2018

Fosfomycin Utilization and Outcomes in a Large VA Medical Center Over a Decade

Natan Kraitman
University of South Florida

Jaela Fredenrich
James A. Haley Veterans’ Hospital

Brandon DeLucca
James A. Haley Veterans’ Hospital

John Toney
James A. Haley Veterans’ Hospital

Follow this and additional works at: https://digitalcommons.usf.edu/intmed_facpub

Scholar Commons Citation
Kraitman, Natan; Fredenrich, Jaela; DeLucca, Brandon; and Toney, John, "Fosfomycin Utilization and Outcomes in a Large VA Medical Center Over a Decade" (2018). Internal Medicine Faculty Publications. 102.
https://digitalcommons.usf.edu/intmed_facpub/102

This Article is brought to you for free and open access by the Internal Medicine at Digital Commons @ University of South Florida. It has been accepted for inclusion in Internal Medicine Faculty Publications by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact scholarcommons@usf.edu.
Background. Avibactam (AVI) is a broad-spectrum intravenous non-β-lactam/β-lactamase inhibitor with no reported activity against metallo-β-lactamases such as New Delhi metallo-β-lactamases (NDM). Structural similarities between β-lactamases and bacterial penicillin-binding proteins (PBPs) have led investigators to explore and confirm the hypothesis that AVI may interact with PBPs of several Gram-negative and positive intracellular species. Potent synergy has also been observed between AVI and peptide antibiotics such as polymyxin B. We hypothesized that sub-bactericidal concentrations of AVI may bind PBPs to weaken cell wall integrity and enhance lysis by the membrane attack complex of complement and by endogenous cationic antimicrobials such as human cathelicidin LL-37 (hAL37). To evaluate the synergy that is seen under these conditions, AMPs could improve killing by neutrophils and platelets that release these effectors upon degranulation.

Methods. Using NDM K. pneumoniae (NDM-KP) as a model, we performed LL-37 kill curves and killing assays with human serum, neutrophils and platelets in the presence or absence of AVI 4 μg/mL against NDM-KP.

Results. AVI alone lacked in vitro activity against NDM-KP. Addition of AVI to a physiologically achievable concentration of LL-37 (2 mM) was bactericidal and resulted in a 8 log reduction (below detection limit) in recoverable NDM-KP CPU at 6 and 24 h; no bactericidal activity was seen in bacteria treated with LL-37 or AVI alone (P > 0.0001). AVI pretreatment dramatically sensitized NDM-KP to neutrophil and platelet killing (P < 0.0001 and P < 0.01, respectively). AVI also sensitized NDM-KP to 20% human serum, resulting in a 8 log reduction in recoverable NDM-KP CPU within 6 h (P < 0.0001), an effect abrogated by heat treatment to inactivate complement.

Conclusion. AVI demonstrates potent synergy with peptide antibiotics and the innate immune system in vitro. Since AVI alone has scant direct antimicrobial activity and no direct inhibitory effect on metallo-β-lactamases, it is less likely to increase selective pressures toward antibiotic resistance. The use of AVI in combination with other antibiotics against drug-resistant bacterial pathogens warrants further study.

Disclosures. G. Sakoulas, Allergan: Consultant and Speaker, Consulting fee and Speaker's Bureau, Consulting fee, Research grant and Research support. Merck: Research grant and Speaker honorarium. Sunovion: Speaker, Speaker honorarium. The Medicines Co.: Research grant, Research grant and Research support. NIAID: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Thaveraise: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Sunovion: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Zavante: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. NIAID: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support.

2392. Fosfomycin Utilization and Outcomes in a Large VA Medical Center Over a Decade
Natan Kraiman, MD;1 Jaela Frederich, PharmD;2 Brandon DeLucia, PharmD;2 and Tran T. Tran, MD, FACFP, FIDSA1
1Infectious Disease Section, James A. Haley Veterans’ Hospital, Tampa, Florida, 2Division of Infectious Disease Pharmacy, James A. Haley Veterans’ Hospital, Tampa, Florida, 3James A. Haley Veterans’ Hospital, Tampa, Florida
Session: 250. Treatment of AMR Infections Saturday, October 6, 2018: 12:30 PM

Background. Urinary tract infection (UTI) is one of the most common infections and in 2007 accounted for 10.5 million primary care visits in the US. Advancing age and comorbidities, such as chronic kidney disease (CKD) and diabetes, affect antimicrobial prescribing habits. Sulfamethoxazole/trimethoprim (SMX-TMP), nitrofurantoin, and fosfomycin are first-line recommendations for uncomplicated cystitis. In an aging male population with potential allergies or contraindications to the above, fosfomycin is a potential option for treatment.

Methods. A retrospective chart review of fosfomycin prescribing habits at a large VA academic medical center. Patients were selected based on fosfomycin prescription in both inpatient and outpatient settings from January 1, 2004 to December 5, 2017. Data reviewed included indication, organism(s), susceptibility, duration of treatment (KD), and clinical success. Treatment success was defined as no representation with UTI symptoms for 30 days.

