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Surmounting Challenges in Aggregating Results from Static 
Analysis Tools 

 
Dr. Ann Marie Reinhold, Brittany Boles, A. Redempta Manzi Muneza,      

Thomas McElroy, and Dr. Clemente Izurieta 

 

 

Introduction 

The abundance of analysis tools designed for detecting threats in software is so 

extensive that practitioners often find themselves overwhelmed when selecting 

tools for their respective organizations. The posture of an organization can be 

improved by applying the Platform for Investigative Software Quality 

Understanding and Evaluation (PIQUE) [12] framework, currently in development 

at the Software Engineering and Cybersecurity Laboratory (SECL) at Montana 

State University [16]. PIQUE assesses software artifacts from multiple sources, 

such as source code, binaries, Docker images, and Software Bills of Materials 

(SBOMs). Leveraging existing tools employed by an organization helps produce a 

holistic quality score to help improve assessments. While PIQUE is a framework 

that primarily addresses Quality Assurance (QA) concerns, we have developed 

parsimonious PIQUE models focused on cybersecurity. 

 

The overarching purpose of our work is to bolster the cybersecurity defenses 

of organizations by moving beyond isolated point tools and, instead, incorporating 

the aggregation of assessments from multiple tools to inform practitioners with data 

from diverse sources. While the aggregation of measurements from diverse sources 

can enhance defenses, it also presents challenges.  

 

The variability associated with aggregation from diverse sources is 

problematic. Such variability is often unconstrained and uncontrolled–leading to 

the propagation of inconsistencies and errors [8]. These errors and inconsistencies 

hamper accuracy and trustworthiness. Therefore, mitigating the effects of 

variability associated with aggregation is a research imperative as we engineer new 

approaches to bolster defenses in cyberspace. 

 

Traditionally, the generation of reliable results has depended on the 

replication of studies. However, researcher attention needs to turn towards 

understanding the sources of variability (i.e., tools and technologies) and the 

internal algorithms (i.e., aggregation) used to process data produced from varied 

sources. It is crucial to acknowledge that the variability inherent in vendors, tool 

versions, third-party software, and host environments influences the outcomes of 

security assessments, with potential implications when selecting controls for an 

organization.  
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A formidable challenge arises when confronted with highly variable outputs 

stemming from different versions of the same tool. The complexity deepens in the 

face of disagreements between tools that measure similar aspects, numerous tool 

configurations, uncontrolled variability in dependencies, and diverse 

environmental conditions. We address this challenge by contributing our 

experience from rigorous assessments of multiple Static Analysis Tools (SATs). 

The variability of results reported by SATs is compounded when 

operationalizations of Quality Assurance (QA) models aggregate results to abstract 

quality characteristics (e.g., cybersecurity). Therefore, we advocate for a sound 

approach to aggregation to derive comprehensive and meaningful assessments 

which are subject to inputs from multiple sources. 

 

Thus, making informed decisions about cybersecurity posture demands an 

acute awareness of tool variability, characterization of the dimensions of this 

variability, and a strategic approach to mitigate the impact of the aggregation of 

results that–in our specialized QA models–ultimately result in a security quality 

score. This research synthesizes the work we have carried out to date on these 

problems. Our research has implications for replicating and reproducing empirical 

studies, wherein consistency in their outcomes is crucial.  

 

By sharing our diverse experiences with results obtained from several SATs 

and experimentation with aggregation techniques, we seek to enhance the reliability 

and trustworthiness of findings and, by extension, to improve the security 

assessments and posture of organizations. Beneficiaries of this research include 

Cybersecurity and Infrastructure Security Agency (CISA) Security Control 

Assessors (SCAs), Qualified Security Assessors (QSAs), Information Assurance 

Assessors (IAAs), and any personnel in similar work roles. To this end, we address 

the following goals (Figure 1): 

 

G1: Report on the high variability of SATs. 

G2: Report on a technique used to aggregate results from multiple 

sources. 

 

The findings for each goal provide a deeper understanding of issues 

affecting variability stemming from SATs (G1) and aggregation algorithms (G2), 

thereby allowing our community to explore avenues for enhancing the 

operationalization of common canonical frameworks and improving the 

trustworthiness of security assessments. 
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Figure 1: Sources of variability affecting practitioners who rely on aggregating the results of 

cybersecurity SATs. G1 and G2 refer to the goals of this paper; corresponding brackets indicate 

which sources of variation each goal addresses. 
 

