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Abstract 

 The development, design, and analysis of the Square Trigonal Prismatic (stp) crystal net 

by Alexander Schoedel at the University of South Florida (USF) serves as a case study for 

bridging mathematics and chemistry. By conducting analysis from both viewpoints alongside 

elaboration of field-specific concepts and terminologies, we present the approach each field takes 

when engineering crystal nets. For chemistry, we develop common chemical knowledge into 

terminology and theory specific to the field of Metal-Organic Materials (MOMs) in which stp 

was develop. For mathematics, we discuss graph theory and polyhedra and build towards the 

concepts of symmetry using point groups and space groups. 

We present the terminology and methodology of each field to enable communication 

across field and include a discussion on the various layers that disrupt easy communication 

across fields. These layers include misunderstandings in terminology, misconceptions and 

stereotypes of mathematics, and the problem of information distribution in chemistry lab. By 

presenting each, we hope to inspire professionals to address such barriers. With the analysis of 

stp, basic terminology, and elaboration on what is dividing the fields, we create a common 

ground on which mathematicians and chemists can discuss and collaborate. 
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I. Introduction 

 The modern development of new materials focuses on predicting, designing, and 

synthesizing structures with certain properties. While the traditional “mix and wait” process has 

yielded and continues to yield interesting and important materials, it often does not result in 

products whose structures are predicted in advance. A newer strategy of design, the reticular 

synthesis coined by Yaghi et al (Yaghi, Ockwig, Chae, Eddaoudi, & Kim, 2003), has seen 

success in producing stable, adjustable structures which are predicted before synthesis. As 

applied to the field of Metal-Organic Materials (MOMs), reticular synthesis has produced Metal-

Organic Frameworks (MOFs) which are stable and porous with adjustable dimensions (Yaghi, 

Ockwig, Chae, Eddaoudi, & Kim, 2003). By the MOMs field, we mean a particularly broad field 

of materials composed of metal ions (to be defined section II) or metal clusters connected 

together by organic molecules (Perry, 2009), which is to say molecules containing hydrogen and 

carbon among other elements (Carter, 2007): 

 

Figure 1: Two-dimensional and three-dimensional representations the molecules of a) 

telluric acid, b) benzene, and c) ethane. For all two-dimensional representations, bonds are 

represented by solid or dashed lines, and each element is represented by its notation in the 

periodic table (Miessler & Tarr, 2011). For all three-dimensional representations, bonds 

are cylinders in between spheres, hydrogen atoms are white, carbon atoms are dark grey, 

oxygen atoms are red, and tellurium atoms are gold. Note that b) and c) are organic, but a) 

is not. For all remaining three-dimensional representations of molecules, bonds will be the 

cylinders in between spheres. Figure 1 source: public domain, obtained from WikiMedia 

Commons. Figure 1.a) was dedicated to the public domain; the source is: 

http://commons.wikimedia.org/wiki/File:Telluric-acid-3D-balls.png 
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 Yaghi et al define reticular synthesis as the “process of assembling judiciously designed 

rigid molecular building blocks into predetermined ordered structures (networks), which are held 

together by strong bonding” (Yaghi, Ockwig, Chae, Eddaoudi, & Kim, 2003). Accordingly, 

reticular synthesis utilizes Molecular Building Blocks (MBBs), molecules acting as the bricks 

used to assemble structures that are designed beforehand. We will define MBBs and other 

unfamiliar terminology in sections II and III. The development of reticular synthesis has been 

closely related to the increasing scientific interest in the field of MOMs since Yaghi’s “Reticular 

Synthesis and the Design of New Materials” (Yaghi, Ockwig, Chae, Eddaoudi, & Kim, 2003). 

This is due to the real-world applications in which the MOMs field is currently involved, which 

we will detail in section II. 

 Dr. Mike Zaworotko and other researchers at the University of South Florida (USF) have 

made multiple developments in the field of MOMs. One in particular is the subject of this thesis: 

the development of the Square Trigonal Prismatic (stp) crystal net (to be defined in section III) 

by Alexander Schoedel, which was designed and predicted using a pre-formed trigonal prismatic 

MBB (Schoedel, Wojtas, Kelley, Rogers, Eddaoudi, & Zaworotko, 2011). To understand this 

development, we will discuss the properties and analysis of stp from chemistry and mathematics 

points of view alongside terminology and introductory concepts in the follow two sections. 

II. Chemistry of stp 

A. Basics of Chemistry 

 Before discussing the purpose, design, and synthesis of stp, we clarify the basic 

nomenclature. We presume the audience is familiar with the notions of: an atom, a proton, an 

electron, a neutron, an element, a bond, and a molecule. Additionally, a compound is defined 

here to be a substance composed of the one kind of molecule, consisting of several kinds; thus, 

compounds can be thought of in a larger, real-world scale. From these definitions, we will build 

the basic chemistry needed to understand the rest of this thesis. This description will not involve 

the finer physics behind how atoms function, internally or in relation to each other, but rather 

present the general ideas necessary for this thesis. The element an atom belongs to is determined 

by the number of protons in its nucleus. 
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Figure 2: Two-dimensional 

representation of a carbon atom. 

The atom has six protons, six 

neutrons, and six electrons as per 

the standard in a periodic table 

(Miessler & Tarr, 2011). The 

boundary of the atom has been 

outlined by a circle. 

An atom has an electron cloud, which is a group of electrons that hover around the 

nucleus of protons and neutrons at different distances (Carter, 2007). Electrons in the cloud that 

are closer to the nucleus will be more attracted to it than those further away. This electron cloud 

can be thought of as a layering of shells of electrons around the nucleus in general, with each 

shell having electrons that have roughly the same attraction to the nucleus (Carter, 2007). It turns 

out that beginning with the innermost electron shell, each shell around a nucleus can only be 

occupied by a certain number of electrons, regardless of which element the atom is. Excess 

electrons fill the more outward shells progressively until each electron is in a shell, with the 

outermost shell called the valence shell (Carter, 2007); electrons in the valence shell are called 

valence electrons. 

 

Figure 3: Two-dimensional 

representation of a carbon atom’s 

electron shells. Note that the 

distance from the nucleus of each 

electron in a shell is not necessarily 

the exact same. Moreover, a 

carbon atom has only four 

electrons in its valence shell. 

For reasons beyond the scope of this thesis, an atom’s innermost shell can only hold two 

electrons, and each successive shell can only hold eight before it is full and another shell is 

formed. Furthermore, atoms are more structurally stable with completely filled or half-filled 
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valence shells (Carter, 2007). Accordingly, atoms will tend to form bonds in order to share, lose, 

or gain electrons so that their valence shells are filled. 

 

Figure 4: a) Two-dimensional representation of carbon atoms covalently bonded. In the 

above image, each carbon atom is represented by the letter C, and only their valence 

electrons are shown. Each atom represented has its own associated color. b) Three-

dimensional representation of some carbon atoms connected to each other. In this case, the 

covalent bonds from bold lines and the carbon atoms are gray spheres. Our audience 

should ignore the dotted lines and non-carbon spheres. The distance in between two carbon 

atoms is denoted by 0.15 nanometers. The source of Figure 4.b) is 

http://commons.wikimedia.org/wiki/File:Diamond_and_graphite2.jpg 

The most important kind of bond for this thesis is the covalent bond, in which two atoms 

or molecules share a pair of electrons in order to fill one or both of their valence shells, as shown 

above (Carter, 2007). In Figure 4, the central carbon atom fills its valence shell through covalent 

bonding. The limit on how many covalent bonds any one atom or molecule is based on the 

number of electrons it has. In particular, a coordinate covalent bond is a covalent bond in which 

the pair of shared electrons comes from one atom or molecule (Miessler & Tarr, 2011). 

Coordinate covalent bonds and ligands form the building blocks of chemical structures discussed 

in this thesis. Ligands are atoms, ions, or molecules that form coordinate covalent bonds in 

which they share their electron pair with a metal atom or ion (Miessler & Tarr, 2011), 

 Finally, an ion is an atom or molecule with a different number of protons than electrons 

in total. Specifically, anion has more electrons than protons and is negatively charged overall 

while a cation has more protons than electrons and is positively charged overall. (Carter, 2007) 

Anions typically have a “n-” next to their chemical formula (e.g. OH
-
) and cations typically have 

a “n+” instead (e.g. Mg2+) where n is a positive integer greater than one denoting the number of 

excess or absent electrons; if n = 1, it is not shown. 



9 

 

 

Figure 5: Two-dimensional representations of ions. An atom’s nucleus is represented by its 

element notation in the periodic table (Miessler & Tarr, 2011), black dots are electrons, 

and each circle represents a shell of electrons of an atom. a) A molecule of hydroxide (OH
-

); hydrogen has one proton and oxygen has eight, so the presence of ten electrons signify 

hydroxide is an anion. b) An atom of magnesium, which has twelve protons; the presence of 

ten electrons signify that these magnesium atom is a cation. 

B. Purpose and Design of stp 

 

Figure 6: Venn diagram of the field of MOMs based on Perry’s table (Perry, 2009). 

The stp crystal net was designed in the context of 3-periodic MOMs and their 

applications. We define something as periodic if it occurs at equal, measureable intervals in a 
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generic space. Below is an example of the periodic occurrence of a dot along one dimension, for 

example the number line. Moreover, something is 3-periodic if it occurs periodically along each 

of the three axial dimensions in the real world. Thus a structure is 3-periodic if it occurs 

periodically along the aforementioned three dimensions. Below are examples of 1-periodic, 2-

periodic, and 3-periodic structures: 

 

Figure 7: a) Example of the periodic occurrence of a dot on the integer number line. b) 

Example of the periodic occurrence of the square tile across a plane. c) Example of the 

periodic occurrence of sodium (Na, in purple) and chlorine (Cl, in green) atoms in salt 

(NaCl). Figure 7.c source: Public Domain, obtained from WikiMedia Commons. 

A Metal-Organic Material (MOM) is typically composed of metal ions or metal clusters, 

which are connected to each other by organic molecules serving as ligands. Specifically, Metal-

Organic Frameworks (MOFs) are 3-periodic MOMs that define the three-dimensional structures 

of crystals. (Miessler & Tarr, 2011) We define crystals to be solids whose components (e.g. 

atoms, ions, or molecules) are arranged in a periodic order allowing them to be extended in all 

three axial dimensions (Perry, 2009). Figure 7.c) is an example of a salt (NaCl) crystal in which 

the sodium or chlorine atoms are arranged periodically; it is visible that this three-dimensional 

periodic occurrence can be continued in any of the three axial directions. All the crystals we shall 

discuss henceforth will be MOMs. 

