
Military Cyber Affairs Military Cyber Affairs

Volume 7
Issue 1 HammerCon 2024 Issue Article 6

May 2024

Surmounting Challenges in Aggregating Results from Static Surmounting Challenges in Aggregating Results from Static

Analysis Tools Analysis Tools

Dr. Ann Marie Reinhold
Montana State University, annmarie.reinhold@montana.edu

Brittany Boles
Montana State University, brittany.boles@student.montana.edu

A. Redempta Manzi Muneza
Montana State University, redempta.manzi@student.montana.edu

Thomas McElroy
Montana State University, thomasjmcelroy3@gmail.com

Dr. Clemente Izurieta
Montana State University, clemente.izurieta@montana.edu

Follow this and additional works at: https://digitalcommons.usf.edu/mca

 Part of the Data Science Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Reinhold, Dr. Ann Marie; Boles, Brittany; Muneza, A. Redempta Manzi; McElroy, Thomas; and Izurieta, Dr.
Clemente (2024) "Surmounting Challenges in Aggregating Results from Static Analysis Tools," Military
Cyber Affairs: Vol. 7 : Iss. 1 , Article 6.
Available at: https://digitalcommons.usf.edu/mca/vol7/iss1/6

This Article is brought to you for free and open access by the Open Access Journals at Digital Commons @
University of South Florida. It has been accepted for inclusion in Military Cyber Affairs by an authorized editor of
Digital Commons @ University of South Florida. For more information, please contact digitalcommons@usf.edu.

http://public.milcyber.org/
http://public.milcyber.org/
https://digitalcommons.usf.edu/mca
https://digitalcommons.usf.edu/mca/vol7
https://digitalcommons.usf.edu/mca/vol7/iss1
https://digitalcommons.usf.edu/mca/vol7/iss1/6
https://digitalcommons.usf.edu/mca?utm_source=digitalcommons.usf.edu%2Fmca%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.usf.edu%2Fmca%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.usf.edu%2Fmca%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usf.edu/mca/vol7/iss1/6?utm_source=digitalcommons.usf.edu%2Fmca%2Fvol7%2Fiss1%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Surmounting Challenges in Aggregating Results from Static Analysis Tools Surmounting Challenges in Aggregating Results from Static Analysis Tools

Cover Page Footnote Cover Page Footnote
This research was conducted with the U.S. Department of Homeland Security (DHS) Science and
Technology Directorate (S&T) under contract 70RSAT22CB0000005. Any opinions contained herein are
those of the authors and do not necessarily reflect those of DHS S&T. This is research is also supported in
part by the Virtual Institutes for Cyber and Electromagnetic Spectrum Research and Employ (VICEROY)
Northwest Virtual Institute for CyberSecurity Education & Research (CySER) program. The awarding
agency is Air Force Office of Scientific Research (AFOSR) via Griffiss Institute. Sub Award contract
140178 SPC003260.

This article is available in Military Cyber Affairs: https://digitalcommons.usf.edu/mca/vol7/iss1/6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

Surmounting Challenges in Aggregating Results from Static
Analysis Tools

Dr. Ann Marie Reinhold, Brittany Boles, A. Redempta Manzi Muneza,

Thomas McElroy, and Dr. Clemente Izurieta

Introduction

The abundance of analysis tools designed for detecting threats in software is so

extensive that practitioners often find themselves overwhelmed when selecting

tools for their respective organizations. The posture of an organization can be

improved by applying the Platform for Investigative Software Quality

Understanding and Evaluation (PIQUE) [12] framework, currently in development

at the Software Engineering and Cybersecurity Laboratory (SECL) at Montana

State University [16]. PIQUE assesses software artifacts from multiple sources,

such as source code, binaries, Docker images, and Software Bills of Materials

(SBOMs). Leveraging existing tools employed by an organization helps produce a

holistic quality score to help improve assessments. While PIQUE is a framework

that primarily addresses Quality Assurance (QA) concerns, we have developed

parsimonious PIQUE models focused on cybersecurity.

The overarching purpose of our work is to bolster the cybersecurity defenses

of organizations by moving beyond isolated point tools and, instead, incorporating

the aggregation of assessments from multiple tools to inform practitioners with data

from diverse sources. While the aggregation of measurements from diverse sources

can enhance defenses, it also presents challenges.

The variability associated with aggregation from diverse sources is

problematic. Such variability is often unconstrained and uncontrolled–leading to

the propagation of inconsistencies and errors [8]. These errors and inconsistencies

hamper accuracy and trustworthiness. Therefore, mitigating the effects of

variability associated with aggregation is a research imperative as we engineer new

approaches to bolster defenses in cyberspace.

Traditionally, the generation of reliable results has depended on the

replication of studies. However, researcher attention needs to turn towards

understanding the sources of variability (i.e., tools and technologies) and the

internal algorithms (i.e., aggregation) used to process data produced from varied

sources. It is crucial to acknowledge that the variability inherent in vendors, tool

versions, third-party software, and host environments influences the outcomes of

security assessments, with potential implications when selecting controls for an

organization.