Related Work 

Numerous tools are available for performing static analysis of source code, offering 

various strategies. Examples include SATs designed for assessing coding styles 

(e.g., Checkstyle [17]) and identifying source code warnings and bugs (e.g., Lint 

[2], PC-Lint [18], FindBugs [19], PMD [20], Roslynator [21], Security Code Scan 

[22], SonarQube [23], and Insider [24]). Additionally, specialized SATs focus on 

binary analysis to detect potential security threats, weaknesses, and vulnerabilities 

in programs. Examples include CVE Binary Tool [25] and CWE Checker [26]. 

 

While studies have compared functionalities across these SATs, there is a 

noticeable gap in research that examines a lack of consistency in the results reported 

by different versions of the same tool. Moreover, there is a lack of clear guidance 

regarding the vulnerabilities and weaknesses that these SATs target. For example, 

although two SATs may claim to report vulnerabilities, their outputs may vary 

significantly because of differences in the architecture, source code, or 

dependencies (e.g., databases). 

 

Evidence of variability (from studies performed by members of SECL) in 

binaries and source code has been found and published in prior work. Reinhold et 

al. [11] conducted a study investigating the consistency with which multiple 

versions of cybersecurity SATs report weaknesses and vulnerabilities in binary 

files. They assessed CVE Binary Tool and CWE Checker. CVE Binary Tool reports 

vulnerabilities using Common Vulnerabilities and Exposures (CVE), whereas 

CWE Checker reports weaknesses using Common Weakness Enumeration (CWE). 

They conducted a systematic investigation of 660 unique binaries taken from a Kali 

Linux distribution, evaluated each binary with multiple versions of the SATs, and 

investigated how the findings changed according to the version of the static-

analysis tool used. 

 

Our ongoing research explores SATs designed for Docker containers and 

SBOMs. While this work is still in progress (see Table 1, cells indicated by the 

value "WiP"), preliminary findings suggest inconsistent reporting of results. Thus 
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far, we have identified the following sources of variability: SAT vendors, different 

versions of SATs, dependencies on components and libraries, and output variations 

(Figure 1, Items 1-6). Further, we conjecture that many other sources of variability 

across tool domains exist but remain poorly investigated.  

 

The challenges stemming from tool variation are further exacerbated when 

the evaluation techniques needed to combine scores from diverse sources require 

aggregation (Figure 1, Item 7), which can significantly threaten the internal and 

conclusion validity of security assessments. Aggregation refers to the combination 

of scores from multiple sources (e.g., tools), and is prominent in theoretical quality 

models that are organized in a hierarchical manner (e.g., International Standards 

Organization and the International Electrotechnical Commission, ISO/IEC 9126 [5] 

and ISO/IEC 25010 [6]). Quamoco [14] and the Quality Assessment Tool CHain 

(QATCH) [13] are examples of operationalizations of these models. Aggregation 

can pose significant problems for these operationalizations because the aggregation 

process involves assessing all measurements up the hierarchy using edge weights 

provided by the model. Aggregation methods range from simple calculations of 

weighted averages to more intricate linear transformations of data. 

 

Tools created by different vendors produce different results, as exemplified 

in a technical debt study by Griffith et al. [3]. The authors empirically validated the 

relationships between technical debt scores produced by varying tools against 

established theoretical quality models. They conducted a case study across ten 

releases of ten open-source systems to evaluate three proposed methods of technical 

debt principal estimation. Their evaluation compared each technique against an 

external quality model. The authors found that only one estimation technique 

exhibited a strong correlation with the quality attributes of reusability and 

understandability.  

 

Additional evidence of variability across tools and aggregation methods is 

found in a study conducted by Griffith et al. [7]. Therein, the authors employed a 

multiple case study design comparing the results of Quamoco [14] and SQALE [10] 

quality models; they used results from multiple tools (each from different vendors) 

as inputs to both Quamoco and SQALE. The study spanned various open-source 

C# software projects sourced from two sources: GitHub and commercial software 

for sustainment management systems. The assessments covered maintainability, 

reliability, and security. The findings indicated a notable disparity between the 

quality assessments under both models. This experiment showed variability across 

the quality models and across the tools used. 

