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with her endless support, effort, patience, and sacrifice. This dissertation would never have

been completed without her. The greatest gifts that this life has given me are my children,
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Abstract

The ever-growing demand for higher data rates and greater data capacity at lower cost has led

the mobile cellular industry to investigate new physical layer techniques and possible utiliza-

tion of unused spectrums at higher frequencies for next-generation cellular networks. Thus,

exploitation of the millimeter-wave (mmWave) spectrum and non-orthogonal multiple-access

(NOMA) have been envisioned as the most promising enablers in meeting capacity demand.

Due to the smaller wavelengths offered in mmWave frequencies, it is possible to deploy many

antennas into a relatively smaller physical space in mmWave frequencies. This property leads

to a promising integration between mmWave and massive multiple-input multiple-output

(M-MIMO) architecture to surmount the severe free-space pathloss thanks to the high di-

rectional beamforming gain. MmWave M-MIMO also offers significantly improved spectral

efficiency by allowing simultaneous transmission of multiple data streams and utilizing the

abundant and large bandwidth. However, conventional digital precoding causes excessive

power consumption and hardware cost when directly adopted for mmWave M-MIMO since

each antenna element necessitates its own radio-frequency (RF) chain. This problem can

be addressed by beamspace MIMO (B-MIMO) because it can reduce the required RF chain

by taking advantage of inherent sparsity in mmWave channels and applying a proper beam

selection. On the other hand, NOMA enhances spectral efficiency by multiplexing multiple

users’ signals in the power domain using the same time and frequency resources, where the

detection of multiple users’ signals is performed by successive interference cancellation (SIC).

The research has concentrated on the beam selection problem, precoding design in B-

MIMO, and spectral/energy efficiency enhancement in mmWave M-MIMO and NOMA.

Specifically, the dissertation addresses the following:

vi



First, we investigate the complexity reduction of the existing beam selection algorithms

with incremental QR precoder (I-QR-P) and decremental QR precoder (D-QR-P). The pro-

posed two-stage and three-stage algorithms reduce the complexity of D-QR-P and I-QR-P,

respectively. Both aim to lower complexity by decreasing the candidate beam size by elimi-

nating the beams with no contribution to any user and using matrix perturbation theory to

update QR decompositions.

Second, we propose a hybrid precoding algorithm for the lens antenna subarray (LAS)-

MIMO architecture in mmWave to control the LAS design efficiently. The precoding problem

is formulated as a sparse reconstruction problem due to the inherent sparsity of the mmWave

channel. The proposed algorithm is an iterative process developed jointly using artificial bee

colony (ABC) optimization with orthogonal matching pursuit (OMP) algorithms. In each

iteration, the algorithm randomly selects the switches for each lens using ABC and then uses

OMP to approximate optimal unconstrained precoders.

Third, we investigate the spectral efficiency and energy efficiency tradeoff in downlink

NOMA with the consideration of the quality of service (QoS) requirements. The non-convex

multi-objective optimization problems are solved using population-based multi-objective evo-

lutionary algorithms (MOEAs).

Finally, we propose an algorithm for the user-cell association problem in M-MIMO ultra-

dense heterogeneous networks (UDHNs)., where the spectral and energy efficiency tradeoff

is addressed. To this end, we formulate a convex multi-objective optimization problem

and convert it into a single objective optimization problem where a priority is assigned for

the spectral efficiency and energy efficiency with a weighting factor. The problem aims to

maximize the weighted sum of spectral efficiency and energy efficiency. As a solution, La-

grange duality analysis is performed, and a distributed game theoretical user-cell association

(GTUCA) algorithm is developed, considering the fairness among users.

vii



Chapter 1: Introduction

Despite millimeter-wave (mmWave) spectrum utilization and massive multiple input mul-

tiple output (M-MIMO) being the key technologies to meet the ever-growing capacity de-

mands for the next-generation cellular networks, some signal processing challenges arise due

to the implementation of large-scale antenna arrays and mmWave channel characteristics

such as detection algorithms requiring large matrix inversion, training overhead for channel

estimation, and increased hardware cost and power consumption to fully achieve the spatial

multiplexing with precoding. However, M-MIMO can also provide some level of simplifi-

cation in signal processing due to the asymptotic orthogonality obtained as the number of

antenna elements increases [1].

MmWave frequencies suffer from high atmospheric absorption, severe free-space pathloss

at the first meter of the propagation, and poor penetration through water and concrete walls

[2, 3, 4]. However, the smaller wavelength of mmWave frequencies makes accommodating

many antenna elements in physically smaller areas possible. Hence, this characteristic enables

a fruitful integration between M-MIMO and mmWave spectrum, compensating for the severe

free-space pathloss thanks to the high directional beamforming gain [2]. MmWave M-MIMO

improves spectral efficiency by introducing high spatial degrees of freedom (DoF) [1], allowing

multiple data streams [5], and exploiting the larger bandwidth [6].

Unfortunately, it is not practical to implement mmWave M-MIMO entirely digitally

since each antenna element requires one dedicated radio-frequency (RF) chain leading to

prohibitively high power consumption and unaffordable hardware cost, even though it en-

sures full capacity and flexibility. On the other hand, severe performance loss is obtained

when mmWave M-MIMO deploys a fully analog beamforming structure due to the constant
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amplitude constraints led by the phase shifters with a few RF chains during the realization

of the analog beamforming [7]. It is also not practical to be extended to multi-user commu-

nication systems [8]. In order to overcome the issues in fully analog and digital structures,

hybrid precoding is considered a feasible approach [9, 10]. The hybrid precoding consists

of a small-size digital precoder with a few RF chains to eliminate the interference and a

large-size analog beamformer having many phase shifters to enhance the antenna array gain.

Since each RF chain is connected to all the antenna elements through a phase shifter, hy-

brid precoding reduces the required RF chains without significant performance degradation.

MmWave M-MIMO with hybrid precoding suffers also from high signal processing complex-

ity and power consumption when considerably many phase shifters are used. Therefore,

beamspace MIMO (B-MIMO) proposed in [11] reduces the RF chain requirement by ex-

ploiting the inherent sparsity in the mmWave channels. In B-MIMO, the angular domain

(i.e., beamspace) representation of the spatial channel is performed by employing a discrete

lens array (DLA) at the base station to explore the channel sparsity [11]. Hence, a reduc-

tion in radio-frequency (RF) chains required is achieved without compromising the system

performance by performing beam selection [6, 11].

1.1 Overview of Precoding Techniques to Enable mmWave Communication

1.1.1 Digital Precoding

Digital precoding is a powerful technique widely applied in conventional MIMO systems

operating at low frequencies to enhance transmission quality and provide a more reliable

connection where each antenna element is connected to an RF chain leading to high flexibility

to control the phase and amplitude of the transmitted signal [8]. Realizing beamforming with

digital precoders also brings additional advantages, such as interference cancelation and high

spatial multiplexing gain. It is also possible for both single-user and multi-user scenarios to

realize the digital precoding by linear or nonlinear signal processing techniques.

2



1.1.1.1 Single-user Digital Precoding

Let Fig. 1.1 represent a single-user M-MIMO architecture where an Nr-antenna user is

served by a base station deploying Nt antennas through simultaneously transmitted Ns data

streams. Since each antenna requires its own dedicated RF chain in digital precoding, the

number of transmit RF chains should be NRF = Nt, where Ns ≤ NRF ≤ Nt. Accordingly,

the received signal vector y ∈ CNr×1 is expressed as

y =
√
ρHHDs+ n, (1.1)

where ρ is the average received signal power, H ∈ CNr×Nt is the channel matrix, and D ∈

CNt×Nr is the digital precoder matrix where the total transmit power constraint is normalized

such that ||D||2F = tr(DHD) = Ns. The transmitted data s ∈ CNr×1 has the normalized

power of E[sHs] = 1
Nr

INr [1, 8]. Additionally, n ∼ CN (0, σ2) stands for the additive white

Gaussian noise (AWGN) with zero mean and variance σ2.

Channel Baseband 

Signal 

Processing

RF Chain

RF Chain

RF Chain

.

.

.

Digital 

Precoding

RF Chain

RF Chain

RF Chain

.

.

.

Base station User

Figure 1.1: Single-user M-MIMO architecture with digital precoding

• Matches filter (MF) precoding [12]: It is a precoding technique used to enhance the

SNR on the user side. However, it also carries a significant downside; the transmission

3



of multiple data streams may result in severe interference among the different data

streams. The digital MF precoder can be obtained by D =
√

Nr

tr(FFH)
F, where F = HH

[13].

• Zero-forcing (ZF) precoding [12]: This precoding technique aims to maximize the re-

ceived signal power at the receiver by properly designing the precoding matrix to cancel

out the interference entirely as long as the channel is noise-free. Mathematically, the

digital precoding matrix can be obtained by the inverse of the channel matrix such that

D =
√

Nr

tr(FFH)
F, where F = HH(HHH)−1. However, any noise present negatively af-

fects the system performance when ZF is used to precode the transmitted signal since

it also amplifies the noise power.

• Regularized ZF (RZF) precoding [14, 15]: The effect of noise on ZF precoding can be

compensated by RZF precoding technique, which utilizes a regularization term to the

inverse of the channel matrix to minimize the noise amplification effect. Therefore,

the RZF precoder can mathematically be computed as D =
√

Nr

tr(FFH)
F, where F =

HH(HHH + σ2
nNt

ρ
INr)

−1.

1.1.1.2 Multi-user Digital Precoding

Let Fig. 1.2 represent a multi-user M-MIMO architecture where an K Nr-antenna users

are simultaneously served by a base station with Nt antennas. For this scenario, the received

signal vector yk of the k-th user is expressed as [8]

yk = Hk

K∑
n=1

Dnsn + nk, (1.2)

where sn ∈ CNr×1 is the original signal with normalized power, D = [D1,D2, . . . ,DK ] ∈

CNt×KNr stands for the entire digital precoder matrix andDk ∈ CNt×Nr is the digital precoder

for the k-th user, where the total transmit power constraint is normalized such that ||Dk||F =

4



Nr [8]. Additionally, nk ∼ CN (0, σ2) stands for the additive white Gaussian noise (AWGN)

with zero mean and variance σ2.

Digital 

Precoding
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RF Chain

RF Chain

.

.

.

Base station

Channel

Baseband 

Signal 

Processing

RF Chain

RF Chain

.

.

.

.

.

.

Baseband 

Signal 

Processing

RF Chain

RF Chain

.

.

.

Users

Figure 1.2: Multi-user M-MIMO architecture with digital precoding

• Block Diagonalization (BD) precoding [16]: It is obvious from (1.2) that multi-user

M-MIMO communication is vulnerable to multi-user interference. Since HkDnsn for

n ̸= k refers to the interferences to the k-th user, BD precoding cancels out the multi-

user interference by forcing Dnsn = 0. The main idea of BD precoding is to convert

the MIMO channel into parallel subchannels by applying singular value decomposition

(SVD), each of which represents the channel response between a user and the base

station. Let the SVD of the channel matrix of the k-th user be Ĥk = ÛkΣ̂kV̂
H
k =

ÛkΣ̂k[V̂
1
k V̂

2
k]
H , where V̂1

k and V̂2
k denotes the semi-unitary vectors containing nonzero

singular values and zero singular values of Ĥk, respectively. Hence, the MIMO channel
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can be converted into parallel subchannels when the digital precoderDn = V̂1
k(:, 1 : Nr)

[17], eliminating the multi-user interference.

In conclusion, mmWave M-MIMO employs a large number of antenna arrays, and each

antenna requires a dedicated RF chain for connection. This makes it impractical for the next

generation wireless networks due to its excessive hardware cost, signal processing complexity,

and power consumption.

1.1.2 Analog Beamforming

Analog beamforming enables point-to-point communication for mmWave M-MIMO sys-

tems. The typical implementation of analog beamforming includes a single RF chain and

many analog phase shifters to transmit a single data stream. Thence, exploiting the phase

shifters enhances the antenna array gain and SNR since the technique adjusts the phase of

transmitted signals [1, 8].

.

.

.

RF Chain

Base station

Channel

.

.

.

RF Chain

User

Figure 1.3: Single-user M-MIMO architecture with analog beamforming

Fig. 1.3 represents a typical massive MIMO architecture with analog beamforming.

Since the aim is to maximize the SNR, the analog beamforming can be designed for a

massive MIMO system, where a base station deploying Nt antennas communicates with an

6



Nr-antenna user via a single data stream, as solving the optimization problem given as [8]

(f∗,w∗) = argmax |wHHf |2, s.t., f(i) =

√
1

Nt

ejψi , w(i) =

√
1

Nr

ejϕi , (1.3)

where f ∈ CNt×1 and w ∈ CNr×1 stand for beamforming vectors for the base station and

user, respectively. Note that the notation (*) denotes the optimal solution. In problem

(1.3), direct solution with SVD decomposition does not provide an optimal solution when

Nt and Nr is not sufficiently large. However, it is not the case in M-MIMO since Nt and Nr

are sufficiently large and the solution converges to the optimal solution obtained with the

SVD of the channel. Therefore, one can say that there is a relationship between the optimal

precoders and array response vectors. Accordingly, a near-optimal solution can be realized

when f = at(ϕ
t
k, θ

t
k) and w = ar(ϕ

r
k, θ

r
k), where k is the maximum steering direction [8].

The major drawback of the analog beamforming is that it can only adjust the signal

phase and not the amplitude, leading to degradation of the spectral efficiency performance.

Furthermore, as only a single RF chain is employed, the system can activate a single beam

causing only a user to be efficiently served at a given time. Therefore, it is not suitable for

the next-generation cellular networks where many applications require multiple beams to be

activated at a given time to meet the data rate requirements [15].

1.1.3 Hybrid Precoding

The aforementioned limitations makes both analog beamforming and digital precoding

impractical for M-MIMO systems. Therefore, several hybrid precoding techniques are pro-

posed [9, 18, 19, 20, 21, 22, 23, 24] for efficiently transmitting a large amount of data. The

hybrid precoding is realized by cascading a digital precoder in the baseband and an ana-

log beamformer between the RF chains and antenna arrays. It combines the advantages of

analog beamforming and digital precoding to optimize power consumption, hardware com-

plexity, and spectral efficiency. In hybrid precoding, the purpose of the analog beamformer
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is to improve the beamforming gain due to the accurate directional beams obtained through

manipulating the phases of the transmitted signal. In contrast, the digital precoder performs

additional digital signal processing to enable multiple data transmissions and mitigate the

interference among them. A widely adopted fully connected massive MIMO architecture

applying hybrid precoding is given in Fig. 1.4.

Analog 

Beamforming

Digital 

Precoding

RF Chain

RF Chain

. . .

Base station

…
…

. . .

Figure 1.4: Fully connected single-user M-MIMO architecture with hybrid precoding

Note that it is possible to have hybrid precoding with single-user [24], multi-user [20],

and sub-connected [18] M-MIMO systems.

