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Physical and Statistical Analysis of Functional Process Variables for Process Control in 

Semiconductor Manufacturing 

Xi Zhang 

ABSTRACT 

The research aims at modeling and analyzing the interactions among functional 

process variables (FPVs) for process control in semiconductor manufacturing. Interaction 

is a universal phenomenon and different interaction patterns among system components 

might characterize the system conditions. To monitor and control the system, process 

variables are normally collected for observation which could vary with time and present 

in a functional form. These FPVs interact with each other and contain rich information 

regarding the process conditions. As an example in one of the semiconductor 

manufacturing processes, changes of interactions among FPVs like temperature and 

coefficient of friction (COF) might characterize different process conditions.  

This dissertation systematically developed a methodology to study interaction 

among FPVs through statistical and physical modeling. Three main topics are discussed 

in this dissertation: (1) Interaction patterns of FPVs under varying process conditions are 

studied both through experiments and statistical approaches. A method based on 

functional canonical correlation analysis (FCCA) is employed to extract the interaction 

patterns between FPVs and experiments of wafer polishing processes are conducted to 

verify the patterns of FPVs under varying process conditions. (2) Interaction among 

FPVs is further studied based on physics for process condition diagnosis. A mathematical 
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model based on nonlinear dynamics is developed to study the strength of interaction and 

their directionalities, and advanced statistical control charts followed by this nonlinear 

dynamics model are established for process monitoring. (3) Complex interaction 

structures among multiple FPVs are analyzed based on nonlinear dynamics for a better 

understanding of process mechanism. An approach with extended nonlinear dynamics 

model is proposed to characterize process conditions, and combined engineering 

knowledge, complex interaction structure patterns are concluded accordingly for 

interpretation of process mechanism.     

The main contribution of this dissertation is to propose a novel methodology 

based on nonlinear dynamics, which could investigate interactions between components 

of systems and provide physical understanding of process mechanism for process 

monitoring and diagnosis. Through studies on interaction among FPVs in semiconductor 

manufacturing, this research provides guidance for improvement of manufacturing 

processes. Not limited to manufacturing, the developed methodology can be applied to 

other areas such as healthcare delivery. 
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Chapter 1 

Introduction 

Interaction among components of a complex system is a universal phenomenon 

and usually can be defined as a kind of action that occurs as two or more components 

having an effect on one another. Studying interaction mechanism is important because 

interaction may characterize system. Therefore, to monitor and control the system, 

interaction might be analyzed through collecting process variables. These process 

variables usually vary with time and interact with each other, containing rich information 

regarding the process conditions. As an example in one of the semiconductor 

manufacturing processes, changes of interactions among process variables like 

temperature and coefficient of friction (COF) might characterize different process 

conditions. Hence, to understand the interaction mechanism may bring insights for 

process improvement. 

However, understanding the interaction mechanism is a quite challenging issue. 

There is still a lack of a science base to develop the interaction model upon which 

methods of detecting and diagnosing process conditions can be built. The difficulty of 

establishing such a science base lies in the complexity of the interaction phenomenon. 

The term of interaction, often vaguely defined, has been used interchangeably with 

“correlation”, “dependence” and “synchrony” [1], which reflects the different aspects or 

understanding of the interaction phenomenon. For example in statistics, term interaction
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 means effects of various changes operate simultaneously, which is different from 

“interaction” in manufacturing process that dominant factors might trig interaction. It is 

therefore very challenging to mathematically define the interaction. In addition, FPV 

signals especially from semiconductor manufacturing have complex spatio-temporal 

patterns, irregularity and large noise. Moreover, the interaction structure among three or 

more process variables can be extremely complex. Thus, modeling, detection and 

diagnosis of the interaction are very challenging.  

Therefore, an essential analysis of interaction of FPVs for process improvement is 

required. The goal of this dissertation is to study the interaction of FPVs and generate 

knowledge of modeling, detection and diagnosis of the interaction to achieve an 

insightful understanding of interaction mechanism through combing nonlinear dynamics 

theory, the engineering knowledge and advanced statistical tools. 

1.1 Studies in Semiconductor Manufacturing Processes 

With the rapid development of technology in semiconductor manufacturing, more 

complex manufacturing processes are developed. For example according to “Moore’s 

Law”, the demand is the semiconductor industry with respect to the number of transistors 

per chip will be doubled every 2 year [2], and shrinking of device dimensions will bring 

complex manufacturing processes which could significantly impact the quality of 

products.  Hence, advanced process control techniques are essentially needed for quality 

assurance in semiconductor manufacturing. To monitor and control the processes, FPVs 

are collected for observation. These FPVs usually interaction with each other and contain 

rich information and could characterize the varying process conditions. Hence, it is of 

great interest to understand the interaction mechanism for process improvement because 
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further reduction of surface finish variations can affect 20% of wafer yield and impact a 

revenue stream of $2.8 billion in a single wafer fab [3].  

In semiconductor manufacturing, usually many process factors are involved to 

affect product quality. One of the important procedures in semiconductor manufacturing 

processes is chemical-mechanical planarization (CMP) processes. CMP has been widely 

employed during semiconductor fabrication for planarizing the top surface of 

semiconductor wafers. In addition to abrasion due to applied mechanical pressure, slurry 

containing chemicals and particles is continuously fed onto the polishing pad to react 

with wafer materials on the interface for accelerated and improved planarization 

performance. 

CMP studies roughly follow three categories (1) physics-driven modeling of 

polishing mechanism and predicting material removal rate (MRR) [4], (2) experimental 

investigation of process parameters’ effects on CMP performance, and (3) data-driven 

analysis of process variables for condition monitoring and diagnosis. Since MRR is a 

commonly used criterion to evaluate CMP performance, most research has been focusing 

on prediction of MRR based on a given set of process variables. Luo and Dornfeld [5] 

extended Preston’s Equation and considered additional process parameters such as wafer 

hardness, pad roughness, abrasive size and geometry for better prediction. Considering 

the pad conditioning, Yi [6] first investigated the kinematical relationship between wafer 

and polishing pad. He also employed the distributed LuGre dynamic friction model to 

study the wafer/pad friction characteristics. Sorooshian et al. [7] studied the effect of pad 

temperatures, and introduced a new energy parameter into new Preston’s Equation by 

employing an Arrhenius argument. Osseo-Asare [8] and Kaufman et al. [9] considered 
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the chemical reaction between the slurry chemicals and wafer materials. They proposed a 

Tungsten CMP model by introducing oxidation reduction reaction which occurs in the 

passivation layer.  

In experimental investigation of CMP, process parameters such as slurry 

characteristics, pad temperature, polishing velocity, COF, and their effects on MRR have 

been studied. Mudhivarthi et al. [10] found that COF decreases with a rise of pressure 

and platen velocity, and MRR and COF increase when slurry temperature increases. 

Sorooshina et al. [11] investigated the effect of slurry temperature on COF, and they 

found that COF shows an increasing trend as polishing temperature rises. Seal et al. [12] 

and Du et al. [13] concluded that the COF increases with increased peroxide 

concentration in the slurry and they interpreted this phenomenon as the cause of surface 

chemical decomposition of polyurethane material. Li et al. [14][15] studied the effect of 

slurry characteristics on friction mechanism and they found slurry with different 

surfactants and abrasive sizes can significantly alter COF profile. They also found MRR 

decreases when slurry flow rate increases at a fixed relative rotating velocity.  

The least studied area is the data-driven analysis of sensing process variables for 

online process change detection and diagnosis. Hocheng et al. [16] investigated the 

distribution of the pad temperature and established a regression model to detect the end 

point. Ganesan et al. [17][18] provided their wavelet-based approaches based on 

sequential probability ration test to identify the delamination and end point online. Wang 

et al. [19] first studied the timing correlation between CMP process variables based on a 

new phase nonlinear dynamics model and used the model for process change detection. 
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It is known that factors such as applied force, pad property, and slurry flow rate 

would jointly (not independently) impact the quality of polished wafers. The observed 

chemical and mechanical process variables are expected to be strongly correlated during 

wafer polishing. Our hypothesis is that the correlation among sensing process variables 

could potentially be utilized to characterize process conditions for the purpose of process 

monitoring and diagnosis. Nevertheless, process variables observed during manufacturing 

processes (e.g., the temperature distribution and coefficient of friction (COF) on a wafer), 

vary with time and present in a functional form. This significantly increases the 

complexity of analyzing correlation patterns and relating them with process conditions.  

Previous research focused on analysis of single process variable for online 

process change detection and diagnosis. However, process variables like COF or 

temperature distribution alone cannot uniquely distinguish among process conditions. 

Jointly considering these correlated process variables would assist to discover the 

“hidden” interaction mechanisms and a fundamental understanding the interaction 

mechanisms will assist to improve manufacturing processes. 

1.2 Related Work and the State of the Art 

 The study on interaction of FPVs is very limited. This section reviews the related 

research on process monitoring, diagnosis and control in manufacturing processes. 

1.2.1 Related Works in Studying FPVs for Process Control 

Due to the wide application of sensor technology in manufacturing, data 

processing has been significantly increased. Some sensing data collected through 

multiple sensors simultaneously from manufacturing processes, often arise themselves in 

the functional form. Examples include tonnage signals from forging processes [20], 
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assembly force signals during seat and guide assembly in engine machining processes, 

and quadrupole mass spectrometry samples of rapid thermal chemical vapor deposition 

process in semiconductor manufacturing [21]. Comparing with observations of scalar or 

vector characteristics, functional process variables (FPVs) contain richer process 

information which might potentially provide additionally opportunities for process 

improvement and quality assurance. It is known that statistical process control (SPC) has 

been successfully applied to monitor various manufacturing processes where process 

performance is measured by a scalar or vector characteristics. However, functional data 

imposes new dimensions and challenges for real-time process control because standard 

statistical procedures developed in SPC are not directly applicable for continuous sample 

curves [22].  

Two main strategies have been deployed in process control based on FPVs, 

depending on how the data is summarized. The first one is to extract “features” from 

functional data (e.g., wavelet coefficients [23-25], or slope and intercept [26]) and apply 

standard procedures in multivariate statistics (e.g., T2 control charts) to features for 

process monitoring [24][26]. The second strategy is nonparametric regression, i.e., to 

approximate curves with functions non-parametrically. Data collected under different 

process conditions can then be discriminated by estimated probability density functions 

[23] or baseline functions [27]. Both of the two strategies assume that the collected 

functional data is well-summarized by the extracted features, estimated probability 

density functions, or baseline. Changes in these summaries indicate process changes.  

The functional data studied in the SPC literature, however, is mainly univariate, if 

we treat a curve as one variable in some functional space. Multivariate curves occur from 
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multi-sensor systems where location (in a general sense) is an important source of 

variation. The correlation or interaction among these variables will be overlooked if we 

only investigate the mean curve or study each individual curves separately. Apparently, 

certain opportunity of variation reduction could be lost if multivariate curves are not 

modeled simultaneously in process control. Although it is rarely seen in SPC literature, 

analysis of nonstationary multivariate functional data has been investigated in statistics. 