In regards to MOMs, the organic ligands that connect metal ions or metal clusters are 

called linkers. The metal ions or clusters are referred to as nodes (Batten & Robson, 1998); 

linkers have at least two sites at which bonds can be formed to nodes.  Moreover, MOFs are 

recognized for the empty spaces in between nodes and linkers which are often referred to as 

pores. Here is an example of MOM along with its building blocks: 
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Figure 8: Three-dimensional representation of a MOF. We distinguish that metal clusters 

are not just the blue three-dimensional objects, but groups connected to each other by 

linkers. Courtesy of Dr. Michael O’Keeffe. 

In the MOM seen above, the node is a cluster composed of a metal ion and oxygen atoms 

and is an example of an MBB. MBBs have distinct geometric arrangements defined by the points 

at which the MBBs can be connected to linkers, called extension points (Yaghi, Ockwig, Chae, 

Eddaoudi, & Kim, 2003). Nodes and linkers are classified by their connectivity: a node is said to 

be n-connected if there are n linkers attached to it and a linker is said to be n-connected if it 

connects n nodes (Schoedel, Wojtas, Kelley, Rogers, Eddaoudi, & Zaworotko, 2011). 

 

Figure 9: Four three-dimensional representations of MBBs, the names of which will be 

elaborated upon in section III. Light blue or light red spheres represent metal ions, gray 

represents carbon, and dark red represents oxygen. Courtesy of Alexander Schoedel. 
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The purpose of designing stp (O'Keeffe, Peskov, Ramsden, & Yaghi, 2008) was to 

construct a crystal net that used the trigonal prismatic Primary Molecular Building Block (tp-

PMBB-1) and to create visible single crystals. A trigonal prismatic structure has the following 

form: 

 

Figure 10: a) - b) Three-dimensional representations of a trigonal prism, seen from two 

angles. The green line represents the z-axis, blue is the y-axis, and red is the x-axis. 

Researchers need MOMs to form full crystals that can exist stably without other 

supporting structures for most potential applications. We note this because a perfect MOM might 

form a single crystal; however, not all predesigned MOMs form single crystals but instead could 

form powders or amorphous solids. Often, predesigned MOMs either need other molecules for 

structural support, like solvents and anions that are present during the actual synthesis of a 

MOM. These are in addition to the MBBs and linkers that make up a MOM’s structure; without 

this structural support, some MOMs are unstable so their structures tend to collapse. Up until 

Schoedel’s research, trigonal prism MBBs based on chromium (III) had only yielded 

microcrystalline powders. These materials had already shown outstanding framework stability 

with very large surface areas within the “porous” crystal. In general, surface area is the area 

required to cover the surface (i.e. outer boundaries) of any object, as seen below: 
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Figure 11: Three-dimensional representation of a cube with three faces labeled. The area 

necessary to cover each of these faces and the three unseen faces sums to be the total 

surface area of the cube. The green line represents the z-axis, blue is the y-axis, and red is 

the x-axis. 

In regards to MOMs however, surface area does not just deal with exterior surfaces 

because MOMs behave like sponges. That is, MOMs have internal surfaces onto which other 

molecules and/or atoms become attached inside, much like water is attached to the interior of a 

sponge after entering through the sponge’s pores. This explanation suffices for describing 

crystals as “porous,” because a full discussion on the definition and qualities of pores is beyond 

the scope of this thesis. The interior surfaces of MOM crystals also contribute to their overall 

surface areas, allowing for extremely large surface areas even in small crystals. For example, at 

the time Yaghi et al published “Reticular Synthesis and the Design of New Materials,” a MOF 

had been found with a surface area of 2,900 meters squared per gram (Yaghi, Ockwig, Chae, 

Eddaoudi, & Kim, 2003). 

In regards to atoms and molecules, the outer boundaries are determined by the valence 

shell and its experimental distance from the nucleus or nuclei. For an atom, this distance is 

referred to as the radius of the atom. Thus, the surface area of a MOM covers all of its molecular 

components, taking into account atom and molecule intersections. Below is an example of the 

outer boundaries to be covered for an MBB: 



14 

 

 

Figure 12: Two three-dimensional representations of an MBB. In both, oxygen atoms are 

red, carbon atoms are light blue, and metal ions are red. a) Typical “ball and stick” 

representation of such an MBB. b) Representation of the same MBB, but instead taking 

into account atoms’ radii. This representation is used to determine the MBB’s surface area. 

Schoedel anticipated that trigonal prismatic MBBs could be assembled together using 

another MBB and form 3-periodic MOMs, which he expected to form into visible single crystals 

(Schoedel, Wojtas, Kelley, Rogers, Eddaoudi, & Zaworotko, 2011). The two MBBs he chose to 

test with the trigonal prismatic MBB were a linear MBB and a square MBB. The stp crystal net 

design resulted from the use of a trigonal prism MBB and a square MBB, as seen below. 
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Figure 13: a) – c) Abstract three-dimensional representation of some of the stp crystal net 

using trigonal prism MBBs connected to each other by square MBBs. The green line 

represents the z-axis, blue is the y-axis, and red is the x-axis.  
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C. Synthesis 

1. Theoretical Process 

 Per the application of reticular synthesis, the stp crystal net was predicted before the 

chemicals were chosen to synthesize a crystal with the stp topology (Schoedel, Wojtas, Kelley, 

Rogers, Eddaoudi, & Zaworotko, 2011). Here, we make the important distinction between the 

vast field of topology in mathematics and the meaning of the term “topology” in chemistry. In 

chemistry, a material’s topology describes properties of its atomic or molecular structure. In 

terms of mathematics, the chemical topology of a material describes the “isomorphism class” to 

which a space or figure belongs; however, further details on “isomorphisms” and “isomorphism 

classes” are specific to the algebra sub-field of mathematics and are beyond the scope of this 

thesis. Because we will not deal with topology in mathematical terms in this section, we will use 

the term topology in the chemical sense. Nevertheless, we detail the problems of similar 

terminology with vastly different meanings in section IV. We further note that the naming 

system we use for chemical topologies comes from the Reticular Chemistry Structure Resource 

(RCSR) (O'Keeffe, Peskov, Ramsden, & Yaghi, 2008).  

The use of a linear MBB was expected to yield a crystal with the 6,6-connected acs 

topology (Sudik, Côté, & Yaghi, 2005); however, because a linear, yet bendable MBB was used, 

crystals with other “6,6-connected” snx and snw topologies (O'Keeffe, Peskov, Ramsden, & 

Yaghi, 2008) were produced instead. By 6,6-connected, we mean a topology in which the only 

nodes that exist are two distinct kinds of 6-connected nodes. The nodes are distinct because they 

are not “isomorphic” to each other, which means that we cannot use one in place of the other 

when describing this topology. A further discussion on kinds of nodes and whether two nodes are 

isomorphic would once again be beyond the scope of this thesis. We will present the snx and 

snw topologies and elaborate upon some of the chemical process in section IV. In regards to the 

stp crystal net, the 6-connected trigonal prism MBB, henceforth referred to as tp-PMBB-1, was 

searched for in the Cambridge Structure Database (CSD) (Schoedel, Synthesis of stp, 2012). This 

database details the structures of thousands of known molecules and compounds. The constraints 

on the search for tp-PMBB-1 were that the trigonal prism structure was to have one kind of metal 

ion and isonicotinic acid, shown below. 
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Figure 14: a) Two-dimensional representation of a molecule of isonicotinic acid. It is 

common to denote two covalent bonds with two lines between the same atoms; also, carbon 

is frequently not written in two-dimensional representations, but rather corners or which 

have no elements are implied to be carbon atoms. Finally, bonds to hydrogen atoms and the 

atoms themselves tend not to be shown in two-dimensional representations, though their 

presence is implied. b) Three-dimensional representation, with carbon atoms in dark grey, 

nitrogen in blue, oxygen in red, and hydrogen in white. Figure 14 source: public domain, 

obtained from WikiMedia Commons. Figure 14.b) was dedicated to the public domain; the 

source is: http://commons.wikimedia.org/wiki/File:Isonicotinic-acid-3D-balls.png 

Isonicotinic acid, shown above, is composed of a carboxyl moiety and a pyridine, both of 

which are labeled above. We define moiety to be a group of atoms, ions, or sub-molecules that 

have a specific structure and composition (Carter, 2007). MBBs are decorated with moieties 

when sub-molecules of said moieties are connected to MBBs at their extension points (Yaghi, 

Ockwig, Chae, Eddaoudi, & Kim, 2003). Examples of two common moieties are shown below. 
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Figure 15: Two-dimensional representations of different moieties. For all moieties, R 

usually represents an organic molecule; but if the moiety is organic, R can be simply a 

hydrogen atom.  a) Carboxyl moiety, b) Aldehyde moiety, c) Hydroxyl moiety, and d) 

Nitroso moiety. Figure 15 source: public domain, obtained from WikiMedia Commons. 

 The reason for having such constraints on the search for tp-PMBB-1 was that it 

would allow six pyridine molecules to be exposed at tp-PMBB-1’s extension points so that each 

pyridine could serve as a linker between tp-PMBB-1 and a second metal node (MBB). Only one 

trigonal prism structure was found, with the chromium serving as the metal ion (Mullica, 

Pennington, Bradshaw, & Sappenfiled, 1992). This process is better understood in the figures 

below (Schoedel, Synthesis of stp, 2012).  

 

Figure 16: Three-dimensional representation 

of tp-PMBB-1 with a trigonal prismatic 

outline. Note the six exposed nitrogen (in 

blue) atoms. Chromium atoms are in green, 

oxygen atoms in red, and carbon atoms are 

black. Courtesy of Alexander Schoedel.
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Accordingly, Schoedel then used CSD to find a 4-connected square structure composed 

of a metal ion and 4 pyridines. He found CdN4 (shown in Figure 17.a), a rigid square sub-

molecule of the molecule formed by connecting cadmium (II) to four pyridines, shown at the 

center of Figure 17.b (Schoedel, Wojtas, Kelley, Rogers, Eddaoudi, & Zaworotko, 2011). This 

MBB will henceforth be known as MBB-2 (Schoedel, Synthesis of stp, 2012). 

  

 

Figure 17: a) Three-dimensional representation of CdN4, with nitrogen atoms in blue and 

cadmium in magenta. Note the black square outline of this MBB. b) The assembly of MBB-

2, connecting four adjacent tp-PMBB-1s through their exposed pyridines. Oxygen atoms 

are in red, chromium in green, carbon in dark grey, nitrogen in blue, and cadmium in 

magenta. Figure 17.b Courtesy of Alexander Schoedel. 

 Thus, the design of the stp crystal net was transferred into a theoretical chemical formula 

consisting of tp-PMBB-1 and MBB-2 as shown above, connected by pyridine linkers.  

