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Abstract

Optimization, which refers to making the best or most out of a system, is critical for

an organization’s strategic planning. Optimization theories and techniques aim to find the

optimal solution that maximizes/minimizes the values of an objective function within a set of

constraints. Deep Reinforcement Learning (DRL) is a popular Machine Learning technique

for optimization and resource allocation tasks. Unlike the supervised ML that trains on

labeled data, DRL techniques require a simulated environment to capture the stochasticity

of real-world complex systems. This uncertainty in future transitions makes the planning

authorities doubt real-world implementation success. Furthermore, the DRL methods have

limitations for different application environments; slow convergence, unstable learning, and

being stuck in local optima are a few of them.

We address these challenges in our environmental, healthcare, and energy systems projects

by carefully (1) modeling the system dynamics we achieved through research and collabora-

tion with domain experts and (2) state-of-the-art DRL techniques for experimental analysis.

Our experimental results and comparative analysis with the other optimization methods

demonstrate the efficacy of DRL-based techniques. The success lies in appropriately mod-

eling the critical decision-making features, reward function, and state transitions. In the

process, we have developed novel DRL (Multi-agent and Multi-objective) algorithms.

viii



Chapter 1: Introduction

Recent advances in neural network-based Deep Reinforcement Learning (DRL) algo-

rithms lead to widespread applications, including gaming [85], robotics [100], finance [72],

energy systems[124], transportation [60], communications [90], environmental systems [119],

and healthcare systems [122]. The success of DRL algorithms was first demonstrated in

gaming; where the Deep Q Network (DQN) [85] algorithm outperformed other methods and

human experts in many Atari games. Subsequently, these atari games provided experimental

environments for new algorithms to demonstrate their performance and computational effi-

ciency. Due to its adaptive learning capacity, DRL is very successful in robotics tasks [100].

The recent revolutionary chatbot ’ChatGPT’ utilizes reinforcement learning from human

feedback [100] to fine-tune the model.

DRL is popular in resource optimization tasks for an organization’s strategic planning.

Policymakers, planners, and management authorities can benefit from DRL-based optimiza-

tion techniques. An extensive review of RL for Demand Side Management (DSM) of elec-

tricity in [146], showcases the suitability of RL for DSM techniques. Berlink et al. [28]

were among the first to investigate RL-based DSM techniques for a smart home. The work

[142] utilizes the inherent adaptability in deep RL algorithms by maintaining thermal com-

fort and optimal air quality while minimizing electricity usage. A large-scale home energy

management system is proposed in [154] using a multi-agent deep RL framework. The ap-

plications of DRL-based methods in healthcare have provided adverse outcome predictions

[156]. The works in [121, 120] utilized DRL to determine the optimal size of hospital capacity

augmentation.

1



Resource optimization is vital in environmental, healthcare, energy systems, and other

infrastructural planning domains. These complex systems often include multiple stakeholders

and aim to satisfy multiple objectives. Deep Reinforcement Learning (DRL) is a popular

Machine Learning technique for optimization and resource allocation tasks. This dissertation

showcases projects on DRL-based optimization techniques for sea level rise (SLR) adaptation,

healthcare expansion, smart home energy management, and electric vehicle (EV) charging

management. These projects focus on appropriate system dynamics modeling and state-of-

the-art DRL techniques for experimental analysis.

Our Home Energy Recommendation System (HERS) project proposes a DRL method

for managing smart devices in a home to optimize electricity costs and residents’ comfort.

We incorporate human feedback in the objective function and human activity data in the

DRL state definition to enhance energy optimization performance. The SLR project aims to

solve a community-wide multi-stakeholder (government, residents, and businesses) problem.

Simulating the local socioeconomic system around SLR, including the interactions between

essential stakeholders and nature, can effectively facilitate evaluating different adaptation

strategies and planning the best strategy for the local community. A well-developed and

experimented approach helps the policymaker (the government) encourage other stakehold-

ers (residents and businesses) to achieve collaborative success. The healthcare expansion

planning project presents a multi-objective reinforcement learning (MORL) based solution

for minimizing capacity expansion cost and minimizing the number of denial of service (DoS)

for patients seeking hospital admission simultaneously for pandemic and non-pandemic sce-

narios. Our model provides a simple and intuitive way to set the balance between these two

objectives by only determining their priority percentages, making it suitable for policymak-

ers with different capabilities, preferences, and needs. Our fourth project aims to provide

electric utility companies with scenario-based plans to cope with the varying EV penetration

across locations and time. The contributions of this project are twofold. First, we propose a

customer feedback-based EV charging scheduling to simultaneously minimize the peak load
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for the distribution transformer (XFR) and satisfy the customer needs. Second, we present

a DRL method for XFR maintenance, focusing on the XFR’s effective age and loading to

periodically choose the best candidate XFR for replacement. The experimental results across

all four projects demonstrate the efficacy of DRL-based techniques for challenging real-world

optimization tasks.

1.1 Deep Reinforcement Learning

Reinforcement Learning (RL) is a machine learning (ML) based optimization technique.

Optimization tasks often require making sequential decisions. Markov Decision Process

(MDP), which is founded on Markovian or memorylessness property, is an effective tool for

modeling optimal sequential decision-making problems. MDP provides a tractable mathe-

matical formulation to model decision-making tasks in situations where outcomes are partly

random and partly regulated by the agent actions [65, 25, 46]. RL provides a suitable the-

oretical framework for solving MDPs. As seen in Fig. 1.1, the RL agent interacts with the

environment in state St by taking action At at each time and receiving a cost/reward Rt

from the environment in return. The agent’s objective is to minimize/maximize an expected

sum of costs/rewards over time by choosing optimal actions from an action set. At each

time, as a result of the agent’s action, the system moves to a new state St+1 according to a

probability distribution. The optimal policy for deciding on actions maps system states to

actions, i.e., determines which action to take in which state [136].

The RL agent aims to maximize the discounted cumulative reward in T time steps:

RT =
T∑
t=0

λtRt ,

where λ is the discount factor, a critical parameter that represents the weight of future cost in

current decision. In the MDP framework, the objective of agent is to maximize the expected

total reawrd E[RT ] in T time steps by following an optimal policy. Central to MDP is the
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Figure 1.1: Reinforcement learning framework.

optimal value function

V (St) = max
{At}

E[Rt |{At}],

which gives the maximum expected total reward possible at each state St , denoted as the

optimal value of that state, by choosing the best action policy {At}. To find the optimal

policy, the Bellman equation

V (St) = max
At

E[Rt + λV (St+1)|At ] (1.1)

provides a recursive approach by focusing on finding the optimal action At at each time step

using the successor state value, instead of trying to find the entire policy at once.

RL provides a data-driven approach to solving in Eq. (1.1), which is of critical impor-

tance for the high-dimensional state and/or action spaces where exact dynamic programming

solutions are not feasible [136]. Specifically, Deep Reinforcement learning (DRL) methods

utilize deep neural networks to handle significantly high-dimensional problems, which are too

complex for traditional tabular RL methods. As real world problems are high-dimensional

inherently, the DRL methods have become widespread popular since its inception in 2013

by the landmark publication [84].
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1.1.1 Value Based Methods

Value base methods aim to learn the value of a state from Eq. (1.1). To explore the

environment sufficiently, the agent needs to take a mix of optimal (exploitation) and non-

optimal (exploration) actions. In this regard, learning the value of the state-action pair

Q(St ,At) ( Q-value) is more appropriate.

Q(St ,At) = E[Rt + λmax
At+1

Q(St ,At+1 | St ,At)].

The deep Q network (DQN) algorithm [85], which leverages a deep neural network to

estimate the optimal action-value function is the most popular choice for deep RL. Many

researches have made further improvements on the DQN framework to provide state-of-the-

art solutions. Some of the popular extensions are Double DQN [85], Dueling-DQN [143],

Prioritorized Experience Replay [149], and Rainbow [62].

1.1.2 Policy Based Methods

Policy gradient based methods aims to learn the policy for a given state bypassing the

need to learn the value function stated in Eq. (1.1). The REINFORCE [159] algorithm

outputs the probability for each action through a softmax function. To that end, it finds

the gradient of expected return J(πϕ) of the policy πϕ with respect to the weights ϕ of the

neural network through the following equation

∇ϕJ(πϕ) = Eπϕ[∇ϕ log(πϕ(At |St))Gt ], (1.2)

where Gt is the expected estimated return from state St . As Gt is estimated from experience,

it injects variance in learning the policy function and makes convergence challenging.
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1.1.3 Actor-Critic Methods

Actor-Critic methods reduce the variance of the REINFORCE [159] algorithm by Using

two neural networks (actor and critic). The critic (value) network evaluates the value function

to estimate the advantage function

A(St ;At) = γV (St+1; θ)− V (St ; θ). (1.3)

where θ is the weights of the critic network. The actor network utilizes this advantage

function for finding the gradient of expected return J(πϕ)

∇ϕJ(πϕ) = Eπϕ[∇ϕ log(πϕ(At |St))A(St ;At)]

Many works have made significant improvement to the Actor-Critic algorithms. The

notable works are DDPG [79], TRPO [113], PPO [114], A3C [83], and TD3 [50].

1.2 Contributions and Outline of Dissertation

The simulation environment development, multi-agent and multi-objective DRL algo-

rithms to optimize the considered complex systems are the significant contributions of this

dissertation, as marked in Fig. 1.1. The following chapters elaborate on these contributions

• Chapter 2: The Home energy management project incorporates direct human feed-

back for discomfort in the objective function through residents’ manual overrides to

the recommended device operations to learn residents’ preferences; and uses resident

activities in the state definition to learn device usage patterns.

• Chapter 3: The SLR project develops a Multi-agent RL framework for the SLR stake-

holders (government, residents, businesses) and theoretically shows that the stake-

holders should base their investment decision on the observed sea level instead of the

incurred cost from nature.
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• Chapter 4: The Health capacity expansion project develops a novel deep Multi-objective

RL (MORL) algorithm based on the actor-critic framework. An extensive case study

is performed for the state of Florida using real data to evaluate the proposed MORL

approach.

• Chapter 5: The EV charging project provides the first comprehensive study of the

problem of increasing stress on the distribution XFRs due to EV charging. Specifically,

a combination of novel DSM and USM techniques is proposed for flattening the load

curve and making timely maintenance of the distribution XFRs, respectively.
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Chapter 2: Home Energy Recommendation System (HERS): A Deep

Reinforcement Learning Method Based on Residents’ Feedback and Activity

2.1 Introduction

1Smart home systems can enhance human comfort and optimize electricity usage in an

automated setup. While many devices have included sensor-based control for a long time,

such as microwave ovens, air conditioning, etc., with the Internet of Things (IoT) revolution

[106], many other smart appliances are entering our homes. Most of the devices will soon have

such intelligence that will unlock the true potential of the smart home concept. Specifically,

recent smart Home Energy Management (HEM) technologies can leverage state-of-the-art

artificial intelligence (AI) techniques. As a result, residents can enjoy all the comfort smart

devices offer according to their preferences in an automated way. In addition to personalized

comfort, the HEM system can significantly reduce the electricity cost and flatten the demand

curve by scheduling some devices to run during off-peak hours.

Utility companies employ Demand Response (DR) based techniques to encourage cus-

tomers to shift their load to off-peak hours [129]. It serves two purposes: avoiding electricity

purchases from expensive peaking power plants and keeping the system’s maximum demand

at check to avoid capacity expansion costs. They provide time-based pricing schemes for

the customers, known as Time of Use (TOU) [107], such as real-time pricing, critical peak

pricing, etc. Numerous researches have proposed appliance scheduling techniques for HEM

systems [160] to capitalize TOU tariffs. Such Demand Side Management (DSM) techniques

aim to modify the consumer’s energy activities, e.g., shifting customers’ electricity usage to-

1Portions of this chapter were published in IEEE Transactions on Smart Grid [126]. Copyright permissions
from the publishers are included in Appendix B.
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wards off-peak hours [132]. For instance, a hierarchical HEM system within a home microgrid

is proposed in [80] that integrates photovoltaic (PV) energy into day-ahead load scheduling

and aims to reduce the monthly peak demand and peak demand charges2. A state-space ap-

proximate dynamic programming (SS-ADP) approach is proposed in [158] to provide a fast

real-time control strategy under uncertainty using the Bellman optimality condition. The

work in [125] includes consumer input in their proposed EV charge scheduling technique.

The uncertainties in electricity usage of smart building HEM as a nonlinear optimization

problem is addressed in [117]. A microgrid where the users minimize cost by trading energy

between each other before buying from the grid is presented in[154], where PV energy, home

battery, and EV battery serve as intermittent sources.

The majority of the DSM techniques for HEM are based on a rule-based schedule for

device usage, undermining consumers’ comfort. Rule-based scheduling often suffers from the

randomness inherent in human preference, weather, and other interventions, especially in

realistic scenarios with multiple residents and multiple appliances. To this end, the works in

[77, 93, 118] aim to dissolve the rigid scheduling of devices by including distributed energy

generation and distributed energy storage devices in their HEM system. To realize the

far-reaching potential of smart home technology, researchers have opted from rule based

approaches to recent data-driven machine learning techniques for DSM.

Electricity consumption patterns are evolving with the fast-improving smart device tech-

nologies, which requires adaptability in HEM for scheduling devices. Reinforcement learning

(RL) techniques are typically preferred for their data-driven online decision-making capa-

bility. Recent advances in neural network-based deep RL algorithms lead to widespread

applications, including gaming [85], finance [72], energy systems[124], transportation [60],

communications [90], environmental systems [119], and healthcare systems [122]. An exten-

sive review of RL for DSM in [146], showcases the suitability of RL for DSM techniques.

Berlink et al. [28] were among the first to investigate RL-based DSM techniques for a smart

2Not every utility charges for peak demand.
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home. The work [142] utilizes the inherent adaptability in deep RL algorithms by maintain-

ing thermal comfort and optimal air quality while minimizing electricity usage.A large-scale

HEM is proposed in [154] using a multi-agent deep RL framework.

The authors, in their review of RL for demand response [146], emphasize the importance

of incorporating human feedback in RL-based DSM techniques. Pilloni et al. [96] propose a

smart HEM system in terms of the quality of experience, which depends on the information of

consumers’ discontent for changing home devices’ operations. To replicate human feedback,

they surveyed 427 people to generate residents’ annoyance profiles for delayed scheduling of

different appliances. Then, they incorporate a cost apart from the electricity price based on

the annoyance levels from these profiles. In their following research [82], they used sensor-

based activity recognition to predict future activities for appliance scheduling. The authors in

[153] define human dissatisfaction by the difference between the maximum power rating and

the delivered power rating of a device, an oversimplified way of representing human feedback

for their RL-based HEM system. Murad et al. [71] calculate dissatisfaction if HEM turns off

a device using an equation with different priority factors for different devices. Several other

works, e.g., [157, 22], follow a similar approach to estimate discomfort cost rather than using

actual feedback from residents. All these techniques lack adaptability to consumer preference,

i.e., they may work well for certain types of users, but they are not general enough to ensure

user convenience. Park et al. [94] provide theory and implementation for adaptive and

occupant-centered lighting optimization in an office setup. They interpret switching on and

off the lights by office employees as human feedback. This work has successfully incorporated

human feedback for their RL algorithm; however, their scope is limited to lighting. Hence,

the necessity for a human feedback-based HEM system still remains open.

The work in [78] proposes a deep sequential learning-based human activity recognition

in smart homes. The benefits of labeled activity to analyze and assess the smart home

residents’ physical and psychological health has been reviewed in [38]. Chen et al. [35]

analyze behavior patterns to predict energy consumption profile. Since the smart home
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concept has the inherent capability of activity labeling, including the activity data as a

feature for the DSM technique can greatly facilitate the RL agent’s learning capacity. The

work [108] reviews sensor-based activity recognition techniques to implement in a smart

home setup. Given the technology, our work includes human activity labels in the RL state

definition for the first time to the best of our knowledge.

Although the smart home concept is originally introduced for the residents’ benefit, their

comfort is often ignored in many existing methods. In this work, we propose a deep RL

method that takes the residents’ feedback as a reward factor, apart from electricity prices and

device status. We consider resident activities as part of the system state to better understand

human comfort and feedback. Our work incorporates residents’ feedback every time they

override the HEM system’s commands, a practical and novel way of extending the success of

recommender systems (e.g., movie, book, shopping, video) to HEM. Recommender systems

learn from customer usage patterns to recommend items/services [17]. A similar approach

can be integrated into a HEM system by accommodating human input in a meaningful way.

2.1.1 Contributions

Our contributions lie in addressing two challenges in RL for HEM. Specifically,

• We propose a novel home energy recommender system (HERS) based on a Markov

decision process (MDP) formulation and a deep RL solution to jointly minimize the

electricity consumption cost and discomfort to the residents;

• HERS incorporates direct human feedback for discomfort in the objective function

through residents’ manual overrides to the recommended device operations to learn

residents’ preferences; and

• HERS uses resident activities in the state definition to learn device usage patterns.

We evaluate the performance of the proposed HERS method by comparing with a manually

controlled, two rule-based[118, 96], and an RL-based approach [153].
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Figure 2.1: Proposed MDP model.

The remainder of the chapter is organized as follows. The MDP model is formulated in

Section 2.2, and the deep RL algorithm for the optimal policy is given in Section 2.3. The

experimental setup is presented in Section 2.4. Results are discussed in Section 2.5. Finally,

after the key features of the chapter and the future research scope are discussed in Section

2.6, the chapter is concluded in Section 2.7.

2.2 Model Development

We propose an MDP framework shown in Fig. 2.1, where the smart home device manager

is the MDP agent, called HERS.

2.2.1 Environment

The residents, activity recognizers, and devices form the MDP environment. The homes

can be of different sizes, with multiple residents living in them. We assume access to the

utility company’s real-time pricing scheme, ρt ($/kWh at time t), and activity recognition
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through multiple sensors placed throughout the home. Affordable and reliable activity recog-

nition from sensor data has been studied by several works [78, 38, 35], which is out of the

scope of this chapter. We assume the presence of an activity recognition set up, which

provides the activity label X 1
t ,X

2
t , ....,X

R
t for all R residents at home.

HERS employs different methods to operate each of the d ∈ {1, 2, ...,D} smart devices

that we divide into three categories, as shown in Table 2.1. When switched on by a human

or sensor, the device goes into the active status and will be considered for decision-making

only during active status.

2.2.1.1 Priority Devices (Type-1)

These devices provide essential comfort to the residents, and they are not available for

deferring. HERS can keep the active devices off intermittently without compromising the

devices’ functionality. Regular lights, TV, CCTV camera, alarm system, and air conditioner

(AC) are examples of this type of appliance. Choosing the relevant data for the MDP state

is a challenge for this task. For instance, if the resident is browsing the internet while the TV

is on, turning it off may create discomfort. However, if the resident goes to sleep, keeping

the TV on, turning it off may reduce electricity costs without compromising comfort. AC is

the heaviest load for this device type, hence we focus on it in our experiments.

2.2.1.2 Deferrable Devices (Type-2)

These devices can be scheduled later to off-peak hours, reducing electricity cost and

maintaining the peak demand lower than the threshold (if any). Dish Washer (DW) and

Washer & Dryer (WD) fall in this category. These devices typically can evade human

discomfort if it completes the task before the subsequent activation by the residents. So,

the dynamic electricity price ρt and activation time are critical features for scheduling the

deferrable devices.
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Table 2.1: Device types

Devices Priority Deferrable Flexible
(Type-1) (Type-2) (Type-3)

Device Not deferrable, Deferrable, Deferrable,
Properties Rigid power Rigid power Flexible power

consumption consumption consumption
Operational Minimize idle usage Operate during Charge highly
Objective by turning on/off low ρt at low ρt

intermittently
Device Turned on by Turned on Connected to

Ready Status resident/sensor by resident charger
Action Every time step Once every Every time step
Selection during active period activation during active period
Actions Ad

t ∈ {on, off } Ad
t ∈ {0, 1, 2, ...,ψd } Ad

t ∈ {0, 1, 2, ..., Ed}
Device Regular lights, Sprinkler, EV, cell phone,

Examples TV, AC DW, WD laptop chargers

2.2.1.3 Flexible Devices (Type-3)

These devices are flexible in terms of time scheduling and power level. EV, cell phone,

and laptop chargers are examples of these types of devices. These devices can consume

different power levels {0, 1, 2, ..., Ed}, which changes their battery charge level βd
t . Residents’

activity patterns and βd
t are important features in HERS for these devices.

2.2.2 Action

Our MDP model in Fig. 2.1 begins with the agent selecting actions At = (A1
t ∪ A2

t ∪

... ∪ ADact
t ) about setting the operation mode for each of the smart devices in active status

Dact (≤ D = m + n + o). So, the total number of possible actions are

2m︸︷︷︸
m Type−1

× (ψ1 + 1)× (ψ2 + 1)× ...× (ψn + 1)︸ ︷︷ ︸
n Type−2

× (E1 + 1)× (E2 + 1)× ...× (Eo + 1)︸ ︷︷ ︸
o Type−3 Devices

(2.1)

where, m is the total number of Type-1 devices. ψ1,ψ2, ...,ψn are scheduling time ranges for

the n type-2 devices, and E1, E2, ..., Eo are charging power levels for the o type-3 devices. Fig.

2.2 shows the action flowchart for each type of devices at each time t.
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Figure 2.2: Action flow chart for active devices at each time t.

For the type-1 devices, there are two actions possible (on/off) for the device. For Ad
t = off,

the agent changes its action if the residents’ perform manual override. HERS schedules a

Type-2 device when it is ready for a new run. No further decision is made until the current

operation is finished, either scheduled or manually overridden. The device becomes ready

again when the resident activates it for a new run. For Type-3 devices, HERS decides on a

charge level Ad
t for each time t. If there is any manual override, then the charge level is set

to full capacity Ed to finish charging as soon as possible. Every manual override causes the

discomfort cost through feedback f dt = 1 to the RL agent for the corresponding device.

The actual number of possible actions will typically be smaller than Eq. 2.1 during a

time step due to inactive devices. For example, when the residents are not at home, the AC

will remain off and will not be considered for the agent’s action. Similarly, the idle status of

many devices can be determined to limit the number of actions. Furthermore, a deferrable

device only remains active for one time step when HERS schedules its operation.