1

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

A formidable challenge arises when confronted with highly variable outputs

stemming from different versions of the same tool. The complexity deepens in the

face of disagreements between tools that measure similar aspects, numerous tool

configurations, uncontrolled variability in dependencies, and diverse

environmental conditions. We address this challenge by contributing our

experience from rigorous assessments of multiple Static Analysis Tools (SATs).

The variability of results reported by SATs is compounded when

operationalizations of Quality Assurance (QA) models aggregate results to abstract

quality characteristics (e.g., cybersecurity). Therefore, we advocate for a sound

approach to aggregation to derive comprehensive and meaningful assessments

which are subject to inputs from multiple sources.

Thus, making informed decisions about cybersecurity posture demands an

acute awareness of tool variability, characterization of the dimensions of this

variability, and a strategic approach to mitigate the impact of the aggregation of

results that–in our specialized QA models–ultimately result in a security quality

score. This research synthesizes the work we have carried out to date on these

problems. Our research has implications for replicating and reproducing empirical

studies, wherein consistency in their outcomes is crucial.

By sharing our diverse experiences with results obtained from several SATs

and experimentation with aggregation techniques, we seek to enhance the reliability

and trustworthiness of findings and, by extension, to improve the security

assessments and posture of organizations. Beneficiaries of this research include

Cybersecurity and Infrastructure Security Agency (CISA) Security Control

Assessors (SCAs), Qualified Security Assessors (QSAs), Information Assurance

Assessors (IAAs), and any personnel in similar work roles. To this end, we address

the following goals (Figure 1):

G1: Report on the high variability of SATs.

G2: Report on a technique used to aggregate results from multiple

sources.

The findings for each goal provide a deeper understanding of issues

affecting variability stemming from SATs (G1) and aggregation algorithms (G2),

thereby allowing our community to explore avenues for enhancing the

operationalization of common canonical frameworks and improving the

trustworthiness of security assessments.

2

Military Cyber Affairs, Vol. 7, Iss. 1 [2024], Art. 6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

Figure 1: Sources of variability affecting practitioners who rely on aggregating the results of

cybersecurity SATs. G1 and G2 refer to the goals of this paper; corresponding brackets indicate

which sources of variation each goal addresses.

Related Work

Numerous tools are available for performing static analysis of source code, offering

various strategies. Examples include SATs designed for assessing coding styles

(e.g., Checkstyle [17]) and identifying source code warnings and bugs (e.g., Lint

[2], PC-Lint [18], FindBugs [19], PMD [20], Roslynator [21], Security Code Scan

[22], SonarQube [23], and Insider [24]). Additionally, specialized SATs focus on

binary analysis to detect potential security threats, weaknesses, and vulnerabilities

in programs. Examples include CVE Binary Tool [25] and CWE Checker [26].

While studies have compared functionalities across these SATs, there is a

noticeable gap in research that examines a lack of consistency in the results reported

by different versions of the same tool. Moreover, there is a lack of clear guidance

regarding the vulnerabilities and weaknesses that these SATs target. For example,

although two SATs may claim to report vulnerabilities, their outputs may vary

significantly because of differences in the architecture, source code, or

dependencies (e.g., databases).

Evidence of variability (from studies performed by members of SECL) in

binaries and source code has been found and published in prior work. Reinhold et

al. [11] conducted a study investigating the consistency with which multiple

versions of cybersecurity SATs report weaknesses and vulnerabilities in binary

files. They assessed CVE Binary Tool and CWE Checker. CVE Binary Tool reports

vulnerabilities using Common Vulnerabilities and Exposures (CVE), whereas

CWE Checker reports weaknesses using Common Weakness Enumeration (CWE).

They conducted a systematic investigation of 660 unique binaries taken from a Kali

Linux distribution, evaluated each binary with multiple versions of the SATs, and

investigated how the findings changed according to the version of the static-

analysis tool used.

Our ongoing research explores SATs designed for Docker containers and

SBOMs. While this work is still in progress (see Table 1, cells indicated by the

value "WiP"), preliminary findings suggest inconsistent reporting of results. Thus

3

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

far, we have identified the following sources of variability: SAT vendors, different

versions of SATs, dependencies on components and libraries, and output variations

(Figure 1, Items 1-6). Further, we conjecture that many other sources of variability

across tool domains exist but remain poorly investigated.

The challenges stemming from tool variation are further exacerbated when

the evaluation techniques needed to combine scores from diverse sources require

aggregation (Figure 1, Item 7), which can significantly threaten the internal and

conclusion validity of security assessments. Aggregation refers to the combination

of scores from multiple sources (e.g., tools), and is prominent in theoretical quality

models that are organized in a hierarchical manner (e.g., International Standards

Organization and the International Electrotechnical Commission, ISO/IEC 9126 [5]

and ISO/IEC 25010 [6]). Quamoco [14] and the Quality Assessment Tool CHain

(QATCH) [13] are examples of operationalizations of these models. Aggregation

can pose significant problems for these operationalizations because the aggregation

process involves assessing all measurements up the hierarchy using edge weights

provided by the model. Aggregation methods range from simple calculations of

weighted averages to more intricate linear transformations of data.

