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ABSTRACT 

 

The effect of time-varying extraneous variables has been studied in other statistical 

analyses such as using Kaplan–Meier or Cox regression analysis in survival analyses. 

Nonetheless, the effect of modeling versus not modeling individual specific time varying 

extraneous variables has not been explored in multiple-baseline single case designs through 

Monte Carlo simulation studies. Therefore, in my dissertation, I used simulation methods to 

explore for a variety of conditions (varying in the number of participants, number of 

observations per participant, type of extraneous variable effect, size of the true intervention 

effect) the impact of extraneous variables on bias and standard error of treatment effect 

estimates, as well as confidence interval coverage. I examined the degree to which bias, standard 

error, and confidence interval coverage are affected by including measures of the extraneous 

variables in the multilevel model used to estimate the average treatment effect.    

Results showed that not modeling the extraneous variable effects led to substantial biases 

in the treatment effect estimates and 95% confidence intervals with coverage rates less than 50%. 

Modeling the extraneous variables led to unbiased effect estimates and confidence intervals for 

the treatment effect with 95% coverage rates.  

Several limitation and implications are discussed in this dissertation. The simulation 

conditions as well as the outcomes could be expanded in future research. Also, different 

extraneous variable distributions can be modeled and tested after reviewing more single case 

design literature to identify other types of extraneous variable effects. Finally, methods for 

identifying and tracking changes in extraneous variables need to be developed and studied, so 



 

viii 

 

that it is feasible to include these variables in the multilevel model used to estimate treatment 

effects in multiple-baseline studies.



 
 

1 

 

 

 

CHAPTER ONE: INTRODUCTION 

Single-case design (SCD), also known as single-subject research design, has a long 

history in behavioral sciences, and as evidenced by many reviews (Hammond & Gast, 2010; 

Shadish & Sullivan, 2011). It has been prominently used in the fields of education (Gage et al., 

2018; Gast, 2005; Kennedy, 2005; Richards et al., 1999), psychology (Bailey& Burch, 2002; 

Johnson & Pennypacker, 2009; Kratochwill & Levin, 1992; Wheeler, 2017), and other 

disciplines. Based on Horner et al. (2005), over 45 professional journals incorporate SCD 

studies. Moreover, SCD has also been featured as an important methodology since the American 

Psychological Association (APA) recommended SCD alongside randomized controlled trials 

(RCTs) in their evidence standards (APA Divisions 12/53 and the APA Division 16) and has 

developed research-coding criteria for reviewing SCD research. In the education field, the 

Institute of Education Sciences (IES) has developed standards for review of SCDs, which is 

incorporated by the What Works Clearinghouse (WWC) (see Kratochwill et al., 2010, 2013, 

2014), and the National Reading Panel (2000) has also developed standards for review. By and 

large, SCDs have been playing a significant and growing role in applied research.  

In contrast to true experiments where the researcher randomly assigns participants to a 

control group and a treatment group, in a SCD, a participant is observed in both the control and 

treatment conditions. Basically, it involves collecting data repeatedly from the same subject (or 

participant) over short or long periods of time. Performance prior to the intervention (baseline 

phase) is compared to the performance after the intervention (treatment phase). In general, SCD 

employs one or more dependent variables that are repeatedly measured within and across 
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controlled conditions, and it is assessed for consistency throughout the experiment by frequent 

monitoring of interobserver agreement (e.g., the percentage of observational units in which 

independent observers agree) or an equivalent. The independent variable in a SCD research study 

is typically an intervention. The independent variables should be operationally defined to allow 

both valid interpretation of results and accurate replication of the procedures (Horner et al., 

2005). 

Gast and Ledford (2018) define research as “the systematic investigation and 

manipulation of variables in order to identify associations and understand the processes that 

occur in typical contexts” (p. 2). In other words, applied researchers strive to explore the relation 

between independent variables, the variables manipulated by researchers (interventions), and 

dependent variables or the outcome variables expected to be changed given the manipulation. To 

explore and understand the causal relations, researchers frequently utilize randomized control 

trials (RCTs), because causal inferences can be drawn making relatively weak assumptions (i.e., 

these designs have strong internal validity). Nonetheless, Kazdin (2011) argued that RCTs may 

not be feasible in some contexts, with some populations, and with some types of interventions. In 

addition, compared to the group design that assesses the average or mean level of performance 

and compares the change in group performance, the logic of SCDs is to measure individual 

participant’s behavior repeatedly before, during, and after the intervention. The primary goals of  

a SCD are for each individual: a) to explore the causal relation between the intervention 

(independent variable) and a change in the dependent variable, b) to examine a single or a 

combination of treatment effects on the dependent variable, and c) to evaluate the relative effects 

of single or multiple independent variables on a dependent variable (Horner et al., 2005). By 
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using these types of design, researchers are able to investigate the changes in behaviors (trend) in 

the process as well as at the end of the intervention.  

Problem Statement 

 

The term, internal validity, refers to inferences about an observed causal relationship 

from A (baseline) to B (treatment) in which the independent variable(s) were manipulated 

(Shadish, Cook, & Campbell, 2002). To establish the internal validity of SCDs, one of the 

underlying assumptions is the effects of extraneous and confounding variables on the dependent 

variable should be controlled (see the “Criteria for Demonstrating Evidence of a Relation 

between an Independent and an Outcome Variable” in WWC, 2010). As such, only the 

independent variable (the treatment) substantially influences the dependent variable in the 

treatment phase. Nevertheless, it is impossible to avoid all threats to internal validity in any of 

the experimental and quasi-experimental designs. Shadish, Cook, and Campbell (2002) have 

defined the threats to internal validity as those other possible causes-reasons to think that the 

relationship between A and B is not causal, that it could have occurred even in the absence of the 

treatment, and that it could have led to the same outcomes that were observed for the treatment 

(p. 54).  These external events, here referred to as extraneous variables, are defined as the 

variables that the researchers are not intentionally studying in the experiment, but that may 

impact the results, and confounding with the treatment. In the context of a single-case study, if 

all extraneous variables are held constant and the measurement is reliable, there should be little 

variability of the observations within a phase, and causal inferences are straight-forward (i.e., all 

observations would be close to the trend line). Here, the variability consists of stability, trend, 

shift in level, and outliers. The measurements of the variability are discussed explicitly in 

Chapter Two. 
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In applied SCD studies, however, substantial variability is often observed within a phase, 

including outliers, level change, and trend change, suggesting that not all extraneous variables 

are held constant over time. If extraneous variable effects are not distributed evenly across the 

phases, the treatment effect parameter estimates might be biased (e.g., an extraneous variable is 

distributed over time saying that it has a greater effect on treatment phase observations than 

baseline observations). For example, Bevan, Wittkowski, and Wells conducted a research study 

about reducing postpartum depression through metacognitive therapy in a multiple-baseline 

study in 2013. Two participants’ data (participant B and D in the original article) were 

considered as unstable. The original quotes from the authors are 

Participant B’s scores decreased during baseline, but  this coincided with a time when her 

partner was on leave from work and she received much more support than usual. Her 

scores increased once this period passed; Participant D presented as severely depressed 

and expressed suicidal ideation during the assessment; therefore, a brief behavioral 

activation intervention was conducted to address the issue of risk, and this resulted in a 

decrease in baseline scores before MCT was introduced (p. 73). 

 

Bevan, Wittkowski, and Wells have indicating that the absence of participant B’s partner was an 

extraneous variable for participant B, while another treatment to treat the suicidal condition has 

been introduced for participant D. Therefore, these could be considered extraneous variables in 

this research and could bias the treatment effect estimation.  

Most single-case researchers have addressed internal validity issues through either the 

design structure (such as using multiple-baseline design or reversal design) or the systematic 

replication of the effect within the course of the study (e.g., Hersen & Barlow, 1976; Horner et 

al., 2005; Kazdin, 2011; Kratochwill, 1978; Kratochwill & Levin, 1992). Researchers have also 
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addressed the internal validity issues by applying randomization techniques in structuring SCDs 

(Kratochwill & Levin, 2010). Although these techniques can strengthen the internal validity 

arguments, the effect estimation may still be biased by extraneous factors. The potential bias and 

standard error (SE) in the effect estimates may be reduced by statistical control over the 

extraneous factors (i.e., measuring these variables and including them as covariates in the effect 

estimation models).  

Potential Extraneous Variables in Single-Case Designs 

 

The What Works Clearinghouse (WWC) (see Kratochwill et al., 2010, 2013, 2014) has 

addressed nine possible threats to the internal validity in single-case research, including 

ambiguous temporal precedence, selection, history, maturation, statistical regression, attrition, 

testing, instrumentation, and additive and interactive effects of threats to internal validity.  These 

threats normally are presented separately even though they are not totally independent in the 

context of experimental or quasi-experimental designs. In SCDs the greatest attention is given to 

threats that are suggestive of extraneous factors that many change over time (i.e., history, 

maturation, testing, and instrumentation). Extraneous variables in longitudinal studies are often 

summarized into two categories: time-independent variables and time-dependent (or time-

varying) variables (Lalonde, 2015). A time-independent variable does not have within-subject 

variation, meaning that the variable is constant for an individual during the course of the study. A 

time-varying variable is a variable that involves both within and between-subject variation, 

meaning that the value of a covariate changes for an individual across time and can also change 

amongst subjects. Under the SCD context, accumulated effects from the time-varying extraneous 

variables may cause internal validity concerns. To this end, researchers need to take the time-

varying extraneous variable into consideration when they are planning the study, so that 
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measures of these covariates can be made while they are doing the experiment. After the study is 

completed, the researcher should be able to debrief subjects to determine whether some other 

events may have influenced the dependent variable. Figure 2 demonstrates a graphical 

presentation of possible consequences for the occurrence of an extraneous variable on an AB 

design. If the extraneous variable occurred during the indicated time in Figure 2, and is not taken 

into account, the treatment effect might be biased under this circumstance.  

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

Figure 1. Graphical display of a time-varying extraneous variable effect of the outcome variable. 
 

 

Purpose of This Study 

 

As mentioned previously, extraneous variables that change over time may lead to biased 

treatment effect estimates. The effect of time-varying extraneous variables has been studied in 

other statistical analyses such as using Kaplan–Meier or Cox regression analysis in survival 

analyses. Nonetheless, the effect of modeling versus not modeling individual specific time 

varying extraneous variables has not been explored in SCD through Monte Carlo simulation 

studies. Therefore, in my dissertation, I used simulation methods to explore the impact of 
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extraneous variables on bias and standard error of treatment effect estimates, and to examine the 

degree to which bias and standard error can be reduced by including measures of the extraneous 

variables in the model used to estimate treatment effects. Multiple-baseline designs are focused 

on in this dissertation because they are the most common applied design in SCD research. It is 

hoped that this dissertation will inform the SCD researchers and practitioners about the potential 

influence of time-varying extraneous variables on treatment effect estimation, and illustrate how 

the measurement and inclusion of appropriate covariates could improve effect estimation, 

thereby helping the SCD researchers and practitioners to interpret the results of the treatment 

effect more precisely.  

Significance of This Study 

 

This dissertation will contribute to single-case applied researchers as well as 

methodologists who have the concern of extraneous variables that might influence the accuracy 

of the treatment effect estimation. In multiple baseline designs, extraneous variables might 

become noticeable if they have an effect simultaneously on the outcome variable. Therefore, this 

dissertation aims to provide a method for adjusting the model used to estimate effects from 

multiple-baseline designs to account for extraneous variables and to evaluate the appropriateness 

of the modified model.  

Limitation 

 

The conditions in this dissertation were chosen based on a review of published single-

case literature, therefore the conclusions from this dissertation study can only be applied to 

studies with similar conditions. The interpretations of the conclusions need to be interpreted with 

caution when applied the conditions beyond this dissertation. 
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Definition of Terms 

 

Between-Series Model. A statistical model where the subset of multiple-baseline study   

is used to compare between participants whose are in the baseline phase to those in the  

treatment phase.  

Bias. A difference between a population value and an estimated value.  

Confidence Interval Coverage. The proportion of replications in which 95% confidence 

intervals contain a population value.  

Extraneous Variable. Any variable that researchers were not intending to investigate but which 

can potentially affect the outcomes of the research study as well as confounding with the 

treatment. 

Fixed Effects. Regression coefficients which present the average effects across level-2 units in 

multilevel models.   

Internal Validity. The inferences about an observed causal relationship from A (baseline) to B 

(treatment) in which the independent variable(s) were manipulated  

Kenward-Roger. A method that adjusts degrees of freedom of the fixed effects for the small   

sample size conditions. 

Level-1 Error.  A residual or error from the predicted value to the observed value of 

observations within a level-1 unit in multilevel models.  

Level-2 Error. Variability across level-2 units in multilevel models.   

Multiple-Baseline Design. A type of single-case research design, which extends the AB design 

such that the baseline and treatment phases are established for multiple participants, multiple 

behaviors, or multiple settings. 
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Multilevel Modeling. A statistical model where nested data structure is considered for 

estimating parameters of the model. It allows researchers to have more than one level of the data 

structure.  

Random Effects. The variabilities across level-2 units and level-1 units in multilevel models.   

Relative Bias. Proportion of bias compared to the population parameter values (generating   

parameters).  

Standard Error. The standard deviation of the sampling distribution or an estimate of that 

standard deviation. 

Within-Series Model. Statistical models where multiple-baseline study observations are used to 

compare those are in the baseline phase to those in the treatment phase. 
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CHAPTER TWO: LITERATURE REVIEW 

 

The literature review of this dissertation consists of five parts: a) single-case research 

design overview; b) an introduction of single-case research design types; c) analysis methods of 

single-case research designs concentrating on the effect size estimation methods; d) review of 

extraneous variables in single-case research designs; and e) review estimating effect size in 

single-case research designs when extraneous variables are present.  

 

Single-Case Research Overview 

 

Single-case research designs have been playing a major role in applied and clinical 

research including but not limited to educational and psychology fields. Since Kratochwill 

(1978) edited a volume of strategies for evaluating effects in single-subject research, the rapid 

proliferation of writing on single-subject research designs has been remarkable over the past 40 

years. A considerable number of professional works across a variety of professional fields have 

been presented on both design and data analysis in the literature. For example, beyond the 

traditional discussion of the methodology within applied behavior analysis (e.g., Bailey, 1977; 

Johnson & Pennyparcker, 1980), there are presentations in clinical psychology (e.g., Barlow & 

Hersen, 1985; Johnson & Pennyparcker, 2009), social work (e.g., Fischer, 1978; Lane, Ledford 

& Gast, 2017), special education (e.g., Kenney, 2005), and communicative disorders (e.g., 

McReynolds & Keams, 1983). Therefore, the widening influence of single-case research 

methodology has a primary contribution to science. But more importantly, the application of this 

methodology has allowed a number of refinements of application to specific and unique 
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problems that may not have occurred without such diverse application across a variety of 

scholarly fields.  

 As described in chapter one, single-subject research design is a study of a unit (e.g., 

person) or multiple units (e.g., 4 to 8) and each unit serves as its own control. The study involves 

repeated measures from the same person over short or long periods of time. In general, the 

course of study is divided into at least two phases, and the participant is repeatedly measured 

under each phase over time. The phases are often designated by baseline and treatment 

(sometimes also denoted as A and B), and data from each phase are typically displayed on a 

graph. In a basic SCD, the dependent variable (displayed on the y-axis of the graph) is measured 

repeatedly over time (displayed by the x-axis) at regular intervals. Once a baseline of observation 

has been established - when a stable pattern emerges with at least three data points (WWC; 

Kratochwill et al., 2014), the intervention begins. The researcher continues to plot the 

observations while the intervention is implemented in the treatment phase (Figure 1). 

 

 

 
 

Figure 2. A basic single-subject design － AB design. 

 

 

Type of Single-Case Research Designs 

 

In single-case research design studies, several types of single-case research designs were 
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proposed previously, such as an AB design, a reversal (or withdrawal design), and a multiple-

baseline design. These single-case research designs are discussed in the next sections.  

AB Design 
 

AB design is considered as the simplest SCD. AB design only consists of two phase – the 

baseline phase (denoted as A) and the treatment phase (denoted as B). The inference about the 

treatment effect can be made by comparing the difference of the dependent variable values 

between the baseline and treatment phases. Traditionally, randomization or replication of the 

baseline or intervention phases in the basic AB design will not be considered. As a result, AB 

designs have problems with internal validity and generalizability of results. The weakness of the 

AB design is in establishing causality because changes in outcome variables could be related to a 

variety of other factors, including maturation, experience, learning, and practice effects. 

However, Michiels and Onghena (2018) did a study of randomized AB designs. The results 

demonstrated the Type I error is under the control for the randomization tests, and the power of 

the randomized AB designs is sufficient for large treatment effects and large series lengths.  

Reversal Design 
 

The reversal design is an extension of the AB design (shown in Figure 3) as it includes 

alternation of the baseline and intervention phases. A baseline is established for the dependent 

variable and when steady state responding is reached, the treatment begins. Again, in the 

treatment phase (B phase), when the dependent variable reaches a steady state, the treatment will 

be removed by the researcher. By repeatedly measuring the dependent variable without any 

treatment, a second baseline is formed. This basic reversal design (ABA design) can also be 

extended with the reintroduction of the treatment (ABAB design), or another return to baseline 

(ABABA), and so on.  
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Figure 3. A reversal ABA design. 