2.2.3 State

The MDP agent takes action based on the environment state. Appropriate design of the

state is fundamental to the success of the MDP model. As the devices provide comfort to the

residents, we hypothesize their activity data to be critical to define the states. An activity

recognition system uses various home sensor data to label the residents’ activity Xt . Apart
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from the activity, the real-time electricity price ρt and clock time of the day (CLK) are other

essential features that we include in the state definition, as shown in Table 2.2. The state at

time t is defined as:

Sd
t = Device data ∪ Activity ∪ ρt ∪ CLK ,

where Activity = (X 1
t ,H

1
t ,ω

1
t ) ∪ ... ∪ (XR

t ,H
R
t ,ω

R
t ) includes the current activity X i

t , previous

activities H i
t , and duration of the current activity ωi

t for all R residents. Device data includes

information like how long ago the device was activated, the number of dirty dishes or clothes

for the Dishwasher and Washer Dryer, the charge level of the type-3 devices, that can be

included in the state definition, as shown in Table 2.2. In practice, activity labels can be

generated from activity recognition sensors as discussed in [78].

2.2.4 Cost

The MDP agent tries to maximize a reward or minimize a cost by taking optimal actions

for a given state. For instance, the RL-based Youtube video recommendation systems are

rewarded when the user opens a recommended video[36]. Similarly, HERS receives cost

(negative reward) whenever a resident is not happy with the selected action and changes the

mode of a device. This human feedback f dt = 1 is interpreted as discomfort and converted

to a cost to the MDP agent through separate cost coefficients δd for each device d for each

manual override. The devices’ operations are meant for human comfort, so HERS’ objective

is to minimize discomfort.

The total cost for the MDP agent is the sum of energy cost and human discomfort cost.

The utility informs the agent of the electricity price for the current time step ρt , and future

time step ρt+1. The energy usage at time t is obtained from the smart device’s power

consumption Pd
t and used to calculate the total cost for each active device for time step t as

C d
t = Pd

t × κ× ρt + f dt × δd , (2.2)
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Table 2.2: State input.

Input AC DW WD EV

Activity ✓ ✓ ✓ ✓
Clock time ✓ ✓ ✓ ✓

Electricity price, ρt ✓ ✓ ✓ ✓
Device status ✓ ✓ ✓ ✓

Device activation duration ✓ ✓ ✓ ✓
Battery charge level × × × ✓
Travel upcoming × × × ✓

where κ is the unit step time in hours. Cost coefficient δd for each device is a critical mod-

eling parameter that converts discomfort into monetary value. f dt represents the discomfort

feedback of the residents, where 0 and 1 respectively indicates no override or override. The

goal of the MDP agent is to minimize the following discounted cumulative cost for each

device in T time steps:

C d
T =

T∑
t=0

λtC d
t , (2.3)

where λ ∈ [0, 1] is the discount factor for future decisions.

2.2.5 Next State

At the end of a time step, the device state Sd
t changes according to the action At ; however,

human activity data, electricity price data, etc., change stochastically. These features define

the next state Sd
t+1, and the dynamic system moves to the next time step for the agent to

act. These transitions satisfy the Markovian property of the MDP framework.

2.3 Solution Approach

HERS employs one separate MDP agent for each of the D devices to minimize the

discounted total costs C d
T in Eq. (2.3). To achieve the optimal policy argmin{Ad

t } C
d
T , we

need to solve the following Bellman equation. We drop the device index from here on for
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Algorithm 2.1 A2C algorithm for each device in HERS

Input: discount factor λ, discomfort cost coefficient {δd}
Initialize: Actor network with random weights ϕ and critic network with random weights
θ
for episode = 1, 2, ...,E do
for t = 1, 2, ...,T do
Collect activity data from Activity Recognizer, real-time electricity price ρt from
Utility.
Select action Ad

t using Actor Network (Fig. 2.3).
Execute action Ad

t and observe human discomfort feedback f dt .
Calculate cost C d

t using Eq. (2.2).
Store transitions (Sd

t ,A
d
t ,C

d
t , S

d
t+1).

end for
Update actor network ϕ via Eq. (2.4).
Update critic network θ through back propagation.

end for

brevity. The agent’s value function at time step t is

V (St) = min
At

{
E [Ct + γV (St+1)]

}
.

The above equation presents a solution dilemma in prioritizing between the immediate

cost Ct and future expected cost γV (St+1). Since the agent’s action changes the next state of

the devices, the future discounted cost through the value function of the next state V (St+1)

depends on the action of the agent. Since in high-dimensional problems like the considered

one here, it is not feasible to compute the expected future cost explicitly and find the value

function for each possible state, deep neural networks are typically used in the modern

practice of RL (known as deep RL) to learn the optimal policy of actions either directly

(policy-based methods) or through the value function (value-based methods).

The Advantage Actor-Critic (A2C) algorithm, which is a hybrid (both value-based and

policy-based) adaptation of policy gradient-based algorithm REINFORCE [133], is a popular

choice for continuous state space, e.g., electricity price and battery charge level in our setup.

We also considered using Deep Q Network (DQN), another popular deep RL algorithm, but
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Figure 2.3: Advantage Actor-Critic (A2C) network.

A2C performed better in the proposed state space, as expected. A2C uses the advantage

functions for policy update, which reduces the REINFORCE algorithm’s variance as shown

in Fig. 2.3.

The actor network, also known as the policy network, outputs probability for each action

value πϕ(At) through a softmax function. Then the agent samples an action At based on

the policy πϕ and the environment moves to the next state St+1 and provides the immediate

cost Ct . The actor network aims to find the gradient of expected return J(πϕ) of the policy

πϕ with respect to the weights ϕ of the neural network through the following equation:

∇ϕJ(πϕ) = Eπϕ[∇ϕ log(πϕ(At |St))A(St ;At)], (2.4)

where the advantage function A is given by

A(St ;At) = Ct + γVθ(St+1)− Vθ(St). (2.5)

The critic-network learns the value function Vθ(St) for each state. It uses the advantage

function A as the critic loss to update its network parameters θ through back propagation.A

pseudo code for the proposed A2C algorithm is given in Algorithm 2.1.
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2.4 Experimental Setup

The ideal experimental setup would be implementing the HERS algorithm in an existing

smart home. However, a fully equipped smart home capable of taking human feedback is yet

to be available. We will hypothetically generate human feedback and interactions with the

devices based on the residents’ activity data. HERS select different features for operating

different devices, as shown in Table 2.2. We include clock time in minutes and real-time

electricity price ρt as the common states for all the devices. The New York Independent

System Operator (NYISO) provides real-time electricity prices; we use Long Island, NY

prices for March 13 and 19, 2021 as the electricity price respectively for weekends and

weekdays in our simulation [91]. We find that κ= 0.25 hour (15 minutes) is suitable for the

experimental setup.

2.4.1 Activity Label

For residents’ indoor activity data, we use the ARAS dataset [18]. The attributes of the

dataset for the two homes are shown in Table 2.3. The dataset contains 27 types of activities

labeled by sensors and validated by the residents. This dataset is comparatively newer and

has more activity types than other datasets in the literature.We choose House B for the

experiments. HERS takes the current activity label, duration, and the last activity label for

each resident (6 inputs in total for the two residents in the house). Apart from providing

the dataset, [18] also gives a guideline about the sensors required for activity recognition.

To collect the activity data, they used a total of 20 binary sensors of 7 types: (1) force

sensor, (2) photocell, (3) contact sensors, (4) proximity sensors, (5) sonar distance sensors,

(6) temperature sensors, and (7) infrared sensors.
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Table 2.3: ARAS activity dataset [18]

House A House B

Size 538ft2 969ft2

Layout One bedroom, one living room Two bedrooms, one living room
one kitchen, one bathroom one kitchen, one bathroom

Residents 2 males at their twenties Married couple at their thirties
Duration 30 days 30 days

Published in 2013 2013
Labelled Activities: (1) Going out, (2-4) Cooking (breakfast, lunch, dinner),
(5-7) Having breakfast, lunch, dinner, (8) Washing dishes, (9) Having snack,
(10) Sleeping, (11) Watching TV, (12) Studying, (13) Bath, (14) Toileting,

(15) Napping, (16) Using Internet, (17) Reading book, (18) Laundry, (19) Shaving,
(20) Brushing teeth, (21) Phone conversation, (22) Listening music, (23) Cleaning,

(24) Conversation, (25) Having guest, (26) Changing clothes, (27) Other

2.4.2 Devices

HERS can provide optimal control for all the smart devices in a home. However, we

limit our case study to high power loads that renders significant energy cost. Specifically,

we choose the following four devices for our experiments.

2.4.2.1 Central AC (Type-1)

We estimate a 12000 BTU (3.5 kWh) AC capacity for the 90 m2 (968.75 ft2) area of the

home, located in a mild temperature zone. In reality, the average AC load is typically half

of the capacity[32], so we model the AC load with the following normal distribution:

PAC ∼ N (µ = 1.8 kW,σ = 0.5 kW).

The AC will be in the idle status (sACt = 0) if none of the residents are at home or active

(sACt = 1) otherwise. The agent may keep the AC off intermittently under active status;

however, the resident will manually turn the AC on if it causes discomfort. We generate

this feedback f ACt if AC goes off within TAC minutes of being turned on. In that case, the

residents turn on the AC manually, which penalizes the HERS agent by $ δAC . We model
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TAC with a uniform distribution between 45 to 90 minutes and intermittent off duration as

15 minutes. We include the on duration as a state for AC.

2.4.2.2 DW and WD (Type-2)

The activity pattern of house B indicates the lack or no usage of a dishwasher (DW).

We generate the dishwashing events to be activated, i.e., sDWt = 1, TDW minutes after any

resident finishes dinner. We model the delay time TDW with the Poisson distribution with

60 minutes mean value. There will be no dishwashing events for the days when none of the

residents have cooked, as there will not be a significant load for the dishwasher. The analysis

in [27] estimates 152-minute automatic dishwashing for a comparable load to the considered

household. Hence, we model the dishwashing event as a 2.5-hour continuous operation with

1.1 kW power. The Bosch 500 series smart dishwashers are among the most popular models

of the year 2020 and serve as the DW model in our experiments [30]. The agent needs to

complete dishwashing before the subsequent switching by the residents; otherwise, it receives

the discomfort cost δDW , and the DW is turned on manually to clean the previous dishes.

House B has a regular heavy load washer & dryer (WD), so following its laundry schedule

would not be practical. The future smart homes will utilize the high-tech WD combos like

the LG WM3900HBA, a single compartment light-duty device that takes around 1 hour for

washing and 1.5 hours for drying for an average cloth load. We estimate that the residents

produce this cloth load every three baths, hence fill and switch the WD in active mode on

average 30 minutes (Poisson mean) after their second or third bath (with equal probability)

from the previous laundry. Then the RL agent has to turn the WD on for a 1-hour continuous

washing cycle, followed by 1.5-hour drying cycles with 1.2 kW power to complete the laundry.

If the agent does not complete the process before the next switching by the residents, the

resident provides negative feedback δWD and turns on the WD immediately to clean the

previous cloths.
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Table 2.4: EV usage data generation.

Weekdays Weekends
Duration, ta (hrs) < 8 8-16 > 16 < 10 > 10

Purpose Leisure Office Travel Leisure Travel
Miles driven, M f (ta) 40+f (ta-10) n/a f (ta) n/a
Minimum Battery

Before Trip 40% 40% 70% 40% 70%
Battery Status
After Trip β − M

220
β − M

220
20% β − M

220
20%

2.4.2.3 EV Charging (Type-3)

The residents’ activity pattern shows that they mostly go out of the home together.

Considering an EV in the house, we assume that the second resident drives it. The EV

driver’s work pattern seems to consist of long hours with some off days throughout the week.

We set his one-way drive to work as 20 miles; 69th percentile driving distance from the

data collected by The American Time Use Survey (ATUS) [89], which includes over 13,000

respondents. The activity data provides us with the duration the resident is away from

home. Based on the duration, we label such away time as leisure, office time, and travel as

in Table 2.4. We assume the EV is always connected to the charger when the resident is at

home.

For weekdays, if the resident stays away for less than 8 hours, it is labeled as a leisure

activity, which includes going shopping, visiting friends, short trips, theater, etc. Residents

spend more time in leisure activities during the weekend, extending the leisure activity

labeling time to 10 hours for the weekend. Driving distance in miles during leisure trip for

ta time duration is approximated as;

M = f (ta) = tdriving × vavg = α× ta × vavg.
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where, α = tdriving/ta is the ratio of time spent for driving and the total time spent away.

We model it with a normal distribution

α ∼ N (µ = 0.33,σ = 0.1).

Average speed vavg is taken as 30 mph. The instances in which the resident spends 8-16

hours out of home is labeled as office and leisure activity during weekdays. Round trip to

the office is taken as 40 miles, additional time after 10 hours is considered a leisure activity,

and driving distance is calculated as M = 40 + f (ta − 10).

2021 Tesla Model 3 Standard Range is one of the most popular latest EV models with

a 450 hp (336 kW) engine 50 kWh battery. The level–2 charging of 7.68 kW (240 V 32 A)

capacity would require 6.5 hours to charge the completely depleted EV battery fully. Battery

status after a trip is the initial battery status when going out of home β minus M
220

as the

Tesla 3 model has a standard driving range of 220 miles. The resident does not use the EV

if β is less than 40% before starting a trip. The resident takes some other transportation

mode and assigns a discomfort cost δEV 1 to the RL agent. If the resident stays more than 16

and 10 hours out of home, respectively, on weekdays and weekends, we label this activity as

travel that may require outside charging. We do not calculate driving distance for traveling;

however, we set battery status after the travel to be 5-20 %, as home charging is the cheapest

and the resident would try outside (paid) charging as little as necessary to reach home. The

resident requires a higher initial charge for traveling. We set a higher discomfort cost δEV 2

if β < 70% before travel. As the initial charge level is higher for travel, we include the next

trip type as an input state for the EV.

2.4.3 Discomfort Cost

Discomfort costs δd for each device are critical parameters in the HERS setup. So, we

model it as user-defined numbers that the residents can set initially and update while the
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Figure 2.4: Daily cumulative cost in scenario 1 for devices: AC (top left), DW (top right),
WD (bottom left), and EV (bottom right) for 1-month duration.

HERS is at service. The discomfort costs also represent the comfort and device priority

mindset of the residents as low discomfort cost will emphasize electricity cost, and high

discomfort cost will prioritize human feedback. In case of an update to the discomfort costs

δd , thanks to its adaptive nature, the RL agent will update the policy in an online fashion. For

the experimental purpose, we performed a survey among twenty participants with different

backgrounds (e.g., student, homemaker, engineer, etc.) to set the discomfort cost for each of

the four devices. Survey results suggest EV charging failure creates the maximum discomfort.

Other discomfort costs in decreasing order are for WD, DW, and AC. We select discomfort

cost coefficients as δAC = 20, δDW = 40, δWD = 50, δEV 1 = 100, δEV 2 = 300 in USD.
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2.5 Results

2.5.1 Benchmark Policies

(1) Manually controlled policy: In this policy, the residents operate the devices them-

selves, so a device turns on immediately upon its activation without any scheduling consid-

eration. We assume the residents turn off the AC when both of them are out of home and

turn it on upon returning. This policy ignores the benefit of smart scheduling, and we will

refer to it as the baseline policy to evaluate the other policies’ success.

(2) Rule based HEM in [118]: Shirazi et al. [118] present a home energy management

with DERs and appliance scheduling (HEMDAS). The energy management problem in a

house is modeled as a mixed-integer nonlinear programming (MINLP) that includes con-

strained optimization for managing DERs and appliance usage. More precisely, the devices

are scheduled based on real-time pricing of electricity during a time window. They define

separate earliest starting times (EST) and latest finish times (LFT) for DW, WD, and EV

to ensure user convenience. Each device is scheduled based on the real-time electricity price

during its operating time window. The AC maintains the desired temperature decided by

the customer, which our smart home agent ensures by keeping the AC on for 90 minutes

before every 15-minute interruption.

(3) Rule-based HEM in [96]: Pilloni et al. [96] survey 427 people about their degree of

annoyance if a device performs under-capacity or is scheduled for later periods. The survey

responses are used for generating different types of resident profiles. During training, the

smart home residents’ usage pattern is matched to one of those profiles. Once the resident’s

appliance usage profile is assigned, the algorithm minimizes the cost for each device,

C d
t =

Pd
t × κ× ρt
σ(∆X )

where the numerator represents the electricity cost and σ(∆X ) ∈ (0, 1] is the relative sat-

isfaction level of the home residents for the device. This rule-based method accommodates
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user preference and provides a good analogy to our discomfort feedback-based RL approach.

The resident feedback pattern in our setup for the AC, DW, and WD matches most of the

resident profiles in the survey. Since [96] does not provide an EV charging profile, we assume

that this policy schedules EV only if its battery is more than 50% charged, otherwise charges

at full capacity.

(4) RL-based HEM in [153]: In [153], Xu et al. utilize hour-ahead electricity price as a

state to minimize electricity cost. We tailor their approach to fit this comparative analysis

with the following modifications: (i) Agent makes decisions every 15 minutes instead of

hourly decisions. (ii) There is no PV generation in our setup, so the MDP state consists of

electricity price of the next 24 hours, with 4.67 % prediction error following the case-1 (best

prediction) in that chapter. (iii) We consider the AC as a priority device that maintains the

user set the temperature on its own. Hence, the possible actions for the AC remain turn

on or off instead of different power ratings, (iv) We include EV battery depletion, which is

overlooked in [153].

2.5.2 Scenarios

2.5.2.1 Scenario 1: Unlimited Peak Demand

There is no restriction for keeping the electricity usage within a limit in this scenario.

Fig. 2.4 shows the daily cumulative cost comparison among policies for different devices,

and Table 2.5 summarizes the results. The manually controlled policy has the maximum

monthly total cost of $193. Among the rule-based approaches, the Pilloni et al. method

[96] costs $166 and performs better than the Shirazi et al. method [118] with $180 monthly

cost. The RL-based approach in [153] attains $172 monthly, and the proposed deep RL-

based HERS policy achieves the lowest cost with $149 and minimizes the cost by 23 %

from the baseline manual control policy. The manually controlled policy starts operation

immediately, thus does not take advantage of the lower electricity rate at off-peak hours,

unlike the rule-based ones. However, the rule-based policy follows a conservative approach
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Figure 2.5: Daily cumulative cost comparison for all devices among the considered policies
for scenario 1 (left) and scenario 2 (right).

for optimization by searching low tariffs in a smaller time window to avoid creating resident

discomfort. Especially, the EV charging time window in method [118] overlaps with the

peak hours. So, these policies minimize the cost for all appliances on a smaller scale. The

RL-based approach in [153] achieves comparable results with the rule-based policies. The

success of this policy is limited due to only including electricity price in its state definition

and overlooking many critical features that the HERS policy capitalizes on (see Table 2.2).

The HERS policy focuses on human feedback in its cost and runs the devices optimally. For

instance, HERS keeps the AC off for shorter intervals during midnight without causing any

resident discomfort. The proposed deep RL-based policy is expected to decrease the cost

further for a system with more devices.

2.5.2.2 Scenario 2: Limited Peak Demand

To avoid overloading a distribution system, the utility company often restricts users to

keep energy usage under a threshold. Under this scenario, we limit the peak electricity usage

to 10 kW to obey such restrictions. The EV charging can take up to 7.68 kW of electricity,

even greater than the sum of other loads. So, all the devices other than the EV receive

their unrestricted electricity. Hence, the other devices’ electricity cost is the same for both

scenarios. The EV charging gets the least priority and can consume up to the remaining

electricity. Fig. 2.5 compares the total cost among different policies for both of the scenarios.
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Table 2.5: Monthly cost ($) comparison for different policies.

Policy Device AC DW WD EV Total
S1 S2 S1 S2

Manual Control 122.9 5.06 3.48 62.01 62.16 193.3 193.4
Rule-based in [118] 104.6 4.39 2.35 68.32 70.55 179.6 181.8
Rule-based in [96] 104.6 3.23 2.35 56.23 60.97 166.4 171.1
RL-based in [153] 106.7 3.35 2.41 59.76 60.37 172.2 172.8
Proposed HERS 92.0 3.19 2.3 51.6 55.88 149.1 153.4

Table 2.6: Computational statistics for the experiments.

Hardware Software Task Computation time
Intel(R) Core i7,3.60 Python 3.7 Training 128 min
GHz, 16 GB RAM Pytorch 1.8.1 Online Scheduling 4 sec

In Scenario 2, all the policies attain similar results as in Scenario 1, however with a small

increase in cost due to the restrictions. With more devices or lower peak limiting, the results

may vary more compared with Scenario 1.

2.5.3 Computational Statistics

Fig. 2.6 shows that the proposed deep RL algorithm learns the optimal policy within 600

episodes. Table 2.6 shows that training convergence takes 128 minutes and online decision

making requires only 4 seconds in our computer (Intel(R) Core i7,3.60 GHz, 16 GB RAM),

exhibiting the real-world applicability. The high cost in the early episodes indicates discom-

fort among residents; however, it ceases very fast. The trained HERS will take feedback from

the consumer to optimize the electricity cost of the house. We examine the above policies

for two scenarios.

2.5.4 HERS Schedule Demonstration

Fig. 2.7 shows the implemented schedule by HERS for a particular day. The black curve

shows the electricity price. From the residents’ feedback, HERS learns that switching the AC

off for 15 minutes after 1 hour of continuous operation is its optimal schedule that minimizes

29



0 200 400 600 800 1000
Episode

0

2000

4000

6000

8000

To
ta

l C
os

t i
n 

US
D

Raw Rewards
Smoothed Rewards

Figure 2.6: Convergence of the proposed deep RL algorithm for HERS for scenario-1 total
cost.

electricity cost and does not create any discomfort. Hence, HERS follows this pattern and

keeps the AC off when no one is home (9:30 am-5:45 pm). The EV is charged at maximum

capacity (7.68 kW) during the low tariff early hours (12 am-3 am) and its remaining charge

at 75% capacity (5.76 kW) during a slightly higher tariff (3 am-4 am). The EV returns

home at 5:45 pm; however, it waits for lower electricity tariffs at 11 pm-12 am. The DW

and WD require 2.5 hours of continuous power that the HERS schedules for the low-demand

low-tariff hours during mid-day (12:30 pm-3 pm). Notably, HERS chooses this schedule

instead of 12:00 pm-2:30 pm as the electricity price is lower during 2 pm-3 pm compared

to 12 pm-1 pm. This sample schedule shows that HERS learns to minimize electricity cost

and resident discomfort by utilizing the human feedback and activity labels in the proposed

deep RL setup.