The involved modeling techniques include nonparametric regression [28][29], functional 

data analysis [30], spatial statistics [31], and principal curve [32]. These methodologies 

were mainly proposed for exploratory study and are not directly applicable for process 

monitoring and control. Hence, this is a lack of methodology which could integrate both 

process control methods and modeling techniques for process improvement. 

1.2.2 Related Works in Studying Interactions among FPVs 

Several approaches have been reported in the literature to model correlations 

among nonstationary continuous signals. The most commonly used method is the cross-

correlogram which measures the cross-covariance of paired FPVs [33][34]. This time-

domain method is powerful, but if not used carefully can lead to spurious detection 

because of artifactual sharp peaks in the signals. Coherence and cross spectrum methods 

aim to analyze the correlation of paired signals in the frequency domain and are most 

commonly used with continuous signals [35]. The correlation analysis based on these 

methods might be affected both by amplitude fluctuations and by phase variability in 

signals. Hence, the phase synchronization or phase-locking method has recently received 

increasing attention by studying the timing correlation in the phase domain while 

discarding the effect of the amplitude [36]. In CMP processes, phase synchronization 
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modeling provides an effective tool to describe the timing correlation among critical 

FPVs such as COF and temperature since they show strong cyclic patterns. 

To detect the synchrony between these two signals, the phase-locking method and 

related test statistics focusing on the rhythm of signal pace should be applied while 

discarding the effect of amplitude. A m:n phase-locking between a pair of signals is that 

the relative phase |mφ1-nφ2| is bounded, i.e., |mφ1-nφ2|<const [37][38]. There are mainly 

three phase-locking statistics used to investigate the timing-correlation introduced in 

following: 

• Phase Coherence [39]: The phase coherence index is based on the coherence 

spectral estimator for bivariate time series. The instantaneous phase difference 

between 2 signals can be obtained from the unit circle representations. Then the 

time-dependent phase coherence is then defined as 

 

                                                                                                      (1.1) 

where the tk are the sampling points, and N is a parameter indicating the number 

of consecutive data points to be considered. Phase differences are accumulated 

over a period of time T (a parameter of the statistic). Phase difference vectors are 

added and phase coherence is the (squared) complex magnitude of the resultant 

divided by the number of time points. Note that in this computation the phase 

coherence value at time tk takes the sum of the N previous points, the number of 

points in the analysis window. The phase coherence is always less than or equal to 

1, taking a value of 1 only when the relative phase Φj remains constant 

throughout the observation period T.  

2
1( ) j

k
i

N k
j k N

t e
N

γ Φ

= −

= ∑
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• Entropy Index [40]: This method also first employs the 1:1 phase-locking idea to 

compute Φj for each time point tk. A histogram of relative phase Φj for j = k-N, …, 

k , the observation time window is then built . So the entropy of the series is then 

defined as 

(1.2) 

Where L is the number of bins and pj is the probability corresponding to the jth 

bin. For example, we could divide the unit circle uniformly into 12 bins and then 

to calculate the pj and establish the histogram. Note that the time of observation is 

implicit in the fact that N prior phase values are used to generate the histogram 

from which hn is computed. In order to conveniently evaluate the timing-

correlation in this method, the value should be normalized. For example, the 

maximum value can be obtained through uniform distribution. pj = 1/L for all j, 

and hN reaches its maximum value hn max = logL. The normalized entropy is then 

hn* = (hn max - hn)/ hn max                                                     (1.3) 

and the value of hn* only between 0 and 1. hn measures the degree of clustering of 

the angular distribution, and it is therefore different from the phase coherence in 

that it will achieve high values for multimodal phase distributions as well as for 

the unimodal case. For example, the phase coherence of a distribution that has 

two symmetrical opposing lobes in the circle will be zero, whereas the normalized 

entropy will yield a value closer to 1. 

• Mutual Information Index [41]: Similarly to entropy index method, mutual 

information index is defined as following: 

 

1

log(1/ )
L

N j j
j

h p p
=

= −∑
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(1.4) 

where Pi, Pj is probability of corresponding bin from histogram of the individual 

phase series. Here Pij is probability from joint histogram of the pairs φl
1, φl

2. This 

statistic is computed over the histogram of N accumulated phase values at each 

point in time. N pairs of angular values φl
1, φl

2 from the phase trajectories of the 

individual channels are accumulated during an integration window T on a torus. 

The joint distribution can be obtained from a two dimensional histogram after 

dividing the torus in L X L bins. 

The mutual information can also be normalized to its maximum value, In = log L, 

achieved when the series φl
1, φl

2 are identical. 

In* = (In max - In)/ In max                                                   (1.5) 

Those approaches mentioned above althrough could avoid effects from amplitude 

of singals or abrupt variations when analyzing interactions, limitation still exists because 

only paired correlated signals could be studied. Hence, a novel appoach to analyze 

complex interaction with mulitple variables is essentially required.   

1.2.3 Summary of Literature Review 

Previous research has been focused on analysis of the individual FPV or coupled 

FPVs. However, interaction mechanism could not be simply studied by only inspecting 

individual FPV or paired FPVs. Therefore, process monitoring and improvement may 

require a thorough understanding of the interrelationship among those FPVs. Moreover, 

the interaction structure among three or more FPVs has not been thoroughly investigated 

for the purpose of process control. There is a lack of physical model to describe the 

interaction structure of multiple FPVs in manufacturing processes.  

,
,

1 1

log
L L

i j
N i j

i j i j

p
I p

p p= =

= ∑ ∑
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1.3 Dissertation Outline 

 The insightful understanding the interaction of FPVs for process improvement 

requires investigations in the following aspects: (1) experimentally and theoretically 

study interaction patterns of FPVs under varying process conditions. A method based on 

functional canonical correlation analysis (FCCA) is employed to extract the interaction 

patterns between FPVs; (2) further study of interaction among FPVs based on nonlinear 

dynamics for process condition diagnosis. A novel nonlinear dynamics model is 

developed to study the strength of interaction and their directionalities, and advanced 

statistical control charts are established for process monitoring; (3) analysis of complex 

interaction structures among multiple FPVs based on nonlinear dynamics for a better 

understanding of process mechanism. An approach with extended nonlinear dynamics 

model is proposed to characterize process conditions, and complex interaction structure 

patterns are concluded accordingly for interpretation of process mechanism.     

 The overall framework of this dissertation is displayed in Fig 1.1. 

  

Figure 1.1 The framework of dissertation 
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 Chapter 1 mainly introduces the background of monitoring and diagnosis in 

semiconductor manufacturing processes and related literature reviews for interaction 

analysis, process control and CMP studies. 

 Chapter 2 presents an approach to improve the predication of CMP performance 

based on the extracted correlation patterns for online process control. The focus of this 

work is two-fold: (1) experimental investigation of the correlation between process 

variables and the implication of correlation pattern changes on process conditions, and 

(2) extraction and statistical analysis of correlation patterns from process variables in 

functional form. 

 In Chapter 3, we intend to specifically reveal the timing correlation patterns in 

CMP. Using nonlinear dynamics, we first established a dynamic phase model to define 

the strength and patterns of FPV interaction. By monitoring the extracted patterns, we 

then developed a novel method of detecting CMP condition change and demonstrated the 

approach via a CMP experiment. 

In Chapter 4, we extended our previously developed nonlinear dynamics model 

by considering the autocorrelation in each FPV to uncover the interaction mechanism of 

multiple process variables for process condition identification. 

Chapter 5 makes the conclusion of this dissertation. Perspectives of future work 

are also discussed.  
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Chapter 2 

Analysis of Correlated Time-varying Process Variables for Condition 

Diagnosis in Semiconductor Manufacturing 

This chapter mainly focuses on the two aspects: (1) experimental investigation of 

the correlation between process variables and the implication of correlation pattern 

changes on process conditions, and (2) extraction and statistical analysis of correlation 

patterns from process variables in functional form. The ultimate goal is to improve the 

predication of semiconductor manufacturing performance based on the extracted 

correlation patterns for online process control. All the experiments and methods are 

validated through CMP processes. 

 In this chapter, experimental investigation and statistical modeling of correlation 

are presented in Section 2.1 and 2.2, respectively, whereby two failure modes (oxidizer 

and pad failures) are analyzed. A conclusion is given in Section 2.3. 

2.1 Experimental Investigation of Slurry Thermal Effects and Correlation among 

Process Variables 

Since the thermal effect of slurry with different percentages of oxidizers and the 

effect of conditioner-diamond-size induced pad condition change have not been fully 

explored, we choose slurry and diamond abrasive size of conditioner in our experimental 

study as experimental factors. Different process conditions will be created to investigate 

changes in correlation patterns (if there is any). The process variables to be observed 



14 

online for correlation analysis include COF of the wafer-pad interface and the 

temperature distribution over the polishing area. 

(a)     (b)  

Figure 2.1 The thermal distribution over polishing pad under two polishing 

conditions 

 

As a critical mechanical variable, the time-varying COF reflects the real-time 

tribological property at the interface. Changes in COF indicate variations in abrasive 

performance due to pad failure, large particles on the pads, or underlying barrier layer 

exposure on the wafer [42]. The thermal distribution over the polishing area is another 

indicator of process conditions and reflects heat generated through friction and chemical 

reactions. Figure 1 shows thermal imaging snapshots of two process conditions using 

different slurries right after 15 seconds of polishing (wafer size 0.7×0.8 inch, slurry 

temperatures: 30oC). The temperature distribution is relatively uniform under the first 

process condition (Fig. 2.1a), while there is a bright ring around the polishing zone under 

the second polishing condition (Fig. 2.1b). Our investigation suggests that the bright ring 

was due to the heat generated from both chemical reactions and mechanical abrasion, 

while there was a lack of chemical reaction under the first polishing condition. 
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2.1.1 CMP Experimental Setup and Design 

The experiment was conducted to test the hypothesis that the correlation among 

time-varying CMP process variables could be utilized to characterize process conditions. 

To be specific, the experiments aim to investigate (1) thermal effects of slurry with 

various percentages of oxidizer, and (2) effects of polishing pads generated by 

conditioners with different diamond abrasive sizes. As shown in Fig. 2.2, the polishing 

was carried out on a bench-top CMP tester (model CP-4) manufactured by CETR Inc. 

The real-time shear forces and normal forces at the contact interface were recorded at the 

frequency of 50Hz. The COF was calculated as the ratio of these two forces. Meanwhile, 

a FLIR® infrared camera was employed to monitor the temperature distribution in situ on 

the pad with a sampling frequency of 50 Hz.  