 

According to Lobo, Meoyaert, Cunha, and Babik (2018), incorporating at least four 

phases (e.g., ABAB, or ABABA) in the reversal design allows for a stronger determination of a 

causal relationship between the intervention and dependent variables. The relationship can be 

demonstrated across at least three different points in time – change in dependent variable from 

A to B, from B to A, and from A to B again. The other advantage for the reversal design is this 

design allows the incorporation of more than one intervention for each participant (e.g., multiple-

treatment designs). These designs could allow researchers to study the effects of two different 

treatments on the dependent variable. However, challenges with including more than one 

treatment involve potential carry-over effects from earlier interventions and order effects that 

may impact the measured effectiveness of the interventions. Another concern of using reversal 

designs is researchers must determine that it is safe and ethical to withdraw the intervention, 

especially in cases where the intervention is effective and necessary.  
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Alternating Treatment Design 
 

The alternating treatment design (ATD) consists of random alteration of two or more 

conditions such that each has an approximately equal probability of being present during each 

measurement occasion (Hains & Baer, 1989). The purpose of this design is to determine which 

treatment is more effective in changing one behavior. Logically, one condition cannot influence 

the performance of the dependent variable under other conditions. Therefore, Hains and Baer 

(1989) claims that “there is little reason to maintain a distinction in terminology between 

sequence, carry-over, and alternation effects. All that is of issue are sequence effects, sometimes 

in faster paced sequences, sometimes is slower paced sequences” (p. 60). Unfortunately, non-

reversibility of effects would be a threat to internal validity, such as when learning a new word in 

one condition will result in the correct performance across all the conditions.   

Multiple-Baseline Design 
 

If reversal of the outcome variable it is not allowed (either unfeasible or unethical), 

multiple-baseline designs (MBD) will be used. According to Horner and Odor (2014), the 

multiple-baseline designs address the issue of how to study a dependent variable when it is not 

feasible or ethical to reverse the treatment effect. For example, if the treatment is for the child 

with autism, once the participant’s behavior has improved, it may be impossible or unethical to 

remove the treatment which has been already implemented to influence the behavior. Another 

benefit of multiple-baseline designs is that the design structure may address the internal validity 

and ensure that the independent variable substantially influences the outcome variable through 

the replication of the intervention effect across subjects, settings, or behaviors. The staggered 

nature of introducing the intervention can eliminate some extraneous variable explanations for 

the behavior change (Morgan & Morgan, 2008). 
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In MBDs, four to eight participants will be normally involved, and each participant is 

randomly assigned to one of at least 3 baseline lengths. The treatment phases are staggered 

across time that createg different length of baseline phases across participants, behaviors, or 

settings. Figure 4 demonstrates the graphical display of a three participants multiple-baseline 

design.  

 

 
 

Figure 4. A graphical display of Multiple-baseline design. 
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Analysis Methods of Single-Case Design 

 

Two main streams of SCD analysis methods are discussed in the follows: 

a) visually analyze the observations of participants, or b) statistical analysis of the observations. 

Visual Analysis  
 

Data from SCD have traditionally been analyzed visually and are graphed for each 

participant during a study with trend, level, and stability of data assessed within and between 

conditions. By examination of the immediacy of effect and overlap of data between the baseline 

and treatment phases, researchers are able to visually assess the treatment effect (Lobo, 

Meoyaert, Cunha, & Babik, 2018). Generally, when there is an immediate shift in level, and the 

data are stable over time in the baseline and treatment phase, it can be considered as a treatment 

effect. Moreover, several methods including training, structured criteria, and masked visual 

analysis have been suggested and those methods have shown improvement of the accuracy of 

visual analyses (Ferron, & Jones; 2006; Ferron, Joo, & Levin, 2016; Fisher, Kelley & Lomas; 

2003). According to Kratochwill and et al. (2014), the primary reasons that visual analysis still 

plays a curtail role in analyzing single-case design are a) it is associated with the theoretical 

frame work of applied behavior analysis, b) when examining multiple SCD graphs, complex 

factors can be taken into account, and c) it is widely applied in the field of clinical practice since 

it normally focuses on the individual behavior change. However, visual analysis is not able to let 

researchers aggregate or synthesize the treatment effects across many single-case design studies 

(Kratochwill et al., 2014), and thus parametric statistics have been introduced to estimate effects.  

Parametric Statistics 
 

Although data from SCD have traditionally been analyzed visually, and visual analysis 

techniques have been recognized for a long time as effective and valuable (Michael, 1974), they 
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are still not adaptable to quantitatively weighted studies for meta-analytic purposes (Moeyaert et 

al., 2014). Statistical analyses such as single level regression analysis and multilevel modeling 

are beginning to be used more frequently, particularly as part of efforts to synthesize the results 

from multiple single-case studies.  

Single-level Regression Analysis 

 

 Single-level regression analysis is one of the parametric statistical approaches for 

analyzing SCD datasets. The simplest model is written as: 

 

                         Yi = β0 + β1 * phase + ei ,                     ei ~ N(0, σ2),                                    (1) 

 

where Yi is the continuous outcome variable at time i. β0 is the average value of outcome variable 

in the baseline. β1 is the estimated shift in level from the baseline to the treatment phases; this 

shift is also considered as the treatment effect. Phase is dummy coded as a value of 0 for the 

baseline phase, and 1 for the treatment phase. That is, when Phase = 0, the outcome value for the 

participant is β0 + ei; and when phase = 1 the outcome value for participant in the treatment phase 

is β0 + β1+ ei, where ei is the residual that represent the difference between the observed outcome 

value for participant and the predicted value given by the model. 

If there are time trends, the model can be expanded to include a measure of time and its 

interaction with treatment: 

Yi = β0 + β1 * phase + β2 * time + β3 * phase * time + ei ,                 ei ~ N(0, σ2),               (2) 

 

where Yi, phase, and ei represent the same meaning as Equation 1. Time is typically centered 

such that 0 corresponds to the first measurement occasion in the intervention phase. As a 

consequence, β0, is the expected baseline value for the participant projected for the beginning of 

intervention, and β1 is the initial treatment effect for the participant (i.e., the difference between 

the projected baseline trajectory and the treatment phase trajectory at the beginning of 
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intervention). β2 is the baseline slope for the participant, and β3 is the change in slope between 

the baseline and treatment phases.  

Multilevel Modeling 
 

Multiple Baseline designs (MBD) have become the most frequently applied single-case 

research design (Shadish & Sullivan, 2011), and their use is continuing to grow (Moeyaert, 

Ugille, Ferron, Beretvas, & Van den Noortgate, 2013b). This design approach uses a varying 

time schedule that allows the researcher to determine if the application of treatment is truly 

influencing the change in behavior.  

Within-Series Model. In the MBD setting, the treatment effect [Ytj (B) – Ytj (A)] can be 

estimated for each participant. In order to do that, researchers need to correctly specify the 

baseline phase model and treatment phase model for each participant, assume stability in the 

baseline, and calculate the difference between value of the dependent variable in the treatment 

phase at occasion t and estimate the value of the dependent variable that would have been 

obtained at that occasion had the participant stayed in the baseline phase (Wong, Wing, Steiner, 

Wong, & Cook, 2012). In typical MBD, observations are repeated measures within a participant 

and multiple participants are included in the study. The hierarchical structure can be analyzed 

with two-levels: the observations (level-1) are nested within participants (level-2). Therefore, if 

researchers assume there is not a time effect, the level-1 Model is written as: 

                              Yij  = β0j + β1j * phase + eij ,                 eij ~ N(0, σe
2),                                  (3.1) 

 

where Yij is the continuous outcome variable for the jth person at time i. β0j and β1j represents the 

intercept and the treatment effect respectively, and they vary across participants. Same as with 

Equation 1 and 2, the phase is dummy coded as values of 0 for the baseline phase, and 1 for the 

treatment phase. When Phase = 0, the outcome value for participant j is β0j + ei; and when Phase 
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= 1 the outcome value for participant j in the treatment phase is β0j + β1j+ eij. eij is the residual 

term that is assumed homogeneous across phases, normally distributed with variance, σ2, and to 

be independent or first-order autoregressive. 

For the level-2 model, the variation of both β0j and β1j is described as: 

 
β0j = θ00 + u0j     u0j ~ N(0, σu0

2),         (3.2) 

 

β1j = θ10 + u1j     u1j ~ N(0, σu1
2),         (3.3) 

 

where θ00 and θ10 are the average baseline and average treatment effect values across participants, 

and u0j and u1j are the student level errors (i.e., the deviations of the average baseline and 

treatment effects for participant j from the across participant average values). All the error terms 

from Equations 3.2 to 3.3 are assumed to be independent, and normally distributed. Similar to a 

single-level regression model, other predictors can be added into the level-1 or level-2 model. 

For example, if there is a trend in both baseline and treatment phase, time would be added in the 

level-1 equation and therefore the interaction of time and phase (time*phase) would also be 

estimated.  

When adding a time effect, the outcome variable not only changed by phase, but also 

changed across time. Therefore, the level-1 model is: 

     Yij =β0j +β1j*phase + β2j*time + β3j*phase*time + eij,             eij ~ N(0, σe
2),      (4.1) 

where Yij, β0j, β1j, phase, and rij represent the same meaning as Equation 3.1. Time is centered 

such that time = 0 corresponds to the first measurement occasion in the intervention phase. As a 

consequence, β0j, is the expected baseline value for person j projected to the beginning of 

intervention, and β1j is the initial treatment effect for person j (i.e., the difference between the 

projected baseline trajectory and the treatment phase trajectory at the beginning of intervention). 
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β2j is the baseline slope for the jth person, and β3j is the change in slope between the baseline and 

treatment phases. 

The level-2 model is: 

𝛽0𝑗 =  𝜃00 + 𝑢0𝑗,    𝑢0𝑗  ~ N (0, σu0
2),                      (4.2) 

𝛽1𝑗 =  𝜃10 + 𝑢1𝑗,     𝑢1𝑗  ~ N (0, σu1
2),                      (4.3) 

𝛽2𝑗 =  𝜃20 + 𝑢2𝑗,     𝑢2𝑗   ~ N (0, σu2
2),                     (4.4) 

𝛽3𝑗 =  𝜃30 + 𝑢3𝑗,     𝑢3𝑗  ~ N(0, σu3
2),                      (4.5) 

where 𝜃00 , 𝜃10 , 𝜃20 , and 𝜃30 , are the average values across participants of 𝛽0𝑗 , 𝛽1𝑗, 𝛽2𝑗 , and 𝛽3𝑗 , 

respectively, and 𝑢0𝑗, 𝑢1𝑗 , 𝑢2𝑗, and 𝑢3𝑗, are the participant-level errors, assumed to be distributed 

multivariate normal.  

Combining level-1 and level-2 equations (equation 4.1 to 4.5) creates the final 

multilevel model as described as follows: 

Yij =𝜃00  + 𝜃10*phase + 𝜃20 *time + 𝜃30 *phase*time  

+ eij + 𝑢0𝑗 + 𝑢1𝑗*phase + 𝑢2𝑗*time + 𝑢3𝑗* phase*time,         eij ~ N(0, Σu2),      (5) 

 

where 𝜃00 ,  𝜃10, 𝜃20 , and 𝜃30  are the fixed effects, and 𝑢0𝑗, 𝑢1𝑗, 𝑢2𝑗, and 𝑢3𝑗 are the random 

components of the model.  

Between-Series Model. In MBD, the between-series model allows researchers to 

investigate the average causal effect (Ferron, Moeyaert, Van den Noortgate, & Beretvas, 2014). 

Between-series model allows researchers to avoid treatment effect bias that is caused by other 

factors than the treatment itself (strengthen the internal validity). Figure 5 demonstrates the 

example data set in which a MBD across three participants is used.  
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Figure 5. Graphical display of the data points for the between-series model. 
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The variable Phase is coded 0 for all baseline phase observations and 1 for all 

intervention phase observations. 𝐷ij is created as a dichotomous variable that if the ith observation 

for jth participant is not in the enclosed box, then 𝐷ij = 0, while 𝐷𝑖𝑗 = 1 means not 0. The between-

series model utilizes dummy indicators P1 to Pn, where n is one less than the number of 

interventions in the MBD. To be specific, Pnij is dummy coded 1 for ith observation from jth 

participant at the nth box whereas Pn = 0, otherwise. Same as within-series model, phase is 

dummy coded 0 for baseline phase and 1 for treatment phase. To illustrate, see the example in 

Figure 4, which has three intervention start times. All the observations enclosed in the boxes are 

coded as P1 or P2 equals to 1. The enclosed observations three points after the first participant 

enters the intervention phase are coded such that P1 = 1, whereas the enclosed observations three 

points after the participants 2 enters intervention are coded such that P2 = 1. Therefore, the 

equation for the between-series model is: 

 

                Yij = ∑ (𝛽𝑛𝑃𝑛𝑖𝑗 + 𝛽𝑁+𝑛𝑃𝑛𝑖𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗)
𝑁

𝑛=1

+ 𝑒𝑖𝑗                            (6) 

  
Note that the coefficient 𝛽𝑁+𝑛 is the between-series estimates of E[Yt(B) - Yt(A)]. For example, 

𝛽N+1 is the treatment effect estimate after the first participant entered the treatment phase, while 

the other participants still stay in the baseline phase. Similarly, 𝛽N+2 is the between-series 

treatment effect estimate after the second participant entered the treatment phase, while the other 

participants are in the baseline phase. To estimate the common treatment effect averaging across 

the n time points (i.e., pooled estimate), the equation is written as:  

 

                Yij = ∑ (𝛽𝑛𝑃𝑛𝑖𝑗 + 𝛽𝑁+1𝑃𝑛𝑖𝑗𝑃ℎ𝑎𝑠𝑒𝑖𝑗)
𝑁

𝑛=1

+ 𝑒𝑖𝑗                            (7) 
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where 𝛽𝑁+1 is the pooled treatment effect estimate across participants. Nonetheless, considering 

the time trend effect, observations in the baseline for each nth time point are estimated separately. 

Review of Extraneous Variables in Single-Case Design 

 

Internal validity is an older topic in research design, but it is by no means outdated. To 

establish the internal validity of SCDs, one of the underlying assumptions is the effects of 

extraneous variables on dependent variable should be controlled. That being said, only the 

independent variable (the treatment) substantially influences the dependent variable in the 

treatment phase (Horner & Odom, 2014). Extraneous variables in longitudinal studies are often 

summarized into two categories: time-independent variables and time-dependent (or time-

varying) variables (Lalone, 2015). The effect of time-dependent extraneous variables has been 

studied in other statistical analyses such as using Kaplan–Meier or Cox regression analysis in 

survival analyses, nonetheless, it has not been explored in SCD through simulation studies. To 

help methodologists better understand the features of potential time-varying extraneous variables 

in SCD, a systematic review of existing empirical SCD studies (including all types of SCDs) was 

conducted prior to this dissertation study. The articles published in peer-reviewed journals within 

nine years (from 2013 to 2021) were randomly selected. The searching criteria are introduced in 

the following sections. 

Systematic Review Search Procedures and Selection Criteria 

 

Search Strategy 
 

A comprehensive search strategy of SCDs was developed prior to searching and 

identifying studies published in peer-reviewed journals that met the inclusion criteria. First, a 

computer-based search for the articles published in the major bibliographic databases was pre-

selected (include a search of reference lists from relevant studies). The following primary key 
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terms and phrases appeared in the article: single-case designs, single-subject research designs, 

SCDs, alternating treatment designs, changing criterion designs, multiple-baseline designs, 

replicated single-case designs, and time-series designs. Given the fact that there was a 

considerable number of available articles (see Figure 6), articles published within nine years 

(from 2013 to 2021) were randomly selected. Specifically, 45 articles were randomly selected 

between 2013-2021, and there were a total of 45 articles reviewed in this review. The search was 

limited to studies published in the English language and those that appeared in peer-reviewed 

journals.  

 

 

 

 

 
 
 

 
 

 
Figure 6. Number of single-case design studies published in PsychoINFO & Wiley Online 
Library 

 

Study Selection  
 

Four phases including study selection, screening, and coding were applied to select the 

highest number of applicable studies. Inclusion and exclusion were specifically stated in Table 1. 

Phase 1 - an initial systematic review was conducted using PsycINFO and Wiley Online 

Library, which resulted in 1202 articles (year was customized from 2013 to 2021).  
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Phase 2 - titles and abstracts were screened: articles appearing to use a SCD from 2013 to 

2021 retained (664). In this phase, studies that did not use a SCD or that did not explicitly state 

the treatment and measure of the outcome variable(s) were dropped. 

Phase 3 -  studies not pertaining to educational behaviors and social sciences were also 

dropped. There were a total 354 articles retained.  

Phase 4 - each full-text article of the retained articles was carefully examined. The 

variables of my interest were also entered into the database.  

Table 1. Inclusion and Exclusion Criterion for the Article Selection. 

Inclusion Criteria 

• Studies are published and available in the major bibliographic databases (include a 
search of reference lists from relevant studies) from 2013 to 2021. 

• The search is limited to English language.  

• Studies were selected considering one of the following terms: single-case designs; 
single-subject research designs; SCD; alternating treatment designs, changing 
criterion designs, multiple-baseline designs, replicated single-case designs, time-

series designs. 

• The single-case model, treatment, and measure of the outcome variable are 
explicitly stated.  