Although hybrid precoding provides many advantages, it is still not practical for mmWave

M-MIMO systems since using an enormous number of phase shifters leads to considerable

hardware complexity, signal processing complexity, and power consumption. Thus, advanced

antenna designs such as beamspace MIMO (B-MIMO) architecture [11], and lens antenna

subarray (LAS)-MIMO architecture [25, 26] are proposed to reduce signal processing com-

plexity and RF chain cost without significant performance degradation [27].
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1.1.4 Beamspace MIMO Architecture

Due to the limitations of the digital precoding at mmWave frequencies, beamspace MIMO

is proposed [11] since it significantly reduces the RF chain requirement that digital precoding

suffers from by exploiting the inherent sparsity in mmWave channels. Utilizing a discrete lens

antenna array (DLA) converts the spatial domain channel into the angular domain channel

[11] to explore the channel sparsity. Accordingly, a significant decrement in the required RF

chains is achieved due to the selection of dominant beams only. B-MIMO given in Fig. 1.5

is capable of creating narrow beams even with a few RF chains after the beam selection,

reducing the inter-beam interferences [11]. Hence, reduced power consumption is achieved

without compromising the system performance by performing beam selection [6, 11, 28].

However, each RF chain in B-MIMO can only serve one user at the same-time frequency

resources. Therefore, the number of users that can be served is limited by the number of RF

chains.

Lens

Selecting 
Network

RF Chain

RF Chain

RF Chain

Dimension-
Reduced 

Digital 
Precoding

Figure 1.5: Beamspace MIMO architecture
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1.2 Overview of Non-orthogonal Multiple Access (NOMA)

This subsection provides an overview of non-orthogonal multiple access (NOMA) by com-

paring its fundamental principles, advantages, and disadvantages with orthogonal multiple

access (OMA) schemes.

The multiple access techniques of wireless communication systems have evolved consid-

erably over the past few decades. Conventional OMA schemes have been adopted from

first-generation (1G) to 4G mobile systems to allocate orthogonal wireless resources to mul-

tiple users. Specifically, 1G utilizes frequency division multiple access (FDMA), where each

user is assigned a unique frequency resource to transmit its data. On the other hand, time

division multiple access (TDMA), code division multiple access (CDMA), and orthogonal

frequency division multiple access (OFDMA) are employed in 2G, 3G, and 4G, respectively.

TDMA allocates an exclusive time slot to each user over the same frequency resource, while

CDMA allows multiple users to transmit their data simultaneously over the same-time fre-

quency resources using orthogonal codes. OFDMA intelligently combines FDMA and TDMA

schemes to enable multiple access by allocating subsets of time-frequency resources to differ-

ent users [29]. In theory, OMA schemes do not cause inter-user interference since all resources

are orthogonal. Thus, low-complexity receivers can easily distinguish different users’ signals

[29, 30]. However, there are some drawbacks to OMA schemes. First, it restricts the number

of users transmitting their signal since the orthogonal resources are not unlimited. There-

fore, it cannot meet the massive number of connections required by massive machine-type

communication (mMTC) devices [31]. Second, it cannot always attain the maximum sum-

rate capacity in downlink due to the lack of channel knowledge [12]. Finally, it suffers from

increased latency and scheduling overhead due to the necessity of dynamic scheduling in the

uplink [32].

Recent investigations of NOMA as an alternative to OMA schemes have been conducted

to counteract the aforementioned limitations. Non-orthogonal resource allocation in NOMA

enables more users than the number of orthogonal resources to transmit their signals simul-
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taneously and enhances the capacity [29]. However, it increases the receiver complexity due

to advanced inter-user interference cancellation requirements. NOMA can also reduce the

scheduling overhead by applying for comprehensive (sensing) random access, which enjoys

grant-free in the uplink [33].

NOMA was first commercially introduced in Long Term Evolution-Advanced (LTE-A)

under the name of multi-user superposition transmission (MUST) to enhance the sum rate

[34]. MUST can be realized in the power domain. In the power domain NOMA (PD-NOMA),

the transmitter directly superimposes the signals generated by different users depending on

their channel condition. The power allocation is inversely proportional to the users’ channel

condition. The user with a poor channel condition (i.e., weak user) is allocated more power

than the user with a rich channel condition (i.e., strong user). Note that the strong user

experiences a high SNR. Thus, it can extract its own signals by first detecting the weak

user’s signal with high power and subtracting it from the received signal, leading to no

additional processing for the weak user [29, 35]. This process is called successive interference

cancellation (SIC), which is only required for the strong user. Since the weak user utilizes the

classical receiver algorithms, it provides backward compatibility. However, the performance

of PD-NOMA is highly affected by some practical factors, such as mobility, imperfect CSI,

multi-user power allocation, and SIC error propagation [29].

1.3 Dissertation Outline

1.3.1 Beamspace MIMO Systems with Reduced Beam Selection Complexity

B-MIMO systems with proper beam selection promise to lower the required RF chains

overhead with no noticeable degradation in performance. Most of the existing beam selec-

tion schemes are not practical due to the computational cost arising from iterative search or

alternating optimization. Hence, this study examines the complexity reduction of the exist-

ing beam selection with incremental QR precoder (I-QR-P) and decremental QR precoder

(D-QR-P). The proposed two-stage and three-stage algorithms reduce the complexity of D-
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QR-P and I-QR-P, respectively. Both aim to lower complexity by decreasing the candidate

beam size by eliminating the beams with no contribution to any user and using matrix per-

turbation theory to update QR decompositions. Numerical results reveal that the proposed

algorithms considerably reduce the complexity while maintaining a similar sum-rate with

baseline algorithms.

1.3.2 Heuristic Inspired Precoding for mmWave MIMO Systems with Lens Antenna Sub-

arrays

A traditional array (TA)-MIMO architecture in mmWave with hybrid beamforming suf-

fers from high power consumption and hardware overhead. Therefore, LAS-MIMO archi-

tecture has been recently proposed as a promising technology for a power-efficient system

and reducing hardware cost and complexity. Additionally, the LAS-MIMO can offer spec-

tral efficiency performance close to TA-MIMO and higher than single-lens antenna array

(SLA)-MIMO. In this study, we propose a hybrid precoding algorithm for the LAS-MIMO

in mmWave to efficiently control the LAS design. The precoding problem is formulated as

a sparse reconstruction problem due to the sparse behavior of the mmWave channel. The

proposed algorithm is an iterative process developed jointly using artificial bee colony (ABC)

optimization with orthogonal matching pursuit (OMP) algorithms. In each iteration, the

algorithm first selects the switches for each lens randomly using ABC and then uses OMP to

approximate optimal unconstrained precoders. This process continues until achieving max-

imum spectral efficiency. The simulation results show that LAS has around a 30% increase

in spectral efficiency compared to SLA while providing a significant gain in energy efficiency

for single RF chain and multi RF chain scenarios.
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1.3.3 Energy and Spectral Efficiency Tradeoff in NOMA: Multi-Objective Evolutionary

Approaches

Non-orthogonal multiple access (NOMA) deployment in future wireless networks has been

recently considered a promising radio access technology to enhance spectral efficiency. How-

ever, gain in spectral efficiency comes always with the cost of energy efficiency. In this study,

we investigate the spectral efficiency and energy efficiency tradeoff in downlink NOMA with

the consideration of quality of service (QoS) requirements based on three population-based

multi-objective evolutionary algorithms (MOEAs): multi-objective particle swarm optimiza-

tion (MOPSO), non-dominated sorting genetic algorithm-II (NSGA-II) and strength Pareto

evolutionary algorithm-2 (SPEA2). The tradeoff is optimized and Pareto optimal solutions

are obtained through MOEAs. The effectiveness of the algorithms is evaluated based on

the hypervolume metric and the capability of solving multi-objective optimization problems.

Simulation results reveal that SPEA2 outperforms NSGA-II and MOPSO. Furthermore,

NSGA-II is the loser among all algorithms in terms of finding Pareto optimal results.

1.3.4 A Distributed User-Cell Association for Spectral and Energy Efficiency Tradeoff in

Massive MIMO UDHNs

Massive MIMO enabled ultra-dense heterogeneous networks (UDHNs) have been consid-

ered as the indispensable and emerging approach to meet the demand of growing data traffic

for next-generation networks. Although deploying many antennas causes high circuit power

consumption in massive MIMO UDHNs, there is always a tradeoff between energy efficiency

and spectral efficiency. Therefore, an energy- and spectral-efficient user-cell association will

become crucial and challenging in massive MIMO UDHNs. This study addresses a user-cell

association problem for the spectral and energy efficiency tradeoff. To this end, we formu-

late a convex multi-objective optimization problem and convert it into a single objective

optimization problem where a priority is assigned for the energy efficiency and spectral effi-

ciency with a weighting factor which means the problem can be adjusted whether the priority
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is on energy efficiency or spectral efficiency. The problem aims to maximize the weighted

sum of energy efficiency and spectral efficiency. As a solution, Lagrange duality analysis

is performed, and a distributed game theoretical user-cell association (GTUCA) algorithm

is developed, considering the fairness among users. The results confirm that the proposed

algorithm outperforms the baseline algorithm, namely maximum rate-based cell selection,

regarding energy efficiency and spectral efficiency when the weighting factor is set properly.
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Chapter 2: Beamspace MIMO Systems with Reduced Beam Selection

Complexity

Utilization of the millimeter-wave (mmWave) spectrum is presumed to be a key enabler

for emerging next-generation wireless communication networks [36]. Since mmWave fre-

quencies offer small wavelengths, it is possible to pack many antennas into small physical

areas. This property enables a promising marriage between mmWave frequencies and mas-

sive multiple-input multiple-output (M-MIMO), thereby overcoming the severe free-space

path-loss due to high directional beamforming gain [2]. MmWave M-MIMO also enhances

spectral efficiency by allowing multiple data streams [5] and utilizing its larger bandwidth

[6]. However, excessive power consumption and hardware cost are its drawbacks since each

antenna entails its own RF chain. Beamspace MIMO (B-MIMO) proposed in [11] has, there-

fore, received much consideration to reduce the RF chain requirement by taking advantage

of the inherent sparsity in the mmWave channels. In B-MIMO, the angular domain (i.e.,

beamspace) representation of the spatial channel is performed by employing a discrete lens

array (DLA) at the base station to explore the channel sparsity [11]. Hence, a reduction in

radio-frequency (RF) chains required is achieved without compromising the system perfor-

mance by performing beam selection [11, 6].

Magnitude maximization beam selection (MM-BS) [11] assigns a beam proving the max-

imum received signal power to each user. Nevertheless, it suffers from high multi-user inter-

ference and RF redundancy; however, these limitations were handled by interference-aware

beam selection (IA-BS) [6]. Several signal-to-interference-plus-noise ratio (SINR) and sum-

rate maximization-based iterative beam selection algorithms were investigated in [37, 38, 39],

while zero-forcing (ZF) precoding was employed to eliminate the multi-user interference. By
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enabling multiple-beam group selection in [40], rate-loss was mitigated by creating a reliable

channel cluster for each user. Recently, beam selection and precoding schemes were studied

for a new B-MIMO architecture with lens antenna subarrays (LASs) [27]. Several studies

[41, 42] on beam selection for wideband B-MIMO were also conducted to overcome the beam

squint occurring in mmWave.

Due to the limited power at the base stations and to avoid latency, the complexity of sev-

eral beam selection methods has been investigated. In [43], low-complexity beam selection

methods were proposed based on the graph theory and heuristic greedy algorithm. QR de-

composition of the beamspace channel was inspected in [44], and an iterative beam selection

algorithm and a precoder for eliminating multi-user interference were proposed. Along with

its outstanding system performance over the existing algorithms, it is not practical due to its

high complexity. In [45], the complexity of the conventional ZF precoder and QR precoder

[44] were probed and reduced by updating the factorization or decomposition results using

matrix perturbation theory instead of performing from scratch again.

This study proposes two complexity-reduced beam selection algorithms. The main con-

tributions are summarized as follows:

• The proposed two-stage and three-stage beam selection algorithms remarkably decrease

the complexity of decremental QR (D-QR) precoder (D-QR-P) [45] and incremental

QR (I-QR) precoder (I-QR-P) [45], respectively.

• Both enjoy considerably higher sum-rate than the existing algorithms proposed in

[6, 11, 37].

• The sum-rate performance of D-QR-P is high; however, it suffers from high complex-

ity as the number of antennas increases. The two-stage beam selection obtains the

complexity reduction with almost identical sum-rate performance.
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• The three-stage beam selection algorithm significantly reduces complexity while com-

pensating for the sum-rate performance loss at low signal-to-noise ratio (SNR)s that

I-QR-P suffers from.

• Both utilize the matrix perturbation to update QR decomposition and aim to decrease

the beam size by removing the beams with no contribution to any user from the beam

set.

The following notations are used in this Chapter1: A, a, a, A denote a matrix, a vector,

a scalar, and a set, respectively. AH , AT , A−1 are Hermitian, transpose, and inverse of A

respectively. diag(a) is a diagonal matrix with a on its diagonal. I is the identity matrix,

and CM×N is the space of M ×N complex-valued matrices, E[·] is the expectation operator,

and Card(A) is the cardinality of A.

2.1 System Model

This study considers a B-MIMO architecture in a downlink mmWave scenario. For a

conventional M-MIMO architecture where a base station consists of N antennas modeled

as a uniform linear array (ULA) to serve K single-antenna users, the received signal vector

y ∈ CK×1 is expressed as

y = HHPs+ n, (2.1)

where H = [h1,h2, . . . ,hK ] ∈ CN×K stands for the channel matrix where hk ∈ CN×1 denotes

the channel vector between k-th user and the base station. The normalized transmitted

signal vector is defined by s ∈ CK×1 fulfilling E[ssH ] = IK and P ∈ CN×K is the precoding

matrix designed to cancel the multi-user interference. Additionally, n ∼ CN (0, σ2IK) is

additive white Gaussian noise (AWGN).

1Part of this chapter was published in [28]. Permission is included in Appendix A.
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This study considers the Saleh-Valenzuela mmWave channel model [9], which models hk

as [6]

hk =
L∑
l=0

α
(l)
k a

(
φ
(l)
k

)
. (2.2)

In (3.3), the complex gain and the spatial direction of the k-th user for the l-th path

are stated by α
(l)
k and φ

(l)
k , respectively. Note that l = 0 refers to the line-of-sight (LoS)

component, while l = 1, 2, ..., L represents the non-line-of-sight (NLoS) components. For

the N -element typical ULA, the array steering vector of the l-th path is stated as [6]

a(φ) = 1√
N

[
e−j2πφb

]
b∈I(N)

∈ CN×1, where I(N) = {p − (N − 1)/2, p = 0, 1, ..., N − 1}

is a symetric set of indices centered around zero. Moreover, φ = d
λ
sin(θ), where θ, d = λ/2,

and λ denote the physical direction, the antenna spacing, and the carrier signal wavelength,

respectively.