2.6 Discussion

This work focuses on key features derived from residents’ activity for operating smart

devices. The reward of the RL agent accommodates direct human feedback, thus providing

a setup similar to the popular recommendation systems (e.g., video, book, music, etc.). We
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Figure 2.7: HERS scheduling results for a day under scenario-2 (peak demand limit 10 kW).

understand that any other approach incorporating more customized features for different ap-

pliances may achieve further improved results. So, the RL-based recommendation approach

for device-specific policy-making has a high potential. This work demonstrates the benefit

of including human activity-based states and human feedback-based rewards for adaptive

HEM. Our model provides usage control of devices that do not include PV sources, energy

storage, microgrid, and data sharing with other homes or a multi-agent setup. However, our

core architecture can accommodate these features in the future to open up further research

opportunities in this domain.

2.7 Conclusion

This work presents a deep Reinforcement Learning (RL) based recommendation system

for smart home energy management (HEM). Residents’ manual override for a device is

interpreted as a negative reward to the RL agent that operates the device. So, the goal

of the RL agent is to capitalize low-tariff electricity without creating human discomfort.

To the best of our knowledge, this is the first work that takes direct human feedback for

device management in a general smart home setup. Intuitively, this method works similarly
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to the popular recommendation applications that suggest a video, book, music, etc., based

on a user’s usage pattern, so we call it Home Energy Recommendation System (HERS).

Furthermore, the RL agent considers the human activities for state definition, another novelty

the existing literature lacks. The experimental results show that the human activity pattern

plays a vital role in device operation, in comparison with the RL approach of Xu et al.

[153] that only considers electricity price for state definition. Our comparative analysis

shows that HERS minimizes the electricity cost significantly with respect to the manually

controlled policy, rule-based policies in [118, 96], and the RL-based policy presented in [153].
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Chapter 3: Modeling and Simulating Adaptation Strategies Against Sea-Level

Rise Using Multi-Agent Deep Reinforcement Learning

3.1 Introduction

3Sea-level rise (SLR) is one of the most catastrophic outcomes of the global increase in

greenhouse gas (GHG) emissions and climate change. While many policy makers have com-

mitted to reducing GHG emissions since the Paris agreement in 2015, coastal communities

will require adaptation strategies to deal with SLR problems before harnessing the benefit

of worldwide GHG emission reduction [24]. Due to climate change and SLR, storm surge,

recurrent hurricanes, and permanent inundation pose significant challenges to most coastal

cities, many of which are among the world’s largest cities [147]. Underdeveloped areas will

also face many social and financial crises apart from the property loss [70, 112].

Recently, in the literature, a quantification of present and future flood damages in 136

major coastal cities is presented in [56]. Population growth is also considered in [59] to assess

the potential magnitude of future impacts in the continental US. The study in [52] proposes a

coherent statistical model for coastal flood frequency analysis and validates a mixture model

for 68 tidal stations along the contiguous United States coast with long-term observed data.

[57] demonstrates a methodology to assess the economic impacts of climate change at city

scale (Copenhagen, Denmark) and the benefits of SLR adaptation. [51] uses HAZUS-MH

[110] coastal flood hazard modeling and loss estimation tools to determine flood extent and

depth and the corresponding monetary losses to infrastructure in Miami-Dade County. A

3Portions of this chapter were published in IEEE Transactions on Computational Social Systems [128].
Copyright permissions from the publishers are included in Appendix B.
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case study comparing the cost-effectiveness of nature-based and coastal adaptation for the

Gulf Coast of the United States is presented in [103].

Several countries are already making significant investments toward reducing the catas-

trophic and long-term impacts of SLR. However, the progress in risk reduction is far behind

the coastal development and population growth globally [95]. The need for appropriate plan-

ning and execution for hurricane and flood protection is becoming more prominent as SLR

risks grow. The major challenge is the daunting cost of undertaking mega projects, and

building megastructures [66]. The US government spends billions of dollars to fund agencies

like the US Army Corps of Engineers and the US Department of Transportation for haz-

ard mitigation. In 2020, the Federal Emergency Management Agency (FEMA) announced

to grant up to $660 million in grant funding, including a record-breaking $500 million for

the Building Resilient Infrastructure and Communities (BRIC) pre-disaster mitigation grant

program and $160 million for the Flood Mitigation Assistance program [13].

The success of such investments depends on understanding different risk drivers from a

financial viewpoint, including SLR and the current state of infrastructure [55]. A disaster

cost and investment benefit analysis for a region can provide a guideline to the government

about budgeting its funds towards different mitigation programs. Furthermore, since SLR

is not uniform across the globe[63], the adaptation planning for different regions may differ

significantly. Risk assessment and investment planning for different regions might require

separate analyses and consider different sea-level projections [31]. Governments, in particular

administrators and officials in the corresponding agencies, need substantial information for

better strategic vision and adaptation planning [24, 49, 104]. The challenging task of adap-

tation planning demands considering various stakeholder dynamics and SLR scenarios [139].

Explicitly modeling the stakeholders’ reactions to SLR scenarios can help create strategies

suitable for local impacts and resilience management, and requires planning mechanisms

such as agent-based modeling and sequential decision making [26, 42, 98].
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To this end, we here study the interactions between SLR stakeholders under different

SLR scenarios using multi-agent deep reinforcement learning (RL). Specifically, we use a

probabilistic model for nature’s response to the collaborative policies of three local agents

(government, residents, businesses). The proposed multi-agent RL framework serves two

purposes. It provides a general scenario planning tool to investigate the cost-benefit analysis

of natural events (e.g., flooding, hurricane) and agents’ investments (e.g., infrastructure

improvement), and also shows how much the total cost due to SLR can be reduced over

time by optimized adaptation strategies. We demonstrate the proposed scenario planning

tool using available economic data and sea-level projections for Pinellas County, Florida, in

a case study. Although we here focus on the SLR problem, the proposed scenario planning

framework can be adapted to other natural and socioeconomic systems. A preliminary

version of this work was presented in [119]. This submission greatly enhances both the

intellectual merit and the broader impacts of the work. The major improvements include

a more realistic multi-agent setup, more effective state-of-the-art deep RL methods, and a

case study with extensive experimental results based on real economic data from the Tampa

Bay area.

The remainder of the chapter is organized as follows. The proposed multi-agent RL

framework is presented and analyzed in Sec. 3.2. The case study is given in Sec. 3.3, and

the concluding discussions and remarks are provided in Sec. 3.4.

3.2 Multi-Agent RL Framework

3.2.1 Agent-based Modeling for Adaptation Strategies

The long-term effects of adaptation strategies can be effectively simulated using agent-

based modeling, where an agent represents each stakeholder, and its actions are modeled

through realistic policies. In the considered sequential decision-making setup, at the begin-

ning of a year, residents and businesses decide on their additional tax contributions towards

SLR adaptation; then the government decides on its own investment amount against SLR
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Figure 3.1: Proposed multi-agent MDP framework.

and implements an SLR adaptation strategy based on the total investment amount from all

stakeholders. Finally, at the end of the year, the total cost from natural events is observed,

which can serve as a feedback about the recent SLR adaptation strategies and inform the

agents’ future actions. A straightforward but realistic policy is the cost-based policy in

which an agent decides whether to invest and the investment amount depending on the

cost it experiences from the natural events. While different threshold levels on the natural

cost can be used to model different agent prototypes (i.e., lower threshold for more reactive

agents), it is hard to select such thresholds to link them to realistic prototypes. We here

show that a multi-agent RL framework can be used to model realistic stakeholder policies in

an easily controllable way. Our proposed RL framework provides an intuitive parameteriza-

tion (cooperation indices between zero and one) to simulate different stakeholder prototypes

conveniently. Moreover, the proposed RL framework illustrates how much cost can be saved

by proactive and fully cooperative stakeholders with optimized decision policies.

3.2.2 MDP Formulation

We next explain the proposed cost models for the environment and the agents under

the MDP framework. We propose a multi-agent MDP framework to model the behaviors

of local SLR stakeholders (government, residents, and businesses), and their interactions
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among themselves and with nature. As shown in Fig. 3.1, government, which is the major

decision-maker in dealing with the SLR problem, at each time step t takes an action (i.e.,

investment decision) Gt and receives feedback from nature through the cost zG ,t . The other

two agents, residents and businesses, similarly take actions Rt , Bt and receives feedback from

nature through the costs zR,t and zB,t , respectively. Then, this natural and socioeconomic

system moves to a new state St+1 based on the current state St , agents’ action Gt , Rt ,

Bt , and SLR rt . The system state consists of the city’s infrastructure state st and the

sea level ℓt , i.e., St = {st , ℓt}. The agents’ decisions determine the infrastructure state

st = s0 +
∑t

m=1(∆sG ,m + ∆sR,m + ∆sB,m) = st−1 + ∆st(Gt ,Rt ,Bt). Likewise, the sea level

at time t is given by the cumulative SLR values: ℓt = ℓ0 +
∑t

m=1 rm = ℓt−1 + rt , where rm

is the SLR value at time m. Here, s0 and ℓ0 are respectively the initial infrastructure state

and the initial sea level of the region relative to a reference year. In terms of simulations,

these are two user-defined numbers representing the existing states at the beginning of the

simulations. The system state satisfies the Markov property: (St+1|St , ... ,S0) = (St+1|St).

We assume that the government observes the other agents’ actions Rt ,Bt , hence has the

complete knowledge of multi-agent MDP. However, the residents and businesses do not

necessarily know the other agents’ actions, hence the MDP is partially observable to them.

The parameters of the proposed multi-agent MDP framework are summarized in Table 3.1.

Table 3.1: Model parameters.

Initial sea level ℓ0 ≥ 0

SLR at time t rt ≥ 0

Sea level at time t ℓt = ℓ0 +
∑t

m=1 rm
Initial infrastructure state s0 ∈ {1, 2, ...}
Infrastructure improvement at time t, ∆st(Gt .Rt ,Bt)

Infrastructure state at time t, st = s0 +
∑t

m=1∆sm
Government’s decision at time t Gt ∈ {0, 1, ... ,AG}
Residents’ decision at time t Rt ∈ {0, 1, ... ,AR}
Businesses’ decision at time t Bt ∈ {0, 1, ... ,AB}
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3.2.3 Modeling Nature

We model nature’s cost zt = zG ,t + zR,t + zB,t using the generalized Pareto distribution,

which is commonly used to model catastrophic losses, e.g., [34, 140, 40]. It is known that

the storm- and flooding-related costs for the stakeholders have been increasing with SLR [7].

Thus, we model the scale parameter of generalized Pareto distributed zt directly proportional

to the most recent sea level ℓt and inversely proportional to the most recent infrastructure

state st . The cost from nature is distributed among the stakeholders through the multiplying

factors (mG +mR +mB = 1) for government (zG ,t = mG × zt), residents (zR,t = mR × zt), and

businesses (zB,t = mB×zt). These factors vary with regions; however, generally mG > mR ,mB

since typically government is faced with most of the cost from nature.

The probabilistic model for the cost from nature is given by

zt ∼GeneralizedPareto(ξ,σt ,µ)

µ ≥ 0, ξ < 0, σt =
η(ℓt)

p

(st)q
(3.1)

where µ,σt , ξ are the location, scale, and shape parameters of generalized Pareto, respec-

tively; and η > 0, p ∈ (0, 1), q > 0 are our additional model parameters. The parameters

ξ,µ, η, p, q help to regulate the impact of the most recent sea level ℓt over the nature’s cost

zt relative to the most recent infrastructure state st . Choosing an appropriate set of parame-

ters depends on the region considered for simulations. Our preference for modeling the scale

parameter and not the location parameter is due to the fact that the scale parameter can

control both the mean and the variance, whereas the location parameter appears only in the

mean. For certain values of shape parameter ξ, the expected value and range of the cost are

as follows:

E[zt ] = µ+
ηℓpt

(1− ξ)sqt
for ξ < 1

µ ≤ zt ≤ µ− ηℓpt
ξsqt

for ξ < 0.
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The location parameter is set to be positive, µ > 0, to generate positive disaster cost, zt > 0.

We choose µ = $30 million from historical data provided in Table A-1 in [5], which indicates

that a year with no serious natural disaster might produce this cost, typically to cover

maintenance. To get an upper bound on zt , we need the shape parameter to be negative,

ξ < 0. We select ξ = −0.1, which limits the upper bound to roughly 10 times the expected

cost. The other parameters η, p, q are set according to the cost projections in Pinellas County

presented in [4], and in Sec. 3.3.

3.2.4 Modeling Stakeholders

In our model, the government is the biggest stakeholder and implementer of the invest-

ment decisions for other agents too. At each time step, e.g., a year, the government decides

the degree of its investment Gt ∈ {0, 1, 2, ...,AG} for infrastructure development, where AG

is a finite positive integer. Gt = 0 means no investment at step t. Hence, there are AG + 1

possible actions for the government at each time step. The numerical value of Gt = m can

be interpreted as spending m unit money towards infrastructure development or the m + 1

th action among AG + 1 different actions with increasing cost and effectiveness. Possible

government actions include but are not limited to building seawalls, raising roads, widening

beaches, building traditional or horizontal levees, placing storm-water pumps, improving

sewage systems, relocating seaside properties, etc. [116, 2, 152]. The range of Gt is designed

to cover the real world costs from the cheapest investment like cleaning the pipes to the most

expensive investment like buying lands and property to relocate the seaside inhabitants and

businesses. The total cost CG ,t to the agent at each time t consists of the investment cost

and cost from nature. We assume most of the business and residential properties are insured

by the government. So f ∈ (0, 1) fraction of their insurance payments, f × IR,t and f × IB,t

respectively for residents and businesses go to the government, hence negatively contribute

to CG ,t . We explain modeling IR,t and IB,t later in this section while presenting the models for

residents and businesses. Since the government’s investment decision has an integer value,
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we model the total cost as CG ,t = αGGt + zG ,t − f (IR,t + IB,t) using parameter αG to map

the decision to monetary value. The discounted cumulative cost for the government in T

time steps is given by CG ,T =
∑T

t=0 λ
t
G [αGGt + zG ,t − f (IR,t + IB,t)], where the discount factor

λG ∈ (0, 1) discounts the weight of future costs following the common practice in MDP.

In our model, this discount factor also serves as a measure of the government’s cooperation

towards long-term welfare, hence, termed as the government’s cooperation index in this chap-

ter. Higher λG corresponds to a more cooperative government which better recognizes the

future SLR costs from nature, compared to a more short-sighted government represented by

lower λG . The government’s objective is to minimize the expected cumulative cost E[CG ,T ]

by taking investment actions {Gt} over time.

Residents’ community decides its own action based on its learning of the environment

and hence modeled as an agent in our multi-agent setup. The community organization

decides the degree of its investment Rt ∈ {0, 1, 2, ...,AR}, i.e., how much additional tax

they are going to pay to the authority to build infrastructure for them. The unit cost of

residents’ investment αR is limited to some fraction of the government investment unit αG

since the government is expected to cover the majority of infrastructure investment costs.

The change in infrastructure state by residents’ investment decision Rt is set relative to

the government: ∆sR,t = Rt × αR/αG where ∆sG ,t = Gt . It is assumed that these coastal

residents typically insure their vulnerable properties, so their cost from nature is mainly due

to the raise of insurance premiums. Insurance premiums go up if the insurance had to pay

more for recent catastrophic events. Hence, the insurance premium can be approximated

based on the historical cost from nature as IR,t = IR,0 × ρtR + IR ×
∑t−1

m=1 ρ
t−m
R zG ,m, where

ρR ∈ (0, 1) is the insurance company’s memory factor for past events, and IR is the coefficient

that maps the total recent natural cost of the insurance company (i.e., the government) to

insurance premium. Pre-existing insurance premium for the region, IR,0, can serve as the

initial value for the simulation. Apart from the insurance cost, the residents also endure a

fraction of the cost from nature, represented by zR,t = mR × zt . The discounted cumulative
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cost for the residents in T time steps is given by CR,T =
∑T

t=0 λ
t
R(αRRt + zR,t + IR,t), where

the discount factor λR ∈ (0, 1) can be interpreted as the residents’ cooperation index, as in

the government’s model. The residents’ objective is to minimize the expected cumulative

cost E[CR,T ] by taking investment actions {Rt} over time.

Businesses are another major stakeholder of SLR impacts. Businesses get monetary loss

through inundation, loss of customers, property damages, and increasing insurance premi-

ums. Similar to the residents’ model, we consider a business association to implement their

collective actions. The business association takes action Bt ∈ {0, 1, 2, ...,AB}, i.e., decides

on their degree of monetary contribution towards infrastructure development. The unit cost

of businesses investment αB typically ranges between αR and αG . The change in infras-

tructure state by businesses’ investment decision Bt is ∆sB,t = Bt × αB/αG . Similar to the

residents, businesses have insurance and non-insurance costs. Insurance premiums go up if

the insurance had to pay more for recent catastrophic events. Hence, the insurance premium

for businesses is modeled as IB,t = IB,0 × ρtB + IB ×
∑t−1

m=1 ρ
t−m
B zG ,m, where ρB ∈ (0, 1) is the

insurance company’s memory factor for past events, IB and IB,0 are the insurance coefficient

and the initial insurance premium for businesses, respectively. The discounted cumulative

cost for the business agent in T time steps is given by CB,T =
∑T

t=0 λ
t
R(αBBt + zB,t + IB,t),

where discount factor λB can represent businesses’ awareness and cooperation against SLR

and is called businesses’ cooperation index. The businesses’ objective is to minimize the

expected cumulative cost E[CB,T ] by taking investment actions {Bt} over time.

3.2.5 Optimal Policy Analysis

In our proposed MDP structure, each agent tries to minimize its expected total cost

E[CT ] in T time steps by following an optimal investment policy. At each time step, first,

residents and businesses take their actions Rt and Bt respectively; then, the government

collects their investments, makes its decision Gt , and implements the monetary investment

towards developing infrastructure. So, the next state transition is fully observable to the
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government and at the same time partially observable to the other two agents. We begin

with the optimal policy analysis for the government. Its optimal value function, which gives

the minimum expected total cost possible at each state (st , ℓt), characterizes the best action

policy {Gt}, and is written as

VG (st , ℓt ,OG ,t) = min
{Gt}

E[CT
G ,t |{Gt}],

where CT
G ,t =

∑T
τ=0 λ

τ
GCG ,t+τ is the cumulative cost starting from time t. We know from the

main body of the chapter

CG ,t = αGGt + zG ,t − f (IR,t + IB,t) (3.2)

and, CG ,T =
∑T

t=0 λ
t
G [αGGt + zG ,t − f (IR,t + IB,t)]. Here, the government’s observation OG ,t

represents its knowledge about other agents’ actions at time t. To find the optimal policy,

the Bellman equation

VG (st , ℓt ,OG ,t) = min
Gt

E[CG ,t + λGVG (st+1, ℓt+1)|Gt ]

provides a recursive approach by focusing on finding the optimal action Gt at each time step

using the successor state value instead of trying to find the entire policy {Gt} at once. Using

the cost expression given by (3.2) and considering possible AG +1 actions for Gt this iterative
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equation can be rewritten as

VG (st , ℓt ,OG ,t) = min
{
E
[
zG ,t − f (IR,t + IB,t) + λGV (ŝt , ℓt + rt)

]︸ ︷︷ ︸
F0(ŝt ,ℓt)

,

E
[
αG + zG ,t − f (IR,t + IB,t) + λGV (ŝt + 1, ℓt + rt)

]︸ ︷︷ ︸
F1(ŝt ,ℓt)

,

E
[
2αG + zG ,t − f (IR,t + IB,t) + λGV (ŝt + 2, ℓt + rt)

]︸ ︷︷ ︸
F2(ŝt ,ℓt)

, ... ,

E
[
AGαG + zG ,t − f (IR,t + IB,t) + λGV (ŝt + AG , ℓt + rt)

]︸ ︷︷ ︸
FAG

(ŝt ,ℓt)

}
(3.3)

where ŝt = st+Rt×αR/αG +Bt×αB/αG is the deterministic next infrastructure state before

government investment, termed as augmented infrastructure state. The knowledge of other

agents’ current actions provides the basis of our optimal policy analysis for the government

and Theorem 1.

At each time step t, action Gt shapes the instant cost CG ,t and moves the system to the

next state, which determines the discounted future cost λGV (st+1, lt+1). The optimum policy

chooses among the investment actions Gt ∈ {0, 1, 2, ....,AG} that has the minimum expected

total cost, minm{Fm(ŝt , ℓt)}, as shown in (3.3). Since the functions {F0(ŝt , ℓt), ... , FAG
(ŝt , ℓt)}

determine the optimal policy, we next analyze them to characterize the optimal government

policy.

Theorem 1. For m = 0, 1, ... ,AG , Fm(ŝt , ℓt) is nondecreasing and concave in ℓt for each ŝt;

and the derivative of Fm(ŝt , ℓt) with respect to ℓt is lower than that of Fm−1(ŝt , ℓt).

Proof is provided in the Appendix. For a specific infrastructure state ŝt , expected costs

F0(ŝt , ℓt), ... , F3(ŝt , ℓt) are illustrated in Figure 3.2 according to Theorem 1 where the expected

total costs intersect each other only once for any given infrastructure state. The optimum

policy picks the minimum of the AG + 1 = 4 curves at each time, which is shown with the
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Figure 3.2: Expected total costs as a function of sea level for an example case with AG = 3.

solid curve in Figure 3.2. As a result of Theorem 1, we next give the outline of optimum

policy in Corollary 3.2.5.

The optimum policy, at each augmented infrastructure state ŝt , compares the sea level

ℓt with at most AG thresholds where each threshold signifies a change of optimal action.