Tools created by different vendors produce different results, as exemplified

in a technical debt study by Griffith et al. [3]. The authors empirically validated the

relationships between technical debt scores produced by varying tools against

established theoretical quality models. They conducted a case study across ten

releases of ten open-source systems to evaluate three proposed methods of technical

debt principal estimation. Their evaluation compared each technique against an

external quality model. The authors found that only one estimation technique

exhibited a strong correlation with the quality attributes of reusability and

understandability.

Additional evidence of variability across tools and aggregation methods is

found in a study conducted by Griffith et al. [7]. Therein, the authors employed a

multiple case study design comparing the results of Quamoco [14] and SQALE [10]

quality models; they used results from multiple tools (each from different vendors)

as inputs to both Quamoco and SQALE. The study spanned various open-source

C# software projects sourced from two sources: GitHub and commercial software

for sustainment management systems. The assessments covered maintainability,

reliability, and security. The findings indicated a notable disparity between the

quality assessments under both models. This experiment showed variability across

the quality models and across the tools used.

Variability in SAT results was also found by Rice [12] and Harrison [4].

Rice experimented with Rosylnator, a third-party tool suite that provides hundreds

of code diagnostics. Rosylnator enables command line interface utilities to run

static analysis on .NET systems. Rice also included the Security Code Scan tool for

additional security measurements. Rice [12] documented variability in SAT results

attributable to different vendors and their configurations. Additional work by

4

Military Cyber Affairs, Vol. 7, Iss. 1 [2024], Art. 6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

Harrison [4] expanded on work by Rice [12] using the Insider [24] security

assessment tool within the PIQUE framework. Harrison [4] also demonstrates

variability associated with configuration and tool vendors.

Uncertainty from multiple sources of variation propagates [8]. Such

propagation has real consequences as margins of error expand. For instance, Brown

et al. [1] further demonstrated the ripple effects linked to measurements associated

with tool vendors.

Table 1: Cross reference of sources of variability against SATs in a specified domain. Values in

cells indicate our experiences at the intersection of the sources of variability (rows) and the domain

of the SATs (columns). “Published” denotes that we have published studies on the topics. “WiP”

denotes work in progress, indicating that we have ongoing research. “Expected” denotes that the

source of variability is relevant; relevance was determined using a combination of abductive

reasoning that incorporates our previous experiences and expert knowledge. “Suspected” denotes

that we suspect these sources of variability are important based on either abductive reasoning or

expert knowledge.

Variability

Source

Binaries Source Code Docker

Containers

SBOMs

Version Published [11] Expected WiP WiP

Vendor Unexplored Published [4], [7],

[12]

WiP Published [15]

Configuration Expected Published [4], [12] Expected Expected

Failures WiP Expected WiP WiP

Outputs Expected Expected WiP WiP

Dependencies Published [9] Expected WiP WiP

Environment Suspect Expected Suspect Suspect

Methods

Over the last decade, our team has explored numerous open-source SATs that

evaluate a range of software artifacts—from binaries, source code, Docker

Containers, and SBOMs (Table 1). Our purposes for using these tools have varied

widely, from investigating code quality to security to technical debt. All

investigations have required aggregating results from multiple tools.

Our objective here is to exemplify and document the existence of variability

when aggregating results from SATs (G1) and offer one solution for aggregating

findings from multiple SATs (G2). Our analysis associated with G1 focuses on

delineating the problem of reliance on one version of a SAT (e.g., the most recent

version of the tool). Our method associated with Goal 2 offers an unbiased, tool-

agnostic solution that we have developed to facilitate aggregating tool findings

from multiple sources.

5

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

G1 Experimental Methods

To address G1, we initially outline (as detailed in Table 1) the potential sources of

variability linked to each of the SATs we have investigated. It’s important to clarify

that the "Published" values in Table 1 pertain to work conducted by the authors and

previous members of our SECL laboratory. It is beyond the scope of this article to

provide summaries for all methods associated with our prior work. Here, we focus

on experimentation done on i) binary analysis tools Common Vulnerabilities and

Exposures (CVE) Binary Tool and Common Weaknesses Enumeration (CWE)

Checker and ii) Docker Images analysis tools Grype [27] and Trivy [28]. These

sources of variability address item 4 of G1 in Figure 1.

We present results that highlight two of the most common sources of

variability that we have encountered: (1) variability arising from the use of different

versions of a single SAT and (2) variability in the results of two SATs (from

different vendors) that purportedly measure the same characteristic of a software

artifact (Grype and Trivy). In both cases, the practitioner is left with unsettling,

unquantified uncertainty–as they debate “Which versions of this tool should I use?”

and “Which vendor’s results should I use?” While we have experiences with

additional sources of variability, we focus on version and vendor variability herein.

