
University of South Florida University of South Florida

Digital Commons @ University of Digital Commons @ University of

South Florida South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

October 2022

Improving Wireless Networking from the Learning and Security Improving Wireless Networking from the Learning and Security

Perspectives Perspectives

Zhe Qu
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Electrical and Computer Engineering Commons

Scholar Commons Citation Scholar Commons Citation
Qu, Zhe, "Improving Wireless Networking from the Learning and Security Perspectives" (2022). USF
Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/9810

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact digitalcommons@usf.edu.

https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9810&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usf.edu%2Fetd%2F9810&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usf.edu

Improving Wireless Networking from the Learning and Security Perspectives

by

Zhe Qu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Zhuo Lu, Ph.D.
Nasir Ghani, Ph.D.
Ismail Uysal, Ph.D.

Attila A. Yavuz, Ph.D.
Jie Xu, Ph.D.

Date of Approval:
October 11, 2022

Keywords: Federated Learning, Edge Computing, Client-Selection, Poisoning Data Attack,
Key Establishment

Copyright © 2022, Zhe Qu

Dedication

This dissertation is dedicated to my brilliant and magnificent wife, Ying Chen, and my

parents, Fucheng Qu and Jing Yu, who give me unreserved support throughout this journey.

Acknowledgments

As we all know, a Ph.D. career is a quite challenging and struggling journey, but for

me, I also obtained many favorable experiences. First of all, I would like to especially

thank my major advisor Dr. Zhuo Lu, who gives me insightful guidance and significant

support throughout my whole Ph.D. career. Without his diligent help both in normal life

and research, I could not successfully finish my Ph.D. degree. His patience, his motivation,

and his down-to-earth working style, as well as his extensive knowledge, influenced me a lot.

Definitely, I am very proud and appreciative that he can be my advisor.

Xingyu Li, my academic brother, during these years, provided me with much knowledge

from the other side and shared with me many insightful understandings of research. We

took many enjoyable conversations on research and life experiences. And I hope him to seek

a wonderful job and enjoy his rest Ph.D. period.

Specifically, I appreciate all my committee members, Dr. Ismail Uysal, Dr. Nasir Ghani,

Dr. Attila A. Yavuz, Dr. Jie Xu. I feel so glad and honored to have them as my committee

members and for their efforts and suggestions.

I also give my sincere thank to my friends and my collaborators in my Ph.D. career. They

are Dr. Yao Liu, Dr. Bo Tang, Dr. Shangqing Zhao, Dr. Zhengping Luo, Dr. Tao Hou, Dr.

Mohammed Alrowaily, Rui Duan, Xiao Han, Junjie Xiong, Xiaowen Li, Yuwen Cui, Wenwei

Zhao, Jiahao Xue, Sen Wang, Keyu Chen, Mingchen Li, Jingwei He, etc.. To this end, I am

very valuable with my three lovely kitties: Yuhuan, Kassie, and Yertle, they stayed with me

all my happy and struggling Ph.D. lifetime.

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

Chapter 1: Introduction . 1
1.1 Learning Based Wireless Networking 1

1.1.1 Multi-Server FL with Overlapping Area 2
1.1.2 Context-Aware Online Client Selection for HFL 5

1.2 Wireless Networking Security . 8
1.2.1 LoMar: A Local Defense Against Poisoning Attack on FL . . 8
1.2.2 How to Test the Randomness for Security? 11

1.3 Dissertation Overview . 13

Chapter 2: On the Convergence of Multi-Server FL with Overlapping Area 14
2.1 Abstract . 14
2.2 Preliminary of FL . 15
2.3 Multi-Server FedAvg (MS-FedAvg) 15
2.4 Convergence Analysis of MS-FedAvg 19

2.4.1 Analysis for Full Client Participation 20
2.4.2 Analysis for Unbiased Partial Client Participation 22
2.4.3 Analysis for Biased Partial Client Participation 24

2.5 Discussion of MS-FedAvg . 25
2.6 Transmission Latency Analysis . 27
2.7 Experiments . 30

2.7.1 Experimental Setup . 30
2.7.2 Performance Evaluations . 33
2.7.3 Additional Performance . 36
2.7.4 Impact on Different Parameters 38

2.8 Related Work . 40
2.9 Summary . 41

Chapter 3: Context-Aware Online Client Selection for HFL 42
3.1 Abstract . 42
3.2 System Model and Problem Formulation 43

3.2.1 Preliminary of HFL . 43
3.2.2 Cost of Client Selection . 45

i

3.2.3 Deadline Based HFL . 45
3.2.4 Utility Function of Client Selection of HFL 47
3.2.5 Client Selection Problem Formulation 48

3.3 Context-Aware Online Client Selection for Strongly Convex HFL . . . 50
3.3.1 Oracle Solution and Regret 51
3.3.2 Context-aware Online Client Selection Policy 52
3.3.3 Performance Analysis . 56
3.3.4 Complexity Analysis . 58

3.4 COCS Policy for Non-convex HFL . 59
3.4.1 Approximated Oracle Solutions 59
3.4.2 Performance of COCS Policy for Non-Convex HFL 61

3.5 Simulations . 62
3.5.1 Setup . 62
3.5.2 Comparison Benchmarks . 63
3.5.3 Performance Evaluation of Strongly Convex HFL 64
3.5.4 Performance Evaluation of Non-convex HFL 68
3.5.5 Other Simulation Results . 69

3.6 Related Work . 69
3.7 Summary . 71

Chapter 4: LoMar: A Local Defense Against Poisoning Attack on FL 72
4.1 Abstract . 72
4.2 Background and Problem Formulation 72

4.2.1 Federated Learning . 72
4.2.2 Attacker . 73
4.2.3 Defender . 75

4.3 Design of LoMar Defense . 76
4.3.1 Overview . 76
4.3.2 Phase I: Malicious Client Factor 78
4.3.3 Phase II: Finding Decision Threshold 80
4.3.4 Discussion . 82

4.4 Evaluation . 84
4.4.1 Experiment Setup . 84
4.4.2 Results and Analysis . 89
4.4.3 Analysis of Imbalanced Samples with Different λ 91
4.4.4 Malicious Alarm Evaluation 94

4.5 Related Works . 96
4.6 Summary . 97

Chapter 5: How to Test the Randomness for Security? 98
5.1 Abstract . 98
5.2 Background and Preliminaries . 99

5.2.1 Extracting Random Secrets from Wireless Channels 99
5.2.2 Formalizing the Framework of Secret Key Generation 100
5.2.3 Testing Randomness from Wireless Channels 101

ii

5.3 Problem Formulation and Research Statement 102
5.3.1 Formalizing Statistical Randomness Testing for Security . . 102
5.3.2 Formalizing Statistical Randomness Testing for Efficiency . . 104

5.4 Formal Adversary Model . 105
5.4.1 Secrets Generated from Wireless Channel Randomness . . . 105
5.4.2 Eve’s Strategy . 107

5.5 Guidelines for Statistical Randomness Test Settings 110
5.5.1 Eve’s Success Probability of Randomness Testing 111
5.5.2 Observations and Design Guideline 112
5.5.3 Analysis of NIST Randomness Tests 113

5.6 Experimental Evaluation . 114
5.6.1 Experimental Setup . 115
5.6.2 Evaluation Results . 116

5.7 Related Work . 121
5.8 Summary . 122

Chapter 6: Conclusion . 123

References . 125

Appendix A: Proofs of Chapter 2 . 149
A.1 Proof of Lemma 1 . 149
A.2 Proof of Theorem 1 . 150
A.3 Proof of Theorem 2 . 151
A.4 Proof of Theorem 3 . 154

Appendix B: Proofs of Chapter 4 . 157
B.1 Explanation of Definition 2 . 157
B.2 Proof of Theorem 8 . 158

Appendix C: Proofs of Chapter 5 . 160
C.1 Proof of Theorem 10 . 160
C.2 MLTS for Multi-level Quantization 160
C.3 Theoretical Results of NIST Randomness Tests 161

Appendix D: Copyright Permissions . 164

iii

List of Tables

Table 2.1 Convergence rate of existing benchmarks. 23

Table 2.2 Datasets and models. 30

Table 2.3 Final testing accuracy, round and wall-clock(sec). 32

Table 2.4 Impact on different bandwidth settings. 37

Table 3.1 HFL network parameters. 62

Table 3.2 Final accuracy and edge aggregation rounds. 65

Table 3.3 Final accuracy and edge aggregation rounds without Z constraint. . . 66

Table 4.1 Dataset information overview. 85

Table 4.2 SqueezeNet model setting. 86

Table 4.3 Testing accuracy under the label-flipping attack. 86

Table 4.4 Testing accuracy under multi-labels flipping attack. 91

Table 4.5 Learning performance on the VGGFace2 dataset. 93

Table 5.1 Parameters setting of existing methods. 115

Table 5.2 P-value threshold α and Rprivacy for different quantization methods. . 119

Table 5.3 Lefficiency of different bit sequence length. 120

iv

List of Figures

Figure 1.1 Description of FL network architectures. 3

Figure 1.2 Data and model poisoning attacks on an FL system. 9

Figure 2.1 Description of MS-FedAvg. 16

Figure 2.2 Symmetric multi-server FL architecture. 31

Figure 2.3 Full participation performance. 32

Figure 2.4 Partial participation performance. 32

Figure 2.5 Testing accuracy under static and moving scenarios. 34

Figure 2.6 Communication rounds under static and moving scenarios. 34

Figure 2.7 Impact on Km and E . 37

Figure 2.8 Asymmetric multi-server FL architecture. 39

Figure 3.1 The architecture of HFL. 43

Figure 3.2 MNIST under logistic regression and CIFAR-10 under CNN. 46

Figure 3.3 Cumulative utilities and regret on MNIST. 65

Figure 3.4 Training performance on MNIST. 65

Figure 3.5 Training performance on CIFAR-10. 66

Figure 3.6 Training performance on Shakespeare. 67

Figure 3.7 Computational cost on the three datasets. 67

Figure 3.8 Storage cost on the three datasets. 68

Figure 4.1 Model updates under attack on MNIST. 74

Figure 4.2 KDE estimation structure in LoMar. 78

Figure 4.3 Overall and targeted accuracy on the three datasets. 88

v

Figure 4.4 Non-iid overall and targeted accuracy on the three datasets. 88

Figure 4.5 Learning performance on VGGFace2. 94

Figure 4.6 ROC on MNIST, KDDCup99, Amazon, and VGGFace2. 95

Figure 5.1 A framework of random secret key generation. 100

Figure 5.2 The use of statistical testing in secret key generation. 102

Figure 5.3 Eve’s perspective on the secret key generation. 107

Figure 5.4 Bit generations from the wireless domain forms a generation tree. . . 108

Figure 5.5 The secret key generation of 4-level quantization. 110

Figure 5.6 Basic experimental performance. 116

Figure 5.7 Experiments under in environments and quantizations. 117

Figure 5.8 Experiments in different bandwidths and methods. 117

vi

Abstract

Due to the high development of wireless networking and artificial intelligence, most of

the data are generated from mobile devices, which distribute in different environments. As

such, how to improve the performance of machine learning-based networking and its security

should be carefully considered. To reduce the communication burden and protect private

information from users, Federated Learning (FL) is a possible solution for learning-based

wireless networking. Although FL achieves much success until now, it also remains some

specific issues to be solved. In this dissertation, we propose two FL wireless networking

frameworks and discuss two potential security issues.

In the FL wireless network, due to the single server architecture, the server processes the

global computing after receiving all local model updates, which means the training period

high depends on the slowest clients. Because we cannot avoid all clients obtaining qualified

wireless channels, it is necessary to design new FL architectures to improve the training

performance from a networking perspective. Therefore, we design a new multi-server FL

architecture and propose an FL algorithm for this architecture called MS-FedAvg. Next, by

leveraging contextual information, we propose an online selection policy called COCS, which

is based on the contextual combinatorial multi-armed bandits.

For the network security design, we first investigate the targeted model poisoning attack.

To cope with this security issue, we design a new defense strategy, called LoMar, in FL

based on kernel function, which can distinguish the distribution difference between honest

and malicious clients. The common assumption of wireless key generation considers that the

wireless channel information is sufficiently random. By leveraging the not random property,

vii

we design an efficient attack, named MLTS. Based on MLTS, we propose a design guideline

for how to use the wireless channel to generate the secret key.

viii

Chapter 1: Introduction

Thanks to advanced mobile technologies, e.g., the Internet of Things (IoT), cellular net-

works, 5G, and beyond, machine learning based wireless networking has been widely devel-

oped. Federated Learning (FL) is one of the most popular learning-based networking frame-

works, which can be efficiently leveraged on the edge computing system. Different from the

conventional machine learning technique, FL communicates learning model updates instead

of training data. The advantage of FL can be divided into two aspects: communication bur-

den reduction and privacy-preserving. Although many studies design new FL algorithms to

improve the performance from different perspectives, there are also many remaining problems

for FL, especially in FL network architecture and security. In this dissertation, we develop

four mechanisms for improving FL performance from networking and security perspectives.