• The single-case graphs are presented in the study. 

• Studies that meet the standards provided by What Works Clearinghouse (WWC; 
Kratochill et al., 2014) 

Exclusion Criteria 

• The study meets the inclusion criteria but not applied in SCDs.  

• Studies are not pertinent to educational behaviors and social sciences. 
 

Of the 1202 original studies from 2013 to 2021, 664 studies were determined to apply 

SCDs under the context of educational behaviors and social sciences. Some studies were 

eliminated due to the structure of the SCDs was not in accord with the WWC standards. For 

example, reversal designs require a minimum of four phases (e.g., ABAB), and multiple baseline 

designs must demonstrate replication of the effect across at least three conditions (e.g., subjects, 
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settings, behaviors). For this review, 45 studies were selected. The journal sources of the 45 

reviewed studies are summarized in Table 2.  

 
Table 2. Journal Sources of Studies Included in the Systematic Review (N=45). 
 

Journal Title N 

Journal of Applied Behavior Analysis 20 
Behavioral Interventions 13 
Journal of Counseling & Development 2 

International Journal of Play Therapy 2 
Journal of Positive Behavior Intervention 1 

Journal of Research in Special Education Needs 1 
Journal of Computer Assisted Learning 1 
Learning Disabilities Research & Practice 1 

Psychology in Schools 1 
School Psychology International 1 

Clinical Practice in Pediatric Psychology 1 
Topics in Early Childhood Special Education 1 

 

Coding Criteria Amplifications  

 

The following variables were extracted and synthesized across studies: 

Dependent Variable (behavior). In the SCD research, a dependent variable is the outcome or 

could be understood as the intended target behavior in the theory that should be changed given 

the intervention. In theory, the dependent variable should project stable and consistent patterns at 

the baseline and is continually observed during the intervention phase. According to Horner and 

Odom (2014), it is necessary to begin with the dependent variable when building a SCD study. 

Precisely defining the dependent variable(s) may help researchers to guide the selection of the 

independent variable(s), construct the relevant research question(s), and choose the appropriate 

measurement tools and procedures. In short, defining the dependent variable prior to the 

selection of research design may drive the whole research in the correct direction. Therefore, 

examining the dependent variable(s) in the selected studies may help researchers to better 
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understand the purpose of the research as well as the characteristic of the intervention. Moreover, 

the measurement of the dependent variable(s) was also tracked. Horner and Odom (2014) also 

argued that the selection of relevant and correct dependent variables will logically link the 

research question to the outcome variable. Hence, the decisions about how the dependent 

variables are measured are paramount for building a SCD.  

Type of Single-case Designs. SCDs consist of multiple types of designs including alternating 

treatment designs, reversal designs, multiple-baseline designs, and combined designs. Different 

single-case designs influence the outcomes in different ways, and it is appropriate to affirm that a 

set of basic quality indicators is consistent across designs (Horner et al., 2005; Kratochwill et al., 

2014). For example, due to a lack of replication in traditional AB designs, it seems difficult to 

draw a valid causal statement. The design selection will influence the internal validity, and 

different designs will provide different validity. 

    Characteristics of the Participant. The demographic information including age, gender, and 

ethnicity has been examined. This information could help in exploring the potential extraneous 

variable(s) which may cause the unstable trajectory of the datasets. 

    Dataset. The datasets from each article were extracted for the purpose of statistical analysis. 

To compare the datasets on the same scale, all the raw scores were transferred to z-scores. 

Stability. The stability of the datasets in each article was examined because a lack of stability 

suggests the potential that an extraneous variable is affecting the outcome. Two methods were 

used to examine stability: 1) Cumming and Schoenfeld’s stability criteria (1960), and 2) 

elements of the virtual visual analyst algorithm (Ferron & Joo, 2017).  Cumming and 

Schoenfeld’s (1960) criteria indicate that stability has been obtained if for 6 observed data 
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points, the difference between the mean of the first 3 observed data points and the mean of the 

second 3 observed data points is no greater than 5% of overall 6 observed data points. 

Here, instability is defined as too much variability between the data at the beginning of 

the phase and at the end of the phase. To be specific, for 6 observed data points, the difference 

between the mean of the first 3 observed data points and the mean of the second 3 observed data 

points is no greater than 5% of overall 6 observed data points within a phase. The equation for 

calculating the stability that described in the above could be demonstrated as follows: 

 

|
(

𝐷1 + 𝐷2 + 𝐷3
3 ) − (

𝐷4 + 𝐷5 + 𝐷6
3 )

(
𝐷1 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷5 + 𝐷6

6 )
|  ×  100 

                                Equation 1  

For example, if the 6 observed data points are D1=17, D2=18, D3=17, D4=19, D5=18, and 

D6=20. Thus, the stability for this 6 data points is: 

|
(

17+18+17

3
)−(

19 +18+20

3
)

(
17+18+17+19+18+20

6
)

|  ×  100 = 9.19% 

Equation 2  

This result, shown in the equation 2, indicates that the variation in the data between the first three 

data points and the last three data points is 9.19% of the mean of the 6 data points. 

The judgment of whether or not the trajectory has a trend, outlier, or shift in level was 

determined and followed by Ferron, Joo, and Levin’s (2017) virtual visual analyst (VVA) 

algorithm (see Table 3). 
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Table 3. Operational Parameters of the VVA Algorithm. 

 

Decision  Operationalization  

No consistent treatment* trend Slope of least squares regression < .50 * SD 

No trend at end of treatment* Final 3 observations do not form an upward monotonic trend 

where the final 2 observations exceed the median of the 
segment 

No outlier at end of treatment* Final treatment* observation < M + 2 * SD  

No within phase shift M2 – M1 < 1.5 * SD 

Note. SD is the standard deviation of the segment examined for stability; M is the mean of the 

segment being examined for stability; M1 is the mean of the observation in the first half of a 
segment; M2 is the mean of the observations in the last half of a segment. 
*originally, the algorithm was designed to measure the baseline phase.  

 

    A Potential Time-varying Extraneous Variable is Suggested by the Researcher. Does the 

applied researcher mention the possibility of a potential time-varying extraneous variable? If the 

researcher mentioned the possibility of a potential time-varying extraneous variable in the 

experiment, was the potential time-varying extraneous variable identified?  

    Continuous or Categorical Data for the Potential Time-varying Extraneous Variable. 

This variable is an extended exploration of extraneous variables commented on by the 

researcher. If the researcher identified a potential time-varying extraneous variable, how was it 

distributed over time?  Did it seem to impact multiple consecutive sessions indicating a 

continuous distribution?  Or was it distributed in a more discrete or categorical fashion, in which 

each instance that the extraneous variable appeared it impacted a single session?  

Results of the Systematic Review 

 

In order to visualize the stability of each study under the same scale, the raw data were 

transformed to z-scores. The step included that the raw score subtracts the mean of the segment 

and then divided by the standard deviation of the segment [Z-score = (Raw score-
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Meansegment)/SDsegment].  

Dependent Variables (behaviors) and Stability 
 

As mentioned in the previous section, defining the dependent variable prior to the 

selection of the research design may drive the whole research to the right direction (Horder & 

Odom, 2014). To be specific, precisely defining the dependent variable(s) may help researchers 

to guide the selection of the independent variable(s), construct the relevant research question(s), 

and choose the appropriate measurement tools and procedures. Based on the review, 34 out of 

the 45 studies (76%) incorporated the dependent variable that pertains to the behavioral change; 

6 out of the 45 studies (14%) were related to cognition improvement; and 5 out of the 45 studies 

(10%) were associated with other types of dependent variables (see Table 4 for detailed 

information).  

 
Table 4. Descriptive Statistics of Dependent Variables. 

 

  Stability 

 
 
DV 

N Variabilitya 
 

Trend Outlier Shift in Level 

Behavior 
Change 

34 
(76%) 

30 
(88.34%) 

19 
(55.88%) 

19 
(55.88%) 

6 
(23.68%) 

      

Cognition 
Improvement 

6 
(14%) 

3 
(50%) 

4 
(66.67%) 

0 
 

4 
(66.67%) 

      
Other 5 

(10%) 
2 

(40%) 
2 

(40%) 
2 

(40%) 
1 

(10%) 

Note. DV = dependent variable; N = number of study.  
aVariability between start and end of phase exceed Cumming and Schoenfeld’s (1960) criteria. 
 

 Stability including variability between the values at the start and end of the phase, trends, 

outliers, and shifts in levels was analyzed along with the dependent variables. As presented in 

Table 4, based on statistical analysis, the datasets from 30 out of the 34 studies (88.34%) are not 
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stable under the behavior change; 19 out of the 34 studies (55.88%) have trends and outliers; and 

6 out of the 34 studies (17.65%) have shifts in levels. Under the cognition improvement 

dependent variable, the datasets from 3 out of the 6 studies (50%) are not stable; 4 out of the 6 

studies (66.67%) have shifts in levels and trend. For the variables which are categorized as 

“others”, the datasets from 2 out of the 5 studies (40%) are not stable; 2 studies have trends, and 

2 studies have outliers; 1 out of the 5 studies has shift in level. From the results in this section, it 

can be concluded that majority of the dependent variables are associated with behavior change. 

By analyzing the stability through the statistical criterion provided in the previous section, over 

half of the studies have data that are not considered stable.   

Single-case Designs 
 

Multiple baseline designs, reversal designs, alternating treatment designs, and mixed 

designs are the predominant single-case designs based on the review. Interobserver agreement 

across each design ranges from 95.81% to 99%, which indicates acceptable reliability and for 

observational datasets. The stability is discussed in the following section across the four SCDs.  

Multiple-Baseline Design (64%). Twenty-nine out of the 45 studies (64%) utilized the 

multiple-baseline designs. Among them, 85% of the studies elaborated the advantages and 

rationales of applying the multiple-baseline designs. It can be concluded that the multiple-

baseline designs allow researchers to test within-subject change across conditions, and it often 

involves multiple participants in a replication context. Within the multiple-baseline designs, the 

datasets from the 16 studies (52.8%) were examined by visual analysis; 2 studies (8.8%) were 

examined by statistical analysis; and only 1 study (2.9%) utilized both visual and statistical 

methods. Ten studies (29.4%) did not provide detailed information for the analysis method, 

which means the authors faiedl to identify as having used a visual or statistical analysis method. 
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Even these studies could be somehow inferred that visual analysis had been used, but it was not 

specified. Twenty out of the 29 studies (67.65%) were unstable; 14 out of the 29 studies 

(47.06%) had trends; 12 studies (41.18%) had outliers; and 4 studies (14.71%) had shifts in 

levels. Therefore, more than half of the studies were not stable judging by the given statistical 

analysis criteria.  

    Reversal design (22%). Ten out of the 45 studies (22%) applied reversal designs. Five out of 

the 10 studies (50%) utilized visual analysis. Five studies did not address the analysis method. 

Again, it might be inferred that visual analysis had been applied, but it was not described in 

detail. Based on Horner and Odom (2014), the situation of applying reversal designs often 

assumes that the dependent variables are reversible and expected to be discontinuous when the 

manipulation is not presented. Compared to the first baseline phase, the change of the dependent 

variables is evident as the independent variable (treatment) is first introduced. When the 

independent variable has been withdrawn, the dependent variable is expected to revert to the 

original baseline levels, and improves again when reinstating the independent variable. In other 

words, if the performance of the dependent variable remains at the same level even though the 

independent variable is withdrawn, the study becomes susceptible to internal validity concerns as 

the functional relationship between the dependent variable and independent variable fails to be 

demonstrated (Kratochwill & Levin, 2014). Moreover, the maintenance phase is often necessary 

to uphold the treatment effect in the reversal designs (Smith, 2012). Table 5 presents the detailed 

information regarding the stability under the reversal designs. From the review, datasets from 7 

out of the 10 studies (70%) have large variability across time; 4 studies have trends; 5 studies 

have outliers; and 2 studies have shifts in levels. Even though the total number of the reversal 
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designs does not take up a large percentage of this review, more than half of the datasets from 

the 11 studies were not stable. 

    Alternating Treatment Design (9%). Four out of the 45 studies (8%) utilized alternating 

treatment designs, and all of them utilized the visual analysis method. Alternating treatment 

designs allow researchers to investigate the impact of two or more different independent 

variables on the dependent variable through alternating the introduction of the independent 

variables. It is paramount to hold other conditions constant throughout the study to ensure the 

internal validity and stability. Even though alternating treatment designs only take a small 

portion of this review, 3 out of 4 studies (75%) were determined to be unstable. 

Combined design (5%). Two out of the 45 studies (6%) applied combined designs or mixed 

single-case designs. By analyzing the method of analysis, 1 study utilized visual analysis; 1 study 

utilized statistical analysis; and 1 study did not discuss the analysis method in detail. According 

to Kazdin (2011) and Kennedy (2005), the advantage of a combined design is the flexibility and 

the capacity to integrate the strengths of the various SCDs. Again, as alternating treatment 

design, combined designs also take a very small portion in this review. Among them, all of them 

were determined to be unstable.  
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Table 5. Descriptive Statistics of Stability Based on Single-Case Research Design 
 Stud

y 

IOA Methods of Analysis  Stability 

 

 

Research 

design 

N % Visual Statistical Visual  

& 

statistic

al 

Not 

Reported 

Variabil

itya 

Trend Outlier Shift 

in 

Level 

Multiple-

baseline 

29 

(64

%) 

95.8

1 

16  

(52.84

%) 

2 

(8.82%) 

1 

(2.94%) 

10 

(29.41%) 

20 

(67.65%

) 

14 

(47.0

6%) 

12 

(41.18

%) 

4 

(14.7

1%) 

           

Reversal 10 

(22

%) 

96.0

4 

5 

(50%) 

0 

 

0 

 

5 

(50%) 

7 

(70%) 

4 

(50%) 

5 

(50%) 

2 

(20%) 

           

Alternating 

Treatment 

4 

(9%) 

98 4 

(100%

) 

0 0 0 

 

3 

(75%) 

3 

(75%) 

3 

(75%) 

0 

           

Combined 2 

(5%) 

99 1 

(50%) 

1 

(50%) 

0 1 

(50%) 

2 

(100%) 

2 

(100

%) 

2 

(100%

) 

1 

(50%) 

Note. N = number of study; IOA = interobserver agreement. 
aVariability between start and end of phase exceed Cumming and Schoenfeld’s (1960) criteria. 

 

Potential Time-varying Extraneous Variables 
 

In addition to many of the studies showing instability that may come from extraneous 

variables, in 10 out of the 45 studies (22.22%), extraneous variables were specifically suggested 

by the researchers in the results or limitation section. Table 6 provides the detailed information 

including the research purposes and the suggested potential extraneous variables. The graphs for 

those 10 studies are presented in Table 7 in the Appendix A. Direct quotes from the authors in 

each study were also presented in order to demonstrate the authentic expression. However, in 

these 10 studies, none of the authors specifically indicated the characteristics or the distribution 

of the potential extraneous variables. Nonetheless, from the direct quotes, the potential 

extraneous variable distributions could be sensed and built.  For example, in Burns, et al.’s 

article (2015), the researchers investigated whether the conceptual intervention could help 

students that were struggling with the grade-appropriate centent in math. However, the results 

showed that there was no significant improvement of their math score. The authors stated in the 
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discussion section that “The study did not take into account the quality or focus of core 

instruction.”  Therefore, the “quality of the instruction” might be a potential time-varying 

extraneous variable that varied across time and participants. However, it was not tracked by the 

researchers during the experiment so it is hard to account for it in the estimation of the treatment 

effect.  This dissertation aims to determine to what degree tracking and statistically accounting 

for extraneous variables may improve the estimation of treatment effects from single case 

studies. 

Table 6. Potential Time-varying Extraneous Variables from the Reviewed Articles. 

Research Purposes Suggested Extraneous Variables 

1. The effects 
associated with 

metacognitive 
therapy in postpartum 
depression. 

“Participant B’s scores decreased during baseline, but this coincided 
with a time when her partner was on leave from work and she 

received much more support than usual. Her scores increased once 
this period passed; Participant D presented as severely depressed 
and expressed suicidal ideation during the assessment; therefore, a 

brief behavioral activation intervention was conducted to address the 
issue of risk, and this resulted in a decrease in baseline scores before 

MCT was introduced” (Bevan, Wittkowski, & Wells, 2013, p. 73). 

2. The impact of 
wellness-focused 
supervision on mental 

health counseling 
practicum students. 

“Each person showed a decreased score during Weeks 9 or 10. One 
hypothesis for this low score is that there was a significant program 
challenge that occurred at that time” (Walen, Gage, & Lindo, 2016, 

p. 470). 

3. Evaluation of 

increasing antecedent 
specificity in goal 

statements on 
adherence to positive 
behavior-

management 
strategies. 

“Varying activities across observation sessions may have been 

associated with differences in the saliency of discriminative stimuli 
for praise. For instance, opportunities to praise students while they 

were in the computer lab or quietly working on individual tasks may 
have been less salient than when students were encouraged to 
provide vocal responses during group instruction. 

The possibility remains that some activities (e.g., reading) present 
less salient discriminative stimuli for praise relative to others (e.g., 

math)” (Cohrs & Shriver, 2016, p. 777). 
 

4. Using a conceptual 
understanding and 

procedural fluency 
heuristic to target 

math interventions. 