To prove Corollary 3.2.5, note that Fm−1(ŝt , ℓt = 0) < Fm(ŝt , ℓt = 0) for m ∈ {1, 2, ....,AG}

because ℓt = 0 corresponds to the fictional case of zero sea level where there is no risk. That

is, Fm−1(ŝt , ℓt) starts at a lower point than Fm(ŝt , ℓt), but increases faster than Fm(ŝt , ℓt) since

its derivative is higher (Theorem 1). Also from Theorem 1, it is known that both of them

are concave and bounded, hence Fm−1(ŝt , ℓt) and Fm(ŝt , ℓt) intersect exactly at one point for
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m ∈ {1, 2, ... ,AG}. While for ℓt less than the intersection point the action AG = m is less

effective than the action AG = m − 1 in terms of immediate cost and expected future cost,

it becomes more effective when ℓt exceeds the intersection point.

Figure 3.2 gives an example case with AG = 3 thresholds ℓthr1(ŝt), ℓthr2(ŝt), ℓthr3(ŝt), which

depend on ŝt and indicate change points of optimal action. However, depending on the slopes

of {Fm(ŝt , ℓt)} curves at each augmented infrastructure state ŝt , there may be less than AG

change points. To summarize, for a given state (ŝt , ℓt), the optimum policy chooses Gt based

on the relative value of the current sea level ℓt , with respect to the augmented infrastructure

state ŝt .

The thresholds also depend on the cooperation index λG . Higher cooperation indices set

the thresholds lower and vice versa. Intuitively, as λG grows, the government becomes more

cautious about (i.e., sees more objectively without severely discounting) the expected future

natural costs and sets a lower threshold for investment actions. On the contrary, small λG

implies underestimated future costs and thus overemphasized immediate investment costs,

which results in a high threshold for investment.

Optimal value functions for residents’ and businesses’ are similar to the government’s.

The Bellman equation for residents’ is

VR(st , ℓt ,OR,t) = min
Rt

E[CR,t + λRVR(st+1, ℓt+1)|Rt ].

Ideally, each agent would like to see other agents’ actions. Nevertheless, in the considered

problem, residents and businesses do not have the information of others’ actions. Since the

states do not change drastically, it is reasonable to approximate the agents’ previous optimal

action as their recent action. So, the residents approximate Gt ≈ Gt−1 and Bt ≈ Bt−1 in its

observation OR,t , where Gt−1, and Bt−1 are the actions taken in previous time step by the

corresponding agents. Similarly, the business approximate Gt ≈ Gt−1 and Rt ≈ Rt−1 in its
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observation OB,t for the value function

VB(st , ℓt ,OB,t) = min
Bt

E[CB,t + λBVB(st+1, ℓt+1)|Bt ].

Due to such partial knowledge and approximations, functional analysis as in Theorem 1 is

not tractable for residents and businesses.

3.2.6 Multi-Agent RL Algorithms

The continuous sea level values, which cause an infinite number of possible states, neces-

sitate a deep RL algorithm instead of a traditional RL algorithm. We consider two deep RL

approaches for comparison. The deep Q-network (DQN) algorithm [85], which is a popular

choice for deep RL, addresses well the infinite-dimensional state space problem. It leverages

a deep neural network to estimate the optimal action-value function for each of the three

agents. The Advantage Actor-Critic (A2C) algorithm, a policy gradient-based algorithm

[133], is a popular choice for multi-agent deep RL. A2C uses two neural networks:

(1) The actor network, also known as the policy network, outputs the probability for

each action through a softmax function. It is updated using the gradient of expected return

of the policy πθ with respect to the weights θ of the neural network, e.g., for the government

E[∇θG log πθG (Gt |St)DG (St ,Gt)] where πθG (Gt |St) denotes the probability for action Gt at

state St , and the advantage function is given by DG (St ,Gt) = CG ,t +λGVψG
(St+1)−VψG

(St),

where VψG
is the output of the critic network (see below) with ψ denoting the network

weights.

(2) The critic network, which is also known as the value network, is used to learn the

value function for each state, e.g., VψG
(St) for the government. It is updated using the

gradient of the squared advantage function, E[∇ψG
D2

G ].

The cost from natural events, which is modeled with a generalized Pareto distribution,

can have a high variance depending on the parameter settings, i.e., regular flooding costs
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in a typical year vs. major hurricane costs in another year. Our experiments in the case

study, explained next, corroborate the previous findings that A2C in general deals with high

variance more successfully than DQN [133].
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Figure 3.3: Unified A2C structure for all three agents.

For the multi-agent implementation of A2C, we consider three different structures. In

the first one, a single deep neural network structure is used for all agents based on the

similarities between their state and cost definitions. As shown in Fig. 3.3, the input layer,

which represents the common system state St = {st , ℓt}, is the same for all agents. Numbers

inside the box give the neuron numbers in each layer. Since the cost functions for the agents

have similarities, they also share some hidden layers. From there on, the agents have their

individual hidden layers to output their state values VψG
,VψR

,VψB
(critic network) and action

probabilities πθG , πθR , πθB (actor network). In this unified A2C structure, the interaction

between agents is not explicitly implemented through observations of other agents’ actions

OG ,t ,OR,t ,OB,t at the input.

We next consider using a separate neural network for each agent with st , ℓt , and Ot at the

input, as shown in Fig. 3.4. Numbers inside the box give the neuron numbers in each layer.

In this structure, the agents explicitly use the other agents’ actions Ot in their input states.

Government observes the residents’ and businesses’ actions before taking its own action, i.e.,
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OG ,t = {Rt ,Bt}. However, residents and businesses only know the previous actions of other

agents, i.e., OR,t = {Gt−1,Bt−1} and OB,t = {Gt−1,Rt−1}.

As a third (hybrid) structure, we also consider using a single critic network common to

all agents. Specifically, each agent has its own actor network, as in Fig. 3.4, but shares a

common critic network. According to our experimental results in the case study, among the

three multi-agent A2C structures, the separate A2C structure (Fig. 3.4) performs the best.

Algorithm 3.1 summarizes the separate A2C algorithm (Fig. 3.4). Each episode consists

of Monte-Carlo simulations in which several states are visited according to the current policy

defined by the current actor network. Line 1 initializes the disaster cost and investment cost

parameters. Line 2 sets up the discount factors and insurance parameters. An episode

starts with the initial relative sea level and infrastructure state. Line 7 shows the action

selection procedure for the A2C agents. Then, the simulator calculates the costs. Actor and

critic networks are updated at the end of an episode. The convergence of the separate A2C

algorithm used in the experiments is shown in Fig. 3.5.
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Algorithm 3.1 Multi-agent A2C algorithm (Fig. 3.4)

1: Input: µ, ϵ, η, p, q,mG ,mR ,mB ,αG ,αR ,αB ,
2: Input: λG ,λR ,λB , ρR , ρB , IR , IB
3: Initialize policy network with random weights θG , θR , θB and critic network with random

weights ψG , ψR , ψB .
4: for episode = 1, 2, ... do
5: Initialize state S0 = (s0, ℓ0)
6: for t = 1, 2, ...,T do
7: Sample action Gt , Rt , Bt from probability distribution generated by actor networks

θG , θR , θB .
8: Execute action Gt , Rt , Bt and observe costs CG ,t , CR,t , CB,t

9: end for
10: Update actor network θG (and similarly θR , θB) by back propagating

E[∇θG log πθG (Gt |St)DG (St ,Gt)].
11: Update critic network ψG (and similarly ψR , ψB) by back propagating E[∇ψG

D2
G ].

12: end for

3.3 Case Study

We here present a case study for Pinellas County, Florida, USA, using our multi-agent

RL framework. Pinellas County, home to nearly one million residents, is the most visited

destination on the US Gulf Coast. About 15 million tourists yearly spent over $20 Billion

over the past five years [10]. The top two cities in the county, St. Petersburg and Clearwater,

are ranked among the cities with a high risk of flooding [56].

3.3.1 Parameter Estimation

Hurricanes, floods, and stagnant water are some of the many SLR-related natural events

that cause costs in different ways, such as loss of properties, jobs, taxes, and tourism incomes

due to submerged areas. To model this cost zt , we begin with modeling the SLR amount rt .

For the Tide Gauge #8726520 located in St. Petersburg, FL, we utilize the online sea level

change calculator developed by the US Army Corps of Engineers (USACE) in [3], which uses

the NOAA projections for Pinellas County [137]. Among the seven SLR projections, with

relative sea level (RSL) zero for the year 2000, the Tampa Bay Climate Science Advisory
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Figure 3.5: Average episodic total cost of all agents in the separate A2C policy for the high
SLR scenario.

Panel ruled out the very low, low, and extreme scenarios for planning purposes [33]. We

also disregard the intermediate-high scenario and limit our simulations for intermediate-low,

intermediate, and high SLR scenarios.

Our simulations target the hundred years 2020–2120, hence we adjust the initial sea

level value for 2020 to ℓ̂0 = 100mm for all scenarios. For the following years, we follow

SLR projections in [137] till 2120. RSL for these scenarios from [3] and our adjusted values

are shown in Table 3.2. The randomness in SLR at each time step is modeled using the

Gamma distribution, which is commonly used for modeling positive variables, including

environmental applications, e.g., daily rainfall [16]. We use these adjusted projections {ℓ̂t}

as the mean RSL values for the Gamma distribution, i.e., rt ∼ Gamma(α, β). Specifically, we

set the scale parameter to β = 0.5 and vary the shape parameter α in a range to match the

mean RSL, given by
∑t

n=1 E[rn], with the adjusted NOAA projection curves. The successful

curve fitting for mean RSL values shown in Fig. 3.6 is achieved by the following time series
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Table 3.2: Relative sea level (mm) for different scenarios for St. Petersburg.

Year NOAA 2017 [3] Simulation adjusted RSL, ℓ̂t
Int-low Intermediate High Int-low Intermediate High

2000 0 0 0 n/a n/a n/a
2010 50 70 110 n/a n/a n/a
2020 110 150 220 100 100 100
2030 170 240 380 160 190 260
2040 220 330 540 210 280 420
2050 290 440 780 280 390 660
2060 350 570 1060 340 520 940
2070 410 710 1390 400 660 1270
2080 470 860 1740 460 810 1620
2090 520 1030 2150 510 980 2030
2100 580 1190 2590 570 1140 2470
2120 670 1430 3460 660 1380 3340
2150 840 1980 5230 n/a n/a n/a
2200 1080 2970 8940 n/a n/a n/a

equations,

Int-low: αt = 11.102 + 0.012× t

Intermediate: αt = 15.8 + 0.211× t (3.4)

High: αt = 24 + 0.85× t,

where the subscript t represents calendar year 2020 + t.

The generalized Pareto distribution used to model the cost from nature zt , has three

parameters, location, shape, and scale. The location parameter determines the range of zt ,

in particular the lower limit. We set it as $30 million according to the data provided in Table

A-1 in [5], which indicates that a year with no serious natural disaster might produce this

cost, typically for maintenance. To get an upper limit on zt , we need the shape parameter

to be negative. We set it as −0.1 for the upper limit to be roughly ten times the expected

cost. The scale parameter establishes the relation between sea level, infrastructure state,

and disaster cost in our model. A recent report by the Tampa Bay Regional Planning
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Figure 3.6: SLR projections by NOAA [137] (solid lines) and our fittings (dashed lines) for
relative sea level change for St. Petersburg, FL.

Council [4] gives “the cost of doing nothing” due to SLR impacts under the NOAA’s high

SLR projections for the Tampa Bay region, including Pinellas County. This report uses the

widely accepted REMI PI+ economic modeling tool for their estimations. The following

equations are obtained using the data provided in [4], where the cost unit is in million USD

and subscripts represent the calendar year:

E [z2060] = µ+
ηℓp2060

(1− ξ)sq2020
= 5057,

E

[
2060∑

y=2020

zy

]
= 89000.

The report in [4] discusses the cost of doing nothing; hence we keep the infrastructure state

s2020 = 20 constant between the years 2020 and 2060 in the above equations. We further

set the relative sea level ℓ2020 = 100, and following the high SLR scenario we obtain η =

100, p = 0.92, q = 0.8 as a set of values suitable for our simulations. Table 3.3 summarizes

the values of the generalized Pareto parameters for the Pinellas County case study.
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Table 3.3: Generalized Pareto parameters for Pinellas county.

ξ µ η p q

-0.1 $ 30M $ 100M 0.92 0.8

To determine the distribution of cost from nature, we use the economic data [10] and

the cost projections [4] for tourism in Pinellas County. The tourism industry contributed

$9.25 billion annual spending impact to the Pinellas County local economy [10] in 2019. We

consider only the tourism business in our model as they are the main business stakeholder

of SLR impacts. The “cost of doing nothing” report gives the tourism loss in 2060 as $898

million [4]. The principal cost for the business is the loss of net profit, which is estimated as

the 5% of total tourism income. With the current sea level, we estimate the upper bound

of business loss for the year 2019 as 10% of the net profit. This loss grows with 3% yearly

growth for tourism business, in line with US GDP growth. With the high SLR scenario,

business damage loss will increase to 100% of net profit in 2060, up from 10% in 2019,

which is equivalent to saying that the tourism sector will lose all profit if no infrastructure

is developed in the next 40 years. This cost model for tourism business in Pinellas County

corresponds to the 22% of total cost from nature, i.e., mB = 0.22 in (3.1). Together with

the insurance cost explained below, it also gives similar costs in our simulations to the

cost-of-doing-nothing estimation in [4].

Since the government is the major stakeholder with infrastructures, including buildings,

roads, parks, etc. under its liability, we set the government’s portion within the cost from

nature as 75%, i.e., mG = 0.75 in (3.1). The majority of residents in coastal regions, in par-

ticular Pinellas County, have flood insurance, as explained next, hence most of the property

inundation cost, which is estimated to be more than $16 billion in the worst case scenario [4],

is covered by the government. The direct cost to residents from nature is set as 3% of total

cost from nature, i.e., mR = 0.03, to account for the uninsured and uninsurable properties.

For the insurance cost, we use a topology-based data set provided in [103] for exposed

assets by ground heights for all the Gulf Coast. Pinellas County falls under a high-risk
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Table 3.4: Action and cost parameters for Pinellas county.

Agent Action Action Portion of Insurance Insurance
multiplier natural cost factor memory

Govt. 0,1,2,3,4 $140M mG = 0.75 n/a n/a
Resident 0,1,2,3,4 $20M mR = 0.03 IR = 0.04 ρR = 0.9
Business 0,1,2,3,4 $50M mB = 0.22 IB = 0.006 ρB = 0.9

flood zone, with many of its 407,720 residential properties considered as exposed assets by

ground heights [8]. The homeowners typically have the National Flood Insurance Program

(NFIP) provided by the government. The residents of St. Petersburg paid an average

insurance premium of $950 and around $33 million in total annually [6], which is the highest

in Florida. Scaling this total insurance premium payment in St. Petersburg to the entire

Pinellas County according to the almost 1/4 ratio of households [9], we set the base insurance

premium by residents as IR,0 = $132 million. The insurance cost and action parameters for

each agent are given in Table 3.4. Although most of the cost from nature is covered by

the insurance, increasing costs due to SLR is reflected to the residents through a higher

premium rate in the future. We empirically determined the insurance factor as IR = 0.04

and the insurance memory factor as ρR = 0.9 to match the insurance data stated above.

Similarly, the structural properties of businesses are mostly covered by insurance, and the

premiums increase with accumulating cost from nature, ρB = 0.9. Since the commercial

land use and the number of commercial insurance policies are less than the residential ones

[4], we set the initial insurance premium for business as IB,0 = $20 million and the insurance

coefficient as IB = 0.006.

We assume the infrastructure improvement is proportionate to the total investment

amount. Infrastructure development may include activities like beach and wetland restora-

tion, home elevation, dykes, local levees, sandbags, etc. We estimate the cost of these actions

to range between a couple of millions to billions of USD based on [103, supplementary]. The

investment ranges for agents are determined such that the maximum continuous investment

from all agents in 40 years prevents any cost from nature until 2060, e.g., 10-feet home el-
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evation or 20-feet dyke all over the coastline. The investment cost parameters are given in

Table 3.4 along with the insurance and natural cost parameters.

3.3.2 Scenario Simulations

Infrastructure Developement Policies

Reactive Threshold-based Deep RL-based

Scenario-Specific Threshold DQNA2C

$(81.6, 107.7, 152.0)B

General Threshold

$(82.2, 107.7, 154.2)B

λG = 0.1,λR = λB = 0.1 λG = 0.99,λR = λB = 0.1λG = 0.1,λR = λB = 0.99 λG = 0.99,λR = λB = 0.99
$(164.2, 209.1, 334.5)B $(71.9, 94.5, 131.9)B

$(84.8, 105.6, 155.2)B

$(72.2, 103.4, 156.6)B$(84.6, 121.3, 172.6)B

Figure 3.7: Expected episodic cost under different policies for high SLR scenario.

To benchmark the performance of the “proactive” deep RL framework, we also consider

a straightforward ”reactive” policy that makes an infrastructure improvement only after its

need is proven by high natural cost. In a reactive community, the government and other

stakeholders generally become active in infrastructure development after a major natural dis-

aster. This trend can be portrayed through a threshold-based policy, where an agent invests

in infrastructure if the cost from nature exceeds a predefined threshold. Although simple,

this policy is not tractable for generating simulations that represent realistic stakeholder

behaviors because of the difficulty in selecting the thresholds for natural cost. Whereas, the

cooperation indices in our simulation tool can be intuitively varied between zero and one to

jointly simulate the adaptation strategies of different stakeholder prototypes.

Fig. 3.7 presents the total cost for all stakeholders over the 100-year period 2020-2120

when the threshold-based and deep RL policies are deployed. The values within the paren-

thesis indicate the cost for Intermediate Low, Intermediate, and High SLR, respectively. The

three values in parentheses are the total cost over 100 years in billion US dollars consider-

ing the intermediate-low, intermediate, and high SLR projections of NOAA, respectively.

The threshold-based policy is used in two forms: the general threshold policy represents the

case where the agents are agnostic to SLR projection scenario in the simulations, and the
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scenario-specific threshold policy corresponds to the case where the best threshold is used

for each SLR scenario. In both threshold-based policies, all three agents take the maximum

investment action shown in Table 3.4 once the cost from nature in a year exceeds the same

threshold. This common threshold is optimized for each scenario in the scenario-specific

policy, and for the average of three scenarios in the general threshold-based policy to demon-

strate the best performance such threshold-based policies can attain (Fig. 3.8). The vertical

dashed line represents the best general threshold for the average SLR scenario. As shown in

Fig. 3.7, the proposed deep RL policy based on the A2C algorithm can intuitively simulate a

variety of stakeholder prototypes by varying their cooperation indices between zero and one.

While the fully non-cooperative case with all three cooperation indices equal to 0.1 results

in huge costs, double the costs of the best threshold-based policy, the fully-cooperative case

with cooperation indices equal to 0.99 reduces the total cost by 13% with respect to the best

threshold-based policy. The costs presented for the DQN-based policy are for the fully co-

operative case (λG = λR = λB = 0.99). They are significantly worse than their counterparts

in the A2C policy due to the high variance in the cost from nature. Finally, Fig. 3.9 shows

the cumulative yearly cost for the high SLR scenario for each policy.
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Figure 3.8: 100-year total cost for the intermediate-low, intermediate, high scenarios of
SLR, and their average.
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Figure 3.9: Yearly total cost under different policies for the high SLR scenario.

3.4 Discussions and Conclusion

In this work, we presented how a socioeconomic system around the sea-level rise (SLR)

problem can be modeled as a Markov Decision Process (MDP) and simulated using Deep Re-

inforcement Learning (RL) algorithms. In addition to providing a general scenario planning

tool to investigate the cost-benefit analysis of natural events and stakeholders’ investments,

the proposed framework also illustrates, through a case study for the Tampa Bay region

based on real data, how optimizing the adaptation strategies can effectively minimize the

total cost due to SLR. Being the first in the literature, the proposed MDP model relies on

some simplifying assumptions.

For example, we assumed a uniform cost-benefit economic model for the adaptation ac-

tions to represent the natural disaster cost with a tractable model with respect to the taken

adaptation actions so far (i.e., setting the scale parameter of the generalized Pareto dis-

tribution as a function of the sea level and infrastructure state). In the uniform model,

the action level (Table 3.4) also determines the development level in the infrastructure. A

detailed cost-benefit model for different actions can easily replace the considered uniform

model. Specifically, for a set of actions such as beach restoration, raising roads, building
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seawalls, and relocating coastal properties, the cost levels and development levels can be

non-uniformly set after a detailed study. Another feasible improvement over the proposed

framework would be to represent residents and businesses with multiple independent agents

and consider local infrastructure improvement actions for each subregion defined by a resi-

dent/business agent. Such an extension will increase the number of agents and the number

of actions to decide for the government while the structure of the overall model remains the

same. Note that the proposed multi-agent MDP model is not restricted to the RL policies;

any action policy can be followed by the agents. The sequential and agent-based structure

allows for a turn-taking game mode, where each agent decides on its action sequentially in

a round, and at the end of the round nature imposes its cost on the agents. We developed a

board game in which players can cooperate on adaptation strategies to mitigate SLR-related

damages from nature [155]. A digital and improved version of the game is planned as a

future work.
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Chapter 4: Multi-Objective Reinforcement Learning Based Healthcare

Expansion Planning Considering Pandemic Events

4.1 Introduction

4Healthcare is a universal need that includes health promotion, prevention, treatment,

rehabilitation, and palliative care. The distribution, management, operation, augmentation,

and demand of healthcare facilities have become a delicate and crucial reality for our existence

in this world. Pandemic events such as COVID-19 have highlighted the lack of a resilient and

sustainable augmentation plan for healthcare facilities, even in developed countries. High

population growth and the nationwide increase of median age in the US [151] indicate the

need for widespread healthcare facilities.

The dynamics of hospital bed demand results from a wide range of stochastic variables,

making it very challenging to model the future demand and augmentation scenarios. Emer-

gency department crowding, natural disasters, and humanitarian crises are often not ade-

quately addressed in the current annual development plans. Augmentation plans based on

the yearly demand statistics can often be misleading [41]. The number of beds is often in-

creased by observing the local population’s needs, known as the Certificate of Needs (CON).