We highlight within-tool variability across tool versions employing two

SATs that analyze binary code security [11] and two SATs that analyze Docker

Images. We highlight between-tool variability by comparing the results of SATs

that analyze Docker Images (WiP). We created a corpus of software artifacts to

evaluate binaries and Docker Images. We evaluated one version of each binary file

(n = 660) and one version of each Docker Image (n = 163), varying only the

versions of the SATs that analyze the binaries and Docker Images. The same code

artifacts were analyzed with multiple versions of multiple SATs.

Experimental method for comparing binary analysis SATs

We evaluated 660 publicly accessible binaries sourced from a Kali Linux

distribution with multiple versions of CWE Checker and CVE Binary Tool [11].

The collection of binaries and the entire data-science workflow is downloadable

from our GitHub [29] page, and detailed information is provided in [11]. For the

CWE Checker, we evaluated all binaries using versions 0.4, 0.5, and 0.6. Earlier

versions (0.1, 0.2, and 0.3) required deprecated dependencies, necessitating

laborious and impractical modifications to the environment configuration.

Consequently, our analysis concentrated on the recent versions (0.4, 0.5, and 0.6).

We evaluated all binaries using nine versions of CVE Binary Tool. We attempted

11 versions, but omitted two versions because they appeared to have bugs; these

two versions returned identical scores for all 660 binaries evaluated.

We implemented multiple controls to attribute variations in tool output to

disparities in static analysis tool versions. First, we evaluated one version of each

binary in the collection using multiple versions of the SATs. This ensured that all

6

Military Cyber Affairs, Vol. 7, Iss. 1 [2024], Art. 6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

evaluated versions of the SATs analyzed the same binary code. Second, to ascertain

that discrepancies in CVE Binary Tool output were solely attributable to variations

in CVE Binary Tool versions and not influenced by differences in the National

Vulnerability Database (NVD) [30] or the Open Source Vulnerabilities (OSV)

database [31], we used NVD and OSV data acquired on July 18, 2022.

Consequently, any differences observed in tool output across different CVE Binary

Tool versions can be confidently attributed to the version of the tool, unaffected by

variations in NVD or OSV versions. We calculated the total number of findings

(CWEs from CWE Checker, CVEs from CVE Binary Tool) reported by each

version of each tool. We assessed whether the version was an important driver of

the variation in the results in Reinhold et al. [11].

Experimental method for comparing Docker container and SBOM analysis tools

We evaluated a single version of each of the 163 Docker Official Images (i.e.,

containers) using the SATs Grype and Trivy. We collected these Official Images

from Docker Hub and posted the version of the images on our public GitHub. We

evaluated each Docker image with 22 versions of Trivy and 39 versions of Grype.

The versions of each tool were major releases spanning from 12/24/2021 to

11/07/2023. In cases where a major release was unavailable, we used the next

available sequential minor release. We omitted versions v0.38.0, v0.39.0, and

v0.40.0 of Trivy from our analyses because executing each resulted in a runtime

error. Each tool was run with default configurations with the following exceptions:

(1) with Trivy, we used the configuration “-timeout 30m” to help minimize running

errors, and (2) with Grype, we used the configuration “–scope -all layers” to ensure

we did not have a configuration setting that resulted in false negatives (i.e., omitting

vulnerabilities).

We implemented controls to attribute variations in tool output to disparities

in static analysis tool versions. First, we evaluated one version of each Docker

Image in the collection using multiple versions of the SATs. This ensured that all

evaluated versions of the SATs analyzed the same set of Docker Images. Thus, each

version of Grype and Trivy evaluated exactly one version of each Docker Image.

We configured Grype and Trivy to use a static vulnerability database each; we

posted links to each vulnerability database on our GitHub page. Grype and Trivy

do not have common database formats, precluding us from using a single database

for both SATs. However, each tool was executed with only one version of each

database. Therefore, each tool analyzed each Docker Image using one vulnerability

database, but the vulnerability databases were not identical between the two SATs.

We calculated the total number of vulnerabilities reported by each version

of each tool. We present these graphically and provide basic descriptive statistics

(e.g., standard deviation [SD]) to characterize our findings. We use the word

“findings” here to represent the results produced by SATs.

7

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

G2 Experimental Methods

To address G2, we report on a procedure that we developed to aggregate results

from diverse SATs. Different SATs provide results on different scales, precluding

an end user from directly integrating findings from one with findings from another.

Moreover, because no oracle exists to verify the findings of the SATs, ascertaining

accuracy is a wicked problem. However, objective scaling of SAT findings is

possible and enables aggregation of findings from diverse tools.

Figure 2: Density-based scoring procedure. Step 1: software artifacts are assembled into a

collection. Step 2: all software artifacts in the collection are evaluated using a cadre of SATs. Step

3: the findings for all software artifacts evaluated by all SATs are aggregated. Step 4: the distribution

of the count of findings is created. Step 5: an end user runs their new artifact of interest through the

same SATs as in Step 3, and the instances of each finding are recorded. Step 6: a probability density

function (PDF) is created from the distribution in Step 4. Step 7: the count of the finding in the new

software artifact of interest receives a score between [0,1] based on its position in the PDF. All

findings in the new artifact are scored with this density-based benchmarking procedure.