 

Variability in SAT results was also found by Rice [12] and Harrison [4]. 

Rice experimented with Rosylnator, a third-party tool suite that provides hundreds 

of code diagnostics. Rosylnator enables command line interface utilities to run 

static analysis on .NET systems. Rice also included the Security Code Scan tool for 

additional security measurements. Rice [12] documented variability in SAT results 

attributable to different vendors and their configurations. Additional work by 
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Harrison [4] expanded on work by Rice [12] using the Insider [24] security 

assessment tool within the PIQUE framework. Harrison [4] also demonstrates 

variability associated with configuration and tool vendors. 

 

Uncertainty from multiple sources of variation propagates [8]. Such 

propagation has real consequences as margins of error expand. For instance, Brown 

et al. [1] further demonstrated the ripple effects linked to measurements associated 

with tool vendors. 

 

 
Table 1:  Cross reference of sources of variability against SATs in a specified domain. Values in 

cells indicate our experiences at the intersection of the sources of variability (rows) and the domain 

of the SATs (columns). “Published” denotes that we have published studies on the topics. “WiP” 

denotes work in progress, indicating that we have ongoing research. “Expected” denotes that the 

source of variability is relevant; relevance was determined using a combination of abductive 

reasoning that incorporates our previous experiences and expert knowledge. “Suspected” denotes 

that we suspect these sources of variability are important based on either abductive reasoning or 

expert knowledge. 

Variability 

Source 

Binaries Source Code Docker 

Containers 

SBOMs 

Version Published [11] Expected WiP WiP 

Vendor Unexplored Published [4], [7], 

[12] 

WiP Published [15] 

Configuration Expected Published [4], [12] Expected Expected 

Failures WiP Expected WiP WiP 

Outputs Expected Expected WiP WiP 

Dependencies Published [9] Expected WiP WiP 

Environment Suspect Expected Suspect Suspect 
 

 

Methods 

Over the last decade, our team has explored numerous open-source SATs that 

evaluate a range of software artifacts—from binaries, source code, Docker 

Containers, and SBOMs (Table 1). Our purposes for using these tools have varied 

widely, from investigating code quality to security to technical debt. All 

investigations have required aggregating results from multiple tools. 

 

Our objective here is to exemplify and document the existence of variability 

when aggregating results from SATs (G1) and offer one solution for aggregating 

findings from multiple SATs (G2). Our analysis associated with G1 focuses on 

delineating the problem of reliance on one version of a SAT (e.g., the most recent 

version of the tool). Our method associated with Goal 2 offers an unbiased, tool-

agnostic solution that we have developed to facilitate aggregating tool findings 

from multiple sources. 
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G1 Experimental Methods 

To address G1, we initially outline (as detailed in Table 1) the potential sources of 

variability linked to each of the SATs we have investigated. It’s important to clarify 

that the "Published" values in Table 1 pertain to work conducted by the authors and 

previous members of our SECL laboratory. It is beyond the scope of this article to 

provide summaries for all methods associated with our prior work. Here, we focus 

on experimentation done on i) binary analysis tools Common Vulnerabilities and 

Exposures (CVE) Binary Tool and Common Weaknesses Enumeration (CWE) 

Checker and ii) Docker Images analysis tools Grype [27] and Trivy [28]. These 

sources of variability address item 4 of G1 in Figure 1. 

 

We present results that highlight two of the most common sources of 

variability that we have encountered: (1) variability arising from the use of different 

versions of a single SAT and (2) variability in the results of two SATs (from 

different vendors) that purportedly measure the same characteristic of a software 

artifact (Grype and Trivy). In both cases, the practitioner is left with unsettling, 

unquantified uncertainty–as they debate “Which versions of this tool should I use?” 

and “Which vendor’s results should I use?” While we have experiences with 

additional sources of variability, we focus on version and vendor variability herein. 

  

We highlight within-tool variability across tool versions employing two 

SATs that analyze binary code security [11] and two SATs that analyze Docker 

Images. We highlight between-tool variability by comparing the results of SATs 

that analyze Docker Images (WiP). We created a corpus of software artifacts to 

evaluate binaries and Docker Images. We evaluated one version of each binary file 

(n = 660) and one version of each Docker Image (n = 163), varying only the 

versions of the SATs that analyze the binaries and Docker Images. The same code 

artifacts were analyzed with multiple versions of multiple SATs. 