1.1 Learning Based Wireless Networking

Although FL has been demonstrated to achieve high success and efficiency for distributed

machine learning, one of the most important problems is how to reduce the communication

latency. Since the FL server requires to receive all local model updates and then process the

aggregation, the communication period depends on the slowest client. To address this issue,

we propose the multi-server FL architecture, which can significantly reduce the distance

between clients and regional servers. Another strategy to reduce the communication latency

is to design a client selection policy, and hence we develop an online client selection policy

for hierarchical FL based on contextual combinatorial multi-armed bandits.

1

1.1.1 Multi-Server FL with Overlapping Area

With the explosive growth in the number of mobile phones and Internet of Things (IoT)

devices, a tremendous amount of data today is being generated at the network edge in a

distributed manner. Sending this data to the cloud for processing not only puts a huge

burden on the network but also raises serious data privacy concerns. Federated Learning

(FL) [66, 107, 146] recently emerged as a distributed Machine Learning (ML) architecture

that keeps all the training data on individual clients, thereby protecting client data privacy

and mitigating network congestion.

In its most common form, FL is an iterative process wherein each communication round,

clients train local ML models using their local training datasets based on the current global

ML model, and then the server aggregates the local models uploaded by the clients to

update the global model. Because FL is trained on distributed datasets and often involves

many communication rounds of model data exchange between the clients and the server,

improving the communication efficiency between clients and central server [196, 49] and

handling heterogeneous local dataset distribution in each client [80, 181] are two biggest

challenges of FL and have received a large amount of research attention.

Although promising progress has been made, existing FL architectures and algorithms

dominantly focus on the single-server system. Most FL studies consider that clients should

download and upload the learning models with the central server repeatedly in each com-

munication round. This communication strategy may suffer a large communication delay

in large-scale FL systems where many clients may be far away from the server [101, 112].

This large delay between the server and the clients directly prolongs the learning time of the

existing single-server-based FL system, especially when the server is placed on the cloud. As

increasingly many applications are delay-sensitive, e.g., autonomous driving and wearable

health monitoring, new FL architectures that involve multiple servers have been proposed

to reduce the communication latency between the server and the clients.

2

Cloud Server Edge Server Client

(a) Single-Server FL (b) Clustered FL (c) Hierarchical FL (d) Multi-Server Overlapping FL

Transmission to Central Server

Transmission to Edge Server

Figure 1.1: Description of FL network architectures.

To reduce the communication latency of FL, there are two main multiple servers FL

approaches: (1) Hierarchical FL (HFL) [86, 92, 159] introduces a hierarchical structure for

model training where multiple edge servers are used to collect and aggregate local model

updates from clients in their respective service areas and then send the aggregated result to

the cloud server for final aggregation. However, since the model exchange between the edge

servers and the cloud server is still required, HFL can still result in a long training delay

when the propagation latency between the edge servers and the cloud server is large. (2)

Clustered FL (CFL) [174, 74, 38] divides clients into different clusters, and trains a separate

ML model for each cluster. However, a re-clustering computation may be required in many

communication rounds, thereby significantly increasing the training complexity and time.

In addition, some existing studies ignore the physical network connectivity constraints – a

client may connect to only a subset of servers.

In [50], a new FL architecture utilizing multiple servers is studied, which exploits the

realistic deployment of 5G-and-beyond networks where a client can be located in the over-

lapping coverage areas of multiple servers. The network architectures of single-server FL,

HFL, clustered FL and our proposed multi-server FL are shown in Fig. 1. The key idea is

that clients download multiple models from all the edge servers they can access and train

their local models based on the average of these models. Such architecture has two main

advantages. First, by performing model averaging on the client side, each server indirectly

3

accesses the trained local models of clients not in its coverage while incurring a small model

upload and download delay. Specifically, the broadcasting technique will not increase the

communication burden. Second, instead of training multiple local models based on multiple

downloaded models, each client only trains a single local model based on the average of the

downloaded models, thereby avoiding extra computation and communication costs. Since

the clients in overlapping areas should tackle multiple training models at the same time,

the extra computation only comes from the averaging calculation, which is small compared

to the local training process, and it can be negligible. Although [50] developed an algo-

rithm for this architecture and empirically validated its effectiveness, they only proposed the

strongly-convex loss function, which is very restricted, since most learning models are non-

convex, e.g., neural network. In addition, the convergence results cannot show the impact

on overlapping areas. In this dissertation, we improve upon this architecture, propose a new

algorithm with two-sided learning rates, and provide a theoretical convergence analysis of

the more general non-convex loss function. In summary, we highlight our main contributions

as follows: 1) We develop a novel MS-FedAvg algorithm on this multi-server FL architecture,

based on the two-sided learning rates FedAvg. 2) We study the convergence in the coverage

area, which we call the region, of each server. For non-convex loss functions and non-iid

datasets, we provide convergence analysis for full and unbiased partial client participation

strategies, respectively. Our results are better than the existing multi-server FL algorithms

and also reveal how the overlapping coverage affects the convergence in each region. 3) To

further improve the convergence speed of MS-FedAvg, we develop a biased partial client par-

ticipation strategy where clients may not be selected proportionally to the number of clients

in different coverage areas. Our analysis shows that the degree of bias results in a trade-off

between convergence rate and accuracy. 4) We conduct extensive experiments on multi-

ple datasets under different multi-server FL network architectures and hyper-parameters.

The experimental results show that our MS-FedAvg algorithm outperforms the compared

benchmarks from accuracy and convergence perspectives.

4

1.1.2 Context-Aware Online Client Selection for HFL

Federated Learning (FL) [107, 80, 62] has become an attractive ML framework to ad-

dress the growing concerns of transmitting private data from distributed clients (e.g., mobile

devices) to a central cloud server by leveraging the ever-increasing storage and computing

capabilities of the client devices. In each FL round, clients train local models using their local

data and the cloud server aggregates local model updates to form a global model. Because

only local model information is exchanged in FL rather than the local data, FL preserves

the data privacy of the clients and hence has found applications in a wide range of problems,

such as next-word prediction [199] and image classification [47].

The main bottleneck that limits the performance of FL is the delay variability among

individual clients due to their local training and model data transfer via the wireless network.

In standard FL, the cloud server has to wait until receiving the training updates from all the

clients before processing any next step. Therefore, straggler clients who have unfavorable

wireless links or low computation capabilities may dramatically slow down the whole FL

process [101, 182]. This is the so-called “straggler effect”. Various approaches have been

proposed to mitigate the “straggler effect”. For example, model quantization [133, 142] and

gradient sparsification [147] schemes aim to directly reduce the transferred data size and

the model training complexity, thereby reducing all clients’ training and transmission delay.

Asynchronous FL [168, 82] allows clients to train and asynchronously upload training data,

and hence the cloud server does not have to wait for the slow clients to process the next

step. Another mainstream and proven effective approach to address the straggler problem

is client selection, which reduces the probability of straggler clients participating in FL by

judiciously selecting clients in every FL round. However, these mechanisms mainly focus

on the traditional FL and mitigate the straggler effect based on designing new mechanisms,

which cannot solve the straggler effect from FL wireless networks (e.g., the large distance of

clients-Cloud Server (CS) and unstable connection). Thanks to the hierarchical architecture,

some existing studies [92, 93, 159] propose Hierarchical FL (HFL) including multiple Edge

5

Servers (ESs) which reside between the single CS and a large number of clients. Instead

of communicating with the CS, clients in HFL only need to download/upload the training

model updates to the nearest ESs, which significantly reduces the communication time of

the slowest client located far from the CS and provides a more stable connection to save

training time, which has been demonstrated to achieve a faster convergence speed than FL

architecture both theoretically [92, 159] and empirically [93].

Although several learning algorithms have been designed for HFL [92, 93, 159], sim-

plifying assumptions have been made that all clients participate in each round of model

parameter aggregation. This is weak for the straggler effect, and hence it is necessary to

design a new client selection mechanism for HFL. However, it is not straightforward to ap-

ply existing client selection solutions [158, 176, 182] to HFL due to several unique challenges

that HFL faces. Firstly, since the service area of an ES is much more restricted than CS

and contains overlapping areas, the accessible clients of each ES are time-varying. This

time-varying characteristic makes the client behavior of opportunistic communication more

complicated, and Network Operator (NO) must carefully select the client to the correspond-

ing ES in the overlapping area. Secondly, since the advantage of HFL is to deal with the

straggler problem, how to design an efficient client selection policy is more important than

traditional FL. Thirdly, the client selection decision needs to be determined based on many

uncertainties in the HFL network conditions (e.g., the traffic pattern of client-ES pair and

available computation resources of clients), which affect training performance in previously

unknown ways. Therefore, a learning-based client selection policy is preferred to a solely

optimization-based policy.

In this dissertation, we investigate the client selection problem for HFL and propose

a new learning-based policy, called Context-aware Online Client Selection (COCS). COCS

is developed based on a novel Multi-Armed Bandit (MAB) framework called Contextual

Combinatorial MAB (CC-MAB) [29, 28]. COCS is contextual because it allows clients to

use their computational information (e.g., available computation resources), and the client-

6

ES pairs transmission information (e.g., bandwidth and distance). COCS is combinatorial

because NO selects a subset of client-ES pairs and attempts to maximize the training utilities

(i.e., select as many as clients in each round) by optimizing the client selection decision.

To the best of our knowledge, COCS policy is the first client selection decision for HFL.

In summary, we highlight the contributions as follows: 1) We formulate a client selection

problem for HFL, where NO needs to select clients for ESs clients to process the local

training to make more clients be received by ESs before the deadline under a limited budget.

To improve the convergence speed for HFL, the client selection decision has a three-fold

problem: (i) estimate the local model updates successfully received by ESs with cold-starts,

(ii) decide whether a client should be selected to a certain ES due to time-varying connection

conditions, and (iii) optimize how to pay computation resources on clients to maximize the

utility under limited budgets. 2) Due to the a priori uncertain knowledge of participated

clients, the client selection problem is formulated as a CC-MAB problem. An online learning

policy called Context-aware Online Client Selection (COCS) is developed, which leverages

contextual information such as downloading channel state and local computing time over

aggregation round for making a decision. For the strongly convex HFL, we analyze the

utility loss of COCS, termed regret, compared to the Oracle solution that knows the exacted

information of participated clients. A sublinear regret bound is derived for the proposed

COCS policy, which implies that COCS can produce asymptotically optimal client selection

decisions for HFL. 3) For non-convex HFL, the utility function of the convergence speed is

quadratically related to the number of participated clients. By assuming that the information

of each client-ES pair is perfectly known by NO, we show that the client selection problem is a

submodular maximization problem with M knapsack and one matroid constraint, where M is

the number of ESs. We use the Fast Lazy Greedy (FLGreedy) algorithm [10] to approximate

the optimal solution with a performance guarantee. To this end, the analysis shows that the

COCS policy also achieves a sublinear regret.

7

1.2 Wireless Networking Security

The security issue of wireless networking is another important part to be considered. For

learning-based wireless networking, because we cannot guarantee that all clients are honest,

attackers may control some clients and achieve some attack goals. Specifically, one of the

most popular attacks in FL is targeted model attacks, which aim to degrade the learning

performance of part labels. In addition, this attack model is not easy to be detected, and

hence it is necessary to design a new defense strategy. Key generation from a wireless

channel is a common strategy due to channel randomness. However, it is well known that

when the two consecutive signals are within the coherent time, the channel state information

is not sufficiently random. As a result, attackers may leverage this property to successfully

guess the secret key with a high probability and obtain a serious security issue. In contrast,

existing studies do not well explore how to generate a secret key from a wireless channel.

Therefore, we should carefully design a guideline to determine how to use the wireless channel

information for key generation from both efficiency and security perspectives.

1.2.1 LoMar: A Local Defense Against Poisoning Attack on FL

Federated Learning (FL) [65, 107] has been demonstrated to be an efficient distributed

machine learning framework to train a joint model from decentralized data. Recently, it

has been paid more attention in the research field because of the highly developed IoT

applications [34]. FL provides a privacy-preserved learning framework to address distributed

optimization problems by allowing communications of learning information between remote

users in the network, instead of sharing the private training datasets. Typically, an FL

system consists of two parts: remote clients and an aggregator. Each remote client manages

its private training data and performs a local learning process to obtain learning model

updates, and the aggregator repeatedly updates a joint model from the received remote

learning updates with an aggregation rule.

8

Data Collection Model Training

Poisoning Data Poisoning Model

Malicious Nodes

Figure 1.2: Data and model poisoning attacks on an FL system.

However, the distributed architecture of FL makes this learning system vulnerable to

various attacks, as the remote clients could be easily compromised by attackers. Typically,

the attacker can leverage the privacy property (i.e., the private remote training dataset)

to intrude on several clients and manipulate their local training process, which leads to a

decreased performance of the joint model. Figure 1.2 shows that the FL system is exposed

to poisoning attacks at two stages: i) local data collection: data poisoning attacks can inject

malicious data or modify existing data during the local data collection process; ii) remote

model training: model poisoning attacks can directly inject poisoned parameters into the

remotely trained model which is sent back to the aggregator. As such, poisoning attacks

produce malicious updates to the aggregation process of FL. Note that, through careful

manipulation, both data and model poisoning attacks can make the FL joint learning model

converged so that the attackers are hard to be detected [11, 18, 108, 171, 44, 42, 17].