In many states in the US, the hospital bed capacity is regulated based on the CON [54]. This

method aims to maintain a target occupancy level of hospital capacity to minimize expendi-

tures. The large number of casualties caused by the COVID-19 pandemic proved that this

method has limitations in forecasting future bed demands. Lack of treatment often causes

irreparable damage to the patients and families, physically and psychologically. Therefore,

4Portions of this chapter were published in IEEE Journal of Biomedical and Health Informatics [123].
Copyright permissions from the publishers are included in Appendix B.
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hospital bed demand forecasting and facility augmentation planning need meticulous atten-

tion from the planners, administrators, and research community to ensure sustainable and

accessible healthcare for all.

This study aims to address this research gap in hospital capacity expansion planning,

especially under pandemic events like COVID-19. We include critical features in forecasting

hospital bed demand for making augmentation plans. Firstly, different age-based population

groups (e.g., infants, older people) require different levels of hospitalization, hence the age

distribution is a primary factor in hospital occupancy forecasting. Secondly, Disease Bur-

den (DB), which represents the hospital dependency of the residents in a region for critical

diseases, is another major factor for hospitalization requirement. Moreover, the Social Vul-

nerability Index (SVI) of a region represents the vulnerability of its residents to diseases.

Finally, a pandemic event is another factor that shapes the hospitalization need.

Beside the human health factors, the economics of maintaining hospitals should also be

considered in the augmentation plan as the demand and supply in this sector is non-trivial.

Maintaining an enormous capacity to meet uneven demand is not economically sustainable.

Furthermore, cost of goods and services vary region to region because of transportation

costs, tariff/taxes, or other reasons. Different administrative regions control the prices of

goods/services in different ways, which can be summarized by the regional price parity index

(PPI). PPI measures the cost of goods and services compared to the national average, making

it a good regional cost indicator for establishing, expanding, and operating a hospital. Beside

serving the health needs of community, for-profit and non-profit hospitals are significant

revenue and employment providers locally and nationally. An oversight to these critical

health and economic factors while devising an augmentation plan can significantly harm a

region’s health and economy. A robust, dynamic, and detailed hospital augmentation plan

can benefit both the government and private parties, underscoring the scope of this work for

the policymakers.
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For a sustainable solution to this highly stochastic problem [115, 58], we utilize the impor-

tant factors discussed above in a systematic artificial intelligence (AI) framework, deep re-

inforcement learning (RL). We propose a Multi-Objective Reinforcement Learning (MORL)

method based on deep neural networks to satisfy two objectives: minimize augmentation

cost and Denial of Service (DoS) to the patients. In our preliminary work [122], we proposed

an RL approach that converts the patients’ discomfort caused by DoS into monetary cost

through fixed coefficients. However, defining fixed coefficients for different places and peri-

ods is not feasible, causing a practical challenge for the applicability of the work [122]. To

this end, in this work, motivated by the Pareto-optimal Q-learning (PQL) method [144] we

propose multi-objective actor-critic method to avoid the forced conversion of DoS discomfort

to monetary cost. Since we need to deal with high-dimensional state and action spaces for

hospital augmentation planning, we utilize deep neural network based approximations for

the MORL task, similar to [105, 148].

In the proposed method, the healthcare authority is the MORL agent that selects a

region for hospital augmentation at each decision time (e.g., annually) by considering several

important factors, the age-partitioned population, DB, SVI, PPI, and the existing hospital

capacity for all regions. As a result of its augmentation actions, the agent observes the DoS

and expansion costs. We modify Advantage Actor-Critic (A2C) [133], a popular deep RL

algorithm, to address the considered MORL problem. The contributions of this work can be

summarized as follows.

• A novel Markov decision process (MDP) formulation based on important health and

economic factors, such as DB, SVI, and PPI, is proposed to learn the optimal hospital

capacity expansion policy which minimizes the expansion cost and DoS.

• A novel deep MORL algorithm is developed based on the actor-critic framework.

• An extensive case study is performed for the state of Florida using real data to evaluate

the proposed MORL approach.
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The rest of the chapter is arranged as follows. Section 4.2 presents literature review

for hospital capacity expansion planning. We present the MDP formulation in Section 4.3,

and the proposed deep MORL algorithm in Section 4.4. The experimental setup, results,

and discussions are given in Section 4.5, Section 4.6, and Section 4.7, respectively, and the

chapter is concluded in Section 4.8.

4.2 Related Work

Proactive planning to address hospital bed occupancy problems and future expansion

decisions under population changes and emergencies have been a critical problem for hospitals

and care providers. The challenges in hospital bed management and expansion decision

have been approached by several researchers based on the different understanding of the

problem [101, 115]. The hospital bed occupancy and expansion decision literature can be

divided into two major areas: (1) bed occupancy management and allocations within a

hospital and (2) capacity planning and allocation of the hospital beds within a region. In

the first type of study, researchers typically proposed a mathematical framework addressing

systemic issues such as overcrowding within the hospital settings focusing on optimum use

of healthcare resources that maximize bed usage and reduce boarding time. These studies

include forecasting hospital bed occupancy and resources, healthcare personnel and critical

resource allocation, and patient allocation and ambulance diversion [14, 21]. Prior studies

in this area are widely varied by hospital division (e.g., psychiatric, emergency medicine,

and maternity ward), care delivery setting (e.g., trauma hospital, children hospital, and

specialty care), forecasting horizon (e.g., one hour to seven days), hospital resources (e.g.,

ICU bed, ventilation equipment, and physicians), patient case-mix setting (e.g., children,

elderly, and pregnancy) and data-source (e.g., EMR, EHR, and clinical data) [23, 75, 99, 161].

However, the majority of these forecasting and resource allocation-based studies focused on

supporting optimal use of crucial healthcare resources within the hospital setting rather

than long-term bed expansion planning. Given the importance of long-term hospital bed
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capacity and geographical allocation, we focus our study on models intended to address

hospital bed expansion within a region considering the increased demand, shifts in population

demographics, and emergencies such as COVID-19.

There are a few existing studies that considered capacity and expansion decisions for the

medium or long-term planning horizon. These studies implemented various forecasting meth-

ods, including the simple ratio method, formula method, Michigan’s bed need model, and

usage projection model to predict estimates at different regional settings (e.g., county, city)

[138, 115]. Implementing these methods into long-term hospital expansion decision-making

might lead to several critical limitations [101]. First, they do not consider the importance of

complex interactions between the hospital bed need and population demographics changes,

which might play a fundamental role in determining decisions [81]. Second, most of the

studies faced challenges in forecasting accuracy, model fitting (e.g., over and underestimat-

ing), and incorporating geographical and hospital administration variations. It is suggested

that an alternative robust decision support model incorporating uncertainty might have the

potential to reliably predict hospital capacity planning and bed extension decisions for the

regions with rapidly changing demographics and patient case-mix population [58, 67].

A promising alternative approach for hospital expansion decision consists of modeling

with data-driven approaches and constrained optimization in the decision-making frame-

work [138, 73]. A few studies showed potential with improved prediction performance for

forecasting bed occupancy in various hospital settings and geographical regions through the

data-driven forecasting approach [61, 74]. These studies used various statistical and machine

learning (ML) methods, such as linear regression models. However, most of these studies are

limited to forecasting, considering only the patient volume. A few studies utilized several

neural network-based algorithms in forecasting intensive and critical care bed usage, surgical

room prediction, and overall bed capacity estimations [74, 111]. However, only a handful of

studies implemented ML-based methods to investigate hospital expansion planning at the

regional and state level.
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With the recent theoretical and technical achievements in RL approaches, the application

of deep RL methods can potentially integrate prediction models with optimizing conflict-

ing multiple objectives. Therefore, RL-based methods have been widely used in various

applications areas, including robotics, virtual reality, finance, communications, and trans-

portation [119, 60]. The applications of RL-based methods in the healthcare domain are

mainly focused on adverse outcome predictions, rather than healthcare policy-related de-

cision making [156]. Based on the RL-based studies in non-healthcare settings, RL-based

algorithms have the potential to improve the hospital augmentation design with capabilities

of incorporating multiple decision criteria and critical covariates under the same framework

[53]. The works in [121, 120] utilized RL to determine the optimal size of hospital capacity

augmentation; however, these methods neglect the fact that the capacity expansion usually

happens in bulk numbers (e.g., 120-bed extension unit) [68, 47]. Furthermore, they did not

consider interactions between covariates (e.g., patient case-mix and changes in demograph-

ics) and appropriate health administration division, which may significantly influence the

hospital bed augmentation decisions [39]. Also, these studies assumed a single isolated ob-

jective and demand targets that are not necessarily main factors for hospital bed expansion

decisions[81, 44]. Unlike previous approaches, our study deals with multiple decision criteria

for hospital expansion decision making. In particular, our method aims to simultaneously

minimize the capacity expansion cost and the number of service denials.

4.3 Proposed Decision Model

The proposed MORL method is based on a Markov decision process (MDP) specifically

designed for the considered healthcare expansion planning problem. The proposed MDP

formulation follows the Markov property: transition to the next state depends only on the

agent’s current state and action. Fig. 4.1 shows our multi-objective MDP (MOMDP) model,

where the healthcare administration is the agent which manages the healthcare facilities in

R regions. The system state at time n, Sn, is defined by the non-controllable state variables
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n
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n, H

r
n)

δrn,d

Figure 4.1: Proposed multi-objective MDP (MOMDP) model.

U r
n and the controllable state (hospital bed capacity) H r

n of each region r . Every time step n,

the agent takes action An = m, which means selecting the mth region for a capacity expansion

of ∆Hm beds at the cost of En = αm. The agent can decide to decline expansion (An = 0),

resulting in a total of R+1 decision options. The number of patients requiring hospitalization

for a day can be greater than the region’s capacity. In those days, some patients face with

denial of service (DoS). δrn,d denotes the number of DoS for region r in day d ∈ {1, 2, ...,D}

of time step n, where D is the total number of days in a time step. The agent has two

conflicting objectives:

• Minimize the cumulative capacity expansion cost,
∑

n En,

• Minimize the total DoS,
∑

n δn =
∑

n

∑
d

∑
r δ

r
n,d .

While the expansion actions (An ̸= 0) incur monetary cost, they also reduce the future

number of DoS. The agent aims to simultaneously minimize the monetary cost and DoS

(i.e., find an optimum balance between them) over a finite time horizon by taking optimal

actions. Before explaining our MORL solution to this problem, we next elaborate the state

variables and the cost function.
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4.3.1 State

4.3.1.1 Non-controllable States

Selecting appropriate variables for the state definition is a critical task in MDP formu-

lation. The agent gathers essential information from the environment by observing several

state variables to inform its actions. The variables which are not directly affected by the

agent’s actions are called the non-controllable states in our model. The required hospital ca-

pacity has a strong correlation with the following factors, which we choose as non-controllable

states for our model.

• The work [122] shows that the number of hospital admissions is better captured by

age-grouped population data, consistent with the general understanding that some age

groups require more medical attention (especially children and older people). The age-

partitioned population of the r th region at time n, prn = [pr1n , ... , prGt ], is a vector of G

age groups. We separate the population among 4 age groups: 0-18, 18-44, 44-65, and

65+ years for our case study.

• Disease Burden, DBr
n, represents the age adjusted death rate per 100,000, which ranges

between 450 and 1600 for the regions in our experiment.

• Social Vulnerability Index, SVIrn, represents the vulnerability of the population towards

diseases and ranges between 0 and 1. SVI is a surrogate measure of the potential nega-

tive effects on communities caused by external stresses on human health [48]. Another

relevant measure Health Deprivation Index (HDI) is available primarily at the census

block group level, which can be used for fine-grained modeling at the neighborhood

level. Since larger regions for healthcare administration are considered in this work,

we prefer SVI, which is available at the county or census tract level.

• Price Parity Index, PPIrn, represents the cost of living in a region normalized by the

national average.

66



• During pandemics the healthcare system allocates part of its capacity to deal with those

pandemic-affected patients, which significantly changes the environment. Therefore,

we include it in the non-controllable states as a single binary variable Pandn ∈ {0, 1}.

This pandemic flag may also cover other humanitarian crises due to natural disasters

or other catastrophic events.

The agent only observes these states from the environment, but cannot control them.

In the experiments in Section 4.5, we explain how to reliably estimate these state variables

using real-world data. We include variance in the estimated values for these non-controllable

states to simulate a realistic environment in the case study.

4.3.1.2 Controllable States

The agent’s action controls the hospital bed capacity for each region, which is the only

controllable state in this setup. The current hospital capacity for the r th region at time n is

given by

H r
n = H r

n−1 +∆H r
n = H r

0 +
∑n

τ=1∆H r
τ ,

where ∆H r
n = ∆Hr if the region is selected for capacity expansion (An = r), otherwise

∆H r
n = 0. The expansion size ∆Hr may vary among the regions. H r

0 is the initial hospital

capacity for the region at the beginning of the study.

4.3.2 Cost

Since we have two objectives, the cost in this MOMDP setup is a vector Cn = (En, δn).

4.3.2.1 Expansion Cost

The agent can implement capacity expansion by building a new hospital or augmenting

an existing facility. The different capacity expansion size ∆Hr for each region incurs the

expansion cost αr . We assume the healthcare authority has the proper understanding to
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determine these parameters in practice, as demonstrated in our case study. Hence, the

capacity expansion cost En = αr varies for different actions An = r , and En = 0 for the no

capacity expansion decision.

4.3.2.2 DoS

The per capita (per 1000 people) hospital bed capacity varies widely among countries,

e.g., Japan has 13 hospital beds per capita while Mali has only 0.1 [150]. The US has a

moderate per capita of 2.5, where South Dakota leads the chart with 4.8 in comparison with

Oregon’s 1.6 per capita hospital bed [20]. For any region in the world, the actual hospital

admission on a given day can be more than the available capacity, especially during pandemic

times such as COVID-19. Since it is not financially feasible to maintain capacity capable of

providing healthcare for all scenarios, the healthcare authority tries to maintain a reasonable

capacity. However, the patients living in lower per capita capacity regions are prone to more

frequent DoS. The DoS for the r th region is

δrn,d = max(0, j rn,d − H r
n),

where j rn,d is the hospital admission requirement for day d ∈ {1, 2, ...,D} at time step n. So,

the total number of DoS for the nth time step is

δn =
R∑

r=1

D∑
d=1

δrn,d .

4.4 Solution Approach

4.4.1 Multi-Objective Reinforcement Learning

In a Reinforcement Learning (RL) setup, the agent takes an action that changes the

environment, and the environment responses by providing an immediate reward/cost. In

the standard setting, the goal of the RL agent is to maximize the discounted cumulative
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reward RN =
∑N

n=0 γ
nRn by taking optimal actions over a time horizon of N steps. The

discount factor γ ∈ (0, 1) determines the weight of future rewards/costs relative to the

immediate one for the RL agent. The traditional way to obtain a scalar reward from the

multiple costs present in the original objectives (i.e., expansion cost and DoS in our case)

is to combine them using a conversion parameter, Rn = −En − βδn. There is a significant

challenge in setting the conversion parameter β to a realistic value since it is in general not

obvious what the conversion rate should be. Specifically, DoS is a health-related discomfort

cost for the patients, which is not easy to convert into a monetary cost like the expansion

cost. Although one can find studies that try to assign economic value to such an important

discomfort cost, there is no unique and optimum way of doing this. Avoiding such a forced

conversion, we treat each objective in a natural way through a deep MORL algorithm.

To this end, instead of a single value function used for the scalarized cost in the traditional

RL approach, we define two value functions for the expansion cost and DoS, which are given

by the Bellman equations [133]

VE (Sn) = max
An

{E [−En + γEVE (Sn+1)|Sn,An]} ,

Vδ(Sn) = max
An

{E [−δn + γδVδ(Sn+1)|Sn,An]} .
(4.1)

The value functions VE (Sn) and Vδ(Sn) represent the maximum expected reward at a certain

state achievable by taking the optimum actions in the current time step and in the future.

4.4.2 Deep MORL

Our MOMDP model consists of 8R states and R + 1 actions for R regions. This high-

dimensional state-action space requires neural network (NN) based approximations to learn

the value functions in Eq. (4.1). The NN-based RL approaches are called deep RL, and

Advantage Actor-Critic (A2C) is a popular deep RL technique. A2C is known to be more

successful for high-dimensional action space than its most prominent alternative Deep Q
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Figure 4.2: Proposed multi-objective A2C architecture.

Network (DQN) [133] and thus is suitable for our problem. A2C uses a function called the

advantage function for policy update to address the high variance problem of its predecessor,

the REINFORCE algorithm [133]. We propose a multi-objective A2C algorithm for the

considered MORL problem, following the Pareto optimality approach [148]. Fig. 4.2 shows

the proposed multi-objective A2C architecture. The pseudo code is also given in Algorithm

4.1. A2C uses two different type of networks, the actor network and the critic network.

In our multi-objective A2C architecture, while there is a single actor network for action

decisions, we utilize two critic networks for the two objectives, as explained next.

4.4.2.1 Critic Networks

The two value networks for the two objectives aim to learn the value functions VE (Sn),

and Vδ(Sn) for a given state Sn. Based on the agent’s action An, the target values are

estimated from the immediate cost and the value function for the next state Sn+1. Then, the

advantage functions for the state action pair (Sn,An) are calculated as the difference between
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the target values and the predicted values:

AE (Sn;An) = −En + γEVE (Sn+1)− VE (Sn),

Aδ(Sn;An) = −δn + γδVδ(Sn+1)− Vδ(Sn).

(4.2)

The value networks use the advantage functions as the temporal difference error for gradient

descent update through backpropagation. They are called critic networks as they guide the

policy network about the quality of its actions through the advantage functions.

4.4.2.2 Actor Network

The policy network outputs probability πϕ(An = r) for each action through a softmax

function, i.e.,
∑R

r=0 πϕ(An = r) = 1. It aims to maximize the expected return J(πϕ) by

performing gradient ascent with respect to the weights ϕ of the NN through the following

equation:

∇ϕJ(πϕ) = Eπϕ[∇ϕ log(πϕ(An|Sn))(Sn;An)]. (4.3)

While updating the critic networks by their corresponding advantage functions is straight-

forward in this multi-objective setup, we define the following advantage function for the actor

network

A =


wEAE + wδAδ, if |AE +Aδ| = |AE |+ |Aδ|

0, otherwise,

(4.4)

where wE + wδ = 1. The coefficients wE and wδ reflect the priority of the policymaker for

the two objectives mentioned above. Such a flexibility is missing in [148]. Notably, the actor

network is updated only when both advantage functions have the same sign (both positive

or both negative), as seen in Eq. (4.4). This intuition is in line with the Pareto optimality

discussed in [148], which prescribes to update only when the gradient ascent directions

(advantage functions) corresponding to all objectives are the same. Updating in the same
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Algorithm 4.1 Multi-objective A2C algorithm (Fig. 4.2)

1: Input: discount factors γE and γδ, objective weights wE and wδ, learning rate α.
2: Initialize policy network with random weights ϕ and the value networks with random

weights E and δ.
3: for episode = 1, 2, ... do
4: Initialize the MOMDP, obtain the initial state S0;
5: for n = 1, 2, ...,N do
6: Sample action An, from probability distribution generated by the actor network ϕ.
7: Execute action An, and observe reward vector Rn = [−En,−δn] and next state Sn+1.
8: end for
9: Calculate the advantage functions for the value networks from Eq. (4.2).
10: Update policy network ϕ using the advantage function A (Eq. (4.4)) in gradient ascent

(Eq. (4.3)).
11: Update value networks E and δ using their advantage functions AE , and Aδ.
12: end for

gradient ascent direction will discover new undominated points on the Pareto front. On the

contrary, different gradient ascent directions for different objectives indicate the discovery of

dominated points since they do not increase all objectives concurrently. Hence, we do not

update the actor network when the advantage functions have different directions.

4.5 Experimental Setup

Having warm tropical weather, Florida is an attractive retirement home for an increasing

number of older people in the US. Older people are more prone to medical care and longer

stays in hospital. The high population growth in both infant and older age groups requires

robust planning and expansion of healthcare facilities in Florida. So, we assess our MORL

policy for Florida, where the Agency for Healthcare Administration (AHCA) can represent

the MORL agent. AHCA grouped the 67 counties of the state in R = 11 regions or health

districts, as shown in Fig. 4.3. Diamond shape with number n next to the region label

indicates capacity expansion decisions for that region by the proposed MORL in year n for

both scenarios, whereas round shape indicates expansion for the pandemic scenario only.
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Figure 4.3: Map of the 11 health regions of Florida for the case study.

4.5.1 Data Generation

The Bureau of Economics and Business Research provides Florida’s county-wise popu-

lation history and projections up to the year 2045 [102]. We extracted historical hospital

admission, Disease Burden (DB), and Social Vulnerability Index (SVI) data between 2010-

2019 from State Inpatient Databases (SID) [1].

Although the US Bureau of Economic Analysis (BEA) publishes the state-wise Price

Parity Index (PPI) [11], county-wise PPI data is yet to be published. Since PPI has a strong

correlation with the household income of a region [11], we generate the PPI data for the r th

region in our case study as follows

PPI rn =
HI rn

Med(HIn)
.
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HI rn is the household income for the region, and Med(HIn) is the median of household incomes

for all 67 Florida counties. We found that Region 6 is the costliest in Florida, which closely

matches the BEA’s [11] map of real personal income and regional price parity map of the

major metropolitan areas in the US. Hence, establishing and extending hospital facilities in

Region 6 will be the costliest in Florida. We devise yearly decisions in each policy to expand

the capacity of a region with ∆b = 120 hospital beds. We set the cost of adding 120 hospital

beds with a normal distribution of mean µ = 50 and variance σ2 = 3 M USD for Florida

[68, 47]. So, the expansion cost at the nth time step depends on the PPI of the selected

region as in

En = αr = PPI rn ×N (µ, σ2).

Instead of projecting PPI values, we follow the PPI data of the year 2019 for the simulation

period, i.e., PPI rn = PPI r2019,∀n.