Our scaling method is rooted in comparison (Figure 2). We first create a

collection of software artifacts (usually between 102 – 104 artifacts). We evaluate

all software artifacts with relevant static analysis tools (SATs); for instance, we

use the SATs Trivy and Grype to analyze Docker Images and SBOMs. We then

record the results for all findings reported by the SATs; typically, we store these

in a flat file. Each file of this type is an “aggregation file.”

In each aggregation file, the rows correspond to the software artifacts under

investigation, the columns correspond to the findings (such as individual CVEs),

and the values of each cell are the counts of each finding in each software artifact.

8

Military Cyber Affairs, Vol. 7, Iss. 1 [2024], Art. 6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

One file contains findings from multiple SATs; it could contain findings from

multiple versions of multiple tools. However, our example here pertains to one file

containing findings generated from one version of each SAT.

We then create a probability density function (PDF) based on the

distribution of the instances of each finding in all samples in the collection. When

an end user wishes to evaluate a new software artifact, they run it through the same

SATs that the collection was evaluated with; each finding is then scored using a

density-based approach. In the example in Figure 2, the end user’s software artifact

of interest is found to have 40 instances of the finding named “CVE-Unknown-

Other-Diagnostic.” The density-based scoring indicates that this artifact has fewer

instances of this vulnerability than 66% of the artifacts in the collection.

To be more specific, suppose an end user has a software artifact that they

are evaluating, and the count of a particular finding in that artifact is represented by

𝑑 (we call this 𝑑 because the count of a finding is “diagnostic”; 𝑑 = 40 in Figure 2).

We calculate a PDF for the distribution and compute the area under the curve from

zero to 𝑑; thus, 𝐴𝑑 indicates the proportion of samples in the collection having fewer

counts of a finding than 𝑑. We calculate the score for the new artifact as Score = 1

− 𝐴𝑑 ; we subtract 𝐴𝑑 from one because it is more intuitive for a higher score to

indicate greater security and a lower score to indicate lower security.

Results

G1 Results

Our systematic evaluation of multiple versions of multiple SATs indicates that the

findings from SATs are version-dependent. Multiple versions of the same tools

produced different results in the collection of binaries (Figure 3 A-B and Reinhold

et al. [11]) and in the collection of Docker Images (Figure 3 C-D). Thus, inter-

version variation was present in the SATs that evaluate binaries and Docker Images.

Different versions of SATs often produce different measurements–even

when the tool inputs (software artifacts) are identical. Our calculation of the

standard deviation of the cumulative findings across the versions confirms this.

While the magnitude of this variation is greater for the binary analysis SATs

(𝑆𝐷𝐶𝑉𝐸𝐵𝑖𝑛𝑎𝑟𝑦𝑇𝑜𝑜𝑙 = 2.3𝑒4, 𝑆𝐷𝐶𝑊𝐸𝐶ℎ𝑒𝑐𝑘𝑒𝑟 = 8.5𝑒4), it is substantive for the SATs that

analyze Docker Images also (𝑆𝐷𝑇𝑟𝑖𝑣𝑦 = 4.2𝑒2, 𝑆𝐷𝐺𝑟𝑦𝑝𝑒 = 1.8𝑒3). Note also that the

scores for Trivy and Grype never agreed (the upper y-axis limit in Figure 3C [Trivy]

is less than the lower bound of the y-axis limit in Figure 3D [Grype]).

9

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

Figure 3: Total number of findings versus SAT. Exactly one version of each binary was analyzed

by multiple versions of CVE Binary Tool and CWE Checker; exactly one version of each Docker

Image was analyzed by multiple versions of Trivy and Grype. Y-axes correspond to the total count

of findings identified by (A) CVE Binary Tool and (B) CWE Checker in the collection of binaries

(n = 660) and by (C) Trivy and (D) Grype in the collection of Docker Images (n =163). X-axes

correspond to the version of the SAT indicated in the panel labels. Each point represents the total

number of findings that the SAT found in the collection of binaries (A-B) and Docker Images (C-

D).

G2 Results

Our scoring procedure facilitates the aggregation of results from multiple sources

with objectivity and transparency. We have successfully implemented this

procedure to scale results from SATs that evaluate binaries, Docker Images, and

SBOMs. In total, this amounts to over 13,000 software artifacts scored with this

approach. Doing so has facilitated the aggregation of the SAT results into

hierarchical QA models.

Our scaling procedure is robust across many distributions (Figure 4). In

Figure 4, three distributions of findings from SATs and their associated PDFs are

displayed. For two of these distributions, our procedure requires no modification;

it produces intuitive and objective scores. However, our scoring procedure required

one modification to accommodate the full suite of distributions that we have

encountered. We expanded the density-based scoring procedure to accommodate

the special case wherein all software artifacts in the collection had the same number

of findings.