 

Figure 2.2 Experimental setup 

 

2.1.1.1 Experimental Study of Slurry with Variation of Oxidizer Concentration 

In this designed experiment, the 6-inch diameter IC 1000-A4 perforated polishing 

pad (manufactured by Rodel, Inc.) was attached on the rotating bottom platen of the CMP 

tester. The 2-inch wafer coupon was attached to the upper polishing head. The upper 

polishing head and bottom platen rotated in counterclockwise direction in order to let the 

thermal camera capture the temperature on the polishing zone. The upper slider swung 
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from side to side to prevent pad from excessive local heat. The slider velocity was 

maintained at 3 mm/sec during the whole experiment and each run lasted 3 minutes. 

Cabot copper polishing slurry was mixed with hydrogen peroxide in three designated 

levels. The slurry was fed into the center of the pad at the rate of 50mL/min. The slurry 

temperature was maintained at 25oC for each single run by temperature controller 

(manufactured by Corning, Inc.). The pad was changed in every designated level and was 

conditioned for two 20-min runs with 1-min polishing of dummy samples in between. 

The process parameters employed for the experimentation are summarized in Table 2.1. 

Table 2.1 Polishing process parameters 

Description Value 

Wafer coupon LG Siltron silicon wafer 2 inches 

Polishing pad IC 1000-A4 

Slurry Cabot 5001 Copper slurry 

Oxidizer Hydrogen peroxide 

Slider movement Offset: mm, speed: 3mm/s 

Pad conditioning Pressure: 2psi, Revolution per minute (rpm): 150 

Conditioner Diamond abrasive pad conditioner  

Slurry flow rate 50 mL/min 

Polishing head Rpm: 145 

 

LG Siltron silicon wafers were employed during the CMP process to measure the 

non-uniformity, and the 50μm and 9μm copper lines were chosen. The wafer coupon size 

was designated 2 inches which contains patterns from four identical dies on the wafer. 
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Each sample was cut in such a way that the patterns from four dies could rotate on the 

same circular trajectory during the process, and thereby the patterns could be polished 

under the same experimental condition (Fig. 2.3).  

 

 

Figure 2.3 Top view of one die on the wafer and sample cutting 

  

Three different levels (3 samples polished under each level) of slurry condition were 

designed (see Table 2.2) by adding hydrogen peroxide with different concentration to the 

Cobot 5001 slurry. The purpose of the design is to simulate the case when oxidizer fails 

during the polishing process and investigate how the oxidizer levels affect correlation 

patterns, which are to be discussed in Section III. 

Table 2.2 Experimental design 

Rotational velocity 

(Polishing head vs. pad) 

 

Pressure

 

Polishing time 

 

Slurry Solution : H2O2  

150 vs. 145 rpm 2 psi 2 minutes 900:150 

900:75 

900:0 

9 _m line

50 _m line

One die on the wafer A wafer with 9 dies

Experiment sample 
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2.1.1.2 Experimental Study of Polishing Pad with Varying Diamond Sizes in 

Conditioner 

 To study CMP pad failure, the same process parameters as 2.1.1.1 were applied 

except slurry and wafer samples. Here the Cobot 5001 copper slurry with 2.5% hydrogen 

peroxide and single-layer copper wafer were used. Three conditioners with different 

diamond abrasive sizes (0.25µm, 8 µm and 100 µm, Fig. 2.4) were used to generate 

different morphologies and roughness on polishing pads. In addition, different abrasive 

size can cause distinct failure patterns on the pad (e.g., scratches). Under each level of 

conditioners, experiments were replicated three times. 

     

        (a) 0.25µm                           (b) 8µm                                  (c) 100µm                           

Figure 2.4 Microscopic view of conditioner with different abrasive size 

 

2.1.2 Experimental Results and Post-CMP Studies 

The image in Fig. 2.5 shows a snapshot of thermal distribution over the entire pad, 

while the data at the bottom panel is the time-varying temperature of a selected zone on 

the pad. The focused thermal zone was selected on the polishing pad adjacent to the 

wafer-pad interface to record the average temperature. Since the temperature in this 

interface between wafer and polishing pad cannot be obtained directly, the zone we 

selected in this way might best indicate the average process temperature 0. The thermal 
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data were recorded on this selected zone during the whole process, and the data could be 

observed instantaneously.   

 

Figure 2.5 An example of recording temperature 

 

In the first designed experiments (Section 2.1.1.1), we collected thermal data and 

COF during the whole polishing process. For example, Figure 2.6 displays the COF and 

temperature vs. time under three conditions. Apparently, both signals have the similar 

patterns in their general trend, i.e., they increase at the beginning of the cycle, decrease 

after the signals reach the peak values, and eventually asymptotically approach a constant. 

The decreasing trend in the signals is caused by various factors such as improved 

lubrication of polishing after the process stabilize or improved interface between the 

wafer-pad friction pair after certain amount of copper has been removed. 

Zone of 
interest 

Thermal 
data 
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Figure 2.6 Observed functional process variables under 3 conditions 

  

 The post CMP surface characterization was carried out on an Atomic Force 

Microscope (AFM) to study the surface non-uniformity, which is measured in terms of 

the vertical distance between the different locations on the samples, i.e., the height of 

“steps” on the surface profile. Since the samples (LG Siltron silicon wafers) we adopted 

have patterns under the copper layer, we need to evaluate and compare the non-

uniformity on the same patterns. In this study, we chose two isolated lines (50μm and 

9μm) on each die of the wafer (Fig. 2.7).  
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surprising to observe that the third level has smaller variation in “step” height since the 

most copper remains intact due to a lack of chemical reaction. 

Table 2.3 Statistical summaries of within-sample uniformity from AFM (Unit: nm) 

 

 

   

 

 

 

There is noticeable difference observed between the measurements on 9 μm lines 

and 50 μm lines. Surface over the 9 μm line has lower non-uniformity than that over the 

50 μm line whereas the variation over the 50 μm line is smaller. This fact implies that 

polishing on thin lines is more efficient than polishing on thick lines in our experiment. 

In the second designed experiment (Section 2.1.1.2), the data from both 

conditioning and polishing process were recorded. Both COF and temperature have 

similar patterns and trends as in our first designed experiment. The polished wafer 

surfaces were examined through Leitz Ergolux Optical Microscope. Figure 2.9 shows the 

optical images of wafer surfaces polished on pads conditioned with different abrasive 

sizes. It is concluded that the pads conditioned with larger abrasives resulted in more 

number of scratches compared to the smaller abrasive size. 

 

 9 μm line 50 μm line 

Levels μh σh μh σh 

5% H2O2 319.3933 44.29538 390.7233 25.23637 

2.5% H2O2 186.5692 51.28105 231.0175 36.73086 

0% H2O2 573.1422 19.80072 472.2575 28.3114 
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(a) 9μm line, 5% H2O2                (b) 50μm line, 5% H2O2 

 

 

(c) 9μm line, 2.5% H2O2                 (d) 50μm line, 2.5% H2O2 

 

                        (e) 9μm line, 0% H2O2                    (f) 50μm line, 0% H2O2 

Figure 2.8 AFM measurements of wafers under three levels of oxidizers 
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        (a) 0.25µm                                        (b) 8µm                                    (c) 100µm                           

Figure 2.9 Optical images of wafers polished on pads conditioned with different 

abrasive sizes 

 

We also collected thermal data and COF during the whole process, and we ran 

three replicates in each condition. Fig. 2.10 showed one example of COF and temperature 

in each condition. It can be seen that the signal patterns under each condition are similar 

and difficult to distinguish with each other. 

From the first experiment (Section 2.1.1.1), the results have shown that the levels 

of oxidizer play a significant role affecting the polishing quality and efficiency. Process 

with slurry using 2.5% H2O2 gives more efficient polishing than 5% H2O2. This can be 

explained by the nonlinear relationship between the removal rate and H2O2 concentration, 

i.e., adding H2O2 will significantly increase the polishing rate whereas further increases in 

H2O2 will lower the polishing rate 0. The decrease in polishing rate may be caused by 

more copper oxides generated by high level of oxidizer, which can reduce or prevent 

copper layer from further chemical reaction. The second experiment has shown that 

surface defects (scratches) on polished wafers could be attributed to the pad failure 

(rough pad) generated by a larger abrasive size of conditioners.  
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Figure 2.10 Observed functional process variables under 3 different conditioners  

 

It is essential to detect the process change caused by large variations in oxidizer 

level or pad failure. However, inspecting critical process variables such as COF and pad 

temperature separately is incapable of distinguishing different conditions. Nevertheless, 

we could observe that the oscillatory patterns in COF and temperature bear certain 

similarities under each condition. This fact may lead to a new method to characterize and 

detect the process condition by uncovering the latent correlation patterns between the 

critical process variables. 

 

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

Time Index

C
oF

Conditioner with 0.25 um diamonds

0 1000 2000 3000 4000 5000 6000 7000
24

25

26

Time Index

Te
m

pe
ra

tu
re

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

Time Index

C
oF

Conditioner with 8 um diamond

0 1000 2000 3000 4000 5000 6000 7000
22

24

26

28

Time Index

Te
m

pe
ra

tu
re

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

Time index

C
oF

Conditioner with 100um diamond

0 1000 2000 3000 4000 5000 6000 7000
25

25.5

26

26.5

Time Index

Te
m

pe
ra

tu
re



26 

2.2 Statistical Analysis of Correlated Process Variables for Condition Diagnosis 

Results from Section 2.1 show that inspection of COF or temperature distribution 

alone cannot uniquely distinguish all process conditions. In this Section, we will jointly 

consider these correlated process variables by analyzing their correlation. The objective is 

to discover the correlation patterns under different process conditions and thereby to 

detect the condition changes. The modeling approach is based on functional canonical 

correlation analysis (FCCA), which is to assess the correlation through measuring the 

statistical similarities among functional data. The statistical correlation patterns under 

different polishing conditions can be captured. 

2.2.1 Process Condition Characterization through FCCA 

In applied statistics, canonical correlation analysis (CCA) maximizes the 

correlation between a linear combination of two random vectors. FCCA is motivated to 

find functional canonical variates that maximize the covariance function of two process 

variables (or stochastic processes). To be specific, suppose x(t) and y(t) are two process 

variables with zero mean and covariance functions Ε[x(t)x(s)], Ε[y(t)y(s)], and Ε[x(t)y(s)]. 