 

Experimental method for comparing binary analysis SATs 
 

We evaluated 660 publicly accessible binaries sourced from a Kali Linux 

distribution with multiple versions of CWE Checker and CVE Binary Tool [11]. 

The collection of binaries and the entire data-science workflow is downloadable 

from our GitHub [29] page, and detailed information is provided in [11]. For the 

CWE Checker, we evaluated all binaries using versions 0.4, 0.5, and 0.6. Earlier 

versions (0.1, 0.2, and 0.3) required deprecated dependencies, necessitating 

laborious and impractical modifications to the environment configuration. 

Consequently, our analysis concentrated on the recent versions (0.4, 0.5, and 0.6). 

We evaluated all binaries using nine versions of CVE Binary Tool. We attempted 

11 versions, but omitted two versions because they appeared to have bugs; these 

two versions returned identical scores for all 660 binaries evaluated. 

 

We implemented multiple controls to attribute variations in tool output to 

disparities in static analysis tool versions. First, we evaluated one version of each 

binary in the collection using multiple versions of the SATs. This ensured that all 
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evaluated versions of the SATs analyzed the same binary code. Second, to ascertain 

that discrepancies in CVE Binary Tool output were solely attributable to variations 

in CVE Binary Tool versions and not influenced by differences in the National 

Vulnerability Database (NVD) [30] or the Open Source Vulnerabilities (OSV) 

database [31], we used NVD and OSV data acquired on July 18, 2022. 

Consequently, any differences observed in tool output across different CVE Binary 

Tool versions can be confidently attributed to the version of the tool, unaffected by 

variations in NVD or OSV versions. We calculated the total number of findings 

(CWEs from CWE Checker, CVEs from CVE Binary Tool) reported by each 

version of each tool. We assessed whether the version was an important driver of 

the variation in the results in Reinhold et al. [11]. 

 

Experimental method for comparing Docker container and SBOM analysis tools 
 

We evaluated a single version of each of the 163 Docker Official Images (i.e., 

containers) using the SATs Grype and Trivy. We collected these Official Images 

from Docker Hub and posted the version of the images on our public GitHub. We 

evaluated each Docker image with 22 versions of Trivy and 39 versions of Grype. 

The versions of each tool were major releases spanning from 12/24/2021 to 

11/07/2023. In cases where a major release was unavailable, we used the next 

available sequential minor release. We omitted versions v0.38.0, v0.39.0, and 

v0.40.0 of Trivy from our analyses because executing each resulted in a runtime 

error. Each tool was run with default configurations with the following exceptions: 

(1) with Trivy, we used the configuration “-timeout 30m” to help minimize running 

errors, and (2) with Grype, we used the configuration “–scope -all layers” to ensure 

we did not have a configuration setting that resulted in false negatives (i.e., omitting 

vulnerabilities). 

 

We implemented controls to attribute variations in tool output to disparities 

in static analysis tool versions. First, we evaluated one version of each Docker 

Image in the collection using multiple versions of the SATs. This ensured that all 

evaluated versions of the SATs analyzed the same set of Docker Images. Thus, each 

version of Grype and Trivy evaluated exactly one version of each Docker Image. 

We configured Grype and Trivy to use a static vulnerability database each; we 

posted links to each vulnerability database on our GitHub page. Grype and Trivy 

do not have common database formats, precluding us from using a single database 

for both SATs. However, each tool was executed with only one version of each 

database. Therefore, each tool analyzed each Docker Image using one vulnerability 

database, but the vulnerability databases were not identical between the two SATs. 

 

We calculated the total number of vulnerabilities reported by each version 

of each tool. We present these graphically and provide basic descriptive statistics 

(e.g., standard deviation [SD]) to characterize our findings. We use the word 

“findings” here to represent the results produced by SATs. 
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G2 Experimental Methods 

To address G2, we report on a procedure that we developed to aggregate results 

from diverse SATs. Different SATs provide results on different scales, precluding 

an end user from directly integrating findings from one with findings from another. 

Moreover, because no oracle exists to verify the findings of the SATs, ascertaining 

accuracy is a wicked problem. However, objective scaling of SAT findings is 

possible and enables aggregation of findings from diverse tools. 

