to note that, with custom connectors, USB communication can

be implemented through the variable I/O ports. The board was designed with two five

47

volt connectors near the TTL I/O ports. This arrangement provides for the supply of the
five volts required to power the USB interface. The TTL port can be programmed for the
3.3V logic required by the USB specifications.

There are three data rates, 1.5Mbps, 12Mbps and 480Mbps, given in the USB
specifications. The third is the high speed data rate specified by USB 2.0. However, to
be compliant with USB 2.0 the highest speed in not required. A full speed interface of
12Mbps is still compatible with USB 2.0 devices, [44]. The autopilot is limited to the
first two data rates due to the 24Mbps limitations of the level translators. USB
communication was not developed for the autopilot template since the bi-directional
communication lines required by the protocol are not yet available within Simulink.
However, the user can still develop the protocol through the ISE program or by
embedding a soft core processor using the EDK program, which contains the required

drivers.

5.4 Altitude and Velocity Measurement with Pressure Sensors

Two pressure sensors were selected for measuring forward velocity and altitude.
The output of these sensors is a voltage ranging from 0.2V to 5V for the altitude and 1V
to 5V for the forward velocity. An A/D converter was selected, which provided for an
input of up to 5V. The A/D converter also required three 5V TTL communication lines.
Since the FPGA cannot produce a logic level above 3.3V, a translator IC was included in
the circuit. In addition, a 4.5V reference IC was utilized in order to provide the stable
reference voltage required by the converter. The pressure sensor circuit is presented in

Figure 19.

48

VOLTAGE
FROM
ALTITUDE
PRESSURE
SENSOR

VOLTAGE
FROM
VELOCITY
PRESSURE
SENSOR

A/D

h

| 4.5 VRgr

Figure 19: Pressure Sensor Circuitry

5V A/D

LOGIC LINES

LEVEL
TRANSLATOR

ENABLE

1.8V

1 8V FPGA
LOGIC LINES

The calculation of altitude is based on the fact that pressure decreases as the

altitude of an aerial vehicle increases. A pressure sensor can be used to measure this

relationship and the altitude calculated. The selected pressure sensor produces a linear

relationship between pressure per square inch and voltage. The pressure range is 2.2psi

to 16.7psi and the voltage range is 0.2V to 4.8V. The vehicle’s height can be calculated

using equation (2) and equation (3). Selecting the sea level value as the initial height, the

range of height measurable by the pressure sensor was calculated to be from 230 feet

below sea level to 26,878 feet above sea level.

(pSiinit[al - pSimeasured)(2000) = UA V — helght

pSimeasured = (V[n + 02)(145 / 46)

(2)

€)

Since a 16-bit A/D converter is present, the resolution of the measurement is

limited by the quantization steps of the A/D converter, which is 68.6656uV/bit. Relating

this value to feet yields the smallest measurable change in height as 0.4329ft. However,

49

due to noise present within the circuitry this accuracy is better than can be realistically
expected. Since a 4.5V reference IC was selected, the actual measurable distance below
sea level is slightly less than 230 feet.

Calculating velocity using pressure measurement is slightly different. A pitot
tube is used to generate a differential pressure value. The differential pressure value is
derived as the difference between the static pressure, with no velocity, and the dynamic
pressure generated from the wind entering the tube from the aircraft’s forward velocity.
The differential pressure, which is measured by a pressure sensor, is proportional to the
indicated forward air speed of the vehicle. A pressure sensor was selected for this
measurement, which is capable of detecting pressure in the range 0 to 3.92kPa and with
an output between 1V and 4.9V. As with the altitude sensor, the range was limited to the
4.5V reference. Equation (4) gives the relationship between the measured pressure and
indicated air speed in knots,[45]. The ay parameter is the standard speed of sound at
15°C, which is equal to 661.4788kts. The Py parameter is the standard pressure at sea
level, which is equal to 29.92126in-Hg. The ¢, parameter is the measured pressure, from

the pitot tube, in-Hg.

Va, 5[%“} _1] @)

The relationship between air speed and measured pressure is non-linear.
Therefore, the amount of quantization error changes with velocity. However, the

smallest theoretical measured step is equal to 2.0381(107)in-Hg/bit, which is negligible.

50

5.5 Data Acquisition Memory

The FPGA'’s internal RAM could be utilized for data acquisition. However, this
would be inefficient due to the large number of gates, which would be required, and the
fact that the RAM is a volatile memory. Therefore, the use of external memory was
included in the design to provide for data acquisition capabilities. Since flash memory is
available with large amounts of storage capabilities and is non-volatile, it was selected
over RAM memory, which is volatile and requires more board space for the same amount
of capacity. The disadvantage of flash is the limited number of write cycles, which are
usually around 100,000. This limitation was overcome by selecting a MicroSD card.
Therefore, the user can upgrade as write speeds and size are increased and the cards can

easily be replaced should the write cycle limitation be reached.

5.6 Actuator Control Selector Circuitry

The autopilot was designed to control up to twelve servos through the use of the
FPGA’s 3.3V TTL ports. The output from the FPGA is not directly linked to the servo
connector pins. Instead it passes through the onboard safety switch circuitry. This
circuitry provides for a pilot or, when in use, an additional daughter board, to gain control
of the servos in the case of a failure of either the underlying software or the FPGA. The
priority order was established as pilot first, the safety board second and the FPGA third.
In order to achieve this priority, without excessive use of analog switches, a CPLD was
utilized. The CPLD receives each of the control lines from the three sources and selects a
control source, which is outputted to the servos. This configuration is presented in Figure

20.

51

4.5-9v
3.3V

SERVO :
POWER AUTOPILOT
SUPPLY 33V . Vee

REGULATOR

J_ 3.3 PWM FROM
—— 3.3V Ve VIRTEX Il
PROCESSOR
PILOT E °° 'E
CONTROL
ONe — =4
PwM T XILINX i
FROM . *
CPLD PWM
BEEEIF;/ERS . TO SERVOS
L]
CONTROL
OF PILOT

L]
Ealpl
5 E \—TA & o— CMN
e & o
PWM FROM & o— CMN
SAFETY BOARD

CONTROL LINES

FROM SAFETY
BOARD

Figure 20: Actuator Control

There are six primary servos for control of the vehicle dynamics and six for
control of any accessories such as a camera pan and tilt motors. It is unrealistic for a
human pilot to control all twelve servos. Therefore, only the six primary servos are
available for the pilot to control. All twelve are available to both a daughter board and
the autopilot with two select lines available to the daughter board. This provides for a
second processing system to control the servos running the accessories while the
autopilot maintains control of the primary servos. This configuration is beneficial to
systems running a second processing system to handle computationally complex
algorithms such as the vision algorithms.

Standard servos run on power supplies in the range of 4.8V to 6V. The power to
the control switch can be supplied by the servo connector, running from a separate
supply, or the on-board 3.3V supply, which is selected by a jumper. The advantage of
providing a separate supply for the servos is the additional isolation gained for the critical

actuator control circuitry. It was decided to utilize a second voltage regulator for the

52

safety switch. Since the safety switch is powered by the same supply as the actuators, a
loss of servo power would result in an unrecoverable failure even if the pilot were to
regain control of the actuator logic.

The control line from the pilot is a 3.3V PWM signal from a receiver. The code
in the CPLD monitors the frequency and gives the highest priority to the request of the
pilot for control. The control lines from the daughter board are simply a logic high/low
signal. Logic high on the control line will give control to the safety board but only if the
pilot has relinquished control. Two connections were included in the design in order to
jumper the daughter board select lines to logic low when a second board is not present.
Once the human pilot has relinquished control and the safety board control lines have
been set to logic low, the autopilot gains control of the actuators. The System Generator
is not available for the CPLD. Therefore, the safety switch was preprogrammed as part
of the autopilot design and does not need to be modified by the end user. However, the
JTAG ports are accessible. Therefore, those familiar with VHDL or Verilog can modify

the design for other functionality.

5.6.1 Safety Switch CPLD Logic

The safety switch was programmed within the ISE environment using VHDL.
The safety switch entity has two building blocks, a frequency conversion module,
freq_conv, to convert the pilot select line PWM signal into a single bit and a single switch
module, single switch, which selects the PWM input to be passed to the servo output.

The safety switch configuration is displayed in Figure 21.

53

Clock

NI
Pilot Select PWM > freq_cony Pilot Select S
T L ————— —

Servo Output

Daughter Board Select single switch | [[|

\ 4

Pilot Input N 0 I
Daughter Board Input
Autopilot Input 1 M

Figure 21: Safety Switch Block Diagram

The single switch component is repeated for each of the twelve PWM inputs. The six
servo outputs not affected by the pilot select have the pilot select bit passed into the

module as logic low. The truth table presented in Table 3 was used to derive the logic
function within the architectural structure of the single switch component. The single

switch logic is presented in Figure 22.

Table 3: Single Switch Truth Table

Pilot Select Daughter Pilot Input Daughter Autopilot Servo

(ps) Board Select (pi) Board Input Input (ai) Output
(dbs) (dbi1) (servo)

0 0 X X 0 0

0 0 X X 1 1

0 1 X 0 X 0

0 1 X 1 X 1

1 X 0 X X 0

1 X 1 X X 1

54

ps —@—

" ai ﬁﬁ}
dbi—D :D e
S

pi —

Figure 22: Single Switch Logic

The frequency conversion module converts the signal from the receiver. The
resulting signal is a S0Hz PWM signal, which toggles between a 1ms and a 2ms high
pulse level. The 1ms value corresponds to logic high, and the 2ms value corresponds to
logic low.

The CPLD clock operates at a frequency of SOMHz and is used to calculate the
time the PWM signal is logic high. A counter is utilized to determine the pulse width.
The counter is initialized when the PWM input changes from logic low to logic high and
reset to zero when the PWM changes from logic high to a logic low signal. The counter

value is used to determine the pulse width and set the output flag accordingly.

5.7 Power Supply Circuitry

The design of the power supply circuitry was provided by Xilinx, [46]. This
design was presented in a technical paper, [47]. The design was also utilized and tested
on Xilinx’s Spartan-3AN starter kit. Therefore, it was considered best to utilize the
proven design for the power supply.

The circuitry utilizes National Semiconductor’s LP3906. It is powered by the 5V

autopilot supply voltage input and provides four output voltages. Two of the outputs are

55

at 3.3V, one at 1.8V and one at 1.2V. The 1.2V and one of the 3.3V outputs are buck
DC-DC switch mode supplies. These are utilized to supply the FPGA 1.2V core supply
and the 3.3V supply required for the I/O ports bank 0, bank 1 and bank 2. The second
3.3V supply and the 1.8V supply are linear regulator supplies. The 1.8V output is used to
supply the bank 3 I/O ports, which are used for the 1.8 TTL logic protocol. Linear
regulators have a lower noise characteristic than the switch mode types. Therefore, the
linear 3.3V supply was utilized to supply the peripheral analog components. The analog
components are involved in measurements, which could be easily corrupted by noise.
The operating voltage of the autopilot was limited to a range of 4.75V to 5.25V

by the pressure sensors. Therefore, the autopilot is run from a regulated 5V supply.

56

CHAPTER 6

AUTOPILOT SOFTWARE DESIGN

In order for a complete design to be developed within the System Generator
environment, two separate issues must be addressed. These issues are the development
and testing of the software algorithms and the integration of these tested algorithms with
the selected sensors and actuators. The first issue has been studied Murthy and a design
flow developed in, [48]. The development of the hardware interfaces is addressed in this
chapter with the developed autopilot hardware interfaces as design references.

Murthy provides an overview of the System Generator along with a recommended
design flow for converting Simulink tested algorithms to System Generator/hardware
implementation, [48]. The research discussed issues encountered while designing the
algorithms at the gate level. These include quantization and overflow, difficulty
implementing mathematical algorithms and timing issues. Timing issues associated with
algebraic loops are of particular interest and are addressed by Murthy, [48].

Quantization and overflow are issues, which must be addressed with any form of
processor utilizing a fixed word length. The required resolution must be selected along
with the required precision. An advantage of working with FPGAs is that the word
length and assignments of bits to represent the fractional portion can be modified at
anytime within the software. Many of the System Generator building blocks provide for

the re-assigning of the length at the output. In addition, the representation can be

57

modified by utilizing the reinterpret and convert blocks. The reinterpret library block
assigns a different representation without adjusting the bit values. The convert library
block reassigns the word length and number of bits assigned to the fractional portion,
which will affect the individual bit assignment. The convert block provides for the user
to select whether the value is both rounded or truncated and wrapped or saturated.

The mathematical issues addressed are not a lack of availability of System
Generator blocks used for implementation. Rather the mathematical issues are concerned
with the assigning of the precision and delays along the path. Simple mathematical
blocks that introduce very little delay include addition, subtraction, shift, multiply,
scaling by 2", cosine and sine functions that utilize look up tables. In addition, there are
blocks that implement the division, log, sine, cosine, square root and inverse tangent
functions by utilizing the Coordinate Rotation Digital Computer (CORDIC) algorithms.
The CORDIC algorithms use an iterative approach by performing coordinate rotations in
order to obtain an approximation of more complex functions, [49].

Algebraic loops occur when the output of a mathematical function is returned to
the input of the initial calculation. Algebraic loops can create timing issues for the
hardware designer. These loops require extra consideration with respect to the delay
associated with the gates contained within their path. The delay can result either in an
instability in the system or an incorrect result by performing the mathematical or logical
calculations on samples, which have occurred at different time steps. When developing
the System Generator algorithms these delays must be calculated and compensated for

carefully, [48]

58

The design of hardware interfaces does not focus on the quantization, over flow or
mathematical issues. The design of hardware interfaces focus primarily on the issues of
timing. The communication protocol requires tightly controlled timing at the I/O ports
with signals that require careful synchronization. When developing the communication
protocol the best approach is to first simulate and recreate the waveforms in the Simulink
scope. This provides for an initial determination of whether the timing and
synchronization of the signals were correctly designed. Once the simulation has verified
the design, the hardware implementation can be performed. If the hardware does not
yield the correct results, the FPGA’s RAM can be utilized to store the behavior of the
system within the FPGA. This provides for reading the information through the JTAG
interface and the recreation of the waveforms within the Simulink environment. Since
System Generator is bit and cyclic true, the hardware recreation usually finds either an
issue which existed in the simulation and was originally missed by the designer or an
electrical issue such as an incorrectly assigned hardware port.

The majority of mistakes, which prevent the protocol from functioning, result
from timing issues created by delays from the selected gates. The register library block
can never have less than a delay of one clock cycle. Other gates such as comparators or
logical functions may be set to a delay of zero. It is very important to look at the arrival
times of each individual signal. Comparison to a counter value can be used for
synchronization. Both register and delay blocks are useful for manipulating the arrival
times of signals. The following sections discuss the design of all the hardware for the
communication protocol in detail. The discussions in these sections are useful as a

reference for similar designs.

59

6.1 FPAA Program Logic Design

The PROGRAM FPAA autopilot template subsystem sends the required clock
signal to the FCLK port of the FPAA and programs the chip with the bit stream created
by the AnadigmDesigner2 program. Counters are used to control the timing of the
generated signals with surrounding gates utilized for synchronization. In addition,
Simulink’s ability to allow subsystems to be developed with variables assigned at
initialization through the mask interface was utilized. The mask was utilized for
assigning of the bit stream or sequence of ones and zeros, which contain the
configuration information, and disabling of the outputs to the FPAA when it is not in use.

The clock signal to the FPAA, FCLK, is generated by incrementing a counter
between zero and one at twice the required clock frequency, which is 12.5MHz. This
signal is OR’d with a Boolean value, which is assigned by the variable EnFPAA, set in
the mask. The additional Boolean variable provides for disabling the clock signal out of
the FPGA when the FPAA is not utilized. The FPAA clock signal is presented in Figure

23.

out
ar
Counterz SONVErt 0 —{FACLK
mlnil

| DM not Logical2
Constantd Invertera

Figure 23: FPAA Clock Signal

Six hardware ports are utilized to program the FPAA. The reset port, FRES,
enables the FPAA when at logic high. The program chip select port FCS2B, which is set
to logic low while the configuration bit stream is sent. The bit stream is clocked out of

the chip on the data port £:SI. These output signals are synchronized by the
60

communication clock port FCLK. After the chip has been successfully programmed, the
FPAA outputs FACT and FERRB are pulled t logic high values.

The FACT and FERRB ports are not required within the logic since these inputs
do not affect the output signals. The port hardware blocks cannot be left unconnected or
the compiler will remove the unused logic. This includes the assignment of these ports as
inputs. In order to prevent this removal, the ports are tied into an unused FPGA output
port. This output is not connected to any surrounding hardware and is defined as
TERMI. The configuration is presented in Figure 24. In addition to TERM1, three

additional unused ports TERM?2, TERM3 and TERM4 were defined for future use.

FERRE ——f
M aNd | gl TERM
=z nmm
F;ﬁxIZT—I_>
nmm Logical2

Figure 24: Terminating Input Ports

The bit stream varies in length and bit values for different FPAA configurations
must be entered into the subsystem’s mask as a variable. This variable contains a vector
of ones and zeros and is stored in the FPGA’s ROM memory, which is set to a width of
1-bit and a depth equal to the number of bits to be sent. The variable is assigned in the
MATLAB workspace through the use of an m-file, which configures the
AnadigmDesigner2 generated binary file to the required vector. Within the mask’s
initialization commands an intermediate variable, 4, is set equal to the user declared
variable to be used within the subsystem’s internal blocks. Then the variable 4 is entered
into the ROM as the initial value vector. A counter is utilized to increment the ROM
address at the communication rate. When the final value of the bits, to be sent, has been

61

reached, the counter latches at the last address value. This is accomplished by setting a
variable to the length of 4 less one and compared to the count value. When the
comparison outputs logic high, the communication clock is also disabled. Figure 25

displays an overview the system and the variables utilized within the logic blocks.

RESET & ENABLE LOGIC

Convert2 oot

cas Constants Inverterd

ar
BN outH » not |—s{cast—»{ 7 & nmr;l
Inverter? Convertd Logicald
Counters
a2 ae[cas] »{FCS2B

Up Sampl@egister-2MYEM!