Also assume there are N observed pairs of data curves (xi(t) and yi(t)) for the two 

variables. The variance and covariance can then be estimated using these N observations, 

e.g., E[x(t)y(s)]=N-1∑ixi(t)yi(s). The FCCA is to find weight functions u(t) and v(t) to 

maximize the squared correlation (denoted as ccorsq(u,v)) of ∫u(t)xi(t)dt and ∫v(t)yi(t)dt, 

i.e. [0], 

vu ,
max ccorsq(u,v)=∫∫u(t)Ε[x(t)y(s)]v(s)dsdt                              (2.1) 

s.t. ∫∫u(t)Ε[x(t)x(s)]u(s)dsdt+λ||D2u(t)||2=1 and 

∫∫v(t)Ε[y(t)y(s)]v(s)dsdt+λ||D2v(t)||2=1, 
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where λ is a positive smoothing parameter, D is a differential operator d/dt, ||.||2 is an 

operator that computes ∫(.)2dt, and λ||D2(.)||2 gives a penalty term that considers the 

roughness of the functions u(t) and v(t). Appropriately selected smoothing parameter λ 

can yield fairly smooth weight functions and a correlation that is not unreasonably low. It 

can be chosen subjectively or according to cross-validation procedures. 

Functional curves u(t) and v(t) can be estimated by seeking expansions in terms of 

a fixed number of basis functions Φi(t), e.g., Fourier basis for periodical signals and B-

spline basis for non-periodical signals. Then functional curves are estimated as ∑ibu,iΦi(t) 

for u(t) and ∑ibv,iΦi(t) for v(t), where bu,i and bv,i are coefficients.  

It should be noted that the process variables need to be detrended and zero-

centered prior to implementing FCCA. The reason is that both COF and temperature have 

similar general trends and therefore their trends definitely are highly correlated and 

possess similar correlation patterns. For the purpose of monitoring process condition 

using correlation analysis, we should look into the details of variations by removing the 

effect of general trend. Therefore, zero-centering the data is a requirement of FCCA. In 

this study, cubic spline smoothing is employed to separate the data trend from the process 

variables. Figure 2.11 gives an example of the detrending results for one replicate of 

polished samples (5% H2O2).  



28 

 

Figure 2.11 An example of detrending (5% H2O2) 

 

Solutions to Eq. (2.1) (denoted as uI and vI) give a pair of leading canonical 

variates that maximize ccorsq(u,v). Thus, uI(t) and vI(t) reflect a latent pattern of 

correlation. Other latent patterns can be identified by the second and higher order 

canonical variates, denoted as (uII, vII), (uIII, vIII), and so on. For example, the second pair 

(uII, vII) is the functions u and v that maximize the same correlation ccorsq(u,v) subject to 

the constraint that they are to be uncorrelated with the leading pair of canonical variates. 

The number of potential canonical variates is equal to the number of basis functions in 

fitting the functional curves. 

2.2.2 Results and Analysis 

As pointed out in Section 2.2.1, the weight functions u(t) and v(t) determine the 

correlation patterns, which are able to characterize the process conditions. In 2.1.1.1, we 

study the correlation patterns under three levels of oxidizer (H2O2) by plotting (see Fig. 

2.12) the weight functions for the first two pairs of canonical variates, where solid curve 

gives the weight function of COF and dashed line shows the weight function of  

temperature. Since the detrended signals oscillate, Fourier basis is chosen to fit the data to 
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functional curve. Table 2.4 shows the values of corresponding correlations for the first 

two pairs of canonical variates. Leading pair of canonical variates has very large 

correlation values and reflects major correlation patterns. 

 

 

Figure 2.12 Canonical correlation patterns under 3 levels of H2O2  

 

Comparing the weight functions for slurries with different oxidizer percentage, 

we observe that the change in oxidizer will significantly alter the shape of weight 

function. To interpret such pattern changes, recall that the signals have been detrended 

and the functional data show a characteristic of periodical oscillation. Corresponding to 

the slurry with 2.5% H2O2 the solid curve and dashed curve of the first pair of canonical 

5% H2O2 

2.5% H2O2 

0% H2O2 
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variates have almost constant weight functions. This indicates the original process 

variables themselves would achieve the maximum correlation (not true in the other two 

conditions). Since the process with 2.5% H2O2 yields the best polishing results, the 

associated correlation pattern can serve as a baseline pattern for future process diagnosis. 

A large fluctuation in weight function of temperature is observed under the first level (5% 

H2O2) while the two curves significantly deviate from each other under the third level 

(0 .0% H2O2).  

Table 2.4 Canonical correlation of slurry study 

Canonical variates 1st 2nd 

Slurry w. 5% H2O2  0.928 0.259 

Slurry w. 2.5%H2O2 0.989 0.283 

Slurry w/o. H2O2 0.996 0.128 

 

The second pair of canonical variates has a relatively small correlation; however, 

it still provides a reference to distinguish between different levels, especially for the 

levels of 2.5% H2O2 and 0% H2O2 since the correlation patterns are very different. 

We also analyzed the correlation patterns under three levels of abrasive size of 

conditioners and the weight functions of canonical variates are given in Fig. 2.13. Table 

2.5 gives the correlation for the first two pairs of canonical variates. Prior to the FCCA, 

the trend is removed and the Fourier basis was chosen in the same way as the case in 

2.2.1.1. From Fig. 2.13, we again observed different weighting function patterns under 

different conditions. When the abrasive size 0.25μm is chosen, the weighting function 

shapes of both COF and temperature appear almost the same, and this indicated original 
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two process variables achieved maximum correlation (not true in other two conditions). 

When 100μm abrasive size is used, in addition to fluctuation in dashed curve, two curves 

significantly depart from each other. 

 

Figure 2.13 Canonical correlation patterns under 3 levels of abrasive sizes 

 

From results of both cases, we may observe that the best process condition seems 

to be related to the correlation pattern that original process variables achieve the 

maximum correlation. Further experimental studies are needed to confirm this 

observation.  
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Table 2.5 Canonical correlation of conditioner study 

Canonical variates 1st 2nd 

0.25μm abrasive size  0.992 0.142 

8μm abrasive size 0.985 0.466 

100μm abrasive size 0.840 0.253 

 

2.3 Summary 

This chapter conducted an experimental and statistical analysis of correlation 

among time-varying process variables for CMP process condition monitoring and process 

change detection. We proposed that correlation patterns can help to characterize process 

conditions. Therefore, two experiments were designed to study the correlation between 

process variables. In the first experiment, we polished silicon wafer using three levels of 

concentration of oxidizer (H2O2) in slurry to simulate oxidizer failure and study its 

impact on polishing quality and COF-temperature correlation pattern. COF was recorded 

by the embedded pressure sensors in a CMP machine and temperature on polishing pad 

(including spatial and temporal variations) was captured by a thermal camera. Post-CMP 

analysis conducted on an AFM has shown that the level of oxidizer has a huge impact on 

polishing quality and efficiency. Slurry with 2.5% H2O2 yielded the lower non-uniformity 

than other levels. In a similar fashion, the second experiment investigated pad failures 

and their impact on COF-temperature correlation. Three types of abrasive sizes of 

conditioners were used to condition the pad that could cause scratches on the polished 

wafer. Experimental results show that it is difficult to distinguish among process 

conditions by investigating sensing variables COF or temperature alone. 
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The statistical analysis intends to explore the implication of correlation analysis 

on process condition change detection and monitoring. The functional data (time-varying 

function) were first expanded under certain functional basis (e.g., Fourier basis). Based 

on the expansions, the FCCA then measures statistical similarities among time-varying 

process variables and identified the weight functions that maximize the correlation 

among variables. The weight functions capture the correlation patterns corresponding to 

different process conditions. FCCA analysis showed that the slurry problem and pad 

failure can significantly change the shape of COF-temperature canonical variates. The 

correlation between the leading pair of canonical variates reveals the major correlation 

patterns. From both experiments, we found that original COF and temperature signals are 

more likely to achieve maximum correlation under the baseline conditions and less likely 

under faulty conditions. This fact leads to a new diagnostic method for abnormal process 

change caused by certain latent factors (e.g., slurry contamination or pad failure) that 

cannot be easily detected.  

Future research in next chapters involves interaction patterns among multiple 

process variables and modeling improvement for a better interpretation of correlation 

patterns. 
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Chapter 3  

Nonlinear Dynamics Modeling of Correlated FPVs for Condition Monitoring in 

Semiconductor Manufacturing Processes 

This chapter aims to investigate interaction between functional process variables 

(FPVs) for condition monitoring in chemical-mechanical planarization (CMP). During 

wafer polishing, critical process variables such as coefficient of friction (COF) and pad 

temperature vary with time and present in the shape of functional curves. In previous 

chapter, we have demonstrated that correlation patterns among these FPVs could be 

related to polishing conditions. Since correlation is affected by both amplitude 

fluctuations and phase variability in FPVs, further study of timing correlation of FPVs 

measured in different units could bring more insights into physical interactions and 

thereby enhance CMP condition monitoring. Existing research on FPVs in CMP mainly 

focuses on individual effects of FPVs and statistical correlations through experimental 

and theoretical analyses. In this paper, we intend to specifically reveal the timing 

correlation patterns in CMP. Using nonlinear dynamics, we first established a dynamic 

phase model to define the strength and patterns of FPV interaction. By monitoring the 

extracted patterns, we then developed a novel method of detecting CMP condition change 

and demonstrated the approach via a CMP experiment. The results showed that the 

proposed method has a promising application in identifying the process changes that may 

not be easily detected otherwise. 
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This chapter is organized as follows. Section 3.1 develops methods of nonlinear 

dynamics modeling of physical interaction. In Section 3.2, a model based process 

condition change detection/diagnosis method is then proposed by employing statistical 

process control tools. Section 3.3 applies the methods to a CMP experimental data and 

discusses the results. Conclusions are given in Section 3.4. 

3.1 Nonlinear Dynamics Modeling of FPV Timing Correlation 

In CMP processes, phase synchronization modeling provides an effective tool to 

describe the timing correlation among critical FPVs such as COF and temperature since 

they show strong cyclic patterns (see Fig. 3.1 as an example). The remaining of this 

section will establish a model to identify the main effect and interaction effect between 

COF and temperature. The extracted interaction pattern can facilitate further monitoring 

and diagnosis of pattern change in timing correlation in Section 3.2. 

 

Figure 3.1 Strong cyclic patterns in process variables 

 

Nonlinear dynamics theory suggests that the synchronization among p oscillatory 

signals can be modeled by [46] 

1 2( ) / [ ( ), ( ),..., ( )] , 1,2,..., ,k k k p kd t dt Q t t t k pϕ ω ϕ ϕ ϕ ε= + + =        (3.1) 
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where φk(t) is the phase variable (a function of time t), ωk is the base angular frequency 

(frequency component with the highest power), and εk is the white noise of the kth 

oscillatory signals xk(t). 