 

 

 
 

Figure 2: Density-based scoring procedure. Step 1: software artifacts are assembled into a 

collection. Step 2: all software artifacts in the collection are evaluated using a cadre of SATs. Step 

3: the findings for all software artifacts evaluated by all SATs are aggregated. Step 4: the distribution 

of the count of findings is created. Step 5: an end user runs their new artifact of interest through the 

same SATs as in Step 3, and the instances of each finding are recorded. Step 6: a probability density 

function (PDF) is created from the distribution in Step 4. Step 7: the count of the finding in the new 

software artifact of interest receives a score between [0,1] based on its position in the PDF. All 

findings in the new artifact are scored with this density-based benchmarking procedure. 

 

Our scaling method is rooted in comparison (Figure 2). We first create a 

collection of software artifacts (usually between 102 – 104 artifacts). We evaluate 

all software artifacts with relevant static analysis tools (SATs); for instance, we 

use the SATs Trivy and Grype to analyze Docker Images and SBOMs. We then 

record the results for all findings reported by the SATs; typically, we store these 

in a flat file. Each file of this type is an “aggregation file.”  

 
In each aggregation file, the rows correspond to the software artifacts under 

investigation, the columns correspond to the findings (such as individual CVEs), 

and the values of each cell are the counts of each finding in each software artifact. 
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One file contains findings from multiple SATs; it could contain findings from 

multiple versions of multiple tools. However, our example here pertains to one file 

containing findings generated from one version of each SAT.  

 

We then create a probability density function (PDF) based on the 

distribution of the instances of each finding in all samples in the collection. When 

an end user wishes to evaluate a new software artifact, they run it through the same 

SATs that the collection was evaluated with; each finding is then scored using a 

density-based approach. In the example in Figure 2, the end user’s software artifact 

of interest is found to have 40 instances of the finding named “CVE-Unknown-

Other-Diagnostic.” The density-based scoring indicates that this artifact has fewer 

instances of this vulnerability than 66% of the artifacts in the collection. 

 

To be more specific, suppose an end user has a software artifact that they 

are evaluating, and the count of a particular finding in that artifact is represented by 

𝑑 (we call this 𝑑 because the count of a finding is “diagnostic”; 𝑑 = 40 in Figure 2). 

We calculate a PDF for the distribution and compute the area under the curve from 

zero to 𝑑; thus, 𝐴𝑑 indicates the proportion of samples in the collection having fewer 

counts of a finding than 𝑑. We calculate the score for the new artifact as Score = 1 

− 𝐴𝑑 ; we subtract 𝐴𝑑 from one because it is more intuitive for a higher score to 

indicate greater security and a lower score to indicate lower security. 

 

Results 

G1 Results 

Our systematic evaluation of multiple versions of multiple SATs indicates that the 

findings from SATs are version-dependent. Multiple versions of the same tools 

produced different results in the collection of binaries (Figure 3 A-B and Reinhold 

et al. [11]) and in the collection of Docker Images (Figure 3 C-D). Thus, inter-

version variation was present in the SATs that evaluate binaries and Docker Images. 

 

Different versions of SATs often produce different measurements–even 

when the tool inputs (software artifacts) are identical. Our calculation of the 

standard deviation of the cumulative findings across the versions confirms this. 

While the magnitude of this variation is greater for the binary analysis SATs 

(𝑆𝐷𝐶𝑉𝐸𝐵𝑖𝑛𝑎𝑟𝑦𝑇𝑜𝑜𝑙 = 2.3𝑒4, 𝑆𝐷𝐶𝑊𝐸𝐶ℎ𝑒𝑐𝑘𝑒𝑟 = 8.5𝑒4), it is substantive for the SATs that 

analyze Docker Images also (𝑆𝐷𝑇𝑟𝑖𝑣𝑦 = 4.2𝑒2, 𝑆𝐷𝐺𝑟𝑦𝑝𝑒 = 1.8𝑒3). Note also that the 

scores for Trivy and Grype never agreed (the upper y-axis limit in Figure 3C [Trivy] 

is less than the lower bound of the y-axis limit in Figure 3D [Grype]). 
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Figure 3: Total number of findings versus SAT. Exactly one version of each binary was analyzed 

by multiple versions of CVE Binary Tool and CWE Checker; exactly one version of each Docker 

Image was analyzed by multiple versions of Trivy and Grype. Y-axes correspond to the total count 

of findings identified by (A) CVE Binary Tool and (B) CWE Checker in the collection of binaries 

(n = 660) and by (C) Trivy and (D) Grype in the collection of Docker Images (n =163). X-axes 

correspond to the version of the SAT indicated in the panel labels. Each point represents the total 

number of findings that the SAT found in the collection of binaries (A-B) and Docker Images (C-

D). 