It is necessary to develop a defense method to protect the FL system against poisoning

attacks. Typically, an FL defense method is considered to be successful if it can sanitize the

poisoned remote updates to obtain a trusted joint model. One type of existing mechanisms

[20, 185, 41, 12] is to detect malicious updates based on Euclidean distances or angle dif-

ferences between each pair of remote updates [44, 13]. The other type of defense method is

developed based on the Byzantine tolerance [20, 172]. However, recent studies have shown

that poisoning attacks with constrained malicious data have the potential to bypass existing

9

defense methods [108, 151]. We notice that most of the existing defense approaches only re-

gard the malicious updates as the global anomaly to the FL system, and they do not analyze

local feature patterns of the malicious remote updates. In this dissertation, we introduce a

new defense method based on a local feature analysis strategy: the maliciousness of poisoned

remote updates is evaluated according to their model parameter features.

We propose our two-phase defense algorithm Local Malicious Factor (LoMar), which is

able to detect the anomalies in FL from a local view, instead of the existing global view. The

main idea of the proposed LoMar is to evaluate the remote update maliciousness based on

the statistical characteristic analysis of the model parameters, which is intuitively motivated

by the fact that each remote update in the FL system can be considered as being generated

from a specific distribution of the parameters. Specifically, once the aggregator receives

remote updates from a client, instead of using the whole remote updates set, LoMar performs

the feature analysis of this update with its nearest neighbors. To measure the degree of

maliciousness, a non-parametric local kernel density estimation method is applied to measure

the relative distribution of the remote update in its neighborhood. We evaluate our proposed

LoMar defense algorithm via both theoretical analysis and comprehensive experiments. In

summary, we highlight the contribution of this dissertation as follows: 1) We propose a new

two-phase defense algorithm, called LoMar, in order to address poisoning attacks against

FL. 2) The proposed LoMar defense algorithm measures the malicious degree of remote

updates based on its neighborhood by analyzing the statistical model parameter features

via a non-parametric relative kernel density estimation method. 3) Besides the provided

theoretical analysis of LoMar, we conduct an extensive performance evaluation of LoMar

under two categories of poisoning attacks on FL. The results show that the proposed LoMar

outperforms existing FL defense algorithms.

10

1.2.2 How to Test the Randomness for Security?

Leveraging the wireless channel randomness has become one of the fundamental ap-

proaches to building low-cost security designs for emerging wireless applications, such as

radio frequency identification (RFID) [157] and Internet of Things (IoT) [198]. In particu-

lar, two communication parties, Alice and Bob, can use the random yet reciprocal wireless

channel measurements, such as received signal strength information (RSSI) [59, 90, 122],

channel state information (CSI) [169] and phase shifts [160, 161], to generate a common

secret sequence to build a security design, such as secret key generation [103, 59, 156, 26, 90,

160, 161, 89, 154, 198, 1, 122, 169], secure communication [85, 94] and user authentication

[4]. Then, Alice and Bob can enter the cryptographic domain [59, 90, 122] and use informa-

tion reconciliation [21] and privacy amplification [16, 104] to compress their respective bit

sequences. The framework is considered secure enough because a third-party eavesdropper

Eve is expected to gain little information about the shared secret if she is more than half

the wavelength away from them because of wireless fading [103].

To evaluate the security, existing studies [103, 59, 156, 26, 90, 160, 161, 89, 154, 198, 1,

122, 169] adopt the NIST randomness tests [14] to evaluate whether the underlying secret

bit sequences generated from the wireless channel exhibit randomness properties, which has

become the common practice. However, many of them [103, 59, 90, 26, 169] simply adopt

the default NIST choices to set up a randomness test and consider successfully passing the

test as a demonstration of security strength. Although passing a randomness test may hint

that there is no major flaw in the design, it may not provide a guaranteed level of security

strength. It becomes necessary to quantitatively understand the security impact of setting

up randomness testing for the designs extracting random secrets from the wireless channel.

At the same time, efficiency is always another important design aspect. In secret key

generation [59, 90, 26], efficiency refers to the key generation rate, which depends on the

strictness of the randomness test and the sequence compression rate for privacy amplification.

However, there is no theoretical analysis in the literature on how to guarantee efficient

11

secret key generation. Therefore, it is necessary to provide a design guideline for secret key

generation to ensure both security and efficiency.

In this dissertation, we ask a fundamental question: How to properly set up statistical

randomness tests for testing the wireless channel for both security and efficiency? In the

current study, the mismatched assumption between practical channel coherence and theo-

retical memoryless assumption leads to a gray area in realistic wireless key establishment

applications. Each test in NIST assumes that the bit sequence is IID, but in a practical

wireless communication framework, the RSSI or CSI cannot be considered as IID [106, 143].

Despite the correlation, it can also pass the NIST tests by choosing α = 0.01 [103, 59, 90]

and 0.05 [26, 169].

Before we verify the security level of any secret key generation design, the first step is to

clearly define an adversary model. A formal adversary model will enable thorough security

analysis and evaluation, but it has not been systematically studied in the literature. To

this end, we study how an adversary can defeat a security design by taking advantage of a

potential defect of the wireless channel, which is unpredictable with unknown ground truth.

In particular, it is never known whether a channel can indeed yield independently random

sequences for secret key generation. Therefore, under the assumption that the generated

secret sequence is indeed statistically correlated, an adversary can search for it from the

most-likely sequence candidate to the least-likely one, as opposed to random guessing. This

strategy, called Maximum Likelihood Tree Search (MLTS), is considered for the security

evaluation of a wireless channel randomness-based design.

With the understanding of the adversary’s capability, we propose a new design guideline

for randomness testing, which involves solving an optimization problem that maximizes key

generation efficiency under guaranteed security. In particular, we derive a mathematical

formula for choosing the proper P-value threshold for nine different NIST tests. To our

best knowledge, our design guideline is the first theoretical framework for wireless channel

randomness-based secret key generation, where the randomness test parameters are not

12

empirically set. We note that rather than designing a new secret key generation method from

the wireless channel, our focus is on how to properly set up the randomness tests. We conduct

real-world experiments to validate the analysis, incorporate our design guideline into seven

popular key generation methods and compare the difference. The results show that (i) using

our design guideline, these methods achieve zero security loss in various experiment scenarios;

(ii) the key generation efficiency can be significantly improved; (iii) Our design guideline is

more adaptive for generating different bit lengths of key sequences. In summary, the main

contributions of this paper are as follows: 1) We introduce the MLTS strategy to formalize

the security analysis and evaluation of wireless channel randomness-based designs. 2) We

propose a new design guideline on how to properly set up the randomness test parameter to

eliminate security loss and achieve high efficiency. 3) We conduct the experiments in practical

environments to show the improvement of our design guideline compared with existing secret

key generation studies.

1.3 Dissertation Overview

In Chapter 2, we present a novel multi-server FL network, which can leverage the current

edge computing system to sufficiently reduce the communication burden. In addition, we

propose an FL algorithm called MS-FedAvg, which can bridge the information across all

clients by the clients located in overlapping areas. In Chapter 3, we present a new online

client-selection policy on HFL architecture, called COCS, which outperforms the existing

studies and achieves sub-linear regret. In Chapter 4, we first analyze the targeted local

poisoning attack on FL systems. Then, we propose the defense strategy, called LoMar,

which leverages the kernel method and successfully protects the FL system even though

there are large amounts of malicious clients. In Chapter 5, we analyze the insufficiently

random channel response and point out the degradation of existing wireless key establishment

strategies. Based on our analysis, we propose a guideline for how to generate a secret key

on a wireless channel for security.

13

Chapter 2: On the Convergence of Multi-Server FL with Overlapping Area

2.1 Abstract

Multi-server Federated learning (FL) has been considered a promising solution to address

the limited communication resource problem of single-server FL. We consider a typical multi-

server FL architecture, where the coverage areas of regional servers may overlap. The key

point of this architecture is that the clients located in the overlapping areas update their

local models based on the average model of all accessible regional models, which enables

indirect model sharing among different regional servers. Due to the complicated network

topology, the convergence analysis is much more challenging than in single-server FL. In this

chapter, we first propose a novel MS-FedAvg algorithm for this multi-server FL architecture

and analyze its convergence on non-iid datasets for general non-convex settings. Since the

number of clients located in each regional server is much less than in single-server FL, the

bandwidth of each client should be large enough to successfully communicate training models

with the server, which indicates that full client participation can work in multi-server FL.

Also, we provide the convergence analysis of the partial client participation scheme and

develop a new biased partial participation strategy to further accelerate convergence. Our

results indicate that the convergence results highly depend on the ratio of the number of

clients in each area type to the total number of clients in all three strategies. The extensive

experiments show remarkable performance and support our theoretical results1.

1This chapter was accepted in IEEE Transactions on Mobile Computing, August 2022. Permission is
included in Appendix D.

14

2.2 Preliminary of FL

We consider a FL network including a number of N clients, indexed by N = {1, ...,N}

and one central server/aggregator, where each client i ∈ N has its own local dataset with

the data distribution Di . FL aims to solve the following risk minimization problem:

min
w

{
f (w) ≜

1

N

∑N

i=1
Fi (w)

}
, (2.1)

where Fi(w) ≜ Eξ∼Di
[Fi(w, ξ)] is the local loss function. FedAvg [107], a seminal FL algo-

rithm, works in an iterative manner as follows:

1) In each communication round t, each client i downloads the current global model wt

from the server and sets its initial local model as the current global model, i.e., wt,0
i = wt .

2) Each client runs E steps of Stochastic Gradient Descent (SGD) as follows:

wt,e+1
i = wt,e

i − ηl∇Fi (w
t,e
i),∀e = 0, ... ,E − 1, (2.2)

where η is the learning rate of local training. Client i ’s updated model after these E steps

can be written as wt+1
i = wt,E

i .

3) Each client uploads the updated model wt+1
i to the server, which computes a simple

aggregation wt+1 = 1
N

∑N
i=1w

t+1
i .

Due to the computation and bandwidth limitation, full client participation is often not

practical. Hence, the more realistic FL strategy is that the server can select a subset of

K clients, indexed by Kt ⊆ N , to participate in FL in communication round t, and the

global model is computed according to wt+1 = 1
K

∑
i∈Kt w

t+1
i . This is known as partial client

participation strategy [80, 181, 62].

2.3 Multi-Server FedAvg (MS-FedAvg)

A single-server FL system may incur a large delay if clients are distributed in the network,

some of which may be far away from the server. Developing a multi-server FL network

15

Regional server

Client

Downlink

Uplink𝐰𝑖
𝑡 = (𝐰1

𝑡 +𝐰2
𝑡)/2

𝐰𝑖
𝑡 = 𝐰1

𝑡

𝐰𝑖
𝑡 = (𝐰1

𝑡 +𝐰2
𝑡 +𝐰3

𝑡)/3

Figure 2.1: Description of MS-FedAvg.

architecture is a potential way to address this problem, e.g., Hierarchical FL (HFL) [86, 92,

159] and Clustered FL (CFL) [174, 74, 38]. While HFL requires the models on the edge

server should be aggregated on the global server every several communication rounds, it also

incurs extra transmission delay. CFL needs to re-cluster the clients every communication

round based on a specific rule, e.g., model similarity or location, it is difficult to avoid the

clients being far away from the edge server which should be clustered.

Since all the existing multi-server FL network architectures cannot directly leverage solve

the large delay problem, we consider a multi-server FL architecture as in [50], where multiple

regional servers are distributed close to the clients. Let M = {1, ...,M} be the set of regional

servers and each regional server m covers a subset of client Nm ⊆ N with |Nm| = Nm. For

convenience, we call Nm region m. It is worth noting that a client may locate in multiple

regions, because the coverage areas of the servers may overlap.

In MS-FedAvg, each regional server trains a regional model using clients in its region,

and a client updates its local model based on all regional models that it can access, where

the architecture with three regional servers is shown in Figure 2.1. Different from HFL, the

regional models are not aggregated until the final round to generate a global model. Let

Mi ⊆ M be the set of regional servers that client i can communicate where Mi = |Mi |, and

Mt
i ⊆ M be the set of servers that client i is sampled in communication round t.

16

At the beginning of a communication round t, any client i downloads the current regional

models wt
m,∀m ∈ Mi from all the Mi servers, and averages the downloaded regional models

to be the initial local model in the current round, i.e., wt,0
i = 1

Mi

∑
m∈Mi

wt
m. Then, each

client updates its local model using SGD for E local training epochs to obtain the local

model wt+1
i by (2.2), and uploads it to the servers in Mt

i . Each server m then updates the

regional model according to wt+1
m = ηg

Nm

∑
i∈N t

m
wt+1

i , where ηg is the regional learning rate.

After a sufficient number of T communication rounds, the global model is finally obtained

by averaging over the converged regional models, i.e., w = 1
M

∑
m∈M wT

m.

Compared to the single-server FL [66, 107, 80, 62], a unique feature of MS-FedAvg is that

clients in overlapping areas receive average multiple regional models to be the initial model

for local training in each communication round (Line 10). Together with the model averaging

at the servers, this two-sided model averaging process allows the servers to indirectly access

the local models of clients outside their regions instead of combining local model updates

from the clients in overlapping areas (Line 13), which bridges the regional model sharing,

thereby fully utilizing all clients’ data in the network. Specifically, optimizing the placement

of the limited number of regional servers in the current mobile computing system to maximize

the total coverage is considered rather important. For example, some popular ES placement

algorithms [72, 33] have shown that one overlapping area at most includes four regional

servers. Therefore, we consider that the additional transmission latency of the overlapping

areas clients mentioned in the chapter can be very small and negligible. Although the clients

are located in overlapping areas, we can leverage the broadcast technique that cannot incur

a high burden of communication.