The phase variables φk(t)’s can be obtained by constructing an analytical signal 

obtained from Hilbert transform as follows (For a simple sine signal x(t)= A sin(ω0t +φ0), 

the phase φ(t) is defined as φ(t) =ω0t +φ0),  

( ) arg{ ( ) [1/ ( ) /( ) ]}, 1.k k kt x t i x t d iϕ π τ τ τ
∞

−∞
= + − = −∫           (3.2)  

The term Qk(.) is defined as a function describing interaction among these phase 

variable φk(t) and is approximately periodic. Therefore, Qk(.) can be approximated by 

Fourier expansion:   

1 2 1 2

1 2

, ,..., , ,...,
1 2 , ,..., 1 1

( , ,..., ) [ cos( ) sin( )]p p

p

p pm m m m m m
k p j j j k j jm m m j j

Q a m b mϕ ϕ ϕ ϕ ϕ
= =

= +∑ ∑ ∑ , k=1,2,…p,   (3.3) 

where the superscripts mj’s in the Fourier expansion are integers and cannot be zeros 

simultaneously. The values of coefficients 1 2, ,..., pm m m
ja  and 1 2, ,..., pm m m

kb  can be estimated 

through the Ordinary Least Square (OLS) regression method. Prior to fitting the model, 

any signal trend must be removed from the data and the signal should fluctuate around 

zero (see an example in Fig 3.2). The trends in the middle graphs were extracted using 

cubic spline smoothing. 
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Figure 3.2 An example of signal detrending 

 

The major challenge is to find interaction terms in the model with adequate orders. 

The model to be developed will not only be statistically adequate to avoid overfitting for 

robust prediction, but also physically interpretable for a better understanding of the 

synchronization mechanism. Grounded on these principles, a small Fourier expansion is 

preferred for a better physical interpretation. Initially we can start with a small series and 

gradually increase the order of Fourier series through a model adequacy check. The 

Fourier expansion should be controlled in such a way that the base frequencies roughly 

go through the middle of the instantaneous frequencies. A model selection procedure, e.g., 

backward selection method, is adopted to screen the insignificant coefficients in the 

Fourier series. The statistical significance of model coefficients is determined by a small 

p-value, e.g., 0.01 or less. To obtain a model with better interpretability, the interaction 

order and strength are defined as follows. 

Following the concept of statistical effects in the design of experiments [47], the 

main effect and interaction effect can be defined in a similar way. For example, the main 
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effects include cos[φ1(t)], cos[φ2(t)], cos[φ3(t)], sin[φ1(t)], sin[φ2(t)], and sin[φ3(t)]. The 

two-way interaction effects or the first order interactions include cos[φ1(t)+φ2(t)], 

cos[2φ1(t)+φ3(t)], etc. The three-way interaction effects or the second order interactions 

contain cos[φ1(t)+φ2(t)+φ3(t)], etc. With this definition, basic principles like that of the 

hierarchical ordering principle are readily applied to the model selection procedure. For 

instance, the effect heredity principle suggests that in order for the interaction effect 

cos[φ1(t)+φ2(t)] to be significant, normally at least one of its parent effects should be 

significant. Its parent effects are the main effects in the trigonometric identity 

cos[φ1(t)+φ2(t)] = cos[φ1(t)]cos[φ2(t)]-sin[φ1(t)]sin[φ2(t)]. 

 Due to the nature of Fourier expansion, the cosine and sine pairs can be 

represented in a complex form, e.g., 1 2 3 1 2 3, , , ,2 2( ) ( )m m m m m m
k ka b+

exp{im1φ1(t)+im2φ2(t)+im3φ3(t)}. The term 2,,2,, )(+)( wrs
k

wrs
k ba  represents the amplitude 

in signal processing and [(a 1 2 3, ,m m m
k )2+(b 1 2 3, ,m m m

k )2] is related to the power of that frequency 

component. The strength of each frequency component in a main effect or an interaction 

effect can be thus defined using the concept of the power, e.g., [(a 1 2 3, ,m m m
k )2+(b 1 2 3, ,m m m

k )2]. 

The strength of the main effects/interaction effects is defined as the summation of the 

power of every frequency component in all the main/interaction effects, e.g., ∑
1 2 3, ,m m m  [(a

1 2 3, ,m m m
k )2+(b 1 2 3, ,m m m

k )2]. The proposed definition provides an opportunity to identify and 

analyze the important frequency components in each order of interactions.  
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3.2 Statistical Process Monitoring Based on Nonlinear Dynamics Modeling of FPV   

      Timing Correlation 

Statistical process control (SPC) is an effective tool to monitor process changes 

and reduce process variations. But standard SPC methods could not be directly applied to 

processes with FPVs [48]. Two main strategies have been deployed for process 

monitoring using functional data. The first strategy is to extract features from curves, e.g., 

peak values, wavelet coefficients [49-54], or slope and intercept [53][54]. Then standard 

procedures developed in multivariate process control (e.g., Hotelling’s T2 control chart) 

can be applied to monitor those features. The second strategy is nonparametric regression, 

i.e., to approximate curves with functions. Curves collected under different process 

conditions can then be discriminated into categories through baseline functions [55][56].  

Nevertheless, these approaches mainly focused on one single FPV except the 

modeling methods reviewed in Section II and a semi-parametric method based on 

principal curve analysis [58]. In this section, we propose a new statistical method to 

detect change of timing correlation among FPVs for CMP processes. 

Prior to the detection procedures, data for FPVs should be collected in the 

following manner: sample data under condition 1 (normal condition), and sample data 

under condition 2 (abnormal condition).  The data collected under the normal condition 

will be used as training data to establish the phase dynamics model proposed in Eq. (3.1). 

The changes of synchronization pattern include systematic change or base frequency ωk 

change and interaction change or Qk(·) change. Systematic change in signal base 

frequency implies that significant process condition changes occur, which can be directly 

detected by visual inspection on the signal oscillatory pattern. Interaction change is 
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related to moderate process condition change, which might not be identified by 

inspecting original signals. 

Since the model coefficients ωk, a wrs
k

,, ’s, and b wrs
k

,, ’s, define patterns that 

characterize process conditions, they will be used to detect interaction changes. Suppose 

p synchronized signals are modeled by Eq. (3.1).  Denote ω = [ω1 ω2,…, ωp]T and [ak 

bk]T as a stackup of coefficients in the interaction function Qk(·).  Given the data collected 

from the normal process condition, multivariate control charts (e.g., Hotelling’s T2 chart) 

can be built for ω, and [ak bk]T to monitor systematic pattern change and interaction 

pattern change, respectively.  

Due to the irregularity, noise, and complex spatio-temporal patterns in real-time 

signals, the phase dynamics model may consist of a large set of coefficients [ak bk]T. The 

large model dimension will adversely affect the performance of detection procedures. 

Principal Component Analysis (PCA) is an effective way of dealing with highly 

correlated parameter estimates. It is implemented along with the development of 

statistical detection procedures to reduce the model dimension for effective change 

detection. The basic idea is to monitor the first few principal components of [ak bk]T 

instead of the coefficients themselves. For instance, Hotelling’s T2 statistic in terms of 

principal components can be 2 2 2
1

/A
a aa

T t s
=

= ∑ , where ta is the ath principal component 

and s 2
a  is its corresponding sample variance. The number of principal components A can 

be determined by the amount of total sample variance explained. Thus, the phase I 

control chart limit to monitor the principal components is UCL=(m-1)2/mβα, A, (m-A-1)/2, 

LCL=0, where m is the number of samples and βα, A, (m-A-1)/2 is the upper α percentage 

point of beta distribution with parameters A and (m-A-1)/2. In this paper, α is assumed to 
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be 0.01. Before building a phase II control chart, it is necessary to remove the scores of 

out-of-control points in the phase I control chart and re-compute the sample variance s 2
a  

of the principal components. The phase II control chart to monitor the principal 

components can be then established by [58], 

2 2
, ,1

( ) / ( 1) /( )A new
a a A m Aa

t s A m m A Fα −=
≤ − −∑ ,                               (3.4) 

where Fα,A,m-A is the upper α percentage point of F distribution with degrees of freedom A 

and (m-A-1)/2. The principal component new
at  comes from the future observation and s 2

a  

comes from the phase I control chart. 

3.3 Case Studies 

 In this part, the real CMP experiments were conducted to validate our approach. 

3.3.1 Experiments 

To validate the proposed modeling and detection method, we designed validation 

experiments to generate abnormal process condition changes.  

 

Figure 3.3 Experimental setup used in performing polishing experiments 

 

Setup used in performing the polishing experiments is shown in Fig. 3.3. The 

polishing process was carried out on a bench-top CMP tester (model CP-4) manufactured 

by CETR Inc. During polishing, lateral force and normal force of the contact interface 
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were recorded at frequency 100Hz and COF could be recorded in situ by calculating the 

ratio of these two forces. Meanwhile, a FLIR® infrared camera was shooting at the 

polishing area to monitor in situ the temperature distribution on the pad. The average 

temperature of the polishing zone (Fig. 3.4) on the pad was recorded at a frequency of 30 

Hz. The online monitoring of the COF and temperature signals facilitates studying the 

interaction between chemical and mechanical process variables.  

 

 

Figure 3.4 An example of recording temperature 

 

The 6-inch diameter IC 1000k grove polishing pad was attached on the rotating 

bottom platen in CETR and 2-inch wafer coupon was attached to the upper polishing 

head. The slider velocity was maintained at 3 mm/sec during the whole experiment and 

the duration of each run was 3 minutes. Planerlite 7105 copper polishing slurry was 

mixed with 30% hydrogen peroxide in this experiment and was fed onto the center of the 

pad at the rate of 50mL/min. The slurry temperature was maintained at 30oC using a 

controllable heater (manufactured by Corning, Inc.). The newly changed pad was 

conditioned for two 20-min runs with 1-min polishing of dummy samples in between. 

Average TemperatureAverage Temperature

Time (s)

Temperature (oC)
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During polishing process, the pad was conditioned ex situ after each run. Process 

parameters of the experimentation are summarized in Table 3.1. 

Table 3.1 Wafer polishing process parameters 

Description Value 

Wafer coupon,  2×2in 

Polishing pad IC-1000k groove 

Slurry Planerlite 7105 copper slurry 

Oxidizer 30% hydrogen peroxide 

Slider movement Offset: 5mm, speed: 3mm/s 

Pad conditioning Pressure: 2psi, rpm: 150 

Conditioner Diamond pad conditioner 

Slurry flow rate 50mL/min 

  

 In the experiment, we simulated the case when the slurry was contaminated by 

impurities and faucet water during the polishing process (Table 3.2). Four samples (2 in.) 

were polished with slurry without contamination for 3 minutes, followed by another 3 

minutes of polishing using the contaminated slurry. 