The mmWave channel is inherently sparse since the LoS components of the channel

strongly dominate the NLoS components [11]. The use of a DLA at the base station converts

the spatial channel (3.3) into the beamspace channel as it behaves like a spatial discrete

Fourier transformer represented by matrix U = [a (φ̄1) , a (φ̄2) , · · · , a (φ̄N)]H ∈ CN×N that

consists of the array steering vectors corresponding to N predefined orthogonal directions

covering the entire angular space [6, 45], where φ̄n = 1
N
(n− N+1

2
) for n = 1, 2, . . . , N stands

for the predefined spatial directions. Ultimately, the beamspace channel2 is Hb = UH, and

the corresponding received signal vector yb is given as

yb = Hb
HPs+ n. (2.3)

The beamspace channel can be represented with a considerably small number of precisely

chosen beams without compromising the system performance due to intrinsic sparsity. As a

result of the beam selection process, the dimension-reduced M-MIMO, so-called B-MIMO,

is obtained as in (2.4), where the dimension-reduced beamspace channel is H̃r = Hb(B, :),
2 We assume that channel state information (CSI) is known by the base station where channel estimation

can be performed as in [46].
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in which B denotes the set containing the chosen beam indexes, and Pr stands for the

corresponding dimension-reduced precoding matrix [6].

yb ≈ H̃H
r Prs+ n. (2.4)

Note that using DLA and performing beam selection reduces the required RF chains

while preserving the narrow beamwidth [37]. As a result, the adopted B-MIMO architecture

is suitable for mmWave systems due to low hardware complexity and high antenna gain

properties, even with fewer RF chains [37].

Additionally, the base station communicates with every user in set K = {1, 2, . . . , K}

via only one data stream to assure the spatial multiplexing gain. Thus, the number of data

streams and RF chains are set to Ns = K and NRF = K, respectively.

2.1.1 QR Decomposition of Dimension-Reduced B-MIMO

Let H̃r be decomposed into a unitary matrix of Q ∈ CK×K and an upper triangular

matrix of R ∈ CK×K , such that H̃r = QR [47]. Hence, (2.4) becomes yb ≈ RHs + n when

the precoder is Pr = Q. Thus, the k-th user receives [44]

ỹk = r̃kksk + Ik + nk, (2.5)

where r̃kk equals to the k-th element of diag(R), and the interference Ik =
∑

k>j r̃kjsj can

be eliminated for all users by diagonalizing RH . Let the precoder be Pr = QG, where

G ∈ CK×K is the Given rotations such that the diagonal elements of RHG ∈ CK×K and RH

are same. Accordingly, the sum-rate is expressed as in (2.6), where ρ and γ = ρ/σ2 stand

for the signal power and SNR, respectively [44, 45].

Rsum =
∑
k

log2

(
1 +

γ

K
r̃2kk

)
bit/s/Hz. (2.6)
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2.1.2 QR Decomposition Update

Matrix perturbation theory allows QR decomposition of a matrix to be updated easily

instead of recomputing from scratch when the matrix undergone a modification. Suppose

we have the decomposition of Hb = QR, and let H
(±n)
b = Hb − uzT represent the modified

matrix after inserting or eliminating the n-th row (i.e., zT ), where u = ∓en. Note that QR

decomposition is called I-QR decomposition when a new row inserted to a matrix, while it

is called D-QR decomposition when a row is deleted from a matrix. The upper-Hessenberg

matrix of H
(±n)
b can be expressed as H

(±n)
b = Q[R +wzT ], where w = QHu. Denoting Jm

is a Given rotation acting in planes m and m + 1, where m = 1, 2, . . . , (N − 1), the series

of rotations is obtained by JT1 . . .J
T
N−1w = ∓||w||2e1, where e1 = (1, 0, . . . , 0) represents the

unit vector. Assuming that same rotations are applied to R, we acquire an upper-Hessenber

matrix of H0 = JT1 . . .J
T
N−1R. Ultimately, H1 = JT1 . . .J

T
N−1[R + wzT ] = H0 ∓ ||w||2e1zT .

To update R(±n), (N − 1) Gm Given rotations are applied to H1 [47] such that

R(±n) = GT
N−1G

T
N−2 . . .G

T
1H1 (2.7)

is an upper triangular matrix. Then, Q can be updated as [47]

Q(±n) = QJN−1 . . .J1G1 . . .GN−1. (2.8)

Note that, we omit the values of rotation matrices Jm and Gm; however, details are available

in [47].

2.2 Proposed Beam Selection Algorithms

This section revisits the I-QR-P and D-QR-P given in [45], and investigates the complex-

ity of beam selection for further reduction.
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2.2.1 Proposed Two Stage Beam Selection with D-QR-P

Conventional QR precoder (C-QR-P) [44] for beam selection is an iterative process where

beams with a minimum contribution to system performance (i.e., sum-rate) are discarded,

causing unaffordable computational complexity due to the required QR decomposition from

scratch in each iteration such that the number of required iterations in the outer loop is

(N−K) in the i-th iteration, where i = 0, 1, . . . , (N−K−1). However, the main complexity

arises from the inner loop which contains (N − i) QR decomposition operation to eliminate

the beam with the least contribution to the system sum-rate from the beam set. Since the

complexity to compute the QR decomposition from scratch is O(2(N − i)K2), the total

complexity of C-QR-P is
∑N−K−1

i=0 (N − i)O(2(N − i)K2) = O((2K2N3 − 2K5)/3) [44].

To overcome the complexity problem of C-QR-P, D-QR-P [45] was proposed by utilizing

matrix perturbation theory. Note that D-QR-P updates R and Q using (2.7) and (2.8),

respectively while D-QR-P regenerates from scratch when a row is deleted. The QR update

process can be executed in O(4K(N − i) + 4K2) in the i-th iteration. Thus, the beam

selection with D-QR-P requires the complexity of
∑N−K−1

i=0 (N − i)O(4K(N − i) + 4K2) =

O((4KN3 +6K2N2− 10K4)/3) [45]. Although it significantly reduces the complexity while

providing almost similar sum-rate performance with [44], it is still not practical, especially

when N ≥ K is large [45]. Therefore, we propose Algorithm 2.1 which consists of the

following two stages.

2.2.1.1 Identify M Strongest Beams for All K Users

This stage aims to reduce the number of QR updates in the inner loop of the D-QR-P

by decreasing the number of candidate beams. Let’s consider the following two definitions

for lucidity.

Definition 1: Let bk,m represent the m-th strongest beam of the k-th user, the strongest

beam bk,1 ∈ D contains the most of the channel power, and it is the first element of the
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Algorithm 2.1 Two Stage Beam Selection with D-QR-P

Input: Hb, D, K, G = ∅, B = ∅, M = 0
Output: H̃r

Stage 1: Identify M strongest beams for all users

while Card(G) < K do
M =M + 1,
for l = 1 : K do

t = sort(|Hb(:, l)|), and G = G ∪ {D(t(1 :M))},
end

end

Stage 2: Beam Selection with D-QR-P
A = Hb(G, :), and A = QR,
for j = 0 : Card(G)−K − 1 do

for k = 1 : Card(G)− j do
u = ek, and z = A(k, :),

Update R(−k), Q(−k), and obtain R
(k)
sum using (2.6),

end

bj = argmax
k
{R(k)

sum}, G = G\{bi}, B = B ∪ bj,

A = A(G, :), R = R(−bj), and Q = Q(−bj),
end

H̃r = Hb(B, :)

sorted |Hb(:, k)| in descending order. Then, G∗k = {bk,m}Mm=1 ∈ D includes the indices for the

M strongest beams, where D = {1, 2, . . . , N} is the set containing all beams available.

Definition 2: Users sharing identical beams are called interfering user (IU)s, while a user

is defined as non-interfering user (NIU) if its beam is not selected by any other users. The

sets representing the IUs and NIUs are defined by KIU and KNIU , respectively.

In this stage, the algorithm first identifies G∗k for all K users. Then, the candidate beam

set is G = G∗1 ∪G∗2 ∪· · ·∪G∗K , where G ⊂ D and Card(G) ≤MK. Note that this stage decides

the value of M to provide enough beam diversity for all K users so that they can be served

by K best-unshared beams simultaneously. An example of how the value of M is decided is

shown in Fig. 2.1. In Fig. 2.1 (a) G = {1, 3, 8} when M = 1. Since Card(G) < K, there

are not enough beams for all K users. Therefore, the algorithm tries the case of M = 2 in

Fig. 2.1 (b), where G = {1, 3, 7, 8} and still Card(G) < K. Thence, the case of M = 3 is
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tried as in Fig. 2.1 (c), where G = {1, 2, 3, 4, 7, 8} and Card(G) > K. There is now enough

beam diversity to provide an unshared beam for all K users. Since beam 5 and 6 have no

contribution to any users, they are removed from the candidate beam set as in Fig. 2.1 (d).

User Index

B
ea

m
 I

n
d

ex

(a) (b) (c) (d)

1𝑠𝑡 Strongest Beam 2𝑛𝑑 Strongest Beam 3𝑟𝑑 Strongest Beam

Figure 2.1: An example of showing the decision of M (a) M = 1, (b) M = 2, (c) M = 3,
(d) Candidate beam set.

If this stage decides thatM = 1, there are no IUs in the network. In this case, Algorithm

2.1 selects the K strongest beams as in Definition 1, resulting in a near-optimal solution,

already proven in [6]. Additionally, multi-user interference is eliminated by the precoder

Pr = Q.

2.2.1.2 Beam Selection with D-QR-P

If M > 1, Algorithm 2.1 performs the beam selection process summarized in stage

2. Similar to the D-QR-P in [45], the beam that contributes the least to the sum-rate

performance is discarded in each iteration. However, the number of Q and R updates in

the inner loop is reduced from (N − i) to (Card(G) − i). Thence, the overall complexity of

Algorithm 2.1 is O(2Card(G)K2) +O((4K(Card(G))3 + 6K2(Card(G))2 − 10K4)/3).
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2.2.2 Proposed Three Stage Beam Selection with I-QR-P

We propose Algorithm 2.2 to reduce the complexity of I-QR-P [45]. It consists of the

following three stages.

2.2.2.1 Beam Selection for NIUs

The complexity of the I-QR-P arises from the search process to identify the first beam

that contributes the most to the system sum-rate since it requires complex QR decomposition

for all N beams. To avoid this process, Algorithm 2.2 groups users as IUs and NIUs inspired

by [6] in this stage. To do this, it first identifies the strongest beam set B = {b1, b2, . . . , bK}

for all K user as in Definition 1. Since the probability of having IUs, P = 1 − N !
NK(N−K)!

,

is considerably high in spite of N being large [6], it then removes the repeatedly selected

beams from B and defines the non-interfering beam set as V ⊂ D. Since the beams in set V

contain the most of the channel power and cause considerably low interference to others, the

algorithm directly assigns these beams to the NIUs. Note that no beams are yet selected for

the IUs in this stage.

2.2.2.2 Identify M Strongest Beams for the IUs

After NIUs are directly assigned with the beams in V , we have a beamspace channel

matrix A = Hb(V , :) ∈ CCard(V)×K for the NIUs and candidate beam set for IUs are updated

as D = D\V , where Card(D) = N − Card(V). This stage aims to reduce the size of

the candidate beams for the IUs. Let B = Hb(D,KIU) ∈ CCard(D)×Card(KIU ) represent the

beamspace channel for the IUs. Following the same process presented in Section 2.2.1.1,

Algorithm 2.2 decides the value of M and acquires a new beam set for IUs as G ⊂ D, where

Card(G) ≤MCard(KIU).
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Algorithm 2.2 Three Stage Beam Selection with I-QR-P

Input: Hb, D, K, KIU = KNIU = G = B = ∅, M = 0
Output: H̃r

Stage 1: Beam Selection for NIUs

for k = 1 : K do
bk = argmaxbk |Hb(:, k)|, and B = B ∪ {bk},

end
Set V = unique(B),
for i = 1 : Card(V) do

j = find(B == V(j)),
if Card(j) > 1 then
V(V == V(j)) = ∅, and KIU = KIU ∪ {j},

end

end
B = V , KNIU = K\KIU , D = D\B, A = Hb(B, :), and B = Hb(D,KIU),
Stage 2: Identify M strongest beams for the IUs
Follow same steps in Algorithm 2.1 to obtain G
Stage 3: Beam Selection with I-QR-P for IUs
A = QR,
for i = 1 : Card(KIN) do

for j = 1 : Card(G) do
u = ej, and z = B(j, :),

Update R(+j), Q(+j), obtain R
(j)
sum using (2.9),

end

bi = argmax
j
{R(j)

sum}, B = B ∪ {bi}, G = G\{bi},

Q = Qbi , and R = Rbi ,
end

H̃r = Hb(B, :)

2.2.2.3 Beam Selection for the IUs with I-QR-P

Algorithm 2.2 overcomes the computational complexity of I-QR-P [45] mentioned in

Section 2.2.2.1 since it does not include this step. Instead, it first decomposes the channel

matrix A = QR obtained for the NIUs in stage 1, then keeps adding a new row to A (i.e.,

a new beam) from G iteratively until all IUs have an unshared beam, and R and Q are

updated using (2.7) and (2.8), respectively. Since the number of selected beams K ′ is less
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than K with I-QR-P beam selection, (2.6) is modified as [45]

Rsum =
∑
k

log2

(
1 +

γ

K ′ r̃
2
kk

)
bit/s/Hz, (2.9)

where r̃kk is the k-th element of diag(R(1 : K ′, 1 : K ′)).

For the IUs, this stage requires Card(KIN) iterations and Card(G) QR decomposition

updates in the i-th iteration. Thus, the total complexity is O(2Card(V)Card(KNIU)2) +

O((3Card(G)2Card(KIN)2 + 2Card(G)Card(KIN)3)/3).

2.3 Performance Evaluation

This section presents the results for the proposed beam selection algorithms. We have

gauged their performance against benchmark algorithms, D-QR-P, I-QR-P [45], IA-BS [6],

MM-BS [11], and maximizing SINR [37], for a fair comparison. Note that, we do not include

the results for C-QR-P3.

We generate a mmWave B-MIMO, where the base station is a ULA with N = 256 serving

K = 16 single antenna users, having random distribution, simultaneously. The channel

consists of one LoS component defined by α
(0)
k ∼ CN (0, 1) and two NLoS components given as

α
(1,2)
k ∼ CN (0, 10−2) where the spatial direction φ is uniformly distributed over [−π/2, π/2].

Additionally, all results are produced on a computer with a 16 GB RAM and 3.4 GHz Intel

i7-6700 CPU, and averaged over 500 channel realizations.

The achievable sum-rate performance of the algorithms is compared in Fig. 2.2. It is

evident from the plot that the proposed algorithms outperform IA-BS, MM-BS, and maxi-

mizing SINR while they perform almost identically with I-QR-P and D-QR-P at high SNRs.