2. 2-Step Crystal Engineering 

 Though the synthesis of a crystal with the stp topology is based on the theoretical process 

previously described, the actual synthesis in the lab involves other stabilizing mediums and 

molecules. The process is first divided into two steps: 1) the construction of tp-PMBB-1 using 

chromium nitrate nonahydrate (Cr(NO3)3 ∙ 9 H2O) and isonicotinic acid dissolved in water, and 

2) the construction of MBB-2 using cadmium nitrate tetrahydrate (Cd(NO3)2 ∙ 4 H2O) in a 

layering process which will be detailed later. We clarify that the (∙ n H2O) notation describes the 

ratio of a moles of a compound to n moles of water. 
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Figure 18: Three-dimensional representations of the chemical structures of a) chromium 

(Cr(NO3)3) and b) cadmium nitrate (Cd(NO3)2). Note: Gray sphere represent the metal, 

blue nitrogen, and white hydrogen. 

 The division of these steps is based on the Hard and Soft Acid and Base theory (HSAB 

theory) developed by R. G. Pearson (Miessler & Tarr, 2011). We must first review what acids, 

bases, and polarity are. We will use the accepted Brønsted-Lowry definitions of acids and bases: 

“an acid is any proton donor and a base is any proton acceptor” (Carter, 2007). By this we mean 

that an acid reacts in such a way as to lose protons (in the form of atoms or sub-molecules) and a 

base reacts in such a way as to gain protons (in the aforementioned form). In the formula below 

H3O
+ is the acid and NO2

- is the base (Miessler & Tarr, 2011). The reason for this is that H3O
+ 

loses a hydrogen atom, which has only one proton, and NO2
-
 gains that hydrogen atom. 

H3O
+ 

+ NO2
-
 � H2O + HNO2 

Next, we define polarity. Polarity occurs when the electron clouds of two atoms in a bond 

are drawn in either one direction or another. This is directly related to the intensity of positive 

attraction in each atom’s nucleus (Carter, 2007). Polarity leaves one atom in the bond with its 

positive nucleus more exposed and the other atom with a relative overabundance of electrons 

which results in a positively charged and negatively charged side, respectively. Take the covalent 

bond in between an oxygen atom and a hydrogen atom (shown below); in this case, side opposite 

of the bond is negatively charged for oxygen and positively charged for hydrogen. 
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Figure 19: Two-dimensional representation of a H2O molecule. The each intersection of the 

oxygen atom’s valence shell with the hydrogen atoms’ valence shell represents a covalent 

bond. Note the abundance of electrons on the right side of the molecule and the two 

exposed protons on the left side of the molecule. 

 Generally, however, polarity is not isolated to just the bond between two atoms. 

Molecules are polar if there is overall stronger charge in the nuclei of a group of atoms than the 

rest of the molecule, as shown below (Carter, 2007). A molecule is said to be polarized if it 

exhibits polarity and polarizable if a bond can be formed which would make the molecule 

polarized. Finally, molecules that are polarized are simply called polar molecules. The H2O 

molecule in Figure 19 is a polar molecule because the side on which the hydrogen atoms are 

connected is positively charged because of each hydrogen atom. Furthermore, the opposite side 

is negatively charged because of all the electrons. 

 Now we can understand how HSAB theory dictates the division into two steps of the 

synthesis of an stp crystal. First, HSAB theory declares that polarizable acids and bases are 

“soft” while non-polarizable (those that can’t be polarized) acids and bases are “hard.” 

Moreover, it states that “hard acids prefer to bind with hard bases and soft acids prefer to bind 

with soft bases” (Miessler & Tarr, 2011). This means that reactions involving the same kind of 

acid and base (hard or soft) will occur more thoroughly and more often than those involving one 

hard and one soft. Further study behind the mechanisms that explain HSAB theory is beyond the 

scope of this thesis.  

3. Synthesis 

In this sub-section, we consider the components of stp: chromium (Cr
3+

) is a hard acid, 

carboxylate is a hard base, cadmium (Cd2+) is a soft acid, and pyridine is a soft base. The first 

step of the synthesis involves the reaction of a hard acid and hard base, which yields a stable 
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structure (Schoedel, Synthesis of stp, 2012), in our case the nitrate salt of tp-PMBB-1 

(Cr3O(isonicH)6(H2O)2(NO3)](NO3)6 ∙  2 H2O) seen in the chemical reaction below. The second 

step involves the reaction of the soft basic portion of tp-PMBB-1, the pyridines, with the soft 

acid cadmium. First reaction: 

3 Cr(NO3)3 ∙  9 H2O + 6 C6H5O2N ���� [Cr3O(C6H5O2N)6(H2O)2(NO3)](NO3)6 ∙ 2 H2O + 

2 HNO3 + 14 H2O 

As mentioned before, in the first step isonicotinic acid was dissolved in hot water and 

reacted together with chromium nitrate, which after evaporation yielded the nitrate salt of tp-

PMBB-1. In this case, the nitrate ions balance out the charge of the tp-PMBB-1s (Schoedel, 

Synthesis of stp, 2012). In particular, one mole of Cr(NO3)3 reacts with 2 moles of isonicotinic 

acid, so half as many moles of a chromium nitrate as isonicotinic acid  are required for the 

reaction in the first step. 

A mole is an International Systems of Units (abbreviated SI from French) unit measuring 

chemical amount, much like a second is the SI unit of time. Just as second is abbreviated in SI to 

s, so mole is abbreviated to mol. One mole of an element or a compound is has approximately 

6.02×10
23

 atoms of the element or molecules of the compound, respectively (Carter, 2007). 

Because different elements and molecules have a different number of protons, neutrons, and 

electrons, the weight in grams of a mole varies depending the element or compound; these 

weights are all catalogued by the Chemical Abstracts Service (CAS) and every individual 

compound has its own CAS registry number.  

Using molecular weights obtained from CAS, the exact amounts, in grams, of 1 mmol 

(millimole or a thousandth of a mole as per SI convention) of isonicotinic acid and 0.5 mmol of 

chromium nitrate were calculated and measured: 123.1 mg (milligrams) and 200.1 mg 

respectively. Each of these was obtained from sealed containers, separated using a small spatula, 

and measured using a scale accurate to 0.1 mg. First, a water bath was set up on top of a hot plate 

utilizing a large beaker and a smaller beaker. The smaller beaker was placed inside the large one; 

then water was poured in the larger beaker to about half volume. This amount is arbitrary and the 

larger beaker with the water (i.e. the water bath) is only used in order to ensure that the 

isonicotinic acid and chromium nitrate are not burned during the reaction (Schoedel, Synthesis of 

stp, 2012). Next, 50 mL of deionized water, water from which the ions have been removed, were 

added into the smaller container. This amount is somewhat arbitrary and measured out to be 

enough (by experience) for the given amount of isonicotinic acid to be dissolved before adding 

of the chromium nitrate nonahydrate (Schoedel, Synthesis of stp, 2012). On that note, the hot 

plate was then set to 373 Kelvin (denoted in SI as K; 373 K are 100 degrees Celsius). Using a 

stirring bar, the isonicotinic acid was added and then dissolved in the 50 mL of water. After the 

isonicotinic acid was fully dissolved, the chromium nitrate was added. 
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After about two minutes in the above set-up, during which the solution in the small 

beaker goes from being dark green to deep blue, the temperature was set down to 353 K. The 

water in the smaller beaker was then evaporated over a period of two hours; as tp-PMBB-1 

forms, it turns the solution back to a dark green color when only few milliliters remain at the 

bottom. Once the water was fully evaporated, tp-PMBB-1 was recovered in the form of a green 

powder, ready to be used in the next step of synthesis, or, in our case, placed in a sealed 

container for later use. 

The second step of the synthesis involves a layering process in which different layers of 

solvents are used to react the cadmium nitrate with the tp-PMBB-1 product from the first step. 

Nitrate is once again used with the metal ion, this time cadmium, so as to balance the overall 

charge of the resulting framework with single kind of anion. Below is an explanation of what 

makes nitrate (NO3
-) negatively charged: 

 

Figure 20: Three-dimensional representations, with ions labeled with their charge of the 

three possible states of a NO3
-
 molecule. The molecule alternates among these three states 

for the three oxygen atoms that surround the nitrogen atom. In each case, only one oxygen 

atom with a double covalent bond to the nitrogen atom; the other two oxygen atoms are 

anions (Miessler & Tarr, 2011). We note that only the bonds that move around; the oxygen 

atoms in the above picture are fixed, and the molecule is not just rotating through the three 

states. Furthermore, in all three possibilities, the ions indicate that there is an additional 

electron present, and there is always one side of the molecule that is more negatively 

charged overall. Therefore, the nitrate molecule is negatively charged. Figure 20 source: 

public domain, obtained from WikiMedia Commons. 

Second reaction, where x is the number of moles of DMF and y is the number of moles of 

MeCN: 

Reactants Products 

2 [Cr3O(C6H5O2N)6(H2O)2(NO3)](NO3)6 ∙ 2 

H2O + 3 Cd(NO3)2∙4 H2O + x C3H7NO + y 

C2H3N 

{[Cd(H2O)2]3 

Cr3O(C6H5O2N)6(H2O)3]2(NO3)8}  

∙ x C3H7NO ∙ y C2H3N  + 8 H2O + 12 HNO3 
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This layering process is results from the property that homogenous solvents of different 

polarities and liquids of different densities organize themselves individually and vertically with 

less dense liquids progressively sitting on top of more dense liquids (Carter, 2007). A substance 

is homogenous if its composition is uniform all throughout (Carter, 2007). In the case of this 

reaction, solvents N,N-dimethylformamide (DMF) and acetonitrile (MeCN) were used to slowly 

spread the cadmium nitrate layer into the tp-PMBB-1 layer. This slow introduction is done in 

order to allow the stp crystals to grow properly into large single crystals in the middle layer, 

instead of a powder (Schoedel, Synthesis of stp, 2012). Moreover, the polarity of DMF is greater 

than that of MeCN, so mixtures of these two solvents at different ratios will have different 

densities and polarities. By “layering”, we mean that the different concentrations of DMF and 

MeCN mixtures are carefully placed one on top of the other, from lowest to greatest density. 

 

Figure 21: Diagram of the three different layers of homogenous concentrations. Each is 

labeled with ratios of DMF to MeCN. 