Figure 3.5 gives the temperature and COF recordings during polishing of one 

sample. The left panel shows the data when polishing the wafer with normal slurry 

(350:30:650 for Slurry: H2O2: D.I. water) while the right panel displays the signal profile 

when the slurry was contaminated during polishing. Apparently, visual inspection of 

these two variables is not easy to identify underlying pattern changes.  
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Table 3.2 Experimental conditions  

Rotational velocity 

(Polishing head vs. pad) 

 

Pressure

 

Polishing time 

 

Slurry : H2O2 : D.I. water 

150 vs. 145 rpm 3 psi 3 min 350:30:650 (mL) 

3 min Contaminated slurry* 

* Contaminated slurry was formulated with 350 mL slurry, 30 mL 30%-H2O2, and D.I. water    

contaminated with 20 mL faucet water. 

  

    

Figure 3.5 An example of signal recordings before and after slurry 

contamination 

 

3.3.2 Results and Analysis 

Instead of visual inspection, nonlinear dynamics modeling of phase 

synchronization assists statistical detection. This section demonstrates the method based 

on the data collected in Section 2.2.1.  
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The nonlinear dynamics modeling (Eq. (3.1)) results after statistical model 

selection are given in Fig. 3.6, where in the first row the dash line represents 

instantaneous frequency extracted by Hilbert transform, and the solid line is for 

instantaneous frequency predicted by the model. The prediction residuals (as shown in 

the second row) exhibit random patterns and no systematic trend or pattern (e.g. cyclic 

fluctuation), which implies that the model orders p=14 and q= 14 are adequate. 

 

Figure 3.6 Phase nonlinear dynamics modeling results 

 

In Fig. 3.7, the left and right panels compare the interaction strength (defined in 

Section II) before and after slurry contamination, respectively. The attached table shows 

the ratio between strengths of interaction and main effects.  The interaction effect is 

significant because the ratio is far larger than 1 under two conditions. Compared to the 

normal condition (left panel), slurry contamination (right panel) significantly weakens the 

interaction effect between temperature and COF. Such interaction pattern could reflect 

process condition changes. For example, strong interaction between temperature and 
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COF could be related to effective chemical reaction while the weakened interaction might 

indicate the chemical process is jeopardized or changed. Therefore, we propose a 

statistical detection method to identify the significant interaction pattern change. 

 

Interaction/Main Effect Normal Contamination 

Effect of Temperature on COF 3.1222 2.6731 

Effect of COF on Temperature 3.0458 2.6561 

Figure 3.7 Strength of main and interaction effects 

 

We built phase II T2-Hotelling charts (Section III) to monitor respectively the 

change of interaction pattern after the slurry contamination, where Q1 is the model term 

that shows the effect of temperature on COF and Q2 shows the effect of COF on 

temperature. The base frequency (ω1, ω2) that usually corresponds to certain systematic 

process change is also monitored. 
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(a) Base frequency monitoring  

  

(b) Interaction effect monitoring  

Figure 3.8 Phase II control charts for main and interaction effects 

 

We can see from Fig. 3.8 that all the sample points are under control limit (dash 

line) for monitoring main effects and Q2 whereas all the samples of Q1 are beyond the 

limits. This implies that the interaction effect of temperature on COF has significantly 

changed after slurry contamination.  However, slurry contamination does not 

significantly affect the base frequency and the interaction of COF on temperature. 

Combining the results of interaction strength, we can know that the Q1 has been 

1  2  3  4  
0

20

40

60

80

100

120

140

Sample No.
T2  

Phase II Control Chart for  (ω1 ω2)- Base Frequencies

1  2  3  4  
100

200

300

400

500

600

700

800

900

1000

Sample No.

T2

Phase II Control Chart for Q1 - Effect of Temperature on COF

1  2  3  4  
0

50

100

150

200

250

300

350

400

Sample No.

T2

Phase II Control Chart for Q2 - Effect of COF on Temperature



48 

significantly weakened after the slurry contamination. In this study, such type of 

interaction pattern change can be used as an indicator of less effective chemical reaction 

that could be related to slurry problems.  

3.4 Summary 

This chapter studied timing correlation of multiple functional process variables 

(FPVs) in phase domain for CMP process condition monitoring and diagnosis. 

Considering the oscillatory pattern in the FPVs, we first established a nonlinear dynamics 

model to capture the main and interaction effect in the rhythm of cyclic components. It 

can be estimated through regression analysis followed by statistical screening procedures. 

Following the concept of statistical effects in design of experiments, we defined the order 

and strength of interaction, through which the directionality of interaction can be 

identified. Uncovering interaction directionality will assist to understand physical 

interaction among multiple FPVs. A statistical method of condition change detection was 

then developed by monitoring the interaction patterns using statistical process control 

tools. The extracted interaction patterns are especially helpful for detecting abnormal 

condition caused by hidden factors that may not be easily identified. 

The proposed method was applied to data analysis on CMP experiments, where 

we generated slurry contamination during CMP polishing. The modeling result showed 

strong interaction strength on both directions of COF-temperature interaction. Statistical 

control charts indicated that interaction effects of temperature on COF were significantly 

changed after slurry contamination, whereas the reversed interaction effect and base 

frequencies of both signals remained unchanged. Combining the results of interaction 

strength analysis, we can further conclude that the interaction effect of temperature on 
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COF has been significantly weakened. In this study, the weakened interaction pattern is 

an indicator of less effective chemical reaction due to slurry problems. These facts may 

lead to a new diagnosis method based on interaction modeling for abnormal process 

change caused by slurry problems.  
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Chapter 4  

Analysis of Interaction Structure among Multiple FPVs for Process Control in 

Semiconductor Manufacturing  

 From previous chapters, we have shown that the complex interaction patterns 

among functional process variables (FPVs) in semiconductor manufacturing processes 

could indicate process condition changes. We developed a nonlinear dynamics model to 

describe interactions among FPVs, which was further used to monitor process condition 

changes. However, the interaction structure among three or more FPVs has not been 

thoroughly investigated for the purpose of process control. In this work, we first extend 

our previously developed nonlinear dynamics model by considering the autocorrelation in 

each FPV. A generalized least square (GLS) method is applied to estimate the extended 

model. The interaction structure among FPVs is represented as a complex network in 

which the directionality and strength of interaction are discovered from the extended 

nonlinear dynamics model. To validate the proposed method, we first conduct simulation 

study using van der Pol oscillators. Then two sets of real experimental data from 

chemical mechanical planarization process are used to investigate the interaction 

structure change over a polishing cycle. The results show that the extracted patterns of 

interaction structure among FPVs could aid to uncover the polishing mechanisms and 

provide more insights for condition monitoring and diagnosis. 
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The chapter is organized as follows. Section 4.1 briefly reviews the work done in 

previous chapters. In Section 4.2 we first extend our previously developed nonlinear 

dynamics model by considering the autocorrelation in each FPV. A generalized least 

square (GLS) method is used to estimate the extended model. The interaction structure 

among FPVs is represented as a complex network in which the directionality and strength 

of interaction are discovered from the extended nonlinear dynamics model. We 

demonstrate the interaction analysis approach through a simulation of van der Pol 

oscillators. In Section 4.3, two sets of real experimental data from chemical mechanical 

planarization process are used to investigate the interaction structure change over a 

polishing cycle. Conclusion is given in Section 4.4. 

4.1 Review of Nonlinear Dynamics Model of FPVs 

In semiconductor manufacturing many process factors are involved to affect 

product quality. As an example in chemical mechanical planarization (CMP), factors 

such as applied force, pad property, and slurry flow rate would jointly (not independently) 

impact the quality of polished wafers. The interactions among process factors can be very 

complex. To understand the ways that process factors affect product quality, process 

variables such as coefficient of friction (COF) and polishing pad temperature are 

collected online to predict the realtime process conditions. If process variables are 

continuously observed and vary with time, these functional process variables (FPVs) may 

contain rich process information. For instance, COF between the wafer and the pad 

provides information regarding the tribological condition at the interface. An abrupt and 

large variation in COF could be a realtime indication of pad failure, large particles on the 

pads, or underlying barrier layer exposure on the wafer. Highly correlated to COF, pad 
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temperature is another important FPV that depicts heat variations generated through 

friction and chemical reaction. Previous studies have investigated FPVs both 

experimentally and analytically [60][61]. Our experience suggested that certain process 

changes may not be easily detected without collectively studying these FPVs. 

Simultaneously analyzing these FPVs and their interaction patterns could bring additional 

insights into process condition changes and new opportunities for process improvement 

[62][63]. 

In [62][63] we have shown that the complex interaction patterns among FPVs in 

semiconductor manufacturing processes could indicate process condition changes. We 

developed a nonlinear dynamics model to describe interactions among FPVs, which was 

further used to monitor process condition changes. However, the interaction structure 

among three or more FPVs has not been thoroughly investigated for the purpose of 

process control. Below we briefly review related studies. 

The common approaches of analyzing correlation or interaction are cross-

correlogram and cross-spectrum methods [64-66]. They might be easily affected by 

artifacts and lead to improper detections, especially for the non-stationary signals 

collected in CMP process. Coherence and cross spectrum methods aim to analyze the 

correlation of paired signals in the frequency domain and are most commonly used with 

continuous signals [65][39]. Phase synchronization was developed to detect timing-

correlation in phase domain while discarding the effect of the amplitude of signals 

[39][40]. Similar to the correlation coefficient in the time domain, coherence, entropy, or 

mutual information indices in phase domain have been proposed to detect synchrony in 
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paired signals [70-72]. A nonlinear dynamics model was further developed in [73] to 

study phase synchronization: 

)(),()(/
)(),()(/

21222222

12111111

tfqdtd
tfqdtd

εφφφωφ
εφφφωφ
+++=
+++=

                                             (4.1) 

where φ1,2  are the phases of coupling variables, ω1,2 are the base angular frequencies or 

natural frequencies, and ε1,2 are the noisy perturbations. ƒ1,2 are defined as functions 

which involve interactions between coupling variables, and q1,2 are self-provoked 

functions. This model can be easily extended to the case with more than two coupling 

variables.  

The major challenge, however, is to find interaction functions ƒ1,2 in Eq. (4.1) 

with adequate orders after Fourier transformation. To improve the mode, we defined 

main effects and interaction effects of FPVs in [62] and further demonstrated it in CMP 

process monitoring. However, the temporal patterns, especially the often strong 

autocorrelation in FPVs were not considered therein. This could lead to inadequate phase 

dynamics models and provide an incomplete picture of the complex spatio-temporal 

patterns in FPVs. Furthermore, the complex interaction structure among three or more 

FPVs has not been thoroughly investigated. As shown in Fig. 4.1, the general correlation 

analysis could not reveal the directionality and strength of interaction, and network 

structure among multiple FPVs. As shown in our case study, analyzing interaction 

structures could assist to understand more insights of the polishing mechanisms. 
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Figure 4.1 Interaction structures represented as a network 

 

Rosenblum et al. [74] first investigated interaction structure based on mutual 

prediction. In their study the canonical structure (three oscillators in a ring) was identified 

through pairwise analysis of coupled oscillators. More complex structures were 

investigated using partial directed coherence method [75]. All these methods examine the 

directionality of two-way interactions to identify interaction structures. Three-way or 

high order interactions are not considered. Moreover, variables in the interacting network 

are assumed to be known, and hence hidden influential variables could be missed. 