4.5.2 Hospital Occupancy Forecasting

Historical hospital admission for the regions was obtained from the Florida State’s health-

care website [1]. Although the hospital admission requirement for an area depends on mul-

tiple factors, we hypothesize that the elements in our MOMDP state space U r
n (except PPI)

be sufficient to predict future hospital bed requirements. In this regard, Harrison et al. [58]

shows the suitability of Poisson distribution in predicting hospital admission. Data shows

higher hospital admission on weekdays than weekends on average [1]. So we fit the histori-

cal hospital admission data using the features (age-partitioned population, disease burden,

social vulnerability index) within separate models for weekdays and weekends. Prediction

accuracy above 90% with different regression algorithms shows the appropriateness of input

features. Fig. 4.4 shows the prediction accuracies for different regression models, where data

from 2010-2016 forms the training set, and 2017 data is used as the test set. We choose the

best regressor (decision tree with Mean Absolute Error) to predict the Poisson distribution

mean for weekdays and weekends in each region. Based on our observation of the hospital
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Figure 4.4: Average accuracy for different regression models in predicting hospital
admission for weekdays and weekends based on data from [1].

admission data, to better account for the day-to-day variation, we add 20% Gaussian vari-

ance around the predicted value from the regression model to obtain λrn. Finally, the number

of beds required for a particular day in the r th region is modeled as

j rn ∼ Poisson (λrn). (4.5)

As the average length of stay per admission is 4.7 days throughout the US [20], we set the

number of hospital bed requirements as 4.7 times the random number j rn generated in Eq.

(4.5).

4.5.3 Scenarios

During the COVID-19 outbreak, the healthcare system allocated part of its capacity to

deal with the pandemic-affected patients, decreasing the regular healthcare capacity. Hence,

the healthcare authority needs to include pandemic scenarios in its policymaking. We define

two scenarios with no pandemic and a 3-year long pandemic (between 20th−22nd year) event

within the 30 year decision time horizon (year 2021-2050). During the peak period of the

COVID-19 pandemic, the average hospitalization in Florida was 12250, which is around 20%
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of the hospital beds in Florida [12, 61], which we integrate into this case study. Specifically,

in the pandemic years, 80% of beds will be available for regular healthcare, keeping the

rest 20% reserved to handle the pandemic. The pandemic scenario may also cover other

humanitarian crises due to natural disasters or other catastrophic events.

4.5.4 Objective Priority

In the current practice, following the certificate of need (CON) process, the healthcare

authority sets a threshold on the occupancy level to make the expansion decision, which

implicitly represents their priority levels for the DoS and expansion cost objectives [101].

We reflect the healthcare authority’s priority levels for the two objectives in its healthcare

expansion policy by explicitly considering varying weights for the actor network’s advantage

function:

(wE ,wδ) =
(
(0.1, 0.9), (0.2, 0.8), ..., (0.9, 0.1)

)
. (4.6)

These weight pairs respectively represent a range of policies from service-centric to cost-

centric.

4.5.5 Neural Network Architecture and Computation Time

We have one policy (actor) and two value (critic) networks in the A2C architecture for

our MORL-based policy presented in Section 4.4. Fig. 4.5 shows the NN architecture of

our method. We use a learning rate of 0.0003 and a discount factor of 0.99 for all three

networks. Although the input state is the same for all 3 deep NNs, they have separate

hidden layers to output the policy and value estimates. The hidden layers have 48, 120,

and 48 neurons for all 3 deep NNs. The two value networks output one value for each value

function estimate. However, the policy-network outputs R + 1 = 12 action probabilities

for the given state. For each combination of weights (wE ,wδ) in Eq. (4.6), both objectives
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Figure 4.5: Neural network architecture for the proposed multi-objective deep RL-based
policy.

Table 4.1: Computational details for the experiments.

Hardware Software Task Computation time

Intel® Core i7 Python 3.7 Data Preparation 5 min
3.60GHz Pytorch 1.8.1 MORL Convergence 510 min

16 GB RAM sklearn 0.23.2 MORL Decision 0.33 sec

converge within 3,000 episodes, i.e., the agent learns the optimal policy after 3,000 runs.

Table 4.1 shows the computation time for the proposed method. It takes 5 minutes for

data processing, including hospital occupancy forecasting by using an Intel® Core i7, 3.60

GHz, 16 GB RAM computer. The MORL algorithm needs 510 minutes to perform the 3,000

episodes for convergence. Notably, the computational time for each decision is 0.33 seconds;

negligible compared to our approach’s policy-making steps (i.e., 1 year).

4.6 Results

4.6.1 Proposed Deep MORL-based Policy

Our method provides a set of trade-off solutions for the healthcare authority. Depending

on the objective weight range from Eq. (4.6), Fig. 4.6 represent objective priorities are
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(b) RNN Based Policy in [74]
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(c) SORL Based Policy in [122]
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(d) Proposed Deep MORL-based Policy
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Figure 4.6: Episodic (30-year) total cost and DoS for healthcare authority under different
objective priorities for the policies.

represented by (a) occupancy threshold levels for the target occupancy level based policy in

[54], (b) DoS threshold levels for the RNN based method in [74], (c) β values for each DoS

for the SORL based policy in [122], and (d) objective weights wE (=1-wδ) for the proposed

MORL based policy. Dashed lines represent the pandemic scenario. Fig. 4.6 (d) shows

the cumulative expansion cost (left y-axis) and DoS (right y-axis) for the 30-year timeline

obtained from the proposed deep MORL-based optimal policy. For the most service-centric

healthcare authority (wE = 0.2 < wδ = 0.8), the expansion cost is 990 and 1550 Million

USD, respectively, for the non-pandemic and pandemic scenarios over a 30-year period. The

cumulative DoS for the regions is 220 and 1187 thousand, respectively, for the two scenarios.

Although pandemic occurrence makes both costs worse, the obtained DoS is a lot more

acceptable than the actual situation during the COVID-19 pandemic. With more emphasis

on cost minimization (wE > 0.2), the DoS number goes up, and the expansion cost goes down,

as shown in Fig. 4.6(d). For the most cost-centric policy in our setup (wE = 0.8,wδ = 0.2),
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Table 4.2: Parameter, cost, and DoS comparison among the policies for different objective
priorities (non-pandemic scenario).

Proposed Deep MORL Target Occupancy [54] RNN based [74] SORL[122]
wE Exp. cost DoS(K) τoccu Exp. cost DoS(K) τDoS Exp. cost DoS(K) β Exp. cost DoS(K)

0.25 $950 M 220 60% $1564 M 224 0% $1044 M 345 0.07 $990 M 247
0.35 $700 M 458 66% $1327 M 364 4% $846 M 475 0.06 $730 M 538
0.45 $460 M 745 72% $960 M 728 8% $598 M 706 0.05 $530 M 770
0.55 $290 M 980 78% $433 M 1364 12% $279 M 1108 0.04 $320 M 1012
0.65 $85 M 1201 84% $6 M 1659 16% $109 M 1410 0.03 $95 M 1241
0.75 $0 M 1470 90% $0 M 1664 20% $0 M 1663 0.02 $0 M 1503

the healthcare authority makes no investment actions and endures 1470 and 3143 thousand

DoS, respectively, for the two scenarios. The source codes are available at GitHub 5.

4.6.2 Benchmark Policies

We compare our deep MORL-based policy with a myopic policy from [54], a Recurrent

Neural Network (RNN)-based policy from [74], and a single objective RL-based policy from

[122] for a 30-year scheme. We selected decision thresholds to incur investment costs ranging

from maximum to minimum for every policy to make a head-to-head comparison with our

proposed MORL method.

4.6.2.1 Target Occupancy Level Based Policy

Historically, many states regulated the number of hospital beds by the certificate of need

(CON) process, under which hospitals could only expand under state review and approval.

The CON process follows a target occupancy level of hospital beds as the decisive factor [54].

We select this method as a baseline policy where the region with the maximum percentile

occupancy on the previous year is selected for augmentation. No augmentation action is

selected if target occupancy for each region is lower than a threshold τoccu. We sweep the

threshold τoccu over a range to represent priority over the objectives, as shown in Fig. 4.6(a).

For lower thresholds (τoccu = 60%), the expansion cost is high, but DoS is low (service-

centric) and vice versa (cost-centric) for higher thresholds (τoccu = 90%). The DoS is higher

5https://github.com/Secure-and-Intelligent-Systems-Lab/MORL-Based-Healthcare-Expansion-Planning
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for the pandemic scenario (dashed lines) than no-pandemic scenario over the entire range.

However, the expansion cost is higher only for τoccu > 80%.

4.6.2.2 RNN Based Policy

Kutafina et al. [74] provide an RNN-based hospital occupancy forecasting method. They

achieved an accuracy rate of 93.76 % on eight validation sets from a German hospital’s 13-

year (2002-2015) hospital records data set. They included the day of the week, day of the

year, public holidays, and school holidays as the features for the RNN. We include their

method for the comparative analysis with the following adaptations:

• We include age-based population vector, DB, SVI, and pandemic flag on top of the

features used in [74].

• We select a region for expansion that is predicted to have the most DoS based on the

RNN forecast for the next step.

• We select no expansion if the DoS of the selected region is less than a threshold τDoS ;

otherwise, that region gets the capacity expansion.

The τDoS indicates how much percentile DoS the healthcare allows, i.e., it does not make any

expansion if all of the regions’ DoS is below that threshold. We do a sweep search for τDoS

between 0-20% that characterizes a range between service-centric to cost-centric healthcare

authority as shown in Fig. 4.6(b). This method has a one-step look ahead benefit compared

to the Target Occupancy Level method of [54]. Hence, it incurs higher expansion cost and

less increase in DoS for the pandemic scenario throughout the threshold range compared to

the Target Occupancy Level method.

80



4.6.2.3 Single Objective RL Based Policy

In our preliminary work [122], we converted the DoS into monetary cost by assigning

DoS cost for each region each day as in

c rn,d =


β(j rn,d − H r

n), if j rn,d − H r
n > 0

0, otherwise,

where we selected β = $0.04M, which represents the monetary cost equivalent of the dis-

comfort of an unattended patient, based on the study [45]. This cost is summed up over all

regions as the DoS cost for the time step n as

EDoS
n =

R∑
r=1

D∑
d=1

c rn,d . (4.7)

The sum of the expansion cost and the DoS cost is used as the negative reward, Rn =

−(En +EDoS
n ) for the single objective RL approach in [122]. This method does not provide a

handle over preference between the two objectives. Furthermore, the monetary equivalence

for DoS is an abstract idea, and setting a universal value for β is impossible. In fact,

this value can represent the mindset of the healthcare authority about how much it cares

about the population. So, we use a range of values β = (0.07, 0.065, ..., 0.02) that represents

from service-centric to cost-centric policies with the decreasing value of β as seen in Fig.

4.6(c). The pandemic scenario incurs higher cost and DoS; however, the expansion actions

are similar when the agent puts less value on β < 0.045.

4.6.3 Comparative Analysis

We conduct a comparative analysis among the policies mentioned above in terms of

the total expansion cost and total DoS for the 30-year timeline (Fig. 4.7). The x-axis

represents the objective priority that we generalized as cost-centric, moderate, and service-
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Figure 4.7: Episodic (30-year) total cost (solid lines) and DoS (dashed lines) for healthcare
authority under different objective priorities for the policies for non-pandemic (left) and
pandemic (right) scenarios.

centric (from left o right) based on the decision process range discussed and shown in Fig. 4.6.

In particular, Fig. 4.7 puts all the policies’ outcomes in a single frame to better understand

the benefit of our proposed MORL-based policy. The target occupancy level based policy

in [54] performs worst among the policies as it is always one step behind, i.e., its decision is

based on the previous year’s experience. The RNN forecasting based policy in [74] performs

better mainly due to the inclusion of the observable state’s data in the forecasting method.

However, this policy in [74] lacks the RL mechanism to minimize the cumulative costs from

all future states. The single objective RL-based policy in [122] and our proposed MORL

perform better than the other two policies. However, our MORL based policy outperforms

the SORL in [122] by utilizing more data (information) in its state definition. Especially

with the PPI data, our method picks a less expensive region for expansion when there is a

tie between two regions of different PPI levels. This better performance of MORL is more

emphasized in the pandemic scenario, as shown in Fig. 4.7.

Fig. 4.8 provides a synonymous view of the Pareto front of trade-off solutions discussed

in [144] for the initial state (i.e., year 2021). The x-axis represents expansion cost, and the

y-axis represents the number of DoS achieved from the initial state (i.e., n = 0) for all the

policies considering equal (moderate) priority between the two objectives. The ideal Pareto

front would be a curve that no other policy can go under, i.e., no other points can decrease
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Figure 4.8: Trade-off solutions for each policy for the non-pandemic (left) and pandemic
(right) scenarios with equal (moderate) objective priority.

expansion cost without increasing DoS and vice versa. Many works [144, 105, 148] focus

on obtaining the ideal Pareto front for multi-objective optimization tasks, yet we can only

approximate for our high dimensional state and action space problem. In Fig. 4.8, for the

deep MORL based policy, each point on the curve is a non-dominated solution among the

compared policies, which means none of the competing policies achieves better optimization

for the corresponding objective priority level. The points in the curves refer to episodic

(30-year) total cost and DoS for the healthcare authority at the initial state (i.e., n = 0).

Furthermore, our method provides an easy-to-use and natural way to control the trade-off

between the objectives through setting simple weights between zero and one (wE and wδ),

whereas the SORL policy requires further studies to strike a desired balance between the

objectives.

The comparative analysis is summarized in Table 4.3 for a healthcare authority that puts

equal (moderate) priority for both objectives. Different actions in the pandemic scenario are

shown in the parentheses. Our MORL based policy provides the lowest cost and DoS among

the other policies. To compare the policies in more detail, their selected actions for the

30-year period are also shown in Table 4.3. The different actions in the pandemic scenario

are given in parentheses. The target occupancy level based policy in [54] takes the same

actions under both scenarios. The RNN based policy in [74] takes similar actions like in

[54]; however, with its prediction capability it takes those actions early to prevent higher
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Table 4.3: Expansion cost, DoS, and selected sequential actions for each policy over a
30-year period for equal priority on the two objectives.

Non-pandemic Pandemic
Policy Exp. cost DoS(K) Exp. cost DoS(K) Selected Sequential Actions (in year 1 to 30)

Target Occupancy [54] $716 M 1046 $716 M 3072 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 5 , 0, 5, 5, 7, 5, 7, 3, 2, 5, 2, 7, 5, 3

RNN Based [74] $443 M 889 $550 M 2889 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
5, 0 , 7, 5, 5, 0(7), 0(6), 7, 3, 2, 5, 2, 0, 0, 0

SORL Based [122] $439 M 881 $485 M 2155 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 7, 0, 0,
3, 5 , 0, 2, 5, 7, 5, 0(7), 3, 0, 0, 0, 0, 0, 0

Proposed MORL $370 M 855 $425 M 1931 0, 0, 0, 0, 5, 0, 0, 8, 0, 0, 0, 0, 7, 0, 0,
3, 5 , 0, 2, 0(5), 7, 0, 0, 3, 0, 0, 0, 0, 0, 0

costs. SORL in [122] and the proposed MORL policy perform better as they are even more

proactive in making preventive expansions. Both policies expand in the early years to keep

the system in a balanced state in the future. Region 5 gets the most expansions, suggesting

this region expects higher DoS in the future. However, the proposed MORL also selects

Region 8 for expansion in the early years, which is one of the significant differences from

the other policies. Since it is a larger region with a high population, as a result of that

expansion, the overall DoS goes down significantly. The expansion decisions of the proposed

MORL policy are also shown in Fig. 4.3.

4.7 Discussions

The key insights from the conducted study are

• The historical patient data based methods (e.g., target occupancy policy [54]) focus on

the trend and lacks the root cause analysis (RL states) for future patient estimation.

• The RNN based policy [74] predicts the future hospital needs well; however, it lacks

prescriptive analysis. It requires a dynamic DoS threshold for making decisions to

adapt to different situations.

• Deep RL-based prescriptive analysis is suitable for the task as evident in experimental

results for SORL [122] and our deep MORL method. As the SORL policy converts the

DoS into a monetary cost with the help of a coefficient (β here), it requires literature

to support spatial and temporal generalization for a suitable value of β. Our deep
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MORL approach addresses this issue and provides an easy handle to the authority to

set the relative weights for the two objectives.

While significantly improving the state-of-the-art, the proposed method also has certain

limitations. For instance, it does not consider selecting multiple regions concurrently for

expansion. Also, our method does not provide a mechanism for selecting different capacity

expansion sizes for different regions in this current form. This research can be further

utilized for allocating human resources such as physicians and healthcare personnel for a

region. Private organizations often provide significant healthcare, hence including them in

policymaking can provide the basis for a multi-agent RL setup. In that context, the reward

function for the private organizations may include their financial benefit, and the central

RL agent (healthcare authority) may consider the private facilities as buffer capacity to

accommodate emergencies. Addressing these limitations and new scopes can provide several

future research directions.

4.8 Conclusions

We proposed a multi-objective reinforcement learning (MORL) framework to develop a

healthcare expansion plan and demonstrated its efficacy in a case study for Florida. The

MORL method enables the user to conveniently set different weights for its two objectives,

minimization of expansion cost and number of Denial of Service (DoS), in a natural way by

only setting their priority percentages. Our data-driven approach is suitable for coping with

the dynamic behavior of the region’s healthcare needs over a long period, especially to deal

with emergency scenarios like pandemic events. We significantly improved our preliminary

work in [122], which follows a single objective RL approach through converting DoS into

monetary cost, by developing a multi-objective solution to enable intuitive objective priority

setting; including Disease Burden (DB) and Social Vulnerability Index (SVI), apart from

the age-partitioned population, for hospital occupancy prediction and making expansion
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decisions; utilizing Price Parity Index (PPI) to accommodate different expansion costs for

different regions.
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Chapter 5: Demand-side and Utility-side Management Techniques for

Increasing EV Charging Load

5.1 Introduction

6Technological development throughout the previous decades paved the way for electric

vehicles (EVs) to replace gasoline-based vehicles at an increasing rate. Specifically, the

battery capacity and cost, which are the major impediments to EV adaptation, have been

significantly improved.

As a result, today, governments, manufacturers, and customers are more convinced about

EVs’ environmental, commercial, and economic benefits, escalating EV popularity and adop-

tion. According to Bloomberg New Energy Finance, which provides a comprehensive analysis

of predictions from different entities like oil manufacturing companies and independent re-

search groups [29], there are already 13 million EVs on the road globally, with 2.7 million

sales in 2021. Following the planned expansion of charging infrastructure, EV growth pre-

dictions are mostly optimistic. For instance, the International Energy Agency predicts the

total number of EVs will go over 250 million by 2030 from the estimated 5 million on the

streets globally in 2018 [15].

While expanding the charging infrastructure is critical for large-scale EV adoption, a

significant portion of daily EV charging occurs at homes and creates stress on distribu-

tion transformers (XFRs). Since EV charging requires significantly higher power than the

other loads in a household, a combination of effective demand-side management (DSM) tech-

niques for EV charge scheduling and utility-side management (USM) policies to cope with

6Portions of this chapter were published in IEEE Transactions on Smart Grid [127]. Copyright permissions
from the publishers are included in Appendix B.
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the increasing stress on the XFRs for XFR maintenance is needed. Utility companies try to

flatten the electricity demand curve to decrease the stress on the distribution XFRs by pro-

viding day-ahead or hour-ahead dynamic electricity pricing schemes for the customers [107].

Numerous existing works proposed scheduling techniques for the time-shiftable appliances

(e.g., Dishwasher, washer dryer, EV charging, etc.) of a household to capitalize the dynamic

pricing [126, 160, 129].

Although such DSM techniques can flatten the demand curve to an extent, they do not

sufficiently address the increasing stress of EV charging on the distribution XFRs since they

lack the utility-side management of the problem. Motivated by this research gap, we take

a comprehensive look at the problem of increasing EV charging stress on the distribution

XFRs. Specifically, we consider both the demand-side (i.e., EV charge scheduling) and

the utility-side (i.e., XFR maintenance) management of the problem. While the proposed

DSM technique helps with load flattening to minimize transformer aging, the proposed USM

technique enables timely (proactive) maintenance of distribution transformers to prevent

costly transformer failures and blackouts.

5.1.1 DSM for EV Charge Scheduling

Centralized collaboration among EV users served by the same distribution XFR may

provide the most effective way of minimizing the peak demand of the XFR [109, 131, 130].

The work [109] shows that coordination among the EV chargers under a distribution XFR

minimizes peak demand to extend the XFR lifetime at the expense of consumers’ arbitrage

benefit. However, their approach lacks consumer comfort, ignoring that delayed EV charging

may compromise user comfort. Another work [131] opts to minimize the EV owner’s energy

arbitrage benefit and distribution network maintenance cost through an optimal charging

schedule. However, the objective function of this work also lacks user discomfort due to de-

layed charging. The chapter [130] proposes a fuzzy logic system for the demand-side operator
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to devise a centralized EV charging schedule. This approach is too strict to accommodate

user preferences and needs more adaptability to serve different types of customers.

In short, these techniques lack integrating customer preferences into their objective func-

tions, hence may suffer in real-life implementation. We address this shortcoming by directly

considering customer preference for charging duration and amount, and by introducing a

monetary incentive to the customers based on their charging preferences (see Section II-C

for details).

5.1.2 USM for XFR Maintenance

The distribution grid, especially the customer-end XFRs, is susceptible to overloading and

costly maintenance. Replacement of gasoline cars by EVs urges installing charging stations

in place of gas stations and home charging arrangements. So, the power system needs more

energy generation, transmission, and distribution capacity at all levels. Many works provide

charging station assessment, capacity, installation, and optimization techniques [86, 69]. In

this work, we focus on EV charging at home, which EV users typically prefer due to the

convenience and cheaper charging cost [92]. Home charging may significantly burden the

customer-end distribution XFRs, as modern EVs take more than 7kW power from type-

2 home chargers, higher than the average cumulative demand from all other loads in a

household. Overloading an XFR leads to overheating and electrical insulation breakdown of

an XFR [87]. IEEE guidelines provide estimation for effective aging due to overheating of

the insulation [37]. The work [64] develops a probabilistic failure distribution that depends

on the effective age of an XFR.