In the actual synthesis, the above layering was observed with the top and bottom layers 

each being 3 mL in volume. Two trials were done for the middle layer: one trial had a 1 mL 

middle layer and the other had a 3 mL middle layer composed of a mixture of DMF and MeCN 

at a one to one ratio. The idea behind this was to show that a larger middle layer would give the 

crystals more time and space to form (Schoedel, Synthesis of stp, 2012). Each layer was 

measured with an electronic pipette for accuracy, mixed inside an individual test tube, and 

agitated using test-tube mixer that vibrates a test tube when it is pressed against the agitator. In 

addition, 96.3 mg of cadmium nitrate was dissolved in the test tube containing the top layer 

while 63.1 mg of tp-PMBB-1 was dissolved in the test tube containing the bottom layer. The 

layering was then carefully and slowly done in a separate test tube, with each layer being 

allowed to settle before the next layer was added. The final test tube was given a week to let the 

reaction occur, and was covered up in order to avoid the evaporation of the solvents. This 

temporary layering eventually became a uniform mixture, but the time for that to occur was long 

enough for the cadmium nitrate and the tp-PMBB-1 to slowly react and form crystals at the 
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middle layer, once again leaving the excess nitrate in the surrounding solution (Schoedel, 

Synthesis of stp, 2012). 

 

Figure 22: Photo of crystal formation from one 

test tube. stp crystals are the particles at the 

bottom of the test tube, though the largest 

crystals were attached on the side of the test 

tube. Courtesy of Joy D’Andrea.

D. Properties and Applications 

 

Figure 23: Simplified three-dimension representation of the top-down view of the stp 

crystal net. tp-PMBB-1s are represented as green intersections and MBB-2s are purple 

intersections. This figure is similar to Figure 13, but features MBBs as nodes instead. 

Courtesy of Alexander Schoedel. 
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 Now that we have presented the concepts behind the synthesis of a crystal with the stp 

structure, we can discuss the properties and applications of this crystal and those like it. In 

general, the real-world applications of the MOMs field include “ion exchange, hydrogen storage, 

molecular sensing, drug delivery, and medical imaging” (Miessler & Tarr, 2011). The main 

properties of a synthesized crystal that interest the research group to which Schoedel belongs are: 

1) anion exchange capability, and 2) gas sorption. By sorption, we generally mean the 

interaction by which two substances stick together and in the case of gas sorption, we mean the 

interaction by which a gas sticks to a substance. The gas sorption of a MOF, in the form of 

crystal, is described as gas molecules or atoms sticking to the surface area of the MOF, which 

again includes the inner wall channels within MOF (Nugent, 2012). If the audience is uncertain 

about this, it helps to think of the MOF absorbing and retaining gas as a sponge would water, 

keeping in mind that MOFs are inherently porous (Nugent, 2012). 

 Since stp is inherently cationic and possesses large hexagonal channels, it was 

anticipated that the charge balancing nitrate anions would be exchangeable with other anions.  A 

substance is cationic if it has more cations than anions. Generally, anion exchange is the process 

by which the main anion in the structure is chemically replaced with another (Schoedel, 

Synthesis of stp, 2012). NO3
-
 is the anion in our case (Figure 20) because it is the excess ion left 

over by each of the steps in the two-step synthesis of the stp crystal, remembering that it 

balances the overall charge of the crystal structure (Schoedel, Wojtas, Kelley, Rogers, Eddaoudi, 

& Zaworotko, 2011). Ideally, anion exchange does not affect the structure of a MOF. The 

purpose of this exchange is to measure the gas sorption of a particular MOM for a specific gas, 

and relate that gas sorption to the same MOM containing different anions. The hope of the 

research group is to correlate certain anions with particular gas sorption ranges in order to form 

guidelines for what anions are expected to give a MOF the most gas sorption or highest 

selectivity.  

Increased gas sorption itself, for particular gases, is the other desired property for MOFs 

in general. To this end the gas sorption of a MOF is tested for specific gases, and this gas 

sorption is compared to that of other MOFs, for the same gases as well. The idea is to see which 

MOFs tend to have the most gas sorption with specific gases. In general, CO2 at 273K (0 degree 

Celsius) is the first gas to be checked inside a MOF which is being studied for gas sorption, 

because its sorption in MOFs indicates porosity and lead to the decision if further studies will be 

conducted or not (Schoedel, Synthesis of stp, 2012). 

As for the stp crystal produced, it could be shown that nitrate anions (NO3
-
) were 

successfully exchanged by tetrafluoroborate anion (BF4
-
) (Schoedel, Wojtas, Kelley, Rogers, 

Eddaoudi, & Zaworotko, 2011). In terms of gas sorption experiments, no significant uptakes 

could be achieved for stp. Though the crystal is itself stable inside the DMF and MeCN solution, 

once it is removed from the solution it tends to deform and eventually lose its structure 

altogether. This is caused by the flexibility of the tp-PMBB-1 which might cause shrinking upon 

removal of solvents inside the channels. (Schoedel, Synthesis of stp, 2012). In turn, this causes 
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the angles in between linkers to change; because the stp crystal structure has well defined angles, 

even the most remote change in the angles will cause the structure to deform. 

The real importance of the synthesized stp crystal is to confirm that a well-formed stp 

structure can be realized for the first time in a MOM. As Schoedel et al notes, because elements 

other than cadmium and linkers other than pyridine can be used applying the same concepts, 

crystals with stp topology can be produced with longer or angular linkers and different metal 

ions (Schoedel, Wojtas, Eddaoudi, & Zaworotko, 2012). These stp crystals exemplify how 

MOMs are tunable and adjustable in their metrics and composition. Examples of these new 

crystals cannot be presented in this thesis, however, because their structures and design have not 

yet been published. 

Like the original crystal, some of these different manifestations of stp have shown 

interesting single-crystal to single-crystal anion exchange properties (Schoedel, Wojtas, Kelley, 

Rogers, Eddaoudi, & Zaworotko, 2011). In this context other structures prepared by the 2-step 

approach showing the acs topology have also been used in various anion exchange processes. 

These crystals possess increased gas sorption for carbon dioxide at 273K among various trials 

(Schoedel, Synthesis of stp, 2012). These results, in turn, have opened up the stp crystal net for 

potential MOFs throughout the entire field. 

III. Mathematics of Crystal Nets 

A. Graph Theory 

 We start the mathematical analysis of stp from the view point of graph theory. First, we 

define a graph to be a diagram made up of points (i.e. vertices) and line segments joining pairs of 

these points (i.e. edges). Below are two such examples of the various diagrams that can be 

classified as graphs: 

 

Figure 24: a) – b) Graph examples: vertices labeled vi and edges labeled ei, each i is an 

integer. 
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 Because graphs are abstract in general mathematics, we clarify that we will be working 

with simple graphs that exist in real space. By simple graph, we mean a graph in which no edges 

join a vertex to itself (i.e. no loops) and only one edge can join any two specific vertices (Bona, 

2006). An example of a simple graph can be seen Figure 24.b). We note that Figure 24.a) is not a 

simple graph because of e1 is a loop and because e4 and e5 connect the same vertices (v3 and v4). 

By real space, denoted as R
3
, we mean the three-dimensional space in which we live, where 

exact locations can be represented by points (i.e. vertices) and line segments (i.e. edges) 

represent the shortest curve between two points. The two vertices incident to an edge are its 

endpoints. The audience should be familiar with the Cartesian coordinate system of labeling 

locations in R
3
, which has an x-axis, a y-axis, and a z-axis. 

 

Figure 25: Example of a graph in 

R
3
, using the Cartesian coordinate 

system. The green line represents 

the z-axis, blue is the y-axis, and 

red is the x-axis. The coordinates 

are v1: (0, 0, 0), v2: (-2, 0, -3), v3: (1, 

10, 7), v4: (1, 6, 2), v5: (2, -4, 3), and 

v6: (3, 2, 0) 

 We must define one last graph theory term before we can apply graph theory to chemical 

substances: cycles. First, we must define a walk, which is a sequence of distinct vertices and 

distinct edges v1e1v2e2...ekvk+1 such that for each i, the end point is of edge ei is the starting point 

edge ei+1 (Bona, 2006). Now, we define a cycle to be a walk that starts and ends at the same 

vertex, but does not involve any other vertex more than once (Bona, 2006). Examples of these 

two objects are shown below: 
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Figure 26: An example of a graph. In this graph, v6 e8 v7 e9 v8 e10 v9 and v7 e11 v10 e12 v11 are 

walks while v1 e2 v3 e3 v2 e1 v1 and v3 e4 v4 e6 v5 e7 v6 e5 v3 are cycles. 

 Now we can associate graphs with chemical structures by distinguishing analogues to 

vertices and edges. We have already discussed that we will only be working with simple graphs 

that exist in R
3
; because of this, associating vertices with individual atoms and edges with bonds 

is well within the scope of graph theory (review Figures 1, 9, 12.a), 16, 17, and 18). By the same 

reasoning, we can think of sub-molecules as vertices in complex molecular structures with edges 

still representing bonds, or nodes in MOMs as vertices with edges representing linkers. This is 

best exemplified by the nodes of the stp net in Figure 23 which represent 6-connected tp-PMBB-

1s and 4-connected MBB-2s, or respectively represent vertices with six edges and vertices with 

four edges when the net is viewed as a graph. The degree of a particular vertex is the number of 

edges in which the vertex is one endpoint (e.g. a vertex with six edges has a degree of six). Thus, 

the connectivity of a node is the degree of a vertex when relating nodes to vertices (e.g. a 6-

connected node has a degree of six when the node is represented as a vertex in a graph).  

B. Polyhedra 

 There is one very important use of graphs in analyzing the MBBs of MOMs, but in order 

to understand it, we must first understand polyhedra. A polyhedron (the singular of polyhedra) is 

a finite three-dimensional object bounded by finitely many non-intersecting polygons, which are 

the polyhedron’s faces. Here, a polygon a two-dimensional shape bounded by finitely many line 

segments that enclose a certain area. In R
3
, we can simply think of polygons as two-dimensional 
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cycles whose edges don’t intersect. An example of a polyhedron is the trigonal prism in Figure 

10, referred to in mathematics as a triangular prism because of its triangle base. Two other 

examples are shown below: 

 

Figure 27: Polyhedra viewed on the Cartesian coordinate system: a) Square Pyramid and 

b) Pentagonal Prism. The green line represents the z-axis, blue is the y-axis, and red is the 

x-axis. 

 There are classes of polyhedra that are and have been of interest to the chemistry field, 

including the class of platonic solids. Platonic solids, are polyhedra whose vertices and faces are 

related to one another by symmetry operations (which will be discussed in the following sub-

section) and whose faces are also all congruent (O'Keeffe & Hyde, Crystal Structures: I Patterns 

and Symmetry, 1996), which is to say equal in all measurements and form. Below are the five 

platonic solids. 
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Figure 28: Representations of the five platonic solids from WikiMedia Commons. 