COUNTER CONTROL LOGIC p{rat
out] adde! FSI
)
n CEProbe A V\
Constant Clock Enable Probe Counter RO

Yy

= and
il T i AN
=

Cansjantd elational Imvertert LDgicaI () Free Running (%) Counk Limibed

Count ta value | lengthiad-1
Mumber of bits | ceil{log2{lengthia)))

Constant value | lengthi(a)

Murnber of bits | ceilllogz{length(a)))

| 2N
n CEProbe en oLt 7t 4 <. ;;l

Constant2 Clock Enable Probel countert — 0 e Logicalt

COMMUNICATION CLOCK SIGNAL

Figure 25: Program FPAA Logic

6.2 FPAA Receive Logic Design

The FPAA contains three internal 8-bit A/D converters, which are utilized for
providing the analog information to the autopilot’s FPGA. The protocol utilizes three
output ports data, synch and clk from the FPAA. The synch port is set to logic low
during the time when the FPAA is sending the eight data bits. The individual bits are
updated when clk is logic high and stable for the duration of logic low. The clock

62

frequency, clk, is set to 3.125MHz from within the AnadigmDesigner2. The FPAA

generated waveform is displayed in Figure 26.

data

synch

| |
D, D6| Dst! D4| DJ D2|| Dl' Dy
| |

|

!

I

I

I

|

« TN

Figure 26: FPAA A/D Cofnrﬁuﬁiceﬁioﬁ Protocol
Figure 27 displays the System Generator logic for the first A/D input. The
FSYNCH]1 port corresponds to synch. The FDATAI port is set to data. The FSYNCH

port is set to synch. This same logic is repeated for the second and third A/D inputs,

which utilize their individual synch and data ports and the shared clk port as the inputs.

[~ bit? e Fi
FDATAN - not e (fdata
(L4 hit5 g
Inwerter3
counter must be set to match clk on FPAS ou hit5 -
rst out e count
bitd -
e
,_| Counter bit3 - z_1 q
FCLK =|E| = niot(folk) en data 1
Inverter bit2 o Register
,—| hit1 -
FSYNCH1 | not = fsynch
hitd g llu]
Inverter?
STORE_BITS Concat

Figure 27: FPAA Receive Logic

A counter is utilized to synchronize storing each of the individual bits arriving

sequentially into the corresponding registers. This counter is held in reset when synch is

63

logic high. When synch is logic low the counter increments at the update rate of data.
The subsystem, STORE BITS, contains eight 1-bit enabled register blocks. The registers
are enabled according to the logic presented in equation (5). The parameter en is the
Boolean input to the register’s enable port. The parameter bit_number is the bit’s

sequential position in the serial input data. The parameter counter is the count value.

en = (bit _number = counter) AND synch AND (NOT(clk)) (5)

The output from each of the 1-bit registers is concatenated into an 8-bit word by the
concate block. The 8-bit word is stored in a register, which is enabled by the synch input

and is logic high when no data is being received.

6.3 Pressure Sensor A/D Logic Design

The selected A/D converter, the LTC1865, utilizes a standard Serial Peripheral
Interface (SPI) protocol at a clock frequency of 500 KHz. The sdi input to the A/D
converter specifies the settings for the next conversion cycle. In order to set the A/D for
channel 0 with single ended measurements, the sequence ‘1 0’ is written. For the same
setting but with channel 1, the sequence is ‘1 1°. The serial data port, sdo, provides the
readings from the A/D for the previously specified channel. The input line conv, to the
A/D, is held high to start the conversion cycle and is held high for the minimum required
conversion time. The clk signal synchronizes the bit transfer, which is stable when the
clk signal is logic high.

A block diagram, which provides a functional overview of the subsystem for the

A/D communication protocol, is presented in Figure 28.
64

BOOLEAN
VARIABLETO [
DISABLE
| CONTROL OR | Conngl}gPUT
CONTROL COUNTER LOGé%l;]())IljiT >
UTILIZED FOR | cOn
SYNCHRONIZATION OF [
OUTPUT LOGIC PORTS
| -
"| CONTROL OR || sdi OUTPUT PORT
LOGIC FOR
y—p| sdi OUTPUT
—|)
CLOCK o _ | OR —® clk OUTPUT PORT
GENERATOR >
® p VELOCITY BT
o> INP[SJEHIF?BIT - VELOCITY
l P REGISTER OUTPUT
sdo INPUT PORT
»| ALTITUDE
16-BIT
INPUT 16-BIT
> Gt [ALTITUDE
P REGISTER OUTPUT

Figure 28: A/D Communication Block Diagram

A control counter is utilized in order to synchronize the output waveforms
required for the communication protocol and storing of the input. The counter
increments from one to thirty-seven and provides the control count value. The required
waveforms from the output with respect to the control count value are presented in Figure
29.

The generation of the sdi and the conv outputs are controlled by utilizing the
System Generator’s relational block. Each of the relational blocks compares the control
counter output to a specific control count value for the required logic high output. The
outputs from the relational blocks are then OR’d in order to produce the required

waveform. The logic is given for the conv output in equation (6)

65

conv = (count =19)OR(count = 20)OR (count = 21)OR (count < 3) (6)

and the logic for the sdi output is given by equation (7)

sdi = (count = 3)OR(count = 22)OR (count = 23) (7)

I5|14)13)12[11J1Q 9|8 |7|6]5|4]| 3|2 |1 |0 151141131 121111100 9|8 | 7|6 |5 |413|2 (1|0
Hi-Z Hi-Z sdo

sdi

S 1 o A

| counter
012 3456 7 289101112131415161718 19202122232425262728293031323334353637 value

Figure 29: A/D Converter Timing

In order to produce a stable output, during the time when the clock is logic high, a
register is utilized with an enable port. The register is activated with the inverted value of
the generated clock signal, which is received from the RegEn subsystem input. This

configuration is presented in Figure 30.

66

TR
Constants bz -
Relationald
20 2k aT]b
Constant7 | T2
Relational
21 ' E aT]b
Constants be -
Relationalg Lomicall o
- ogica >
IE} *@ a:;b Enz_1 g—»_1)
Constaptz—™0_2 REaEN : Cony
Relational g Inverter Fegister
Count

Figure 30: Logic to Generate Convert Output

The System Generator CEProbe block outputs a logic high pulse equal to the time
when the hardware clock is logic high. These pulses occur at the update rate of the
constant block input. This is used to generate the communication clock signal, c/k. The
constant is set to an update rate of twice the required communication clock frequency,
which is 2usec. The generated pulse enables a counter to toggle between 1 and 0 to
produce the required frequency with a 50% duty cycle. The generated clock signal is
converted to a logic value and OR’d with the conv waveform. The or-gate is used in
order hold clock signal logic high for the duration of the A/D conversion cycle. A delay
of half a communication clock cycle, lusec, is necessary in order to synchronize the sck
logic low signal with the sdi and conv waveforms. This delay is created by utilizing a
register block immediately before the output port. The System Generator implementation

is presented in Figure 31. The PS SCK hardware port block corresponds to the sck

output.

conv

EEProhe P en out e

105" V/HelkPSimP Clock Enable Frobe Convert Logicald
Counter

PS_SCK

N mm

cast

Figure 31: A/D Clock Generator
67

The 16-bit shift registers contain two of the 8-bit registers, which were created for
use in the FPAA communication logic. The shift registers were modified to collect each
individual bit at the correct counter corresponding to the A/D timing, which was
presented in Figure 29. The outputs of these registers are concatenated to form the 16-bit
word. An enabled register is utilized to store the concate block output. The register is
only permitted to update following the arrival of the last bit. For the 16-bit shift register
collecting the channel 1 input the update occurs when the count value is equal to zero.

This process is presented in Figure 32.

hit15
hit14
bit13
bit12
bit11
hit10
hit9
D = Bitln it

hii

1 RegEn

(2 ¥ = count

8-bit reqisters
and
control logic

[

z' gD

= chi
Register

bit?
bitd
bitS
bit4
bit3
bit2
bit1
bitd

= FegEn

- count

Bitln

¥

et vl in Pl

u]

8-Dit registers
and
contral logic a a=b
»b 2!
CorTStan
Felationald

Figure 32: Pressure Sensor A/D Input Logic

Concat

68

In order to allow the user to disable this template subsystem, a mask is used to set
a Boolean variable that is OR’d with each of the outputs in order to hold all the outputs

logic high when the system is disabled.

6.4 Micro Secure Digital Software Design

The MicroSD card is included in the hardware design to provide for the storage of
information at run time. With data acquisition, the final selection of the word length and
sampling time are dependent on the individual design, which creates the possibility for
many different logic configurations to exist. Therefore, only the initialization routine was
included in the template. The clock rate is set to 25MHz and the data length to 512, 8-bit
memory locations.

The card must go through a sequence of commands in order to initialize. The first
command CMDO sets the card to the idle state and SPI protocol. The second command
CMD8 requests information regarding the card state. The third command CMD1 tells the
card to initialize. The fourth command CMD16 sets the data length to 512 bytes. After
each of these commands is received the card sends a specific response, which must be
checked. CMDS sends a 40-bit response, which is detailed in Figure 33, [50]. CMDO,
CMD1 and CMD16 send back a 7-bit response, which is the highest byte of the CMD8
response.

An individual subsystem was built for each of the commands. As the correct
response is received, a register is latched high to enable the next sequential command.
After the final command has been received successfully the CMD16 response latches an

enable flag, termed Ready. This flag is outputted from the subsystem to indicate that the

69

card is ready to receive the next instruction such as read or write. The subsystem is

presented in Figure 34.

39 3837363534 3332 3l.......... 28 37 e 12 11........ S 0
] y
bit reserved
erase
reset command
illegal version
command voltage
com Crc error - accepted
erase sequence
error check
address error pattern
parameter error

in idle state

Figure 33: MicroSD Card Response

CLK—>| cast | and
0 ush CLk
CS start Convert z aliili
USD_DOf pnt CLK Logical
DI_start
Lb.
Daut EMnaxt
cwoa j_rgd uSD_CS
(2 —m
CS Logical2
»| 20 +|u5D_D| n{
- Z (uliil
_
Dl Logical
Enable €5
u]]
* D0 Epnext]
CMD16 Ready

Figure 34: MicroSD Card Initialization Logic

70

All the commands sent to the card share the same output hardware ports and must
be able to take control, without conflict, when active. Therefore, all of the command
outputs along with an input port to the subsystem are AND’d just before each of the
corresponding hardware ports. The input ports to the subsystem are for user read and
write commands. The subsystems are designed so that the output is logic high when
inactive. The hardware ports uSD CLK, uSD_CS, uSD DI, and uSD DO, given in
Figure 34, correspond to the communication clock port c/k, the chip select cs, the data
port to the MicroSD card di, and the data port from the MicroSD card do respectively.

The subsystem that sends CMDO waits 3ms to provide the memory card time to
power up. After this delay, it sends the correct bit sequence for CMDO, receives the

response and sets the enable flag output. This process is presented in Figure 35.

w N out »f naot | » 1)
Inverter2 CLK
CLK
latches to '1' at 3 mSec Generator
d
i | - .
caat 1 o of | o] Tal,
Convert 0 w2
Caounter Register Inverter z. Cs start
»EN DI_start Logicall
DI_start

DI_SELECT LOGIC_HIGH

h 4

(T —mwD0 R1 1
0 F4

d
4 a=h 1 -
Int - 4(- 1)
- En EMnext
RECEIVE R1 Relational Register]

Constants

Figure 35: CMDO Subsystem

In order to create the 3ms delay a counter is utilized, which counts from 0 to 1
with a 3ms update rate. When the counter has incremented to the value one a register is
latched to logic high. This register output enables the counter utilized as the

communication clock output, clk, and the subsystem that sends CMDO, which is
71

D1 SELECT LOGIC HIGH. The subsystem, which receives the card’s response,
RECEIVE Rl1, is always enabled. The MicroSD card always sets the first bit sent equal
to zero to indicate the start of the transmission. When this occurs, the RECEIVE R1
subsystem starts a control counter, which is set at the communication rate. The counter is
used to enable eight registers when the corresponding register enable bits arrive. When
the last bit has been received a register storing the concatenated 8-bit value is enabled.
The relational block is utilized to compare the received word to the correct response,
which is equal to the value one. When the correct response is successfully received a
register is latched logic high, which is the enable output of the subsystem.

The DI SELECT LOGIC HIGH subsystem contains a counter, which counts
from 0 to the value of 147. When the final value is reached, the output is latched to logic
high. The count values of 0 to 100 are required to provide the card with a clock input for
a short time before the command is sent. The count values of 100 to 147 represent the
48-bit word, which is to be sent. The DI LOGIC subsystem contains relational blocks to
compare the count value to the location of the logic high bits within the 48-bit word and

OR the results. The function given in equation (8),

di = (count=100)OR(count=101)OR(count=140)...

8
OR(count=143)OR(count=145)OR(count=147) ®

produces the signal sent from the di port to the MicroSD card, which is the correct

sequence of logic high pulses.

72

1 JEN ol
InT Out1

Dl_start
control counter -
Dl_LoEIC
_b.
a_Bd HeEn out
L 3 a=b

LDgicaI DOl Cht u] z—ﬂ
Relational [Mvertert
147

Constant Latches at cnt=147

Figure 36: CMDO Logic Output Subsystem

The next subsystem to be enabled is the CMD8 in Figure 34, which sends the
CMDS8 command. This subsystem follows the same design flow as the command CMDO
discussed previously, with three exceptions. The MicroSD subsystem for sending CMD8

is presented in. Figure 37.

(1 JEnable
wnl Cut! —m T)
]}
DI_LOGIC
" a_Ed —wlen out—wla a=b
7) not
Logical cantral Count | oo zgong Mvertert

247

Caonstant
Latches at cnt=247

| not
high until this state is enabled

nat d
- DO EMnext {: 21
Inverter2 Z en

Logical2 RECENE Register1
Do

Figure 37: MicroSD Send CMD8 Subsystem

The CMDS subsystem is enabled from the output of CMDO instead of a timer
delay. The 48-bit command has a different sequence sent than CMDO. The response is
forty bits rather than seven. It was found that if the next command was sent too soon, the
card did not respond properly. Therefore, the command is not sent until 200 clock cycles

after the subsystem is enabled.

73

As with the output of CMDO0, the MicroSD send CMDS8 subsystem’s di output is
generated with relational blocks to compare the count value to the required logic high
sequence followed by an OR gate. The function, which produces the di output port signal

for CMDS is given in equation (9) as:

di = (count=200)OR(count=201)OR(count=204)OR(count=231)OR...
(count=232)OR(count=234)OR(count=236)OR(count=238)OR...
(count=240)OR(count=245)OR(count=246)OR(count=247) 9)

Contained within the 48-bit word sent to the MicroSD card is an 8-bit value equal to 170.
This value is a pattern check and is returned within the response from the card.

The subsystem that receives the MicroSD response to the CMD8 command,
RECEIVE, checks that the first 8-bit word received from the MicroSD card is equal to 1
and that the pattern check, bits 32 through 39, is equal to 170. The MicroSD subsystem

for receiving the CMD8 response is presented in Figure 38.

Do

Bl dz'1 o]

Registers e

Constant? gkl 19 -0 rst out
o g W

o, nz? Logical Counter
onstan ’—R'.elatiunalm

Data

¥

aa=b
1 bz’
RECEVET constant1 Relationall

R1

¥y

Count

Logicall

Data

¥y
4

3 a=b
[i70fwpz2®
RECEVEZ constants Relational2

Figure 38: MicroSD Receive CMD8 Response Subsystem

hk_pt
Count Fh_ptm

74

Once the conditions checked are true a register is latched to logic high. The
register output is the subsystem flag ENnext, which provides the next command to be
sent. When enable input signal Enable is logic high and the di signal is logic low a
counter is enabled. The counter is used to synchronize storing of the arriving bits. The
subsystems, RECEIVEI and RECEIVE2, contain registers, which are enabled by
corresponding counter values. The values are concatenated to form the 8-bit word, which
is the output of the subsystem.

The next subsystem is MicroSD CMD1, which sends the CMD1 signal. This
subsystem follows the same design as the CMD8 subsystem by utilizing a counter for
synchronizing the sending of the di sequence, which represents the 48-bit command. The

MicroSD CMD1 subsystem is presented in Figure 39.

¥

In1 Out

Dl
DI_LOGIC
(T JEnahle cantrol counter
{1t
- aut
j_lad L=t 3 a=b
-0
- Cantral bz
Invertert
Logical coynter Relational
|
Canstant Latches at cnt=147 Logicald
and [*
740 ;_
- N0t { OF
high until this state is enabled -)
Logicalt
| not
Inverter3

ERnext
Inverter? Register1

d
ENnext -1 {3)
-0

Do

restart

Logical2

RECEMNE
Figure 39: MicroSD CMD1 Subsystem

The counter is enabled when the Enable input is logic high. Unlike the previous

commands discussed, the response to this command is slightly different. The card reacts

75

by returning an 8-bit response equal to 0 while it is still initializing and equal to 1 when it
is ready for use. The communication protocol requires the card to be polled for the
information. In order to accomplish polling of the card, a reset is included in the circuit,
which restarts the send CMD1 control counter when a response equal to 0 is received.
The subsystem for receiving the MicroSD CMD1 response, RECEIVE, which is depicted
in Figure 39, works the same as the previously discussed MicroSD CMD1 send
subsystem except for one addition. The MicroSD CMDI receive subsystem performs an
additional comparison to the value 0, which when true, sets the reset output to logic high
in order to resend the command.

The final command is sent by the MicroSD CMD16 subsystem. Once the data is
sent, the subsystem waits for an 8-bit response, which is equal to one. Once the response
is received, a register is latched producing the signal out of the initialization subsystem
that provides the enable flag to the next subsystem, ENnext. The MicroSD CMd16

subsystem is presented in Figure 40.

e NOt » or
high until this state is enahbled 70
Logical3
IM10ut! —m 2)
]
Lz [2t g *and Dl Select
Enable -0 en out Logic High
Delay pegistert
Logical Caontrol aa=h
Counter b0
— Inverter1
Relational
constant Latches at cnt=48
e In1
Cut! = Chit 5
2 w{In2 R1 »|a a=b 4: A .
Data] q = 3)
bo data available Dl_’b z° Eﬁ_ ENnext
R Constant! Relationall FEQISEr2

Figure 40: MicroSD CMD16 Subsystem

76

6.5 RS232 Logic Design

Communication subsystems were created to provide user capability for the RS232
communication protocol. A subsystem is included within the autopilot template to
enable/disable the autopilot ports. In addition, three subsystems are included within the

library for sending, receiving and down-sampling the received data.

6.5.1 RS232 Disable Logic

Communication via RS232 is disabled by setting the enable and the shutdown
pins on the MAXS561 transceiver IC to logic low. When these IC control lines are logic
low, the transceiver holds all the I/O pins as high impedance. The subsystem is masked
and the inputs to the ports set as a variable constant. The RS232 disable logic is

displayed in Figure 41.

1 RSZ232EM

nmim

ConstantS

R52325D
MM m

Figure 41: RS232 Enable Logic

6.5.2 RS232 Send Logic Design

A library subsystem was designed to send ASCII characters utilizing a standard
protocol of no parity and one stop bit. The subsystem for sending RS232 protocol is
presented in Figure 42.