Therefore, a new method that could distinguish different orders of interaction would be 

preferable so as to identify more complex interacting mechanisms.  

4.2 Analysis of Interaction Structure among Multiple FPVs 

4.2.1 Extended Nonlinear Dynamics Model for Interaction among FPVs 

In [62] we characterized the interaction among multiple FPVs by 

1 2( ) / [ ( ), ( ),..., ( )] , 1,2,..., ,k k k p kd t dt Q t t t k pϕ ω ϕ ϕ ϕ ε= + + =        (4.2) 
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where phase variables φk(t)’s are obtained through Hilbert transform of FPVs, and Qk(.) 

describes interaction among these phase variable φk(t). Qk(.) is approximately periodic 

which can be approximated by Fourier expansion:   

1 2 1 2

1 2

, ,..., , ,...,
1 2 , ,..., 1 1

( , ,..., ) [ cos( ) sin( )]p p

p

p pm m m m m m
k p j j j k j jm m m j j

Q a m b mϕ ϕ ϕ ϕ ϕ
= =

= +∑ ∑ ∑ , k=1,2,…p,   (4.3) 

where the superscripts mj’s in the Fourier expansion are integers and cannot be zeros 

simultaneously. The values of coefficients 1 2, ,..., pm m m
ja  and 1 2, ,..., pm m m

kb  were estimated 

through the Ordinary Least Square (OLS) regression method.  

When sampling frequency is high, model (4.2) might overlook the strong 

autocorrelation or temporal patterns in FPVs. Figure 4.2 shows the fitted results for one 

segment of COF. The order of the Fourier expansion is m =4. As can be seen, although 

the fitted model (dash line) could capture the main trend of the original instantaneous 

frequency (bold line), the residuals show a strong autocorrelation.  Without considering 

the potential autocorrelation could leads to approximating Qk(.) with many sine and 

cosine terms, which may be hard to interpret physically.  Therefore, we extend the model 

(4.2) by imposing a structure on residuals, 

 

Figure 4.2 Temporal patterns in FPVs 
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Cov[εk(t), εk(t+1)]=σ2
kρl, time lag l=0,1,2,…                                                                       (4.4) 

Compared with the previous model based on the assumption of noise 

independence, the noise term in the new model permits an auto-correlated structure, i.e., 

error terms at time t and t+l have correlation coefficients ρl. For example, the error ε1 of 

the COF may follow a first-order autoregressive model (AR(1) model), ε1(t)=ηε1(t-

1)+ν1(t), where  ν1(t) is the white noise, ν1(t)~N(0, σ 2
ν ). Then the coefficient ρl=ηl and 

Cov[ε1(t), εk(t+l)]=σ 2
1 η= σ 2

ν η/(1-η2). The first derivatives of phase φk(t)’s will serve as 

response variables while cosine and sine functions in the Fourier expansion of Qk(.)’s will 

be predictors. The model coefficients ωi, 1 2, ,..., pm m m
ja , 1 2, ,..., pm m m

jb , and ρl can be estimated 

using the Generalized Least Squares (GLS) method [76].  

4.2.2 Interaction Structure Analysis 

The proposed interaction structure analysis approach is outlined in Fig. 3. Since 

the complexity of interaction analysis increases exponentially with the number of FPVs, 

we use a network involving three nodes as an example to demonstrate the procedure. 

With the extended phase dynamics model we will first identify the strength of 

interactions. As defined in 62, the main effects include cos[φ1(t)], cos[φ2(t)], cos[φ3(t)], 

sin[φ1(t)], sin[φ2(t)], and sin[φ3(t)]. The two-way interaction effects or the first order 

interactions include cos[φ1(t)+φ2(t)], cos[2φ1(t)+φ3(t)], etc. The three-way interaction 

effects or the second order interactions contain cos[φ1(t)+φ2(t)+φ3(t)], etc. The term 

2,,2,, )(+)( wrs
k

wrs
k ba  represents the amplitude in signal processing and [(a 1 2 3, ,m m m

k )2+(b

1 2 3, ,m m m
k )2] is related to the power of that frequency component. The strength of each 

frequency component in a main effect or an interaction effect can be thus defined using 
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the concept of the power, e.g., [(a 1 2 3, ,m m m
k )2+(b 1 2 3, ,m m m

k )2]. The strength of the main 

effects/interaction effects is defined as the summation of the power of every frequency 

component in all the main/interaction effects, e.g., ∑
1 2 3, ,m m m  [(a 1 2 3, ,m m m

k )2+(b 1 2 3, ,m m m
k )2]. Then 

we could construct a bar chart for each FPV which shows the strength of main effect and 

interaction effects (see an example in Fig. 4.9). 

 

Figure 4.3 Procedure of analyzing interaction structure 

 

From the bar charts we will investigate interaction patterns. We analyze four 

important cases of interaction structures:  

• Self-oscillated FPV As illustrated in Fig. 4.4, if main effect of a FPV is 

dominant and all of the two-way and high order interaction effects are 

insignificant, the FPV does not interact with others.  

                         

Figure 4.4 Self-oscillated variables in system 
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• Clockwise interaction pattern  In this case, each FPV is affected by the other in 

clockwise manner (Fig. 4.5). From the bar chart, both interaction effects are 

significant, but one is stronger than the other. Meanwhile, the main effect and 

three-way or high order interaction are relatively weak.  

                           

Figure 4.5 Clockwise interactions among FPVs  

 

• Symmetric interactions among FPVs If strengths of all two-way interactions are 

similar and higher order interactions are insignificant, we may encounter 

symmetric interaction structure (Fig. 4.6). 

                                   

Figure 4.6 Symmetric interactions among FPVs 

 

• Hidden FPVs in a network  If only one three-way interaction effect is 

significant, we may suspect that at least one hidden variable exists in the network. 

As shown in Fig. 4.7, the bar chart displays interaction strength for node 2. If 
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three-way interaction effects are weak in all the other FPVs, a hidden FPV might 

interact with the network through node 2. Similar idea for identifying hidden 

variables could be found in [77].    

                                

Figure 4.7 Hidden FPVs interact with the network through Node 2 

 

The last issue is to determine the directionality of interaction. If the strength of 

two-way interaction in node i is stronger than that of the corresponding two-way 

interaction in node j, then node j has stronger influence on node i.  

To validate the proposed approach for analyzing interaction structures, four-

channel van der Pol oscillator system is simulated using Matlab [78] as follows: 

2
2 21 1
1 1 1 1 2 2 1 1 3 3 1 1 4 4 1 12

2
2 22 2
2 2 2 2 3 3 2 2 4 4 2 2 1 1 2 22

2
2 23 3
3 3 3 3 4 4 3 3 1 1 3 3 2 2 3 32

2

(1 ) ( ) ( ) ( )

(1 ) ( ) ( ) ( )

(1 ) ( ) ( ) ( )

d x dxu x x x x x x x x
dt dt
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dt dt
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dt dt

d
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= − − + − + − + − +

2 24 4
4 4 4 4 1 1 4 4 2 2 4 4 3 3 4 42 (1 ) ( ) ( ) ( )x dxu x x x x x x x x

dt dt
ω λ λ λ ξ← ← ←

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪ = − − + − + − + − +
⎪⎩     

(4.5) 

where x1,2,3,4’s are four FPVs , u is the nonlinear self-weight parameter, 1,2,3,4ω ’s are 

linear self-weight parameter; ji←λ ’s are weights from coupled variables, and 1,2,3,4ξ  are 

white noises with normal distributions. 
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Figure 4.8 Four channel simulated signals via van der Pol oscillators 

 

Three canonical types of interaction structures are generated by varying parameter 

values (Table. 4.1). The figures on the right column depict interaction structures under 

variant dynamical systems. Nodes 1, 2, 3 and 4 are represented simulated FPVs, and 

arrows between nodes represent directed interactions determined by those parameters.  

Since some important process variables might be missed in a real dynamical 

system or process, we choose node 4 as hidden variable to be discovered by the proposed 

approach. The nonlinear parameter u is fixed to 3 for high nonlinear feature in dynamical 

systems. To avoid one FPV being modulated by another, small values were given to ji←λ  

and ωi. 5% Gaussian white noise of original signal in decibel was added to each channel. 
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Table 4.1 Interaction structure types and corresponding parameters 

Type A 

ω1 = 0.5 

ω2 = 0.5 

ω3 = 0.5 

ω4 = 0.5 

λ1←2= 0.5 

λ1←3= 0.5 

λ1←4= 0 

λ2←3= 0.5 

λ2←4= 0 

λ2←1= 0 

 

λ3←4= 0 

λ3←1= 0.5 

λ3←2= 0 

λ4←1= 0 

λ4←2= 0 

λ4←3= 0 

Type B 

ω1 = 0.5 

ω2 = 0.5 

ω3 = 0.5 

ω4 = 0.5 

λ1←2= 0.5 

λ1←3= 0 

λ1←4= 0 

λ2←3= 0.5 

λ2←4= 0 

λ2←1= 0.7 

 

λ3←4= 0 

λ3←1= 0.5 

λ3←2= 0.7 

λ4←1= 0 

λ4←2= 0 

λ4←3= 0 

Type C 

ω1 = 0.5 

ω2 = 0.5 

ω3 = 0.5 

ω4 = 0.5 

λ1←2= 0.5 

λ1←3= 0 

λ1←4= 0 

λ2←3= 0.5 

λ2←4= 1 

λ2←1= 0 

 

λ3←4= 0 

λ3←1= 0.5 

λ3←2= 0 

λ4←1= 0 

λ4←2= 0 

λ4←3= 0 

 

1500 data points were sampled for each FPV. The initial 200 points of data were 

cut off from original data series to avoid instability caused by initial values. Figure 4.8 

displays the simulated signals from each node in type A structure. Since the interaction 

relationship could not be distinguished via visual study, the proposed nonlinear dynamics 

models are required to unveil the interaction mechanism. 
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According to the principles for modeling fitting discussed in Section 4.2.1, low 

order of Fourier expansion was preferred. Stepwise regression was applied to screen out 

those insignificant terms in the phase dynamics model. Terms with very low strengths of 

main effects or interactions effect were also dropped off. The order of Fourier expansion 

was finally set to 2 with p-value being 0.05 in model selection. By computing the 

strength of main effects and interaction effects for each node, we obtain bar charts shown 

in Figure 4.9. 

 

Figure 4.9 Bar charts of interaction strength under three interaction structures   

 

It can be seen clearly in the first row of Fig. 4.9 that both interaction effects are 

significant, but one is stronger than the other in each node. For instance, in node 2, two-

way interaction 2←3 and 2←1 are both significant, but 2←3 is more dominant. The 

pattern repeats at each node which suggests clockwise interaction structure (nodes in a 
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ring pattern) in type A nonlinear system. Two-way interaction 2←1 in node 2 actually 

represents an indirect influence between nodes 1 and 2.  