10

Military Cyber Affairs, Vol. 7, Iss. 1 [2024], Art. 6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

Figure 4: Density-based scoring of commonly encountered distributions. The upper row depicts

histograms of distributions that we observed in benchmarking our collections of software artifacts.

The lower row depicts how application of the density-based scoring to produce a score between

[0,1]. Red dots denote the count of findings in a software artifact compared to all other artifacts in

a collection. Note that no PDF is plotted in the lower right panel. A PDF is nonsensical in the case

where the findings for all software artifacts in the collection were identical (here, all were zero); we

refer to these as “constant values.” When encountering constant values in a benchmark repository,

the approach is to assign a score of zero if d is less than or equal to the constant value and to assign

a score of one if d is greater than the constant value.

Discussion

Our results from G1 illustrate the magnitude of the variation in the number of

findings reported by SATs while changing only the version of the SAT itself.

Developer change logs sometimes help explain the large changes in findings

reported by the SATs. For instance, the total number of findings identified by Grype

dropped substantively following v0.70.0 (Figure 3D). This drop in findings is likely

attributable to the developers moving away from using Common Platform

Enumeration (CPE) matching in subsequent versions, thereby changing how Grype

interacts with its dependencies (e.g., how pattern matching is done with the NVD).

This is an example where change logs explain variation, but this level of

explanation is rare in our experience. Often, we are challenged to ascertain the

reasons for the inter-version variation.

The inter-version variation presents a formidable challenge for selecting the

appropriate version of a SAT. Moreover, high inter-version variation hampers end-

user trust in the accuracy of the findings reported by a SAT. Therefore, inter-version

variation has become an important metric for informing which SATs we use in our

security assessment studies because any errors or inconsistencies introduced by the

SATs propagate in our models and subsequent analyses.

When two SATs purportedly measure the same (or very similar) aspects of

a software artifact, inter-version variation can help inform SAT selection. Selection

11

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

criteria can and should still include a comprehensive evaluation of developer

documentation and full testing of the tools. We have a study underway that

investigates the technical reasons for the differences in the results that Grype and

Trivy produce when evaluating Docker Images and SBOMs. Selection criteria

should also incorporate which SATs produce consistent results across versions and

the extent to which change logs and release notes explain large changes in tool

findings. The findings reported by the tools will change commensurate with the

software development lifecycle; however, large, unexplainable changes in findings

suggest that the SATs are not yet mature enough to be trusted.

The solution we present in G2 is appealing because it is unbiased,

repeatable, and effective at normalizing results from diverse sources (here, multiple

SATs) to enable aggregation. However, it has some limitations. The external

validity and accuracy of inference derived from this solution are heavily dependent

on the representativeness of the collection of artifacts against which a new artifact

is compared. For example, suppose a software engineer was interested in analyzing

the security of compiled ladder logic code written for a Programmable Logic

Controller (PLC) using the same collection of binaries analyzed in Reinhold et al.

[11] and here (Figure 3 A-B). This collection of binaries was sourced from a Kali

Linux distribution, so scoring the compiled PLC code against this collection would

introduce threats to validity. More colloquially, this would be an “apples to

oranges” comparison because our collection of binaries contains no compiled code

samples from PLCs. However, the threats to validity are much smaller if, for

instance, a software engineer wanted to compare findings from a binary from

another Debian-based Linux distribution against our collection of binaries; this

would be more of an “apples to apples” comparison.

The scaling approach presented here can be adapted to facilitate aggregation

for other SATs and in other contexts but may require modification in certain use

cases. We developed this procedure to enable aggregation of cybersecurity findings

from SATs. For this use case, inferring higher security and lower security from

SAT results is clear. Counts of vulnerabilities and weaknesses are inversely related

to the security of software artifacts. That is, high counts of vulnerabilities and

weaknesses indicate poor security whereas low counts indicate high security.

We have not yet expanded our scaling procedure to aggregate results from

SATs that measure aspects of code quality wherein “good" values are

intermediate (neither high nor low). Coupling is one such aspect. A “good” metric

for coupling is neither zero nor one. Rather “good” coupling values tend to be

somewhere between these values, with variation being dependent on the domain

of a software artifact. We have only just begun adapting our density based scoring

to attributes such as coupling. This is a subject for our future work.

12

Military Cyber Affairs, Vol. 7, Iss. 1 [2024], Art. 6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

Lessons Learned

While we only addressed version and vendor as sources of variability in the

analyses in this paper, we identified at least 7 sources (Table 1). Assessing these

sources of variability simultaneously as a whole is an unwieldy task. We assert that

breaking each component down into more atomic components will facilitate

understanding the nuances of each source of variability. Moreover, we posit that

there is value in applying a familiar organizational structure as we unpack the effect

that each source of variability has on the wicked problem of aggregating results.

Here, we apply first principles from quality modeling (e.g., ISO/IEC 25010

[6]) to organize these sources of variability (Table 1). While many of these sources

of variability touch on multiple quality characteristics (i.e., a many-to-many

relationship exists between sources and quality aspects), we offer a primary

classification for these sources of variability as a first step towards developing a

taxonomy. The variability sources “vendor” and “environment” map to the concept

of portability defined by the ISO standard. “Configuration” and “dependencies” fall

predominately under the usability characteristic. “Version” pairs with the

compatibility characteristic; “failures” pairs the reliability characteristic, and

“dependencies” pairs with the functional suitability characteristic.