The inputs to the subsystem, ASCII and Out EN, set the sampling rates to the

following blocks. The ASCII input is the 8-bit character to be sent. It is concatenated to

77

the start bit, equal to 0, and the stop bit, equal to 1. A parallel to serial System Generator
block is used to rotate the 10-bit result, which causes the lowest bit to be sent first. The
parallel to serial converter increases the update rate by a factor equal to the number of
bits being sent. Therefore, the input must be set to one-tenth of the bit rate for the
selected baud rate. The output of the parallel to serial block is converted from a numeric
to a logical representation by utilizing the cast block. The logic output is OR’d with the
up-sampled and inverted Out EN bit. This forces the output BIT, of the subsystem, to

logic high when a character is not sent.

il
(_1 =" gl
450 [Tal el s

En
Corvert D_rg

Constant! Coneat | parajiel to Serial z BIT
.
OLt_EN Logicall
T10 —wd 21 g not

Up Sample Register1 Invertert

Hold output 1 until sending started
Figure 42: Send RS232

6.5.3 RS232 Receive Logic Design
A library subsystem was designed to receive 8-bit data utilizing RS232 with no

parity and one stop bit protocol. A functional block diagram of the system is displayed in

Figure 43.
. 8-Bit
Timer
> Count 8-Bit | Symbol
RS232 Rx o | Start/Reset Timer — Register
. . Ll
Port Input Timer Logic | Sart/Reset New § &b | Logi >
Bit Bit ew Symbol LogIC [New Symbol
Ready Bit

Figure 43: RS232 Receive Diagram
78

The rate is set by the user selecting the baud value from a drop-down menu,
which is provided through the use of a subsystem mask. The selection sets a variable,
which is used within the subsystem, to synchronize the logic to the corresponding baud
rate.

The System Generator program requires the sampling time on the input port to be
a multiple of the clock rate. This requirement necessitated a more complex design for
this subsystem. Rounding the update rate to the nearest allowable value creates a slight

timing offset for each of the baud rates. The baud rates are listed in Table 4.

Table 4: RS232 Bit Timing

Baud Rate (bps) Used Bit Rate (uSec) Actual Bit Rate (uSec)
9600 104.20 104.1667
19200 52.10 52.0833
38400 26.04 26.0417
57600 17.36 17.3611
115200 8.68 8.68006

For a single byte the offsets are small enough to be negligible. However, over
time the offset are cumulative, which eventually leads to a communication error.
Therefore, the port was oversampled at the clock rate and a counter, utilized as a timer,
synchronizes the reception of each bit. The timer is started when the input changes from
logic high to logic low, which essentially realigns the timing for each character received.
Figure 44 displays a recorded waveform for one byte.

Notice that the sampling occurs close to the center of the time the bit is available.
This provides for the system to overcome the expected slight offset and any small amount

of jitter, which may occur.

79

RS232 Recieve Timing

T T
1
0.8 B
o0 06 n
{2
o
-
0.4 B
021 — B!t In B
—— Bit Stored
0 L L L L L
1.94 1.96 1.98 2 2.02 2.04 2.06 2.08

Time in mSec

Figure 44: RS232 Receive One Byte

The timer that synchronizes the storing of the individual bits is implanted within a
counter block, which is incremented at a sampling rate of S0MHz. The count is started
when the input changes from logic high to logic low, which signals the arrival of a new
byte. This is detected by comparing the input, which is down-sampled to 25MHz, to
itself with a delay of one sample. The down-sampling is required to meet timing
constraints. The two bits are then concatenated and compared to a value of 1. When this
condition is true a register is latched so that the system cannot reset until all eight bits
have been received. The register output is then up-sampled to force the counter to run at
50MHz. After up-sampling the register is inverted in order to hold the counter in the
reset condition while waiting on a byte to arrive. The register controlling the counter is
reset to logic low when the final count value is reached. This value is dependent on the
baud rate selected for the counter and a constant block. The baud rate is set by the baud
variable. The constant is used as a comparison to the count value in order to control the
reset of the system. The variable is set inside the subsystem mask when the user selects

the baud rate from the menu. The logic and use of this variable is presented in Figure 45.

80

RESET TIMER I 19*baud
3 o=b

- P N P
timer 12360 bz 1

Drogure S ampla?
R

Constant10 FetafiemalTa
data

Crowun Sample

Inwerterd

Up Sample
Registerz

Condanidd’stat Relationalds

START TIMER
Figure 45: RS232 Timer Control Logic

timer
reset

The individual bits are received into one of eight registers when the counter

equals the correct value. This value is calculated by equation (10),

counter = baud *2* bit _number +1

(10)

where baud is the bit rate for the corresponding baud rate and bit_number corresponds to

the order of the received bit. The outputs of these eight registers are then concatenated

into one 8-bit word, which is stored in an additional register. After the last bit has

arrived, the output of the register holding the 8-bit word is then updated and a byte ready

flag, newSym, is set for one clock cycle. The process is presented in Figure 46.

Ltimer

timer reset 5t out—-
> data
data
Canvert Start-5top Counter
Read Logic
timer
char el :
i data ozt g—————» 1
- - L pz2=b et Sym
8-hit register € o [Registert 1
Relationall
Constant1 »d1 g >
NEWSYM
Register12

Figure 46: RS232 Receive Byte Subsystem
81

6.5.4 RS232 Down-Sample Logic

System Generator synchronizes the output of any block to the incoming rate.
Therefore, the output of the RS232 library subsystem, by default, is SOMHz. Attempting
to run complex algorithms at this rate creates unrealizable timing constraints. In order to
avoid such constraints, an additional library subsystem was developed to down-sample
the incoming byte and the bit ready flag to the communication baud rate. This system is
masked with a user selectable drop-down list, which sets a variable, baud, based on the
communication baud rate chosen. The variable is incorporated within the blocks of the
subsystem in order to synchronize the timing to the selected baud rate.

System Generator does supply a down-sample function. However, it cannot be
utilized alone with the bit ready flag. Since the flag is only available for one hardware
clock cycle of 2ns, it will not be down-sampled correctly. The bit ready flag input,
NewSym, is used to control the timer. The timer provides the output, which can be down-
sampled to provide the bit ready flag, newsym. This flag will remain at logic high for a
period of one clock cycle of the communication rate chosen. The timer is implemented
with a counter. The update rate is the hardware clock rate set by the counter’s reset input.
The timer value is controlled by setting the counter to increment to the value baud
reduced by one. Since the counter starts the increment at zero, the reduction of one is
included. The timer enable/reset technique used in the receive subsystem was also
repeated for this implementation. The logic used to down-sample the bit ready flag is
displayed Figure 47.

The 8-bit word is held in a register, which is stable between updates. Therefore, it

can be correctly down-sampled by baud. However, an additional register is required in

82

order to have the updated value transmitted on the same clock cycle as the byte ready
flag. This is due to the delay introduced by the register controlling the counter. The

logic for down-sampling the 8-bit word is illustrated in Figure 48.

45210
gt
NEWSYIT
L Down Sjanple?
Q7 AT I
5209 bzt Brsiz g r@—brst out
Relationals g=s Inverter2
Consta ister12 Counter baud
{2 INewSAm

baud-1
Figure 47: Down-Sampling New Bit Logic

baud

15210
(T —wdz g 4 (1)

Sy 3 Sy

Fegister1Down Sample

Figure 48: Down-Sampling RS232 Symbol

6.6 Variable 1/0 Port Voltage Set Logic

The logic level setting for the TTL variable voltage ports is controlled by a digital
potentiometer, which sets the voltage control pin on the level translators. A single IC
containing six individual potentiometers was utilized, as discussed in Section 5.3. The
communication protocol to the IC is a standard SPI protocol, which possesses a clock
input line, a data input line and a chip select line. The data is sent serially as an 11-bit
word. The highest three bits specify the potentiometer to be set and the lower eight bits
specify the trim setting in 255 incremental steps. The subsystem is presented in Figure

49.

83

Enable Logic for Each Port's Level Translator

I01_EN 102 EN [o

Constant2 Constantd Constants

| of»joa_en | 0 05 EN [o

Constanté Constant? Constantd Communication Protocol Logic

Control Clock Logic

i m e fo_ser_sp,
|—>aa<b OUT_SEL Parallel to Serialz Convert2
en out
Constantd Relational Counterz2 4’{3” UUtHd z QHU z' 0 IO_SET_CLK |
Counter that counts from 1 to 13 SEND_EN Counter Register Register 1CONVerts

as overall control

—»{ nat H 11 Hd o q}—»{m_SET_cgmnl

Inverter _ Up Sample Register2

Potentiometer Voltage
Orn

Translator Enable Constantl

Figure 49: Variable Port Voltage Set Subsystem

The subsystem is masked to allow the user to easily select between 1.8V, 3.3V
and 5V logic. Within the mask, the initialization code was written to assign the correct
value to the constant containing the trim setting for each port. If the enable block is not
selected, the corresponding enable output for each level translator is set to zero. This
holds the current unused autopilot I/O ports in a high impedance state. Figure 50
demonstrates the protocol for one potentiometer setting.

The clock frequency is set to SOKHz, and controlled by a counter, which toggles
between zero and one. The 11-bit word is then sent to the data input line through a
parallel to serial converter. In order to allow the potentiometer select and trim setting to
be specified separately, two constant blocks are utilized and then concatenated to a single
11-bit word. This process must be repeated six times for each of the internal
potentiometers. In addition, the chip select must be set to logic low for a short period
after each setting is received. A counter is utilized to control when each of the 11-bit
words is sent. The counter is stopped when it reaches the value of thirteen. This is

84

accomplished by channeling the output back through a relational block, which sets the
counter enable input to logic low when the final value is reached. Table 5 displays the

required action for each count value.

'_;r.-gpa . —J
g L0 AhEE O

"]

Figure 50: Potentiometer SPI Protocol

Table 5: Port Setting Control Counter

Counter value Action

1 Chip not selected

2 Send data for port 1 potentiometer
3 Chip not selected

4 Send data for port 2 potentiometer
5 Chip not selected

6 Send data for port 3 potentiometer
7 Chip not selected

8 Send data for port 4 potentiometer
9 Chip not selected

10 Send data for port 5 potentiometer
11 Chip not selected

12 Send data for port 6 potentiometer
13 Chip not selected, counter is now disabled.

85

The communication protocol is enabled by the logic contained in the SEND EN

subsystem and is given in equation (11)

(count=2)OR(count=4)OR(count=6)OR(count=8)OR(count=10)OR(count=12) (11)

When the output is logic high it enables the logic responsible for sending the 11-bits.
The parallel to serial converter is enabled to provide the output data on the IO SET SDI
port. The counter, which outputs the clock signal on the IO_SET CLK port, is enabled
and inverted to directly provide the chip select output on the IO SET EN port.

The data sent to the PARALLEL TO SERIAL block is controlled by the

OUT SEL subsystem. The subsystem is presented in Figure 51.

T)(;>1 sel

nl B
Shift

IO PORT 1

10 PORT 2

IOPORT 3
ot

I0PORT4 Constantt a a4

0 PORT S Constant10 Ihc; ds
Concats
Zonstant11
3 dé

hi
0 FPORT & Constants |

3 Concatd
Zonstant9

Figure 51: Variable Port Data Output Multiplexer

Ml

—
w

86

Individual constant blocks are utilized for specifying each of the individual
potentiometer trim setting. This provides for each setting to be specified through a user
selection variable contained in the subsystem’s mask. The count value is shifted left by
one bit in order to specify the correct multiplexer output. Since the multiplexer’s output
starts with reference 0, a seven input multiplexer was selected. The multiplexer input line
referenced to 0 is tied to the first potentiometer setting. This first value is never sent.

The first value is used to provide for the selection to occur between outputs at every other

count value. This establishes the required delay between each 11-bit word being sent.

6.7 Servo PWM Output Logic

The autopilot is designed to provide for servo control. Therefore, a subsystem
was developed to generate the required PWM signals. The output frequency is specified
by the user to be between 20Hz and 100Hz. The system is designed for an input of
0.00% to 100.00% duty cycle. A functional block diagram of the PWM generate block is

presented in Figure 52.

— | Seclect logic P
—>

PWM Generate Logic
duty —P| Percent to Count P produces PWM with PWM
(percent of 0%<duty<100% MUX output

period high)

Figure 52: PWM Generate Block Diagram

87

A counter is utilized as a timer for the generation of the PWM output. The
maximum count value for 100% duty cycle is assigned from a variable calculated within
the subsystems mask, which uses the user specified frequency. The select logic controls
the multiplexer output selection. PWM output is logic high when the duty cycle input is
100% and logic low when the duty cycle input is 0%.

The percent duty cycle must be converted to a count value. The ratio given in

equation (12)

update frequency
PWM frequency*100

(12)

count = duty

is contained within a multiplier block. The converted value is loaded in the counter at the
start of the clock cycle. When the value is reached the register containing the output bit
is enabled. The register is forced to logic low through the use of an inverter block, which
is contained within a feedback loop. When the counter reaches the final count value the
process is started again. The detailed logic for the generated PWM output is presented in
Figure 53.

The input to the PWM generator is set to fourteen bits. Seven bits are used to
represent the integral portion and seven bits represent the fractional portion. The
quantization error is limited to 1/27, or +/- 0.0078. This provides an accuracy of lus for
the pulse width. This accuracy was required since the standard operating range of a S0Hz
servo is Imsec to 2msec. The update rate of the duty input is limited to 100Hz in order to

guarantee the multiplication stage will meet the timing constraints.

88

PWM Generate Logic

159981+a -y, m
P
a%_count-2 4 70 S3ert oz
Assert VW outAsh_outd
Relational
=
e
Inverter P _out
Ioad
—{sel
20000 a a-b ot
ras_count (8 D g
Addsub {1
‘ a2l ~aunter
hiLI

not
cast » m Inverter1
Im
Convert PWM_out2
Chult
| 22D 58
[Obwipg? a0
zero duty Relationalz Lk 1 v

Yy

Percent to Count

aa=b o full d%;&,—; gz 1 Converti
: bz?
COl’lVel‘SIOIl full duty ,;lm:,timam Concat ZErD duty output MLt
Select Logic

Figure 53: PWM Generator

A test was run for a setting of 15.25% duty for a 100Hz period, which will
produce a 1.525ms pulse output. The generated wave form was stored to RAM at a lus
sampling rate and retrieved through the JTAG port. A check of the exact time, which the
waveform was logic high, demonstrated the timing requirements were met. This
subsystem was repeated twelve times to provide the control logic for each of the servos
and combined to create a masked subsystem with the required user settings. The

recorded waveform is presented Figure 54.

Genearated Waveform
T T
1 .
w 08 ﬂ
=
B
3 08 .
E 04r- #
021 B
0 ‘
0.005 001 0015 002 0025

Time in Seconds

Figure 54: Generated PWM Output

89

6.8 FPGA RAM Data Acquisition Software Design

The JTAG port, while efficient when running the hardware under Simulink
control, is unable to send information at most communication protocol rates. Therefore, a
library subsystem was written in order to write data values to two single port RAM
blocks and then read back these values at a much slower rate. The logic design is

presented in Figure 55.

count to value=mem_len

number of bits=bits \
/ sel

{1 JEN_Rd €

% »len outl | 00000 | o qutlwla addr
L i i
. (D
Logicald Down Sample wricout MUK 1
DO »{addr
3 widlata,
7 7 oo T
Vi
/ / data
=10
/
7 . B — Eingle Part RAM
value=mem_len sampling rate = ds depth=mem_len —
number of bits=bits ~
(3001 - addr
;bdatau
e Z
o datat
™ EnN

Single Port RAM1
Figure 55: RAM Data Acquisition Logic
The subsystem logic input, EN Rd, starts the read process under user control.
There are two inputs, DO and DOI, for data acquisition. These values are saved to two
separate RAM blocks at the update rate of the incoming signal. In order to synchronize
the write process correctly, EN Rd must have the same update rate as DO and DOI. A
counter is incremented at the date input update rate in order to assign the memory
location to both of the single port RAM blocks. When this counter has reached the final
value, a second counter is enabled at a much slower rate in order to increment through the

90

memory locations during the read process. Both counter outputs are multiplexed before
the RAM memory input in order to control the switching between the write and read
processes.

Control logic was utilized in order to synchronize the selection of the multiplexer

output and the write control line to the RAM blocks. Equation (13)

EN _Rd and (not (write counter=final value)) (13)

provides the logic for the enable to the write counter and the read/write select input to the
RAM. Since the counter is disabled as soon as it reaches the final value, the output of
this equation is held constant.

The multiplexer select and the read counter logic is simply a comparison of the
counter value to the final count value. When the write counter reaches its final value the
multiplexer output switches and the read counter starts the increment through the memory
addresses. A down-sample block was placed just before the read counter enable input.
Therefore, the counter rate is reset to a user selectable value. The outputs from the
subsystem are the address, addr, the first set of data, data, and the second set of data,
datal. These are sent to the JTAG port at the slower rate, during the read cycle, to be
stored in Simulink.

The subsystem was masked with user inputs for three variables. The three
variables are memory length of the RAM blocks, mem_len, the associated number of
required bits, bits, and the down-sample rate for reading the RAM, ds. These variables
are then entered into the blocks associated with them.

91

6.9 GPS Unit Communication Protocol

The Superstarll GPS unit supplies latitude and longitude information. This
information is sent as a series of 8-bit values using the RS232 protocol. The TTL logic
level is selected as 3.3V. The library subsystems for receiving and down-sampling the
RS232 protocol are both set to 1900 baud. The SUPERSTARII block receives and
combines the 8-bit values into the correct format. The last block of the subsystem
prevents the information from being passed out of the subsystem if the correct CRC is not

received. Figure 56 displays the four lower level subsystems that comprise the system.

lat W lat latitude
lat
lon = lan
longitude
Lalats lon
alt > alt
altitude
el e [alt
Sym—mSym syrm—
data Evel | Evel M velocity
P
Portin new Iy m —m MewSym newsym —
el el
R5232 DownSampleRS232 E velocity
Ew
Svg) Ss
e [2t
B % velocity —m(5)
CkSumErr - CkSumErr W
Mewival - Mewalue =Y
=
only send
Superstarll Recigve gggd info
Binary CMD20 5
Mewhal

Figure 56: Receive Superstar II Library Block

The subsystem receiving the down-sampled 8-bit information utilizes a control
counter to keep track of the byte number of the received 8-bit word then combines the
information as necessary.

92

The Superstarll GPS unit when set to send the latitude/longitude information in
binary format, returns the values listed in Table 6, [51]. The subsystem contains a block

for each piece of information received or each individual line in Table 6.