“Permission is granted to copy, distribute and/or modify this document under the terms of 

the GNU Free Documentation License, Version 1.2 or any later version published by the 

Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-

Cover Texts.” 

a) Icosahedron http://commons.wikimedia.org/wiki/File:Icosahedron.svg 

b) Tetrahedron http://commons.wikimedia.org/wiki/File:Tetrahedron.svg 

c) Octahedron http://commons.wikimedia.org/wiki/File:Octahedron.svg 

d) Hexahedron (Cube) http://commons.wikimedia.org/wiki/File:Hexahedron.svg 

e) Dodecahedron http://commons.wikimedia.org/wiki/File:POV-Ray-

Dodecahedron.svg 

 

 Since the boundary of a polygon is a cycle, we can discuss MBBs as either polygons or 

polyhedra whose vertices are defined by their extension points. Following this, we can identify 

the edges of MBBs as the shortest line segments at the shortest distances in between extension 

points. These are selectively included such that no two edges are intersecting while every 

extension point has at least two edges connected to it if the MBB is represented by a polygon or 

at least three edges if the MBB is represented by a polyhedron. An MBB can only be a polygon 

if all of its extension points lie on the same plane; otherwise it must be described as a 

polyhedron. Below are the polygon and polyhedron outlines of the MBBs from Figure 9 which 

explain how each MBB was named: 
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Figure 29: Three-dimensional models of MBBs with polyhedron outlines: a) Square, b) 

Triangle, c) Octahedron, and d) Trigonal Prism. Courtesy of Alexander Schoedel. 

Using the notion of cycles as polygons, we can identify the faces of an MBB if it is 

represented as a polyhedron. For two-dimensional MBBs, one cycle should be formed which 

includes every extension point (i.e. vertex) outlining a polygon. For three-dimensional MBBs to 

be associated with particular polyhedra, graph representations should be used such that cycles are 

created, with each extension point belonging to three different cycles. In creating these cycles, 

bonds, atoms, and molecules which are not extension points should be ignored. Finally, the 

potential polyhedron should be drawn so that there is only one final space contained by the 

polyhedron, not multiple disjoint spaces. We recommend that researchers refer to models of 

polyhedra in the public domain to ensure that they are making the single polyhedron they desire 

for their MBB or ensure that the polyhedron they have identified for an MBB is appropriate. 

It is by following the process above of identifying the two-dimensional or three-

dimensional structure of MBBs that we can then access the symmetry of MBBs and the crystal 

nets they form. This process will be detailed in full in the following sub-section. 

C. Symmetry 

1. The Mathematics of Symmetry  

 Discussion on symmetry in R
3
 begins with isometries, which we will describe in terms of 

mappings. We assume familiarity with the notions of the Cartesian coordinate system and a 

mapping, which relates a set of points, the domain, to another set of points, the range, such that 

each point in the domain is only related to one point in the range. This constraint does not mean 

that each point in the range is related to only one point in the domain; adding this separate 

constraint would make the mapping one-to-one. Common examples and non-examples of 

mappings are shown below in two dimensions and in R
3
: 
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Figure 30: a) (Above) Three examples of mappings in two dimensions plotted in the 

Cartesian coordinate system represented by the red, blue and green lines. The domain is 

the set of all real numbers along one dimension, the x-axis in our case. Note that with this 

as our domain, the line in magenta is not a mapping because one point in this domain is 

related to more than one point in the range, the real numbers along the other dimension 

(i.e. the y-axis). Furthermore, the mappings in blue and green are one-to-one because each 

point in the range corresponds to a unique point in the domain and vice versa. b) (Below) 

An example of a mapping in R
3
 with varying colors to increase visibility. The domain of 

this mapping is the set of all ordered pairs (x, y) in two dimensions such that x and y are 

real numbers. 

 



34 

 

An isometry in R
3
 is a mapping that preserves all distances in between points. Below are 

an example and a counter-example in which the distances have been labeled next to the dashed 

lines: 

 

Figure 31: In each, the green line represents the z-axis, blue is the y-axis, and red is the x-

axis. a) Original coordinates: p1 (-4, 1, 0), p2 (1, 3, 2), and p3 (0, 2, 4). b) Example of an  

isometry: p1 (1, 2, 0), p2 (6, 3, 2), and p3 (5, 2, 4). c) Counter-example: p1 (-7, 4, 4), p2 (-5, 4, 

2), and p3 (-3, 2, 6). We note that the distances between points in a) and b) are the same, but 

the distances in between points of a) and c) are not the same. 

 Because neither a mapping nor an isometry limit the number of points being mapped, 

isometries can map two-dimensional and three-dimensional shapes in R
3
 while preserving 

distances. Hence, an isometry will preserve the shape of any geometric figure (shown below). 

Furthermore, an isometry is a symmetry operation if and only if a shape (in R
3
) exists such that 

the isometry maps the shape onto itself (O'Keeffe & Hyde, Crystal Structures: I Patterns and 

Symmetry, 1996), permuting the vertices and edges. 
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Figure 32: An example of an isometry using a square pyramid. In this case, the pyramid is 

moved in the direction of the arrow, but all the distances within the pyramid itself are left 

unchanged. The green line represents the z-axis, blue is the y-axis, and red is the x-axis. 

Now we can discuss one of the most important terms for our mathematical analysis: a 

point group. We define a point group as a collection of distinct isometries closed under 

composition and inversion which share some fixed point in R
3
 (e.g. the intersection of multiple 

rotation axes) and which constitute all of the symmetry operations for a certain object in R
3
 

(O'Keeffe & Hyde, Crystal Structures: I Patterns and Symmetry, 1996). An isometry has a fixed 

point if the isometry maps that point to itself. An object’s point group can be defined in the 

above manner, though we note that this definition is specific to subject of crystals in this thesis. 

The importance of point groups lies in describing the symmetries of nodes, shown in the next 

section with examples. Below, the three rotations shown in Figures 33.c) to Figure 33.e) are the 

only symmetry operations of the object shown or than the identity (explained later in this 

section). Thus, these symmetry operations compose the object’s point group, named 3 in the 

International Tables of Crystallography (Hahn, 1996). 
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Figure 33: A three-dimensional object with three rotational symmetry operations in 

Cartesian coordinate system. The green line represents the z-axis, blue is the y-axis, and 

red is the x-axis. The four rotations are about the y-axis, each denoted by dashed lines: a) 

no rotation, b) 200 degree rotation, c) 120 degree rotation, d) 240 degree rotation, and e) 

360 degree rotation. Note that the object appears to be in the exact same position as a) for 

the rotations in c), d), and e); the rotation in b) serves as a non-example of a symmetry 

operation. 
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In order to describe these point groups in detail, however, we must use vectors. A vector 

is a displacement defined by a start point to an end point in R
3
. Thus a vector is said to have 

direction in R
3
. We can think of a vector v between starting point p1 = (x1, y1, z1) and end point p2 

= (x2, y2, z2) as described below: 

� = ��	 − ���	 − ��
	 − 
�� = ����	��� 

 

Figure 34: Drawing of an arbitrary vector from p1 to p2 in the Cartesian coordinate system 

as described above. The vector is represented by the black line segment with an arrow. 

 Vectors are the primary building blocks for understanding symmetry and all that follows 

from it. To begin, a vector x’s elements are more commonly written as follows: 

� = ����	��� 
The length of a vector x is (Prince, 2004): 

|�| = ���	 + �		 + ��	 

 A vector can be fixed by its direction and its length (Prince, 2004). Furthermore, any two 

vectors a and b can be added to form vector c: 

� + � = ����	��� + ����	��� = ��� + �� = ���	 + �	 = �	�� + �� = ��� = � 
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Figure 35: A drawing representing the vector addition from above in the Cartesian 

coordinate system, not the actual positions of component vectors a and b.  Note, vectors a 

and b must originate from the same point to add up to vector c. Thus, they are drawn 

above with dashed lines, while vector c is drawn in with a solid line. 

We apply vector addition to translations; a translation is a mapping that shifts R
3
 in a 

certain direction by a certain distance (magnitude), defined by a translation vector. The 

translation also shifts any object embedded in R
3
, without affecting the shape of the object; in 

this way a translation is similar to a symmetry operation. In fact, a translation can actually be 

formulated by a fundamental kind of symmetry operation on an object and thus be thought of as 

symmetry operation; however, this formulation is beyond the scope of this thesis. Nonetheless, a 

translation is an isometry. The translation of vector x by translation vector t resulting in vector y 

(directed at the new end point from the same start point) is defined as follows (Hahn, 1996): 

� = � + � = 	 ��� + ���	 + �	�� + ��� = ����	��� 
The next building blocks for understanding symmetry are matrices. For our purposes, a 

matrix is a two-dimensional array of real numbers with three rows and three columns (Prince, 

2004). Though there are more general matrices, we will work with those that represent point 

group isometries. The form of a matrix is given below: 

� =	 ��� �	 ���� �� ���� �� ���	 
Here each ai  is a real number. 



39 

 

 We will only consider matrices as representations of point group isometries, specifically 

symmetry operations. The linear transformation of a vector by a symmetry operation is the 

multiplication of the matrix associated with the symmetry operation and the vector. Below is the 

general form of a matrix multiplied with a vector (i.e. matrix multiplication), where A is a matrix, 

x is the original vector, and y is the resulting vector: 

�� = � 

Where Ax = y is defined as follows: 

��� �	 ���� �� ���� �� ��� �
���	��� = 	 ����� +	�	�	 +	�������� +	���	 +	�������� +	���	 +	����� = ����	��� 

 If the linear transformation is an isometry, the resulting vector y is has the same length as 

the original vector x (Prince, 2004). It can be shown that there is only one fundamental kind of 

symmetry operation, the reflection (defined below), from which all seven kinds of symmetry 

operations in R
3
 can be derived; however, this requires mathematics beyond the scope of this 

thesis. We will instead define five symmetry operations, the identity being one of them, and 

define the other two would-be symmetry operations differently later in this sub-section. 

• Identity – a symmetry operation which maps each point in R
3
 to itself (O'Keeffe & Hyde, 

Crystal Structures: I Patterns and Symmetry, 1996). This is represented by the matrix 

(Prince, 2004): 

�1 0 00 1 00 0 1� 
• n-Rotation – a symmetry operation in which an object is rotated 

	!
"  radians about a line in 

R
3
 such that after n rotations, the object will return to its original state (O'Keeffe & Hyde, 

Crystal Structures: I Patterns and Symmetry, 1996). An example is an n-rotation about 

the z-axis in the Cartesian coordinate system (Prince, 2004), whose matrix is: 

#$
$$
% cos 2)* sin 2)* 0
−sin 2)* cos 2)* 0

0 0 1-.
..
/
 

Note: In order for an object to have an n-rotation as one of its symmetry operations, all n 

individual rotations must be symmetry operations of the object. 