However, I-QR-P suffers a slight performance loss at low SNRs, which can be compensated

by Algorithm 2.2. This is because I-QR-P starts with the QR decomposition of only one

row (i.e., a beam), which provides limited information about the sparse channel, and adds

3 It was already proven in [45] that I-QR-P and D-QR-P provide almost similar sum-rate with the C-QR-P
but with considerably less complexity.
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Figure 2.2: Achievable sum-rate vs SNR, where N = 256 and K = 16.

new beams iteratively. In contrast, Algorithm 2.2 starts with the QR decomposition of the

channel matrix acquired for the NIUs, which delivers more information about the sparse

channel than I-QR-P at the initial step and keeps adding new beams.

The effect of beam diversity is evaluated in Fig. 2.3. Since Algorithm 2.1 and Algo-

rithm 2.2 choose M adaptively to provide enough diversity, as mentioned in Fig. 2.1, they

outperform the other fixed cases. The case of M = 2 has poor performance, especially for

Algorithm 2.2, due to not having enough diversity.

The increment in beam resolution increases the sum-rate for the proposed algorithms, as

shown in Fig. 2.4 where N varies from 128 to 1024. However, depending on the sparsity,

we obtain a performance gap between them. When high sparsity (i.e., K ≪ N) exists, this

performance gap decreases, so that Algorithm 2.1 is superior to Algorithm 2.2 in case of low

sparsity.
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Figure 2.3: Effect of M on sum-rate, where N = 256 and K = 64.

Next, we compare the average running times in Fig. 2.5 and Fig. 2.6. Note that both

figures do not provide the result for the complexity evaluation of D-QR-P since it was already

stated in [45] that I-QR-P enjoys much less complexity than D-QR-P.

In Fig. 2.5, we set K = N/16, while N varies from 128 to 1024. Both Algorithm 2.1

and Algorithm 2.2 perform considerably faster beam selection than the I-QR-P. Note that

Algorithm 2.2 outperforms other algorithms and its speed-up factor gets more prominent

as the number of antenna increases since it decreases the search size significantly in stage 2

and selects beams for the IUs from the set G in stage 3. A low complexity beam selection

for the NIUs is already performed in stage 1. However, the baseline I-QR-P selects beams

for all K users from the beam set D, leading to increased complexity. Fig. 2.2 and Fig. 2.5

reveal that reducing the size of candidate beams is critical in speeding up the beam selection

while maintaining almost the same sum-rate performance. In other words, if a beam does

not contribute to any user, there is no need to consider it in the selection process.
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Figure 2.4: Effect of the sparsity on sum-rate.

The effectiveness of the proposed algorithms for a sparse environment (i.e., K ≪ N)

is evaluated in Fig. 2.6. In this case, Algorithm 2.1 and Algorithm 2.2 still select beams

faster than the benchmark. The average run time reduces for Algorithm 2.2 as the sparsity

increases since the probability of choosing the same strongest beam, P = 1 − N !
NK(N−K)!

, in

stage 1 decreases as N grows when K = 64 is fixed. For example, P ≈ 99% when N = 256,

P ≈ 93% when N = 768, and P ≈ 82% when N = 1024. Since the decrease in P and

increase in beam diversity occur as N grows, it is more likely to have fewer IUs in stage 1.

Thus, most users directly select their strongest beams in stage 1 because NIUs outnumber

IUs. Consequently, the number of iterations decreases to select beams for IUs in stage 3 since

the main complexity arising from the QR update is avoided. The behavior of Algorithm 2.2

is different in Fig. 2.5 and Fig. 2.6. This is because the simulation setup in Fig. 2.5, where

K = N/16), causes an increase in P . For example, P ≈ 38% when N = 256, P ≈ 78% when

N = 768, and P ≈ 87% when N = 1024. Therefore, there will be more IUs with this setup

as N grows, increasing complexity in stage 3.
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Figure 2.5: Averaged running time vs number of antennas N , where K = N/16.
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Figure 2.6: Averaged running time vs number of antennas N with fixed K = 64.
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Chapter 3: Heuristic Inspired Precoding for Millimeter-Wave MIMO Systems

with Lens Antenna Subarrays

Next-generation wireless communications are presumed to meet the demand for higher

spectral efficiency (bits/s/Hz) and handle exponentially growing traffic volume [48]. To this

end, less-congested millimeter-wave (mmWave) spectrum utilization is considered a promis-

ing solution to meet higher spectral efficiency requirements and deal with enormous traffic

demand [36]. A forte of mmWave frequencies is the ability to pack a large number of antenna

elements into small physical areas due to smaller wavelengths. Hence, mmWave facilitates

the use of massive multiple-input multiple-output (MIMO) which can overcome the severe

free-space path loss due to high directional beamforming gain [2]. In addition, it is possible

to enhance spectral efficiency with massive MIMO by allowing multiple data streams with

proper precoding techniques [5]. Typically, precoding in traditional-array (TA)–MIMO is

performed digitally where each antenna element requires a dedicated radio-frequency (RF)

chain resulting in huge cost and power consumption [9]. Therefore, the use of mmWave in

MIMO systems makes hybrid analog and digital precoding preferable [18, 49, 50], which is

performed by cascading a digital precoder in the baseband and an analog network between

the RF chains and antenna elements. Hence, beam gain and interference management can

be achieved simultaneously.

The analog network typically consists of phase shifters with combiners [19] or switches

[21]. In massive MIMO systems, the use of an enormous number of phase shifters causes

considerable hardware complexity along with signal processing complexity and power con-

sumption, while the use of switches results in a significant performance loss. Accordingly, a

promising research line is introduced by utilizing advanced antenna designs, such as single-
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lens antenna array (SLA) [11] and lens antenna subarray (LAS) [25, 26] to reduce signal

processing complexity and RF chain cost without notable performance degradation. Due to

the SLA-MIMO architecture’s limitation including beamforming precoding/combining in a

multipath channel and the large lens size that leads to high insertion loss and lack of scal-

ability, the work in [26] presents an energy and spectral-efficient LAS-MIMO architecture.

In the LAS-MIMO architecture shown in Fig. 3.1, each M antennas out of N antennas are

connected to L small-sized lenses while the lenses are associated with a phase shifter network

to control all the lenses together. For a specific lens, a simple switching network consisting

of a single-pole multiple-throw (SPMT) switch controls the antenna elements. When the

number of lenses is L = 1, the system falls to SLA-MIMO. On the other hand, the system

performance is similar to the TA-MIMO when L = N . The LAS-MIMO provides better en-

ergy efficiency (EE) than the TA-MIMO with the expense of reducing the spectral efficiency

as L decreases. Hence, an appropriate precoding design is essential to enhance the spectral

efficiency.

Despite the attractive design of lens-aided MIMO systems, precoding design, and beam

selection problems remain an open issue, especially in LAS-MIMO, and they are not yet

investigated, to the best of our knowledge. Therefore, in this study, we take into account

this problem. The contributions of this study are summarized as follows:

• We propose a hybrid precoding algorithm for the LAS-MIMO based on artificial bee

colony (ABC) and orthogonal matching pursuit (OMP) algorithms. It solves a non-

convex optimization problem iteratively by exploiting the sparse characteristics of the

mmWave channel.

• The spectral efficiency and energy efficiency of the LAS architecture are investigated

for a single user scenario with a single RF chain and multiple RF chains. As well,

the energy efficiency performance is evaluated when different switch types (SP2T or

SP4T) are utilized.

32



The following notations are used in this Chapter 4: A, a, a denote a matrix, a vector,

and a scalar variable, respectively. ∥A∥F denotes A’s Frobenius norm. A∗, AT , A−1 are

A’s conjugate, transpose, and inverse respectively. diag(a) is a diagonal matrix with a on its

diagonal. I is the identity matrix, and CM×N denotes the space of M × N complex-valued

matrices. CN (µ, σ2) is a complex Gaussian random vector with mean µ and covariance σ2.

j is the imaginary unit of complex numbers with j2 = −1.

3.1 System Model

This section introduces the radio environment, spectral efficiency, and power consumption

model of the LAS-MIMO architecture.

Digital Precoder 𝐹𝐵𝐵

Lens #1

(A&S) (A&S) (A&S)(A&S)

A(1) A(2) A(𝑀-1) A(𝑀)
. . . . 

. . . . 

Lens #L

(A&S) (A&S) (A&S)(A&S)

A(𝑁𝑡 -3) A(𝑁𝑡 -2) A(𝑁𝑡 -1) A(𝑁𝑡)
. . . . 

. . . . 
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. . . . 
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RF Chain #1 RF Chain #𝑁𝑅𝐹
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𝑁𝑅𝐹

. . . . 
𝑁𝑠

RF Precoder 𝐹𝑅𝐹

LAS

Figure 3.1: LAS-MIMO architecture with hybrid precoding.

3.1.1 Radio Environment and Parameters

We consider a single-user LAS-MIMO operating at mmWave frequencies where the trans-

mitter employs Nt antennas connected to Lt lenses to transmit Ns data streams to a receiver

4Part of this chapter was published in [27]. Permission is included in Appendix A.
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equipped with Nr phased antenna array. Multi-stream communication is enabled by em-

ploying the transmitter with NRF
t RF chains where Ns ≤ NRF

t ≤ Nt. According to hybrid

precoding presented in Fig. 3.1, the received signal is given as

r =
√
ρHFs+ n, (3.1)

where r ∈ CNr×1 is the received signal, ρ is the average received signal power, H ∈ CNr×Nt

is the channel matrix, and F ∈ CNt×Ns is the precoder matrix. The transmitted data

s ∈ CNs×1 has the normalized power of E[ss∗] = INs . Additionally, the additive white

Gaussian noise (AWGN) with zero mean and variance σ2 is modeled as n ∼ CN (0, σ2).

The precoding matrix is expressed as F = Fm
LensFRFFBB where Fm

Lens ∈ CNt×Lt is the lens

antenna effect for a given m ∈ C1×Lt vector containing the selected antenna indexes [26],

FRF ∈ CLt×NRF
t is the analog beamformer obtained by the phase shifters, and FBB ∈ CNRF

t ×Ns

is the digital baseband precoder where the total transmit power constraint is normalized

such that ||Fm
LensFRFFBB||2F = Ns [9]. Due to the subarray structure of the LAS-MIMO, no

contribution among subarrays is obtained [26]. Therefore, each column of the Fm
Lens matrix

contains zeros and vm vector representing the selected beam from each lens [26], and is given

as

Fm
Lens =



vm(1) 0M×1 . . . 0M×1

0M×1 vm(2) 0M×1

...
. . .

0M×1 . . . 0M×1 vm(Lt)


Nt×Lt

, (3.2)

where M is the number of antennas placed under each lens and vm = [e−jkdsin(θm)Ω]Ω∈I(M),

where I(M) = {q− (M − 1)/2, q = 0, 1, . . . ,M − 1}, k = 2π
λ
, d denotes the antenna element

spacing, λ is signal wavelength and θm = π
4
− π(m−1)

2(M−1)
is the metric showing the direction of

the radiating beam from LAS for a given antenna element m = 1, 2, ...,M chosen by the

switch network [26].
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We adopt a narrowband clustered channel model for the channel matrix H, based on

the Saleh-Valenzuela model, in order to capture the characteristics of the mmWave MIMO

channel precisely [9, 51, 52, 53] which is expressed as [54]

H =

√
NtNr

NclNray

Ncl∑
i=1

Nray∑
k=1

γi,kar(ϕi,k)at
∗(θi,k), (3.3)

where γi,k stands for the complex gain of the kth ray in the ith scattering cluster. The angle

of departure (AoD) and angle of arrival (AoA) for the kth ray in the ith scattering cluster are

defined by θi,k and ϕi,k, respectively. The received and transmitted array response vectors

are represented by ar(ϕi,k) and at(θi,k), respectively. Considering an N -element uniform

linear array (ULA), the array response vector for a given ψ ∈ {θ, ϕ} can be stated as

a(ψ) = 1√
N

[
1, ejkd sin(ψ), . . . , ej(N−1)kd sin(ψ)

]T
[55].

3.1.2 Spectral Efficiency and Power Consumption of LAS Hybrid MIMO Architecture

In this study, we assume that the transmitter is equipped with LAS and the receiver is

equipped with no LAS. Considering the ULA, the combiner can be stated as W = WRFWBB

[56] where WRF ∈ CNr×NRF
r is the analog combiner obtained by the phase shifters, and

WBB ∈ CNRF
r ×Ns is the digital baseband combiner. Additionally, the number of RF chains

at the receiver is defined by NRF
r .

Assuming that the base station can obtain perfect channel state information (CSI), the

average spectral efficiency for the LAS-MIMO can be deriven from [9] and [26] and given as

R = log2

(
INs +

ρ

Ns

Rn
−1W∗HFF∗H∗W

)
, (3.4)

where Rn = σ2W∗W stands for the noise variance matrix.

The LAS-MIMO architecture aims to reduce power consumption and hardware complex-

ity by connecting each RF chain to each lens through one phase shifter and one switch. In

contrast, the hybrid TA-MIMO requires all the RF chains to be connected to each antenna
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element through a phase shifter. Therefore, an accurate power consumption model for the

LAS-MIMO transmitter is derived in [26] as PLAS
t =

PLAS
Tx

(ηPAηSW )
+NRF

t (LPPS + LNSWPSW +

PRF ), where P
LAS
Tx

, PPS, PSW , and PRF stand for the transmit power consumption in the

LAS system, the power consumption of a phase shifter, a switch, and an RF chain, respec-

tively. Additionally, ηPA and ηSW = 10−ζILSW/10 stand for the efficiency of the transmitted

amplifiers, and the efficiency of the switches, respectively. ζ is the number of series switches

needed to be placed under each lens and ILSW is the insertion loss for a switch.

Another performance metric that needs to be defined is energy efficiency which is defined

as the number of bits that can be transmitted per unit of energy [57] and expressed as

EE = R/PLAS
t (bps/Hz/W) for the LAS architecture.

3.2 Problem Formulation

For simplicity and tractability of the optimization problem, we consider only designing

hybrid precoders Fm
LensFRFFBB since joint optimization of hybrid precoders and combin-

ers WRFWBB are unlikely due to the non-convex constraints caused by phase shifters and

switches [9]. Note that, the hybrid combiner design will be investigated as future work. Since

our goal is designing only the hybrid precoders, the equation (3.4) needs to be rewritten as

R = log2

(
INs +

ρ

Nsσ2
HFF∗H∗

)
, (3.5)

Then, the optimization problem is formulated as

(Fopt
Lens,F

opt
RF ,F

opt
BB) = argmax

Fm
Lens,FRF,FBB

R, (3.6a)

s.t. Fm
Lens ∈ FLens, (3.6b)

FRF ∈ FRF, (3.6c)

||Fm
LensFRFFBB||2F = Ns. (3.6d)
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where FLens and FRF stand for the set containing all the feasible lens antenna effects and

the set of feasible RF precoders, respectively.