Since we consider that the regional server is similar to the edge server, where the coverage

is very restricted [29], the number of clients in the region of each regional server is much fewer

than in single-server FL. Therefore, the communication burden is less than in single-server FL

due to the shorter distance and more stable connection, and hence full client participation

should work well in our proposed multi-server FL architecture. In this chapter, we only

17

consider the location of clients as fixed for proving the convergence results of MS-FedAvg.

The static scenario can be considered as the hospital data [175] or environmental monitoring

sensors [95], where the clients cannot move and only connect to the corresponding regional

server(s). As such, our MS-FedAvg can improve this scenario efficiently. If the clients move

randomly, each regional model can be assumed as an individual FL model approaching by

FedAvg, which might degrade the training performance. In Section 2.7, we propose the

experimental results of the movement scenario under our multi-server FL architecture. More

specifically, [68, 114] developed the FL-based license plate recognition and human activity

recognition algorithm. Firstly, the recognition results can be quickly obtained due to the less

transmission latency. On the other hand, when clients come into overlapping areas, multiple

monitors can acquire more information and recognize them more accurately.

Because the regional models are averaged only in the final communication round, a

significant amount of communication and computation costs among the regional servers

can be saved. However, the model averaging at the client side also introduces an obvious

difference compared to single-server FedAvg: the initial models of the clients, even for those

in the same region, for local training in each communication round can be different depending

on their specific locations. Since we consider that the regional server is an edge server and

the coverage area is very restricted, the number of clients in the region of each regional

server is much fewer than in single-server FL. Therefore, the communication burden is less

than in single-server FL, and hence full client participation should work well in our proposed

multi-server FL. To clarify the reduction of transmission latency compared to other FL

architectures, we will show the detailed quantification in Section 2.6.

In this dissertation, we also consider the partial client participation strategy, which is

a more realistic strategy for single-server FL [107, 80, 62, 181]. More specifically, at the

beginning of a communication round t, each server m randomly samples a subset of clients

Kt
m ⊆ Nm in its region to participate in the current round’s training, with Km = |Kt

m|. Be-

cause a client may be in multiple regions, it may be sampled by multiple servers, which brings

18

more challenges for convergence analysis compared to single-server FL. We also provide the

convergence analysis of the partial client participation strategy of MS-FedAvg.

2.4 Convergence Analysis of MS-FedAvg

In this section, we focus on a representative region Nm and study the convergence of its

regional model. Let fm(w) = 1
Nm

∑
i∈Nm

Fi(w) be the objectives of region m. As discussed

in the last section, the main difficulty of the convergence analysis lies in the heterogeneous

initial models of clients in the region in each communication round. The convergence analysis

encompasses non-iid datasets for general non-convex loss settings under both full and partial

client participation strategies. Besides the existing random participation, i.e., unbiased client

participation [79, 80, 78, 62, 146], we also propose a new biased client participation strategy

for the MS-FedAvg algorithm. To propose convergence results of MS-FedAvg, we first state

some useful assumptions in this chapter as follows:

Assumption 1. (Lipschitz Gradient) ∀i ∈ Nm, Fi is L-smooth, i.e., for all v and w, Fi(v) ≤

Fi(w) + (v −w)T∇Fi(w) + L
2
∥v −w∥22.

Assumption 2. (Unbiased Local Gradient Estimator) Let ξi be a random local data sample

on client i . ∀i ∈ Nm and ∀w, the local gradient estimator is unbiased, i.e., E[∇Fi(w, ξi)] =

∇Fi(w), where the expectation is taken over all the local datasets samples.

Assumption 3. (Bounded Local Variance) ∀i ∈ Nm and ∀w, the variance of local gra-

dient estimator of any regional server m can be upper-bounded by a constant σm, i.e.,

E∥∇Fi(w, ξi)−∇Fi(w)∥2 ≤ σ2
m.

Assumptions 1-3 are fairly standard in existing FL works [80, 186, 125]. For the following

assumption, we need to introduce the notion of the type of a client. Even for clients in the

same region, they differ in terms of the subset of servers they may access since they may be

in different overlapping coverage areas. Thus, we say that two clients have the same type if

they can access the same set of servers. Formally, we define the client type θ ⊆ 2M to be the

19

subset of servers that it can access. Let Kt
m,θ be the set of clients of type θ that is sampled

in region m in round t, and let K t
m,θ = |Kt

m,θ|. Clearly, for all clients in region m, m must

be an element of their types. Moreover, if two regions m and m′ do not overlap, then there

must be no client whose type contains both m and m′.

Assumption 4. (Bounded Regional Variance) For any client i of type θ in region m and

for any round t, the gradient difference of its local loss function at wt+1
i and the regional loss

function at wt+1
m is upper-bounded, i.e.,∥∇Fi(w

t+1
i)−∇fm(wt+1

m)∥2 ≤ α2
m,θ.

Assumption 4 states that clients of different types have different impacts on the gradient

of the regional loss function at the end of each round. This impact is a joint result of the

non-iid local datasets and different initial model at the beginning of the training round due

to different coverage areas, i.e., types, which is different from the single-server FL [181, 132].

It is worth noting that in this chapter we do not assume to bound gradient descent [80, 50],

i.e., ∥∇f (w)∥2 ≤ G 2, where it is a loose assumption.

Before analyzing the convergence results of MS-FedAvg algorithm, we first propose the

key lemma for both full and partial client participation strategies, which aims to propose

the upper-bound of client drift for every regional model.

Lemma 1. For any ηl <
1√
30LE

, we have the following results:

1

Nm,θ

∑
i∈Nm,θ

E∥wt,e
i −wt

m∥2 ≤ 5Eη2l

(
σ2
m +

6ENm,θ

N
α2
m,θ

)
+ 30E 2η2l ∥∇f (wt

m)∥2.

Proof. The proof is shown in Appendix A.1. □

2.4.1 Analysis for Full Client Participation

For the full client participation of MS-FedAvg, we have the following convergence result:

Theorem 1. Let assumptions 1-4 hold and L,σ2
m,α

2
m,θ be defined therein. With full client

participation strategy, if we choose the learning rate ηl ≤ min{ 1√
30LE

, 1
LEηg

}. The convergence

20

result is given as mint∈[T] E∥∇f (wt)∥2 ≤ f 0−f ∗

cMETηgηl
+ Ψ, where c is a constant, f 0 ≜ fm(w0),

f ∗ ≜ f (w∗),

Ψ =
1

c

∑
m∈M

[
Lηgηl
2MNm

σ2
m +

∑
θ⊆2M

5Nm,θEL
2η2l

2MNm

(
σ2
m +

6ENm,θ

MNm
α2
m,θ

)]
.

Proof. The proof is shown in Appendix A.2. □

Remark 1. For the full client participation strategy of MS-FedAvg algorithm, the conver-

gence rate has two parts: a vanishing term f0−f∗
cMETηgηl

with increasing T and a constant term

Ψ. The first part of Ψ, i.e., Lηgηl
2MNm

σ2
m, comes from the local stochastic gradient variance of

each client, which shrinks when Nm increases. The cumulative variance of E local training

contributes to the second term of Ψ, which has two variances and is largely affected by

variance of different regional models α2
m,θ.

Remark 2. The difference between MS-FedAvg and single server FedAvg [132, 181] comes

from the term α2
m,θ. Since the initial learning models wt

i are the same for all clients, α2
m,θ is

only related to the non-iid distribution of local datasets, i.e., α2
m,θ = α2

m, and the weight is

all the same 1
Nm

. In MS-FedAvg, we observe that the contribution of α2
m,θ depends on the

number of clients in each area type θ, i.e.,
6EN2

m,θ

N2
m
α2
m,θ. Intuitively, local model from clients of

the area type with the most clients can dominate the regional model wt
m. Inspired by [181],

to make Ψ small, we can set the local learning rate ηl inversely proportional to the number

of local training epochs E , i.e., ηl = O(1
E
).

To make the Theorem 1 more readable, we will simplify the result to the following

convergence rate by properly choosing the learning rates ηg and ηl :

Corollary 1. Suppose ηg and ηl satisfy the condition in Theorem 1. Let ηg =
√
ENm and

ηl =
1√
TEL

. For sufficiently large T , the convergence rate of MS-FedAvg under full client

participation strategy satisfies:

min
t∈[T]

E||∇f (wt)||2 = O

(
1

M

∑
m∈M

(
1√

NmET
+

σ2
m

ET
+
∑

θ⊆2M

N2
m,θα

2
m,θ

N2
m

1

T

))
.

21

2.4.2 Analysis for Unbiased Partial Client Participation

Due to the limited resource for current FL wireless networks, a partial participation

strategy (only part of the clients join into the current communication round) has been

considered more practical than full participation in existing FL studies [80, 62, 125]. Also,

partial participation can accelerate the training by neglecting stragglers. We also consider

the same two sampling schemes [80, 125, 181] for MS-FedAvg algorithm, i.e., with/without

replacement clients sampling schemes, where Kt
m is randomly sampled. Due to the random

property, we call it unbiased client participation of our proposed multi-server FL in this

chapter. More specifically, it is worth noting that the unbiased client participation strategy

for MS-FedAvg implies that E[Km,θ]
Km

= Nm,θ

Nm
. Then, we have the following convergence results:

Theorem 2. Let assumptions 1-4 hold and L,σ2
m,α

2
m,θ be defined therein. Let β2

m,θ =

σ2
m +

6ENm,θα
2
m,θ

Nm
. With the scheme I for the unbiased client participation strategy, if the learn-

ing rate is chosen as ηl < min
{

1√
30EL

,
∑

θ⊆2M
Nm,θ(Km,θ−1)
ELηgKmNm

}
and the condition 30E 2L2η2l +

Lηgηl
∑

θ⊆2M Nm,θ

KmNm
(90E 3L2η2l +3E) < 1 holds, the global model wT generated by MS-FedAvg sat-

isfies mint∈[T] E||∇f (wt)||2 ≤ f 0−f ∗

cMηgηlET
+ Ψ1 + Ψ2 + Ψ3, where c is a constant, f 0 ≜ f (w0)

and f ∗ ≜ f (w∗),

Ψ1 =
∑

m∈M

ELηgηl
2cMKm

σ2
m, Ψ2 =

∑
θ⊆2M

3ELηgηlNm,θ

2cMKmNm
α2
m,θ

Ψ3 =
∑

m∈M

∑
θ⊆2M

(
5Nm,θEL

2η2l
2cMNm

+
15Nm,θE

2L3ηgη
3
l

cMKmNm

)
β2
m,θ.

For the Scheme II, if the learning rate is ηl < min
{

1√
30EL

,
∑

θ⊆2M
K2
mNm,θ(Nm,θ−1)

ELηgN2
mKm,θ(Km,θ−1)

}
and the

condition 30E 2L2η2l +
∑

θ⊆2M
Lηgηl (Km,θ−1)
2Km(Nm,θ−1)

(90E 3L2η2l + 3E) < 1 holds, we obtain that

Ψ1 =
∑

m∈M

Lηgηl
2cMKm

σ2
m, Ψ2 =

∑
m∈M

∑
θ⊆2M

2EL2ηgηlNm,θ(Nm,θ − Km,θ)

cMKmNm(Nm,θ − 1)
α2
m,θ

Ψ3 =
∑

m∈M

∑
θ⊆2M

(
5EL3η2l Nm,θ

2cMNm
+

15E 2L3ηgη
3
l Nm,θ(Nm,θ − Km,θ)

2cMNmKm(Nm,θ − 1)

)
β2
m,θ.

Proof. The proof is shown in Appendix A.3. □

Similar to full participation, we restate the above result by properly choosing ηg and ηl :

22

Table 2.1: Convergence rate of existing benchmarks.

Algorithm Network architecture Convexity1 Assumptions2 Partial client Convergence rate

FedAvg [80] Single server SC BGD ✓ O(E
T
)

FedAvg [181] Single server NC BGV ✓ O(1√
NET

+ 1
T
)

MC-PSGD [36] Cluster SC BGD; BMP × O(1√
NmT

)

IFCA [45] Cluster SC BGD ✓ O(1√
NmT

+ E
T
)

HFL [159] Hierarchical NC BGV; BLV × O(1√
NmT

+ 1
T
)

FedMes [50] Multi-server with overlapping areas SC BGD × O(KE
2

N
)

MS-FedAvg Multi-server with overlapping areas NC BGV ✓ O(1√
NmET

+ 1
T
)

1 Shorthand notation for convexity: SC: Strongly Convex and NC: Non-Convex.
2 Shorthand notation for assumptions in the chapter: BGD is bounded gradient descent ∥∇f (w)∥2 ≤ G 2; BGV is bounded global variance
∥∇fi (w)−∇f (w)∥ ≤ σ2; BMP is bounded model parameter ∥w∥2 ≤ B2; BLV is bounded local variance ∥∇fi (w)−∇fj(w)∥2 ≤ ϵ2.