“The study did not take into account the quality or focus of core 
instruction. The multiple-baseline design allowed for internally valid 

conclusions about the intervention, but the effect that classroom 
instruction also had on the data is unknown” (Burns, et al., 2015, p. 

58). 
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Table 6. (Continued). 

Research Purposes Suggested Extraneous Variables 

5. Evaluating the 

effects of on-task in a 
box as a class-wide 
intervention. 

“Treatment integrity for Classroom C fell below 80% during 

implementation, which coincided with a decrease in class-wide on-
task behavior. For sessions with low integrity, the teacher of 
Classroom C did not collect self- monitoring forms and did not 

provide reinforcement if the class met its goal. Therefore, the 
teacher was retrained on the intervention procedures using 

performance feedback” (Battaglia, Radley, & Ness, 2015, p. 752). 

6. Initial investigation 
of nature-based, 

child-centered play 
therapy. 

“P1: However, there was some variability that necessitates further 
discussion. Specially, during the 1st week of the baseline phase, 

P1’s on-task behavior was uncharacteristically high in comparison 
with the other 2 weeks of the baseline phase. In seeking to explain 
this variability, the observers noted that P1 was focused on their 

presence during the 1st week of the baseline data, which may have 
influenced her behavior. She also exhibited a peak in total problem 

behavior during treatment Week 5 that may be explained by the 
presence of a substitute teacher in the classroom during classroom 
observations that week. There was also variability during treatment 

Week 7 and during the post intervention phase, which may be 
explained by her particular difficulty ending her relationship with 

the counselor and the opportunity to spend time in the natural play 
area.  

P2: In seeking to explain the variability in P2’s scores, particularly 

during treatment Week 6, P2 was coughing frequently during the 
observations and appeared to be sick and irritable throughout the 
week. 

P3: The variability in the middle of treatment may be associated 
with having a substitute teacher during observation periods. 

P4: P4 had a significant family conflict that occurred during the 
middle of the treatment phase, which may account for the variability 
in scores. It is also noted that the post intervention phase occurred 

during the last month of the school year, which also may have in 
influenced the results” (Swank, Shin, Cabrita, Cheung, & Rivers, 

2015, p. 446). 
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Table 6. (Continued). 

Research Purposes Suggested Extraneous Variables 

7. Using video 

feedback to improve 
martial arts 
performance. 

“There may have been some distractions from other students staying 

after class to practice other movements; 
Some minor and major injuries were incurred from doing other skills 
related to capoeira, but not as a result of the study, which may have 

impaired the performance of some skills being measured or have 
taken the participants out of the study altogether. As a result, 

intervention could not be evaluated for all three behaviors for three 
of the five participants” (BentitezSantiago  & Miltenberger, 2016, p. 
24). 

 

8. Comparison of 
most-to-least to error 

correction for 
teaching receptive 

labelling for children 
diagnosed with 
autism. 

“Mort had a previous history of engaging in non-compliance when 
provided corrective feedback. Anecdotally, throughout this study, 

Mort infrequently engaged in non-compliant behaviours; in addition, 
non-compliance was distributed evenly across both teaching 

conditions. However, his previous history may have accounted for 
quicker responding in the most-to-least condition for those targets he 
did master” (Leaf et al., 2016, p. 224). 

 

9. Effects of therapy 
balls on children 

diagnosed with 
attention deficit 
hyperactivity 

disorder. 

“Due to the various assignments/tasks that took place during 
independent seatwork time, data on classroom work samples (e.g., 

work completion and work accuracy) could not be collected 
consistently, which would have provided valuable information” 
(Taipalus, Hixson, Kanouse, Wyse, & Fursa, 2017, p. 425). 

 

10. Effects of video 
modeling and 

feedback on mothers’ 
implementation of 
peer-to-peer 

manding. 

“One reason for the lack of functional control comes from Sam’s 
data. His mands steadily increased and remained high but variable 

throughout baseline, and it was not until his mother entered the 
training phase that both his and her performances remained high and 
steady. This may have been because Emma (Sam’s mother) began to 

set up the materials and play environment correctly (i.e. task 
analysis, steps 1–4) and intermittently used various prompts” 

(Madzharova, & Sturmey, 2015, p. 280). 
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Previous Research of Extraneous Variable Effects 

  

Moeyert, Ferron, and Van der Noortgate (2013) did a simulation study to explore a 

method for adjusting the three-level model that include external events and evaluate the 

appropriateness of the modified model. In their study, a new approach was illustrated with real 

data sets. They included terms in the statistical model to account for external variables that have 

effects at the same point in time for all participants. Two scenarios were discussed in their study. 

In the first scenario, they assumed that a constant external event in a categorical format (i.e., the 

effect either does or does not affect each measurement occasion) and that this would affect all the 

participants at the same measurement occasions within a study, but the timing of the effect was 

randomly generated for the studies with a uniform distribution. In the second scenario, the effect 

of the external event was assumed in a decreasing magnitude format for all the participants in a 

study. The start points of the external events were randomly generated for the studies, and the 

average overall effect was the same for both scenarios. The results indicate that the treatment 

effects were biased when ignoring the external event effect, particularly when the number of 

measurement occasions and studies was small. A limitation of their method is that it only allows 

for the modeling of external events that simultaneously affect all participants. In this dissertation 

a method is developed to model extraneous variables that may differ from one participant to the 

next. 

Summary 

 

In this chapter, types of single-case research designs and their analysis methods are 

broadly reviewed. Based on the review, the multiple-baseline design is one of the most popular 

designs for single case practitioners. Multilevel modeling provides an appropriate method for 

estimating effects in multiple-baseline studies. Even though the design structure of the multiple-
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baseline design may address the internal validity issue that ensures that the independent variable 

substantially influences the outcome variable through the intervention, there were many articles 

and studies indicating that the effect of extraneous variables might also influence the study 

results. A systematic review of the studies that applied single-case design methods published 

between 2013 to 2021 in peer-reviewed journals was done in this chapter. Based on the selection 

criteria, 45 articles were reviewed. The results from this review have again shown multiple-

baseline design is the most applied design in single-case research setting. Another conclusion 

from the review is that the effect of extraneous variables might be a cause of variability and 

instability issues. Many authors have concluded this in their limitations section. Therefore, 

developing and evaluating an approach for modeling extraneous variable effects in single-case 

design is warranted. 
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CHAPTER THREE: METHODS 

The methods section describes simulation design, data generation, fitting models, and 

parameter estimations of the simulation study. Two scenarios are introduced in this section. 

Simulation Design 

 

A Monte Carlo simulation study was conducted (using SAS 9.4 Institute, Inc., 2016) to 

empirically test the issues of modeling or not modeling the time-varying extraneous variables in 

Multiple Baseline studies (observations nested in participants). Four design factors were 

manipulated: number of observations in each participant (16 and 32), number of participants (4 

and 8), and 2 extraneous variable factors intertwined within level-1errors: Bernoulli distribution 

and Piecewise distribution. Three effect sizes (0.6, 0.3, and 0) were also tested under each 

condition. Crossing all the simulation design factors results in a total of 2 (number of measurement 

occasions) x 2 (number of participants) x 2 (extraneous variable distributions) x 3 (effect sizes) = 

24 simulation conditions. For each condition, 2000 replications are planned to be generated. The 

rationale of choosing the number of replications is based on the previous single-case simulation 

design studies (e.g. Ferron et al., 2009, 2010). The data generation was conducted using SAS/IML 

statement (SAS Institute, 2016). Two fitting models (miss-specified model and correct-specified 

model) was used to analyze the generated datasets, separately. The parameters were estimated 

using Kenward-Roger adjusted, and SAS MIXED statement was utilized in this procedure. 

The convergence, effect estimates, treatment bias, treatment relative bias, standard errors, 

and 95% coverage of confidence intervals was compared across four fitting models for each 

dataset.  
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Design Factors 

 

Shadish and Sullivan (2011) enumerated some parameters might influence on the quality 

of model estimation on the basis of their results of a thorough overview of 809 SSED studies 

(e.g. Alen, Grietens, & Van den Noortgate, 2009; Denis, Van der Noortgate, & Maes, 2011; 

Ferron et al.,2010; Wang, Cui, & Parrila, 2011). In this dissertation, two levels of measurement 

observations (16 and 32) and two levels of participants (4 and 8) were considered. These values 

are consistent with previous multilevel single case simulation designs (e.g. Ferron et al., 2009; 

Ferron, Farmer, & Owens, 2010; Moeyaert et al., 2014, 2016). Moreover, the level-1 errors were 

generated as first-order auto regressive with 𝜌 equals to 0.2. The level-2 errors were assumed 

uncorrelated and distributed multivariate normal with the variance of 0. 25. [𝑢𝑖𝑗 ~ N (0. 25)]. The 

average baseline value was set up at 0, and the treatment effect (i.e., the difference between the 

baseline level and the asymptote of the treatment phase) were set to 0.6, 0.3 and 0 for examine 

the different treatment effects. Two extraneous variable effects were also added to the treatment 

effect.  

Extraneous Variable Distributions 

 

The direct quotes indicating the extraneous variables were extracted from the reviewed 

articles and analyzed. Appendix A demonstrated the analysis results, and the observations at the 

time point that potentially contains the extraneous variables. Among ten studies, six studies contain 

the extraneous variables that are identified as dichotomous variables (Study 2, Study 5, Study 6, 

Study 7, Study 8, and Study 10). In these studies the extraneous factor was either present or absent 

at each occasion in time (i.e., it either does or does not impact the outcome). In contrast there were 

three studies where the extraneous variable varied continuously over time. (Study 3, Study 4, and 

Study 9). With an extraneous variable that was continuous the value could be high at one point in 



 
 

42 

 

time and then gradually decay over subsequent time points. One study includes both dichotomous 

and continuous extraneous variables (Study 1). Since only one study had both potential continuous 

and dichotomous extraneous variables that intertwine with the dependent variable, this case was 

excluded. Therefore, two methods of generating the effects of extraneous variables were 

investigated, one in which the extraneous factor was a binary variable, and one in which it was a 

continuous variable. In the next section the basic model that used to generate the data for the 

simulation was described. In the following section, there were descriptions of the method for 

generating extraneous variable effects, which were added to the data generated from the basic 

model.   

Data Generation Basic Models 

 

A Monte Carlo simulation study was conducted using SAS 9.4 (SAS Institute, Inc., 2016) 

with IML program. Data were planned to be generated assuming a two-level model (observations 

nested in participants).   

The level-1 model that was used to generate data for person j is: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Phase + 𝑒𝑖𝑗                   (8.1) 

where Yij is the continuous outcome variable for the jth person at time i. Phase is a treatment phase 

indicator variable coded 0 for baseline phase observations and 1 for treatment phase observations. 

𝛽0𝑗 represents the true average value of the baseline observations for person j, and β1j is the 

treatment effect for person j. Figure 7 demonstrates the generated dataset for one person.  
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Figure 7. Demonstration of the level-1 data. 

 

The level-2 model is: 
 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                             (8.2) 

 
𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                   (8.3) 

 

where 𝛾00 and 𝛾10 represent the cross person average value of 𝛽0𝑗 and 𝛽1𝑗, whereas 𝑢0𝑗 and 𝑢1𝑗 are 

the person-level errors, assumed to be distributed  multivariate normal. The level-1 error (𝑒𝑖𝑗) will 

be generated using a first order autoregressive, such that 𝑒𝑖𝑗 = 𝜌 𝑒(𝑖−1)𝑗 + 𝑎𝑖  and 𝑎𝑖is normally 

distributed with variance 𝜎 2. The variance-covariance matrix for level-2 errors (𝑢0𝑗 and 𝑢1𝑗) will 

be generated as an uncorrelated diagonal matrix (covariances between pairs of regression 

coefficients will be set to zero). That is, 𝚺𝒖 = diag (𝜏00, 𝜏11). Time will be centered for the 

purpose of modeling the extraneous variable effects in the treatment phase and the parameter 

values used for data generation (i.e., the values for 𝛾00, 𝛾10,  𝜌, 𝜎 2, 𝜏00, and 𝜏11) will be defined 

when the basic model is expanded in the next section to include the extraneous variable effects.  

The intervention starts points (i.e., the occasion corresponding to the first treatment 

observation) was varied across persons. For example, for four participants with 16 observations, 

the intervention started at time points 4, 6, 8, and 10, respectively. For four participants with 32 
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observations, the intervention started at time points 10, 14, 18, and 22, respectively. The 

intervention starts point pattern for the eight participants was set to be the same as for the four 

participant conditions, except the persons were paired. That is, with 16 observations, the 

intervention start point for persons 1 and 2 was set up at time point 4, the intervention start point 

for persons 3 and 4 was set up at time point 6, the intervention start point for persons 5 and 6 was 

set up at time point 8, and the intervention start point for person 7 and 8 was set up at time point 

10. With 32 observations, the intervention start point for persons 1 and 2 was set up at time point 

10, the intervention start point for persons 3 and 4 was set up at time point 14, the intervention 

start point for persons 5 and 6 was set up at time point 18, and the intervention start point for 

persons 7 and 8 was set up at time point 22. The extraneous variable effect would be introduced 

randomly at any time points in the treatment phase, then faded out over time as described in the 

next section.  

Two Scenarios 

 

As mentioned previously, the potential extraneous variables were categorized into two 

types: dichotomous variable and continuous variable. Therefore, two types of extraneous 

variable effects were generated and added through the addition of an extraneous variable effect 

to the basic data generation Equations 8.1 through 8.3.  

First Scenario – Discrete Extraneous Variable 
 

     Data Generation. The extraneous variables in the first dataset were assumed as categorical 

format from a discrete probability distribution only. (In Study 2, 5, 6, 7, 8 and 10, the direct 

quotes regarding the extraneous variables are all indicating a special event occurs at certain 

measurement time points in which influence the outcome variable.) The distribution was 

determined as Bernoulli distribution. 
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    Bernoulli Distribution. Bernoulli distribution is a type of discrete distribution which only have 

two possible outcomes labelled n = 0 (e.g. No) or n = 1 (e.g. Yes). The mean and variance for a 

Bernoulli random variable are μ = p and Var [X] = p (1 – p), where p denoted as the probability of 

having the extraneous variables, and (1 – p) demoted as the probability of not having the 

extraneous variables in the observation occasion. The extraneous variable will be randomly 

generated for each participant separately. 

In this dissertation, the probability that the time point contains the extraneous variable (n 

= 1) is p and the probability for the time point that does not contain the extraneous variable (n = 0) 

is q = 1 – p, where 0 < p < 1. Therefore, the probability density function for the Bernoulli 

distribution is: 

 

𝑃(𝑛) = {
1 − 𝑝, 𝑛 = 0

𝑝, 𝑛 = 1
 

 

and the variance for a Bernoulli random variable is: 
 

Var [X] = p (1 – p). 

 

For example, in Study 5, the direct quote from the authors is “Treatment integrity for Classroom 

C fell below 80% during implementation, which coincided with a decrease in class-wide on-task 

behavior. For sessions with low integrity, the teacher of Classroom C did not collect self-

monitoring forms and did not provide reinforcement if the class met its goal. Therefore, the teacher 

was retrained on the intervention procedures using performance feedback” (Battaglia, Radley, & 

Ness, 2015, p. 752). For the Classroom C, there are totally 12 observations in the treatment phase, 

and 5 observations were considered as “no collection of self-monitoring forms and no 

reinforcement provided”. Therefore, the probability that the effect mentioned above is 5/12 = 0.41, 

and the variance for this occasion mentioned above for Classroom C in the Study 5 is 0.41 (1 – 
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0.41) = 0.69. For the first extraneous variable situation in this dissertation, the probability of having 

an extraneous variable effect in the treatment phase will be set to 0.6 (60%).  

 

 
Figure 8. Bernoulli distribution with p = 0.6. 
 

 

Based on the calculation demonstrated above, for four people with 16 observations, the 

intervention will enter at time point 4, 6, 8, and 10, respectively. Therefore, the number of data 

points in the treatment phase for each person are 13, 11, 9, and 7, respectively. As a result, the 

number of data points that contains extraneous variable in the treatment phase for each person 

are 8, 7, 5, and 4. For four people with 32 observations, the intervention was enter at time 10, 14, 

18, and 22, respectively. Therefore, the number of data points in the treatment phase for each 

person were 23, 19, 15 and 11, and the number of data points that contains extraneous variable in 

the treatment phase for each person are 14, 11, 9, and 7. Same as four participants, eight 

participants had the exact number of data points that contains extraneous variable for 16 

observations and 32 observations except the participants are paired  as described above. The data 

points that contain the extraneous variable effect were randomly assigned in the treatment phase.  

 
The level-1 equation is: 
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                                               𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Phase  + 𝛽2𝑗 EV + 𝑒𝑖𝑗                              (11)   

where 𝛽0𝑗 represents the average value of the baseline observations, and β1j is the treatment effect 

for person j. 𝑃ℎ𝑎𝑠𝑒 was dummy coded as a value of 0 for the baseline phase and 1 for the 

treatment phase. 𝛽2𝑗 is the extraneous variable effect on the outcome variable 𝑌𝑖𝑗, and EV 

represents the extraneous variable which is coded as 0 for no extraneous variable effect and 1 for 

having extraneous variable effect. Specifically, EV was generated using UNIFORM function 

implemented in SAS/ IML. Note that if EV is greater than 0.4, the extraneous variable effect 

(0.2) would be added to the time points. The level-1 error (𝑒𝑖𝑗) will be generated using a first 

order autoregressive where 𝑒𝑖𝑗 = 𝜌 𝑒(𝑖−1)𝑗 + 𝑎𝑖. The variance of 𝑎𝑖 (𝜎
2) will be set to . 09and 𝜌 

will be set to .20.  