In second row of the charts, two-way interactions 1←2 (node 1), 2←3 and 2←1 

(node 2), and 3←1, 3←2 (node 3) are significant. This indicates the structure of type B 

in Table 4.1.  

The third row is similar to the first row except that the three-way interaction 2←

(1, 3) in node 2 appears significant. Since all the two-way interactions suggest a ring 

pattern, the unexpected three-way interaction 2←(1, 3) may be due to a hidden variable 

(node 4). Node 4 influences the network through node 2.   

As clearly shown in the simulation study, our method determines the 

directionality of interaction via the definition of strength. Furthermore, we consider three-

way or higher order interactions which assists to understand complex structure. The 

mutual prediction algorithm [74] constructs an index with value from -1 to 1 using two 

oscillators each time. Depending on the sign of the index, the directionalities of each 

oscillator are able to be obtained for structures like Type A. Since high order interactions 

are not modeled, complex structures with hidden factors are hard to be determined by that 

method. 

4.3 Application to Identification of Interaction Structure Patterns in Real CMP            

Understanding the interaction structures has important implication in 

semiconductor manufacturing process control. Specifically the discovered interaction 

patterns among process variables over time could assist to understanding the underlying 

physical mechanisms. In this section we will demonstrate this point using CMP process. 
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Two CMP process conditions are investigated: diamond conditioners with abrasive size 

8μm and 100μm chosen to condition the polishing pads, respectively.   

The whole polishing process was conducted on a bench-top CMP tester (model 

CP-4) manufactured by CETR Inc.. The 6-inch diameter IC 1000-A4 perforated polishing 

pad (manufactured by Rodel, Inc.) was attached on the rotating bottom platen of the CMP 

tester. The 2-inch copper wafer coupon was attached to the upper polishing head. Cabot 

5003 copper polishing slurry was mixed with 2.5% hydrogen peroxide. The slurry was 

fed into the center of the pad at the rate of 50mL/min. The  pressure were set to 2psi both 

on conditioning and polishing process, and polishing head rotating speed was 150 rpm. 

 

Figure 4.10  FPVs with diamond particle size 8μm(L) and 100μm(R). 

 

We made three replicates under each pad condition and each run lasted 3 minutes. 

During each polishing process, three FPVs were collected simultaneously at sampling 

frequency 20Hz. The coefficient of friction could be obtained by gathering shear and 

normal forces with sensors installed on the polishing head, and acoustic emission (AE) 

could be collected through AE sensor on the back of wafer holder. A FLIR infrared 
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thermal camera was used to collect thermal data. The focused thermal zone was selected 

on the polishing pad adjacent to the wafer-pad interface to record the average temperature. 

Since the temperature in this interface between wafer and polishing pad cannot be 

obtained directly, the zone we selected in this way might best indicate the average 

process temperature [79].   It should be addressed here that these three process variables 

could properly represent the chemical-mechanical polishing mechanism [80][0]. Figure 

10 shows one sample of the original signals collected under each process condition. 

Directly observing original signals provides limited information.  

Since the main trend of each FPV would not be dramatically altered by 

interactions, we first remove the trend from collected data through cubic-spline 

smoothing method. Figure 4.11 displays the one sample of temperature data before and 

after detrending. 

 

Figure 4.11 Sample data before and after detrending 

 

To understand the dynamics of interaction mechanisms during the whole 

polishing process, we monitor the process via sliding windows. When determining 
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window size and length of overlapping period, we intend to (1) maintain a smooth 

transition between adjacent windows based on the belief that there is no sharp change of 

polishing mechanism in a short period; and (2) avoid large window size for potential 

miss-detection of changes. We first start with large window size to test the polishing 

condition, and reduce the window size until difference is apparent between two windows.  

Finally, our sliding window size is determined to be 25 seconds (500 data points). We 

update the sliding window every 5 seconds (100 data points) for good computing 

efficiency without losing any information of condition change. The overlapping period is 

400 points to have smooth transition between adjacent windows.  In each window, the 

dynamics model was fitted by GLS, and the model adequacy was checked. Figure 4.12 

shows one sample of the instantaneous frequency extracted from original data versus 

fitted one in single window, and the residuals are also plotted to check the adequacy of 

autoregressive terms. It is found that model order n = 2 and autoregressive order l = 5 

would have good prediction.  

 

Figure 4.12 One sample of model fitting result in a single window 

Strength of main effects, two-way and three-way interaction effects is computed 

in each window. The interaction structures and their changes are able to be deduced by 
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analyzing the bar charts. Figure 4.13 shows structure changes under polishing condition 

using 100μm diamond particle size of conditioner. As can be seen, the two-way 

interactions AE←temperature and COF←temperature are significant at the beginning, 

and they decrease gradually over time.  Meanwhile, the strength of two-way interactions 

AE ← COF and temperature ← COF increase. Other interaction effects seem not 

significant enough to affect interaction structures.  

 

                           

Figure 4.13 Interaction structure analysis: 100μm diamond particle size of 

conditioner 

 

The dynamics of interaction change are represented by network structure change 

in Fig. 4.13. The solid line with arrow represents significant effects, and dash line with 
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arrow represents weak effects in term of strength. From the network, we could see 

temperature had greater impact on AE and COF initially, and COF influenced AE and 

temperature more afterwards. It is known that temperature on pad reflects the heat 

generated by friction and chemical reaction, AE is related to the material deformation, 

and COF is determined by the interface properties [80][0]. We therefore interpret the 

network structure change as follows. The chemical reaction was dominant at the 

beginning and temperature on was mainly affected heat released from wafer surface 

softening and weakening by slurry. Afterwards, the mechanical friction played a bigger 

role because of the non-uniformity on the wafer surface in our polishing process.  

Figure 4.14 shows the analysis of polishing condition using 8μm diamond particle 

size of conditioner. Compared with Fig. 13, strength of interaction effects is relatively 

mild. Initially only the two-way interaction COF ←temperature is significant.  This 

interaction also fades as the polishing process goes. The two-way interaction AE←COF 

appears relative strong compared to other interaction effects during the later period of the 

polishing process. This pattern might be interpreted as that the smaller diamond particle 

size will generate smoother the polishing pad. This will lead to a weaker mechanical 

reaction relative to its chemical reaction. 
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Figure 4.14 Interaction structure analysis: 8μm diamond particle size of conditioner  

 

4.4 Summary 

This chapter developed a methodology to analyze the dynamic interaction 

structures among multiple functional process variables (FPVs). The analysis started with 

a phase dynamics model extended from our previous work by considering the temporal 

patterns in FPVs. By analyzing two-way and higher order interactions and their strength, 

directionality and interaction structures can be deduced from bar charts. The ability to 
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model high order interaction among three or more variables is one unique feature of the 

proposed method, which enable us to analyze complex structures.  

The method was validated using four-channel van der Pol oscillators. Four 

important cases of interaction structures were analyzed. The analysis can be extended to 

network with five more FPVs. To demonstrate the importance of understanding 

interaction structures in semiconductor manufacturing, we investigated two polishing 

conditions. The results show that uncovering the interaction patterns among process 

variables over time brings new insights about the underlying physical mechanisms. These 

results also provide a new perspective for process monitoring and diagnosis. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

  Correlated FPVs usually contain very rich information, and investigation of the 

interaction among these FPVs could unveil the physical phenomenon through integrating 

engineering knowledge and statistical approaches. In this research, interactions of FPVs 

are studied to improve the manufacturing processes. The proposed methodology brings 

more insights for understanding the interaction mechanism during processes. The major 

contributions of this dissertation are summarized as follows: 

• Experimentally and theoretically study interaction patterns of FPVs. A method 

based on FCCA was borrowed to extract the interaction patterns between FPVs 

under different process conditions and experiments were conducted to verify the 

relationship between the interaction patterns and varying process conditions. 

• Establish nonlinear dynamics model for complex interactions among multiple 

FPVs.  A novel nonlinear dynamics model was developed to describe the 

interaction by considering not only the complex spatial patterns among multiple 

FPVs’ signals, but also the temporal patterns within individual signals. The 

proposed model formulation provides better insight into interaction mechanism, 

such as interaction order and strength. This improved understanding will establish 
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a solid base for effective detection and diagnosis of failure modes during 

processes. 

• Analysis of complex interaction structures among multiple FPVs An approach 

with extended nonlinear dynamics model is proposed to characterize process 

conditions and complex interaction structure patterns are concluded accordingly 

for interpretation of process mechanism.   This approach could bring physical 

understanding of processes, and provide guidance for process diagnosis. 

5.2 Future Work 

The purpose of this dissertation is to develop a methodology to study interaction 

of FPVs for process improvement. It is known that the interaction is a common 

phenomenon existing in many fields. Besides the semiconductor manufacturing processes, 

healthcare is another applicable area. For instance of Parkinson’s disease, the interaction 

of many neurons results in the tremor activity. Yet diagnosis of medical problems with 

complex physiologic interactions often relies on either a trial-and-error approach or 

expensive medical procedures not widely available. Thus, it is highly desirable to develop 

generic detection and diagnosis techniques for the improved understanding of physiologic 

interactions and reduction of medical errors in the treatment of a wide range of medical 

problems. Following case show certain promise as an application of proposed 

methodology to diagnose disease. 

To validate the approach, in vivo experiments have been conducted on adult cats 

to study interaction of physiologic signals under a variety of perturbations that alter 

breathing and cardiovascular parameters. In this experiment, process variables phrenic 

nerve signal and blood pressure are collected simultaneously. Figure 5.1 shows snapshots 
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of oscillatory phrenic nerve signal and blood pressure of an adult cat before and after 

introducing intermittent hypoxia, a severe external intervention (sampling frequency: 

200Hz). It could not be judged that whether hypoxia occurs on this adult cat only based 

on these original signals. 

 

Figure 5.1 Oscillatory integrated phrenic nerve signal and blood pressure 

 

The previously proposed nonlinear dynamics model with incorporation of GLS 

might be employed to detect the changes before and after hypoxia. Similarly as 

semiconductor manufacturing processes, through model selection, determination of 

interaction order and interaction strength definition, we may draw some conclusion to 

discover the root causes of hypoxia, and provide better guidance for doctors to reduce the 

medical errors. 
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In the future, more medical problems are expected to be diagnosed through 

interaction studies and our approaches. For example, we are attempting to identify 

obstructive sleeping apnea (OSA) from patients. Hence, studies of interaction based on 

nonlinear dynamics have shown promise to understand the interaction mechanisms for 

future complex disease diagnosis. Besides, process control in many other fields may also 

be attempted through our proposed methodology.  
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