Corollary 2. Suppose ηg and ηl satisfy the condition in Theorem 2. Let ηg =
√
EKm and

ηl =
1√
TEL

. Then, for sufficiently large T , the convergence rate of MS-FedAvg under unbiased

partial client participation strategy satisfies:

min
t∈[T]

E||∇fm(wt)||2 = O

(
1

M

∑
m∈M

(
1√

KmET

+
σ2
m

ET
+
∑

θ⊆2M

N2
m,θα

2
m,θ

N2
m

√
E√

KmT
+
∑

θ⊆2M

N2
m,θα

2
m,θ

N2
m

1

T

))
.

Remark 3. The structure of the convergence rate of the MS-FedAvg algorithm under

unbiased partial client participation strategy is similar to full client participation, except for

an additional variance term Ψ2. This indicates that the unbiased partial client participation

strategy does not have a significant change in convergence except for an amplified variance

due to fewer clients being sampled. Intuitively, it yields a good approximation of all the

clients’ datasets distribution in expectation.

Remark 4. From Corollary 2, we can see that the convergence rate of the unbiased partial

participation strategy is not related to the number of clients in each area type Km,θ, but

it highly depends on the ratio
N2
m,θ

N2
m
. However, due to the complicated network topology of

multi-server FL, clients in some area types may present extreme performance, e.g., large

α2
m,θ to incur large training degradation. Hence, to further accelerate the convergence rate

of MS-FedAvg, we will develop a new sampling strategy that samples different numbers of

clients in different area types.

23

2.4.3 Analysis for Biased Partial Client Participation

Here, we aim to develop a new biased partial client participation to achieve a speedup

of the MS-FedAvg algorithm. Let Kt
m,biased ⊆ Nm be the sampled clients set based on this

strategy with Km = |Kt
m,biased|. The main idea of this strategy is that the number of sampled

clients E[Km,θ] in different area type θ is fixed, where the ratio E[Km,θ]
Km

may not be equal

to Nm,θ

Nm
. E[Km,θ]

Km
reflects the degree of bias. Intuitively, we can reduce the sampling number

E[Km,θ] for some area types with large α2
m,θ in order to reduce their convergence contribution.

Note that this strategy also includes the same two schemes with/without replacement as the

unbiased participation strategy. The convergence results are shown as follows:

Theorem 3. Let assumptions 1-4 hold and L,σ2
m,α

2
m,θ be defined therein, and c is a constant.

Let β2
m,θ = σ2

m + 6EKm,θ

Km
. With scheme I for the biased client participation strategy, if the

learning rate is chosen as η < min
{

1√
30ET

,
∑

θ⊆2M
Km,θ(Km,θ−1)

ELηgK2
m

}
and the condition 30E 2L2η2l +∑

θ⊆2M
LηgηlK

2
m,θ

K2
mNm,θ

(90E 3L2η2l + 3E) < 1 holds, the global model wT generated by MS-FedAvg

satisfies mint∈[T] E||∇f (wt)||2 ≤ f 0−f ∗

cMηgηlET
+Ψ1 +Ψ2 +Ψ3, where c is a constant, f 0 ≜ f (w0)

and f ∗ ≜ f (w∗),

Ψ1 =
∑

m∈M

Lηgηl
2cMKm

σ2
m, Ψ2 =

∑
m∈M

∑
θ⊆2M

3ELηgηlK
3
m,θ

2cMK 3
mNm,θ

α2
m,θ

Ψ3 =
∑

m∈M

∑
θ⊆2M

(
5EL2η2l Km,θ

2cMKm
+

15E 2L3ηgη
3
l K

2
m,θ

2cMK 2
mNm,θ

)
β2
m,θ.

For Scheme II, if the learning rates is ηl < min
{

1√
30KL

,
∑

θ⊆2M
K2
m,θ(Nm,θ−1)

ELηgNm,θKm(Km,θ−1)

}
and the

condition 30E 2L2η2l +
∑

θ⊆2M
LηgηlKm,θ(Nm,θ−Km,θ)

KmNm,θ(Nm,θ−1)
(90E 3L2η2l +3E) < 1 holds, and then we obtain

that

Ψ1 =
∑

m∈M

Lηgηl
2cMKm

σ2
m, Ψ2 =

∑
m∈M

∑
θ⊆2M

3LηgηlKm,θ(Nm,θ − Km,θ)

2cK 2
mNm,θ(Nm,θ − 1)

α2
m,θ

Ψ3 = EL2η2l
∑

m∈M

∑
θ⊆2M

(
5Km,θEL

2η2l
2cMKm

+
15E 2L3ηgη

3
l Km,θ(Nm,θ − Km,θ)

2cMKmNm,θ(Nm,θ − 1)

)
β2
m,θ.

Proof. The proof is shown in Appendix A.4. □

24

Corollary 3. Suppose ηg and ηl satisfy the condition in Theorem 2. Let ηg =
√
EKm and

ηl =
1√
TEL

. Then, for sufficiently large T , the convergence rate of MS-FedAvg under biased

partial client participation strategy satisfies:

min
t∈[T]

E||∇fm(wt)||2 = O

(
1

M

∑
m∈M

(
1√

KmET
+

σ2
m

ET

+
∑

θ⊆2M

K 2
m,θα

2
m,θ

K 2
m

√
E√

KmT
+
∑

θ⊆2M

K 2
m,θα

2
m,θ

K 2
m

1

T

))
.

Remark 5. From Corollary 3, we can see that the biased client participation strategy has

the same structure as the unbiased strategy. The difference is that variances of α2
m,θ include

the term
K2
m,θ

K2
m

not
N2

m,θ

N2
m
. Obviously, it is not difficult to design Km,θ for each area type to

accelerate convergence, for example, we can sample more clients in some areas with lower

α2
m,θ value (suppose that α2

m,θ is constant) in order to decrease the variance terms Ψ2 and

Ψ3. More specifically, since the variance α2
m,θ should be related to Km,θ, i.e., increasing Km,θ

should decrease α2
m,θ, if the sampling strategy is such a way, it achieves a significant speedup

for convergence in training.

2.5 Discussion of MS-FedAvg

Based on the above results, we briefly discuss the theoretical analysis of MS-FedAvg and

its implications.

1) Convergence rate: When T is sufficiently large compared to E , we can simplify

the convergence rates O(1√
NmET

+ 1
T
) in Corollary 1 and O(

√
E√

KmT
+ 1

T
) in Corollaries 2-

3, which matches the rate in the general non-convex setting of single-server FL algorithms

[62, 132, 181] without the consideration of transmission difference. Although some works

proposed new algorithms for multi-server FL architectures [38, 74, 45, 174], few of them pre-

sented the detailed convergence analysis. In Table 2.1, we summarize the convergence rate of

some existing FL studies. Compared to the convergence rate, it is easy to see that our pro-

posed MS-FedAvg algorithm achieves linear speedup for general non-convex settings. More

25

specifically, our assumption is the most strict among these studies, and BMP assumption

should be unrealistic.

2) Accuracy: Though theorem 3 shows that sampling clients from fewer area types can

improve the convergence performance, if we miss the clients in some area types, the accuracy

performance may be degraded due to overfitting. Therefore, the design condition is that

E[Km,θ] > 0, ∀θ. Due to the complicated network topology of multi-server FL architecture,

it is difficult to obtain the theoretical result of Km,θ. We will present the empirical results to

support the results of the biased partial client participation strategy in the Section 2.7.

3) The number of local epochs E and client Km: Our results show that the number of

local training epochs can be set as E ≤ T
Km

to accelerate convergence. In addition, the local

training epochs help the convergence by properly setting hyper-parameters, which match

the previous results [107, 146, 181]. The results in Theorems 1-3 imply that the convergence

rate can be improved by increasing the number of clients in each communication round.

4) Comparisons to FedMes [50]: Although the training procedure of MS-FedAvg is similar

to FedMes in [50], the unique difference between these two algorithms is that our proposed

MS-FedAvg can leverage the value of ηg , which has been demonstrated that finding an

optimal ηg can accelerate the training performance [132, 181]. In Table 2.1, we can see that

[50] only proposes the convex loss function of FedMes (e.g., logistic regression [80]). Although

[50] presented the experimental results based on the CNN model and achieve improvement,

it does not propose the theoretical analysis to support the result. Since most of existing

machine learning algorithms are non-convex (e.g., CNN and LSTM [132, 181, 62]), the

theoretical results in [50] is much more restricted. In this chapter, the theoretical analysis and

experiments are both in general non-convex settings. In addition, the convergence analysis

in [50] leverages the BGD assumption, which has been considered a loose assumption in

existing FL studies [181]. As such, our convergence analysis is tighter than FedMes. Lastly,

we propose two kinds of partial client participation strategies (each strategy has two sampling

26

schemes) and analyze the training performance based on the ratio of the number of clients

in different area types, which did not mention in [50].

5) Limitations: The regional models in MS-FedAvg are not aggregated before the T th

round. Hence, the final round aggregation does not have a significant impact on the conver-

gence. The implicit aggregation is because the clients in overlapping areas share information

across all regional models. Considering all factors in MS-FedAvg, including architecture,

client distribution, and heterogeneous local dataset contributes to the implicit aggregation

to be captured difficultly so that the full analysis is mathematically intractable. Thus, we

bound the factors that depend on the convergence results between different servers via As-

sumption 4, and analyze the convergence in each region. As such, the problem becomes

tractable and at the same time does not substantially impact the final results. In the future,

we will set the multi-server FL as a bipartite graph, and propose the consensus analysis (i.e.,

the convergence gap between regional models and global models).

2.6 Transmission Latency Analysis

1) MS-FedAvg: In the multi-server FL network, to calculate the running time τMulti(t)

in every communication round t, we will present the expressions to compute the three main

components local computing time τCi (t), uploading time τUi ,m(t) and downloading time τDi ,m(t).

Note that because our proposed algorithms mainly focus on the efficiency of transmission,

and the local computing time τCi (t) is negligible compared to transmission latency [66, 61],

we omit this part in our experiments. In summary, the transmission latency τMulti(t) in each

round t is the sum of the largest uploading time and downloading time, i.e.,

τMulti(t) = maxi ,m τUi ,m(t) + maxi ,m τDi ,m(t). (2.3)

Uploading time of client i in communication round t is defined as follows:

τUi ,m(t) =
qi

brUi ,m(t)
, (2.4)

27

where qi is the data size of client i for uploading and rUi ,m(t) in bits/s/Hz denotes the uploading

rate of client i to the corresponding regional server m in communication round t, which is

defined as follows:

rUi ,m(t) = log2

(
1 +

pUi ,m|gU
i ,m(t)|2

µ2

)
, (2.5)

where pUi ,m is the uplink transmit power of and gU
i ,m(t) is the uplink channel gain of client

i to the corresponding regional server m in communication round t, and µ2 is the channel

noise. Note that b in Hz is the bandwidth of one channel, i.e., b = B/N , where B is the

total bandwidth budget and N is the number of clients. If we use partial participation

strategy b = B/N . Since our compared benchmarks include multiple different FL network

architectures, bandwidth b is divided into three categories: (1) bcr = Bcr/N is the client to

regional server bandwidth; (2) brc = Brc/N is the regional server to cloud server bandwidth

and (3) bcc = Bcc/N is the client to cloud server bandwidth. In the real world mobile

network, bcr ≤ brc = bcc [101].

The definition of downloading time of client i to the corresponding regional server m is

τDi ,m(t) is similar to the uploading time τUi ,m(t), which is defined as τDi ,m(t) = qi ,m
brDi ,m(t)

, where

rDi ,m(t) = log2(1 +
pDi ,m|g

D
i ,m(t)|

2

µ2
), pDi ,m is the downlink transmit power, gD

i ,m(t) is the downlink

channel gain of client i to the corresponding regional server m in communication t. Sup-

pose that the total communication round to achieve the targeted testing accuracy is TMulti,

the total transmission time is τTotalMulti =
∑TMulti

t=1 τ(t). Specifically, the transmission latency

calculation of FedMes [50] is the same as MS-FedAvg.

2) Single-server FL: In the single-server FL network architecture, all clients communicate

to the central server to download/upload the model updates uploading/downloading. The

transmission latency τSingle(t) of the single-server FL for one communication round depends

on the slowest client i , which is calculated by

τSingle(t) = maxi τ
U
i +maxi τ

D
i . (2.6)

28

Note that the transmit power pDi and pUi and the channel gain gD
i and gU

i should decay

with increasing the distance [88, 153]. The distance between clients and regional server(s)

should be much less than the distance between clients and the central server. Even though

many existing single-server FL studies have proposed the developed algorithm to improve the

convergence rate [80, 62, 129], single-server FL also requires much more total transmission

time due to the large value of τSingle(t). The total transmission time of single-server FL is

τTotalSingle =
∑TSingle

t=1 τ(t).

3) HFL: The HFL architecture includes both the regional servers and the central server

[86, 92, 159], which has two aggregation schemes (i.e., edge aggregation and global aggre-

gation). In each region aggregation round, each regional server aggregates the local model

updates uploaded from the clients in its service area, where the transmission latency of region

aggregation is

τRegion(t) = maxi ,m τUi ,m(t) + maxi ,m τDi ,m(t). (2.7)

In the global aggregation round, the central server aggregates the model updates on each

regional server in which the transmission latency is τGlobal(t) = maxm τ
U
m (t) + maxm τ

D
i ,m(t).