The level-2 equations are: 
 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                             (11.1) 

 
𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                   (11.2) 

  

                                                                        𝛽2𝑗 =𝛾20 + 𝑢2𝑗                                             (11.3) 

 
where 𝛾00 and 𝛾10 represent the cross person average value of 𝛽0𝑗 and 𝛽1𝑗. Since the 

baseline is not the research interest in this dissertation, 𝛽0𝑗 was set up to 0. 𝛾10, the cross people 

average treatment effect, will be set up to 0.6, 0.3 and 0 for each condition. The extraneous 

variable effect, 𝛾20 was set to 0.2.  The level-2 errors (i.e., 𝑢0𝑗,  1𝑗  and 𝑢2𝑗) were independently 

drawn from normal distributions with variances equal to 0.01 (i.e., 𝜏00 = 𝜏11  = 𝜏22 = 0.01).  

     Fitting Models. The corrected model and miss specified model were fitted to the generated 

datasets.  

      The Correct Model for the First Scenario. The equation for the model with discrete format 

extraneous variables is described as follows. It is equivalent to the first dataset generation model.  
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The level-1 equation is: 

 
                                               𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Phase  + 𝛽2𝑗 EV + 𝑒𝑖𝑗                  (12)   

The level-2 equations is: 
𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                             (12.1) 

 
𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                   (12.2) 

  
                                                                        𝛽2𝑗 =𝛾20 + 𝑢2𝑗                                             (12.3) 

 

The level-1 error (𝑒𝑖𝑗) will be assumed first order autoregressive and the level-2 error structure 

will be assumed uncorrelated diagonal matrix.  

       Miss Specified Model for the First Scenario. The equation for the model without extraneous 

variables is described as follows. 

Level-1: 

                                                   𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Phase + 𝑒𝑖𝑗                                             (13)   

Level-2 
𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                             (13.1) 

 
𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                   (13.2) 

 

where the level-1 error variance was assumed first order autoregressive and homogeneous across 

phases and people, and the level-2 error structure was assumed an uncorrelated diagonal matrix. 
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Second Scenario – Continuous Extraneous Variable 
 

Data Generation. By examine the description of the potential extraneous variables from 

Study 3, Study 4, and Study 9, the effect of the extraneous variable could vary continuously over 

time such that after the extraneous event occurred its effect may gradually decay over time 

leading to treatment phase trajectory that could potentially be modeled with a piecewise linear 

trajectory, such as shown in Figure 9. 

 

 
Figure 9. Piecewise trajectory to account for potential extraneous variables. 
 

 

    Piecewise Distribution. In some studies, a singular event may occur (e.g., a child receives a 

discipline referral and the impact of this event on the behavior may be greatest at the time of the 

event and then diminish over time. Or the extraneous factor may be a variable that impacts 

multiple consecutive days, such as the child getting sick or a change in the quality of instruction 

coinciding with a shift to a new instructional unit. In Study 4, the description for the potential 

extraneous variable from the original quote is 

“The study did not take into account the quality or focus of core instruction. The  

multiple-baseline design allowed for internally valid conclusions about the intervention,  
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but the effect that classroom instruction also had on the data is unknown” (Burns, et al.,  

2015, p. 58).” 

Thus, the effect of the classroom instruction could be a continuous variable since it may vary 

across time, and the effectiveness of the extraneous variable may weaken with time. Because 

these sorts of effects may impact multiple consecutive observation sessions, and because there 

may be a pattern across time in the effects (such as when the effect weakens over time) they 

require a different effect generation model. 

The level-1 data of the second scenario is generated as: 

 

                                      𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Phase + 𝛽2𝑗 EV +  𝑖𝑗                                            (14) 

 
where 𝛽0𝑗 is defined as the average value of the baseline observations, β1j is the treatment effect 

for person j, and Phase is defined as same in scenario one, with 0 for baseline and 1 for the 

treatment. EV is the extraneous variable and 𝛽2𝑗 is the effect of the extraneous variable on the 

outcome variable 𝑌𝑖𝑗. The extraneous variable is introduced at a randomly selected time in the 

intervention phase for each person, and then will impact three consecutive observations. EV is 

coded 0 for all observations that are not impacted by the extraneous factor and coded 3, 2, and 1 

for the three consecutive observations impacted by the extraneous factor. As for the first 

scenario, the level-1 error (𝑒𝑖𝑗) is generated using a first order autoregressive where 𝑒𝑖𝑗 = 

𝜌 𝑒(𝑖−1)𝑗 + 𝑎𝑖. The variance of 𝑎𝑖 (𝜎
2) is  set to .09and 𝜌 is set to .20.  

Also same as the first scenario, the intervention for four people with 16 observations start 

at time points 4, 6, 8, and 10, and the number of data points in the treatment phase for each 

person are 13, 11, 9, and 7, respectively. For four people with 32 observations, the intervention 

enters at time points 10, 14, 18, and 22, respectively. Therefore, the number of data points in the 

treatment phase for each person are 23, 19, 15 and 11.  
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The level-2 model was: 
 

𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                             (14.1) 

 
𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                   (14.2) 

 

                                                                        𝛽2𝑗 = 𝛾20  + 𝑢2𝑗                                           (14.3) 

 
 

where 𝛾00 and 𝛾10 represent the cross person average value of 𝛽0𝑗 and 𝛽1𝑗. Since the 

baseline is not the research interest in this dissertation, 𝛾00 is set up to 0.  𝛾10 is the cross people 

treatment effect and it is set up to 0.6. 𝛾20 is the extraneous variable effect cross people, and it is 

set put to 0.1.  𝑢0𝑗, 𝑢1𝑗, and 𝑢2𝑗 are the person-level errors, assumed distributed  multivariate 

normal with the variance of 0. 01 [𝑢𝑖𝑗 ~ N (0, . 91); 𝑢2𝑗 ~ N (0, 0. 01); 𝑢3𝑗 ~ N (0, 0. 01)].  

    Fitting Models. The corrected model and miss specified model were fitted to the generated 

datasets.  

    The Correct Model for the Second Scenario. The equation for the model with continuous 

format extraneous variables is described as follows. It was equivalent to the second dataset 

generation model.  

The level-1 equation was: 

                                      𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Phase + 𝛽2𝑗 EV +  𝑖𝑗                                  (15) 

 

The level-2 equations was: 
𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                             (15.1) 

 
𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                   (15.2) 

 
                                                                        EV = 𝛾20  + 𝑢2𝑗                                           (15.3) 

 
 

The level-1 error (𝑒𝑖𝑗) was assumed a first order autoregressive, and the level-2 error structure was 

assumed uncorrelated diagonal matrix.  
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    Miss Specified Model for the Second Scenario. The equation for the model without extraneous 

variables was described as follows. 

 

Level-1: 

                                                   𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗Phase + 𝑒𝑖𝑗                                             (16)   

Level-2 
𝛽0𝑗 = 𝛾00 + 𝑢0𝑗                                             (16.1) 

 

𝛽1𝑗 = 𝛾10 + 𝑢1𝑗                                                   (16.2) 

 

where the level-1 error variance was assumed first order autoregressive and homogeneous across 

phases and people, and the level-2 error structure was assumed an uncorrelated diagonal matrix. 

Parameter Estimation 

 

For each simulated multiple-baseline study, ReML was applied to estimate parameters of 

both the correctly-specified model (i.e., the one including a term for the extraneous variable 

effect) and miss-pacified model (i.e., the one omitting the term for the extraneous variable 

effect), and the Kenward-Roger approach was used to compute adjusted standard error and 

degree of freedom to account for small sample size. 

Simulation Outcomes   

 

For each combination of sample size, series length, and extraneous variable scenario, 

2000 multiple-baseline studies were simulated. Results were aggregated across the 2000 

simulated data sets to estimate the convergence rate, the average effect estimate, bias in the 

effect estimate, relative bias in the effect estimate, and coverage of 95% confidence intervals. 

These results then were compared across the two extraneous variable scenarios as well as three 

treatment effect values. 
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Convergence Criteria  
 

100% of the convergence occurred in every model. The convergence rates were 

calculated as proportion of replication in which estimations were reaching convergence.  

Treatment Effect Estimates 
 

The treatment effect estimates from the correct-specified model and the treatment effect 

estimates from the miss-specified model were averaged and compared across all the conditions 

and across the two scenarios.  

Bias and Relative Bias 

Bias was estimated as 
∑ (𝜃�̂� −𝜃)

𝑁 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
𝑖=1

𝑁 𝑜𝑓  𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
,  where 𝜃�̂� is the estimated treatment effect for 

the ith simulated meta-analysis and 𝜃 is the set treatment effect (0.6, 0.3 and 0), and relative bias 

was estimated as 
∑ (

𝜃�̂� −𝜃

𝜃
)𝑁 𝑜𝑓 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑖=1

𝑁 𝑜𝑓  𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛
.   

Confidence Interval Coverage 
 

Confidence interval coverage for each condition and analysis model was estimated as the 

proportion of the number of simulated meta-analyses where the 95% confidence interval for 𝜃�̂� 

included 𝜃.     

Standard Error 

  

 Standard error is one of ways used in statistics to estimate the variability. It demonstrates 

as the sample mean which deviates from the generated population mean. The formula is given as: 

𝑆𝐸 =  
𝑆

√n
 . 
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Analysis of Dependent Variables 
 

 The ANOVA analyses are helping to detect the simulation condition effects and their 

effect sizes. Therefore, multi-way univariate ANOVAs were performed on bias, relative bias, 

standard errors, and coverage rates to analyze the variation in outcomes as a function of the 

simulation as well as the extraneous variable effects. Eta-square (𝜂2) were computed based on the 

ANOVA results to compare the effect sizes of the simulation conditions and extraneous variable 

effects. The calculation of Eta-square is using the proportion of variability of each dependent 

variable that associated with each simulation condition. The equation is calculated as the ratio of 

the effect variance (SSeffect) to the total variance (SStotal): 

𝜂2   =  
SSeffect

SStotal
 

 

 

 

The multi-way univariate ANOVA analyses and eta-square analyses were computed using 

PROC GLM in SAS. Cohen’s (1992) effect size measures would be applied for the references, 

which are large: 𝜂2 ≥ .15, medium: .06 < 𝜂2 ≤ .14, and small: 𝜂2  ≤ .06.  

   

 

  



 
 

55 

 

 

 

CHAPTER FOUR: RESULTS 

 

This chapter consists of the results and findings of this simulation study. This section 

reports each dependent variable of the study (i.e., relative bias, SE, and confidence interval 

coverage) across two extraneous variable scenarios (Bernoulli distribution and Piecewise 

distribution). Eta squared values (η2) from the ANOVA tests of each dependent variable for each 

extraneous variable effect scenario provide an indication of the impact of the simulation design 

factors (i.e., number of participants, number of observations for each participant, size of the true 

intervention effect, and whether or not the model was correctly specified) as well as their 

interactions. The distribution of the simulation outcomes are sequentially reported and compared 

across conditions as well as across models that contains two types of extraneous variable effects. 

A 100% convergence rate was achieved across all replications, all design condition, each 

extraneous variable effect scenario, and for both correctly and incorrectly specified models. Note 

that the output was not examined for improper solutions (e.g., between case variance estimates of 

zero); rather simulation results were obtained by aggregating across all converged solutions. 

Table 10, 11, 12, and 13 in Appendix B provide a detailed summary of simulation results 

including each estimate of bias, relative bias, SE, and 95% confidence interval coverage. Results 

for extraneous variable scenario 1 (Bernoulli distribution) when the model is miss-specified to 

ignore the extraneous variable effect are provided in Table 10, whereas results from when the 

model is correctly specified to model the extraneous variable effect are provided in Table 11. 

Results from extraneous variable scenario 2 (piecewise distribution) are provided in Table 12 for 

the miss-specified model and in Table 13 for the correctly specified model. 
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Bias and Relative Bias for the Treatment Effect  

 

 The bias of the treatment effect was calculated by averaging the bias across replications. 

Relative bias was calculated by using the difference of the true value and estimated value divided 

by true value. To explore whether the simulation factors (number of participants, number of 

observations for each participant, size of the true intervention effect, and whether or not the 

model was correctly specified) had a substantial effect on the bias, several univariate ANOVA 

tests were conducted, one for each extraneous variable scenario. The η2
 value from the ANOVA 

tests are presented in Table 8 and Table 9 in Appendix B.  

Extraneous Variable Scenario 1 (Bernoulli Distribution) 
 

By examining the results from ANOVA analysis, it can be seen that all the variability in the bias 

estimates is explained by whether or not the model is correctly specified (η2
 =1.0), because when 

the model was misspecified (i.e., did not model the extraneous variable effect), the bias was .12 

for each condition defined by the number of participants, number of observations per participant, 

and true effect size, whereas when the model was correctly specified to model the extraneous 

variable effect the bias was 0 across the conditions. As a consequence, all effects other the model 

specification explained no variability (η2  = 0).   

 Figure 10 and Figure 11 shows the relative bias of miss-specified and correct specified 

estimators across the number of participants and number of observations for each participant. 

The box plot reveals the relative bias of the number of participants (4 and 8) and number of 

observations in each participant (16 and 32) for the treatment effect was distributed such that it 

was 0 for the correctly specified model and less than 5% bias of the population value for the 

missecified model.  
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Figure 10. Box-plots: The relative bias of the miss-specified and correct-specified estimators by 
different participant conditions.  

 

 

 

 

 

 

 
 

 

 

 
 
 

 
Figure 11. Box-plots: The relative bias of the miss-specified and correct-specified estimators by 

different observation conditions. 
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Figure 12. Box-plots: The relative bias of the miss-specified and correct-specified estimators by 
different true value conditions. 

 

Figure 12 reveals that the relative bias was increased from 0.2 to 0.4 when the true value of the 

treatment effect switched from large effect to medium effect. Plus, the relative bias differences 

between miss-specified and correct-specified model were obviously observed across all the 

simulation condition. The parameters that used to calculate effect size were obtained from 

ANOVA analysis and given the medium effect size for the true value factor and large effect size 

for the extraneous variable effects. Therefore, it can be concluded that the miss-specified model 

with a medium effect size tend to have more bias than the miss-specified model with large effect 

size. This could be attributed to the size of the extraneous variable effect being a bigger 

proportion of the medium effect size.  
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Extraneous Variable Scenario 2 (Piecewise Distribution) 
 

Same as the extraneous variable in Bernoulli distribution, the simulation condition 

including number of participants, number of observations in each participant, as well as the 

interactions of these variables were examined for both miss-specified and correct-specified 

models. 

By examining the results from ANOVA analysis, the extraneous variable effect has a 

large effect on bias (η2
 = 0.81), and other factors including number of participants, number of 

observations, true value, as well as interactions of these factors shows small or no effects on bias 

estimates.  

Figure 13 and Figure 14 shows the relative bias of miss-specified and correct specified 

estimators across number of participants and number of observations for each participant. The 

box-plot reveals the relative bias of the number of participants (4 and 8) and number of 

observations in each participant (16 and 32) for the treatment effect was distributed less than 

10% bias of the population value across simulation conditions. Table 12 demonstrates the 

relative bias value as references. 
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Figure 13. Box-plots: The relative bias of the miss-specified and correct-specified estimators by 
different participant conditions. 

 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 14. Box-plots: The relative bias of the miss-specified and correct-specified estimators by 
different observation conditions. 
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Figure 15. Box-plots: The relative bias of the miss-specified and correct-specified estimators by 

different true value conditions. 

 

Figure 15 reveals that the relative bias increased from 0.05 to 0.10 when the true value of the 

treatment effect switched from large effect (0.6) to medium effect (0.3). Plus, the relative bias 

differences between miss-specified and correct-specified model were obviously observed across 

all the simulation condition. The parameters that used to calculate effect size were obtained from 

ANOVA analysis and given the medium effect size for the true value factor and for the 

extraneous variable effects. Therefore, the conclusion is consistent with the previous scenario, 

that the miss-specified model with a medium effect size tend to have more bias than the miss-

specified model with a large effect size. Also, by including the extraneous variable effect in the 

model, the estimation of the treatment effect is much accurate than not including the extraneous 

variable effect in the analytic model. 
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SE for the Treatment Effect 

 

Standard error (SE) is the standard deviation of the residuals. It tells how concentrated 

the data is around the line of best fit. In this dissertation, the SE also represents the variance 

across simulation replications. Table 8 and Table 9 in the Appendix B presents the complete SE 

results of the treatment effect across simulation conditions. Univariate ANOVA tests were also 

performed to detect simulation factors that have statistically significant effect on SE.  

Extraneous Variable Scenario 1 (Bernoulli Distribution) 
 

The ANOVA results reveal that number of participants, number of observations, and extraneous 

variable effect has large effect (η2
 = 0.25) on SE. Other factors and interaction effect have no 

effect or small effect on SE (results shown in Table 8). 
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Figure 16. Box-plots: The SE of the miss-specified and correct-specified estimators by different 

number of observations conditions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Box-plots: The SE of the miss-specified and correct-specified estimators by different 
number of participants conditions. 
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Figures 16 and 17 illustrate the SE differences between number of observations and number of 

participants as well as the differences between the miss-specified and correct-specified models. It 

can be concluded that for both miss-specified and correct-specified model, the smaller the 

number of observations nested within smaller number of participants (16 observations nested 

within 4 participants), the larger the SE. SE was dropped from 0.025 to 0.015 for 4 participants 

nested within 16 observations to 8 participants nested within 32 observations.  