Table 6: GPS Information Formatting

Byte Description Units Type
1-4 Header N/A Binary
5 Hours, Correction, Reserved N/A Binary
6 UTC Minutes Minutes Binary
7-14 UTC Seconds Seconds Double
15 UTC Day Day Character
16 UTC Month Month Character
17-18 UTC Year Year Unsigned Short
19-26 Latitude Radians Double
27-34 Longitude Radians Double
35-38 Altitude Meters Float
39-42 Ground Speed Meters/Second Float
43-46 Track Angle Radians Float
47-50 North Velocity Meters/Second Float
51-54 East Velocity Meters/Second Float
55-58 Vertical Velocity Meters/Second Float
59-62 HFOM Meters Float
63-66 VFOM Meters Float
67-68 HDOP N/A Unsigned Short
69-70 VDOP N/A Unsigned Short
71 Navigation Information N/A Binary
72 Bits 0-3 Number of SVs N/A Binary
Bits 4-7 Coordinate System
73 System Mode Information N/A Binary
74 Elapsed Time Hours Character
75 Reserved N/A N/A
76-77 Checksum N/A Unsigned Short

Not all the information received from the GPS unit is passed out of the subsystem.
The only information passed out of the subsystem is data necessary for simple navigation.
This includes position readings, velocity readings and number of satellites available (SV).
The subsystem calculates the CRC checksum as each byte arrives. The checksum format

93

requires that each of the bytes be combined, added, into a 16-bit word with overflow
neglected. As each byte is summed, the addition block output is set to truncate the
sixteen bits with no fractional representation. Each of the subsystems receives the
partially added value, CkSumlin, and passes out the updated value to the next subsystem,
CkSum. The final sixteen bits received is the checksum value sent by the GPS. The
checksum is subtracted from the calculated value and compared to the value of 0 in order
set an error flag out of the subsystem, CkSumError. A comparator is utilized to set a new
value available flag, NewVal, when the counter reaches the value of 77. The blocks,
which make up the receive subsystem are presented Figure 57. The control counter logic
and each of the subsystems for combining the specific measurement values are contained

in the lower level systems for clarity.

— sata HIE Chsurin, | rcesung L e{Cksumig. |
,%t HIHIHAL data data L atiata
':PD"FH ot ﬁ“'-“t:lﬁl.rn wrtcm'-'“ Hwlcount k5L L acount CHSUM
X
Control Court Heager Year Ushart Track Angle Flagt WFOM Flo |
Chmumin, L ChSumin Etlﬂminw@ ChSumisnapl
Iat data Wl || fefdata
nmml::ksun wrt':m“" — :wrt':m“"] e runt SRS
LaiﬂudeDwH Moarth Vel Flo: HDOP Utshort
[; |; I: ChSurmin
l:lcsumuﬁm CrEumin Evellm{E5) Ltlﬁ.ln'l@[:[
Im data = Pr
s - L atiata
I.I'I'I o b
count” el N
Winules u:m. Langtuda D‘“" Eact Vel Plot VOO Usheet
Cisuming,_| Cesumin. gaf, Chesumin, e e [——
al: data el f Susl—wT)
i ChSum Mawodal SVs
mrtCkELrn wrt':m“" ™ count CSumf,
“Wertical el Fl —
Second [hlh Adtitude Floal “‘1‘ Irfo
- L—l 0 0 | —@
ChSurmin CrSumy) Hzwh
ChSumin dast | R~ |
data month) data L »ldata
ount CkS nt 'CKS L slcrunt CKS 1 — l::l‘ﬁl.rn—l 5_=uh
Day Worth Uchar Grourd Speed Float HFOM Flaat Eapsed Tims UcharConstantifE I pagicrad
‘eiata C
SemCkSum, ib aH D]
L picount 2aaSub 2| ckSumen

Check Sum Relstiens!

Figure 57: Superstar II Receive Subsystem

94

The control counter logic is presented in Figure 58. The first byte sent by the
GPS unit is the beginning of the header and is equal to 1. A relational block is used to
compare the incoming byte to this value. When the value is received a register is latched
to one. Latching of the register to one enables the counter, which will synchronize

storing of the received bytes.

add delay because register to counter has I
delay of 1 »dz' 0 1)

Register1s

Relational1

\—1'—> 3 a=h d .
Constant j pzt rstz 0
en]
i - Count
[| reinterpret Refational pegister
R
Reinterpret3

Figure 58: GPS Communication Control Counter Subsystem

The final subsystem prevents the output from updating when a checksum error
occurs by utilizing a series of registers for each of the values sent out of the subsystem.
This subsystem is presented in Figure 59. These registers are enabled when the

checksum error, CkSumErr, is logic low and the new value flag, NewValue, has been set.

not —m and

0

CkSumErr 7
Inverter Logical (e,
lat e S
g latituce CE—»d

Mewvalue Reqister Evel N £ Q_
welocity
Registerd
i e :
el | ongiuge (B L&
Bedister Wvel P EI’% g)
= v W velocity
Registers
N Ne» :
0 altitude b, ™ -
Dngi tors Ei - EI’% q
45— Registers
hvel N Eﬁd | o ST
v N velocity
Register3

Figure 59: GPS Communication Subsystem Update Output Subsystem
95

6.10 IMU Unit Communication Protocol

The MicroStrain communication library subsystem is comprised of two lower
level subsystems. The library subsystem for receiving RS232 protocol is set to a baud
rate of 38400. The MicroStrain subsystem controls the initialization command requesting
the stabilized Euler angles be sent continuously. After initialization, it combines each of
the bytes into the correct format as the information is received. This subsystem also
checks to see if the correct checksum value is received. If the checksum is correct, the
output is updated. If the checksum is incorrect, the error flag, cksumerror, is set to one.

The IMU protocol block is illustrated in Figure 60.

Roll

|—> R Pitch
Sym

f @

é

ﬂ
=

:

o
=
(]

=

(1w data
IMUIn

=
=
=
]

ticks

newsym
L> Mext cksumErrof

CksUmerr
RS232 CMDtolhiu

5

ChDtolU

ticrostrain S0M MU
Feceie Stabilized Euler
Continuous

Figure 60: IMU Protocol Library Block

The subsystem receiving the 8-bit data from the RS232 subsystem is made up of
lower level subsystems. The MicroStrain subsystem is presented in Figure 61. The
control counter logic block synchronizes the receiving of the individual bytes by
providing a count value for each one received. The send command subsystem sends the
correct sequence for the requested information. The remaining subsystems combine the
bytes making up each of the measurements received. Logic is included to sum the value

of the bytes received in order to provide the calculated checksum. This value is

96

compared to the received checksum. If the correct value is received, the output registers

are enabled and the output of the subsystem is updated.

Out1

ChCtalkdl
R Data D ata SendCommand
Rx Mext Count »{Count Start Stah. Eulers Cortinuous
ControlCount Start
Mext t—wData
- Roll »fd
- Count 2_1
ReceiveRol r*=En Rall
Register19
B Piteh AddSub1 ol
- L
{Count N g 5
ReceivePitch = e I Pitch
| a+b BV [P Register20
AddSub3 Z4n
[pata v AddSub? o En
»{Count an [Register! 7
- orEtEr bz
Receiveyaw Relationall -
L
| wf0ata | pfen 2 9
Ticks {4) Wawy
| Count . N Register21
ReceiveTicks Reinterpretd
LD ata 5 a=b
poount T | '—‘lil Inverterq CksumErrof
ReceiveCksum Reinterprets Relationall 3

Figure 61: MicroStrain Receive Stabilized Euler Angles Subsystem

The subsystem providing the control count contains a counter, which is used to
synchronize the reception of the individual bytes. The counter is enabled by latching a
register to logic high when the first header byte is received, which is equal to 14. When
the counter has incremented to the final count value of 11, the same register is reset back
to the initial value of 0. Reset of the register disables the counter until the next block of

data is received. The control count subsystem is presented in Figure 62.

rstz1 g
Relational = I
Register Counter
)
hext
pd 21 g
Data
Renister13

Figure 62: IMU Control Count Subsystem
97

The subsystem for sending the command sequence is presented in Figure 63. The
subsystem uses a counter to synchronize the sending of three sequential 8-bit commands.
The first value is equal to 16 and indicates to the IMU that a command is coming. The
second value is equal to the value 0 and sets send to continuous mode. The third value is
equal to 14 and requests the stabilized Euler angles to be sent. These values are held in
individual constants, which are applied to a multiplexer. A slight delay is occurs after
each value is sent. Therefore, the counter is increment to the value 6 at the baud rate and
the output shifted right in order to produce the 0 to 3 count values required by the
multiplexer select lines. The library block created for sending the RS232 protocol is
utilized for sending the multiplexer output. This block is enabled by comparing the

counter output to the required constants for sending each of the values.

Give IMU time to boot

N
bz-n FEn out
Canvert

constantd Relationald Counter
rst

d 1 out
2 a=b 5 q not En
en

-1
- Register Imverter Counter
canstant Relational

™3 a=b
N
constant! | Relational
3 a=h
| iz
Relational

constant2

aa=b
hz!
constant3 Relational3

Figure 63: IMU Send Command Subsystem

:

98

CHAPTER 7

RC-TRUCK IMPLEMENTATION

In 2007, Murthy developed a control system for an RC-Truck model. The model
was converted to FPGA implementation using System Generator and verified through
hardware-in-the-loop on a Xilinx Virtex II development board, [48]. In order to
demonstrate the effectiveness of the developed autopilot platform, Murthy’s research was
emulated, by implementing the software design of this research on a similar RC-Truck
robot utilizing the autopilot designed and developed in this research.

The simulation RC-Truck model was a simplified mass on wheels model that
included a single motor equation and kinematic equations for Ackermann steering. The

RC-Truck model is illustrated in Figure 64.

v
T, X
a
V > | FORWARD | “X | Robot X
act MOTOR DYNAMICS |] 1/s »

KINEMATICST—® Y

— > .
(o4 — /4

Figure 64: RC-Truck Model Block Diagram

Ve 1s the control input to the motor. 7, is the torque output of the motor. a, is the
forward acceleration along the body reference x-axis. vy is the forward velocity along the
body reference x-axis. X and Y represent the world reference position. i is the heading.

a, 1s the steering angle.
99

The control system consisted of a simple mission planner to send in a new way
point when the robot was close to the current one. The control system was based on a PI
controller for velocity and a P controller for the heading. The RC-Truck control system

is presented in Figure 65.

Q_. . 8
Vx - Robot
i
SET POINT s PI X

RC-TRUCK

WAY POINT ATAN2 78 MODEL
GENERATOR —» P L Y

Yvy

\4

Figure 65: RC-Truck Control System

The hardware-in-the-loop verification, performed during Murthy’s research,
utilized various sensors. A 10 Hz IMU unit was used to provide the heading angle. An
encoder was used to provide body reference velocity at 50 Hz. A 10Hz GPS was utilized
for position. However, the conversion to latitude/longitude or ECEF reference frames
was neglected, [48].

The sensor set utilized on the robot for this research did not include an encoder.
The velocity was obtained at 5 Hz from the IMU in the North-East reference frame.
There was an observed delay of 1 to 2 seconds. In addition, the IMU operated at a
guaranteed minimum of 50 Hz. The Latitude/Longitude readings from the GPS unit
arrived at 5 Hz. The Simulink implementation was modified slightly to incorporate the
sampling rates. The sampling time and delay of the velocity readings was of particular

concern. The modified RC-Truck control system is presented in Figure 66.

100

RATE

TRANSITION
TO 5Hz
RATE | | SSECOND |
TRANSITION DELAY
TO 5Hz v
P
o . TRAN%?;E)N TO Robot X
SET POINT * SIMULINK TIME RCTRUCK -
> Xygi+
tra, - 74 RATE RATE MODEL »>
WAY POINT s +
GENERATOR ATAN2 P} TRANSITION TRANSITION TO — L Y
Y. .+ TO 50Hz - SIMULINK TIME
g traj 4
RATE
TRANSITION
TO 50Hz
RATE

TRANSITION
TO SHz

Figure 66: Modified RC-Truck Control System

The velocity PI controller was implemented with a Simulink PID controller block.
The proportional gain was set to 0.05, the integral gain to 0.001 and the derivative gain to
0. The proportional controller used for the heading control had a gain of one. This
caused the steering angle to equal the heading error. This angle was not limited in the
controller; rather, it was limited to +/- w/6 radians within the RC-Truck model. Including
the limitation within the RC-Truck model best reflected the behavior of the system. The
rate transition blocks were incorporated to reflect the sampling rates of the sensors. The
rate was transitioned back to the Simulink time step just before the PI controller and the
steering angle input to the RC-Truck model. Simulink required that the PI controller to be
run at the Simulink rate. A realistic mathematical representation of the system behavior
was obtained because the update of the error value entering PID block is limited to the
sensor rate.

The way point generator was contained within an m-file that assigned two vectors
of X and Y set points, calculated the Euclidean distance from the position set point in the
X and Y world reference frame and incremented the set points when the RC-Truck was

within one meter of the current set point. The code is presented in Figure 67.
101

.
i

fzill

g

&

%_

i)
(0
=
£

L
il
@
an
&

G

Ll

[

Lt
=y

if d<1 £& sp< length(Zcraj)

W2
-

(=]

&

|

[e
RESTY

Figure 67: Simulink Implementation of Way Point Generator

The velocity response was not ideal due to the slow sampling rate and delay. However,

the controller remained stable for a set point of 1 m/s with the controller proportional

value equal to 0.01 and the integral value equal to 10”. The velocity of the RC-Truck

during simulation is graphed in Figure 68. The RC-Truck successfully reached each of

the way points. The route established for the RC-Truck to traverse, with way points, is

102

presented in Figure 69.

Velocity m/Sec

Y-Coordinate (meters)

14

0.2

100

80

60

40

20

0

-20

-40

-60

-80

-100

Velocity

Velocity
—— — Velocity Set Point

1
0.5 1 15 2 2.5

Time Step (10 mSec) x 10

Figure 68: RC-Truck Simulation Velocity Output

RC-Truck Trajectory

direction
O path

-100 80 60 40 -20 0 20 40 60 80
X-Coordinate (meters)

Figure 69: RC-Truck Simulation Heading and Position

103

|
100

7.1 RC-Truck Controller Design

The hardware implementation required further revision to incorporate the sensors,
realistic operation of the hardware, and the math related to the latitude/longitude
coordinate system. The Measurements from the GPS unit were received in 64-bit double
representation for the latitude and longitude and 32-bit single representation for the North
and East velocity measurements. The received values were converted to a binary
representation with a fixed word length. Because the double and float precision reflects a
much longer fixed word format, a limitation of the word length providing a sufficient
resolution was incorporated into the logic design. Unlike with the simulated system, the
velocity was rotated to the body reference in order to correctly implement the control of
the RC-Truck motor. A block diagram of the hardware control system for the RC-Truck
is presented in Figure 70.

The servo control was slightly more complex when implemented in hardware.
The additional complexity was necessary to prevent damage to the servo controlling the
steering angle. If the wheels were turned when the RC-Truck was stationary, there
existed a potential for damage due to the additional force needed. In addition, the RC-
Truck had to be stopped when the number of satellites used by the GPS unit dropped
below five. This feature was also incorporated in the servo control.

The battery used to power the autopilot board, sensors and servos was Lithium
Polymer. Therefore, full discharge could incur damage. Battery damage was prevented
by monitoring the battery voltage with the FPAA and using an LED as a low voltage

indicator. A 7.4V battery was selected. Since the voltage was approximately 8.5V at full

104

charge, the low battery flag was set for 7.4V, which provided for some additional time for

the LED indicator to be observed visually by the operator.

MU
COMMUNICATION
PROTOCOL

HEADING L 2
GPS
COMMUNICATION
PROTOCOL
| | CONVERT
LATITUDE DOUBLE B v
o GENERATE CALCULATE -
CI?IE(TQA%\IACTEE > NEXT WAY j’_ HEADING [
POINT —(T» SET POINT +
CONVERT |
LONGITUDE (9 "ot
SERVO MOTOR
> + CONTROLLER
VELOCITY SET
POINT
. ROTATE TO _
NORTH | | CONVERT > BODY
VELOCITY FLOAT REFERENCE
EAST CONVERT
VELOCITY R FLOAT >
NUMBER >
SATELLITES

Figure 70: Hardware RC-Truck Control System

During the development of the control algorithms, it was necessary to collect both
measurements and calculated values while the vehicle was in motion. This provided for
the observation of these values with respect to the robot’s behavior at that moment. The
JTAG is limited in how much data can be received into Simulink for each time step. This
was due to the limitations of the parallel port integration meeting the timing constraints of
the Simulink program. In order to overcome this, a subsystem was built that converts the
information into ASCII format and then sent the information to one of the autopilot’s
TTL output ports. In order to receive the information through the computer’s USB port,
Acroname’s TTL to USB converter was utilized. The received information was observed

105

using Window’s HyperTerminal program. The HyperTerminal program also allowed for
the incoming data to be stored to a text file for further analysis.

RC-Truck platform was provided by the Army Research lab. This platform
included the servos, motor speed controller and motor. A wood box was fabricated to
house the autopilot platform and mounted to the metal framing towards the rear of the
RC-Truck. The required Superstar II GPS receiver, antenna and power supplies were
mounted on a wood platform attached to the top metal framing on the vehicle. The
MicroStrain IMU was mounted directly to the metal frame on the back of the RC-Truck.
The location of the IMU prevented the magnetic field generated by the drive train motor
located at the center of the vehicle from corrupting the measurements.

The motor was powered from a single 7.4V Polymer Lithium battery. The same
type of battery was also utilized to power the autopilot, servos and sensors. The autopilot
and GPS required a 5V regulated input. In order to meet this requirement, a circuit
containing two voltage regulators and heat sinks was included in the hardware
implementation. The servos did not require a regulated voltage, but were limited to a
maximum of six volts. For this reason, the servos were also powered from the regulated
five volt supply. In order to guarantee enough current, the voltage supply to the
electronics was divided between the two regulators. The IMU is powered directly from

the same 7.4V battery. The RC-Truck is presented in Figure 71.