Future Directions

The solution that we present here (G2) is applicable for aggregating information

across a range of sources where no oracles exist. Still, we have yet to scratch the

surface of delineating and solving the problem of aggregation in security

assessments and empirical software engineering in general. The empirical software

engineering community can benefit from researching and adopting a common set

of organizing principles, metrics, and standards to guide the aggregation of data

from disparate sources. Adopted principles from this community will trickle down

and enhance assessments for practitioners—including those conducting

cybersecurity assessments.

Inconsistencies and errors propagate during aggregation, threatening the

validity of results and any inferences drawn from them. Further, post hoc

identification and correction of inconsistencies to facilitate aggregation often leads

to uncertainty [8]. Our SECL team’s future work is focused on better delineating

the problems with aggregation and how uncertainty and inconsistency in sources

impact inference. To this end, we are preparing a systematic literature review to

understand the extent to which our experiences with aggregating the findings of

SATs are representative of the empirical software engineering community. We seek

to create a taxonomy of these sources of variability and build towards a common

set of “best practices” for aggregation. This work is important to ensuring that

PIQUE models are high quality and will benefit a broad community of practitioners

reliant on aggregation.

13

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

Conclusions and Recommendations

Sources of variability compound uncertainty. When assessing the security posture

of organizations, the compounding of uncertainty is a pressing problem. Our results

indicate that our community would benefit from better characterizing and

quantifying this uncertainty and its sources. Here, we demonstrate that version and

vendor are common sources of variability in studies aggregating findings from

SATs.

Aggregation remains a wicked problem because the combinatorics of the

many sources of variation are vast. Selecting a vendor and a version are universal

choices that software engineers are confronted with across myriad use cases, but

many more sources of variation exist. We highlight several of these sources of

variation and organize them to provide bounds on this challenge. We recommend

solutions to aggregation that are organized around common goals and are broadly

applicable across use cases.

About the Authors

Dr. Ann Marie Reinhold

Dr. Ann Marie Reinhold is an Assistant Professor in the Gianforte School of

Computing and Co-Director of the Software Engineering Lab at Montana State

University. She specializes in the development and application of computational

methods to understand the mechanisms underpinning pressing environmental,

societal, and cybersecurity problems. https://www.linkedin.com/in/amreinhold/

Brittany Boles

Brittany Boles is a first-year master's student at Montana State University studying

cybersecurity. She received a bachelor's degree in applied mathematics from

Montana State University. She worked as a Software Engineer for S2-Corporation,

a photonics company centered around defense, for two years. In her research, she

takes a data science approach to understanding the inner workings of cybersecurity

static analysis tools. https://www.linkedin.com/in/brittany-boles-7026202a3

A. Redempta Manzi Muneza

Redempta is a Ph.D. student in the Gianforte School of Computing at Montana

State University. Her current work focuses on the implementation of data science

approaches to improve the analysis of cybersecurity threats in software systems.

Her research interests are software security, security risk assessment, and machine

learning. She holds a master’s degree in computer science from Boise State

University. https://www.linkedin.com/in/manzi-muneza-assoumer-redempta/

14

Military Cyber Affairs, Vol. 7, Iss. 1 [2024], Art. 6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

Thomas McElroy

Tom McElroy is currently pursuing a Ph.D. in Computer Science at Montana State

University. He holds a B.S. in Physics from Florida State University and a M.S.

degree in Computer Science from the University of West Florida. He worked as an

electronic warfare engineer at Eglin Air Force Base for 5 years. His current research

interest is the application of data science and machine learning techniques to remote

sensing.

Dr. Clemente Izurieta

Dr. Izurieta is a Professor in the Gianforte School of Computing at Montana State

University and Co-Director of the Software Engineering and Cybersecurity

Laboratory. He obtained his Ph.D. from Colorado State University, and his research

interests include empirical software engineering, design and architecture of

software systems, design patterns, and the measurement of software quality and

cybersecurity. https://www.linkedin.com/in/cizurieta/

References

[1] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim,

Philippe Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya,

Raghvinder Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka.

2010. “Managing technical debt in software-reliant systems.” In Proceedings

of the FSE/SDP Workshop on Future of Software Engineering Research

(Santa Fe, New Mexico, USA) (FoSER ’10). Association for Computing

Machinery, New York, NY, USA, 47–52.

https://doi.org/10.1145/1882362.1882373

[2] Ian F. Darwin. 1996. “Checking C programs with Lint.” O’Reilly.

[3] Isaac Griffith, Derek Reimanis, Clemente Izurieta, Zadia Codabux, Ajay Deo,

and Byron Williams. 2014. “The correspondence between software quality

models and technical debt estimation approaches.” 2014 Sixth International

Workshop on Managing Technical Debt (2014).

https://doi.org/10.1109/mtd.2014.13

[4] Payton Harrison. 2022. “Analyzing the security of C# source code using a

hierarchical quality model.” Master’s Thesis. Montana State University.