The problem given in (3.6) is a challenging optimization problem due to its non-convex

amplitude constraints in (3.6b) and (3.6c). Although no optimal solution methodology exists

for the problem (3.6) [9], an approximation is proposed in [9] to provide a near-optimal

solution and proved that the maximization problem (3.6) is equivalent to the minimization

problem of the distance between optimal unconstrained singular value decomposition (SVD)

based precoder Fopt and practical hybrid precoder. Thus, the problem (3.6) can be rewritten

as

(Fopt
Lens,F

opt
RF ,F

opt
BB) = argmin

Fm
Lens,FRF,FBB

||Fopt − FAFBB||F , (3.7a)

s.t. (3.6b) to (3.6d), (3.7b)

where FA = Fm
LensFRF stands for the total analog precoder which is the matrix multiplication

of lens antenna effect and RF precoder. There is a relationship between the analog part of

the precoder FA and the transmit antenna array response vector at(θi,k) where the sparse-

scattering structure of mmWave can be exploited to represent FA as a function of at(θi,k)

[9]. Considering that, equation (3.7) can be modified as

(Fopt
Lens,F

opt
RF ,F

opt
BB) = argmin

Fm
Lens,FRF,FBB

||Fopt − FAFBB||F , (3.8a)

s.t. FA
(i) ∈ {at(θi,k),∀i, k}, (3.8b)

FA = Fm
LensFRF, (3.8c)

||FAFBB||2F = Ns. (3.8d)
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The precoding design for the LAS-MIMO requires a switch selection step to find the best

beam selected from each lens since the lens antenna effect Fm
Lens depends on the position of

the activated switches. Therefore, the proposed precoding design first selects the m vector

containing the selected beam indexes then find the FRF and FBB accordingly. This iterative

process continues until finding the optimum precoders. Hence, Fm
Lens can be omitted for

a given m in each iteration, while FA
(i) in (3.8b) can be embedded into the optimization

problem due to the direct relationship between FA
(i) and at(θi,k) [9]. Hence, the optimization

problem becomes

(F̃opt
RF , F̃

opt
BB) =argmin

F̃RF,F̃BB

||Fopt −AtF̃BB||F , (3.9a)

s.t. ||diag(F̃BBF̃
∗
BB)||0 = NRF

t , (3.9b)

Fm
LensF̃RF = At, (3.9c)

||AtF̃BB||2F = Ns, (3.9d)

where At = [at(θ1,1), . . . , at(θNcl,Nray)] ∈ CNt×NclNray stands for the array response vector

which is also the auxiliary variable obtained from FA while the auxiliary variables for FBB

and FRF are given as F̃BB and F̃RF, respectively [9].

3.3 Solution of the Problem

This section proposes a hybrid beamforming algorithm to solve the NP-hard and non-

convex problem (3.9). Consequently, we propose a swarm-based heuristic algorithm, namely

ABC-aided spatially sparse precoding. It deploys both ABC and OMP by exploiting the

sparse scattering characteristics of the mmWave channel. It is also possible to consider other

existing swarm-based optimization tools (i.e., particle swarm optimization (PSO) [58] and

ant colony optimization (ACO) [59]). However, they are likely to fall into a local minimum or
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optimum solution region and be stuck there [60] if a problem has non-convexity properties.

Therefore, ABC is more suitable since finding the global optimum solution rather than the

local optimum solution is its strength [60, 61]. Another reason for selecting ABC is that it can

be easily implemented in real-time applications due to its minimum parameter requirements

for tuning and its fast convergence ability [62].

ABC is inspired by the food search behavior of the honey bees and proposed by Karaboga

[63] in 2005. In a bee swarm, food sources define the possible solutions and the nectar

amount of a food source represents the quality (fitness) of the food source. The number

of food sources is equal to half of the population. The algorithm consists of four phases:

initialization phase, employed bees phase, onlooker bees phase, and scout bees phase. The

proposed solution of problem (3.9) is presented in Algorithm 1.

1) Initialization Phase: We randomly initialize the food sources (selected antenna in-

dexes) mi’s such that i ∈ {1, . . . , S} where S is the population size. Since the antenna

selection is an integer programming problem, the initial solutions have to be integer values

where 1 ≤mi ≤M and can be produced by

mij = round(mmax
j + rand(0, 1)× (mmax

j −mmin
j )), (3.10)

where j ∈ {1, 2, . . . , Lt}, mmin
j = 1, and mmax

j =M . Then, the corresponding Fmi
Lens is found

using (3.2). Fmi
Lens, and randomly generated FRF and FBB are used to calculate the spectral

efficiency using (3.5) to find the best solution mbest providing the highest spectral efficiency

at this time.

2) Employed Bee Phase: The bees look for new possible solutions providing better results

than the results kept in their memory. The possible solutions in the neighborhood are given

as

vij = round(mij + αij × (mij −mkj)), (3.11)
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where i and k ∈ {1, . . . , S} are randomly chosen indexes and k ̸= i. αij ∈ [−1, 1] is a

control parameter and responsible of keeping the newly produced solutions around mij.

After the search procedure is completed, Fmi
Lens is calculated using (3.2). Then, Fmi

Lens is

sent to Algorithm 2 to calculate FRF and FBB guaranteeing the objective function given in

(3.9). Accordingly, a greedy selection is applied between vi and mi using (3.5) to find the

better solutions. After the selection, mi is updated and the fitness function of using mi are

calculated as

Fi =


1

1+g(mi)
, g (mi) ≥ 0

1 + abs (g(mi)) , otherwise

, (3.12)

where g(mi) is the objective function of the updated solution vector.

3) Onlooker Bee Phase: According to the solution vector and their fitness values shared

by the employed bees, onlooker bees select their solution based on a probabilistic model

which uses the fitness function given as pi = Fi/
∑S

i Fi. After new solutions are selected, the

onlooker bees update their position using (3.11) and fitness function using (3.12) accordingly.

4) Scout Bee Phase: The bees replace the abandoned solutions, not improved for a

particular number of trials, with new randomly generated possible solutions using (3.10).

Bees memorize all these steps and share them, and the algorithm runs until it reaches the

maximum number of iterations.

3.4 Simulation Results

This section illustrates the spectral efficiency and energy efficiency performance of the

proposed algorithm for the hybrid LAS-MIMO in mmWave. The TA-MIMO and SLA-

MIMO are chosen as the baseline architectures for fair performance comparison. The power

consumption model is evaluated utilizing switch types of SP2T and SP4T to compare the

energy efficiency performance. In the simulation, the channel parameters are set to Ncl = 6,

Nray = 8, fc = 38 GHz, and 500 MHz bandwidth. Furthermore, AoAs and AoDs are

uniformly distributed over [−π
4
, π
4
] and [−π

2
, π
2
], respectively [64]. It is assumed that we have
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Table 3.1: Simulation Parameters

Parameters Value

Power consumption of a phase shifter (PPS) 30 mW [21]
Power consumption of an SP2T switch (PSP2T ) 10 mW [26]
Power consumption of an SP4T switch (PSP4T ) 20 mW [26]

PRF 220 mW [26]
ηPA 0.2 [26]
ILSW 1 dB [26]

a downlink MIMO scenario where the precoding is designed using the proposed algorithm

and the combiner is designed using the algorithm in [22], while the CSI is assumed to

be perfectly known. The results are averaged over 500 channel realizations. The rest of

simulation parameters are listed in Table 3.1.

Fig. 3.2 shows the spectral efficiency of 64×16 LAS-MIMO and TA-MIMO architectures

with a single RF chain. The proposed algorithm provides better performance in the LAS-

MIMO (L = 4, 8, 16) than in the SLA-MIMO (L = 1) as the number of lenses increases

in the array. More precisely, the spectral efficiency is almost enhanced by 16%, 24% and

35% for L = 4, L = 8 and L = 16, respectively at SNR = 5 dB. In the simulation, we

inspired and modified the spatially sparse precoding algorithm in [9], which performs very

close to the optimal unconstrained SVD precoding, to present the simulation results for the

TA-MIMO. The results show that TA-MIMO outperforms all LAS-MIMO scenarios due to

its high precoding capability.

For the same system configurations, the energy efficiency analysis is shown in Fig. 3.3

where the proposed algorithm provides better performance in the LAS-MIMO than the TA-

MIMO and SLA-MIMO as the number of lenses increases. Using SP4T switches in the

switching network shows some enhancement in the performance rather than using SP2T

switches. In particular, L = 16 outperforms all others while SLA (L = 1) has the worst

performance among others when SP2T switch type is used to implement LAS-MIMO. On

the other hand, L = 4 becomes the winner in energy efficiency due to the reduced number

of switches and switch insertion loss when SP4T switch type is utilized. Although we obtain
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a high precoding gain with the ABC-OMP algorithm, it is essential to note that the LAS

requires a careful design to make a fair decision between spectral efficiency and energy

efficiency trade-off.

Multi-RF chain scenarios are evaluated in Fig. 3.4 and Fig. 3.5 showing spectral efficiency

and energy efficiency, respectively. The proposed algorithm provides satisfactory results even

with Nt = 64, Nr = 16, and NRF
t = 8 scenario. Since the precoding capability increases

when the number of lenses increases, L = 16 still outperforms all the other LAS architectures

with 32% more spectral efficiency at SNR = 5 dB than SLA. On the other hand, Fig. 3.5

shows that LAS-MIMO with L = 4 provides the best performance in energy efficiency when

SP2T switches are utilized. However, the performance can further be enhanced with SP4T

switches. Specifically, using SP4T switch instead of SP2T switch provides 9% more energy

efficiency at SNR = 5 dB. For L = 16 and L = 8 architectures, the reason for having worse

performance than the SLA architecture is that the number of required phase shifters and

switches increases as NRF
t increases, causing higher power consumption.

The spectral efficiency and energy efficiency analysis of the proposed algorithm indicates

that the LAS-MIMO with L = 16 and SP2T switches provide the optimum performance

compared to other systems (SLA and TA-MIMO) when Nt
RF = 1. In multi-RF scenarios,

LAS-MIMO offers the best energy efficiency and spectral efficiency when L = 4, and L = 16,

respectively. Thus, one can design the system depending on the energy efficiency and spectral

efficiency trade-off to provide optimum performance based on the system requirements.

Finally, the convergence property of the proposed algorithm is presented in Fig. 3.6 when

SNR = 5 dB. The algorithm is run for 100 iterations for the same channel configuration,

and the convergence rate is averaged. We can see that it quickly converges after almost 21

iterations when L = 16 and 27 iterations when L = 8.
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Figure 3.2: Spectral efficiency vs SNR for a single RF chain.
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Figure 3.3: Energy efficiency vs SNR for a single RF chain.
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Figure 3.4: Spectral efficiency vs SNR for multiple RF chains.
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Algorithm 3.1 ABC Aided Hybrid Sparse Precoding

Input: Fopt, and At

ABC parameters: S = 100, imax = 500
Output: Fm

Lens, FRF, FBB

Randomly generate S solutions mi using (3.10),
Calculate Fmi

Lens using (3.2),
Randomly generate FRF and FBB,
Evaluate the function using (3.5), and select mbest,
while i < imax do

Phase-1: Employed Bee Phase

for s = 1 : S do
Produce a new solutions vi using (3.11) and calculate corresponding Fvi

Lens as in
(3.2),
Calculate FRF and FBB using Algorithm 2,
Evaluate the function using (3.5), and apply greedy selection between vi and mi,
Update mi and find fitness function using (3.12),

end

Phase-2: Onlooker Bee Phase
for s = 1 : S do

Find the selection probabilities pi,
Use pi to generate new solutions vi from mi

Select a food source vector mcurr according to ps value,
Follow same steps from step-9 to step-11.

end

Phase-3: Scout Bee Phase
for s = 1 : S do

Identify the abandoned solutions not improved after a predetermined number of
trials,
Replace them with new randomly generated solutions using (3.10),
Store the best solution ever found,

end

end
return Fm

Lens, FRF, FBB.
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Algorithm 3.2 Spatially Sparse Precoding

Input: At, Fopt, and Fm
Lens

Output: FRF, and FBB

FA = Empty Matrix, and Fres = Fopt,
for i = 1 : NRF

t do
Ψ = At

∗Fres,
k = argmaxl=1,...,NclNray

(ΨΨ∗)l,l,

FA = [FA|A(k)
t ],

FRF = (Fm
Lens

∗Fm
Lens)

−1Fm
Lens

∗FA,
FBB = (FA

∗FA)
−1FA

∗Fopt,

Fres =
Fopt−Fm

LensFRFFBB

||Fopt−Fm
LensFRFFBB||F

,

end

FBB =
√
Ns

FBB

||Fm
LensFRFFBB||F

,

return FRF, FBB
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Figure 3.6: Convergence rate of ABC-OMP algorithm.
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Chapter 4: Energy and Spectral Efficiency Tradeoff in NOMA: Multi-Objective

Evolutionary Approaches

Next-generation wireless networks are presumed to meet the demand of users for gigabit

data rates. To this end, non-orthogonal multiple access (NOMA) was proposed [65] as a

candidate radio access technology to deal with this ambitious high data rate requirement.

Since it enhances the spectral efficiency by multiplexing multiple users with distinct channel

conditions at the same time and frequency resource with different power levels and it applies

successive interference cancellation (SIC) at the receiver side in order to mitigate multi-user

interference [65].

The exponential growth in traffic volume along with high data rate requirement leads

to electromagnetic pollution due to high energy consumption by communication technology

infrastructures [66]. Although high spectral efficiency can be achieved by NOMA, more power

allocation to the user with poor channel gain creates an energy inefficiency [67]. Therefore,

there is a need to study the spectral and energy efficiency tradeoff in NOMA.

To date, many outstanding contributions for power allocation to maximize the spectral

efficiency [68, 69, 70] have been proposed for NOMA systems. Furthermore, many solution

methodologies [71, 72, 73, 74], was developed for the energy efficiency maximization problem

in NOMA. However, all of them focus on either maximizing the spectral efficiency or energy

efficiency and do not consider the spectral and energy efficiency tradeoff.

In the literature, there are a limited number of proposals [66], [67], [75], and [76] have

been investigated for the spectral and energy efficiency tradeoff in NOMA systems. In [66],

the authors developed an improved particle swarm optimization (PSO) method having faster

convergence than traditional PSO to optimize the spectral and energy efficiency tradeoff in
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a downlink NOMA system where quasi-concave energy efficiency function was maximized

with the consideration of quality of service (QoS) requirements. Reference [67] considered a

multi-objective optimization problem (MOP) for the spectral and energy efficiency tradeoff

in a downlink NOMA system. The authors tried to maximize the spectral efficiency and

minimize the total power consumption simultaneously by using a weighted sum approach

having the flexibility to adjust the weight according to the need. In [75], the authors proposed

a single-objective optimization problem (SOP) in a downlink NOMA system where the energy

efficiency was maximized under the minimum QoS constraints. Finally, a power allocation

problem algorithm was developed by [76] to optimize the spectral and energy efficiency

tradeoff with fairness consideration in downlink NOMA systems.The MOP was converted

into a SOP through a weighted sum approach and solved by the Lagrangian method.

Contrary to the aforementioned proposals for the spectral and energy efficiency tradeoff

optimization, to the best of our knowledge, this study is the first attempt to solve the multi-

objective spectral and energy efficiency optimization problem in NOMA systems and find

the Pareto optimal solution set through multi-objective evolutionary algorithms (MOEAs).