106

BATTERY REGULATORS | TTL-USB CONVERTER § GPS RECEIVER

_‘{ . : _- - s : -
i, (&) AUTOPILOT
" N>, g -
VIOTOR BATTERY ',. —
)

Figure 71: RC-Truck with Sensors and Power Supply

7.1.1 ASCII Data Collection

The speed and word length that can realistically be sent through the JTAG is
limited by both the parallel port and Simulink‘s integration with Windows. For this
reason, a subsystem was developed to convert the binary values to decimal ASCII
representation. The ASCII values were then sent utilizing RS232 protocol. This allowed
a TTL-USB converter to be utilized to receive the data from the computer’s USB port
through Window’s HyperTerminal program. The algorithms for converting binary to
ASCII were designed for a specific representation. In order for sufficient resolution, the
subsystem required a 40-bit word length, with the lower twenty-nine bits representing the
fractional portion. The information was sent sequentially with coma inserted before each
value. A line-feed character was the last character to be sent before the subsystem was

reset for the next eight measurement values. The additional characters provided the

107

necessary delimitation when stored into a text file through the HyperTerminal program.
Each of the ASCII characters was then sent to the library subsystem, SENDRS232 in

order to rotate the bits out to a TTL port. The design is presented in Figure 72.

aut| a X>>5 i
pa-b 20 =
ascil_ent AddSub shint do a0
(%_’ a1 Constant12 AsCl
Constant? K BIT
&y wlaz Out_EN oun
@—b g3 ———mdats ascii i SendR5232

Z—U

(“E}—bdﬁ res send Logical

CONY_SEND
F iy
Ing
- e

Constant3 b 20
count res
RESET

Figure 72: Send ASCII Subsystem

Yyy

Relationall

A counter was set increment at 1.042(10) seconds, which was the required
timing for sending each ASCII character for a baud rate of 9600 bits/sec. The count
value was utilized for synchronizing the sending of the required eight measurement
values and the delimitation characters. The final count value was based on the time it
took all of the ASCII characters to be sent. The eight measurement values were
multiplexed just before the subsystem which inserted the coma and converted the binary
value to ASCII characters, CONV_SEND. The select input to the multiplexer was

controlled by the count value. Equation (14)

sel = (count—1)/2’ (14)

108

was implemented to convert the count value to the required multiplexer select input of 0
to 6. After each of the measurement values were sent, the CONV_SEND subsystem was

reset for the next character. The reset logic in equation (15)

(count =32)OR (count = 64)OR (count = 96)OR (count =128)OR...
(count =160)OR (count =192)OR (count = 224)OR (count = 255)

(15)
was contained in the RESET subsystem. When the count was equal to the value 257, the
last value had been sent and a second multiplexer was utilized to send the value 13,
which is equivalent to the line-feed character in ASCII.

The CONV_SEND subsystem contained a counter block utilized as a timer to
synchronize the sending of the ASCII characters. The characters sent by this subsystem
included a starting coma followed by a plus or minus sign, the ASCII characters
representing the decimal form of binary value to be sent, with the decimal point character
inserted before the fractional portion. The counter was reset by the external control
counter after the last character had been sent. The first bit of the value received was the
sign bit which controlled a multiplexer. The multiplexer selected between converting the
binary value to the ASCII characters, for a positive number, or the negated binary value,

for a negative number. The subsystem is presented in Figure 73.

109

st out

res
ControlCrt

dlata

¥

¥

*

decimall? Relstionald

t mus_sel
Subsystem “

L P

[a—ep’

decimall 1

Relationals

Logical

Coma

L

b4

Ll

b4

anes

¥

CORY_AROYED

Megate

decimall 0

~ a<h

m

(eln]

L3

Leind
RotOut

Relational

{res

COMNY_FRACT

decimal poirt

Figure 73: Convert to ASCII Subsystem

¥

b

The CONV_ABOVEQO subsystem calculated the characters which represented the

hvalue = CAST(bin /100)

value with the truncate option set. Equation (17)

tvalue = CAST((bin — hvalue) /10)

1

10

calculated with three sequential mathematical operations. Equation (16)

decimal hundreds value, the tens value and the ones value. The 8-bit values were

(16)

calculated the decimal hundreds placeholder, Avalue, directly. The variable bin is the
highest 11-bits of the 40-bit binary value to be converted to ASCII. The CAST operator

represents the system generator cast block which was set to define the output as an 8-bit

(17)

used the output from the first calculation, Avalue, and bin to calculate the decimal tens

placeholder. Equation (18)

ovalue = CAST (hvalue — tvalue) (18)

was the final calculation that results in the decimal ones placeholder, ovalue. In order to
obtain the ASCII character, these values were then OR’d with the value of forty-eight.
This set the highest four bits to the required ASCII sequence of ‘0011°.

The CONV_FRACT subsystem utilized a feedback loop to calculate a sequential
series of division by ten. This sequential division was calculated at ten times the
communication baud rate, as required by the subsystem sending the ASCII characters.
Each division by ten resulted in shift of the fractional value by one decimal place holder
to the decimal ones placeholder. The value resulting from this calculation was then
converted to an 8-bit value and OR’d with the value forty-eight to obtain the ASCII
character. After the last character was sent, a comparison to the value of the counter
controlling the CONV_SEND subsystem was used to reset the subsystem. The

CONV_FRACT subsystem is presented in Figure 74.

[
Caonstants CIP,
0
;
e Counter Relational <8l

Lat/Lon conversion to ascii

N
= R

In1 a
d 1 gt CMult Convert otout
Register ML Logical

Constant1

Figure 74: Convert Fraction to ASCII

111

7.1.2 Battery Monitoring Design

The FPAA IC was utilized for monitoring the battery voltage. The battery voltage
was inputted directly to the FPAA large signal input. The FPAA was programmed for an
internal gain of negative two. The A/D output was assigned to the FPGA port connected
to datal in the autopilot template’s FPAA INPUT subsystem. A negative gain was
utilized because the A/D utilized twos compliment formatting. By utilizing the negative
gain, the output was directly inputted as 0 for an internal voltage equal to -1.5 and 255 for

an internal voltage equal to +1.5. The AnadigmDesigner2 environment is presented in

Figure 75.
Addrl:1 Addr2: 255 AT 1R LOAD ORDER: 1
: }\ - A ADT -
u + = -G™om SAR
0 N
] N
[m
4 [}
3| off N
= -

FPaal
Figure 75: FPAA Program for Battery Monitoring

The FPAA configuration was saved as a binary file in the folder containing the
Simulink autopilot program. The binary file was then converted to a variable and

assigned within the mask of the autopilot template’s PROGRAM_ FPAA subsystem. The

112

output of the autopilot template’s FPAA INPUT block was connected to a variable for

comparison to the A/D input equal to 7.4V which was equal to 198. Equation (19)

2% 1
3

7.4
ag set=| ——+1.5
flag (8.96 j

(19)

provided the conversion from the 7.4V input to the binary value outputted by the FPAA
A/D. The value 7.4 was the battery voltage that the flag was set for. The 8.96 was the
conversion due to the voltage division ahead of the FPAA input. The value 1.5 was
added to this value because of the voltage offset within the FPAA. The (287)/3 was the
conversion factor from the voltage seen at the input to the A/D converter to the 8-bit
binary value entering into the FPGA. The logic used for the battery monitoring is

presented in Figure 76.

r

data 1 {3
E @ th' LD
dataz} 196 —wb =

Conatants Fe ltional

Program FRAL data 2f

FPAA Input
Figure 76: Program for Battery Monitoring

7.1.3 Double and Float Conversion to Binary

The formatting of the measurements received from the GPS unit were 64-bit
double precision for latitude and longitude measurements and were 32-bit single point
precision for North and East velocities. Both these formats required conversion into a

fixed binary word length in order to be utilized within standard System Generator blocks.
113

The binary word representation for the double and single precision formats is presented
in Figure 77. The only difference between the two representations is the number of bits
contained the exponent and the fraction. The sign for both formats is represented with
one bit, with a value equal to one representing a negative number. The exponent is eight
bits for single precision and eleven bits for double. The fraction is twenty-three bits for

single precision and fifty-two for double.

sign exponent fraction

v

Figure 77: Single and Double Representation Word Format

The algorithm for conversion between the single and double precision formats
and the binary fixed word length is obtained in two mathematical steps. First, equation

(20)

e = exponent —bias (20)

results in an intermediate variable, e, from the value contained in the received exponent
bits. The variable, bias, is an offset utilized in the single and double precision formatting

and is equal to 127 for single precision and 1023 for double precision. Second, equation

1)

magnatude =2° *1. fraction (21)

114

calculates the magnitude of the single and double precision value represented as a fixed
binary word length, magnatude.

The single precision and double precision to binary conversions could not be
implemented within a single subsystem. This was due to the difference in word length
requiring different values within the logic design. The algorithms for each conversion
were very similar. A shift block was utilized to perform the 2° calculation. In order to
obtain a reasonable word length, the output was limited to forty-five bits, with forty bits
representing the fractional portion, for the latitude and longitude measurements and to
thirty-two bits, with sixteen representing the fractional portion, for the velocities.

The value received from the GPS unit was broken up into three slices, the sign bit,
the exponent and the fraction values. This separation provided for the mathematical
calculation given in equation (20) and equation (21) to be performed.

After equation (20) is implemented the resulting value, e, may be either a negative
or positive value, depending on the size of the numeric value received. A shift right was
required for a positive result, while a shift left was required for a negative result. In order
to accommodate the different logic requirements, a multiplexer block was utilized to
determine the sign and allow the correct calculation to be passed to the next stage of
logic.

The slice containing the fraction value required a one to be added to the value
received. The most efficient implementation was to utilize a System Generator concate
block in order to place a bit equal to 1 in the highest order of the output. The reinterpret
block was then utilized to assign this additional bit as the value 1 with the rest of the bits

assigned to the fractional portion. This provided the required format for the

115

multiplication given in equation (21). In order to limit the delay and number of gates
utilized by the multiply block, a cast block was used to reduce the number of bits. For
the latitude and longitude measurements, the value was limited to forty-one bits with the
lowest forty representing the fractional portion. For the velocity measurements, the value
is limited to nine bits, with the lowest eight representing the fractional portion.

Because the calculated magnitude is always positive, a multiplexer was utilized to
select between a negative and a positive measurement being outputted by the subsystem.
The calculated magnitude was directly connected to the multiplexer’s output selected by
the value 0, while the negated magnitude was connected the multiplexer’s output selected
by the value 1. The selected output of the multiplexer was directly determined by the
sign bit of the value received from the GPS.

The subsystem for converting from double precision to binary is presented in
Figure 78. The single precision to binary design was identical with exception to the

numeric values dependant on the word lengths.

Sign Bit !
l [g — B
|

Slice1 b
AddSub
1023

Constants

Slices

»a ‘L
. zab) x(1)

!
|
|
T
L
Down Sample 'S
!
|
|
|
!

In1 Outl

MLx2

ex=1023

ML\ Megate Mux

ex .
Exponent 2%*1 fraction

Constantd

Slice? Concat Feinterpreti Convert Register1

|
Fraction :

Figure 78: Double to Binary Conversion

116

7.1.4 Heading Set Point Control

The heading set point control included an approximation of the distance, an m-file
to store and increment to the next way point, and a calculation of the heading set point.
In addition to the code for incrementing the way points, a multiplexer was included with
the user input switch utilized as a select. This allowed the m-file to be reset to the first

way point by the operator. The heading control subsystem is presented in Figure 79.

a
Lat
i Regemr! A0dSub4 Carvert! ~1a
M | m S.p - e HESF‘
Len Registerz i Convert2 ¢
spm g AddSubS CORDIC ATAH
MCode

3
El

Registers convert El Constant

=%
=
A f

Figure 79: Heading Set Point Control Subsystem

The values for latitude and longitude received from the GPS unit were given in
radians and a very small value represented the difference between waypoints. A large
word length would have been required to accurately calculate the Euclidean distance.
The calculation would, not only require a large amount of logic, but also create a

significant latency within a feedback loop. For this reason, equation (22)

d =10 (|iat,, ~lai|+ |ion ~ fon. (22)

117

calculated an approximation of the distance, d. The value of d that determined the

advancement to the next way point was set to the value 1. The multiplier given in

equation (22) was treated as a tuning parameter and determined through

experimentation.

An m-file was utilized to store two vectors of way points, where one vector

represented latitude and the other longitude. As the vehicle neared the current set point,

the index assigning the values for the latitude and longitude set points was advanced. An

additional comparison to the set point index was also included to hold the index at the

final way point value. The m-file code is given in Figure 80.

S [Editor,c CAVATIABIRZ0D T Ao rRARP) 7O e i Ll 2t - [B]]
@ BB B - (10 |+ | +(11 |x %% |0

i function [LATSp,LONSp,Spm)=vaygen(d,sSp) f
2 =
3 :+ persistent defines a variable that holds its value between time steps

; b3 p':\-l.nl: {cype, bits, binarvy) : T

: Jectors containing way points

. 32196953144, -1.438433 663005715,

i IiiZQZSQ%ISiiEE;'ZZZ;‘3223232?'2??333:’Iiiiéiiéiéiiiié?&'éi i

13 1.430433542262386,-1.436433174317525, -1.438431570040341,

14 -1.438430940296082,-1.438430416697306, ...

=1,4384304188073087, Ix18irmed 48 404) 2

p -] . TIURLEES VS0 v Xao1gne, So, 0 5 2

6 — persistent LATspv, LATspv=xl_state([0.489695615251969,0.489694882213683,...

il 0.489694637867588,0.489624986933438,0.489696330836962, ...
18 0.489697168595003,0.489697692193779,0.489697552567439, ...
19 0.489696819529153,0.489625510532214,0.489694986933438, ...
20 0.489695178919656,0,.489695562892091,0.489696138850744, ...
21 0.42969627128289030, 0. 489627168505003 0, 480696050155493

22 0.489696627542935,0.489635615251969] , {x15igned, 45, 40}],
23

24 if d<1 £& sp<is

25 = Spm=sSp+is

Z6 eize

= sSpm=sp:

28 = end

29

30 = LONsp=LONspv (spm) ;
31 = LATsp=LATspv (spm) s

Figure 80: Hardware Way Point Generator M-File
118

I3

Equation (23)

E,,, =longitude—longitude,, (23)

calculated the error in the East direction, E,,,,. The sign reversal was required because
the longitude values were negative and decreasing for movement in the East direction.

Equation (24)

N, = latitude , — latitude (24)

error

calculated the error in the North direction. Equation (25)

E
Heading,, = tan™ [ﬂj (25)

error

calculated the heading set point, Heading,,, from the North and East errors; where a
CORDIC inverse tangent block was used to implement the inverse tangent function. The
block provided the quadrant with the output given from —m/2 to w/2. The formatting of
the value received from the IMU was the same. When the vehicle was aligned South the
measurement changed from —pi/2 to the pi/2 value for a small change in heading. This
sign reversal created errors in the controller. For this reason, an additional subsystem
was inserted just before the heading controller to modify these values to a 0 to 2n

representation. A multiplexer and comparator was used to implement an if-then

119

statement. If the input, Angleln, was negative then 2n was added to the value, if the input

was positive, then the output was not adjusted. The subsystem is presented in Figure 81.

(L) »12 a<h
Angleln 0 —h;r\“
0F—mh 2
Constant Relational w0l
Anglecut
————— 5
atbh——mi
6.28318530716935333 —m b //

Constant] Addsub ML

Figure 81: Heading Correction Subsystem

7.1.5 Velocity Set Point Control

As with the simulation, the velocity set point was a fixed 1m/s, but with additional
control to hold the set point to 0 when the RC-Truck was under the control of the
handheld radio. If a set point of 1m/s was allowed when the RC-Truck was held
stationary by the radio, an error was present. This created an increasing control effort at
the output of the PI controller. When the RC-Truck was finally allowed to enter the
autonomous mode, this control effort created a sudden increase in motor RPMs. By
synchronizing the set point to change to the required 1m/s to the switch to autonomous
mode, the velocity control system presented the required step response. The set point
design is presented in Figure 82. The SS_IN block was an FPGA input port connected to
an output port in the Safety Switch. This port was logic high for manual control and

controlled the multiplexer that selected between the two set points.

120

a5 |M—msel
mm =

1 ——m{di
Constant? » W3
EIJ
hl L4
Constantd

Figure 82: Velocity Set Point Subsystem

7.1.6 Servo Control

The servo control incorporated the velocity controller, the heading controller, and
two m-files. The m-files were implemented directly before the duty cycle inputs to the
PWM generator for the steering and the drive train servos for additional control. The m-
file that provided additional control to the steering servo prevented a change in the
steering angle when the RC-Truck is stationary and when the number of satellites has
dropped below five. This was necessary to prevent potential damage to the servo caused
by the additional torque generated when the RC-Truck is at a standstill. The m-file
providing additional control to the drive train servo set the duty cycle to neutral when the
number of satellites is below five. This m-file also included a logic output to an onboard
LED to inform the operator when the vehicle had stopped due a lost GPS lock. Since it
was always possible that the control effort would exceed the limits of the servos, both m-
files included code to limit the duty cycle to an acceptable range. A block diagram of the

servo control design is presented in Figure 83.

121

heading HEADING | duty % >
error > CONTROLLER
radians STEERING 0
LIMITER |[4uty % >
—>
PWM
. GENERATOR
velocity VELOCITY |duty % duty %
error > CONTROLLER > >
m/Sec VELOCITY
) LIMITER
number of Satellites ———@——p
f %’ LED2

Figure 83: Servo Control Block Diagram

The heading controller utilized a proportional controller with a gain equal to one.
The multiplier block was not implemented, since the output would simply equal the
input. The heading error required a conversion to the 0 to 100% duty cycle. The duty
cycle required for a steering angle of —n/6 radians was approximately equal to 5.5%. For
a steering angle of +n/6 radians the duty cycle was approximately 9.5%. These values
were determined experimentally by slowly increasing and decreasing the duty cycle
while observing the resulting angle of the wheels. Based on this mathematical

relationship, equation (26)

_angle*12 N

duty 7.5 (26)

T

implemented the conversion from radians to duty cycle was implemented through.

As with the simulated system the velocity control was implemented with a PI
controller, but slightly different gain values. The gains were modified because, unlike the
simulation model, the drive train motor was being driven from the PWM signal, rather

122

than the motor voltage. In addition, the characteristics of the motor were not exactly
known, which created a difference in the behavior of the simulated motor and the RC-
Truck motor. Because of the inherent stability of the system, the gain values were easily
found by experimentation. The proportional gain was equal to 0.035 and the integral gain
equal to 3.5(107). Because neutral, where the RC-Truck is not was motion, was equal to
a duty cycle input of 7.5%, the output from the controller was subtracted from this value.
The calculation implemented subtraction rather than addition due to the inverse
relationship of duty cycle to motor control. A duty cycle input of less than 7.5% resulted
in forward motion, while a duty cycle of greater than 7.5% resulted in reverse motion.

The m-file providing additional control to the velocity servo, VelocityLimiter.m,
was designed with two if-then-else statements in order to adjust the percent duty cycle
output, PWMout. PWMout was set to neutral when the SV input, which provided the
number of satellites used by the GPS unit, dropped below five. The first if-then-else
statement adjusted the output to the lower and upper bounds if the control effort exceeded
the limits of the servos. The second if-then-else statement set a logic output, SVout, to
true when the number of satellites dropped below five. The output was connected to a
user LED as a flag so the operator was able to observe if the vehicle was stopped due to a
loss of GPS. The m-file code is given in Figure 84.