Transformer selection for replacement/upgrade is naturally a sequential decision mak-

ing problem, requiring a solution that is adaptive to the observed states. Hence, dynamic

programming (DP) techniques, which can optimize transformer selections according to the

changing environmental factors such as EV charging stress, suit better to this problem than

static optimization techniques. Since it is not tractable to model the future state transi-
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tions (probabilistically or deterministically) as the network consists of many transformers

and each action creates another branch of possible states, the model-based DP techniques

like value iteration and policy iteration are not suitable. Reinforcement learning (RL) is a

model-free DP approach that utilizes a data-driven technique of approximating a solution

through sampling. Furthermore, deep RL (DRL) methods capitalize neural network-based

function approximation to deal with the continuous-valued large input state (i.e., the current

age and load of each transformer for our problem). Recent advances in neural network-based

deep RL algorithms lead to widespread applications, including gaming [85], finance [72], en-

ergy systems[124], transportation [60], communications [90], environmental systems [119],

and healthcare systems [123].

5.1.3 Contributions

We propose an EV integration policy for the utility company that aims to minimize the

long-term maintenance costs for the electrical distribution grid. Our contributions can be

summarized as follows.

• The first comprehensive study of the problem of increasing stress on the distribution

XFRs due to EV charging. Specifically, a combination of novel DSM and USM tech-

niques is proposed for flattening the load curve and making timely maintenance of the

distribution XFRs, respectively.

• A novel utility-driven EV charging scheme to flatten the load curve of the XFR. Dif-

ferent from the existing EV charging methods, our method directly considers customer

preference for charging duration and amount, and a proportional monetary incentive.

• A novel DRL-based policy for XFR replacement and capacity upgradation to minimize

the maintenance cost.

The remainder of the chapter is organized as follows. Section 5.2 presents the proposed

utility-driven EV charging method. Section 5.3 formulates the Markov decision process
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(MDP) for the proposed DRL-based XFR maintenance policy. Experimental results and

analysis are presented in Section 5.4 for a distribution XFR feeder. We conclude the chapter

in Section 5.5.

5.2 EV Charge Scheduling for DSM

Our utility-driven EV charge scheduling offers a reasonable balance between peak load

reduction and customer satisfaction. Utility companies offer lower electricity prices during

off-peak hours to encourage consumers to shift their load towards those hours. However,

this can create extensive peak demand during “off-peak” hours for a distribution XFR that

serves many EVs, especially when EV owners employ smart charging to exploit low tariffs.

Overloading the XFR results in expedited aging and subsequent risk of expensive XFR

maintenance and power outage. So, we propose a utility-driven charging technique that

aims to minimize the maintenance cost by flattening the load curve for the XFR while

ensuring customer satisfaction. The proposed DSM considers the other household devices

as base loads and schedules EV charging based on the available power after providing power

for the base loads. As a result, the utility company faces fewer maintenance costs thanks to

peak load reduction. It incentivizes the consumers using the profit it makes from reduced

maintenance costs to participate in the scheduling program.

5.2.1 Proposed Technique

In our proposed technique, as shown in Fig. 5.1 (left blue box), the utility employs one

charging agent for each XFR to schedule and control the charging of the EVs. Note that the

time units for DSM (hourly) and USM (monthly) are different. Whenever an EV is plugged

in for charging (EV arrival), the agent collects the battery charge level En, the target charge

level Etgt , and calculates the charging time window,

Tw =

⌈
Etgt − En

τ × Pmax

⌉
+ Tb,
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Figure 5.1: Proposed DSM flowchart (left) and DRL model for USM (right).

where Pmax is the maximum charging capacity of the particular EV and τ is the duration

of timestep in hours. The ceiling ⌈·⌉ of the fraction indicates the minimum number of time

units for completing the target charging, and Tb provides buffer time to the agent to do the

scheduling.

Then the agent updates its memory M by removing the departed EVs and charged

EVs (En = Etgt) information and puts the arrived EV at the last position, V . Here, V

indicates the number of EVs awaiting charge in the pool, and also the length of Memory

M =
{
(E 1

n ,E
1
tgt ,P

1
max ,T

1
w ), ... , (E

V
n ,EV

tgt ,P
V
max ,T

V
w )

}
.

Next, the agent proceeds to charge scheduling if there is any EV in the pool (V > 0).

The agent gathers electricity price and household load forecast for the next H timesteps,

a decision time horizon which is bigger than the charging time window of any EV (e.g.,

H = 16 hours). LSTM algorithm fits well for the household sequential load prediction [125].

We take the temperature forecast θn, the holiday flag Hn ∈ {0, 1}, and the load data of the

last m time steps {Ln−m, ... , Ln−2, Ln−1}, to predict the XFR load forecast L̂n, L̂n+1, ... , L̂n+H .

Similarly, the agent uses LSTM to forecast electricity prices {R̂n, R̂n+1, ... , R̂n+H} from the

last m time steps data {Rn−m, ... ,Rn−2,Rn−1}.
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The agent follows the first-come-first-serve approach and starts scheduling the first EV

(S = 1) in the pool. Algorithm 5.1 shows the EV charge scheduling technique for the S th EV

in the pool. If the charge time window is not over, i.e., T S
w > 0, the agent sorts electricity

prices R in ascending order and store the indices in vector I . The agent schedules charging

for the next T S
w timesteps, starting from the cheapest electricity tariff hours to the costlier

ones. The available power forecast L is the difference between load capacity Lcap and load

forecast of the XFR for the corresponding hour (Line 5). Notably, the utility decides on the

load capacity Lcap of the XFR, typically between 100-120 % of the nameplate kVA rating

(e.g., 25-30 kVA for a 25 kVA rated XFR). The agent reads the battery charge status Et

from M and calculates the required charging ER (Line 6). So, the EV charge allocation for

the cheapest hour is

P s
n+I (1) = min{PS

max ,ER ,L}.

The agent updates the charge level EL for the following schedule step (Line 8). This process

continues for charge allocation for all the time steps from the second cheapest, PS
n+I (2) till

the costliest one PS
n+I (T S

w )
. Finally, the algorithm outputs charge allocation for the next T S

w

time steps as {P s
n+1,P

s
n+2, ... ,P

s
n+T S

w
} (line 10). However, if the charging window is over (i.e.,

Tw ≤ 0), the agent implements charging {P s
n+1} for the immediate time step, as explained

next.

If Tw ≤ 0, but the target charge level is not achieved (Line 12), the agent offers compen-

sation charging at a fixed rate based on the battery charge status E S
n . We define two more

user input E S
safe and E S

crit that each consumer can initiate and update as required. As the EV

is expected to leave anytime soon (TW ≤ 0), Algorithm 5.1 outputs allocated compensation
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charging for the next time step as:

PS
n+1 =


min{PS

max ,L}, E S
n ≤ E S

crit

min{0.5× PS
max ,L}, E S

crit < E S
n ≤ E S

safe

0, E S
n > E S

safe ,

(5.1)

where, L = Lcap − L̂n+1, is the estimated available power. After the completion of charge

scheduling for each EV, the agent updates the load forecast by adding the scheduled EV

charges. This charge scheduling continues till all the V EVs are scheduled through Algorithm

5.1. Upon completion of scheduling, the charging for the nth time step is implemented.

Although the actual load may differ from the prediction, with an appropriate method, the

prediction error will be within the range that causes insignificant aging difference to the

XFR. So, the agent implements the charging as per scheduled and update the memory as:

E S
n+1 = E S

n + PS
n+1,T

S
w = T S

w − 1, ∀S .

The agent moves to the next time step with its memory update, and this recursive loop

continues as shown in Fig. 5.1.

5.2.2 Consumer Incentive

The consumers receive free smart EV charging service and a monetary incentive for

participating in the DSM. The monetary incentive,

I =
κ

100
× Tb

Etgt
× EV charging bill , (5.2)

depends on their preferences for Tb and Etgt . Customers who provide longer buffer time Tb

and smaller target charge level Etgt get more incentive. On the contrary, customers who

prioritize comfort by selecting Tb = 0 ensure the fastest possible EV charging without any
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Algorithm 5.1 Utility-Driven EV Charge Scheduling

1: Input: EL = E S
n , T

S
b , E

S
tgt , P

S
max , R = {Rn+1 , ... ,Rn+H}, L̂ = {L̂n+1, ... , L̂n+H}.

2: if T S
w > 0 then

3: Sort electricity prices R in ascending order and store the indices in vector I .
4: for τ = 1, 2, ...,T S

w do
5: Estimate available power, L = Lcap − L̂n+I (τ).
6: Remaining charge, ER = E S

tgt − EL.
7: Scheduled charge, PS

n+I (τ) = min{PS
max ,ER ,L}.

8: Update EL = EL + PS
n+I (τ).

9: end for
10: Output: EV charge schedule {PS

n+1,P
S
n+2, ... ,P

S
n+TS

w
}.

11: else
12: Output: EV charge compensation {PS

n+1} from Eq. (5.1).
13: end if

incentive. EV owners set Tb and Etgt during system setup and can update their choices from

time to time. This setup offers the customer control over their preferences and gives our

method an edge over the existing techniques. The utility selects the incentive coefficient κ

based on the savings in maintenance cost.

5.3 DRL Based XFR Replacement for USM

We propose an RL framework shown in Fig. 5.1 (right blue box), where the electricity

utility company is the RL agent that makes replacement and upgradation decisions for the

distribution XFRs.

5.3.1 Environment

The RL environment is the distribution feeder with X customer-end XFRs and their

connected loads. The XFRs can be of different capacities (kVA rating), serving different

household numbers. The environment provides the peak load, Lxt , and the loss of life, ∆Dx
t ,

for the x th XFR during the tth time step. We calculate the effective aging as per the IEEE
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standard [37] as:

∆Dx
t =

∫ t+1

t

9.8× 10−18e
15000

TH+273 dt, (5.3)

where TH denotes the hotspot temperature of the XFR which depends on the ambient

temperature and the electrical load. We approximate the effective ageing integral equation

through fine granularity (per minute) estimation. Apart from the scheduled maintenance,

the utility also bears unscheduled interruption costs, mainly due to XFR failure and fuse

blowing events. XFR failure occurs due to insulation breakdown, which depends on the used

life

Dx
t = Dx

0 +
t∑

n=1

∆Dx
n = Dx

t−1 +∆Dx
t

of the XFR, where Dx
0 is the initial age of the XFR in days. Weibull distribution is popular

for forecasting the insulation failure of a XFR [87]. Our preliminary work [124] shows the

XFR failure probability during the tth timestep is

Px
t = 1− exp

[(
Dx

t

α

)β

−
(
Dx

t + 1

α

)β
]

(5.4)

where α and β are the scale and the shape parameters of the Weibull distribution, respec-

tively. XFR failure brings interruption cost C x
t to cover XFR replacement, required labor,

and unplanned outages.

Fuse-blowing events are deterministic and protect the XFR by disconnecting the circuit

whenever the load exceeds the rating of the fuse; typically, 180% of the XFR’s rated load

[97]. Since fuse is meant to protect the XFR, its replacement brings minor labor and outage

costs. Hence, the interruption cost for fuse replacement is smaller than that of XFR failure.

While the monetary value of C x
t varies with time and place, a utility company can have a

proper estimate of C x
t for XFR failure or blown fuse.
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5.3.2 State

The agent makes replacement decisions based on the used life (hereinafter, age) and peak

load of a XFR. However, XFRs with low age and peak load are not suitable candidates for

change; hence eliminating them from the RL decision process creates a smaller state space

and faster algorithm convergence without performance compromise. So, the agent takes the

most loaded Yl and most aged Ya XFRs to make a pool of size Y = Yl + Ya. The load and

age of these XFRs create the state for time step t,

St = (L1t ,D
1
t , L

2
t ,D

2
t , ... , L

Y
t ,D

Y
t ).

The percentile load Lyt , which is the ratio of peak load and capacity of the y th XFR, does

not require normalization. We divide the age by the IEEE recommended lifetime of a XFR

(7500 days) for normalization.

5.3.3 Action

The utility needs to replace the overloaded and older XFR to avoid failure and outage-

related costs. However, under budgetary constraints, the RL agent chooses one XFR for

replacement from the pool at each time step. Replacing the XFR with a bigger one is more

cost-effective if the existing peak load is significantly higher than the capacity. So, our RL

agent’s action includes replacing the XFR with the same-sized or double-sized (kVA) one.

If there is no overloaded or old XFR in the fleet, the optimal action might skip replacement

(At=0). As a result, our action space contains 2Y + 1 options

At ∈ {0, 1, 2, ... , 2y − 1, 2y , ... , 2Y − 1, 2Y }

where, y ∈ {1, 2, ... ,Y } is the index of the XFR in the pool; 2y−1 and 2y represent replacing

the y th XFR with the same and double capacity one, respectively.
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5.3.4 Cost

The monetary cost for maintenance constitutes the RL framework’s cost function Ct

(negative reward). The maintenance cost includes the replacement (or upgrade) cost C rep
t

(or C upg
t ) and emergency interruption cost

∑X
x=1 C

x
t as in

Ct = C rep
t +

X∑
x=1

C x
t .

Notably, as failure brings emergency labor and unplanned longer outages, XFR failure is

way costlier than a scheduled replacement for a same-sized XFR. Furthermore, an under-

sized XFR brings huge maintenance costs by multiple interruptions through fuse blows and

eventual failure, which can be negated by upgrading its size.

5.3.5 Next State

The selected action installs a new XFR (zero aged) in place of the previous one. The

replaced XFR’s index gets attributed to the new one. The age of a XFR for the next time

step is

Dx
t+1 =


0, At ∈ {2x − 1, 2x}

Dx
t +∆Dx

t , otherwise

where the environment provides the effective aging in time step t, ∆Dx
t , from Eq. (5.3).

Furthermore, the environment provides the maximum load of the x th XFR during time step

t, which is used to estimate the peak load of the XFR as

Lxt+1 =
Maximum Load

Rated Capacity
.

The rated capacity of the XFR is updated whenever it is upgraded by a double-sized one.
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5.4 Experiments

5.4.1 Experimental Setup

From the 2009 RECS dataset for the Midwest region of the United States [141], Muratori

generates 200 household load profiles, along with 348 predicted EV charging loads connected

to those households in [88]. The households vary in size, occupancy, electricity consumption.

Lisha et al. [135] present an EV diffusion model for feeder level distribution system that

considers different socioeconomic factors of the neighborhood. They provide an EV inclusion

model for a 30-year timeline based on the car age, neighborhood, economy, and other critical

features for an urban distribution feeder in North Carolina [135]. We combine the load and

EV charging profile of [88] with the EV diffusion model of [135] to obtain the load profile in

our case study. Distribution feeder data are summarized in Table 5.1.

The distribution feeder maintenance includes scheduled and unscheduled replacement

(due to failure) of the XFR and protective fuses in our setup. Based on our study of the

equipment cost and labor, we set the total cost for different types of maintenance as shown in

Table 5.2. Fault-based maintenance brings emergency outages and customer inconvenience

cost. We take the inconvenience cost for XFR failure and for fuse blows as $1.3 per kWh

and $2 per kWh, respectively, according to the service value assessment in [134]. Since the

customers are notified beforehand, the inconvenience cost for scheduled replacement is zero.

For the neural networks, we take the discount factor, γ = 0.95, and learning rate 3×10−4.

The actor and the critic networks have three hidden layers, each with 30, 120, and 48 neurons.

The LSTM network for the load prediction has two LSTM layers. We use Adam optimizer

for both the LSTM and DRL networks.

5.4.2 EV Charging (DSM)

We select the buffer time, Tb = 3 and target charge level, Etgt = 0.9 for all the customers.

[88] shows the impact of uncoordinated charging on the distribution grid, in which the EVs
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Table 5.1: Feeder data (Numbers in parentheses indicate the number of XFRs serving that
many homes).

Number of private homes 1116
Number of XFRs 232

Number of homes per XFR 7 (30), 6 (30), 5 (80), 4 (50), 3 (42)
XFR rating 25 kVA, 480/208 V, 1 phase, ONAN

XFR characteristics Taken from [124]

Table 5.2: Utility company’s equipment and labor cost for different maintenance types.

Maintenance Cost ($) Outage
Work 25 kVA 50 kVA Time

XFR scheduled replacement 1500 3000 1 hr
XFR failure replacement 3000 4500 24 hr
Fuse blow restoration 500 6 hr

get charged to full capacity without any schedule. Our proposed DSM reduces the peak load

significantly, as shown in Fig. 5.2. Out of the 232 XFRs, XFR-4 receives the most EVs (14)

during the 30-year timeline. For the 1st year, the proposed and uncoordinated load profiles

are the same, as there is no EV inclusion in the beginning. With growing time and EV

inclusion, the proposed charging method reduces the peak load increasingly. For the first

week of 30th year, uncoordinated charging results in a peak load above 33 kV compared to

the peak load of around 21.1 kV with the proposed utility-driven charging. Similarly, for

all the XFRs for the 30-year timeline, uncoordinated charging yields as much as 49.73 kVA

load, compared to the 32.07 kVA max load of the proposed charging method. This indicates

that uncoordinated charging incurs a significantly higher cost for XFR replacement and

upgradation compared to the proposed charging method.

Apart from uncoordinated charging, we examine the following smart EV charging tech-

niques from the literature.

(1) Rule-based in [109]: Sarker et al. [109] present a centralized strategy for EV charging

by co-optimization of distribution XFR aging and energy arbitrage. The objective is to

minimize the total cost of electricity consumption and the damage cost to the XFR. They

estimate the damage cost by multiplying the price of the XFR by its loss of life, using Eq.
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Figure 5.2: Comparison between the proposed utility-driven DSM and uncoordinated EV
charging in terms of hourly load for XFR-4 for the first week of Year-1, Year-10, Year-20,
and Year-30 (from left to right).

(5.3). The utility pays incentives to compensate the customers, as charging often happens

during higher tariffs to minimize damage costs to the XFR. This constraint optimization

strategy for EV charging satisfies constraints related to the battery’s state of charge to

represent user preference, which is too basic to capture a user’s driving traits and routine.

(2) MARL in [76]: Li et al. [76] proposed a Multi-Agent Reinforcement Learning (MARL)

based EV charging strategy. Each EV under a distribution XFR is an individual agent that

minimizes the total cost due to electricity bills and XFR damage cost under a central agent,

i.e., the distribution XFR. The MARL state is defined by real-time electricity price, XFR

hotspot temperature, load forecast, EV state of charge, and other parameters. The reward

function includes the customer’s EV range anxiety cost, representing the inconvenience cost

due to delaying charging to utilize lower tariff hours. The authors model three different types

of range anxiety (RA) cost as a function of the EV’s state of charge at departure time, of

which we select Type-1 RA for the comparative analysis.

(3) CIBECS in [125]: The consumer input based EV charge scheduling (CIBECS) [125]

for a residential home can be achieved by following Algorithm 5.1 with one modification of

making the scheduled charging free of estimated available power L from Line 7 as:

PS
n+I (τ) = min{PS

max ,ER}.

Table 5.3 shows the cost comparison among the different charging methods for XFR-

4 for two representative years, the 15th and 30th years. The customer cost represents the
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Table 5.3: Yearly cost ($) for XFR-4 to customers and the utility for different charging
techniques.

Charging 15th Year Cost 30th Year Cost
Technique Cust. Utility Total Cust. Utility Total

Uncoordinated [88] 14562 123 14685 18023 3285 21308
Rule based [109] 12765 130 12895 15980 1869 17849

MARL [76] 12640 147 12787 16674 487 17161
CIBECS [125] 12290 216 12506 15339 3630 18969
Proposed DSM 12297 104 12401 15221 772 15993

electricity cost, and the utility cost represents the XFR loss of life, fuse-blowing costs, and

customer incentive (if any). The proposed charging method estimates the maintenance

savings with respect to the utility cost of the uncoordinated charging method. We select

the incentive coefficient κ = 1 for the 30th year, which correspond to 3.33% ($524) discount

on the customers’ EV charging bill. The Uncoordinated charging [88] and CIBECS [125]

prioritize EV charging, hence resulting in high utility costs (due to frequent fuse blows).

On the contrary, MARL in [76] and Rule-based method in [109] maintain strict peak load

constraints to minimize the utility cost. However, they are susceptible to undercharged EVs,

which is not a desirable solution for customers. The Rule-based method in [109] provides the

customer with an incentive from its maintenance savings, which contributes to its utility cost.

Our proposed DSM method capitalizes low-price hours, accommodates customer preference,

and maintains load flattening simultaneously. As a result, the customer cost for the proposed

DSM technique is the least among all the methods, and the utility cost is only marginally

higher than the MARL in [76]. Lastly, as there are no fuse blow events and negligible utility

cost saving for the 15th year, the proposed DSM offers zero incentive for that year.

5.4.3 DRL Based Maintenance (USM)

Based on the comparative analysis for EV charging in the previous section, we focus on

the proposed utility-driven charging technique to implement our DRL-based XFR replace-

ment policy. Fig. 5.3 shows that our method learns the optimal policy within 3000 episodes.
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Figure 5.3: Convergence of the DRL based maintenance policy (with proposed DSM).

Table 5.4: Computational details for the experiments.

Hardware Software Task Computation time

Intel® Core i7 Python 3.7 EV Charge Scheduling 2.4 sec
3.60GHz Pytorch 1.8.1 DRL Convergence 180 min

16 GB RAM DRL Decision 0.1 sec

Table 5.4 shows the computation time for the proposed method. It takes 2.4 seconds for the

proposed EV charge scheduling by using an Intel® Core i7, 3.60 GHz, 16 GB RAM com-

puter. The DRL algorithm needs 180 minutes to perform the 3000 episodes for convergence.

Notably, the computational time for each decision is 0.01 second, negligible compared to

maintenance policy-making steps (i.e., 1 month).

We compare our method with an idle policy, two rule-based methods from [145] and [43],

and the popular statistical Markov Chain Monte Carlo (MCMC) [19] method.

(1) Idle policy: In this policy, the utility waits till the failure of a XFR for replace-

ment. The utility would replace the XFR with double capacity if it endured more than five

fuse blowing events during the previous twelve months; otherwise, replace it with the same

capacity one.