The contributions of this study presented in this Chapter 5 can be represented as follows:

• In this study, we investigate the spectral and energy efficiency tradeoff problem in a

downlink NOMA. We consider a MOP approach where multiple objectives are solved

simultaneously to obtain a Pareto optimal set. Having a set of solutions provides an

advantage since one possible solution can be chosen freely from the set freely according

to the priority of the energy efficiency or spectral efficiency while a single solution is

offered in [67], and [76] according to the predefined weight.

• We first formulate the problem to maximize both the energy efficiency and spectral

efficiency and then create the second problem to maximize spectral efficiency and

minimize power consumption. Both problems consider the same set of constraints, i.e.,

QoS requirements, power allocation coefficients, and power threshold for perfect SIC.

5Part of this chapter was published in [35]. Permission is included in Appendix A.
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Additionally, the problems with constraints are first converted into an unconstrained

problem with penalty function method [77] and then solved through MOEAs.

• The performance of three commonly known MOEAs (non-dominated sorting genetic

algorithm-II (NSGA-II), multi-objective particle swarm optimization (MOPSO), and

strength Pareto evolutionary algorithm-2 (SPEA2)) are compared in terms of Pareto

solution set quality. The comparison of the Pareto front quality is performed by a

metric called hypervolume indicator as in [78]. The results indicate that SPEA2 out-

performs all others in terms of Pareto front quality. However, SPEA2 does not perform

well in terms of computational time while MOPSO is the best.

4.1 System Model and Problem Formulation

4.1.1 Radio Environment and Parameters

In this study, we consider a downlink NOMA network with a single base station (BS)

having a single antenna element located at the center of a hexagon. The notation k ∈ K =

{1, 2, . . . .., 2K} is used to index randomly distributed users with a single antenna element in

the coverage area. The total bandwidth of B is equally shared among M pairs where each

pair consists of two users with the bandwidth of Bs for SIC simplicity. The paired users share

the same resource block (RB) while each pair is orthogonal to each other. For each pair, a

user with high channel gain is treated as a strong user denoted by Us while the weak user

denoted by Uw is the one who suffers from poorer channel gain. We borrow the suboptimal

user pairing algorithm proposed in [79] where the user with the highest channel gain and

the user with the poorest channel gain creates one NOMA pair, while the second NOMA

pair consists of having the user with the second-highest channel gain and the user with the

second-poorest channel gain, and so on. Since this methodology enhances the throughput of

the users with poor channel gain. In addition, fairness is assumed for all users by keeping

their minimum data rate requirements over a threshold defined by Rmin.

49



According to the main principle of NOMA, it is assumed that the BS with perfect knowl-

edge of channel state information (CSI) broadcasts the superposition coded symbols for all

users. For each pair, smw and sms denote modulation symbols of Uw and Us, respectively and

the superposition coded symbol for a given pair m ∈M = {1, 2, . . . .., K} is given as [76]

x =
√
αms Pms

m
s +

√
(1− αms )Pmsmw , (4.1)

where the notation 0 ≤ αms ≤ 0.5 expresses the power allocation coefficient of Us in pair

m, which guarantees that more power is allocated to Uw to assure a reasonable signal-to-

interference-plus-noise ratio (SINR). Pm is the total transmit power allocated to pair m.

It is assumed that the channel model considers the effect of both large-scale fading de-

noted by gk and small-scale fading (Rayleigh) denoted by βk. The large-scale fading consists

of both pathloss and shadowing between the BS and user k. We assume that gk is constant

across all RBs. However, βk changes across different slots but they are constant within a slot.

The channel coefficient hk is defined as a function of both large-scale fading and Rayleigh

fading and given as hk = βk.gk
−1. The received signal at an arbitrary user k is expressed as

yk = hkx+ nk, (4.2)

where the additive white Gaussian noise (AWGN) with zero mean and variance σ2 is modeled

as nk ∼ CN (µ, σ2).

Without loss of generality, the channel gain of users are sorted as |h1|2 ≥ |h2|2 ≥ . . . ≥

|h2K |2. In addition, the condition that needs to be fulfilled is expressed as |hms |2 ≥ |hmw |2 for

a given pair m. In a given pair m, smw is decodable due to its higher power level. Thus, smw

is first decoded and removed from sms by Us, then Us decodes s
m
s . Therefore, Us is able to

receive data without inter-user interference with the assumption of perfect SIC. However,

Uw is not able to decode sms and remove it from smw due to low power assigned to Us. For

this reason, Uw treats sms as noise and decodes its own signal smw . In other words, Uw does
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not perform SIC. For a given pair m, users’ achievable rates are given as

Rm
s =Bs log

(
1 +

αms h
m
s Pm
N0

)
, (4.3)

Rm
w =Bs log

(
1 +

(1− αms )hmwPm
N0 + αms h

m
wPm

)
. (4.4)

In (4.3) and (4.4), N0 is the system noise power and given by N0 = NFkbTKBs, where NF , kb,

Tk are noise figure, Boltzmann’s constant, and temperature in degree Kelvin, respectively.

4.1.2 Spectral Efficiency and Energy Efficiency

As opposed to most of the existing works related to spectral and energy efficiency tradeoff

for NOMA [66], [76], and [75] where energy efficiency metric is defined as a function of

bandwidth and it is measured in bit/Joule/Hz instead of bit/Joule, we define energy efficiency

metric as the number of bits that can be transmitted per unit of energy in order to avoid

misleading. In other words, we define energy efficiency as the sum throughput divided by

consumed power as in [57]. Measuring energy efficiency in bit/Joule/Hz, where the transmit

power is bandwidth-normalized while the noise power is proportionally dependent to the

bandwidth, is meaningless [57]. The energy efficiency and spectral efficiency metrics are

given respectively as

fEE =

M∑
m=1

(Rm
w +Rm

s )

fPC
, (4.5)

fSE =

2K∑
k=1

Rk

B
. (4.6)

In (4.5), fPC = Pc +
M∑
m=1

Pm is the power consumption metric where Pc represents the con-

stant circuit power consumption and M = K.
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4.1.3 Problem Formulation

This subsection focuses on the formulation of the MOP that aims to optimize spectral

efficiency and energy efficiency tradeoff subject to some constraints given as follows:

M∑
m=1

Pm ≤ Pt, ∀m ∈M, (4.7a)

Rk ≥ Rmin, ∀k ∈ K, (4.7b)

Pmγ
m
s (1− 2αms ) ≥ PThr, ∀m ∈M, (4.7c)

0 < αms ≤ 0.5, ∀m ∈M. (4.7d)

Accordingly, (4.7a) limits the maximum transmit power and guarantees that it cannot

exceed Pt. Constraint (4.7b) assures that each user will be able to achieve at least the

minimum required data rate where Rk stands for the achievable rate for an arbitrary user k

. Moreover, (4.10c) indicates that the perfect SIC can be obtained if there is enough power

difference between users in each pair [79] and αms in (4.7d) shows that more power is allocated

to the user with poor channel gain for a proper SINR in a given pair m. Additionally, γms

in (4.10c) denotes the bandwidth-normalized channel gain of the Us and is expressed by

γms = hms /Bs and PThr stands for the minimum power difference for SIC.

We consider different MOPs in order to optimize the spectral and energy efficiency trade-

off. Thus, different objectives namely, spectral efficiency, energy efficiency, and power con-

sumption, are taken into account for the problem formulation.

1) Optimization Problem 1: We create the first problem to maximize two conflicting

objectives, namely energy efficiency and spectral efficiency, in order to exemplify the trade-

off. As opposed to spectral efficiency maximization with the requirement of excess power

consumption, taking both spectral efficiency and energy efficiency into consideration in the

formulation assures that no excess power consumption required to optimize the tradeoff [80].
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The problem is notated as SE-EE and given as:

max
αm

s ,Pm

f1 = [fEE, fSE],

s.t. 4.7a to 4.7d,

(4.8)

where f1 is a vector containing objective functions. Additionally, αm
s and Pm are also

vectors containing power allocation coefficients of Us’s for all pairs and power allocated to

all pairs, respectively.

2) Optimization Problem 2: The second problem aims to provide users maximum through-

put while consuming minimum power. Thus, it maximizes spectral efficiency but minimizes

power consumption. The problem is named as SE-PC and given as:

max
αm

s ,Pm

f2 = [fSE,−fPC ],

s.t. 4.7a to 4.7d,

(4.9)

where f2 is a vector having the objective functions regarding the second optimization prob-

lem.

4.2 Solution Methodologies: Evolutionary Algorithms

Optimization of MOPs is an intrinsically very challenging process due to the simultaneous

optimization of multiple conflicting objectives [81]. Therefore, evolutionary algorithms are

well-suited to find a set of solutions, called Pareto optimal solution, between conflicting

objectives. For this reason, we first give the general formulation of MOP with inequality
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constraints as [77]:

min f(X) = [f1(X), f2(X), . . . ., fn(X)], (4.10a)

s.t. gj(X) ≤ 0, j = 1, 2, . . . ., N, (4.10b)

hl(X) = 0, l = 1, 2, . . . ., L, (4.10c)

where n, N , and L stand for the number of objective functions, the number of inequality

constraints, and the number of equality constraints, respectively.

For the solution of such a problem, we adopt the penalty function method from [77] to

transform a constrained problem into an unconstrained problem as:

min F (X) = f(X) + τl

L∑
l=1

h2l (X) + τg

N∑
j=1

ψj(gj(X)), (4.11)

where

ψj(gj(X)) =


0, if gj(X) ≤ 0

exp(gj(X)), (otherwise)

. (4.12)

Additionally, τg and τl are positive penalty constants for inequality and equality constraints,

respectively. Note that the problem (4.8) and (4.9) do not consider any equality constraints.

Thus, we can first eliminate the equality constraint terms from (4.11) and then define a

general formulation for (4.8) and (4.9) as:

min Fi = −fi + τg

4∑
j=1

ψj(gj(X)), i = 1, 2. (4.13)

The following subsection introduces the MOEAs for the solution of the spectral and

energy efficiency tradeoff problems given in (4.13).
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4.2.1 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)

NSGA-II is a population-based evolutionary algorithm, which provides a Pareto optimal

set of solutions, based on a non-dominated sorting technique, and genetic operations like

selection, crossover, and mutation [82].

The adaptation process to the environment of each individual in a population creates

the basic idea behind NSGA-II. Each individual obtains the value of objective functions,

which are (4.8), and (4.9) in our case, to be able to perform adaptation and pass to the next

generation. The possible set of solutions for the spectral and energy efficiency tradeoff in each

generation is denoted by multiple chromosomes consisting of multiple genes representing the

possible decision variables.

NSGA-II is one of the best evolutionary algorithms to deal with MOPs due to its faster

sorting process, elitism, utilization of less number of parameters, and preservation of diversity

[82]. The working flow of NSGA-II is derived from [82] and [83] and given in Algorithm 4.16.

4.2.2 Strength Pareto Evolutionary Algorithm-2 (SPEA2)

SPEA is the first version of SPEA2 proposed by Zitzler and Thiele [84] as a population-

based MOEA. The main idea behind the algorithm is that the non-dominated solutions

obtained in each iteration are stored in an external archive having not a fixed size along with

its own population in order to let all individuals in the population observe their scaler fit-

ness value with Pareto dominance method. Additionally, the clustering technique is used in

SPEA to limit the number of individuals stored in the external archive. This varying archive

size was the limitation faced in SPEA and was overcome with SPEA2 [85] by keeping the

external size fixed. Moreover, it utilizes a method called truncation to remove dominated

solutions from the archive. More accuracy is provided by a nearest neighbor density estima-

6 Some concepts and the formulas required for the calculation process regarding the MOEAs are omitted
and can be found in the references provided.
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tion methodology. Algorithm 4.26 represents the working flow of the SPEA2 derived from

[85].

Algorithm 4.1 NSGA-II for the SE-EE Optimization
Input:

Design variables: αm
s and Pm,

NSGA-II parameters: S, pc, pm, µ, and imax.
Output:
Solution: Particle position X = [αm

s , Pm].
Set all input parameters except X,
Set initial non-dominated population Pop = ∅ ,
for s = 1 : S do

Initialize X randomly for each individual in Pop,
Evaluate the initial fitness value of X as in (4.13),

end
for i = 1 : imax do

Apply crossover to Pop and obtain Popc,
Apply mutation to Pop and obtain Popm,
Set Pop ← Pop ∪ Popc ∪ Popm to maintain elitism,
Apply non-dominated sorting to Pop to find the non-dominated fronts R,
Compute crowding distance of Pop in all R,
Sort Pop in ascending order and update R accordingly,
Set the next generation parents Pop ← Pop(R(1)),

end

4.2.3 Multi-Objective Particle Swarm Optimization (MOPSO)

The social behavior of a swarm creates the fundamental principles of PSO proposed

by Kennedy and Eberhart [58] where each particle in a swarm is defined by its velocity

and position. The search process is performed by each particle in the swarm. During the

search process, each particle has its own memory to remember the best position and share

the information discovered with other particles in the swarm to update their position and

velocity accordingly. This process continues until there is no change in the position of all the

particles. MOPSO is an extended version of PSO to solve MOPs simultaneously [86]. The

non-dominated solution set is stored in a population set according to the Pareto preference
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Algorithm 4.2 SPEA2 for the SE-EE Optimization
Input:

Design variables: αm
s and Pm,

SPEA2 parameters: S, Sr, pc, pm, and imax.
Output:

Solution: X = [αm
s , Pm].

Set all input parameters except X,
Initialize external archive EA = ∅,
for i = 1 : S do

Generate initial X randomly,
Evaluate the initial fitness values for X as in (4.13),

end
while i < imax do

Evaluate the fitness function with X for each individual in Pop and EA,
Copy non-dominated individuals from Pop and EA to EA,
if lenght(EA) ≥ Sr then

Apply truncation to EA to remove elements,
else

Send non-dominated individuals from Pop to EA,
end
Apply binary tournament selection to select individuals of lower front,
Perform crossover and mutation to create next generation.

end

which decides the domination of the possible solution sets. The working flow of the MOPSO

derived from [86] is presented in Algorithm 4.36.

4.3 Simulation Results

In this section, the performance of NSGA-II, MOPSO, and SPEA2 are evaluated for

spectral and energy efficiency tradeoff in a downlink NOMA scenario consisting of a single

BS located at the center of the hexagon area. The simulation is first run with 8 users and

then the number of users is set to 24 to show which algorithm is the winner among others

to handle more design variables. The parameters for MOEAs are given in Table 4.1.

To guarantee the perfect SIC, we introduce the constraint (4.10c) which assures that there

is enough power difference between users in a given pair to let Us perfectly decode the signal
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Table 4.1: Parameters for MOEAs

Parameters NSGA-II MOPSO SPEA2
Max iteration (imax) 200 200 200
Population size (S) 100 100 100
Archive size (Sr) - 100 100

Personal learning coeff. (lp) - 1.25 -
Global learning coeff. (lg) - 2.25 -

Inertia weight (w) - 0.6 -
Mutation rate (µ) 0.02 0.1 -

Mutation percentage (pm) 0.4 - 0.7
Crossover percentage (pc) 0.7 - 0.3

of Uw. Additionally, assuming the minimum data rate requirements for all users provides

the QoS of all users. The simulation parameters and the pathloss model are borrowed from

3GPP standards [87] and represented in Table 4.2.