[5] ISO. 2012. ISO/IEC 9126-1:2001 Software Engineering Product Quality Part

1: Quality Model. Retrieved November 28, 2023, from

https://www.iso.org/standard/22749.html

[6] ISO. 2017. ISO/IEC 25010:2011 Systems and Software Engineering Systems

and Software Quality Requirements and Evaluation (Square) System and

Software Quality Models. Retrieved November 28, 2023, from

https://www.iso.org/standard/35733.html

[7] Clemente Izurieta, Isaac Griffith, and Chris Huvaere. 2017. “An industry

perspective to comparing the SQALE and Quamoco software quality models.”

In 2017, ACM/IEEE International Symposium on Empirical Software

15

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

Engineering and Measurement (ESEM). 287–296.

https://doi.org/10.1109/ESEM.2017.42

[8] Clemente Izurieta, Isaac Griffith, Derek Reimanis, and Rachael Luhr. 2013.

“On the uncertainty of technical debt measurements.” 2013 International

Conference on Information Science and Applications (ICISA) (2013).

https://doi.org/10.1109/icisa.2013.6579461

[9] Andrew Lucas Johnson. 2022. “The analysis of binary file security using a

hierarchical quality model.” Ph.D. Dissertation. Montana State University.

https://scholarworks.montana.edu/xmlui/handle/1/16635

[10] Jean-Louis Letouzey and Thierry Coq. 2010. “The SQALE Analysis Model:

An analysis model compliant with the representation condition for assessing

the quality of software source code.” 2010 Second International Conference

on Advances in System Testing and Validation Lifecycle (2010).

https://doi.org/10.1109/valid.2010.31

[11] Ann Marie Reinhold, Travis Weber, Colleen Lemak, Derek Reimanis, and

Clemente Izurieta. 2023. “New version, new answer: Investigating

cybersecurity static-analysis tool findings.” 2023 IEEE International

Conference on Cyber Security and Resilience (CSR) (2023).

https://doi.org/10.1109/csr57506.2023.10224930

[12] David Rice. 2020. “An extensible, hierarchical architecture for analysis of

software quality assurance.” Master’s Thesis. Montana State University.

[13] Miltiadis G. Siavvas, Kyriakos C. Chatzidimitriou, and Andreas L.

Symeonidis. 2017. “Qatch - an adaptive framework for software product

quality assessment.” Expert Systems with Applications 86 (2017), 350–366.

https://doi.org/10.1016/j.eswa.2017.05.060

[14] Stefan Wagner, Klaus Lochmann, Sebastian Winter, Florian Deissenboeck,

Elmar Juergens, Markus Herrmannsdoerfer, and Lars Heinemann. 2012. “The

Quamoco quality meta-model.” Technical Report.

[15] Eric O’Donoghue, Ann Marie Reinhold, Clemente Izurieta. 2024. “Assessing

security risks of software supply chains using software bill of materials.” 2nd

International Workshop on Mining Software Repositories for Privacy and

Security (MSR4P&S).

[16] Software Engineering and Cybersecurity Laboratory (SECL). Available

online at: https://www.montana.edu/cyber

[17] Checkstyle. Available online at https://checkstyle.sourceforge.io/

[18] Pclintplus. Available online at https://pclintplus.com/

[19] Findbugs. Available online at https://findbugs.sourceforge.net/

[20] Pmd. Available online at https://pmd.github.io/

[21] Roslynator. Available online at https://github.com/dotnet/roslynator

[22] Security Code Scan. Available online at https://security-code-scan.github.io/

[23] SonarSource. Available online at

https://www.sonarsource.com/products/sonarqube/

[24] Insidersec. Available online at https://github.com/insidersec/insider

[25] CVE bin Tool. Available online at https://github.com/intel/cve-bin-tool

[26] CWE Checker. Available online at https://github.com/fkie-cad/cwe_checker

[27] Grype. Available online at https://github.com/anchore/grype

16

Military Cyber Affairs, Vol. 7, Iss. 1 [2024], Art. 6

https://digitalcommons.usf.edu/mca/vol7/iss1/6

[28] Trivy. Available online at https://github.com/aquasecurity/trivy

[29] MSU SECL Static Analysis Comparison. Available online at

https://github.com/MSUSEL/MSUSEL_SAT_Comparison

[30] National Vulnerability Database. Available online at https://nvd.nist.gov/

[31] Open Source Vulnerabilities. Available online at https://osv.dev/

17

Reinhold et al.: Challenges in Aggregating Static-Analysis Tool Results

Published by Digital Commons @ University of South Florida, 2024

	Surmounting Challenges in Aggregating Results from Static Analysis Tools
	Recommended Citation

	Surmounting Challenges in Aggregating Results from Static Analysis Tools
	Cover Page Footnote

	tmp.1715035223.pdf.RK4S_