(2) Ranking-based method [145]: Vasquez et al. [145] proposes a ranking-based approach

for XFR replacement. The ranking score is calculated based on the XFR’s probability of
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Table 5.5: Cumulative EV charging and maintenance cost for all 232 XFRs over a 30-year
timeline.

DSM Uncoordinated Charging Proposed DSM
USM Idle Ranking Risk Score MCMC Prop. Idle Ranking Risk Score MCMC Prop.

Policy based [145] based [43] [19] DRL Policy based [145] based [43] [19] DRL
Fuse Blow 237 125 22 45 16 0 0 0 0 0

XFR Failure 130 102 127 100 95 125 99 125 98 89
XFR Replace 0 28 10 26 23 0 26 0 25 22
XFR Upgrade 0 2 3 3 3 0 0 0 0 0
Outage (hr) 4534 3555 3399 2670 2376 3003 2383 3005 2352 2136

Outage (kWh) 36.49 28.10 22.34 20.67 17.04 18.03 14.36 18.03 14.15 13.29
Cost $ 571,738 494,273 472,728 427,851 386,356 398,772 356,212 399,159 349,797 317,308

failure (from Eq. (5.4)) and its failure replacement cost ξxt (from Table 5.2). The ranking

score of the x th XFR for the tth time step is given by

Rx
t =x

t ×ξxt .

The highest-ranked XFR is replaced if the ranking score exceeds the threshold set through

trial and error. The new XFR will be double-sized if the peak load is more than 1.5 times,

otherwise same sized as the replaced one. Notably, this method portrays aggressive XFR

replacement, hence functions opposite the above-mentioned idle policy.

(3) Risk score based method [43]: The following equation is used in [43] to estimate the

risk score for a XFR,

ℜ = Cond × 60 + age (in yr)

60
× Peak Load

Capacity
× EF .

Since all the XFRs serve under similar environmental factor (EF ) and have similar character-

istic conditions (Cond), we remove these two parameters when estimating the risk factor ℜ

for each XFR. At the end of the month, the XFR with the highest risk factor ℜ is replaced.

If the risk factor value is lower than a threshold, no replacement occurs. We found 1.85 as

the optimal threshold in our experiments. If the XFR’s peak load is more than 150% of its

capacity, it is replaced with a double-sized one; otherwise, with a same-sized XFR.

(4) MCMC [19]: Markov Chain Monte Carlo (MCMC) simulation is a popular tabular

RL technique for problems with discrete and tractable state and action spaces. We discretize

104



the state space (as opposed to the continuous-valued DRL states) as the MCMC utilizes a

tabular method to learn the value function for the state. The granularity of the discretization

is a trade-off between the optimization results and computation time. We discretized each

input variable in m = 10 equally spaced states for a manageable computation burden, which

requires the convergence for mr = 1012 states, where r = 12 is the number of input variables

(i.e., age and load of the 3 oldest and the 3 most loaded XFRs in the network).

5.4.4 Comparative Analysis

We implement the above mentioned maintenance policies for both uncoordinated and

the proposed utility-driven charging for an ablation study. Table 5.5 shows the cumulative

maintenance cost to the utility for different EV charging and maintenance policy combina-

tions for the distribution feeder over a 30-year timeline. Table 5.6 further elaborates the

results in terms of the following metrices.

5.4.4.1 Fuse Blow

As the load (EV charging) grows, fuse blow events occur more frequently during the late

part of the simulation timeline. Without any planned capacity upgrade (as in Idle policy),

it accumulates 237 such events in the 30-year timeline. The Ranking method [145] ignores

the peak load in its decision criteria and performs worse than the other methods. The

Risk score method [43] puts significance on peak load and reduces fuse blow events through

XFR upgrades. The proposed DRL method learns the correlation and minimizes the fuse

blows; however, the MCMC method lags due to discretized state space. The proposed DSM

approach flattens the load to such an extent that none of the policies experience any fuse-

blowing events.
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5.4.4.2 XFR Failure

The XFR failure events can not be nullified as it follows the Weibull distribution in (5.4).

However, the proposed DRL method minimizes XFR failure by approximately 30% followed

by the MCMC method. The Ranking method performs well as it prioritizes XFR age in its

maintenance decision. On the contrary, the Risk score method underestimate XFR age in

risk calculation to reduce XFR failure.

5.4.4.3 Planned Maintenance

The DRL method implements 23 replacements and 3 upgrades in the Uncoordinated

charging case. In the proposed DSM case, the proposed DRL requires 22 replacements and

no upgrades. Its optimal selections yield minimum XFR failure, outage, and cost compared

to the benchmark methods.

5.4.4.4 Monetary Cost

Cumulative cost includes the planned and unplanned maintenance costs, which is the

actual objective of the utility company to minimize. Our proposed DRL, accompanied by

the proposed DSM, is the best performing combination.

5.4.5 Key Insights

• In MCMC-based RL, discretized states for feasible training time result in significant

performance degradation with respect to the DRL method.

• The rule-based methods are too simple to set the appropriate balance between XFR

age and load in decision-making. Hence, they either suffer many fuse blows (Ranking

[145]) or XFR failures (Risk score [43]).

• The DRL policy learns the optimal weight of age and peak load of the candidate

XFRs for selecting the most appropriate XFR for maintenance, which is evident by the
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Table 5.6: Comparison among XFR maintenance policies for uncoordinated charging (top)
and proposed DSM (bottom) in terms of cumulative cost (left), power outage (middle), and
XFR failure (left).
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reduction in XFR failure, fuse blows, and subsequent outages. As there are many aged

XFRs in the network initially, our policy aggressively replaces the aged and overloaded

XFRs with newer ones. These proactive actions reduce the number of XFR failures

and fuse blows.

• The proposed EV charging technique substantially boosts the DRL-based policy to

minimize the long-term maintenance cost.

5.5 Conclusion

This work offers insight and solutions for maintaining the distribution system to accom-

modate EV charging load. It demonstrates a complete EV adoption strategy for the utility

company considering long-term planning for both demand side management (DSM) and util-

ity side management (USM). For DSM, the proposed utility-driven EV charge scheduling
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based on customer preferences offers a reasonable balance between peak load reduction and

customer satisfaction. Consequently, the utility company faces less maintenance costs due

to peak load reduction. The utility compensates the customers using its profit from reduced

maintenance costs to keep them interested in participating in the scheduled EV charging

program. For USM, our DRL-based XFR maintenance policy chooses the best XFR for

replacement or upgrade. Experiments show that the combination of the proposed DSM and

USM methods outperforms the existing optimization techniques by a wide margin in terms

of long-term maintenance cost and power outage.
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Chapter 6: Conclusions

With the revolutionary success of data-driven Machine Learning (ML) techniques, social,

economic, and environmental planners are embracing these state-of-the-art methods. Deep

Reinforcement Learning (DRL) is the most popular ML technique for optimization tasks,

particularly for systems that require sequential decisions. With the enormous flow of data,

human expectations from policymakers are going up simultaneously. However, DRL-based

optimization requires both domain knowledge and algorithmic skills. The domain expert

often opts to learn this optimization technique. However, this DRL-based research field

is moving too fast for them to catch up. More precisely, DRL research is thriving to fit

different applications and has generated a huge literature and tree of methods. Inherently,

people with advanced AI skills and knowledge can provide the policy maker critical edge

in selecting, developing, and applying an appropriate model for their task. This can save

money, ensure consumer satisfaction, and enhance the reputation of the planning authority.

This dissertation investigated DRL-based resource allocation to provide optimal solutions

for several complex systems.

In the NSF-funded project ”Infrastructure development Against Sea-Level Rise (SLR),”

we investigated appropriate mathematical models and historical data for natural disasters

for applying Multiagent DRL. Sea-level rise (SLR) problem, which is a major outcome of cli-

mate change, has been well documented and studied. Although it is globally observed due to

climate change, local projections are needed to plan SLR adaptation strategies accurately.

Since SLR is a community-wide multi-stakeholder problem at the local level, adaptation

strategies can be more successful if the main stakeholders, e.g., government, residents, busi-

nesses, collaborate in shaping them. Simulating the local socioeconomic system around SLR,
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including the interactions between essential stakeholders and nature, can be an effective way

of evaluating different adaptation strategies and planning the best strategy for the local

community. This project presents how such an SLR socioeconomic system can be modeled

as a Markov decision process (MDP) and simulated using multi-agent reinforcement learning

(RL). The proposed multi-agent RL frameproject serves two purposes. It provides a general

scenario planning tool to investigate the cost-benefit analysis of natural events (e.g., flood-

ing, hurricane) and agents’ investments (e.g., infrastructure improvement). It also shows

how much the total cost due to SLR can be reduced over time by optimizing the adaptation

strategies. We demonstrate the proposed scenario planning tool using available economic

data and sea-level projections for Pinellas County, Florida, in a case study.

We extend the DRL frameproject to the Home Energy Recommendation System (HERS)

project, the first smart home energy management approach based on residents’ feedback

and activity. Smart home appliances can take command and act intelligently, making them

suitable for implementing optimization techniques. Artificial intelligence (AI) based control

of these smart devices enables demand-side management (DSM) of electricity consumption.

By integrating human feedback and activity in the decision process, this project proposes a

deep Reinforcement Learning (RL) method for managing smart devices to optimize electricity

cost and comfort residents. Our contributions are twofold. Firstly, we incorporate human

feedback in the objective function of our DSM technique. Secondly, we include human

activity data in the RL state definition to enhance energy optimization performance. We

perform comprehensive experimental analyses to compare the proposed deep RL approach

with existing approaches that lack the aforementioned critical decision-making features. The

proposed model is robust to varying resident activities and preferences and applicable to a

broad spectrum of homes with different resident profiles.

We implement multi-objective RL (MORL) for our hospital capacity expansion plan-

ning, which is critical for a healthcare authority, especially in regions with a growing diverse

population. Policymaking to this end often requires satisfying two conflicting objectives,
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minimizing capacity expansion cost and minimizing the number of denial of service (DoS)

for patients seeking hospital admission. The uncertainty in hospital demand, especially con-

sidering a pandemic event, makes expansion planning even more challenging. This project

presents a multi-objective reinforcement learning (MORL) based solution for healthcare ex-

pansion planning to optimize expansion cost and DoS simultaneously for pandemic and

non-pandemic scenarios. Importantly, our model provides a simple and intuitive way to set

the balance between these two objectives by only determining their priority percentages,

making it suitable across policymakers with different capabilities, preferences, and needs.

Specifically, we propose a multi-objective adaptation of the popular Advantage Actor-Critic

(A2C) algorithm to avoid forced conversion of DoS discomfort cost to a monetary cost. Our

case study for the state of Florida illustrates the success of our MORL based approach com-

pared to the existing benchmark policies, including a state-of-the-art deep RL policy that

converts DoS to economic cost to optimize a single objective.

The fourth project provides charging management for Electric vehicles (EV) for a dis-

tribution grid. Electricity authorities need capacity assessment and expansion plans for

efficiently charging the growing EV fleet. Specifically, the distribution grid needs significant

capacity expansion as it faces the most impact to accommodate the high variant residential

EV charging load. Utility companies employ different scheduling policies for the mainte-

nance of their distribution transformers (XFR). However, they lack scenario-based plans to

cope with the varying EV penetration across locations and time. The contributions of this

project are twofold. First, we propose a customer feedback-based EV charging scheduling

to simultaneously minimize the peak load for the distribution XFR and satisfy the customer

needs. Second, we present a deep reinforcement learning (DRL) method for XFR main-

tenance, which focuses on the XFR’s effective age and loading to periodically choose the

best candidate XFR for replacement. Our case study for a distribution feeder shows the

adaptability and success of our EV load scheduling method in reducing the peak demand

to extend the XFR life. Furthermore, our DRL-based XFR replacement policy outperforms
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the existing rule-based policies. Together, the two approaches provide a complete capacity

planning tool for efficient XFR maintenance to cope with the increasing EV charging load.
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and methods for determining the optimal number of beds in hospitals and regions: A

systematic scoping review. BMC Health Services Research, 20(1):186, 2020.

[102] Stefan Rayer and Ying Wang. Projections of florida population by county, 2020–2045,

with estimates for 2019. Bureau of Economics and Business Research, Florida Popu-

lation Stuides, Bulletin 186, 2020.

[103] Borja G Reguero, Michael W Beck, David N Bresch, Juliano Calil, and Imen Meliane.

Comparing the cost effectiveness of nature-based and coastal adaptation: A case study

from the gulf coast of the united states. PloS one, 13(4):e0192132, 2018.

[104] National Research Council. Informing decisions in a changing climate. Panel on Strate-

gies and Methods for Climate-Related Decision Support of the Committee on the

Human Dimensions of Global Change, National Research Council of the National

Academies, 2009.
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Fatou Mar, Michel Benoit, François Ropert, Xavier Kergadallan, Jean-Jacques Trichet,

et al. Adaptation of coastal structures to mean sea level rise. La Houille Blanche,

(6):54–61, 2014.

[117] Sumedha Sharma, Yan Xu, Ashu Verma, and Bijaya Ketan Panigrahi. Time-

coordinated multienergy management of smart buildings under uncertainties. IEEE

Transactions on Industrial Informatics, 15(8):4788–4798, 2019.

[118] Elham Shirazi and Shahram Jadid. Optimal residential appliance scheduling under

dynamic pricing scheme via hemdas. Energy and Buildings, 93:40–49, 2015.

[119] Salman S Shuvo, Yasin Yilmaz, Alan Bush, and Mark Hafen. A markov decision

process model for socio-economic systems impacted by climate change. In International

Conference on Machine Learning. PMLR, 2020.

[120] Salman Sadiq Shuvo, Helal Uddin Ahmed, et al. Use of machine learning for long term

planning and cost minimization in healthcare management. medRxiv, 2021.

[121] Salman Sadiq Shuvo, Md Rubel Ahmed, Sadia Binta Kabir, and Shaila Akter Shetu.

Application of Machine Learning based hospital up-gradation policy for Bangladesh. In

ACM International Conference Proceeding Series, pages 18–24, New York, NY, USA,

dec 2020. Association for Computing Machinery.

[122] Salman Sadiq Shuvo, Md Rubel Ahmed, Hasan Symum, and Yasin Yilmaz. Deep

reinforcement learning based cost-benefit analysis for hospital capacity planning. In

2021 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE,

2021.

127



[123] Salman Sadiq Shuvo, Hasan Symum, Md Rubel Ahmed, Yasin Yilmaz, and José L
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Appendix A: Proof of Theorem 1

In Theorem 1, we analyze the government’s policy since it is the most dominant agent

with the full observation of other agents’ actions. In the first part of the proof, we will show

that if V (ŝt , ℓt)=VG (st , ℓt ,O
G
t ) is nondecreasing and concave in ℓt , then so is

Fm(ŝt , ℓt) = E [mαG + zG ,t − f (IR,t + IB,t) + λgV (ŝt +m, ℓt + rt)]], (A.1)

for m = 0, 1, ... ,AG . Government observes the residents’ and businesses’ decisions be-

forehand, thus Rt and Bt are considered constant for its decision making. We denote

the next infrastructure state that includes the residents’ and business’ current action with

ŝt = st+Rt×αR/αG+Bt×αB/αG . Assuming V (ŝt , ℓt) is nondecreasing, i.e.,
∂
∂ℓt

V (ŝt , ℓt) ≥ 0,

and using the expected value of generalized Pareto-distributed zG ,t , we can write

∂

∂ℓt
Fm(ŝt , ℓt) =

mGηpℓ
p−1
t

(1− ξ)sqt
+ λGE

[
∂

∂ℓt
V (ŝt +m, ℓt+1)

]
≥ 0.

Note that IR,t and IB,t are determined by past data, independent of ℓt . In the above equation,

the derivative can be brought inside the integral due to the monotone convergence theorem.

Assuming V (ŝt , ℓt) is concave, i.e.,
∂2

∂ℓ2t
V (ŝt , ℓt) < 0, for the second derivative we have

∂2

∂ℓ2t
Fm(ŝt , ℓt) =

mGηp(p − 1)ℓp−2
t

(1− ξ)sqt
+ λGE

[
∂2

∂ℓ2t
V (ŝt +m, ℓt+1)

]
< 0

since 0 < p < 1. Hence, it is sufficient to show that V (ŝt , ℓt) is nondecreasing and concave.
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Finding the value function iteratively (i.e., value iteration) is a common approach which

is known to converge [136]:

lim
i→∞

Vi(ŝ, ℓ) = V (ŝ, ℓ),

where, for brevity, we drop the time index from now on. We will next prove that V (ŝ, ℓ) is

nondecreasing and concave iteratively. Initializing all the state values as zero, i.e., V0(ŝ, ℓ) =

0,∀s, ℓ, after the first iteration we get

V1(ŝ, ℓ) = min
G

{
E[αGG + zG (s, ℓ) + λGV0(ŝ + G , ℓ+ r) + const.]

}
= const.+ E[zG (s, ℓ)] = const.+ µ+

mGηℓ
p

(1− ξ)sq
.

Differentiating with respect to ℓ, we get

∂

∂ℓ
V1(ŝ, ℓ) = mGηp

ℓp−1

(1− ξ)sq
≥ 0, ∀s, (A.2)

∂2

∂ℓ2
V1(ŝ, ℓ) = mGηp(p − 1)

ℓp−2

(1− ξ)sq
< 0, ∀s,

since mG , η > 0, p ∈ (0, 1), q > 0, ξ < 0. Thus, V1(ŝ, ℓ) is nondecreasing and concave in ℓ for

all s. Similarly, the value function after the second iteration becomes

V2(ŝ, ℓ) = min
G

{
E[αGG + zG (s, ℓ) + λGV1(ŝ + G , ℓ+ r) + const.]

}
= min

G

{
αGG + µ+

mGηℓ
p

(1− ξ)sq
+ µλG + λGE

[
mGη(ℓ+ r)p

(1− ξ)(ŝ + G )q

]
+ const.

}
.

Denoting the optimum action with Ĝ we will show that V2(ŝ, ℓ) is nondecreasing and concave

for any Ĝ . Moreover, the pointwise minimum of nondecreasing and concave functions is also
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nondecreasing and concave. Taking the derivative with respect to ℓ we get

∂

∂ℓ
V2(ŝ, ℓ) =

∂

∂ℓ

{
mGηℓ

p

(1− ξ)sq
+ λG

mGηE[(ℓ+ r)p]

(1− ξ)(ŝ + Ĝ )q

}

= mGηp
ℓp−1

(1− ξ)sq
+ λGmGηp

E[(ℓ+ r)p−1]

(1− ξ)(ŝ + Ĝ )q
≥ 0, ∀s

∂2

∂ℓ2
V2(ŝ, ℓ) = mGηp(p − 1)

ℓp−2

(1− ξ)sq

+ λGmGηp(p − 1)
E[(ℓ+ r)p−2]

(1− ξ)(ŝ + Ĝ )q
< 0, ∀s.

Hence, V2(ŝ, ℓ) is nondecreasing and concave. Now, for any i , given that Vi−1(ŝ, ℓ) is

nondecreasing and concave, we can write

∂

∂ℓ
Vi(ŝ, ℓ) = mGηa

ℓp−1

(1− ξ)sq
+ λGE

[
∂

∂ℓ
Vi−1(ŝ + Ĝ , ℓ)

]
≥ 0,∀s

∂2

∂ℓ2
Vi(ŝ, ℓ) = mGηp(p − 1)

ℓp−2

(1− ξ)sq

+ λGE
[
∂2

∂ℓ2
Vi−1(ŝ + Ĝ , ℓ)

]
< 0, ∀s. (A.3)

Consequently, by mathematical induction, V (ŝ, ℓ) is nondecreasing and concave.

The second part of the proof is to show that ∂
∂ℓ
Fm(ŝ, ℓ) <

∂
∂ℓ
Fm−1(ŝ, ℓ). Similar to the

first part, if we show that

∂

∂ℓ
V (ŝ +m, ℓ) <

∂

∂ℓ
V (ŝ +m − 1, ℓ),

we can conclude that ∂
∂ℓ
Fm(ŝ, ℓ) <

∂
∂ℓ
Fm−1(ŝ, ℓ) since

∂

∂ℓt
Fm(ŝt , ℓt) =

mGηpℓ
p−1
t

(1− ξ)sqt
+ λGE

[
∂

∂ℓt
V (ŝt +m, ℓt + rt)

]
∂

∂ℓt
Fm−1(ŝt , ℓt) =

mGηpℓ
p−1
t

(1− ξ)sqt
+ λGE

[
∂

∂ℓt
V (ŝt +m − 1, ℓt + rt)

]
.
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Starting again with V0(ŝ, ℓ) = 0,∀s, ℓ, from (A.2) we can write the following inequality for

the first iteration

∂

∂ℓ
V1(ŝ+m, ℓ) = mGηp

ℓp−1

(1− ξ)(ŝ +m)q
<

∂

∂ℓ
V1(ŝ+m−1, ℓ) = mGηp

ℓp−1

(1− ξ)(ŝ +m − 1)q
.

For any i , given that ∂
∂ℓ
Vi−1(ŝ +m, ℓ) < ∂

∂ℓ
Vi−1(ŝ +m − 1, ℓ), from (A.3) we have

mGηp
ℓp−1

(1− ξ)(ŝ +m)q
+ λGE

[
∂

∂ℓ
Vi−1(ŝ +m+, ℓ)]

]
< mGηp

ℓp−1

(1− ξ)(ŝ +m − 1)q
+ λGE

[
∂

∂ℓ
Vi−1(ŝ +m − 1+, ℓ)

]
, i.e.,

∂

∂ℓ
Vi(ŝ +m, ℓ) <

∂

∂ℓ
Vi(ŝ +m − 1, ℓ)

As a result, by mathematical induction we conclude that ∂
∂ℓ
V (ŝ +m, ℓ) < ∂

∂ℓ
V ŝ +m − 1, ℓ).
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Appendix B: Copyright Permissions

The permission below is for the reproduction of material in Chapter 2.
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The permission below is for the reproduction of material in Chapter 3.

138



The permission below is for the reproduction of material in Chapter 4.

139



The permission below is for the reproduction of material in Chapter 5.
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