In Fig. 4.1, we compare the performance of NSGA-II, MOPSO, and SPEA2 for the

spectral and energy efficiency tradeoff in a downlink NOMA scenario by maximizing both

energy efficiency and spectral efficiency as in (4.8). The number of users is set to 8 during

the simulation and Pareto optimal set (non-dominated solutions) is obtained. It is seen

that SEPA2 dominates NSGA-II and MOPSO while NSGA-II has the worst performance

among all MOEAs. Although all MOEAs can visualize Pareto optimal solution sets for the

spectral and energy efficiency tradeoff in Fig. 4.1, NSGA-II provides a broader range of

non-dominated solutions (wider decision space for the tradeoff) than others.

Fig. 4.2 shows the Pareto optimal solution for the problem (4.9) where SPEA2 outper-

forms the other algorithms. However, this statement cannot be seen clearly in Fig. 4.2 since

SPEA2 and MOPSO look similar. In such cases, we use the hypervolume metric H, which

stands for the volume of the objective space having non-dominated solutions7, to compare

the MOEAs [78]. The quality of Pareto optimal set for all MOEAs is evaluated by the hyper-

volume indicator and presented in Table 4.3. According to Table 4.3, the best performance is

observed by SPEA2 having the smallest hypervolume indicator value and the second-smallest

7The details of H are omitted and can be calculated as in [78].
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Figure 4.1: Pareto optimal set of problem (4.8) with 8 users

hypervolume indicator value is obtained by MOPSO. We want the hypervolume indicator

to be small since it shows the difference between the reference point and the non-dominated

solution set. Additionally, Table 4.3 holds the elapsed time for each MOEA. MOPSO is the

fastest among all algorithms in terms of running time while SPEA-II is the slowest.

Performance comparison of the problem (4.8) and (4.9) are represented in Fig. 4.3. We

show the results for only SPEA2 since it is the best performer. Apparently, maximizing

spectral efficiency and energy efficiency slightly offers a better spectral and energy efficiency

tradeoff than minimizing power consumption and maximizing SE. Since, unlike the prob-

lem (4.8), the problem (4.9) ignores the maximization of energy efficiency and concentrates

maximizing spectral efficiency with as low power consumption as.

Finally, we run the simulation for 24 users to show which algorithm performs best when

the number of variables increases. Surprisingly, SPEA2 is still the winner as in Fig. 4.4.
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Table 4.2: Simulation Parameters

Parameters Value
Bandwidth 20 MHz

Carrier frequency 2 GHz
Num. of users 8 and 24
NF , TK , kb 7 dB, 290o K, 1.38x10−23 J/ K

LOS pathloss 22log(d) + 34.02 +Xσ, σ = 4 dB
NLOS pathloss 39.1log(d) + 19.56 +Xσ, σ = 6 dB

Probability of LOS min(18/d, 1)(1− e(− d
63

)) + e(−
d
63

)

Pt, and Pc 46 dBm, and 30 dBm, respectively
Rmin, and PThr 100 kbps, and 10 dBm, respectively

User and BS heights 1.5 m and 25 m, respectively
Cell radius 200 m

Num. of realizations 20
τg 1

Table 4.3: Performance Evaluation of MOEAs

Performance Metric NSGA-II MOPSO SPEA2
H for Problem (4.8) 1.9498e+08 1.8692e+08 1.7934e+08
H for Problem (4.9) 2.9696e+08 2.7391e+08 2.7130e+08
Elapsed time (sec) 145.96 91.76 235.85
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Figure 4.2: Pareto optimal set of problem (4.9) with 8 users
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Algorithm 4.3 MOPSO for the SE-EE Optimization
Input:

Design variables: αm
s and Pm,

SPEA2 parameters: S, Sr, w, wd, lp, lg, µ, imax.
Output:

Solution: Particle position X = [αm
s , Pm].

Set all input parameters except X,
Initialize external archive EA = ∅,
for i = 1 : S do

Generate initial X, and its velocity V randomly,
Evaluate the initial fitness values for X as in (4.13),
Update personal best Pbest and global best Gbest,

end
Check domination and send leaders to EA
while i < imax do

for s = 1 : S do
Select a leader,
Update V ,
Update X,
Evaluate the fitness function according to (4.13),
Apply mutation to X for new position X̂,
if X̂ dominates X then

X ← X̂,
else

X ←X,
end
Update Pbest

end
Update Gbest
Send non-dominated particles to EA,
Check for domination of new particles in EA,
Keep only non-dominated particles in EA.

end
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Figure 4.3: Comparison of problem (4.8) and problem (4.9)
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Figure 4.4: Pareto optimal set of problem (4.8) with 24 users
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Chapter 5: A Distributed User-Cell Association for Spectral and Energy

Efficiency Tradeoff in Massive MIMO UDHNs

The demand of users for gigabit data rates attracts researchers to focus on more academic

research regarding the evolution of the fifth generation (5G). Higher spectral efficiency is one

of the key aspects of the 5G design target to achieve orders of more capacity. To this end,

cell densification, also known as heterogeneous networks (HetNets), is presented as one of the

key enablers to achieving higher spectral efficiency due to dense spectrum reuse across the

geographical area. In HetNets, dense small base stations (SBSs) with low transmit power are

underlaid over macro base stations (MBSs) with high transmit power. Network densification

has already been exercised in the third-generation (3G) and fourth-generation (4G) networks

where SBSs aim to offload the traffic from MBSs.

Deployment of massive multiple-input and multiple-output (mMIMO) significantly boosts

the spectral efficiency due to the independent data streams transmitted over a large number

of antenna elements. Furthermore, mMIMO increases power gain by increasing the received

signal power. Therefore, a desired quality-of-service (QoS) can be provided with less transmit

power [88, 89]. Additionally, due to the channel hardening effect in massive MIMO systems,

the effect of small-scale channel coefficients and channel estimation error is ignorable [90].

User association turns out to be more challenging with the deployment of mMIMO and

HetNets. Although network densification promises high spectral efficiency, it brings its own

challenges due to the installation of base stations having diverse transmit powers, such as

load balancing problems, since users tend to associate with MBSs instead of SBSs due to their

higher transmit power. On the other hand, the enormous number of antennas causes high
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circuit power consumption in mMIMO systems [91]. Therefore, a user association algorithm

for mMIMO can create an energy efficiency problem.

Many outstanding contributions for cell association [92, 93, 94] have been proposed,

especially for single antenna HetNets. User association problem is standardized by Third

Generation Partnership Project (3GPP) Long Term Evaluation (LTE) and performed based

on Reference Signal Received Power (RSRP) and Reference Signal Received Quality (RSRQ),

both are sent by users, [95, 96] which causes load imbalance between tiers due to different

transmit power of BSs. Thus, users tend to associate with MBSs due to high transmit

power. To avoid this drawback, a biasing method is proposed within 3GPP to keep the load

balanced across tiers by scaling the RSRP for SBSs with an artificial and bias value[88, 97].

A limited number of proposals [91, 98, 99, 100, 101] have been investigated for mMIMO-

enabled HetNets. Reference [91] investigated an energy-efficient, low complex, distributed,

and fair user association where sum logarithmic energy efficiency maximization was per-

formed with users’ QoS constraints. The convex problem was solved via Lagrange duality

analysis. In [98], authors developed a convex centralized methodology to maximize the sum

instantaneous rate of all users and a decentralized methodology to maximize the instanta-

neous rate of each individual user with the consideration of fairness among users, and both

problems are solved by Lagrange duality. Surprisingly, both strategies provide almost similar

results where the decentralized approach has low complexity and does not require a control

unit, while the centralized strategy requires high computational complexity and a control

unit. In [99], the author proposed an algorithm for log-concave energy efficient utility func-

tion maximization with the help of Lagrange duality, where users’ QoS requirements for the

overall system were considered. A distance-based user association strategy was proposed

in [100] where each user is associated with the nearest BS, and the effect of dense SBS de-

ployment was analyzed for the energy efficiency maximization. Dense SBSs deployment and

nearest base station association strategy enhance the energy efficiency. The authors in [101]

64



developed a fair strategy for joint maximization of energy efficiency and power allocation to

solve user association problems in mMIMO HetNets.

Although most of the studies above do not consider the spectral and energy efficiency

tradeoff, there are limited number of proposals [102, 103, 104] to overcome the tradeoff. In

[102], the authors considered a resource allocation for the spectral and energy efficiency trade-

off by proposing a multi-objective optimization problem to optimize the subscribers’ power

allocation of orthogonal frequency-division multiplexing (OFDM) with imperfect channel

state information (CSI). The authors in [103] investigated the spectral and energy efficiency

tradeoff by employing an adjustable utility function for interference-aware power coordi-

nation. Reference [104] investigated the spectral and energy efficiency tradeoff with the

consideration of fairness for mMIMO HetNets. To this end, a multi-objective optimization

problem is first formulated as a mixed-integer non-convex problem and then converted into

a single-objective optimization problem. The contributions of this Chapter8 can be listed as

follows:

• We perform a game theoretical algorithm inspired from [98]. Contrary to the methodol-

ogy investigated in [98], which aims to maximize only the throughput of each individual

user in a selfish manner, we propose an algorithm to optimize the spectral and energy

efficiency tradeoff.

• Contrary to reference [104], which does not guarantee a Pareto-optimal solution due to

the non-concavity of the rate function, our approach guarantees a Pareto-optimal so-

lution for the spectral and energy efficiency tradeoff since both utilities for the spectral

efficiency and energy efficiency are defined as convex functions.

• The problem is first formulated as a multi-objective problem and then converted into a

single-objective optimization problem by incorporating a weighting factor to optimize

the tradeoff.

8Part of this chapter was published in [105]. Permission is included in Appendix A.
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• We compare the effect of the weighting factor on performance metrics by assigning

different values between 0 and 1. Based on the observations, we deduce that there

is always a spectral and energy efficiency tradeoff. Thus, we propose a flexible and

adjustable distributed algorithm. Therefore, selection of the weighting factor is signif-

icantly crucial.

• We also evaluate the effect of transmit power of MBSs based on the simulation results

and conclude that the proposed algorithm can provide energy efficiency and spectral

efficiency gain for mMIMO ultra-dense heterogeneous networks (UDHNs) with an ap-

propriate selection of weighting factor and less transmit power.

5.1 System Model

5.1.1 Radio Environment and Parameters

In this study, we focus on a two-tier downlink system with MBSs and SBSs distributed

across a 2-dimensional plane where both of them share the same frequency band, and SBSs

are assumed to be deployed to boost the capacity of MBSs in its coverage area. The notation

j ∈ J = {MBS1, . . . ..,MBSM}U{SBS1, . . . .., SBSS} and k ∈ K = {1, 2, . . . .., K} is used to

index the base stations (combination of M MBSs and S SBSs) and users respectively. The

distribution of the SBSs is assumed to be randomly located in the hot-zones where users

have more density, and SBSs are deployed in the coverage area of the MBS within each

cell with a certain distance. The distribution of the users is modeled as random and in a

non-homogeneous manner with more density in the hot-zones created around the SBSs than

in the MBSs. Proportional fairness (PF) is assumed among users to provide more resource

blocks (RBs) to the users having good channel conditions.

Large-scale antenna arrays are deployed for both MBSs and SBSs where the notation

for the number of antennas and the number of downlink data streams per time slot at any

base station are assigned as Aj and Sj, respectively, where 1 < Sj < Aj. We assume
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a reciprocity-based channel estimation where the base stations estimate the channel using

the pilots received from the associated users in uplink in time division multiplexing (TDD)

mode. In addition, we assume an intra-cell interference free network due to linear zero-forcing

beamforming (LZFBF) used in both MBS and SBS tiers [106].

This study assumes a transmission based on orthogonal frequency division multiple access

(OFDMA) to let each user perform its transmission over contiguous time-frequency slots

[107, 106]. The channel model considers the effect of both large-scale and small-scale fading

(Rayleigh). However, channel hardening in massive MIMO makes negligible the effect of

small-scale fading [108]. The large-scale fading consists of both pathloss and shadowing and

is denoted by gk,j between a base station j and user k. We assume that gk,j is not changing

across all RBs.

5.1.2 Modeling Instantaneous Rate and SINR

This study assumes that no user will suffer with zero throughput and all the RBs are

used (heavy load condition) in a given time slot t. In addition, we define the load of an

arbitrary base station j as the number of users |Kj| connected to it in a given time slot t.

When a user k is served by an arbitrary base station j, the instantaneous rate Rk,j given

as in (5.1) which is borrowed from [109].

Rk,j = log2(1 + γk,j), (5.1)

where the notation γk,j expresses the signal to interference plus noise ratio (SINR) with

LZFBF [110] when a user k is served by an arbitrary base station j. Assuming that the base

station has the perfect knowledge of the channel state information (CSI), γk,j is given by

γk,j = (
Aj − Sj + 1

Sj
)

gk,jPj
No+

∑
l∈J,l ̸=j gk,lPl

. (5.2)

67



In (5.2), Pj is the transmit power of the base station j, and the system noise power is given

by N0 = NFkbTKB.

Finally, the achievable downlink data rate for user k, known as user throughput, is

expressed as

rk =
∑
j∈J

ωk,jRk,j, (5.3)

where ωk,j ∈ [0, 1] is the number of required RBs for a user k when served by an arbitrary

base station j. As can be seen from (5.3), we assume more than one base station can serve

a user in the network.

5.1.3 Power Consumption Model for Massive MIMO

This subsection focuses on modeling the power consumption model for massive MIMO

systems. With the deployment of a large number of antenna elements, the power con-

sumption model dramatically changes and differs from the conventional single antenna base

stations where it is a direct function of the radiated transmit power of the base station [111].

This concept does not fit massive MIMO systems since when the number of antenna elements

is considered as A→∞, energy efficiency goes to infinity [91].

Power consumption for massive MIMO systems has been widely and clearly studied in

[112]. We borrow the power consumption model Pj derived in [112] and [111] given by

Pj=Pj/ηj +
∑3

m=0
Cm,0S

m +
∑2

m=0
Cm,1S

mAj, (5.4)

where Aj and S
m stand for the effect of the number of antenna elements and the number of

active users, respectively. In addition, Cm,0 and Cm,1 are the coefficients related to the coding

and decoding, channel estimation, precoding, power consumption of transceiver chains, and

architectural cost derived in [112] and ηj is defined as the base station power amplifier

efficiency.
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5.1.4 Energy Efficiency Model

In conventional cellular networks, user-cell association is performed based on RSRP (or

RSRQ) levels where the user is served by the base station, which offers the highest received

power. However, this approach does not consider the energy efficiency (bits/Hz/Joule) of a

user k when associated with the base station j, although it is a crucial performance metric

for UDHNs. A large number of antenna elements in massive MIMO systems and ultra-dense

deployment of the base stations increase the power consumption due to growing circuit

power consumption [99]. Therefore, an energy-efficient user-cell association is needed for

green communications.