Extraneous Variable Scenario 2 (Piecewise Distribution) 
 

The univariable ANOVA tests were also conducted for piecewise distribution conditions to 

determine the factors that might significantly influence the SE value. The results reveal that 

number of participants, number of observations, and the interaction of number of participants 

and number of observations has large effect (η2
 = 0.33) on SE, while other factors including true 

value and extraneous variable as well as the interaction of these factors has no effect on SE. 
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Figure 18. Box-plots: The SE of the miss-specified and correct-specified estimators by different 

number of observations conditions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Box-plots: The SE of the miss-specified and correct-specified estimators by different 
number of participants conditions. 
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The box-plots from Figure 18 and 19 demonstrated when change of SE from small number of 

participants with small number of observations (16 observations nested within 4 participants) to 

large number of participants with large number of observations (32 observations nested within 8 

participants). To be specific, the larger number of observations (32) and larger number of 

participants (8), the smaller the SE, that is, the SE dropped from 0.015 to 0 for 4 participants 

with 16 observations to 8 participants with 32 observations. 

CI Coverage Rate for the Treatment Effect 

 

 The goal of the confidence interval coverage rate is 95% in this dissertation, which means 

the 95% of the time that the true value will fall into the confidence interval in each simulation 

replication. Still, univariate ANOVA tests were conducted to test the simulation factors that 

might statistically significant influence the on the CI coverage rate.  

Extraneous Variable Scenario 1 (Bernoulli Distribution) 
 

The only factor that influences the CI coverage rate is miss -and correct-specified models. Figure 

20 demonstrates the for the correct-specified model, the CI coverage rate is 95% while for the 

miss-specified model, the CI coverage rate is around 2%. The effect size is 0.998 (η2
 = 0.998), 

which is large effect size.  
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Figure 20. Box-plots: The CI coverage rate of the miss-specified and correct-specified models. 
 

 

Extraneous Variable Scenario 2 (Piecewise Distribution) 
 

Number of participants, number of observations, extraneous variable effect, the 

interaction of number of participants and extraneous variable effect, and the interaction of 

number of observations and extraneous variable effect are influencing the CI coverage rate. 

Figure 21 to Figure 25 demonstrate the 95% confidence interval coverage across different 

conditions mentioned above. Table 9 also demonstrate eta-squares respectively across each 

condition. Number of participants and the interaction of number of participants and extraneous 

variable effect has a medium effect (η2 = 0.08) on 95% confidence interval coverage. Figure 21 

shows the difference of 95% CI coverage across different number of participants. The confidence 

interval coverage is less with more number of participants (n = 16) than with less number of 

participants (n = 8), and the CI coverage difference is about 0.2. Figure 24 shows the CI 

differences between different number of participants but based on different models. It reveals 
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that for correct specified model, there is no difference of CI coverage between different number 

of participants, the CI coverage is all around 95%. However, under the miss-specified model 

condition, there are CI differences observed between different number of participants. Therefore, 

it can be concluded that only under miss-specified model condition, the number of participants 

influence the CI coverage, and with less number of participants (n = 4), the CI coverage (CI = 

0.55) is larger comparing to the CI coverage (CI = 0.2) with more number of participants (n = 8). 

Similar to number of participants, number of observations and the interaction of number 

of observations and extraneous variable effect are influencing the CI coverage. Figure 22 and 

Figure 25 reveals that only under miss-specified model condition, number of observations is 

influencing the CI coverage, and it has a small effect (η2 = 0.03). The CI coverage (CI = 0.5 vs. 

CI = 0.25) is larger for a greater number of observations (n = 32) comparing to a smaller number 

of observations (n = 16).  

Extraneous variable has a large effect (η2 = 0.78) on the CI coverage. Figure 23 shows the 

difference of CI coverage between correct- and miss-specified models. The correct-specified 

model has a large CI coverage (CI = 0.95) than the miss- specified model (CI = 0.4).  
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Figure 21. Box-plots: The CI coverage rate of number of participants. 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Box-plots: The CI coverage rate of number of observations. 
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Figure 23. Box-plots: The CI coverage rate of correct- and miss- specified models. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Box-plots: The CI coverage rate of correct- and miss- specified models by number of 

participant condition. 
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Figure 25. Box-plots: The CI coverage rate of correct- and miss- specified models by number of 

observation condition. 
 

 

Summary of Results 

  

 Under bernoulli distribution condition, it can be concluded that the extraneous variable 

effect has large effect on Bias, SE, and CI coverage. Other conditions including number of 

participants, number of observations, and different true value, as well as their interactions has no 

effect on Bias and CI coverage. However, under miss-specified model condition, more number 

of participants (n = 8) with more number of observations (n = 32) has the smallest SE.  

 Under piecewise distribution condition, the extraneous variable effect has a large effect 

on Bias, SE, and CI coverage. Still, more number of participants with more number of 

observations causes less SE. While under miss-specified model condition, 4 participants with 32 

observations produces better CI coverage.  
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CHAPTER FIVE: DISCUSSION 

 

In this chapter, we discussed summary of this study, findings, implication, and 

application for the applied single-case researchers. Limitations and further research are also 

discussed at the end of this chapter. 

Summary 

 

 This dissertation applied Monte Carlo simulation methods to explore the impact of 

extraneous variables on bias and standard error of treatment effect estimates, and to examine the 

degree to which bias and standard error can be reduced by including measures of the extraneous 

variables in the model used to estimate treatment effects. Two scenarios (two types of extraneous 

variable distributions – Bernoulli distribution and Piecewise distribution) were concluded and 

extracted from the empirical single-case research designed paper.  

 Data were generated using a two-level model (observation nested in participants). The 

observations for each participant in the baseline were generated as mean of 0 and the mean of the 

treatment effects were 0.6, 0.3 and 0 which represent large, medium, and no treatment effect. 

Level-1 errors were generated as autocorrelated (phi = 0.2) homogeneous across phases, while 

level-2 errors were generated under uncorrelated condition. Plus, the extraneous variable effect 

was also generated in the treatment phase. For the extraneous variable that consists in Bernoulli 

distribution in the treatment phase was considered as the first scenario, while the extraneous 

variable that consists in Piecewise distribution in the treatment phase was considered as the 

second scenario.  
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Two models for each scenario – miss-specified model, which is not including the 

extraneous variable effect, and correct-specified model, which is including the extraneous 

variable effect, were fit into the generated dataset. Parameter estimation accuracy and statistical 

inferences were systematically analyzed. Bias, relative bias, SE, and CI coverage rates were 

compared across simulation conditions by using ANOVA tests. The interactions of the 

simulation conditions were also examined through ANOVA tests.  

Findings 

 

Bias and Relative Bias of the Treatment Effect Estimate 
 

The results of bias and relative bias for both Bernoulli and Piecewise distribution 

scenario were consistent. That is, only whether the model was correctly specified substantially 

explained the variation in bias estimates. When the model was correctly specified to model the 

extraneous variable effect, the bias was zero, but was non-zero when the extraneous variable 

effects were not modeled. Although previous research had not looked at adding terms to the 

model to estimate idiosyncratic extraneous variable effects, previous research had found that the 

fixed effects of multilevel models of single-case data were unbiased when models were correctly 

specified, including two level models without slopes (Ferron et al., 2009), three level models 

without slopes (Owens & Ferron, 2012), and three-level models with slopes (Moeyaert et al, 

2014). In addition, one study that looked at modeling common, as opposed to idiosyncratic, 

external event effects found that modeling the effects removed the bias that was present when the 

effects were not modeled (Moeyaert et al., 2013). Furthermore, the biasing of the effect estimates 

to non-modeled extraneous variable effects was also found for some alternative types of 

idiosyncratic extraneous variable effects (Ferron et al., 2014). Thus, the bias results from this 

study are largely consistent with what may have been expected from previous research.  
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SE of the Treatment Effect Estimate 
 

In Bernoulli distribution scenario, the interaction of observation factor and participant factor is 

statistically significant influence the SE of the treatment effect estimate. Plus, the extraneous 

variable effect also has a large influence on SE. Figure 16 and 17 demonstrated that the SE was 

smaller with large observations nested in large participants, and correct specified model has 

smaller SE than the miss-specified model. For Piecewise distribution, the results are the same as 

Bernoulli distribution, however, the extraneous variable effect factor does not influence the SE 

of the treatment effect.  

CI Coverage Rate for the Treatment Effect 
 

Only extraneous variable factor is influencing the CI coverage rate for the treatment effect in 

both Bernoulli and Piecewise distribution scenario. Figure 20 demonstrated that for miss-

specified model in Bernoulli distribution, the CI coverage rate is only approximately 2% while 

for the correct-specified model, the CI coverage rate is around 95%. Also, the ANOVA results 

showed a large effect size for extraneous variable effect on CI coverage rate. For Piecewise 

distribution scenario, the CI coverage rate for miss-specified model is around 37% while the CI 

coverage rate for correct-specified model is 95% (Shown in Figure 21). The finding of coverage 

rates of 95% with correctly specified models is consistent with previous studies that did not 

simulate extraneous variable effects (Ferron et al., 2009; Moeyaert et al, 2014; Owens & Ferron, 

2012), and adds to the support for the viability of applying multilevel models when estimating 

average treatment effects in single-case studies.  

Limitations  

 

This dissertation is only a start point of exploring extraneous variable effects in single-

case design. Therefore, some limitations could be found in this dissertation. First, this simulation 
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study was conducted with only limited conditions. For example, only two types of extraneous 

variable (with Bernoulli distribution and Piecewise distribution) conditions were explored and 

modeled. Therefore, the interpretation of the conclusion needs to be interpreted with caution 

when applied the conditions beyond this dissertation. Future research could examine a wider 

range of single-case literature to uncover other extraneous variables with different distributions, 

such as a geometric distribution or a triangular distribution. Then the efficacy of modeling the 

different types of effects of these alternative extraneous variables could be examined. Also, more 

simulation conditions, including different numbers of observations, different numbers of 

participants, different levels of autocorrelation, the presence of baseline trends, and different 

types of single-case designs, could be examined to investigate the generalizability of the current 

findings.  

In addition, this research was limited to the examination of effect estimation through 

multilevel models. Future research could examine the impact of modeling extraneous variable 

effects on other approaches to estimating effects (e.g., design comparable effect sizes (Shadish et 

al., 2014), within-case standardized mean differences (Gingerich, 1984), log response ratios 

(Pustejovsky, 2018), percent goal obtained indices (Ferron et al., 2020), etc.). Lastly, the results 

of this dissertation (values) were rounded to 2 decimals, which reduced the variability shown in 

the Boxplots of the standard errors.  

Implications 

 

 Moeyaert et al., (2013) conducted a study to explore and present a method for adjusting 

the three-level model to external events that were common across cases and evaluates the 

appropriateness of the modified model. The results indicate that more bias observed in the 

treatment effects when ignoring a common external event, especially with a small number of 
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measurement occasions and studies. This result also corresponds to the results of this 

dissertation. In their study, two external events scenarios were also presented. In the first 

scenario, the pattern of external event was modeled as constantly influencing four measurement 

points for all the participants within a study. The external event in the second scenario was 

modeled similar as first scenario, the difference was the effects of the external event for these 

constant four measurement points were gradually faded. In this dissertation, the extraneous 

variable effects were modeled to be idiosyncratic (i.e., affecting a single participant, as opposed 

to all participants) and were distributed randomly across measurements occasions.  

As mentioned in previous chapters, the influence of modeling and not modeling 

idiosyncratic extraneous variable effects that change over time has not been previously studied in 

a Monte Carlo simulation study. This dissertation aimed to contribute to the existing literature 

and demonstrates that the differences between modeling and not modeling the extraneous 

variable effect in terms of bias, relative bias, SE, and CI coverage rate. It is hoped that this 

dissertation will inform the SCD researchers and practitioners about the potential influence of 

time-varying extraneous variables on treatment effect estimation and illustrate how the 

measurement and inclusion of appropriate covariates could improve effect estimation, thereby 

helping the SCD researchers and practitioners to interpret the results of the treatment effect more 

precisely.  

Secondly, for the single-case applied researchers as well as methodologists whose have 

the concerns of the accuracy of the treatment effect estimation that caused by extraneous variable 

effect, this dissertation tend to provide a guidance of how to modeling the extraneous variable 

when building analytic models. The extraneous variable can be modeled as an event that 

happened or did not happen in each observation (in a Bernoulli distribution) or can be modeled 
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as an event that has a relatively strong effect in couple of observations in the treatment phase, 

and then faded out as time passed by (Pricewise distribution). This information needs to be 

considered in the study designed, which is before the data collection. Therefore, for SCD 

practitioners, not only the outcome variable (dependent variable) needs to be tracked during the 

data collection, but also the extraneous events that happened in the treatment phases. 

If potential extraneous variables may result from variation in how the treatment is 

delivered in a particular session, then the outcome variation related to the extraneous variables 

could be minimized by focusing on the fidelity of intervention delivery. Furthermore, monitoring 

treatment fidelity over time could provide the data needed to model fidelity related extraneous 

variables.  

A more general approach to tracking potential extraneous variables would be to ask open 

ended questions after each session about whether other factors associated with the behavior 

being studied had changed since the last session. However, researchers need to be aware that 

these open-ended questions might influence or direct the outcomes. Therefore, researchers may 

need to be trained to avoid the consequences mentioned above. Another approach would be to 

develop a measurement tool, which included items for each factor that is known to be related to 

the behavior under investigation. For example, there could be items developed that are related to 

potential changes in medicine, health, sleep, other interventions or treatments, interpersonal 

relationships, etc., and then this measurement tool could be filled out each session. It would be 

helpful in future research to develop alternative approaches to gathering information on potential 

extraneous variables and then to investigate the efficiency and effectiveness of the methods. This 

dissertation found that if we were able to identify and measure extraneous variables, then we 

could improve our treatment effect estimation in multiple-baseline studies by including these 
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extraneous variables in our multilevel models. However, the advantages of more accurate 

treatment effect estimates can only be realized if we develop methods to tack and measure 

potential extraneous variables.  
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APPENDIX A: POTENTIAL CODING FOR EXTRANEOUS VARIABLES IN THE 

REVIEWED ARTICLES 

 

 
Table 7. Potential Coding for the Extraneous Variables in the Reviewed Articles. 

 

Articles Suggested 
Extraneous 
Variables  

Potential Coding 
for Extraneous 
variables 

 

1. The 
effects 
associat

ed with 
metacog

nitive 
therapy 
in 

postpart
um 
depressi

on. 
 

 
 
 

 
 

 

“Participant B’s 
scores 
decreased 

during baseline, 
but this 

coincided with 
a time when her 
partner was on 

leave from 
work and she 
received much 

more support 
than usual. Her 

scores increased 
once this period 
passed; 

Participant D 
presented as 

severely 
depressed and 
expressed 

suicidal ideation 
during the 

assessment;”(B
evan, 
Wittkowski, & 

Wells, 2013, p. 
73). 

The “partner on 
leave” could be 
coded as 0 with 

no leave and 1 
with leave.  

 
A brief 
behavioral 

activation 
intervention 
could be treated 

as a continuous 
variable, that the 

effect of the 
behavioral 
activation 

intervention will 
be gradually 

faded.  
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Table 7.(Continued). 
 

Articles Suggested 

Extraneous 
Variables  

Potential Coding 

for Extraneous 
variables 

 

2. The 

impact 
of 

wellness
-focused 
supervis

ion on 
mental 

health 
counseli
ng 

practicu
m 

students. 

“Each person 

showed a 
decreased score 

during Weeks 9 
or 10. One 
hypothesis for 

this low score is 
that there was a 

significant 
program 
challenge that 

occurred at that 
time” (Walen, 

Gage, & Lindo, 
2016, p. 470). 
 

A significant 

program 
challenge for 

week 9 or 10 
could be coded 
as 1. Other 

weeks could be 
coded as 0.  
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Table 7.(Continued). 
 

Articles Suggested 

Extraneous 
Variables  

Potential Coding 

for Extraneous 
variables 

 

3. 

Evaluati
on of 

increasi
ng 
antecede

nt 
specifici

ty in 
goal 
statemen

ts on 
adheren

ce to 
positive 
behavior

-
manage
ment 

strategie
s. 

“Varying 

activities across 
observation 

sessions may 
have been 
associated with 

differences in 
the saliency of 

discriminative 
stimuli for 
praise. For 

instance, 
opportunities to 

praise students 
while they were 
in the computer 

lab or quietly 
working on 
individual tasks 

may have been 
less salient than 

when students 
were 
encouraged to 

provide vocal 
responses 

during group 
instruction. The 
possibility 

remains that 
some activities 

(e.g., reading) 
present less 
salient 

discriminative 
stimuli for 

praise relative 
to others (e.g., 
math)” (Cohrs, 

& Shriver, 
2016, p. 777). 