Note that the global aggregation round is performed periodically at every tGlobal edge ag-

gregation round (i.e., tGlobal ≥ 1). Suppose that if HFL requires TRegion and TGlobal to achieve

the targeted accuracy, the total transmission time of HFL is τTotalHFL =
∑TRegion

t=1 τRegion(t) +∑TGlobal

t′=1 τGlobal(t
′). We can observe that HFL has extra aggregation rounds (i.e., global ag-

gregation round) compared to single-server FL and multi-server FL architectures from which

τGlobal > τRegion due to the large distance between regional servers and the central server.

More specifically, in Table 2.1, the convergence rate of HFL (i.e., 1√
NmT

+ 1
T
), which implies

that HFL requires more communication round to achieve targeted accuracy and incurs large

total transmission time.

4) CFL: We assume that the CFL architecture includes M regional servers, where the

number of M is equal to the number of clusters. Although the calculation of one communi-

cation round transmission latency of CFL τCFL is the same as the multi-server FL in (2.3),

29

Table 2.2: Datasets and models.

Dataset Task Clients Total samples Batch size Model
EMNIST [31] Handwritten character recognition 85 81,425 16 2-layer CNN+2-layer FFN
CIFAR-10 [69] Image classification 85 60,000 32 MobileNet-v2 [135]
CIFAR-100 [69] Image classification 85 60,000 32 MobileNet-v2 [135]

the distance of clients to the regional server is usually larger than multi-server FL since the

clustering policy aims to cluster the clients that perform similar dataset distribution [45, 39].

In addition, the capability of the regional server is much lower than central server, and hence

the slowest client will high impact on the transmission latency (i.e., τCFL ≫ τMulti). Specif-

ically, CFL should re-cluster the clients after several communication rounds, which incurs

extra communication latency. The CFL may incur high divergence of each cluster, which

may degrade the convergence performance, and it should use more communication rounds

to achieve the targeted accuracy. In summary, if the number of total communication round

is TCFL and the number of re-clustering is TCluster, the total transmission time of CFL is

τCFL
Total =

∑TCFL

t=1 τCFL(t) +
∑TCluster

t′=1 τCluster(t
′).

2.7 Experiments

In this section, we conduct multiple experiments to evaluate the performance of the

proposed MS-FedAvg algorithm.

2.7.1 Experimental Setup

1) Datasets and models: We evaluate our proposed algorithms on three datasets: EM-

NIST [31], CIFAR-10 and CIFAR-100 [69]. In each dataset, we simulate the data hetero-

geneity by sampling the label ratios from a Dirichlet distribution with parameter 0.4 [53],

and keep the training data on each client balanced. For the EMNIST dataset, we use the

CNN model with two hidden layers and two FeedForward Network (FFN) layers, and the

two learning rates are set as ηg =1.1 and ηl = 0.05 by grid search. For CIFAR-10 and

CIFAR-100, we use MobileNet-v2 [135] to be the learning model, and the learning rates are

30

𝑈 = 15𝑈 = 15

𝑈 = 15

𝑉 = 10 𝑉 = 10

𝑉
=
1
0

𝑊 = 10

Figure 2.2: Symmetric multi-server FL architecture.

set as ηg = 1.5 and ηl = 0.1. Table 2.2 summarizes datasets, models, batch sizes, and the

number of clients. All the hyper-parameters are set based on a grid search on each dataset.

Note that all the algorithms are set E = 5 and Km =10 by default.

2) Compared benchmarks: In this chapter, we compare our proposed algorithms to 5

existing FL benchmarks and can be concluded into 3 categories, i.e., single-server FL, HFL,

and clustered FL. 1) FedAvg: FedAvg algorithm [107] is the most important baseline in FL

research field. Note that the setting of FedAvg is the same as [181]. 2) Fedprox: Fedprox

[79] develops a l2-norm regularized algorithm to address the local model updates in the

heterogeneous FL. In our experiment, we follow the settings in [79] with λ = 0.01, which

controls the dissimilarity of local objectives. 3) HFL: HFL [93, 159] is a edge-cloud based

FL architecture. In our experiment, we use one layer of edge servers, and after 5 times client

to edge server communication rounds, edge servers upload the model to the cloud server to

compute aggregation. 4) MC-PSGD: MC-PSGD [36] is a CFL architecture, which processes

the local training by clustering the clients into several blocks to reduce the client drift. We

assume that re-clustering the blocks in each communication round, and the re-clustering

time τCluster is 1/20 of one round. 5) IFCA: IFCA [45] is a clustered FL, which is clustered

every 5 times communication round and based on calculating the cosine similarity, where

τCluster is 1/20 of one communication round. 6) FedMes: FedMes [50] is a multi-server FL,

which sets the ηg = 1.

31

0 25 50 75 100 125 150 175 200
Communication Round

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Te

st
in

g
Ac

cu
ra

cy

W = N
MS-FedAvg
FedMes
HFL
MC-PSGD
IFCA

0 100 200 300 400 500 600 700 800
Communication Round

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Te
st

in
g

Ac
cu

ra
cy

W = N
MS-FedAvg
FedMes
HFL
MC-PSGD
IFCA

0 100 200 300 400 500 600 700 800
Communication Round

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

in
g

Ac
cu

ra
cy

W = N
MS-FedAvg
FedMes
HFL
MC-PSGD
IFCA

Figure 2.3: Full participation performance.

0 25 50 75 100 125 150 175 200
Communication Round

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Te
st

in
g

Ac
cu

ra
cy

W = N
Unbiased
U=4,V=4,W=2
W=10
U=10

0 100 200 300 400 500 600 700 800
Communication Round

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Te

st
in

g
Ac

cu
ra

cy

W = N
Unbiased
U=2, V=2, W=1
W=5
U=5

0 100 200 300 400 500 600 700 800
Communication Round

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Te
st

in
g

Ac
cu

ra
cy

W = N
Unbiased
U = 2, V = 2, W = 1
U=5
W=5

Figure 2.4: Partial participation performance.

Table 2.3: Final testing accuracy, round and wall-clock(sec).

Dataset EMNIST CIFAR-10 CIFAR-100
Algorithm Accuracy Round Wall-clock Accuracy Round Wall-clock Accuracy Round Wall-clock
FedAvg 85.06% 8 5.37 80.75% 88 1495.21 50.25% 95 2119.45
FedProx 84.97% 10 6.72 80.06% 106 1803.06 49.61% 110 2643.30
HFL 84.87% 31 16.12 77.52% 191 2555.58 46.19% 351 7563.98

MC-PSGD 83.03% 68 36.04 73.86% NA NA NA NA NA
IFCA 83.85% 65 34.13 76.61% 291 4367.93 NA NA NA
FedMes 84.91% 16 7.64 79.08% 100 962.17 49.82% 130 2056.71
W = N 85.04% 11 5.97 80.98% 85 785.90 50.62% 90 1632.62

MS-FedAvg 85.02% 13 7.15 79.84% 91 903.17 50.14% 119 1959.72

3) Multi-server network architecture: We set our multi-server FL network architecture

with M = 3 regional servers and 85 clients. Here, we consider a symmetric geometry multiple

servers network with U = 15, V = 10 and W = 10 (U is the number of clients in the non-

overlapping area for every server, V is the number of clients in the overlapping area between

any two servers, W is the number of clients in the overlapping area among all three servers)

such that each regional server covers 45 clients, which is shown in Figure 2.2. Another multi-

server FL network is that all 85 clients are within in the overlapping area among all three

servers and hence W = 85, U = 0 and V = 0. For the partial participation strategy, each

32

regional server randomly samples 10 clients in each communication round. The asymmetric

network architecture will be presented later.

4) Network parameters setup: The network setting is summarized as follows unless other-

wise specified. We consider the regional server with a disc of 2km and the cloud server with

5km. The channel gain of both the uplink and downlink are composed of both small-scale

fading and large-scale fading. The small-scale fading is set as Rayleigh distribution with

uniform variance and the large scale fading from client to regional server, client to cloud

server and regional server to cloud server are all generated using the path-loss model PL =

128.1 + 37.6 log10(d(km)), where d is the distance in km. The noise power µ2 is -107dBm.

Total bandwidth budget Brc = 850MHz, Bcr = 475MHz and Bcc = 150MHz. Both the uplink

and downlink transmit power is 23dBm, i.e., pUi = pDi = 23dBm, ∀i ∈ N . These parameters

are followed by the existing edge computing studies [153, 29, 40].

2.7.2 Performance Evaluations

Here, we mainly focus on comparing the performance with the multi-server FL bench-

marks, including three settings: full client participation, partial client participation, and

moving clients scenarios. Note that the setting W = 85 means that all 85 clients are located

in the overlapping area with 3 regional servers, which is considered as the upper bound of

MS-FedAvg since all three regional models reduce the divergence of the initial model.

1) Performance of full clients participation strategies: In Figure 2.3, we aim to show the

performance of full clients participation strategy compared to the three different multi-server

FL benchmarks. It is easy to see that our proposed MS-FedAvg algorithm converges faster

and achieves the best accuracy performance than other benchmarks in all three datasets

except for the setting with W = 85, which supports our theoretical results in Theorem 1.

For example, in the CIFAR-10 dataset, MS-FedAvg can achieve 79.69% testing accuracy,

which is 1.51%, 3.78%, and 5.59% higher than HFL, IFCA, and MC-PSGD. In particular,

MC-PSGD converges fast but it achieves the lowest accuracy since the clustered model is

33

0.8300

0.8325

0.8350

0.8375

0.8400

0.8425

0.8450

0.8475

0.8500

Te
sti

ng
 Ac

cu
ra

cy

EMNIST

0.75

0.76

0.77

0.78

0.79

0.80

CIFAR-10

0.44

0.45

0.46

0.47

0.48

0.49

0.50

CIFAR-100

Sta. MS-FedAvg 1
Mov. MS-FedAvg 1
Sta. HFL 2

Mov. HFL 2
Sta. MS-FedAvg 2
Mov. MS-FedAvg 2

Sta. HFL 2
Mov. HFL 2
Sta. MS-FedAvg 3

Mov. MS-FedAvg 3
Sta. HFL 3
Mov. HFL 3

Figure 2.5: Testing accuracy under static and moving scenarios.

5

10

15

20

25

30

35

40

45

Co
mm

un
ica

tio
n r

ou
nd

EMNIST

100

125

150

175

200

225

250

275

300
CIFAR-10

150

200

250

300

350

400

450

500

550

600
CIFAR-100

Sta. MS-FedAvg 1
Mov. MS-FedAvg 1
Sta. HFL 2

Mov. HFL 2
Sta. MS-FedAvg 2
Mov. MS-FedAvg 2

Sta. HFL 2
Mov. HFL 2
Sta. MS-FedAvg 3

Mov. MS-FedAvg 3
Sta. HFL 3
Mov. HFL 3

Figure 2.6: Communication rounds under static and moving scenarios.

easy to overfit to its cluster. However, the global model performance is the worst among

all benchmarks, i.e., 74.10%. More specially, the disadvantage of HFL is that for every 5

regional aggregation steps, it is required a global aggregation, which may degrade all the

regional learning performance. Although FedMes outperforms the other three benchmarks,

it does not achieve a better convergence rate and accuracy than our proposed MS-FedAvg.

The results may be because the value of ηg is not optimal.

2) Performance of partial client participation strategies: For the partial client participa-

tion strategy, we uniformly sample K = 10 clients in each region and communication round,

and the performance of different values of K will be shown later. For convenience, the mean-

ing of the legend is the number of sampled clients in each area type. U is the isolated area

type, V is the clients located in the overlapping area with two regional servers and W is the

three regional servers’ overlapping area. For example, U = 10 is sampling 10 clients in area

type U . Based on this network architecture, we have the following interesting observations.

34

Firstly, we can see that the unbiased partial participation of all three datasets in Fig-

ure 2.4 is similar to the performance of full client participation in Figure 2.3 but with higher

variance, which is due to the uniformly sampling, and successfully matches our analysis in

Section 2.5. If we select these 10 clients with the number of U = 4, V =4, and W = 2, it

performs better than the unbiased participation strategy, e.g., 1.43% higher testing accuracy

than the unbiased MS-FedAvg in CIFAR-100 dataset. More specifically, if we only sample

clients in one specific area, the performance has much degradation, e.g., 45.01% with W =

10, and 43.92% with U = 10. The reason may be that the regional model overfits these local

clients and cannot be generalized to all clients in the entire FL network. Therefore, if we

use a biased participation strategy, it is necessary to sample clients among all area types.

The learning performance of Biased MS-FedAvg strongly depends on the network topology,

and hence it is not easy to provide an optimized sampling strategy. However, it is feasible

to find a sampling strategy that performs better than an unbiased strategy.

3) Performance of the client movement scenarios: Here, we aim to show the comparison

of static and movement scenarios of multi-server FL settings. Because clustered FL needs

to re-cluster every several communication rounds, the movement scenario can be ignored

in this setting. Therefore, we only compare our proposed MS-FedAvg algorithm to HFL.