The steering limiting m-file, SteeringLimiter.m, was designed to prevent the duty
cycle controlling the steering servo from updating when both the velocity duty is set to
neutral and when there are less than five satellites in view. In addition, the duty cycle
input, PWMin, was limited to the maximum or minimum allowed values. In order to

check each of these conditions, an if-then-else statement is utilized. If the number of

123

satellites was adequate and the drive train duty cycle was set for forward motion, but the

maximum or minimum value was exceeded then the duty output, PWMout, was re-

assigned the maximum or minimum value, respectively. The m-file containing this code

is given in Figure 85.

i) £diiuy - CAMATEABRZOD Y atworsAEE A AUTOEINO N packGo ntrolMarchyAV elocrtyl armterem J ._‘J

Gle Edit Text Go Cell Tools Debug Desktop Window Help

el fRBRo o~ S e f 80 BRE DA stk

Z | *BeBiB| - 10 |+ | |11 | x |@fe| O,

1 &unctinn [PUM, SVout] = PWMcontrolz (PUMin, 3V)

2 — Pin=xfix({xlUnsigned, 14,7} ,PWNin)

33— SVin=xfix({xlUnsigned,4,0},35V):

4 - SVout=xfix({xlBoolean},1):

5 % prevents reverse

& = if Pin > xfix({x1Un=signed, 14,7} ,7.6)

= PiMout=xfix ({x1Unsigned, 14,7} ,7.6);

] % Z3ets upper speed limit to a duty of 5.6%

9 = elseif (Pin < xfix({xlUnsigned,14,7},5.6)) &£&
L0 [V > xfix({xl1lUnsigned, 4,0} ,4))
LL = FiMout=xfix({x1lUn=igned, 14,7} ,5.6):

L& % acceptable range

13 = elseif (xfix({xlUnsigned,14,7},5.60) < Pin) &£&
L4 (Pin < xfix{{xlUnsigned, 14,7} ,7.6)) £&
LS [V > xfix({xlUnsigned, 4,0} ,4))

L& = PiHout=Fin;

L7 % all others set to nuetral

L& = else

e PiMMout=xfix ({x1Unsigned, 14,7, x1Round} ,7.60) ;
i0 = end

il = FPWM=FPWHour:

ia ¥ set flag

i3 = if 3V > Xfix({xlUnsigned,4,0} ,4)

4 = SVout=0;

i5 = else

g = IVouc=1;

7 = end

Figure 84: Velocity Limiting M-File

124

k|

O

L]
Al
=]
[+l
5 +
.“ f
g
0
=
1 . '
el - .
il
- i i
.o |
'] . N .
e P N PR
b = } LI Y &
g1 W s LI] .
i =] =
fl e W fod o - W
b [I R+ I
2w e e ool o [e
PRI -] - el B ' e
[=} ho=
b PRI Y= B LY P w
| £ L] b e i
= 0 =~ T2 s B+ B = ==
vE = [y = o w [fla]
H gl = w Tl = -) Lo =
m o=] B = = = 1l) (141
£ o~ e g (= w el T
3 w0 = =9 on o
El BN - =
fa = [T = =
03 L = = e Il
¥ L = | i
LRI Y =] m - i
- i) m D = -]
1 Al WO %o ow s %o in
- = R T I
4 o] e O e =
(=0 I Wk Tt ('] T e B e i
| Ew O ” - : - “
W= % B =N A oo o]
b L) LU I el 2ol [}
n e Wl [T - nm = a
[LT SR " n g]
® EowoE A B - !
Tl_ "] 1] me R vl B 1}
il = e -V - | - B B oBw r =1
=% = A LT = B I I] it
Jm __—— - I T e B B = A B =
] iAo in OM R 3ol E
Bopy e = 0 M e e e HM - O nw
’ £] = P =
& = = m-])
il [T [P =¥ =%
Sy e e L]
.m T 0w T
K ©0om " omn 5 omn
- - -
u L] u
4 el
.m { &
H' ISR RIS ERAN | L I I I I L
.lm i~ m.. o B o S T - G ¥ T = = O T = T T I o L N T Y T R (= N = SO e Tt N o TN T BT o = T =
o™ L e e e~ = TR = (R NS . B . T B IS - (S B

ting M-File

imi

L

ing
125

te figure eight trajectory was assigned. The

Steer

, an approxima

Figure 85
Five trials were run with the RC-Truck following the same trajectory each time.

position in latitude and longitude and the velocity in the vehicle’s body reference frame
were stored utilizing a laptop’s USB port and the HyperTerminal program. A text file

7.2 RC-Truck Results

As with the simulation

containing the information was created by the HyperTerminal. The information was then
read into MATLAB and the trajectories and velocities plotted for each trial. The
velocities for trial one, trial two, trial three, trial four and trial five are presented in
Figure 86, Figure 88, Figure 90, Figure 92, and Figure 94, respectively. The trajectories
for trial one, trial two, trial three, trial four and trial five are presented in Figure 87,
Figure 89, Figure 91, Figure 93, and Figure 95, respectively.

Velocity Response Trial One
2 T T T

1.5¢ 8

Velocity (Meters/Second)

-0.5

L L L L L L
0 100 200 300 400 500 600 700
Sample Number

Figure 86: Velocity Response for Trial One

126

Latitude (radians)

0.4897 O Trajectory Set Point ||
0.4897 - Trajectory 1
0.4897 - .
0.4897 - 1
0.4897 - 1
0.4897 - 1
0.4897 - 1
0.4897 - 1
0.4897 - 1
0.4897 - .
| | | | | | | | |
-1.4384-1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384 -1.4384
Longitude (radians)
Figure 87: Trajectory for Trial One
Velocity Response Trial Two
14 T T T T T

s I
c

(@]

Q

q_) -

9

0

2

D]

>3

2 1
[&]

o

()

> -

Trajectory Trial One

1 1
100 200

1 1
300 400

1
500

Sample Number

1
600

Figure 88: Velocity Response for Trial Two

127

1
700

800

Latitude (radians)

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

Velocity (Meters/Second)

1.4

1.2

0.8

0.6

0.4

0.2

Trajectory Trial Two

O

Trajectory Set Point ||
Trajectory

A

1 1 1 1 1 1
-1.4384-1.4384 -1.4384 -1.4384-1.4384 -1.4384 -1.

Longitude (radians)

Figure 89: Trajectory for Trial Two

Velocity Response Trial Three

1 1
4384-1.4384 -1.4384

L L L
100 200 300

L
400

L L
500 600

Sample Number

Figure 90: Velocity Response for Trial Three

128

700

Latitude (radians)

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

Velocity (Meters/Second)

=
[eS)

=
o

=
IN

=
N

[EnY

o
©

o
)

©
>

0.2

Trajectory Trial Three

O

Trajectory Set Point ||
Trajectory

1 1 1 1 1 1 1 1 1
-1.4384-1.4384 -1.4384 -1.4384-1.4384 -1.4384 -1.4384 -1.4384 -1.4384

Longitude (radians)

Figure 91: Trajectory for Trial Three

Velocity Response Trial Four

1 L L
100 200 300

1
400

Sample Number

L
500

Figure 92: Velocity Response for Trial Four

129

600

Latitude (radians)

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

0.4897

Velocity (Meters/Second)

18

1.6

1.4

1.2

0.8

0.6

0.4

0.2

Trajectory Trial Four

i O Trajectory Set Point ||
| Trajectory 1
1 1 1 1 1 1 1 1 1
-1.4384-1.4384 -1.4384 -1.4384-1.4384 -1.4384 -1.4384 -1.4384 -1.4384
Longitude (radians)
Figure 93: Trajectory for Trial Four
Velocity Response Trial Five
1 L L 1 L
0 100 200 300 400 500
Sample Number
Figure 94: Velocity Response for Trial Five

130

600

Trajectory Trial Five

T T T T T T
O Trajectory Set Point ||
Trajectory

0.4897 -

0.4897

0.4897

0.4897

0.4897 -

0.4897 -

0.4897 -

Latitude (radians)

0.4897 -

0.4897

0.4897

L L L L L L L L L
-1.4384-1.4384 -1.4384 -1.4384-1.4384 -1.4384 -1.4384 -1.4384 -1.4384
Longitude (radians)

Figure 95: Trajectory for Trial Five

The velocity responses of the RC-Truck were similar for all trials. The velocities
were held close to one meter, but with some slight oscillation. These oscillations
occurred because the GPS unit contains some error in the measurements. There were
also points in along the path where the robot slowed down. It was visually observed from
the LED indicator that the number of satellites used by the GPS had dropped below four.
Because of the PWM control algorithm, the motors were turned off and the RC-Truck
began to coast to a stop until a GPS lock was re-established. During the time period
where there was no GPS lock, a strong velocity control effort was present due to the
velocity error that was present. Once the GPS lock was regained, this control effort
created a slight increase the duty cycle controlling the motor. This response was

acceptable, as the loss in GPS rarely lasted more than a second. Had the GPS been less

131

reliable, code could have been added to force a velocity set point of zero when the
number satellites used by the GPS unit dropped below five.

The RC-Truck followed very similar paths for each of the trials. It was observed
that for each trial the RC-Truck made a sharp turn just past the 10™, 11", and 12" way
points. Because the robot was operating close to a building, it was quite likely that there
was interference with the heading measurement due to underground power lines, or some
other external contributing factor. Despite this slight wavering from the desired figure
eight trajectory, the robot did successfully reach all the way points along the path.

Although this implementation was very simplistic in nature, it demonstrated the
effectiveness of the autopilot platform as a method rapid system prototyping. In addition,
it demonstrated the flexibility across sensors and platforms. All of the sensors and the
RC-Truck platform were available within the Unmanned System Lab at the University of
South Florida. The autopilot accommodated each piece of hardware without requiring

any circuitry modification or custom sensors to be ordered.

132

CHAPTER 8

CONCLUSIONS

This design of the autopilot produced during this research included all of the best
features of various autopilot platforms such as integration with Simulink, open source to
allow any modification required and full FPGA implementation. In addition, the design
demonstrated its contribution by including additional features, which are unique as far as
the author is aware.

Many of the designs implementing FPGAs such as the Microbot and the GTSpy
still utilize a separate DSP/microcontroller processor for the majority of the processing.
Therefore, these designs do not allow for the benefits of parallel processing. Two of the
full FPGA designs require the programmer to implement the majority of the
programming in a PowerPC, [9, 36]. This restriction requires implementing some or all
of the processing utilizing a real-time operating system, without taking full advantage of
parallel processing capabilities. The research being performed by Wolter et. al., on a
design for the control of a Satellite is still in the initial stages. However, the analysis
performed indicated good timing and showed parallel communication could be
maintained by utilizing the full parallel processing capabilities of the FPGA, [40]. The
only design found that provided for programming directly through Simulink is the Piccolo

autopilot. The Piccolo utilized a DSP processor without parallel processing capabilities

133

and, in addition, required a CAN interface in order to implement the hardware-in-the-
loop verification.

By implementing full FPGA processing design and full Simulink integration, the
benefits of rapid system prototyping, tight timing control and flexibility across platforms
and sensors are realized. The integration with Simulink provides programming and
hardware-in-the-loop capabilities in an environment familiar to researchers in many areas
of engineering. Design within this environment will provide for rapid prototyping of new
ideas. In addition, to hardware-in-the-loop capabilities of Simulink, the software design
capabilities provide for directly integrating the hardware ports and required
communication protocol, which further improves upon the time required to implement a
new design. The autopilot design, produced by this research in this environment,
provides an unrivaled flexibility due the programmable analog and TTL interfaces and
the inherent flexibility of the FPGA processor. There are many systems in use, which
incorporate the mini-ITX or PC-104. The autopilot design produced by this research,
instead of intending to be a replacement, complements these systems. The complement
arises by providing dedicated hardware for real-time controls of the system dynamics
while giving the off board computer the role of a “master” computer when necessary.
The combined functionality and flexibility of the design has produced a novel and well-

needed processing platform for the unmanned systems community.

134

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

"Unmanned Aircraft Systems Roadmap 2005-2030",
http://www.acq.osd.mil/usd/Roadmap%20Final2.pdf, 2005

http://www.baiaerosystems.com

D. N. Borys and R. Colgren, "Advances in Intellegent Autopilot Systems for
Unmanned Aerial Vehicles", AIAA Guidance, Navigation, and Control
Conference and Exhibit, San Francisco, California, 2005

http://www.rotomotion.com
http://www.procerusuav.com
http://www.micropilot.com
http://www.ezi-nav.com
http://www.o-navi.com

R. H. Klenke, W. C. S. IV and M. A. Motter, "A High-Throughput Processor for
Flight Control Research Using Small UAVs", 25th AIAA Aerodynamic
Measurement Technology and Ground Testing Conference, San Francisco,
California, 2006

http://www.cloudcaptech.com
http://www.microboticsinc.com

D. Jung, E. J. Levy, D. Zhou, R. Fink, J. Moshe, A. Earl and P. Tsiortras, "Design
and Development of a Low-Cost Test-Bed for Undergraduate Education in
UAVs", 44th IEEE Conference on Decision and Control, and the European
Control Conference, pp. 2739-2744, 2005

135

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

D. Kingston, R. Beard, T. McLain, M. Larsen and W. Ren, "Autonomous Vehicle
Technologies for Small Fixed Wing UAVs", 2nd AIAA "Unmanned Unlimited"
Systems, Technologies, and Operations, San Diego, California, 2003

A. D. Kahn and J. C. Kellogg, "Low Complexity, Low Cost, Altitude Heading
Hold Flight Control System", IEEE AESS Systems Magazine, pp. 14-18, 2003

A. Sagahyroon, M. A. Jarah, A. Al-Ali and M. Hadi, "Design and
Imeplementation of a Low Cost UAV Controller", IEEE International Conference
on Industrial Technology pp. 1394-1397, 2004

P. Y. Oh and W. E. Green, "CQAR: Closed Quarter Aerial RobotDesign for
Reconnaissance, Surveillance and Target Acquisition Tasks in Urban Areas",
International Journal of Computational Intelligence, vol. 1, pp. 353-360, 2004

R. J. Wood, S. Avadhanula, E. Steltz, M. Seeman, J. Entwistle, A. Bachrach, G.
Barrows, S. Sanders and R. S. Fearing, "Design Fabrication and Initial Results of
a 2g Autonomous Glider", IEEE, pp. 1870-1877, 2005

S. Bouabdallah, A. Noth and R. Siegwart, "PID vs LQ Control Techniques
Applied to an Indoor Micro Quadrotor", RSJ International Conference on
Intelligent Robots and Systems, pp. 2451-2456, 2004

S. Todorovic and M. C. Nechyba, "A Vision System for Intelligent Mission
Profiles of Micro Air Vehicles", IEEE Transactions on Vehicular Technology,
vol. 53, pp. 1713-1725, 2004

Y.-J. Yang, J.-P. Chen, J.-S. Cheng, C. Zhang and Y .-L. Xiao, "Autonomous
Micro-Helicopter Control Based on Reinforcement Learning with Replacing
Eligibility Traces", Proceedings of the First International Conference on Machine
Learning and Cybernetics, pp. 860-864, 2002

M. D. Bugajska and A. C. Schultz, "Coevolution Form and Function in the
Design of Micro Air Vehicles", IEEE Proceedings, NASA/DOD Conference on
Evolvable Hardware, 2002

S. H. MclIntosh, S. K. Agrawal and Z. Khan, "Design of a Mechanism for Biaxial
Rotation of a Wing for a Hovering Vehicle", IEEE/ASME Transactions on
Mechatronics, vol. 11, pp. 145-153, 2006

S. E. Lyshevski, "Distributed Control of MEMS-Based Smart Flight Surfaces",
Proceedings of the American Control Conference, pp. 2351-2356, 2001

136

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

A.S. Wu, A. C. Schultz and A. Agah, "Evolving Control for Distributed Micro
Air Vehicles", IEEE, pp. 174-179, 1999

J. M. Pflimlim, P. Soueres and T. Hamel, "Hovering Flight Stabilization in Wind
Gusts for Ducted Fan UAV", 43rd IEEE Conference on Decision and Control, pp.
3491-3496, 2005

D. Sun, H. Wu, R. Zhu and L. C. Hung, "Development of Micro Air Vehicles
Based on Aerodynamic Modeling Analysis in Tunnel Tests", Proceedings, IEEE
International Conference on Robotics and Automation, pp. 2235-2240, 2005

H.-y. Wu, D. Sun, Z.-y. Zhou, S.-s. Xiong and X.-h. Wang, "Micro Air Vehicle:
Architecture and Implementation", Proceedings, International Conference on
Robotics & Automation, pp. 534-539, 2003

F. Ruffier, S. Viollet, S. Amic and N. Franceschini, "Bio-Inspired Optical Flow
Circuits for the Visual Guidance of Micro-Air Vehicles", IEEE, pp. 111-846-111-
849, 2003

S. Taamallah, A. J. C. d. Reus and J.-F. Boer, "Development of a Rotorcraft Mini-
UAYV System Demonstrator", /EEE, vol. 2005, pp. 11.A.2-1-11.A.2-15, 2005

J. Evans, G. Inalhan, J. S. Jang, R. Teo and C. J. Tomlin, "Dragonfly: A Versitile
UAYV Platform for the Advancement of Aircraft Navigation and Control", /EEE,
pp- 1.C.3-1-1.C.3-12, 2001

J. L. Campbell and J. T. Kresge, "Brumby Uninhabited Aerial Vehicle Flight
Dynamics-Instrumentation and Flight Test Results", /EEE, 2003

G. Cai, K. Peng, B. M. Chen and T. H. Lee, "Design and Assembling of a UAV
Helicopter System", IEEE International Conference on Control and Automation,
pp. 697-702, 2005

S.-J. Lee, S.-P. Kim, T.-S. Kim, H.-K. Kim and H.-C. Lee, "Development of
Autonomous Flight Control System for 50m Unmanned Airship", IEEE, pp. 457-
462, 2004

E. N. Johnson, S. G. Fontaine and A. D. Kahn, "Minimum Complexity
Unnhabited Air Vehicle Guidance and Flight Control System", AI4A4 Digital
Avionic Conference, pp. 1-9, 2001

137

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

W. E. Hong, J. S. Lee, L. Rai and S. J. Kang, "RT-Linux based Hard Real-Time
Software ARchitecture for Unmanned Autonomous Helicopters", //th [EEE
Conference on Embedded and Real-Time Compute Systems an Applications, 2005

T. Brotherton, R. Luppold, P. Padykula and S. L. Richard Wade, "Generic
Integrated PHM / Controller System", IEEE, 2005

H. B. Christopherson, W. J. Pickell, A. A. Koller, S. K. Kannan and E. N.
Johnson, "Small Adaptive Flight Control Systems for UAVs using FPGA/DSP
Technology", American Institute of Aeronautics and Astronautics

A. A. Proctor, B. Gwin, S. K. Kannan and A. A. Koller, "Ongoing Development
of an Autonomous Aerial Reconnaissance System at Georgia Tech."