The influence of 

varying activities 
(computer lab, 

quietly working 
on individual 
tasks, or group 

instruction) 
across sessions 

may influence 
the outcome 
variable. And it 

could be treated 
as continuous 

variable.    
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Table 7.(Continued). 
 

Articles Suggested 

Extraneous 
Variables  

Potential Coding 

for Extraneous 
variables 

 

4. Using 

a 
concept

ual 
understa
nding 

and 
procedur

al 
fluency 
heuristic 

to target 
math 

intervent
ions. 

“The study did 

not take into 
account the 

quality or focus 
of core 
instruction. The 

multiple-
baseline design 

allowed for 
internally valid 
conclusions 

about the 
intervention, 

but the effect 
that classroom 
instruction also 

had on the data 
is unknown” 
(Burns, et al., 

2015, p. 58). 
 

The effect of the 

classroom 
instruction could 

be a continuous 
variable since it 
may vary across 

time.   
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Table 7.(Continued). 
 

Articles Suggested 

Extraneous 
Variables  

Potential Coding 

for Extraneous 
variables 

 

5. 

Evaluati
ng the 

effects 
of on-
task in a 

box as a 
class-

wide 
intervent
ion. 

“Treatment 

integrity for 
Classroom C 

fell below 80% 
during 
implementation, 

which coincided 
with a decrease 

in class-wide 
on-task 
behavior. For 

sessions with 
low integrity, 

the teacher of 
Classroom C 
did not collect 

self-monitoring 
forms and did 
not provide 

reinforcement if 
the class met its 

goal. Therefore, 
the teacher was 
retrained on the 

intervention 
procedures 

using 
performance 
feedback” 

(Battaglia, 
Radley, & Ness, 

2015, p. 752). 
 

Teacher of 

classroom c did 
not collect self-

monitoring 
forms and did 
not provide 

reinforcement on 
several sessions 

could be coded 
as 1, and other 
sessions could be 

coded 0.  

 

 

 
 
 

 
 

 
 



 
 

88 

 

Table 7.(Continued). 
 

Articles Suggested 

Extraneous 
Variables  

Potential Coding 

for Extraneous 
variables 

 

8. 

Compari
son of 

most-to-
least to 
error 

correctio
n for 

teaching 
receptiv
e 

labelling 
for 

children 
diagnose
d with 

autism. 

“Mort had a 

previous history 
of engaging in 

non-compliance 
when provided 
corrective 

feedback. 
Anecdotally, 

throughout this 
study, Mort 
infrequently 

engaged in non-
compliant 

behaviours; in 
addition, non-
compliance was 

distributed 
evenly across 
both teaching 

conditions. 
However, his 

previous history 
may have 
accounted for 

quicker 
responding in 

the most-to-
least condition 
for those targets 

he did master” 
(Leaf et al., 

2016, p. 224). 
 

“Infrequently 

engaged in non-
compliant 

behaviours” 
duing the 
observations 

could be coded 
as 1, and other 

obseration 
occations could 
be coded 0.  
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Table 7.(Continued). 
 

Articles Suggested 

Extraneous 
Variables  

Potential Coding 

for Extraneous 
variables 

 

9. 

Effects 
of 

therapy 
balls on 
children 

diagnose
d with 

attention 
deficit 
hyperact

ivity 
disorder. 

“Due to the 

various 
assignments/tas

ks that took 
place during 
independent 

seatwork time, 
data on 

classroom work 
samples (e.g., 
work 

completion and 
work accuracy) 

could not be 
collected 
consistently, 

which would 
have provided 
valuable 

information” 
(Taipalus, 

Hixson, 
Kanouse, Wyse, 
& Fursa, 2017, 

p. 425). 
 

“Data on 

classroom work 
sample” (can be 

concluded as 
different 
classroom work 

tasks) could be a 
continuous 

variable and it 
could vary 
across person 

and across time 
since the 

participants 
might score 
differently at 

different 
observation 
occasions on 

their work 
sheets.  
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Table 7.(Continued). 
 

Articles Suggested 

Extraneous 
Variables  

Potential Coding 

for Extraneous 
variables 

 

10. 

Effects 
of video 

modelin
g and 
feedbac

k on 
mothers’ 

impleme
ntation 
of peer-

to-peer 
manding

. 

“One reason for 

the lack of 
functional 

control comes 
from Sam’s 
data. His mands 

steadily 
increased and 

remained high 
but variable 
throughout 

baseline, and it 
was not until his 

mother entered 
the training 
phase that both 

his and her 
performances 
remained high 

and steady. This 
may have been 

because Emma 
(Sam’s mother) 
began to set up 

the materials 
and play 

environment 
correctly (i.e. 
task analysis, 

steps 1–4) and 
intermittently 

used various 
prompts” 
(Madzharova, 

& Sturmey, 
2015, p. 280). 

During the 

observation 
sessions, the 

observations that 
Emma (Sam’s 
mom) incorrectly 

used materials 
could be coded 

as 1, and the 
observations that 
Emma correctly 

used the 
materials could 

be coded 0.  
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APPENDIX B: SIMULATION RESULTS 

 

Table 8. Eta-Squared for Bias, SE, and 95% Confidence Interval of the Treatment Effect 

Estimates for Bernoulli Distribution Condition. 
 

Conditions Eta-Square 

 Bias SE CI 

Participant 0 0.29 0 

Observation 0 0.29 0 
Participant*Observation 0 0.03 0 

True 0 0 0 
Participant*True 0 0 0 
Observation*True 0 0 0 

Participant*Observation*True 0 0 0 
Extraneous Variable Effect 1 0.29 0.998 

Participant*Extraneous Variable Effect 0 0.03 0 
Observation*Extraneous Variable Effect 0 0.03 0 
Participant*Observation*Extraneous Variable Effect 0 0.03 0 

True*Extraneous Variable Effect 0 0 0 
Participant*True*Extraneous Variable Effect 0 0 0 

Observation*True*Extraneous Variable Effect  0 0 0 
Participant* Observation*True*Extraneous Variable Effect  0 0 0 
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Table 9. Eta-Squared for Bias of the Treatment Effect Estimates for Piecewise Distribution 
Condition. 

 

Conditions Eta-Square 

 Bias SE CI 

Participant 0 0.33 0.08 
Observation 0.03 0.33 0.02 

Participant*Observation 0.03 0.33 0 
True 0.02 0 0 

Participant*True 0 0 0 
Observation*True 0.01 0 0 
Participant*Observation*True 0 0 0 

Extraneous Variable Effect 0.81 0 0.78 
Participant*Extraneous Variable Effect 0 0 0.08 

Observation*Extraneous Variable Effect 0.03 0 0.03 
Participant*Observation*Extraneous Variable Effect 0 0 0 
True*Extraneous Variable Effect 0.02 0 0 

Participant*True*Extraneous Variable Effect 0 0 0 
Observation*True*Extraneous Variable Effect  0.01 0 0 

Participant* Observation*True*Extraneous Variable Effect  0 0 0 
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Table 10. Bias, Relative Bias, Coverage, and Standard Errors Estimates for miss-specified model 
for Bernoulli Distribution Condition. 

 

Conditions  True = 0.6 True = 0.3 (True = 0) Avg. 

4(16) Effect Est (SE) 0.72(0.03) 0.42(0.03) 0.12(0.03)  
 Bias .12 .12 .12 .12 

 Relative Bias 0.2 0.4   
 95%CI .06 .08 .07 .07 

8(16) Effect Est (SE) 0.72(0.02) 0.42(0.02) 0.12(0.02)  
 Bias .12 .12 .12 .12 
 Relative Bias 0.2 0.4   

 95%CI .01 .01 .01 .01 
4(32) Effect Est (SE) 0.72(0.02) 0.42(0.02) 0.12(0.02)  

 Bias .12 .12 .12 .12 
 Relative Bias 0.2 0.4   
 95%CI .01 .01 .01 .01 

8(32) Effect Est (SE) 0.72(0.01) 0.42(0.01) 0.12(0.01)  
 Bias .12 .12 .12 .12 

 Relative Bias 0.2 0.4   
 95%CI 0 0 0 0 

 
 

Table 11. Bias, Relative Bias, Coverage, and Standard Errors Estimates for correct-specified 
model for Bernoulli Distribution Condition. 

 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 

 

 

 

Conditions   True = 0.6  True = 0.3  (True = 0) Avg. 

4(16) Effect Est (SE) 0.60 (0.02) 0.30 (0.02) 0 (0.02)  

 Bias 0 0 0 0 
 Relative Bias 0 0   

 95%CI .94 .94 .95 .95 
8(16) Effect Est (SE) 0.60 (0.01) 0.30 (0.01) 0 (0.01)  

 Bias 0 0 0 0 

 Relative Bias 0 0   
 95%CI .94 .94 .94 .94 

4(32) Effect Est (SE) 0.60 (0.01) 0.30 (0.01) 0 (0.01)  
 Bias 0 0 0 0 
 Relative Bias 0  0   

 95%CI .94 .93 .95 .94 
8(32) Effect Est (SE) 0.60 (0.01) 0.30 (0.01) 0 (0.01)  

 Bias 0 0 0 0 

 Relative Bias 0 0   

 95%CI .94 .94 .94 .94 
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Table 12. Bias, Relative Bias, Coverage, and Standard Errors Estimates for miss-specified model 
for Piecewise Distribution Condition. 

 

 

 
 

 

 

 
 
 

 
 

 

 
 

 
 

 
 

 

 
Table 13. Bias, Relative Bias, Coverage, and Standard Errors Estimates for correct-specified 

model for Piecewise Distribution Condition. 
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 

 

Conditions   True = 0.6  True = 0.3  (True = 0) Avg. 

4(16) Effect Est (SE) 0.65 (0.02) 0.35(0.02) 0.05(0.02)  

 Bias .05 .03 .05 .04 
 Relative Bias 0.08 0.1   

 95%CI .48 .46 .48 .47 
8(16) Effect Est (SE) 0.65 (0.01) 0.35(0.01) 0.05(0.01)  

 Bias .05 .05 .05 .05 

 Relative Bias 0.08 0.17   
 95%CI .10 .07 .07 .08 

4(32) Effect Est (SE) 0.62 (0.01) 0.33(0.01) 0.03(0.01)  
 Bias .02 .03 .05 .03 
 Relative Bias 0.03 0.1   

 95%CI .65 .64 .65 .65 
8(32) Effect Est (SE) 0.62 (0.01) 0.32(0.01) 0.03(0.01)  

 Bias .02 .02 .05 .03 

 Relative Bias 0.03 0.07   

 95%CI .32 .30 .30 .31 

Conditions   True = 0.6  True = 0.3  (True = 0) Avg. 

4(16) Effect Est (SE) 0.60 (0.02) 0.30 (0.02) 0 (0.02)  
 Bias 0 0 0 0 

 Relative Bias 0 0   
 95%CI .94 .94 .95 .95 

8(16) Effect Est (SE) 0.60 (0.01) 0.30 (0.01) 0 (0.01)  
 Bias 0 0 0 0 
 Relative Bias 0 0   

 95%CI .94 .94 .94 .94 
4(32) Effect Est (SE) 0.60 (0.01) 0.30 (0.01) 0 (0.01)  

 Bias 0 0 0 0 
 Relative Bias 0 0   
 95%CI .94 .93 .95 .94 

8(32) Effect Est (SE) 0.60 (0.01) 0.30 (0.01) 0 (0.01)  
 Bias 0 0 0 0 

 Relative Bias 0 0   

 95%CI .94 .94 .94 .94 
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APPENDIX C: SAS CODE 

 
*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

The following simulation code is for burnolli distribution. 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++; 

ods graphics off; 

 

ods html close; 

 

ods _all_ close; 

 

proc printto log = junk; 

 

 

proc printto log='C:\Users\tuq44546\Desktop\ke\diss\log.txt'; 

 

proc printto print = 'C:\Users\tuq44546\Desktop\ke\diss\output.txt'; 

 

 

%global _print_; 

 

%let _print_ = off; 

 

data j0; 

 

input Estimate StdErr Lower Upper; 

 

datalines; 

 

. . . . 

 

. . . . 

 

; 

 

data j00; 

 

input Estimate StdErr Lower Upper; 

 

datalines; 

 

. . . . 

 

. . . . 

 

. . . . 

 

; 
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%macro hlmsim (n, n1, n2, v2lev, phi, true, br); 

 

%do i=1 %to &n; 

 

 

dm 'odsresults; clear'; 

 

  

 

proc iml; 

 

 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

This part of the program creates the initial data set, 

 

which contains the following variables: 

 

IDlevel2: level 2 ID 

 

time: potential level-1 predictor 

 

phase: dichotomous level-1 predictor (0=baseline, 1=treatmetnt) 

 

y: outcome 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++; 

 

create j1 var{IDlevel2 time timec  phase EV y}; 

  

 

 

 

do ID=1 to &n2; 

 

cut=0; 

 

* cut = the last baseline observation; 

 

if &n2=4 then do; 

 

if &n1=16 & (ID = 1) then cut = 5; 

 

if &n1=16 & (ID = 2) then cut = 7; 

 

if &n1=16 & (ID = 3) then cut = 9; 

 

if &n1=16 & (ID = 4) then cut = 11; 

 

if &n1=32 & (ID = 1) then cut = 10; 

 

if &n1=32 & (ID = 2) then cut = 14; 

 

if &n1=32 & (ID = 3) then cut = 18; 

 

if &n1=32 & (ID = 4) then cut = 22; 
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end; 

 

 

 

if &n2=8 then do; 

 

if &n1=16 & (ID = 1 | ID = 5) then cut = 5; 

 

if &n1=16 & (ID = 2 | ID = 6) then cut = 7; 

 

if &n1=16 & (ID = 3 | ID = 7) then cut = 9; 

 

if &n1=16 & (ID = 4 | ID = 8) then cut = 11; 

 

if &n1=32 & (ID = 1 | ID = 5) then cut = 10; 

 

if &n1=32 & (ID = 2 | ID = 6) then cut = 14; 

 

if &n1=32 & (ID = 3 | ID = 7) then cut = 18; 

 

if &n1=32 & (ID = 4 | ID = 8) then cut = 22; 

 

end; 

 

 

 

IDlevel2=j(&n1,1,ID); 

 

time=j(&n1,1,0); 

 

timec=j(&n1,1,0); *centered time; 

 

phase=j(&n1,1,0); 

 

EV = j(&n1, 1, 0); 

 

 

 

 

do ii=1 to &n1; 

time[ii,1]=ii-1; 

timec[ii,1]=ii-cut-1; 

 

 

if ii > cut then phase[ii,1]=1; 

 

end; 

 

*creating level 1 error armasim: auto-correlated errors;  

 

x=round(1000000*ranuni(0)); 

 

rr=armasim({1,&phi},0,0,.05,&n1,x); 

 

 

r=rr; 
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*level 2 errors; 

 

u0b=rannor(0); 

 

*repeated the same person error for all the observation of a person; 

 

u0=repeat(u0b*sqrt(&v2lev),&n1);*variation for baseline; 

 

u1b=rannor(0); 

 

u1=repeat(u1b*sqrt(&v2lev),&n1);*variation for treatment; 

 

u2b=rannor(0); 

 

u2=repeat(u2b*sqrt(&v2lev),&n1);*variation for EV variable; 

 

 

  

*grand mean for intercept; 

 

gamma00=0; *baseline avg = 0; 

 

*treatment effect; 

gamma10=&true;  

 

gamma20=&br; 

 

intercep=gamma00+u0; 

 

effect=gamma10+u1; 

 

*creating ev variable effect; 

*generate uniform distribution as k, the numbers are from 0 to 1. if the 

number <=.4 then ev=0,if the number >.4 then ev=0.2.  

ev=0 for all baseline; 

 

 

do iii=1 to &n1; 

k=round(1000000*ranuni(0)); 

EV[iii,1]=uniform(k); 

if EV[iii,1]<=.4 then EV[iii,1]=0; 

if EV[iii,1]>.4 then EV[iii,1]=1; 

if phase[iii,1]=0 then EV[iii,1]=0; 

end; 

 

EVb = EV*gamma20 + u2; 

 

y = intercep + effect#phase + EVb +r; 

 

 

 

 

*print intercep true phase r y; 
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*print IDlevel2 u0 u1 r gamma00 gamma10  intercep effect time timec phase cut 

y ev; 

 

append; 

 

end; *closes the person loop; 

  

 

 

close j1; 

 

quit; 

 

*****************************end of data 

generation****************************************************; 

 

*this is generating the missing value for convergence, we assuming the value 

are all missing, and if the estimates come out, it will replace the missing 

value, otherwise,it will keep as missing; 

 

data fixedpar1; 

 

set j0; 

 

data fixedpar2; 

 

set j00; 

 

 

 

* Model 1: the miss specified model; 

 

proc mixed data =j1 covtest cl; 

 

class idlevel2 ; 

 

model y = phase / s cl alpha = .05 ddfm = kenward; 

 

random int phase / sub = idlevel2; *vary across people; 

 

repeated / sub = idlevel2 type=ar(1); 

 

ods output solutionF=fixedpar1    /*F means the fixed effect;*/ 

 

(keep = Estimate StdErr Lower Upper); 

 

 

Run; 

 

 

* Model 2: the correct specified model; 

 

proc mixed data =j1 covtest cl; 
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class idlevel2 ; 

 

model y = phase EV/ s cl alpha = .05 ddfm = kenward; 

 

random int phase EV/ sub = idlevel2; *vary across people; 