Since we cannot justify the deterministic moving direction of each client, we assume that

it randomly moves in each communication round. Because of the restricted service area of

the regional server, we consider the movement scenario such as the moving sensors or IoT

devices [163, 70], which performs low movement speed (e.g., 3 miles per hour [70]). Compared

to the transmission latency, the moving distance is very short and we can assume that

each client connects the same corresponding regional server(s) within one communication

round. In order to evaluate the training performance between static and movement scenarios,

we set three network settings: (1) the probabilities of the client locating in each area are

P(locate in U) = 52.94%, P(locate in V) = 35.30% and P(locate in W) = 11.76%; (2)

P(locate in U) = 35.30%, P(locate in V) = 52.94% and P(locate in W) = 11.76%; and (3)

35

P(locate in U) = 52.94%, P(locate in V) = 11.76% and P(locate in W) = 35.30%. The

communication round is to achieve 80% on the EMNIST dataset, 75% on the CIFAR-10

dataset, and 45% on the CIFAR-100 dataset.

We can see that the convergence rate of movement scenarios is much slower than static

scenarios among all the multi-server FL settings, e.g., in the CIFAR-10 dataset, movement

is 77.08% and static is 79.84% of MS-FedAvg. And it only uses 91 communication rounds

to achieve 75% testing accuracy, which is much better than the movement scenario with

207 rounds. The reason is that since the clients may participate in different regional model

training, it incurs higher model variance between each communication round. As a result,

it makes the global model to be converged difficultly. It is similar to training the same

several regional models on each regional server. Therefore, it is not necessary to consider

the movement scenario in this chapter. In addition, it is clear to see that our proposed

MS-FedAvg also outperforms other benchmarks in the movement scenarios. If we assume

more clients locate in the overlapping areas (e.g., setting 3), the training performance of

both MS-FedAvg and HFL improves. For example, in setting 3, the movement scenario

of MS-FedAvg has 48.75% testing accuracy and uses 279 to achieve 45% accuracy on the

CIFAR-100 dataset. This may be because the data distribution clients perform less diversity

and are near the W = N scenario. More specifically, MS-FedAvg outperforms HFL in all

settings (e.g., on the CIFAR-10 dataset of setting 2, the movement scenario of MS-FedAvg

achieves 78.01% and HFL is 76.18%).

2.7.3 Additional Performance

In this subsection, since it is not easy to verify the local computing time of each client,

and the existing chapters have shown that [61, 107] the transmission latency dominates the

running time FL, and hence we only compare the transmission latency to training perfor-

mance of all FL benchmarks and simply ignore the local computing time of every client. The

wall clock means that the total transmission time to achieve the targeted testing accuracy.

36

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Local epochs E

0.81

0.82

0.83

0.84

0.85
Te

st
in

g
Ac

cu
ra

cy

W=N
Unbiased MS-FedAvg
Biased MS-FedAvg

0.2 0.4 0.6 0.8 1.0
Number of sampling clients K

0.835

0.840

0.845

0.850

0.855

Te
st

in
g

Ac
cu

ra
cy

W=N
Unbiased MS-FedAvg
Biased MS-FedAvg

0.2 0.4 0.6 0.8 1.0
Local epochs E

0.76

0.77

0.78

0.79

0.80

0.81

Te
st

in
g

Ac
cu

ra
cy

W=N
Unbiased MS-FedAvg
Biased MS-FedAvg

0.2 0.4 0.6 0.8 1.0
Number of sampling clients K

0.790

0.795

0.800

0.805

0.810

0.815

Te
st

in
g

Ac
cu

ra
cy

W=N
Unbiased MS-FedAvg
Biased MS-FedAvg

0.2 0.4 0.6 0.8 1.0
Local epochs E

0.475

0.480

0.485

0.490

0.495

0.500

0.505

Te
st

in
g

Ac
cu

ra
cy

W=N
Unbiased MS-FedAvg
Biased MS-FedAvg

0.2 0.4 0.6 0.8 1.0
Number of sampling clients K

0.480

0.485

0.490

0.495

0.500

0.505

Te
st

in
g

Ac
cu

ra
cy

W=N
Unbiased MS-FedAvg
Biased MS-FedAvg

Figure 2.7: Impact on Km and E .

Table 2.4: Impact on different bandwidth settings.

Dataset EMNIST CIFAR-10 CIFAR-100
Bandwidth Accuracy Wall-clock Accuracy Wall-clock Accuracy Wall-clock

brc = 10MHz, bcr = 5MHz 85.02% 7.15 79.84% 903.17 50.14% 1959.72
brc ∼ U [8, 12]MHz, bcr ∼ U [4, 6]MHz 85.05% 10.49 79.59% 1003.26 49.98% 2227.01
brc ∼ U [5, 15]MHz, bcr ∼ U [2, 8]MHz 84.97% 15.01 79.86% 1420.39 50.05% 2936.91

Table 2.3 shows the final testing accuracy, communication round, and wall-clock to

achieve the targeted testing accuracy. We compare our MS-FedAvg algorithm to single-

server FL, HFL, and CFL. It is easy to observe that the final testing accuracy of W = N and

FedAvg perform similarly among all three datasets, e.g., 78.98% and 78.96% in the CIFAR-10

dataset. This is because they do not have the model divergence to degrade the learning per-

formance. The W = N setting can be considered as the FedAvg on multi-server FL network

architecture, while W = N is much more efficient from the transmission latency perspective.

For the EMNIST dataset, the reason that the FedAvg algorithm has the best performance

is that the EMNIST dataset is simple and easy to achieve targeted testing accuracy. For the

more complicated datasets, it is clear to see that MS-FedAvg outperforms single-server FL.

FedMes outperforms the other three benchmarks, but it is worse than MS-FedAvg.

Although both the two single-server FL benchmarks perform with good accuracy perfor-

mance, they will waste much more training time, due to the large average distance between

clients and servers. Although the HFL and CFL algorithms spend less transmission latency

for one communication round, they waste much more wall-clock time to achieve the targeted

accuracy due to the low convergence rate, e.g., for the CIFAR-10 dataset, HFL uses 191

rounds and 2555.58 sec, and IFCA uses 291 rounds and 4367.93 sec. Therefore, the existing

multi-server FL benchmarks cannot guarantee to be efficient enough from the transmission

perspective.

37

Our proposed MS-FedAvg outperforms other multi-server FL benchmarks on testing ac-

curacy perspectives. More specifically, MS-FedAvg has the best wall clock time among all

the benchmarks except the W = N setting, since it does not need to download and upload

models to the central servers, it significantly reduces the distance and saves much more

transmission latency. For example, in CIFAR-10 dataset, it saves 1.65×, 1.99×, 2.83× and

4.84× time than FedAvg, FedProx, HFL and IFCA. More specifically, due to the limited

generalization of MC-PSGD, it cannot achieve the targeted accuracy. Therefore, our pro-

posed MS-FedAvg algorithm can be considered an efficient solution to address the bottleneck

problem of FL settings.

2.7.4 Impact on Different Parameters

1) Impact on Km and E : Based on our analysis in Sections 2.4 and 2.5, the learning

performance of MS-FedAvg algorithm depends on several hyper-parameters, e.g., the number

of sampling clients under each regional servers Km and the setting of the number of local

epochs E . Figure 2.7 present the final testing accuracy of EMNIST, CIFAR-10 and CIFAR-

100 datasets under different values of Km and E . Especially, we set 2U = 2V = W as

”Biased”, which means the fraction of the number of sampling clients in different area types.

The results in Figure 2.7 indicate that the performance substantially improves when we

increase the number of sampled clients number Km, and the biased participation strategy

consistently outperforms unbiased participation, e.g., in CIFAR-10 dataset, biased client

participation strategy increases from 76.20% to 82.93%, when Km = 10 and 35, and unbiased

increases from 75.56% to 82.93%. In addition, the degree of improvement of Km increases

lower. This empirical result matches our analysis in Section 2.4, and performs similarly to

single-server FL settings [80, 181, 62].

Next, we aim to show the learning performance under different values of E . Until now, it

is difficult to explicitly show the relationship between E and learning performance. In [80],

they presented that increasing E can improve performance. However, other studies [79, 181]

38

𝑈3 = 10𝑈2 = 15

𝑈1 = 20

𝑉1,2 = 5 𝑉1,3 = 10

𝑉
2
,3
=
1
5

𝑊 = 10

Figure 2.8: Asymmetric multi-server FL architecture.

showed that when E is set as too large, it will degrade the performance. Our experimental

results in Figure 2.7 implies that if E = 1, it performs the worst. If we increase the value, the

accuracy firstly increases but then decreases, e.g., in CIFAR-100, when E = 5, the accuracy

is 49.65%, but 44.65% of E = 20. Thus, it is necessary to find a suitable value E to achieve

better performance on different datasets.

2) Impact on bandwidth: Here, we present the impact on different bandwidth settings

between clients and regional server(s), which includes three settings: (1) brc =10MHz, bcr =

5MHz; (2) brc ∼ U [8, 12]MHz, bcr ∼ U [4, 6]MHz; and (3) brc ∼ U [5, 15]MHz, bcr ∼ U [2,

8]MHz, where U is uniform distribution.

In Table 2.4, we can see that different bandwidth does not have a significant impact on

the testing accuracy. For example, on the EMNIST dataset, the testing accuracy of these

three settings is 85.02%, 85.05%, and 84.97%. This is because the learning performance is

independent of the network parameter settings, and only depends on the setting of learning

models (e.g., data distribution and hyper-parameters). However, the bandwidth has a large

influence on the transmission latency, because each regional server should wait for the slow-

est client that performs small bandwidth and then process the aggregation. On CIFAR-100

dataset, if the bandwidth follows brc ∼ U [5, 15]MHz, bcr ∼ U [2, 8]MHz, the total communi-

cation time is 2936.91sec, which is 49.86% higher than equal bandwidth setting. Therefore,

if each regional server has a limited bandwidth budget, the best way is to equally divide to

each client, which can achieve the best performance on communication.

39

2.8 Related Work

Current research on FL wireless networks improved communication efficiency in the fol-

lowing aspects. (1) how to properly allocate resources to clients. [176] designs how to

properly select clients and how bandwidth is allocated among the selected clients in each

communication round. [140] jointly considers bandwidth allocation and client scheduling

problems. For the bandwidth allocation sub-problem, they aim to allocate more bandwidth

to the clients with worse channel conditions and develop a greedy policy to solve the clients

scheduling sub-problem. (2) deadline-based FL architecture. [126] develops a client selection

algorithm for deadline-based HFL via contextual combinatorial multi-armed bandits to im-

prove the training performance. (3) physical layer quantization. For bandwidth reduction,

[2] sparsifies the gradient estimates of clients to accumulate errors from previous communi-

cation rounds and project the resultant sparse into a low-dimensional vector. In [197], they

clarify how to communicate between clients and the central server and evaluate the impact

on the various quantization. In addition, they design the physical layer quantization both

on uplink and downlink. They mainly minimize the communication latency by solving an

optimization problem subject to the constraint of obtaining a good model. However, few of

them propose the details of the convergence guarantee in their chapters.

FL was first proposed in [107], where they proposed the FedAvg algorithm and showed the

advantages empirically on different datasets and local dataset distribution settings. Followed

by [107], the authors propose a strategy to address the communication bottleneck problem

by increasing the local training epochs [80, 181]. Specifically, this method is also a feasible

solution to improve the convergence rate. Based on this method, some new algorithms are

developed from different perspectives. [62] adds a variant control variable to reduce the

local model updates and global model due to the non-iid distribution of local datasets, and

[128] and [82] designs FL algorithm for asynchronuous FL via Hessian approximation. [132]

designs server level momentum and extends the local SGD optimizer to AdaGrad, YOGI

40

and ADAM, [129, 177, 81] proposes client level momentum FL algorithm. However, these

algorithms are mainly developed on single-server FL.

Based on the highly efficient edge computing architecture, some studies focus on edge

facilitated FL: HFL [86, 92, 159] and clustered FL [174, 74, 38]. However, they also rely on

communicating to the central server, large communication delay is difficult to be avoidable

compared to our proposed multi-server FL. Another direction of distributed learning is fully

decentralized/serverless [83, 134, 67]. In decentralized FL, clients need to exchange the

model updates with their neighbors, not with the servers. This is different from our proposed

multi-server FL architecture, where the local model updates are required to be aggregated

on regional servers. However, even though the network of decentralized FL is well-connected,

it is not avoidable to reduce the degradation due to large communication delays, since the

bandwidth of each client should be much less than edge computing.

2.9 Summary

In this chapter, we proposed the MS-FedAvg algorithm and presented theoretical analysis

on non-iid datasets in general non-convex settings on a multi-server FL architecture with

overlapping areas, which can reduce transmission latency compared to traditional single-

server FL. Our theoretical results reveal how the overlapping areas accelerate the convergence

of the final global model. In addition, the MS-FedAvg algorithm achieves a linear speedup

under full/unbiased partial client participation strategies compared to the existing multi-

server FL algorithms. To further improve the convergence rate, we develop a biased partial

client participation strategy. Both theoretical and empirical results show the degree of bias

results in a trade-off between convergence rate and accuracy and outperforms other existing

multi-server FL architectures. Although our work is based on the fundamental theory of

traditional FL, it also opens doors to many new interesting questions in FL studies. For

future work, we plan to investigate how to design the algorithms based on the topology of

the multi-server FL architecture, and the consensus control.