R. H. Klenke, "A UAV-Based Computer Engineering Capstone Senior Design
Project", IEEE International Conference on Microelectronic Systems Education,
2005

G. Grillmayer, M. Hirth, F. Huber and V. Wolter, "Development of an FPGA
Based Attitude Control System for a Micro-Satallite", AIAA/AAS Astrodynamics
Specialist Conference and Exhibit, Keystone, Colorado, 2006

F. Krach, B. Frackelton, J. Carletta and R. Veillette, "FPGA-Based
Implementation of Digital Control for a Magnetic Bearing", Proceedings of the
American Control Conference, Denver, Colorado, 2003

Z. Fang, J. E. Carletta and R. J. Veillete, "A Methodology for FPGA-Based
Control Implementation", I[EEE Transactions on Control Systems Technology,
vol. Vol 13, pp. 977-987, 2005

T. S. Hall, C. M. Twigg, P. Hasler and D. V. Anderson, "Developing Large-scale
Field-programmable Analog Arrays for Rapid Prototyping", International Journal
of Embedded Systems, vol. 1, 2005

"www.maxim-ic.com", Application Note 3803
http://www.wilkepedia.com
www xilinx.com, "Spartan-3A/AN Starter Kit Board Schematic", 2007

www.national.com, "Flexible Power Management Units for Low-Power Xilinx
FPGAs", 2007

138

[48]

[49]

[50]

[51]

S. N. Murthy, "Implementation of Unmanned Vehicle Control on FPGA Based
Platform Using System Generator", 2007

R. Andraka, "A Survey of CORDIC Algorithms for FPGAs", Proceedings,
ACM/SIGDA Conference, Sixth International Symposium on Field
Programmable Gate Arrays, 1998

"SD Specifications Part 1 Physical Layer Simplified Specification," SD Group,
2006

I. Nov Atel, "Superstar II Firmware Reference Manual," 2005

139

APPENDICES

140

Appendix A Details of Commercial Autopilots

Table 7: Kestral by Procerus

Processing Hardware:
Onboard Sensors:

I/0 Ports:
Outputs:

Programming:
Hardware-in-the-Loop:

29 MHz, 8-bit Rabbit 3000 processor

IMU unit onboard, does not specify brand

Pressure sensors for altitude and air speed

4 RS232 ports for off-shelf components such as GPS
3 12-bit analog inputs provided

Built in support for 2 axis with zoom camera gimbal

4 onboard servo ports, 8 external servo ports
developers kit and dynamic C

proprietary software used in conjunction with Aviones
simulator

Table 8: MP2028 by Micropilot

Processing Hardware:
Onboard Sensors:

1/O Ports:

Actuator Outputs:
Programming:

Hardware-in-the-Loop:

Motorola’s 68332 processor 20MHz 32-bit processor
Trimble Lassen SQ GPS receiver

Motorola onboard pressure sensors for air speed and altitude
IMEMS ADXL.202 accelerometer

iIMEMS ASXRS150 Gyro

Additional ADC board for 32 analog inputs and compass
Additional AGL board for ultrasonic altimeter and modem
24 Servos or relays

XTENDER software can be purchased that allows for
custom programming.

With proprietary software (Horizon) only

Table 9: Ezi-Nav by Autonomous Unmanned Air Vehicles, (AUAV)

Processing Hardware:
Onboard Sensors:

I/O Ports:

Outputs:
Programming:
Hardware-in-the-Loop:
Additional Functions:

8 micro-processors

Connections for handheld type GPS units only

IMU provided, details not given

Not disclosed

Not disclosed

Not disclosed

Not designed for this capability

Off-board wireless transceiver capable of 900MHz or 2.4
GHz provided

141

Appendix A (Continued)

Table 10: Phoenix by O-Navi

Processing Hardware:
Onboard Sensors:

1/0O Ports:

Outputs:
Programming:

Hardware-in-the-Loop:

32 MHz Motorola MMC-2114 processor
Unspecified MEMS accelerometers and gyros
On-board pressure sensors for air speed and altitude.
On-board Trimble GPS receiver

Additional sensors can be connected, but details not
specified

6 PWM servo

Flash programming kit available

Not designed for hardware-in-the-loop

Table 11: Piccolo II by Cloudcap

Processing Hardware:
Onboard Sensors:

1/O Ports:

Outputs:
Programming:

Hardware-in-the-Loop:

Additional Functions:

Motorola’s MPC555 40MHz 32-bit processor

3 ADXRS300 rate gyros

2 two-axis ASXL.21e

Accelerometers

uBlox TIM LP 4Hz GPS

input port for sonic altimeter

Honeywell HMR-2300 magnetometer,

onboard pressure sensors to provide air speed and altitude
Additional daughter board provides analog, SPI, serial,
CAN

10 servos

Simulink using the Real Time Workshop

Simulink running on a PC equipped with a CAN interface
card

Wireless capabilities supplied on a daughter board
containing MHX-910/2400

142

Appendix A (Continued)

Table 12: Microbot by Microbotics

Processing Hardware: FPGA for I/O operations
M-Core MMC211 microprocessor for system programming
Onboard Sensors: Expansion board provides temperature sensor and mounting
for Midge series IMU/GPS
I/O Ports: 32 FPGA ports can be configured for various sensors

Expansion board provides 2 asynchronous serial ports and
12 analog ports

Outputs: FPGA lines used with pulse width generator to provide up
to 16 PWM outputs

Programming: Fully reprogrammable, details on required compiler not
given

Hardware-in-the-Loop: Not designed specifically for this

Additional Functions: External board for Aerocomm AC4490 modem available

Expansion board provides mounting for flash memory

143

Appendix B Port Connections to the FPGA

cccccccc

I
ApARRAT

SERELELER) =~
'Il’llllllllllﬂ

r.l .la

WﬂWWTWJﬁTTTJTWWTN TTIIIP
USER

SWITCH
LEDS
Figure 96: User LEDs and Switch Locations

Table 13: LED and Switch Port Assignments

PORT DESCRIPTION FPGA PORT PORT NAME
User LED 1 B21 LDI1
User LED 2 B23 LD2
User LED 3 A22 LD3
User Switch A20 SW1

144

Appendix B (Continued)

DAUGHTER BOARD CONNECTOR CONNECTOR
CONNECTOR ONE

ﬂﬂﬂﬂﬂﬂ

.....

.l v {§ -
A L ~ i, - o L !
Lor] o1 PArar AT, . ik 5o
T REEEEEEREN T il g ot
.] " T y
1 i ‘LA A * % Yddd:ddi 3
a

T

@ il it -
SICI)\INEECTOR SEL2

Figure 97: Daughter Board Connector One

Table 14: Daughter Board Connector One Safety Switch Connectors

PORT FPGA PORT CONNECTOR PIN
SEL1 -- 41
SEL2 -- 42
PWMI1 -- 43
PWM2 -- 36
PWM3 -- 37
PWM4 -- 38
PWM35 -- 31
PWM6 -- 32
PWM7 -- 33
PWMS -- 26
PWMO9 -- 27
PWM10 -- 28
PWMI1 -- 21
PWM12 -- 22

145

Appendix B (Continued)

Table 15: Daughter Board Connector One

PORT FPGA PORT CONNECTOR PIN
101 K26 1
102 K25 6
103 K23 2
104 K22 7
105 K21 3
106 V24 12
107 AD26 17
108 K20 8
109 G22 13
1010 AC25 18
1011 AF25 23
1012 Y22 4
1013 K18 9
1014 G23 14
1015 V18 19
1016 AC21 24
1017 AF23 29
1018 V16 34
1019 AE23 39
1020 AE21 44
1021 K19 5
1022 L18 10
1023 G24 15
1024 V17 20
1025 V19 25
1026 V18 30
1027 AE25 35
1028 AD22 40
1029 AE20 45
1030 V19 11
1031 AC26 16

146

Appendix B (Continued)

. O DAUGHTER BOARD CONNECTOR 2

CONNECTOR PIN | m
CONNECTOR PIN 2 =
CONNECTOR PIN 3

‘11]111111i11

........

o [tstusnstiing

Figure 98: Daughter Board Connector TWO

Table 16: Daughter Board Connector Two

CONNECTOR FPGA PORT PORT NAME
1 -- +3.3 Vce
2 -- Cmn

3 -- +5Vcce

4 A3 1032

5 F23 1033

6 G20 1034

7 B3 1035

8 F25 1036

9 F24 1037

10 A4 1038

11 E7 1039

12 C8 1040

13 B4 1041

14 B6 1042

15 D6 1043

16 C6 1044

17 B7 1045

18 A8 1046

147

Appendix B (Continued)

ANALOG INPUT CONNECTOR

TOP ROW: PIN 6 T
TOP ROW PIN 4

—BOTTOM ROW: |
— 4=—=BOTTOM ROW: PIN 3

of IT TT”*TTTT! mr Tm”

Figure 99: Analog Input Connectors

Table 17: FPAA Connections

CONNECTOR FPGA PORT PORT NAME
-- H17 FERRB

-- G9 FACT

-- F12 FRES

-- HI0 FCS2B

-- J16 FSI

-- HI12 FSCLK

-- HI15 FACLK

-- F7 FCLK

-- K12 FDATAI

-- K11 FSYNCHI

-- J11 FDATA2

-- K16 FSYNCH2

-- J12 FDATA3

-- H9 FSYNCH3

1 -- CMN

2 -- + SM SIGNAL
3 -- CMN

4 -- + LRG SIGNAL 1
4 -- CMN

5 -- + LRG SIGNAL 2

148

Appendix B (Continued)

Liid '_ B = 3 Y
CONNECTORSE TTL, PORT CONNECTOR e —
p—t

F

1w)

- s | W E —i--;!
m 1 E R Y it By o T TTT

T ~F

'''''''''

L e 111
NULLLLRRELRLLELL Tl
TOP ROW: PIN4 MIDDLE ROW: PIN5 TOP ROW: PIN 6
TOP ROW: PIN1 MIDDLE ROW: PIN2 TOP ROW: PIN 3
Figure 100: TTL I/O Connector

Table 18: TTL I/O Ports One to Three Connections

CONNECTOR FPGA PORT PORT NAME
1 V1 101 4
2 Ul 101 3
3 - CMN

4 Y5 101 2
5 ADI 101 1
6 — CMN
~ Y2 101 EN
7 AD2 102 4
8 AC3 102 3
9 — CMN
10 R3 102 2
11 T3 102 1
12 — CMN
— Y6 102 EN
13 TS 103 4
14 AA3 103 3
15 — CMN
16 AA2 103 2
17 W3 103 1
13 — CMN
— T4 103 EN

149

Appendix B (Continued)

Table 19: TTL I/O Ports Four to Six Connections

CONNECTOR FPGA PORT PORT NAME
19 V2 104 4
20 U2 104 3
21 -- CMN
22 V5 104 2
23 U4 104 1
24 --- CMN
-- W4 104 EN
25 V6 105 4
26 W7 105 3
27 -- CMN
28 V7 105 2
29 U6 105 1
30 -- CMN
-- W6 105 EN
31 V8 106 4
32 U7 106 3
33 -- CMN
34 U8 106 2
35 U9 106 1
36 -- CMN
-- U5 106 EN
-- AC2 10 SET CS
-- ABI 10 SET SDI
-- Y1 10 SET CLK
-- ACI 10 SET EN
Table 20: Flash Memory
PORT NAME FPGA PORT
uSD CS W10
uSD DI W9
uSD CLK AB7
uSD DO W12

150

Appendix B (Continued)

Table 21: Pressure Sensor Connections

FPGA PORT PORT NAME
B2 PS CONV
Bl PS SCK

D3 PS SDO

El PS SDI

Table 22: FPGA PWM Connections

FPGA PORT PORT NAME

W23 PWMI

w2l PWM2

W20 PWM3

Y25 PWM4

Y24 PWM5

Y23 PWM6

AA25 PWM7

AA24 PWMS

AA23 PWM9

AB26 PWMI0

AB23 PWMI1

AC20 PWMI2

U23 SS IN

(@
sa=PWM OUTPUT

4[58 CONNECTOR

=

]:': o :

TOP ROW: PIN 4 MIDDLE ROW PIN 5 TOP ROW PIN 6 i 3 w‘

TOP ROW: PIN1 MIDDLE ROW: PIN2 TOP ROW: PIN 3 .-¢| ore
i

WM“””N‘FNW FERRER
WOeEOLRERLLELL

Figure 101: PWM Port Connections

1nlmﬁi'ii

151

Appendix B (Continued)

Table 23: PWM Output Port Connections

CONNECTOR PORT NAME

SERVOI

+6 VCC

CMN

SERVO2

+6VCC

CMN

SERVO3

X[Q| NN | |[W (|~

+6VCC

O

CMN

—_
o

SERVO4

—_—
—_—

+6VCC

—_
[\

CMN

—_
(O8]

SERVOS5

—_
~

+6VCC

—
9]

CMN

—_
(o))

SERVO6

—_
N

+6VCC

—
o0

CMN

—_
O

SERVO7

[\
=)

+6VCC

\S]
—

CMN

N
[\

SERVOS

[\S]
(O8]

+6VCC

&)
=

CMN

[\
(9]

SERVO9

[\
(@)

+6VCC

N
~

CMN

[\
o0

SERVOI0

\®]
O

+6VCC

(8]
S

CMN

(O8]
—_

SERVOL11

(98]
[\

+6VCC

(98]
(O8]

CMN

%)
~

SERVOI12

(98]
(9]

+6VCC

(O8]
N

CMN

152

Appendix B (Continued)

11111111‘1‘i‘ii

uuuuuu

HTTTTTTT*TTTTlTNl

TOP ROW:PIN1 MIDDLE ROW:PIN2 TOP ROW:PIN 3£
TOP ROW:PIN4 MIDDLE ROW:PIN 5 TOP ROW:PIN 6

Figure 102: PWM Pilot Input Connector

Table 24: Pilot Input Connections

CONNECTOR PORT NAME
1 PWMI1
2 +6VCC
3 CMN

4 PWM2
5 +6VCC
6 CMN

7 PWM 3
8 +6VCC
9 CMN
10 PWM4
11 +6VCC
12 CMN
13 PWMS5
14 +6VCC
15 CMN
16 PWM6
17 +6VCC
18 CMN
19 PILOT SELECT
20 +6VCC
21 CMN

153

Appendix B (Continued)

mmnﬁn-

\\\\\\\

Ll ™ w3 . w4 bl i
Ul Udsv | | ol fhsktasgaense
......

WITTTTTTTTT_ITTII rrrm

TOP ROW:PIN3 BOTTOM ROW: PIN 4
TOP ROW:PIN1 BOTTOM ROW:PIN 2

Figure 103: RS232 Connector

Table 25: RS232 Connections

CONNECTOR FPGA PORT NAME

1 AA17 TX1

2 ACI19 RX1

3 Y17 TX2

4 ADI9 RX2

5 AE17 TX3

6 AF20 RX3

7 AAIS TX4

8 ABI18 RX4

9 ADI17 RXS5

10 -- CMN

-- AE19 RS232EN
-- AF19 RS232SD

154

Appendix C Detailed Schematics

2%
=B
i E]
—EER (L -
usb_cs = | el s
usSD_DL |, el
VochAux 12
Yoo NEH(
=D ¢ |-_c5 0Lk
s; Sl) & WIS B
uSD_DO |,
k]
s WS
Figure 104: Flash Memory Circuit
m R1
ADSIBEE BE
=20 pil-1-R PEF3
i = — - Pl EEwT R
FEFI o [l el | . BE
0 (T L
e T ——
- .] Ak
RE = e s ' REAS
M et = [R
FEFL EEEII |
L& REF4
LTCERTFI=DHE
BLY S e
I =1HA =0 m
| Tl Fl :w. 'T Ll
A -im - AR EE
18uF B2Y [v= oe= P4V | FEFe
- e Ll
2
"EFT CEEY .
c
ur FEFE=>
LTCEAT gxHMag
eap— :
i MREEEY aur
1- Sl
FREF1Q

Figure 105: Variable I/O Port Potentiometer Circuit

155

Appendix C (Continued)

o] F Wonl.d a4
BT el BT TEHY e
I e A i = | _F1.3
BEt=E 4 o R 2 e e T s o |
]] s o F1_2 + 1.1
nfE = [EFLEN i
uz P+ r | | P23
TEXBEB LB 4FH
FEr| LUEER mo o P22 = | | vP2_1
P34 | vE3 3
= = v I e o B = v [el Pa_2 Bl
b “ o) b o o a3
“ = [EErTy PEE=E = o P4_4 = =Py _3
“ bl iy o) bPEE] bl T —_—
e o el sl rm 1S A = e en P4z = | =P4+.9 .
uz
J_ TXED LD 4GFN J_ Y aninahEn B4 = M =T
®WEFLZ UEER,,. ;: TEF1ELUEER mac u FE_3 = g
FE_4
T E—— TV PP T — et i
E ’2-' m m 2 i g Jal . n FE_2 En =g _q
ru = IFa=a sEEma = FE—3 = | | P&t
EEISE G o RS s v o e
o PRl = P = HE
= I LI EERRREERET
CHE oL e [=F3ENM -
ik :
5
TEXERLA4LFM U M
MEFLA USEPR #= |25
REF15
Wagl, B W -1-1-]
B oonm e [l e 4
e = EHRD
1k “ = [EEE
] i)
gun HElE = o vEn
L luis
FEFZH TeBDLB4RFH
UBER mo j

Figure 106: Variable I/O Port Translator and Connector Circuitry

WOkl s

[
a o
a -
- &
I =
= -+
= v
-
ne Tr EEl
T
EClkE 0000
el]/
E= BT o o w| ws| s FAGLE
b i ”
[=1 U [T u | “FQCLE
rsegsfbsE R0
GHD E g seip| EWD
LS wes| “FCEZE
o |
|[u] 3 . o [x] |]

S m% = i =l B3 :.:.'. w
IEEREE o= ool = o8 s s L .3
:—Uu%:ua eHD * fo m;‘ T - :": . :u:

= T—'u
'-Ez T = N = - 7
LTt Ll P :w_"x
sl oy 88 BB b Gy b e

GG

ESyMCHL | [EOATAZ
ELATAL LEavHEH
ESYHCHZ | FOATAI

Figure 107: FPAA Circuit

156

Appendix C (Continued)

CobklkLY]