• Reflection – a symmetry operation in which an object is reflected across a two-

dimensional plane in R
3
 (the mirror of the reflection) to a mirror image equidistant from 
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the mirror via a line through both points perpendicular to the mirror (O'Keeffe & Hyde, 

Crystal Structures: I Patterns and Symmetry, 1996). An example is a reflection through 

the xy-plane in the Cartesian coordinate system (Prince, 2004), whose matrix is: 

�1 0 00 1 00 0 −1� 
 Two more symmetry operations can now be defined in terms of the classes of symmetry 

operations above. Here we note that a composition of symmetry operations applied one after the 

other will result in a new symmetry operation. Furthermore, the new symmetry operation is 

guaranteed to be in an object’s point group because the component symmetry operations are in 

said point group. 

• Inversion – a sequence of three distinct reflections through three distinct planes 

intersecting at one point. An example is the sequence of reflecting an object through the 

xy-plane, then the xz-plane, and finally the yz-plane, which all intersect at the origin of the 

Cartesian coordinate system. This inversion, which we’ll call the traditional inversion for 

the purposes of referring to it later in the thesis, results in the following matrix (Prince, 

2004): 

�−1 0 00 −1 00 0 −1� 
• Roto-inversion – a rotation followed by an inversion (O'Keeffe & Hyde, Crystal 

Structures: I Patterns and Symmetry, 1996). This symmetry operation is also a roto-

reflection, a rotation followed be a reflection, though the reason for this is beyond the 

scope of this thesis. 

 The remaining would-be symmetry operations are not linear transformations but rather 

affine transformations. We define an affine transformation on a vector x, resulting in vector y as: 

� = �� + � 
Where A is a symmetry operation, Ax is a linear transformation, meaning symmetry operation 

associated with A applied to x, and t is a translation vector, which is applied after the linear 

transformation.  

 For us it should suffice that an affine transformation will simply be a symmetry operation 

followed by a translation, as this still fits in the unmentioned formal definition. We will refer to 

what would have been the seven fundamental symmetry operations as our seven fundamental 

affine transformations. The last two fundamental affine transformations are: 

• Glide – a reflection followed by a translation parallel to the reflection plane (O'Keeffe & 

Hyde, Crystal Structures: I Patterns and Symmetry, 1996). 
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• Screw – a rotation followed by a translation along the axis of rotation (O'Keeffe & Hyde, 

Crystal Structures: I Patterns and Symmetry, 1996). 

 Just as we describe the symmetry of finite objects such as polyhedra with symmetry 

operations, we can describe the symmetry of infinite objects, such as crystal nets with affine 

transformations. Again, a symmetry of a graph is an isometry that maps the graph onto itself, 

vertices to vertices and edges to edges; and the symmetry group of a graph is the group of its 

symmetries.  But in order to understand what a crystal net is, we must first discuss lattices. A 

lattice is a group of vectors in n dimensions generated by n distinct translation vectors (n is an 

integer) such that any combination and/or repetition of these translation vectors will yield a 

vector in the group. Accordingly, a lattice in R3 is generated by three translation vectors; these 

vectors must not all lie on the same plane in order to generate a three-dimensional lattice 

(O'Keeffe & Hyde, Crystal Structures: I Patterns and Symmetry, 1996), and must also have the 

same start point. An example of a lattice and the vectors that generate it is shown below. The 

points that are added represent the endpoints of vectors in the lattice, which all share the same 

start point as the translation vectors. The example is in two dimensions for ease of visibility; 

however, the same concepts apply for R3 or any other number of dimensions. 

 
Figure 36: Generation of a lattice from two translation vectors, represented by line 

segments with arrows. We note that just as three translation vectors must not lie on the 

same plane to generate a three-dimensional lattice, two translation vectors must not lie on 

the same line in order to generate two-dimensional lattice. a) A starting point and two 

translation vectors for a lattice.  b) The generation of lattice points along one dimension by 

repeating one vector. c) The generation of a two-dimensional lattice from the combination 

and/or repetition of the two translation vectors. 

 The highlighted structure above is called the unit cell of a lattice and is an n-dimensional 

object, where n is the number of translation vectors that define the lattice. A unit cell is defined 
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by its edges, which are the translation vectors of a lattice, and its ability to generate all of the 

vectors and space of a lattice. This generation is done by applying appropriate translations to the 

unit cell. This is shown for the lattice in Figure 37: 

 

Figure 37: Generation of the lattice in Figure 36 through use of a unit cell. a) Unit cell. b) 

Points generated by repeating unit cell along one dimension. c) Two-dimensional lattice 

from Figure 36 generated by repeating the unit cell across two dimensions. 

While a unit cell generates all of the space inside a lattice, not all of the smallest 

structures in a lattice are unit cells. Also, there is not always one unique unit cell for a lattice. 
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Figure 38: a) Two-dimensional lattice with three possible unit cells highlighted. The area of 

the lattice is shaded gray for reference. b) Attempted generation of the lattice by the red 

unit cell. In this case, all the points of the lattice could be generated, but not all of the area 

is generated. c) Lattice generated by green unit cell. Even though the shape of the portion 

shown is not the same, all of the points and all of the area of the infinite lattice can be 

generated. d) Lattice generated by blue unit cell with the same distinction on immediate 

shape as c). 

 At last, within the context of lattices and affine transformations, we may finally discuss 

crystal nets and space groups. A space group is the group of all distinct affine transformations 

that describe all of the symmetries of an entire crystal net (Prince, 2004). We define a crystal net 

as a graph of points in R3, with line segments as edges, whose symmetry group includes a lattice 

group. The symmetry groups of crystal nets are groups of affine transformations, and each 

crystal net is said to have a space group. Below is an example of the NaCl crystal from Figure 

7.c) placed on a lattice: 



44 

 

 

Figure 39: The crystal net of a NaCl crystal on a lattice. The two shaded octahedrons are 

potential unit cells for this crystal net. Chlorine atoms are in green and sodium atoms are 

in white. Figure 39 source: public domain, obtained from WikiMedia Commons. 

Just like symmetry operations, the crystal net symmetries described above map the 

crystal net onto itself. Of course, just as no point group is specific to a finite three dimensional 

object, no space group is specific to a certain crystal net; however, finite objects have only one 

point group and crystal nets have only one space group. 

2. The Symmetry of stp 

 We will begin the analysis of the symmetry of stp, by observing the point groups of stp’s 

two MBBs: the trigonal prism and the square. First, even though the square is a two dimensional 

object, its point group can be defined in three dimensions. This definition has a reflection whose 

mirror plane is the same as the plane on which the square lies. The two-dimensional point group 

of a square is named 4mm (O'Keeffe & Hyde, Crystal Structures: I Patterns and Symmetry, 

1996), and it is represented below: 
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Figure 40: (Courtesy of the International Tables for Crystallography) Diagram of 4mm 

 We will explain the meaning of the image above using the symbol conventions outlined 

in the International Tables, Volume A. However, we must first be able to place the square on this 

image to give the lines visible meaning. This is done below: 

 

Figure 41: (Courtesy of the International Tables for Crystallography) Diagram of 4mm 

placed at the center for a square, outlined in red. 

We describe now the six unique symmetry operations that form a square’s point group, as 

observed strictly from the original drawing of the point group. First, the identity, present in all n-

dimensional point groups, where n is an integer. Next is the diamond at the center of the circle, 

which is placed at the center of any square, signifies a 4-rotation with the center of the diamond 

as the axis of rotation, which is perpendicular to the plane that square is on. Naturally, any of the 

four rotations that comprise the 4-rotational symmetry on the square will be symmetry operations 

on the square. Next, the four bold line segments that cross through the diamond are all mirror 
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lines signifying where a mirror plane intersects the plane in which the square resides. These 

mirror planes perpendicular to the plane of the 4mm diagram signify the existence of four 

reflections. These reflections are also symmetry operations for a square, completing our six 

unique symmetry operations. (Hahn, 1996) 

 Next is the point group of a trigonal prism, named 6��2 (Schoedel, Wojtas, Kelley, 

Rogers, Eddaoudi, & Zaworotko, 2011). Instead of using the International Tables, Volume A, we 

use O’Keeffe’s and Hyde’s Crystal Structures I. Both resources are among many that provide 

accurate diagrams of two-dimensional and three-dimensional point groups; however, the 

International Tables is the formal source of all crystallographic point groups and space groups. 

 

Figure 42: (Courtesy of Dr. Michael O’Keeffe) Point Group 0123  

 Once again, we will place this image on a trigonal prism to give visible meaning. 

Because a trigonal prism is a three-dimensional object, the image below presents a top done view 

of a trigonal prism with arbitrary height and then the drawing of 6��2 on the prism. Though it is 

not visible in the drawing below, the drawing should be placed halfway up the height of the 

prism in order to make sense. 
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Figure 43: (Courtesy of Dr. Michael O’Keeffe) Top-down view of trigonal prism (outline in 

red) with point group 0123 located at the center of the triangle. 

This point group has twelve unique symmetry operations, and these will be discussed 

from the original drawing of the point group again. The symmetry operations include the 

identity, and three reflections; these reflections are denoted by the bold lines in Figure 42, which 

once again represent the intersection of mirror planes with the plane on which we are viewing the 

prism. However, there is another reflection whose mirror plane is the plane on which the drawing 

exists (O'Keeffe & Hyde, Crystal Structures: I Patterns and Symmetry, 1996). Notice that the 

drawing is half-way up the height of the prism: 

 

Figure 44: Three-Dimensional 

representation of trigonal prism 

with the location of the plane on 

which the diagram above rests. 

The green line represents the z-

axis, blue is the y-axis, and red is 

the x-axis.  

 Next are the six 2-rotations of the trigonal prism; a 2-rotation (by 180 degrees) is denoted 

by an arrowhead pointing in the direction of the axis of rotation (O'Keeffe & Hyde, Crystal 

Structures: I Patterns and Symmetry, 1996). Once again, because the trigonal prism is three-

dimensional, the axis of each 2-rotation actually lies on the plane; the six axes are actually all 
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along the bold lines in the drawing of the point group. Though this is no coincidence, explanation 

for this is beyond the scope of this thesis. This leaves us with the shaded triangle inside the 

hexagon at the center of the point group drawing. This is actually a roto-inversion named 6� 

(O'Keeffe & Hyde, Crystal Structures: I Patterns and Symmetry, 1996). This represents one 

iteration of a 6-rotation followed by the traditional inversion, repeated until the 6-rotation would 

complete normally (i.e. after six rotations in total) (O'Keeffe & Hyde, Crystal Structures: I 

Patterns and Symmetry, 1996). In the diagram, the axis of rotation is perpendicular to the 

diagram’s plane. 

 With the point groups of the trigonal prism and the square described above, we can now 

proceed to the space group of stp, which is P6/mmm (Schoedel, Wojtas, Kelley, Rogers, 

Eddaoudi, & Zaworotko, 2011). We recommend that our audience view Figures 13, 23, 45, and 

46 in order to get a good understanding of the symmetries of stp. We include Figure 13.c) again 

for reference after the diagram of space group P6/mmm below. 