The energy efficiency of a user k is defined as a function of both user throughput and

power consumption and expressed as

EEk =
∑
j∈J

ωk,jRk,j

Pj
. (5.5)

Equation (5.5) emphasizes that higher energy efficiency means lower power consumption.

However, there is always a tradeoff between spectral efficiency and energy efficiency. There-

fore, we propose a multi-objective user-cell association scheme that aims to optimize this

tradeoff with a weighting factor.

5.2 Distributed User-Cell Association Scheme

This section presents the problem formulation and the solution methodology for the

multi-objective optimization problem.

5.2.1 Problem Formulation

This subsection focuses on the formulation of a distributed user-cell association problem

that aims to optimize the spectral and energy efficiency tradeoff. To this end, this study

proposes a methodology where each user tries to maximize its weighted spectral efficiency
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and energy efficiency in a selfish manner. We assume PF among users to allocate more

RBs to the users who have stronger downlink channels. Therefore, we define a logarithmic

user-centric utility function to perform a multi-objective optimization problem. The multi-

objective optimization problem is given in (5.6), where the constraint (5.6c) limits the usage

of RBs used to be within the downlink data streams Sj. Finally, the constraint (5.6d)

guarantees that all users will have positive throughput and required number of RBs cannot

exceed 1.

max
ω

∑
k∈Kj

log(rk,j), (5.6a)

max
ω

∑
k∈Kj

log(EEk,j), (5.6b)

s.t.
∑
k∈Kj

ωk,j ≤ Sj, (5.6c)

0 ≤ ωk,j ≤ 1, rk,j ≥ 0, ∀k ∈ Kj. (5.6d)

In order to solve problem (5.6), we convert it into a single-objective optimization problem

using the weighting function method [113]. Such that the new objective function can be

written as

max
ω

∑
k∈Kj

λ log(rk,j) +
∑
k∈Kj

(1− λ) log(EEk,j), (5.7)

s.t. (5.6c) and (5.6d),

where trading between the impact of energy efficiency and spectral efficiency can be per-

formed thanks to λ ∈ [0, 1] introduced as a weighting factor in the objective function (5.7).

Note that, with the λ = 1, the user-cell association simply becomes a throughput max-

imization problem. On the other hand, when λ = 0, it is basically an energy efficiency

maximization problem.
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Due to the characteristics of logarithmic functions, it is possible to rewrite the objective

function given in (5.7) as

max
ω

∑
k∈Kj

log(
ωk,jRk,j

P(1−λ)
j

), (5.8)

s.t. (5.6c) and (5.6d).

5.2.2 Lagrangian Dual Analysis and KKT Conditions

Lagrangian duality analysis of the problem (5.8) can be performed as in [98] to acquire

an optimal solution and can be expressed as

L(ωj, µ) =
∑
k∈Kj

log(
ωk,jRk,j

P(1−λ)
j

)− µ(
∑
k

αk,j − Sj), (5.9)

where ω ≥ 0 is the primal variable and µ is the non-negative Lagrange multiplier related to

the objective function (5.8) and the constraint (5.6c) respectively.

The partial derivative of (5.9) with respect to ωk,j gives the sufficient Karush-Kuhn-

Tucker (KKT) conditions for the optimal solution of (5.8) and the partial derivative takes

the form of

∂L

∂ωk,j
=

1

ωk,j
− µ ≤ 0, (5.10)

ωk,j ≤
1

µ
, (5.11)

∑
k∈Kj

ωk,j = Sj. (5.12)

The optimal solution requires strict equality in (5.11) for positive component µ. Addi-

tionally, the constraint (5.6c) must hold strict equality as in (5.12) in a heavy loaded network

where all the RBs are used in the optimal point. Therefore, an expression for the optimal
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ωj can be derived as

ωk,j =


1, for |Kj| < Sj

1
µ
, for |Kj| ≥ Sj

(5.13)

where µ can be expressed in terms of the downlink data stream Sj of an arbitrary base

station j and the number of users |Kj| associated with it from the (5.11) and (5.13) as

5.2.3 Game Theoretical Solution

After making the Lagrangian duality analysis and analyzing KKT conditions, it is obvious

that (5.8) is maximized when each user maximizes its weighted sum of energy efficiency and

spectral efficiency individually based on the condition given in (5.14) by considering the

overall scenario and the load information of the base stations. To this end, we propose and

game theoretical methodology to find the Pareto-optimal solution to the problem (5.8).

We consider a fully loaded scenario where each base station serves at least Sj number

of users. The algorithm performs a game theory where a user (Player) tends to change

its unique association configuration (Action) selfishly until there is no base station yielding

better solution to joint spectral and energy efficiency optimization (Payoff function). In other

words, all users keep changing their association until they reach Nash equilibrium (NE). The

NE condition is given as

SjkRk,jk

|Kjk |P
(1−λ)
jk

>
SjRk,j

(|Kj|+ 1)P(1−λ)
j

, ∀k ∈ K, ∀j, jk ∈ J, jk ̸= j, (5.14)

where jk stands for the current serving base station of user k and j is the prospective base

station that can serve if it can offer a better spectral and energy efficiency tradeoff.

Algorithm 5.1 presents the user-centric approach for the user-cell association. In Algo-

rithm 1, if user k can obtain a better payoff function from an arbitrary base station j, user k

changes its association configuration from base station jk to j in step (8). If step (8) holds for

the current iteration i, migration count mik increases (step 10), the load of the prospective
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base station |Kj| increases (step 11), the load of the current serving BS |Kjk | decreases (step

12), and the algorithm updates the association of user k in (step 13). Additionally, imax,

p, and λ stand for the maximum number of iteration, switching probability, and weighting

factor, respectively.

Algorithm 5.1 Game theoretical user-cell association (GTUCA)

Set initial parameters:
imax, p, and λ,
set initial values of i = 0 and m = 0,
while i < imax do

for k = 1 : K do
for j = 1 : J do

The base station j calculates power consumption Pj using (5.4),

if
SjRk,j

(|Kj |+1)P(1−λ)
j

>
Sjk

Rk,jk

|Kjk
|P(1−λ)

jk

then

if rand < p(mik
+1) then

mik ← mik + 1,
|Kj| ← |Kj|+ 1,
|Kjk | ← |Kjk | − 1,
jk ← j,

end

end

end

end

end

5.3 Numerical Evaluation

5.3.1 Network Model

In this section, we perform a simulation to evaluate the proposed GTUCA algorithm in

a downlink UDHN consisting of 7 MBSs having 100 antennas each with 46 dBm transmit

power, and randomly deployed three hot-zones having more user density than MBSs are

considered. Within each hot-zone, there are 4 randomly deployed SBSs having 10 antennas

each with 35 dBm transmit power in a hexagonal region. The MBSs are placed in the center

of each hexagon area.
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The coefficients regarding the power consumption are borrowed from [112] and given in

Table 5.1, including detailed information about the simulation parameters. We assume no

intra-cell interference in this study. Thus, we assign a set of 10 pilots shared by MBSs,

and a different set of 2 pilots for channel estimation. Additionally, the pathloss models and

simulation parameters for both MBS and SBS deployments are taken from existing 3GPP

standards [87].

5.3.2 User Throughput and Energy Efficiency

The maximum rate-based user-cell association scheme is chosen as the baseline algorithm,

where a user is associated with a base station providing the highest rate, to evaluate the

performance of the proposed algorithm. In Fig. 5.1 and Fig. 5.2, we compare the geometric

mean of the energy efficiency and the spectral efficiency, respectively, and obtain the perfor-

mance of the proposed algorithm with different weighting factors, i.e., λ = 0, 0.3, 0.5, 0.7, 1.

It is evident from the figures that the best performance in terms of energy efficiency is ob-

tained by the proposed approach when we set the λ = 0. However, spectral efficiency will

perform worst when λ = 0. We can deduce that smaller λ causes less spectral efficiency but

higher energy efficiency since reducing λ allows more users to be associated with SBSs with

low transmit power leading to an increase in energy efficiency.

The selection of λ is highly critical in optimizing the spectral and energy efficiency trade-

off. As can be seen from Fig. 5.2, when λ = 0.5, the baseline and the proposed algorithm

perform almost similar in terms of spectral efficiency. However, the proposed algorithm

provides better energy efficiency than the baseline given in Fig. 5.1. To obtain a better

spectral and energy efficiency tradeoff, the range of the weighting factor should be specified

as 0.5 < λ < 1.

Fig. 5.3 and Fig. 5.4 illustrate that the proposed algorithm provides better energy and

spectral efficiency than the baseline for most of the realization when the transmission power

of MBSs relatively reduced from 46 dBm to 43 dBm with the same number of antennas and
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Figure 5.1: Geometric mean of the energy efficiency.

λ = 0.6. We observe higher spectral efficiency since the interference from MBSs is reduced

and higher energy efficiency because users are more likely to associate with SBSs due to the

lower transmit power of MBSs.
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Figure 5.2: Geometric mean of the spectral efficiency.

75



8.6 8.8 9 9.2 9.4 9.6 9.8 10 10.2

Energy Efficiency(bps/Hz/Jolue) 10-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Ptx = 43 dBm

Ptx = 46dBm
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Figure 5.4: Throughput gain.
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Table 5.1: Simulation Parameters

Parameters Value
Bandwidth 20 MHz

Carrier frequency 2 GHz
Number of users 1400

Q , T 3, 7
NF , TK , kb 7 dB, 290o K, 1.38x10−23 J/ K

Two-slope LOS 22log(d) + 34.02 +Xσ, d < d1
path loss 40log(d)− 11.02 +Xσ,d1 < d < d2

model of MBS σ = 4 dB, d1 = 320m, d2 = 5000m
NLOS pathloss 39.1log(d) + 19.56 +Xσ

model of MBS σ = 6 dB
Two-slope LOS 22log(d) + 34.02 +Xσ, d < 120m

path loss 40log(d)− 3.36 +Xσ,120 < d < 5000m
model of SBS σ = 3 dB
NLOS pathloss 36.7log(d) + 30.53 +Xσ

model of SBS σ = 4 dB

PLOS(d) for SBS min(18/d, 1)(1− e(− d
36

)) + e(−
d
36

)

PLOS(d) for MBS min(18/d, 1)(1− e(− d
63

)) + e(−
d
63

)

Transmit power of 46 dBm,
MBS and FBS 35 dBm,
respectively

Aj for MBS, FBS 100, 10
Sj for MBS, FBS 10, 2

User height 1.5 m
BS height FBS: 10 m, MBS: 25m
FBS radius 40 m
Number of 100
realizations

Power consumption C0,0 = 4, C1,0 = 4.8, C2,0 = 0,
coefficients C3,0 = 2.08× 10−8, C0,1 = 1,

C1,1 = 9.5× 10−8, C2,1 = 6.25x10−8
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Chapter 6: Concluding Remarks

In chapter 2, we have proposed a two-stage beam selection algorithm to reduce the com-

plexity of existing decremental QR precoding (D-QR-P) based beam selection algorithm and

a three-stage beam selection algorithm for incremental QR precoder (I-QR-P) based beam

selection algorithm. The benchmark algorithms select beams from all available beams during

the beam selection process, although most do not contribute to users. Nevertheless, the pro-

posed algorithms first identify the most contributing beams to narrow the candidate beam

set and perform the beam selection afterward. Combining this strategy with matrix pertur-

bation theory reduces the beam selection complexity significantly. The results validate that

the proposed algorithms provide almost identical sum-rate performance with the baseline al-

gorithms, and both can be adopted at low and high signal-to-noise ratios (SNR)s. Note that

I-QR-P is only suitable for application at medium and high SNRs due to the loss observed

in low SNRs. Thence, the three-stage method is more attractive since it can compensate

for this loss along with its lowest complexity. Additionally, the practical implementation of

proposed methods for wideband mmWave scenarios will be investigated with multi-antenna

users as a future study.

In chapter 3, we have proposed a hybrid precoding scheme for millimeter-wave (mmWave)

lens antenna subarray (LAS)-MIMO architectures that uses the heuristic artificial bee colony

(ABC) and orthogonal matching pursuit (OMP) algorithms. Thus, it is called ABC-aided

spatially sparse precoding. The proposed precoding algorithm first selects the antennas that

need to be activated for each lens and calculates the corresponding lens antenna effect. This

information is then used in OMP to find the analog and digital precoders where the precoding

problem is formulated as a sparse reconstruction problem due to the sparse behavior of
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the mmWave channel. ABC runs until it finds the best precoding components providing

the highest SE. The simulation results show that it can achieve near-optimal performance

in terms of spectral efficiency as the number of lenses increases in the LAS system while

outperforming the traditional array (TA)-MIMO in terms of energy efficiency for single and

multiple radio frequency (RF) chains. Additionally, using different switch types may further

improve energy efficiency while maintaining the same spectral efficiency. The future scope

of this study can be proposing an algorithm that can handle joint precoding and combining

for a multi-user scenario in a wideband mmWave spectrum.

In chapter 4, we have investigated on solving the spectral and energy efficiency tradeoff

formulated as a multi-objective optimization problem (MOP) in a downlink non-orthogonal

multiple access (NOMA) with the help of population-based multi-objective evolutionary

algorithms (MOEA)s, namely non-dominated sorting genetic algorithm-II (NSGA-II), multi-

objective particle swarm optimization (MOPSO), and strength Pareto evolutionary algorithm-

2 (SPEA2), where Pareto optimal solutions are attained by the simultaneous optimization

of objectives. Additionally, the performance comparison has been observed through the hy-

pervolume indicator and running time of the algorithms. The results demonstrated that

SPEA2 works best for the spectral and energy efficiency tradeoff in a downlink NOMA.

However, it is the slowest among MOEAs while MOPSO is the fastest. Moreover, we tried

to understand which problem formulation is the best for the spectral and energy efficiency

tradeoff optimization and concluded that maximizing energy efficiency and spectral efficiency

simultaneously provides better Pareto front quality than maximizing spectral efficiency and

minimizing power consumption. The future scope of this study can be the implementation

of other popular MOEAs in the existence of imperfect SIC and finding the best one.

In chapter 5, we have proposed a user-centric and distributed user-cell association algo-

rithm based on game theory for ultra-dense heterogeneous networks (UDHNs) consisting of

massive macro base stations (MBSs) and small base stations (SBSs). We formulate a multi-

objective optimization problem where each user aims to optimize the spectral and energy
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efficiency tradeoff in a selfish and fair way. After we formulate the problem, it is converted

into a single objective optimization problem by the weighting function method. Numerical

results indicate that the proposed algorithm exhibits better performance than the baseline

algorithm with an appropriate weighting factor. Finally, the fully decentralized implementa-

tion and the low complexity of the proposed algorithm make it attractive for future massive

MIMO-enabled UDHNs.
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