Results. 117 cases of UTI in which fosfomycin was used were identified with a median patient age of 70 years old and 99 cases were uncomplicated cystitis, 49 complicated cystitis, and 34 catheter associated infections. Treatment success was obtained in 92% of the uncomplicated cystitis cases, 76% in complicated cystitis cases, and 67% in catheter associated UTIs. In half of all the cases an ESBL bacillus was detected and 79% were successfully treated with fosfomycin. The most common pathogen identified was E. coli 58/118 (49%), followed by Klebsiella 25/118 (21%).

Conclusion. Fosfomycin is an antibiotic recommended for simple cystitis due to its safety profile, less collateral damage (gut flora disturbance), and low resistance as currently known. This review displays the largest ESBL cohort identified in the literature and currently used in a predominant male population. These findings suggest that ESBL producing bacteria can be treated successfully with fosfomycin in a male population as well as uncomplicated cystitis. However, caution should be used with cathereterized patients as treatment was less effective regardless of isolated bacteria.

Disclosures. All authors: No reported disclosures.

2393. Evaluation of Antifungal Treatment in a Neutropenic Mouse Model of Scedosporiosis
Sondus Alkhazraji, PhD;1 Teclegebirgs Gebremariam, MS2; Abdullah Alqarihi, MS;1 Clara Baldwin, PhD;3 Nathan P. Wiederhold, PharmD;2 Therese Kint, MD and Ashraf Gebremariam, PhD1
1Infectious Disease Section, James A. Haley V A Medical Center, Tampa, Florida, 2University of South Florida, Tampa, Florida, 3Health Sciences, Florida Medical Center, Torrance, California
Session: 250. Treatment of AMR Infections Saturday, October 6, 2018: 12:30 PM

Background. Scedosporium apiospermum, S. boydii, and S. apiospermum (S. a.) are often difficult to treat with current antifungal agents. Invasive S. a. infection with 3.0 μg/mL MIC of isavuconazole (ISAV), posaconazole (POSA), voriconazole (VORI), and micafungin (MICA) were determined against 9 clinical isolates of S. apiospermum, S. boydii, and S. a. in vitro. Antifungal susceptibility was performed using CLSI M38 method. Etest method was used to determine dose of agents over 18h of incubation and pictures were analyzed using Biofluff Montauk software.

Results. MIC values demonstrated a 2-fold reduction for liposomal vancomycin over vancomycin. Also, combination of liposomal VAN MIC in presence lapse pictures were recorded to determine antibiotic biofilm eradication rates over 18h (commercial) vs. liposomal VAN (VAN-L) (Patent#17-1460) and also combination kill studies were performed to identify synergy patterns for liposomal and commercial vancomycin. Also, combination of liposomal VAN MIC in presence lapse pictures were recorded to determine antibiotic biofilm eradication rates over 18h (commercial) vs. liposomal VAN (VAN-L) (Patent#17-1460) and also combination kill studies were performed to identify synergy patterns for liposomal and commercial vancomycin.

Conclusion. The PK/PD model we are able to expose biofilms to shear rates that are consistent with the human immune system and mimic antibiotic penetration and diffusion pathways from serum antibiotic concentration in humans.

Methods. Methicillin-susceptible ATCC 29213 and MRSA 494 strains were eval- uated. Initial susceptibility tests were performed by broth microdilution method. Time kill experiments were performed to identify synergy patterns for liposomal and commercial antibiotics. Biofilm eradication was investigated using antibiotics vancomycin (VAN) (commercial) vs. liposomal VAN (VAN-L) (Patent#17-1460) and also combination of VAN- cefazolin (commercial) vs. liposomal vancomycin and liposomal cefazolin (CEF-L) (Patent# 17-1460) in biofilms for strain MRSA 494. Biofilms were generated overnight using the BioFlux Microfluidic system (Fluxion Biosciences) at constant and continuous shear rates to optimize biofilm attachment and creation. Perfusion of antibi- otic solutions (free peak concentration) was applied over a 24 h time period. Time lapse microscopy was used to determine absorbances over 18h of incubation and pictures were analyzed using BioFlux Montauk software.

Results. MIC values demonstrated a 2-fold reduction for liposomal vancomycin over vancomycin. Also, combination of liposomal VAN MIC in presence of CFZ-L showed a 15.87-fold reduction in comparison to commercial VAN for 494. Overall, our biofilm results demonstrated a 43.6% improved eradication using VAN-L and CFZ-L combination in comparison to commercial VAN-CFZ combination. We also observed 5.7% improved eradication using VAN-L vs. commercial VAN.

Conclusion. Liposomal form of VAN and CFZ combinations are promising approach to improved efficacy and reduced VAN resistance in S. aureus biofilms.

Disclosures. M. J. Rybak, Allergan: Consultant, Grant Investigator and Speaker's Bureau, Research grant and Research support. Achoagen: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Bayer: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Melinta: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Merck: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Thaveraise: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Sunovion: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. Zavante: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support. NIAID: Consultant, Grant Investigator and Speaker's Bureau, Consulting fee, Research grant and Research support.

Poster Abstracts • OFID 2018:5 (Suppl 1) • 5713