 

Figure 45: (Courtesy of the International Tables for Crystallography) Diagram of space 

group P6/mmm. 
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Figure 13.c): Please refer to pages 14 and 15 for all of Figure 13 if necessary. 

 The space group P6/mmm has twenty-four distinct symmetry operations as defined by its 

unit cell (Hahn, 1996); however, because they are composed into numerous operations, we will 

just explain the notation of the symbols for visible operations in the diagram above. We note that 

the diagram is half-way up the height of the unit cell of stp; accordingly, the two line segments 

which meet at an angle at the top-left corner of the diagram signify that the plane on which the 

diagram is on is a mirror plane. Following the convention mentioned previously, the bold lines 

all signify reflection lines on which mirror planes intersect the diagram’s plane at right angles. In 

the case of P6/mmm, all solid lines are bold. Another familiar symbol is the triangle inside of a 

hexagon, which the 6� roto-inversion whose axis is perpendicular to the plane. (Hahn, 1996) 

 There are three remaining unfamiliar symbols in the diagram: the four hexagons with 

white holes, the five ovals with white holes, and the dashed lines. The hexagons represent 6-

rotations whose axes are perpendicular to the diagram’s plane and are located at the center of 

each hexagon (Hahn, 1996). This is true for the ovals, which represent 2-rotations instead (Hahn, 

1996). Furthermore, all mirror planes for reflection or glide symmetries are either perpendicular 

or parallel to the axes of 6-rotations. Finally, the dashed lines denote glide lines where glide 

planes intersect the diagram’s plane at 90 degrees (Hahn, 1996). Each of these glides is 

composed of a reflection across the glide plane and a translation. The length of each translation 
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is the distance between the two symbols the glide line connects. Moreover, glide lines ending in 

an arrow denote that the glide goes to the appropriate symbol in the next unit cell. We show this 

below with four adjacent unit cells of the space group diagram: 

 

Figure 46: (Courtesy of the International Tables of Crystallography) Four adjacent unit 

cells of P6/mmm. We have included a top-down view of the model on Figure 13 as a 

reference to better understand the symmetry operations of P6/mmm. The gray triangles 

denote tp-PMBB-1 nodes as viewed from above, and the gray rectangles connecting these 

denote the MBB-2 nodes one level above and below the tp-PMBB-1 nodes. We recommend 

that the audience verify this visually with Figure 13. 

By observing the point groups 4mm and 6��2, we can now understand the resulting space 

group P6/mmm of stp. Referring to Figure 46, we see that the center of the tp-PMBB-1 nodes are 

located at the center of the 6�-rotations. Thus 6��2, the point group for trigonal prisms, helps 

explain the presence of the 6� operations in the space group of stp. Moreover, Figure 46 shows an 

opening formed by a cycle of six tp-MBB-1 nodes at the center of each 6-rotation. The presence 

of these 6-rotations now becomes easier to understand since all tp-MBB-1 nodes are exactly the 

same, and there are six of them evenly spaced surrounding each opening. Here we recommend 

strongly that our audience verify that the tp-PMBB-1 nodes are indeed evenly spaced and that 

the 6-rotations do belong to the P6/mmm. One does this by rotating the diagram on Figure 46 by 	!
�  radians, obtained from the equation on page 39 with n = 6. 
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MBB-2 nodes are all located on 2-rotation symbols in the space group diagram, 

perpendicular to the plane on which the diagram resides. This is no coincidence, since an MBB-2 

node is represented by a square which lies on one plane. Accordingly, the 2-rotation of these 

perpendicular nodes in Figure 46 is supported by the point group 4mm, replacing a reflection in 

one dimension with the resulting 2-rotation symmetries in space group P6/mmm. Finally, the 

glide and reflection lines can be explained by both the reflection symmetries of tp-PMBB-1 and 

MBB-2 and the translation vectors of the lattice of stp. Once again, we recommend strongly that 

our audience use Figure 46 to verify this visually. 

Further analysis would show how symmetries of tp-PMBB-1 in 6��2 and MBB-2 in 4mm 

result in stp’s remaining symmetry operations and their compositions in P6/mmm. While some 

of the analysis required is beyond the scope of this thesis, it is clear that the point groups of and 

linkers connecting tp-PMBB-1 and MBB-2 result in a crystal net with the space group of 

P6/mmm. This relationship leads to the notion that the stp’s symmetry is not only explained by 

its components in a visible manner, but that the symmetry of stp could be readily predicted 

before a crystal with the stp “topology” was actually synthesized. Indeed, Schoedel had the 

“topology” predicted (Schoedel, Synthesis of stp, 2012) mathematically; however, our point is 

that by understanding the concepts we have presented, chemistry researchers could predict most, 

if not all of the symmetries in the space group of a crystal net that they are designing. 

While we recognize that not all symmetries are as visible as those in P6/mmm, symmetry 

prediction by chemists would not only give them a better idea of the crystal net they are 

synthesizing, but it would allow them to communicate with mathematicians in symmetry terms. 

This communication is important for professionals from both fields, because it would allow 

mathematicians to theorize crystal nets with specific nodes and find out from chemistry 

resources which molecules results in the nodes they want. Such communication would also 

chemists to be aware of symmetries, or be able to discuss these with mathematicians, during the 

step in which they first begin to design the kind of net they want to synthesize. We have found 

that this initial design process is the time at which ideas get explored or disregarded, so further 

knowledge or communication might lead to the formation of crystal nets that would have 

otherwise not been considered. 

IV. Bridging Mathematics and Chemistry 

A. Terminology: 

 In order to discuss how mathematics and chemistry might be further bridged in the 

context of the thesis up to this point, we must also discuss how information is distributed. For 

both mathematicians and chemists, the most important information is published and cited, and 

the coursework building up to understanding the concepts discussed in publications takes the 

form of textbooks. This is the case for all the ideas and terms in chemistry and mathematics. 

With the information presented in the previous sections, we hope to breach the layer of necessary 
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information to understand the field of MOMs and crystal nets from both view-points. By a layer, 

we mean an apparent communication gap preventing individuals from both fields from 

interdisciplinary understanding. The information presented thus far provides a common ground 

with not only the terms, but the tools with which the audience can build their own understanding 

of either field in regards to MOMs and crystal nets. 

 Nevertheless, we must discuss some terminology that adds difficulty to communication, 

even with a common ground. The most notable of these is the term topology, as discussed in 

section II; in mathematics, the proper term for “topology” in chemistry is “isomorphic class,” as 

mentioned previously. We suspect that use of the term “topology” in chemistry arose from the 

application the of topology sub-field in mathematics to the “isomorphism” of graphs representing 

molecules. Nonetheless, the term is now widely accepted in the field of chemistry as it is 

currently defined. Topology is not the only term that has different meanings in both fields; a 

trigonal prism is called a triangular prism in mathematics, mentioned in section III. 

 The term default presents another problem for interdisciplinary communication, as used 

in chemistry and the MOMs field in particular. While “default” chemical arrangement (e.g. 

positions, topologies, or compounds) seem to be readily identifiable when certain components 

(e.g. molecules or MBBs) are presented, the exact definition of what makes something default is 

hard to identify. We understand a chemical arrangement to be default for certain components if 

empirically those components form that arrangement most often and/or under ideal (i.e. 

preferred) conditions. For example, when the MBBs that Schoedel worked on yielded crystals 

with snx and snw “topology” instead of the expected acs topology, the acs topology was 

expected because it is the “default” topology based on the MBBs (Schoedel, Wojtas, Kelley, 

Rogers, Eddaoudi, & Zaworotko, 2011). In this case, Schoedel explains that because the linear 

MBB he used was bent (i.e. not ideal), the crystals did not form into the default acs topology as 

expected (Schoedel, Synthesis of stp, 2012). 
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Figure 47: (Courtesy of Alexander Schoedel) Three-dimensional crystal portions composed 

of tp-PMBB-1s and linear (or bent) MBBs. Schoedel expected the acs “topology” formed by 

with linear MBBs in a), but since the MBBs were flexible, they bent to form b) snx and c) 

snw “topologies” during actual synthesis. 

The problem with the term “default” is that the definition is constantly being updated for 

certain components. Thus, what is a default position currently might change if the preferred 

conditions change or if enough statistics point to another position. While those in the field would 

be aware of this constantly, this creates an uncertainty in those coming into the field. 

 Another terminological problem lies in the use of the term ring in chemistry and 

mathematics. The definition of a ring in mathematics is beyond the scope of this thesis, but the 

definition of a “ring” in chemistry refers to a cycle. Indeed, the compounds which form one or 

more “rings” are called cyclic compounds, for example Figure 1.b) and Figure 49. 

 

Figure 48: (Public Domain, obtained from WikiMedia Commons) Three-dimensional 

representation of a naphthalene molecule. If viewed as a graph, two cycles can be 

identified, each marked by dotted lines. The presence of these (though only one is required) 

makes this a cyclic compound. 
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 Visually, we can see why these features are called rings in chemistry; nonetheless, the 

precise definition of a ring in mathematics causes confusion during interdisciplinary 

communication. To be clear, while we will not define a ring in terms of mathematics, it is 

nothing like a cycle from graph theory. Moreover, as is the case with all of the terms we've 

discussed so far, because both fields use the term “ring” concretely and often as basic 

knowledge, professionals from each field are defensive about their definition being the correct 

one. We suspect that understanding what professionals from a different field mean with their 

terms will at least allow better interdisciplinary communication. 

B. Information Layer: Mathematics 

 Perceptions about mathematics or mathematicians form the next layer we discuss. Just as 

any other field has stereotypes or commonalities regarding its practices or its professionals, so 

does mathematics. These include the notions that mathematics is focused more on the abstract 

than the practical and that mathematicians tend to be excessively rigorous in their statements.  

First, from our observation and experience, we find that professionals from other fields, 

or even non-professionals, believe that mathematics is far more concerned with abstract ideas 

and conclusions rather than anything that can be used or seen in the real world. This idea that 

seems to stem from the depth at which a sub-field of mathematics is taught to mathematics 

students before the “applications” or “shortcuts” are taught. For example, a course on partial 

differential equations is taught after a sequence of courses and understood through analysis, a 

sub-field of mathematics. Concepts are built from the general case and students are presented 

with partial differential equations in spaces including, but not limited to, R3. And while the depth 

depends on the professor teaching the course, this amount of depth is not seen in physics or 

engineering courses relating partial differential equations to applications in each field.  

Indeed, an engineering or physics course on partial differential equations will most likely 

include the most pertinent equations and “shortcuts” for finding solutions to common partial 

differential equations. On the other hand, a mathematics course will also involve proofs on why 

said “shortcuts” work and build up to understanding as many forms and solutions of equations as 

possible. In this manner, the engineering course is “focused on applications” while the 

mathematics course is “focused on abstract notions.” This is a misconception, since the abstract 

proofs and statements that go into mathematics courses allow mathematicians to also understand 

their applications, even if these applications aren’t carried out in as much depth in the R
3
. 