 

G2 Results 

Our scoring procedure facilitates the aggregation of results from multiple sources 

with objectivity and transparency. We have successfully implemented this 

procedure to scale results from SATs that evaluate binaries, Docker Images, and 

SBOMs. In total, this amounts to over 13,000 software artifacts scored with this 

approach. Doing so has facilitated the aggregation of the SAT results into 

hierarchical QA models. 

 

Our scaling procedure is robust across many distributions (Figure 4). In 

Figure 4, three distributions of findings from SATs and their associated PDFs are 

displayed. For two of these distributions, our procedure requires no modification; 

it produces intuitive and objective scores. However, our scoring procedure required 

one modification to accommodate the full suite of distributions that we have 

encountered. We expanded the density-based scoring procedure to accommodate 

the special case wherein all software artifacts in the collection had the same number 

of findings. 
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Figure 4: Density-based scoring of commonly encountered distributions. The upper row depicts 

histograms of distributions that we observed in benchmarking our collections of software artifacts. 

The lower row depicts how application of the density-based scoring to produce a score between 

[0,1]. Red dots denote the count of findings in a software artifact compared to all other artifacts in 

a collection. Note that no PDF is plotted in the lower right panel. A PDF is nonsensical in the case 

where the findings for all software artifacts in the collection were identical (here, all were zero); we 

refer to these as “constant values.” When encountering constant values in a benchmark repository, 

the approach is to assign a score of zero if d is less than or equal to the constant value and to assign 

a score of one if d is greater than the constant value. 

 

Discussion 

Our results from G1 illustrate the magnitude of the variation in the number of 

findings reported by SATs while changing only the version of the SAT itself. 

Developer change logs sometimes help explain the large changes in findings 

reported by the SATs. For instance, the total number of findings identified by Grype 

dropped substantively following v0.70.0 (Figure 3D). This drop in findings is likely 

attributable to the developers moving away from using Common Platform 

Enumeration (CPE) matching in subsequent versions, thereby changing how Grype 

interacts with its dependencies (e.g., how pattern matching is done with the NVD). 

This is an example where change logs explain variation, but this level of 

explanation is rare in our experience. Often, we are challenged to ascertain the 

reasons for the inter-version variation. 

 

The inter-version variation presents a formidable challenge for selecting the 

appropriate version of a SAT. Moreover, high inter-version variation hampers end-

user trust in the accuracy of the findings reported by a SAT. Therefore, inter-version 

variation has become an important metric for informing which SATs we use in our 

security assessment studies because any errors or inconsistencies introduced by the 

SATs propagate in our models and subsequent analyses. 

 

When two SATs purportedly measure the same (or very similar) aspects of 

a software artifact, inter-version variation can help inform SAT selection. Selection 
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criteria can and should still include a comprehensive evaluation of developer 

documentation and full testing of the tools. We have a study underway that 

investigates the technical reasons for the differences in the results that Grype and 

Trivy produce when evaluating Docker Images and SBOMs. Selection criteria 

should also incorporate which SATs produce consistent results across versions and 

the extent to which change logs and release notes explain large changes in tool 

findings. The findings reported by the tools will change commensurate with the 

software development lifecycle; however, large, unexplainable changes in findings 

suggest that the SATs are not yet mature enough to be trusted.  

 

The solution we present in G2 is appealing because it is unbiased, 

repeatable, and effective at normalizing results from diverse sources (here, multiple 

SATs) to enable aggregation. However, it has some limitations. The external 

validity and accuracy of inference derived from this solution are heavily dependent 

on the representativeness of the collection of artifacts against which a new artifact 

is compared. For example, suppose a software engineer was interested in analyzing 

the security of compiled ladder logic code written for a Programmable Logic 

Controller (PLC) using the same collection of binaries analyzed in Reinhold et al. 