 

repeated / sub = idlevel2  type=ar(1); 

 

ods output solutionF=fixedpar2 

 

(keep = Estimate StdErr Lower Upper); 

 

 

Run; 

 

 

%do j=1 %to 2; 

 

 data fixed&j; 

 

  set fixedpar&j; 

 

  w&j = estimate; output; 

 

  w&j = StdErr; output; 

 

  w&j = lower; output; 

 

  w&j = upper; output; 

 

  drop estimate StdErr lower upper; 

 

 run; 

 

%end; 

 

*transform the results to one column, and rename the column; 

 

 

proc transpose data = fixed1  

out = fixed1 

 

(rename = ( 

 

col1=est1_int   col2=se1_int   col3=l1_int  

 col4=u1_int 

 

col5=est1_pha   col6=se1_pha   col7=l1_pha  

 col8=u1_pha 

 

)); 

 

run; 

 

*proc print; 

 

*run; 
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proc transpose data = fixed2 

out = fixed2 

 

(rename = ( 

 

col1=est2_int   col2=se2_int   col3=l2_int  

 col4=u2_int 

 

col5=est2_pha2   col6=se2_pha2   col7=l2_pha2  

 col8=u2_pha2 

 

col9=est2_EV   col10=se2_EV   col11=l2_EV  

 col12=u2_EV 

)); 

 

run; 

 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

The following statements merge the output data sets resulting with one row 

 

of data containing the point estimates, lower limit, upper limit, for 

 

each fixed effect and variance component, for each DF method. For the fixed 

 

effects, it also contains the DF. The data set is then appended with 

 

a new row for each simulated data set. 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++; 

 

 

%do j=1 %to 2; 

 

 data all&j; 

    set fixed&j; 

    counter = &i; 

 

 run; 

 

%end; 

 

  

 

%if &i = 1 %then %do; 

 

 %do j=1 %to 2; 

 

  data sumstat&j; 

        set all&j; 

 

  run; 

 

 %end; 
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%end; 

 

 

 

%else %do; 

 

 %do j=1 %to 2; 

 

  data sumstat&j; 

        merge sumstat&j all&j; 

        by counter; 

 

  run; 

 

 %end; 

 

%end; 

 

%end;*this end is for the very first do loop for &n; 

 

 

 

*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

The following set of commands creates a series of indicator variables 

 

based on whether the fixed effect parameter and the variance component 

 

parameter falls between the lower and upper limit. It then computes 

 

the width of the confidence interval for each effect for each DF method. 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++; 

 

 

*track the confidence interval coverage; 

 

data sumstat1; 

 

set sumstat1; 

 

cov1_pha=0; 

 

if (l1_pha <= gamma10) & (gamma10 <= u1_pha) then cov1_pha=1; 

 

if l1_pha=. then cov1_pha=.; 

 

wid1_pha = u1_pha - l1_pha; 

 

run; 

 

 

 

 

 

 

data sumstat2; 
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set sumstat2; 

 

cov2_pha2=0; 

 

if (l2_pha2 <= gamma10) & (gamma10 <= u2_pha2) then cov2_pha2=1; 

 

if l2_pha2=. then cov2_pha2=.; 

 

wid2_pha2  = u2_pha2  - l2_pha2; 

 

run; 

 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++ 

 

Means are then calculated, giving estimates of bias in the fixed and variance 

 

component effect estimates along with the average standard error, 

 

the coverage probabilities for each effect, 

 

and the average CI width for each effect. 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++; 

 

proc means noprint data = sumstat1; 

 

var 

 

est1_pha   se1_pha   cov1_pha   wid1_pha; 

 

output out=meanstat1 

 

mean = 

 

est1_pha   se1_pha   cov1_pha   wid1_pha 

 

n = n_sims 

 

std (est1_pha) = sest1_pha   

 

; 

 

run; 

 

 

 

 

proc means noprint data = sumstat2; 

 

var 

 

est2_pha2   se2_pha2   cov2_pha2   wid2_pha2 ; 

 

output out=meanstat2 
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mean = 

 

est2_pha2   se2_pha2   cov2_pha2   wid2_pha2 

 

n = n_sims 

 

std (est2_pha2) = sest2_pha2; 

 

run; 

 

 

 

ods listing; 

 

%global _print_; 

 

 %let _print_ = on; 

 

%do j=1 %to 2; 

 

 data meanstat&j; 

 

  set meanstat&j; 

 

  reps=&n; 

 

  n1size=&n1; 

 

  n2size=&n2; 

 

  v2level=&v2lev; 

 

  phi=-1*&phi; 

 

  conv=n_sims/reps; 

 

 run; 

 

 proc print data=meanstat&j; 

 

 run; 

 

%end; 

 

 

 

*for miss specified model; 

 

data meanstat1; 

 

 set meanstat1; 

 

* file print; 

 

 file "C:\Users\tuq44546\Desktop\ke\diss\miss-model.txt" mod lrecl=800; 
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 put @1( 

 

est1_pha   se1_pha   cov1_pha   wid1_pha 

 

n_sims           

 

sest1_pha 

 

reps 

 

  n1size 

 

  n2size 

 

  v2level 

 

  phi 

 

  conv) (9.4); 

 

run; 

 

  

*for correct model; 

 

data meanstat2; 

 

 set meanstat2; 

 

* file print; 

 

 file "C:\Users\tuq44546\Desktop\ke\diss\correct-model.txt" mod 

lrecl=800; 

 

 put @1( 

 

est2_pha2   se2_pha2   cov2_pha2   wid2_pha2 

 

n_sims           

 

sest2_pha2 

 

reps 

 

  n1size 

 

  n2size 

 

  v2level 

 

  phi 

 

  conv) (9.4); 

 

run; 
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%mend; 

 

%hlmsim(n=10,n1=32,n2=4,v2lev=0.0001,phi=-0.2, true=0.3, br=0.2); 

 

run; 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

The following simulation code is for piecewise distribution. 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++; 

ods graphics off; 

 

ods html close; 

 

ods _all_ close; 

 

*proc printto log = junk; 

 

 

*proc printto log=''; 

 

*proc printto print = ''; 

 

 

%global _print_; 

 

%let _print_ = off; 

 

data j0; 

 

input Estimate StdErr Lower Upper; 

 

datalines; 

 

. . . . 

 

. . . . 

 

; 

 

%macro hlmsim (n, n1, n2, v2lev, phi, true); 

 

%do i=1 %to &n; 

 

 

dm 'odsresults; clear'; 

 

  

 

proc iml; 

 

 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

This part of the program creates the initial data set, 

 

which contains the following variables: 
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IDlevel2: level 2 ID 

 

time: potential level-1 predictor 

 

timec: centered time 

 

phase: dichotomous level-1 predictor (0=baseline, 1=treatmetnt) 

 

y: outcome 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++; 

 

create j1 var{IDlevel2 time timec  phase EV y }; 

  

 

 

 

do ID=1 to &n2; 

 

cut=0; 

 

* cut = the last baseline observation; 

 

if &n2=4 then do; 

 

if &n1=16 & (ID = 1) then cut = 5; 

 

if &n1=16 & (ID = 2) then cut = 7; 

 

if &n1=16 & (ID = 3) then cut = 9; 

 

if &n1=16 & (ID = 4) then cut = 11; 

 

if &n1=32 & (ID = 1) then cut = 10; 

 

if &n1=32 & (ID = 2) then cut = 14; 

 

if &n1=32 & (ID = 3) then cut = 18; 

 

if &n1=32 & (ID = 4) then cut = 22; 

 

end; 

 

 

 

if &n2=8 then do; 

 

if &n1=16 & (ID = 1 | ID = 5) then cut = 5; 

 

if &n1=16 & (ID = 2 | ID = 6) then cut = 7; 

 

if &n1=16 & (ID = 3 | ID = 7) then cut = 9; 

 

if &n1=16 & (ID = 4 | ID = 8) then cut = 11; 

 

if &n1=32 & (ID = 1 | ID = 5) then cut = 10; 
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if &n1=32 & (ID = 2 | ID = 6) then cut = 14; 

 

if &n1=32 & (ID = 3 | ID = 7) then cut = 18; 

 

if &n1=32 & (ID = 4 | ID = 8) then cut = 22; 

 

end; 

 

 

 

IDlevel2=j(&n1,1,ID); 

 

time=j(&n1,1,0); 

 

timec=j(&n1,1,0); *centered time; 

 

phase=j(&n1,1,0); 

 

phase1=j(&n1,1,0); 

 

phase2=j(&n1,1,0); 

 

EV = j(&n1, 1, 0); 

 

 

 

do ii=1 to &n1; 

time[ii,1]=ii-1; 

timec[ii,1]=(ii-cut)-1; 

timec2[ii,1]=(ii-cut)-3; 

 

****fix this part**********************************************; 

 

if ii > cut then phase[ii,1]=1; 

 

if ii > cut & ii < cut+3 then phase1[ii,1]=1; 

 

if ii > cut & ii < cut+3 then phase2[ii,1]=1; 

 

if ii > cut+2 then phase2[ii,1]=1; 

 

 

*change the "cut" to the random number that generated from uniform 

distribution; 

 

 

 

 

if ii > cut then phase[ii,1]=1; 

 

end; 

 

*creating level 1 error armasim: auto-correlated errors;  

 

x=round(1000000*ranuni(0)); 
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rr=armasim({1,&phi},0,0,.05,&n1,x); 

 

 

r=rr; 

 

  

 

  

 

*level 2 errors; 

 

u0b=rannor(0); 

 

*repeated the same person error for all the observation of a person; 

 

u0=repeat(u0b*sqrt(&v2lev),&n1);*variation for baseline; 

 

u1b=rannor(0); 

 

u1=repeat(u1b*sqrt(&v2lev),&n1);*variation for treatment; 

 

u2b=rannor(0); 

 

u2=repeat(u2b*sqrt(&v2lev),&n1);*variation for EV variable; 

 

 

  

*grand mean for intercept; 

 

gamma00=0; *baseline avg = 0; 

 

*treatment effect; 

gamma10=&true;  

 

 

intercep=gamma00+u0; 

 

effect=gamma10+u1; 

 

EVb = EV+u2; 

 

y = intercep + effect#phase + EVb +r; 

 

 

 

 

*print intercep true phase r y; 

 

 

 

*print IDlevel2 u0 u1 r gamma00 gamma10  intercep effect time timec phase cut 

y ev; 

 

append; 

 

end; *closes the person loop; 

  



 
 

110 

 

 

 

close j1; 

 

quit; 

 

*****************************end of data 

generation****************************************************; 

 

*this is generating the missing value for convergence, we assuming the value 

are all missing, and if the estimates come out, it will replace the missing 

value, otherwise,it will keep as missing; 

 

data fixedpar1; 

 

set j0; 

 

data fixedpar2; 

 

set j0; 

 

 

 

* Model 1: the miss specified model; 

 

proc mixed data =j1 covtest cl; 

 

class idlevel2 ; 

 

model y = phase / s cl alpha = .05 ddfm = kenward; 

 

random int phase / sub = idlevel2; *vary across people; 

 

repeated / sub = idlevel2; 

 

ods output solutionF=fixedpar1 

 

(keep = Estimate StdErr Lower Upper); 

 

 

Run; 

 

 

* Model 2: the correct specified model; 

 

proc mixed data =j1 covtest cl; 

 

class idlevel2 ; 

 

model y = phase EV/ s cl alpha = .05 ddfm = kenward; 

 

random int phase EV/ sub = idlevel2; *vary across people; 

 

repeated / sub = idlevel2; 

 

ods output solutionF=fixedpar2 
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(keep = Estimate StdErr Lower Upper); 

 

 

Run; 

 

 

%do j=1 %to 2; 

 

 data fixed&j; 

 

  set fixedpar&j; 

 

  w&j = estimate; output; 

 

  w&j = StdErr; output; 

 

  w&j = lower; output; 

 

  w&j = upper; output; 

 

  drop estimate StdErr lower upper; 

 

 run; 

 

%end; 

 

*transform the results to one column, and rename the column; 

 

 

proc transpose data = fixed1  

out = fixed1 

 

(rename = ( 

 

col1=est1_int   col2=se1_int   col3=l1_int  

 col4=u1_int 

 

col5=est1_pha   col6=se1_pha   col7=l1_pha  

 col8=u1_pha 

 

)); 

 

run; 

 

*proc print; 

 

*run; 

 

 

proc transpose data = fixed2 

out = fixed2 

 

(rename = ( 

 

col1=est2_int   col2=se2_int   col3=l2_int  

 col4=u2_int 
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col5=est2_pha2   col6=se2_pha2   col7=l2_pha2  

 col8=u2_pha2 

 

col9=est2_EV   col10=se2_EV   col11=l2_EV  

 col12=u2_EV 

)); 

 

run; 

 

/*aggreage the generated datasets as dataset x*/  

/*data x;*/ 

/*set x j1;*/ 

/*run;*/ 

 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

The following statements merge the output data sets resulting with one row 

 

of data containing the point estimates, lower limit, upper limit, for 

 

each fixed effect and variance component, for each DF method. For the fixed 

 

effects, it also contains the DF. The data set is then appended with 

 

a new row for each simulated data set. 

 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++; 

 

 

%do j=1 %to 2; 

 

 data all&j; 

    set fixed&j; 

    counter = &i; 

 

 run; 

 

%end; 

 

  

 

%if &i = 1 %then %do; 

 

 %do j=1 %to 2; 

 

  data sumstat&j; 

        set all&j; 

 

  run; 

 

 %end; 

 

%end; 

 

 

 

%else %do; 
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 %do j=1 %to 2; 

 

  data sumstat&j; 

        merge sumstat&j all&j; 

        by counter; 

 

  run; 

 

 %end; 

 

%end; 

 

%end;*this end is for the very first do loop for &n; 

 

 

 

*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 

The following set of commands creates a series of indicator variables 

 

based on whether the fixed effect parameter and the variance component 

 

parameter falls between the lower and upper limit. It then computes 

 

the width of the confidence interval for each effect for each DF method. 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++; 

 

 

*track the confidence interval coverage; 

 

data sumstat1; 

 

set sumstat1; 

 

cov1_pha=0; 

 

if (l1_pha <= gamma10) & (gamma10 <= u1_pha) then cov1_pha=1; 

 

if l1_pha=. then cov1_pha=.; 

 

wid1_pha = u1_pha - l1_pha; 

 

run; 

 

 

 

 

 

 

data sumstat2; 

 

set sumstat2; 

 

cov2_pha2=0; 
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if (l2_pha2 <= gamma10) & (gamma10 <= u2_pha2) then cov2_pha2=1; 

 

if l2_pha2=. then cov2_pha2=.; 

 

wid2_pha2  = u2_pha2  - l2_pha2; 

 

run; 

 

*++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++ 

 

Means are then calculated, giving estimates of bias in the fixed and variance 

 

component effect estimates along with the average standard error, 

 

the coverage probabilities for each effect, 

 

and the average CI width for each effect. 

 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++; 

 

proc means noprint data = sumstat1; 

 

var 

 

est1_pha   se1_pha   cov1_pha   wid1_pha; 

 

output out=meanstat1 

 

mean = 

 

est1_pha   se1_pha   cov1_pha   wid1_pha 

 

n = n_sims 

 

std (est1_pha) = sest1_pha   

 

; 

 

run; 

 

 

 

 

proc means noprint data = sumstat2; 

 

var 

 

est2_pha2   se2_pha2   cov2_pha2   wid2_pha2 ; 

 

output out=meanstat2 

 

mean = 

 

est2_pha2   se2_pha2   cov2_pha2   wid2_pha2 
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n = n_sims 

 

std (est2_pha2) = sest2_pha2; 

 

run; 

 

 

 

ods listing; 

 

%global _print_; 

 

 %let _print_ = on; 

 

%do j=1 %to 2; 

 

 data meanstat&j; 

 

  set meanstat&j; 

 

  reps=&n; 

 

  n1size=&n1; 

 

  n2size=&n2; 

 

  v2level=&v2lev; 

 

  phi=-1*&phi; 

 

  conv=n_sims/reps; 

 

 run; 

 

 proc print data=meanstat&j; 

 

 run; 

 

%end; 

 

 

 

*for miss specified model; 

 

data meanstat1; 

 

 set meanstat1; 

 

* file print; 

 

 file "C:\Users\tuq44546\Desktop\ke\diss\miss-model.txt" mod lrecl=800; 

 

 put @1( 

 

est1_pha   se1_pha   cov1_pha   wid1_pha 

 

n_sims           
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sest1_pha 

 

reps 

 

  n1size 

 

  n2size 

 

  v2level 

 

  phi 

 

  conv) (9.4); 

 

run; 

 

  

*for correct model; 

 

data meanstat2; 

 

 set meanstat2; 

 

* file print; 

 

 file "C:\Users\tuq44546\Desktop\ke\diss\correct-model.txt" mod 

lrecl=800; 

 

 put @1( 

 

est2_pha2   se2_pha2   cov2_pha2   wid2_pha2 

 

n_sims           

 

sest2_pha2 

 

reps 

 

  n1size 

 

  n2size 

 

  v2level 

 

  phi 

 

  conv) (9.4); 

 

run; 

 

 

 

%mend; 

 

%hlmsim(n=5,n1=16,n2=4,v2lev=0.0001,phi=-0.2, true=0.6); 
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run; 
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