Moreover, just as researchers’ interests in other fields vary per sub-field, so do mathematicians’ 

interests in the sub-fields of mathematics. Subsequently, not all mathematicians focus solely on 

abstract concepts, though some do. 

Another common belief is that the field of mathematics tends to have exceedingly 

rigorous statements, and thus mathematicians tend to be very precise concerning their 

conclusions and terminologies. This can be jarring for a professional who comes from a field that 
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is developing a new branch. For example, terminology and understanding about sub-atomic 

particles has grown over the course of the last century; in this sub-field, general ideas were 

pursued, altered, and adjusted as new information arrived. And while new branches in 

mathematics arise from new ideas and/or explanations of certain phenomena, the terminology 

and proofs in mathematics are precise. Thus, new branches are not formulated by observation 

and terminology that grows to be precise; rather new branches from mathematics arise from 

proofs based on established or accepted theorems and/or postulates. 

Mathematicians have certainty when discussing mathematics because the statements 

which the field uses have been logically constructed whether the branch to which they belong is 

new or not. This quality causes mathematicians to demand rigor in terminology or ideas from 

other fields where experimentation and research point to likely conclusions, but not necessarily 

absolute ones. Because of this, discussion between mathematicians and professionals from other 

fields tend to be frustrating. We recommend that mathematicians keep in mind that other 

professionals tend develop fields from observation and accepted theories rather than logically 

proven theorems. 

C. Information Layer: Chemistry 

The final layer is specific to chemistry and involves the distribution of information within 

a chemistry lab. While our experience with this layer is specific to a particular chemistry lab, we 

present occurrences that seem to be common practices across chemistry labs. From what we’ve 

found, the main problem that composes this layer is the distinction among published, recorded, 

and implied information. 

By published information, we mean the information that is presented in the chemistry 

publications. In particular, the publication that served as the main reference for this thesis, 

Schoedel’s “Network Diversity through Decoration of Trigonal-Prismatic Nodes: Two-Step 

Crystal Engineering of Cationic Metal-Organic Materials,” presents most common concepts and 

procedures published. The publication details the context of the work on snx, snw, and stp in 

regards to using the trigonal prismatic MBB. With citations, the publication briefly goes over the 

choices of specific chemicals and procedures, since the cited sources provide the step-by-step 

procedures, the evidence behind presented information (such as the crystal nets of crystal found), 

etc. Thus, the publication presents a root from which all recorded information can be traced. 

By recorded information, we mean the specific quantitative and qualitative information 

that is written down by researchers in the chemistry lab. This information is recorded across 

various mediums, including electronic files, personal lab books, and instrument lab books 

(Nugent, 2012). Varied naming conventions, which are detailed when the sources of publications 

are traced back, are utilized. For example, in the lab in which Schoedel and his colleague Nugent 

work there is a practice of using an ID system to identify the lab books and files of specific 
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individuals, so that others might quickly find desired information regarding trials and studies, 

shown below (Nugent, 2012): 

 

Figure 49: Identification system used in the research lab to which Schoedel and Nugent 

belong: a) researcher’s initials, b) lab book number, c) page number in the lab book, and d) 

item on the page. This system is used for associated files and notes. 

 Nonetheless, this ID system has variations across individuals in the lab, and there is no 

indication that other labs have similar identification systems for their lab books and files. 

Moreover, the organization of the lab books at the time of this thesis was non-existent, though all 

of the lab books were stacked in a common area. In regards to specific chemical procedures, 

even though files have the same IDs as those of lab books so that observed information can be 

matched with measured information, there is also information that is saved at the terminal of an 

instrument rather than the personal terminal of the individual conducting the procedure. This 

results in a web of information distributed across different places that any other individual would 

have traverse. This creates difficulty in following another’s procedures, or reinvestigating 

another’s trials, if the other individual is not present to explain and serve as a guide. This is not 

the case when information is published, because the supporting information and files are then 

made available. More so, it is the case when projects, such as those of undergraduates, are 

discontinued or specifically in this lab, when procedures are not in line with the goals of lab 

being discussed. 

 The goal of this particular lab is to produce efficient MOMs which are low-cost, are very 

porous, have large surface areas, and are stable outside of solvents (Nugent, 2012). This makes 

sense because such MOMs would have broad applications which can be developed, funded, and 

pursued by others. Still, the projects that don’t yield such MOMs, while exhibiting other 

intriguing or otherwise unexplored properties, mostly fall by the wayside. An example is a table 

of various trials done by Nugent, to identify which chemical combinations would yield single 

crystals, denoted by a star (Nugent, 2012). In this table, the possibilities that didn't result in 

crystals, but perhaps powders, changes in color, or other visible changes are not explored 

because of time and resource constraint. In mentioning resource constraint, we remember that 

part of the aforementioned goal is to produce low-cost MOMs. Accordingly, researchers frown 

upon using materials not in line with this goal, or even excessive use of expensive materials.  

 The limitations of a goal exist in all fields of research, since researchers can only do so 

much upon finding features that aren’t directly related. The problem here is that because 

recorded information is scattered, another individual would have difficulty finding the 

information to begin a project with a different goal. This would mean that work or evidence 
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already recorded would be ignored or unused altogether, regardless of how important it may be 

to the imagined potential project. This is particularly problematic for individuals coming from 

another field, say mathematics, who are journeying into the field unaware of what others may 

have worked on and discarded. This entire problem is further complicated because of the 

widespread implied information in chemistry labs. 

 By implied information, we mean the information that is neither recorded nor published, 

but expected of individuals working in the lab. Naturally, this information constitutes the 

necessary background for working in the lab; however, it also includes lab practices taught to 

individuals. The problem with this is that these are recorded guidelines, but rather understood 

practices regarding common procedures. For example, when a MOF needs to be cleansed of the 

solvent in which it resided, it needs to go through solvent wash cycles, which aren’t recorded but 

are implied when the solvent is said to be removed (Nugent, 2012). These are procedures which 

new individuals are instructed to do and that are expected to be done thoroughly. For those not in 

the chemistry field, however, these implied procedures are neither seen in recorded information 

nor in published information, so such individuals are not aware of the necessity nor practice of 

this procedures just by reading printed information or briefly conversing with those who work in 

the lab. 

 More importantly, the experience which guides researchers in the lab to try different 

chemical designs, structures, and procedures is implied as well. While working in the lab, a new 

individual might be made aware of things other have found to work or not work, but once again, 

this would not be the case for individuals who aren’t members of the lab or who aren’t in the 

field. The brief recordings of multiple trials that researchers note in their notebooks carry little 

more information than which chemicals and amounts yielded visible crystals, for example 

(Nugent, 2012). While this is in line with the goal of the lab, others reading recorded information 

have no information as to what caused a particular research to try a certain amount or chemical 

over another. And if an individual X is indisposed because of travel, vacation, etc. others who 

aren’t familiar with X would not be able to follow the logic that led the individual to a certain 

reaction that proved particularly successful. This is a problem both inside the chemistry field and 

in cooperation with other fields, because being able to track the reasoning of researcher in how 

he conducts experiments might yield unnoticed information as to what practices yield and don’t 

yield results. Unfortunately, the exact measure of how much a researcher’s practices are 

correlated to successful outputs is beyond the scope of this thesis. 

 We recommend changes addressing the above issues to be discussed between chemists 

and professionals from other fields. We recognize that for all researchers, doing research alone 

consumes plenty of time. However, an interdisciplinary discussion should reveal practical 

solutions that would welcome work between the chemistry and mathematics fields, among 

others. 
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V. Conclusion 

A. Future Work  

 The use of platonic solids or other well-known polyhedra is widespread in the chemistry 

field and particularly seen in regards to MBBs; however, the use of other polyhedra is a sub-field 

that merits exploration. Since the goal of MOM labs are the same as the goal of the lab 

mentioned in the previous section, it follows that having a wealth of new MBBs might lead to 

different and potentially useful crystal nets with desired attributes. By this wealth, we mean 

MBBs having polyhedral structure that aren’t platonic solids, since these and some two-

dimensional are the structures that tend to see most attention (Yaghi, Ockwig, Chae, Eddaoudi, 

& Kim, 2003). This is evidenced by the fact that the trigonal prism MBB is just now being 

explored for new crystal nets by Schoedel (Schoedel, Wojtas, Kelley, Rogers, Eddaoudi, & 

Zaworotko, 2011). These common structures seem to form a comfort zone for researchers, 

though this limits the potential crystal nets that can arise from a mathematical sense. Thus, it is 

our recommendation for research on crystal nets to include new polyhedra as the structures of 

MBBs. 

B. Conclusion 

 There are hundreds of crystals nets which have been identified on RCSR; the 

information in this database describes the properties of the nets in terms of crystallography and 

applied mathematics. However, RCSR also distinguishes the space group for each crystal net 

online. Accordingly, the use of RCSR in combination with the International Tables for 

Crystallography, Volume A can be applied for any other crystal net. This is exemplified by our 

analysis of the space group of stp. The International Tables include an entire guideline for 

different notations in understand what each space group diagram means (Hahn, 1996). With our 

analysis as an example, we trust that researchers from both the chemistry and mathematics fields 

can discuss and understand the symmetries that arise in crystal nets from different nodes from a 

mathematic and chemical viewpoint. 

Our hope is that by understanding symmetry and space groups, chemists and 

mathematicians might better design and synthesize nets with specific qualities. This requires the 

experience that chemists have in determining which nodes to use for certain connectivity and 

which processes might best yield certain MBBs or linkers. This also requires the extensive 

background mathematicians have in predicting and explaining symmetries that arise from the 

point groups of different nodes. In bridging chemistry and mathematics, this collaboration would 

no doubt allow desired MOMs to be predesigned and synthesized efficiently, with both chemical 

and mathematical certainty. It might also result in the discovery of new crystal nets like stp, 

thereby increasing MOM possibilities for chemists. An increase in discoveries would also 

expand and detail which node combinations work and why, a matter of importance for 

professionals in both fields. 
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We believe that this thesis is the beginning of a bridge between mathematics and 

chemistry, at least in the interdisciplinary field of MOMs and crystal nets. With our commentary 

of the layers dividing the two fields and our explanations provided alongside the chemical and 

mathematical analysis of stp, we have created the beginning of a common ground for discussion. 

This discussion on processes, symmetries, etc. by professionals from both fields must be built 

upon, considering all of the applicable theories and concepts from each field that we had neither 

the depth nor space to cover. Nonetheless, we hope this thesis can be the first step on the path of 

collaboration. 
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