[11] and here (Figure 3 A-B). This collection of binaries was sourced from a Kali 

Linux distribution, so scoring the compiled PLC code against this collection would 

introduce threats to validity. More colloquially, this would be an “apples to 

oranges” comparison because our collection of binaries contains no compiled code 

samples from PLCs. However, the threats to validity are much smaller if, for 

instance, a software engineer wanted to compare findings from a binary from 

another Debian-based Linux distribution against our collection of binaries; this 

would be more of an “apples to apples” comparison. 

 

The scaling approach presented here can be adapted to facilitate aggregation 

for other SATs and in other contexts but may require modification in certain use 

cases. We developed this procedure to enable aggregation of cybersecurity findings 

from SATs. For this use case, inferring higher security and lower security from 

SAT results is clear. Counts of vulnerabilities and weaknesses are inversely related 

to the security of software artifacts. That is, high counts of vulnerabilities and 

weaknesses indicate poor security whereas low counts indicate high security. 

 

We have not yet expanded our scaling procedure to aggregate results from 

SATs that measure aspects of code quality wherein “good" values are 

intermediate (neither high nor low). Coupling is one such aspect. A “good” metric 

for coupling is neither zero nor one. Rather “good” coupling values tend to be 

somewhere between these values, with variation being dependent on the domain 

of a software artifact. We have only just begun adapting our density based scoring 

to attributes such as coupling. This is a subject for our future work. 
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Lessons Learned 

While we only addressed version and vendor as sources of variability in the 

analyses in this paper, we identified at least 7 sources (Table 1). Assessing these 

sources of variability simultaneously as a whole is an unwieldy task. We assert that 

breaking each component down into more atomic components will facilitate 

understanding the nuances of each source of variability. Moreover, we posit that 

there is value in applying a familiar organizational structure as we unpack the effect 

that each source of variability has on the wicked problem of aggregating results. 

 

Here, we apply first principles from quality modeling (e.g., ISO/IEC 25010 

[6]) to organize these sources of variability (Table 1). While many of these sources 

of variability touch on multiple quality characteristics (i.e., a many-to-many 

relationship exists between sources and quality aspects), we offer a primary 

classification for these sources of variability as a first step towards developing a 

taxonomy. The variability sources “vendor” and “environment” map to the concept 

of portability defined by the ISO standard. “Configuration” and “dependencies” fall 

predominately under the usability characteristic. “Version” pairs with the 

compatibility characteristic; “failures” pairs the reliability characteristic, and 

“dependencies” pairs with the functional suitability characteristic. 

 

Future Directions 

The solution that we present here (G2) is applicable for aggregating information 

across a range of sources where no oracles exist. Still, we have yet to scratch the 

surface of delineating and solving the problem of aggregation in security 

assessments and empirical software engineering in general. The empirical software 

engineering community can benefit from researching and adopting a common set 

of organizing principles, metrics, and standards to guide the aggregation of data 

from disparate sources. Adopted principles from this community will trickle down 

and enhance assessments for practitioners—including those conducting 

cybersecurity assessments.  

 

Inconsistencies and errors propagate during aggregation, threatening the 

validity of results and any inferences drawn from them. Further, post hoc 

identification and correction of inconsistencies to facilitate aggregation often leads 

to uncertainty [8]. Our SECL team’s future work is focused on better delineating 

the problems with aggregation and how uncertainty and inconsistency in sources 

impact inference. To this end, we are preparing a systematic literature review to 

understand the extent to which our experiences with aggregating the findings of 

SATs are representative of the empirical software engineering community. We seek 

to create a taxonomy of these sources of variability and build towards a common 

set of “best practices” for aggregation. This work is important to ensuring that 

PIQUE models are high quality and will benefit a broad community of practitioners 

reliant on aggregation. 
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Conclusions and Recommendations 

Sources of variability compound uncertainty. When assessing the security posture 

of organizations, the compounding of uncertainty is a pressing problem. Our results 

indicate that our community would benefit from better characterizing and 

quantifying this uncertainty and its sources. Here, we demonstrate that version and 

vendor are common sources of variability in studies aggregating findings from 

SATs.  

 

Aggregation remains a wicked problem because the combinatorics of the 

many sources of variation are vast. Selecting a vendor and a version are universal 

choices that software engineers are confronted with across myriad use cases, but 

many more sources of variation exist. We highlight several of these sources of 

variation and organize them to provide bounds on this challenge. We recommend 

solutions to aggregation that are organized around common goals and are broadly 

applicable across use cases. 
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