LMl

Cannd=3
USER

E%
|

Lza
LTCEEFE=ME4

UEEF

f

FRITA
[1h]}

B
=

FINR

ic]c]m]

s
|

Figure 108: FPAA Input Circuit

e

@

o.Q@47uF *

m
Uiz £E
Vaah e E:E:
Jim:. anp v | .Lf.iﬂ
oo :ELTB
drm 1 "
=
O ==
I
LD
anih
i1 O
LBILY _aa REF27
[E=] = =]
S i ar oGO EZ
v
oHa oo 3
COMRLS
L Ihela
T
[~]
. Lif|u]
O E:n:r
3 |3
7 COMMLE
REF31 ihole

Figure 109: Safety Switch Power and Clock Circuit

157

L)

ciga

Appendix C (Continued)

Epumnll ;|-

Lig —
GELRID e HE2S7 2l 01 2
EFLD3r3 A_] "TXIHT mn _“_H
(I8 EEHHLE il iox mE |kl EHHII
:H P mr | PWM11
- q-E Sppnd ilim me |ms PWH18
EZE*;_;. ﬁﬁuﬂﬂ Llim me | EH”E
ﬂ; EEHH.-I" L]l im ml | EHHE
-1 a0 a
REF2T . ol Y | oo
o | PRME HJ_E\G
[T = LS
oo jma PuME
o |ax PWMZ —HO
o s PWMZ REF=Z=
oo oz PlM1
o faa Db ¥ElZ
oo lam Dwt-vwill
o e Db vl D
o fas SabWo®
me |4a Sk vwel
oHa L
o g Db weT
ET =1 Tl -1 CaOMMT
o o Smpyel ~ aATAG
L Ve o I'; F ne s
3. ETR -1 Tull'd -1 2 |:: ™
. EE :: e SRy fL““G LT 2
j|: At = o Sacvel =T L I P
= (o Sarvel
aND =Nk
?REF3+ REF25

Figure 110: Safety Switch CPLD and Connector Circuit

®EF3RB

Figure 111: User LED Circuitry

158

Appendix C (Continued)

COMNEC COMNA d
_ COMMS =9 _2nn COMNNS E8_ZRR Lt CONNie
z : a4 El . V“ﬁf x ER
Ln
—!" :: ; : L :: Wae
ET] [Y L
al AL ECH A Ex !
= s s b i 2
- ¥ s T Fa :
=] 1 Ln u ey g—
Eaimm
L1L:IF
COMMBE LI
COMNMNE
CONNS AT _Znn ypa ERHNS X3 —2nn £
Ig L 5%
£l
1 12] ||
o Al rr]
o (1] [
|] T
= 1] ar

Figure 112: Daughter Board Connection Circuit

18
1 | E uLr
|m"ﬂ1 ~o (ML RPXYERE4GP_b
:E wipEERT— e,
T 5% & Jeno— s
Ld a2y
£] =13
| u rds ULE
m [o~ 2lr? MPHHE L L5 ACEL
a2l mal =]
o T = b] -
Cwn M 1 bl
L L :I
ULE
REFL 9=

E‘E
alz3
Ik

‘ Lo
-
]l i T EMO
I'_uu-n' wmn |27 IB_“
2 can | LSS Eﬂﬂlh%r - e |-
— HO
- Lowe ol - =D e
_— =
. T SRS =
VEEE TN e e |- wCCL-H
[. L T
Ul 4
TEBOLEOAEGQFH
UBER
L]
L
o] ~3
L~
1l _r

Figure 113: Pressure Sensor Circuitry

159

Appendix C (Continued)

o1

Yool

v

uza Lan;
LPIddday
"

Woog
4R L L
o 5ol 22 pilailed
s
i REF17

wd |
by g S
RN L‘J 0T
L
FEF1
Figure 114: Power Supply Circuitry
VYoo F, F
13 . :.L
e e =|_—-.!:'-.-||:I
- 18,26 5ot -
(13 = Lk L 2
ﬂLL EL- o
I.'I_I_" L w- HIE "_Lﬁ
L —1L~
Tinm r—-li- [+ L =
"'G =1 I i e bl
ii ﬂf rias TacuT : ig
= T fong,
a1 mad G | H=H=
pamm1 maW [:':E
EEEET MM :: i_‘
AR T 2773
Ba2dduhe |, wo |wBazddabdn - m—
- Hx S 5
:ll QMO T

Figure 115: RS232 Circuit

160

Appendix C (Continued)

L4

Hiew|tch

ulia
F2 013
] [
L 29 FL#
—=
F14 £13
— =
e
G319
23 LF B
-— —=
413
e
c21 L13
— —=
1l
trE -':
LEDE &3 Fi? FREs
E13
EDz @33 E
m] A Di i
-— il
£l
ERRE H1 | |
EDy Wiy a1
— 3 —=
ciy Al@
— —
FA! oie
— —=
Ez e
—] |
cad H1Z
3.3 FECLEKE
piley. a12
—] —
FEYHMCH2 kK14 29
o —s 1 —=
s) =1 T A5
[o AL | —=
[ELA o9
— =
Fi7 El®
= =
T 2 L]
—=
.i z20 LIS [+
—
KLZ Er
19 FOATAL
h- k] -~
4 219 | 17 ProaTAl
' A e IR
FaCLK HLY | =
319 ca &
- — | =T 104
e oh
I :_?H [C44
i i
E ols Q42
& Lr
5 15 |
#1H nr 104%
— - -
E EllL pe Ped L
Bl - FSYHoHI
£17 lLFDATAZ
£13 | 26 [o43
—
F11 L5
=y e [D41
:‘_ —
o1 e
103
£ | Hi% pos
CRIE
o1y oie
:.,.— |
415 HY FEYMCHS
o a9
2l FACT
F14 EF 1039
Ei4 F? ECLKE
Fros, ol 714 | 23 ross
Kid R Y
]
Al 08
— =
=14 ra
| — [

Figure 116: FPGA BankO Connections

161

Appendix C (Continued)

UIlbk

= [| =
P m m| T [
= o
-
sl slatat el o gl Sl a1l) sr ot atel st e st st A st stal sttt al st lalat el
| o] s o]]] o] A] s] o]]]] s]]]] s | | o] |] |] s] s om] e s o] o] o e o] o]] s] o o]]] s
R || L Lo b L T MR | 2 e e L e e L e e B e S S S e e T U T T i A T B T o e e T =
W Wl b w W . [
™ ™ T ™ ™ e L I R L e I e L Ll ™ =1 e el 1t ™ ™ =TT L T ™ ™ il =TT T w T ™ T T ™
- ~ | W L L% ™ o [5 m o j2d m - sl B - [J. - - - | 4 Ll] ™~ i~ il =l Bl ™ [l s r« i ™ el) r Lol s re (o] - | ™ [
g rpapadag e x| 2| €] a al = == x| 2k k=] x| 3| | | | FrIkF]| |- kX Fh | S FhEdag i e Wt W ek e e e
il o - = [3 L et b
T [o ™ T e I = a
3 s 4 o e o 3 - F
il @ [[.".H

1018

FPGA Bank1 Connecti

Figure 117

162

Appendix C (Continued)

Vecd. d

i
i

b7
—
rr
Ty
—
wi_[i] e
N
—
sEH
]
Ll
foLis,]
-y LT
—] =
e if 1oz
[[T -5 5
1o T Oa0,
uED_Cg Mg e CER R
WL =¥ .
. 19 Tode,
SEN [1a P
WF] LY T
— -rsts] ,
sE L.
—] =il 40T
N _"‘IIJ.I‘I
L L i
— —
Tl w2
] s
0l b kLl 4
1Y 1=]
— - "frsa
WED_CLE #8q SLYET W]
ACH sHza
— P Hrsd
Al '-E_.El:n-ia
Ay sl
S— —
1 sgLE
WEO_DoHLy
1] L% e 33 7ghd
9 =
Lt b ‘Hi%Rpizzan
1]
—
1F
]
AN
Al
+FH
]
AEY
—
ui
]
71
—
L [
]
Al 3T
—
aFia 14
— —
sede His
— —
adL LH Y
— —
= i (=]
— —
13 Fl [1s Y]
] —+
L F [T)
— |—t
'L bHL4
] |—s
LE El seLd
sE47 14
—
. El [T Y]
—

Figure 118: FPGA Bank2 Connections

163

Appendix C (Continued)

uzald

iy

—

JR i

] o

FELECE =1 .iIJ'.E:- |
PE_ConyBE Eapes s

vl Aeipgy

— .

G AC a

- el L e I

i Ll S

— .

9 I“I':El“
Wipes L
VB L 4
L
aetpopp
'“:"I'n'.El-
LEA=
VEpme 4
i S
'l'bE:u z
FEpEaEN
""'E:E 3
I T]
s
'I"EE:-E i
RAeIppy_5
AT el
TJE:E:I
HIE:E [’
HAFLEY
T
=
LIIE:E P
MEPREN
'!!-E:ul z

14 i

et fy =—="3

J5 T%

— =

L=k CE "

- J L L

Hi WlpE

— LI LT

k4 Lia.]

— =

KS L

— =

k2 Yipey 8

— JEE

K1 LipPs .3

— .

L= Hi#

— =

L Ll

fr— of—

HrF T o

— j Ll Sk .

L il ST

— .

F3 E

] o

A4 ¥

— =

Fik L3

— =

HS Rk

pra— —

Fij Lot

= i

H2 L

pra— —

M4 | LT

il TiPIEN

— .

ol il CICF

— .

M1 Hi

e f—

HT L

— -

M Lt

— —

F3 Ll

— o

=1 Hie

T g =

Fi L]

e =

Figure 119: FPGA Bank3 Connections

164

Appendix C (Continued)

]
]
L]
-

z
7
1
7
- - =
EEHE n
el =
H : o
al T S Waal i Lis]
HE =T [os]
i i laa
: B P
" i m
5 - m
: : o
b
|
|
3
=
Sl L]
b]
o
2
L]
-
aL
-
-
i
-
=
u
——
w0
i
a
Fanl B i
SpHD
Ll FETE
o T
hﬂ

EIXZTXIIXTIIX x
RN - E - 2

i
==

M
iR

kDO
=kl fLTE

X EIX
o na

I XTEZIXTIT
CE-ER-R-R-1-]

T FE T EETs T N R IR IV[FEF]F G [E]EQY [FIE JF]
xr
=

.
v LuTR)
woruTpasl
WIZLHT
\-L\'.[HT
WOTLHT
WEC LWT [0
'\I".".I:“'I'
WOZLET
il EuT
WEL I:fl'
WCCLWT
WEELNT
WIZLNT
==y
WCTLNT
WCCLWT
WO L[YT
WOCLHT
WECLWT
woTEHT
WCCLWT
WEELHT
WOCETW| T
wir e fae]
WETEST
Wi CE L
WEEAIE
WOCE N
WECAIL
WECEIE
TR
WECAIK
WOTAIE
==l
L=
WO
[=] L]

R FEEEEEEE]

o FL
e | TR

wpnk, B

AETaF,

1nE |y caw |o. werar can

BRATaR, gy T

Figure 120: FPGA VCC Connections

165

Appendix C (Continued)

zir
. o
lem
Lo Y
M
o A
ui
(-]
ow
U W m
[e |
F =
L]
-
T
q moald
LT
GG a2

REF 3T

Figure 121: FPGA JTAG and Clock Circuit

166

Appendix D Safety Switch Code

library I1EEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

entity SafetySwitch is

Port(--CONTROL LOGIC INPUTS
clk - 1n STD_LOGIC;
pSel : in STD_LOGIC;
dsp_sell : in STD_LOGIC:
dsp_sel2 : in STD_LOGIC:

--SERVO INPUTS

pilotl : in STD_LOGIC:="0";
fpgal - in STD_LOGIC;
dspl : in STD _LOGIC:="0";
pilot2 - in STD_LOGIC:="0";
fpga2 : in STD_LOGIC;
dsp2 : in STD_LOGIC:="0";
pilot3 - in STD_LOGIC:="0";
fpga3 : in STD_LOGIC;
dsp3 : in STD_LOGIC:="0";
pilot4 - in STD_LOGIC:="0";
fpgad - in STD_LOGIC;
dsp4 : in STD_LOGIC:="0";
pilots : in STD_LOGIC:="0";
fpga5 - in STD_LOGIC;
dsp5 : 1n STD_LOGIC:="0"
pilot6 : in STD _LOGIC:
fpga6 - in STD_LOGIC;
dsp6 : in STD_LOGIC:="0";
fpga7 - in STD_LOGIC;
dsp7 : In STD_LOGIC:="0";
fpga8 : iIn STD_LOGIC;
dsp8 : in STD _LOGIC:="0";
fpga9 : in STD_LOGIC;
dsp9 : in STD _LOGIC:="0";
fpgalO : in STD_LOGIC;
dspl0 : in STD_LOGIC:="0";
fpgall : in STD_LOGIC;
dspll : in STD_LOGIC:="0";
fpgal2 : in STD_LOGIC;
dspl2 : in STD_LOGIC:="0";

IOI;
.0.;

1]
[]
Qu
[]

167

Appendix D (Continued)

--SERVO OUTPUTS
servol : out STD_LOGIC;
servo2 : out STD_LOGIC;

servo3 : out STD LOGIC:-="0";
servo4 : out STD _LOGIC:-="0";
servo5 : out STD_LOGIC;
servo6 : out STD_LOGIC;
servo7 : out STD _LOGIC:-="0";
servo8 : out STD LOGIC:-="0";

servo9 : out STD_LOGIC;

servolO : out STD_LOGIC;

servoll : out STD LOGIC;

servol2 : out STD _LOGIC;

SSout : out STD LOGIC);
end entity SafetySwitch;

architecture Structural of SafetySwitch is
signal pps,s - STD_LOGIC:="0";
component single_switch is
Port(pilot - in STD _LOGIC;
fpga : 1n STD_LOGIC;
dsp : in STD LOGIC;
pilot _select : in STD _LOGIC;
dsp_select : in STD_LOGIC;
servo : out STD LOGIC);
end component single_switch;
component freq_conv is
Port(f : in STD_LOGIC:="0";
c: in STD LOGIC:="0";
control _bit: out STD LOGIC);
end component freq_conv;
begin
fcl: component freq_conv port map
(f=>pilot6, c=>clk, control_bit=>pps);
-—-SERVOS CONTROLLING ROBOT DYNAMICS
sl: component single_switch port map
(pilot=>pilotl, fpga=>fpgal,
dsp=>dspl, pilot_select=>pps,
dsp_select=>dsp_sell,
servo=>servol);

168

Appendix D (Continued)

s2: component single_switch port map
(pilot=>pilot2, fpga=>fpga2, dsp=>dsp2,
pilot_select=>pps,
dsp_select=>dsp_sell,
servo=>servo2);
s3: component single_switch port map
(pilot=>pilot3, fpga=>fpga3, dsp=>dsp3,
pilot_select=>pps,
dsp_select=>dsp_sell,
servo=>servo3l);
s4: component single_switch port map
(pilot=>pilot4, fpga=>fpgad, dsp=>dsp4,
pilot_select=>pps,
dsp_select=>dsp_sell,
servo=>servo4);
s5: component single_switch port map
(pilot=>pilot5, fpga=>fpga5, dsp=>dsp5,
pilot_select=>pps,
dsp_select=>dsp_sell,
servo=>servob);
s6: component single_switch port map
(pilot=>"0", fpga=>fpga6, dsp=>dsp6,
pilot_select=>pps,
dsp_select=>dsp_sell,
servo=>servob);
--SERVOS CONTROLLING ACCESSORIES SUCH AS CAMERAS
s7:component single_switch port map
(pilot=>"0", fpga=>fpga7, dsp=>dsp7,
pilot_select=>"0",
dsp_select=>dsp_sel2,
Servo=>servo7);
s8:component single_switch port map
(pilot=>"0", fpga=>fpga8, dsp=>dsp8,
pilot _select=>"0",
dsp_select=>dsp_sel2,
servo=>servo8);
s9:component single_switch port map
(pilot=>"0", fpga=>Tpga9,dsp=>dsp9,
pilot _select=>"0",
dsp_select=>dsp_sell,
servo=>servo9);

169

Appendix D (Continued)

sl10:component single_switch port map
(pilot=>"0", fpga=>fpgall, dsp=>dsplO,
pilot _select=>"0",
dsp_select=>dsp_sel2,
servo=>servol0);
sll:component single_switch port map
(pilot=>"0", fpga=>fpgall, dsp=>dspll,
pilot_select=>"0",
dsp_select=>dsp_sel2,
servo=>servoll);
sl1l2:component single_switch port map
(pilot=>"0", fpga=>fpgal2, dsp=>dspl2,
pilot_select=>"0",
dsp_select=>dsp_sel2,
servo=>servol2);
SSout<=pps;
end architecture Structural;

library I1EEE;

use IEEE.STD _LOGIC_1164_ALL;

use IEEE.STD _LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity freqg_conv 1is
Port(f : in STD_LOGIC:="0";
c: in STD LOGIC:="0";
control _bit: out STD LOGIC);
end entity freg_conv;

architecture Behavioral of freqg_conv is
signal count: integer:=0;
signal rst: STD_LOGIC:="0";
begin
process (c) is
begin
if (c’event and c="1" and f="1") then
count<=count+1;
end if;
if (f="0" and rst="1") then
count<=0;
end 1f;
end process;

170

Appendix D (Continued)

Process (f) is
begin
if (ffevent and f="0" and count>40000)
1T (count>65000) then
control_bit<="0";

else
control bit<="1";
end 1f;
rst<="1";
end if;
if (f="0" and count=0) then
rst<="0";
end if;

end process;
end architecture Behavioral;

library I1EEE;

use IEEE.STD LOGIC_1164.ALL;
use IEEE.STD_LOGIC _ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity single_switch 1is
Port(pilot : in STD _LOGIC;

fpga : 1n STD_LOGIC;
dsp : in STD_LOGIC;
pilot_select : in STD_LOGIC;
dsp_select : in STD_LOGIC;
servo : out STD LOGIC);

end entity single_switch;

architecture Architectural of single_switch is
begin

then

servo<=(not(pilot_select) and not(dsp_select)

and fpga) or (not(pilot_select) and
dsp_select and dsp) or (pilot_select
and pilot);

end architecture Architectural;

171

ABOUT THE AUTHOR

Wendy received her Bachelor's degree from the University of South Florida in
1999. She worked part time in the area of embedded systems design for the signal
conditioning industry while completing her master's degree at the University of South
Florida. Wendy’s master's thesis involved utilizing a second order Sliding Mode
controller with DC/DC converters. As a teaching assistant in the Department of
Electrical Engineering, she taught the controls laboratory and lectured in the
undergraduate controls and microprocessor classes. While working on her PhD she
received a fellowship from the Army Research Lab. In addition to embedded design, her
interests include the design of controls for both ground and aerial vehicles and sensor

integration.

	Development of an FPGA Based Autopilot Hardware Platform for Research and Development of Autonomous Systems
	Scholar Commons Citation

	tmp.1298569684.pdf.CJ0HR