41

Chapter 3: Context-Aware Online Client Selection for HFL

3.1 Abstract

Federated Learning (FL) has been considered an appealing framework to tackle data

privacy issues of mobile devices compared to conventional Machine Learning (ML). Using

Edge Servers (ESs) as intermediaries to perform model aggregation in proximity can reduce

the transmission overhead, and it enables great potential in low-latency FL, where the hier-

archical architecture of FL (HFL) has attracted more attention. Designing a proper client

selection policy can significantly improve training performance, and it has been extensively

used in conventional FL studies. However, to the best of our knowledge, no studies are

focusing on HFL. In addition, client selection for HFL faces more challenges than conven-

tional FL (e.g., the time-varying connection of client-ES pairs and the limited budget of

the Network Operator (NO)). In this chapter, we investigate a client selection problem for

HFL, where the NO learns the number of successful participating clients to improve training

performance (i.e., select as many clients in each round) as well as under the limited bud-

get on each ES. An online policy, called Context-aware Online Client Selection (COCS), is

developed based on Contextual Combinatorial Multi-Armed Bandit (CC-MAB). COCS ob-

serves the side-information (context) of local computing and transmission of client-ES pairs

and makes client selection decisions to maximize NO’s utility given a limited budget. The-

oretically, COCS achieves a sublinear regret compared to an Oracle policy on both strongly

convex and non-convex HFL. Simulation results also support the efficiency of the proposed

COCS policy on real-world datasets2.

2This paper was published in IEEE Transactions on Parallel and Distributed Systems, vol. 22, pp.
4353-4367, December 2022. Permission is included in Appendix D.

42

an

Local training

Edge aggregation

UploadingDownloading

Uploading

Global aggregation

Downloading

Cloud Server

Edge Server

Client

Local model updates

Global model

Edge model

Figure 3.1: The architecture of HFL.

3.2 System Model and Problem Formulation

3.2.1 Preliminary of HFL

The Network Operator (NO) leverages a typical edge-cloud architecture to set a Federated

Learning (FL) service, where it is named Hierarchical FL (HFL) [92, 93, 159] in Fig. 3.1.

Unlike the conventional FL [107, 80, 62] only including clients and a Cloud Server (CS),

HFL consists of a set of mobile devices/clients, indexed by N = {1, 2, ... ,N}, a set of Edge

Servers (ES), indexed byM = {1, 2, ... ,M} and a Cloud Server (CS). LetN t
m = {1, 2, ... ,N t

m}

denote the set of clients, which can communicate with the ES m in edge aggregation round

t. Note that the communication area of different edge servers may be overlapped (i.e.,∑M
m=1 N

t
m ≥ N). The client n ∈ N is able to communicate to a subset of ESs Ct

n ⊆ M in

round t. In particular, we assume that each client is equipped with a single antenna such

that it only communicates with one ES m ∈ Ct
n even if it is located in the overlapped area in

each round. Let w denote the parameters of the global model. The goal of the FL service is

to find the optimal parameters of global model w, which minimizes the average loss function

f (w) under the HFL network as follows:

min
w

f (w) :=
1

M

∑
m∈M

1

Sm

∑
n∈sm

Fn(w), (3.1)

where sm is the selected client set by the ES m with the number Sm in each edge aggregation

round, Fn(w) ≜
∑

ξn∼Dn
ℓ(w; ξn) is the loss function associated with the local dataset Dn on

43

client n, and ℓ(w; ξn) is the loss of data sample ξn. The objective of the loss function Fn(·) can

be convex (e.g., logistic regression) or non-convex (e.g., Convolutional Neural Network (CNN)

and Long Short-Term Memory (LSTM)). The training steps of HFL can be summarized as

follows:

1) At the beginning of round t, each ES m randomly selects a subset of clients stm ⊆ N t
m in

its coverage area. Even if a client is in the overlapping area, it is only allowed to communicate

with one ES in one round. We assume that the HFL network contains a backhaul link to

transmit the selected clients to avoid some clients being selected on multiple ESs. Each

client n selected by ES m downloads the edge model wt
m and sets it to be the local model

wt
n = wt

m, ∀n ∈ stm.

2) Then, each client n takes E epochs to update its own local model by Stochastic

Gradient Descent (SGD) from its dataset Dn as follows:wt+e+1
n = wt+e

n − ηtg(wt+e
n ; ξt+e

n),

where e = 0, 1, ... ,E − 1, ηt is the learning rate, and g(wt+e
n ; ξt+e

n) is the stochastic gradient

of Fn(w) (i.e., Eξt+e
n ∼Dn

[g(wt+e
n ; ξt+e

n)] = ∇Fn(wt+e
n)).

3) After E local training epochs, client n ∈ St
m uploads the local model updates ∆t

n ≜

wt+E−1
n −wt

n to the ES m. Instead of aggregating all local models on CS at the end of round

t [107, 80, 62] of conventional FL, local model updates are averaged within ES m to be edge

model wt+1
m , called edge aggregation, which is given as follows:

wt+1
m = wt

m +
1

S t
m

∑
n∈stm

∆t
n, (3.2)

4) After TES rounds of edge aggregation, global modelwt is computed bywt = 1
M

∑M
m=1w

t
m,

∀t = {TES, 2TES, ... } from all M ESs, called global aggregation. Then, each ES m downloads

the global model to be its edge model wt
m = wt .

Repeating the above four steps with a sufficiently large round T , NO will achieve the

global model w = wT and stop the training process. HFL has been demonstrated that it

achieves a linear speedup of convergence to conventional FL algorithms [93, 159].

44

3.2.2 Cost of Client Selection

Since clients usually do not belong to NO, clients are required to charge NO for the

number of requested computation resources for collecting datasets and processing the local

training to achieve the learning goal. At the beginning of each edge aggregation round, each

client reveals its available computation resources y t
n to NO, which includes CPU frequency,

RAM and storage, etc., to process the current local training updates.

Each client sets a price for its computation resources. Let cn(y
t
n) denote the price charged

by client n, where cn(·) is a non-decreasing mapping function related to the price for computa-

tion resources y t
n . Due to the limited rental budget B̃ of NO, for any edge aggregation round t,

the client selection decision NO must satisfy the budget constraint
∑

m∈M
∑

n∈stm
cn(y

t
n) ≤ B̃ .

3.2.3 Deadline Based HFL

In summary, an edge aggregation consists of four stages: Download Transmission (DT),

Local Computation (LC), Upload Transmission (UT) and Edge Computation (EC).

In DT stage, the selected client n ∈ stm downloads the current edge model from the ES

m. Followed by Shannon’s equation, the channel state of DT c tDT,n is calculated by:

ctDT,n = log2(1 + Pt
ng

t
DT,n/N0), (3.3)

where P t
n is the transmission power, g t

DT,n is the downlink wireless channel gain and N0 is

the noise power. Let aDT denote the downloading data size (i.e., size of edge model wt
m) and

the allocated bandwidth is btn in the edge aggregation round t. Therefore, thus the DT time

for client n is τ tDT,n = aDT/(b
t
nc

t
DT,n).

Once the client n receives wt
m, training comes to the LC stage (i.e., it updates the lo-

cal model using its own dataset Dn according to Eq. (2.2)). The LC time of each client is

determined by the local computation resources y t
n in the current round t. Given the com-

45

0 25 50 75 100 125 150 175 200
Aggregation Round

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725
Te

st
 A

cc
ur

ac
y

3 clients on each ES
10 clients on each ES
Full client participation

0 100 200 300 400 500
Aggregation Round

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

3 clients on each ES
10 clients on each ES
Full client participation

Figure 3.2: MNIST under logistic regression and CIFAR-10 under CNN.

putation resources y t
n > 0, the LC time can be obtained as τ tLC,n(y

t
n) = q/y t

n , where q is the

computation workload, which is based on the complexity of learning model and data.

When the LC is finished, client n uploads its local model updates ∆t+1
n to the ES m.

Similar to the channel state definition of DT in Eq. (3.3), the channel state of UT is c tUT,n =

log2(1+P t
ng

t
UT,n/N0) and UT time is τ tUT,n = aUT/(b

t
nc

t
UT,n), where g

t
UT,n is the uplink channel

gain and aUT is the uploading data size (i.e., size of ∆t+1
n).

Finally, if the local model updates of all selected clients are received by ESs, the edge

models should be computed in Eq. (3.2). The EC time is τ tEC,m = qm/ym, where qm is the

edge model workload and ym is the process capacity of the ES m. Note that τEC,m should be

different of every ES m. However, since the EC stage only takes the average calculation of

the received local model updates according to Eq. (3.2) and the capacity of ES qm is always

very large compared to clients, this does not waste much running time compared to the other

three stages. Therefore, the difference of τEC,m of all ESs is too small to be negligible, and

hence NO does not need to consider the influence of τEC,m. As such, the training time of

client n is defined as follows:

τ tn(y
t
n) = τ tDT,n + τ tLC,n(y

t
n) + τ tUT,n =

atDT,n

btnc
t
DT,n

+
q

y tn
+

atUT,n

btnc
t
UT,n

, ∀n, t. (3.4)

Due to some physical limitations (e.g., low computation capability and unstable com-

munication), some clients may incur huge training latency in one edge aggregation round.

Therefore, the deadline-based FL [113, 152, 178] is more realistic to deal with straggler

46

clients. Specifically, ESs drop the clients whose the local model updates cannot be received

before the deadline τdead,m (i.e., client n such that τ tn > τdead,m). In this chapter, we consider

deadline-based HFL. Therefore, the edge aggregation can be reformulated:

wt
m =


1∑

n∈stm
X t
n

∑
n∈stm X t

nw
t
n, if

∑
n∈stm X t

n ≥ Z

1
Z

∑
τ tn≤τZ w

t
n, else

(3.5)

where X t
n is a binary random variable representing whether client n’s model update can be

received before the deadline (i.e., if τ tn ≤ τdead,m, X
t
n = 1; otherwise, X t

n = 0), and τZ is

the training time of the Z -th fastest client. In Figure 3.2, we can see that if each ES only

receives 3 local model updates, the training performance has large degradation and variance.

In order to guarantee a minimum level of training performance, we require that at least Z

local model updates must be received for edge aggregation. Therefore, in case less than Z

clients’ updates are received before the deadline, the system has to wait for some additional

time τZ − τdead,m. For practical values of τ
Z − τdead,m, the probability of having less than Z

client updates received before the deadline is small. For analysis convenience, we assume that

at least Z client updates can be received before the deadline in every edge aggregation round.

In addition, we assume that the deadline of all ESs are set the same, τdead,m = τdead,∀m.

The extension to heterogeneous deadlines is straightforward.

3.2.4 Utility Function of Client Selection of HFL

Some existing HFL studies [159, 93, 97] have demonstrated that the convergence speed

depends on the number of participating clients in each edge aggregation round for both

strongly convex and non-convex HFL (i.e., the more clients participated, the faster conver-

gence speed). In order to support the theoretical results, we show the training performance

on our simulated HFL network with M = 3 and N = 50, and it is observed that more

participating clients on ESs can improve the performance in both the strongly convex and

non-convex HFL settings.

47

For now, we consider strongly convex HFL, where the convergence speed is linearly

dependent on the number of participating clients. The client selection policy for non-convex

HFL will be developed in Section 3.4. As in [113, 152, 178], not all the selected clients in

stm may reach the EC stage (i.e.,
∑

n∈stm
X t
n ≤ S t

m) due to straggler drop-out. To achieve

targeted convergence criteria, NO thus needs to run more FL rounds, thereby incurring a

higher training cost. Therefore, it is necessary to develop an efficient client selection policy

to improve the convergence speed for HFL, where more clients can participate in every round

without dropping out. Let Xt
m = {X t

n,m}∀n∈N t
m
, then the utility of the client selection decision

on ES m is defined as:

µ(stm;X
t
m) =

∑
n∈stm

X t
n,m, (3.6)

Further, let st = {st1, st2, ... , stM} denote the client selection decision of the overall system and

Xt = {Xt
1,X

t
2, ... ,X

t
M}. Therefore, the utility function of the whole HFL network is defined

as:µ(st ;Xt) = 1
M

∑
n∈M

∑
n∈stm

X t
n,m.

3.2.5 Client Selection Problem Formulation

The client selection problem for NO is a sequential decision-making problem. The goal

of NO is to make a selection decision st ,∀t to maximize the cumulative utility for a total

of T aggregation rounds. If an ES selects very few clients, its training performance may be

degraded and the computation resources of ESs may be wasted. Since N t
m is a time-variant

in each edge aggregation due to the client movement, we assume that the location of client n

is uniformly distributed in the HFL network. Moreover, as TES is usually set larger than 1,

NO cannot allocate the total budget B̃ to M ESs in each edge aggregation round. Therefore,

we consider that NO equally divides the budget among the ESs (i.e., for each m, its budget

is B = B̃/M) from the expectation perspective. Assuming that NO knows a priori whether a

selected client can return its model updates to the corresponding edge server in time, namely

48

Xt ,∀t, then the client selection problem is formulated:

P1: max{st}Tt=1

∑T

t=1
µ(st ; X̂t) (3.7a)

s.t.
∑

n∈stm
cn(y

t
n) ≤ B, ∀m ∈ M (3.7b)

stm ⊆ N t
m, ∀m, t (3.7c)

stm ∩ stm′ = ∅, m,m′ ∈ M,∀t. (3.7d)

The following challenges should be addressed to solve the client selection problem in HFL

networks: (i) For maximizing the expected training utility of HFL, it is necessary to precisely

estimate the selected clients in each edge aggregation round. In addition, since NO does not

have enough experience to determine the selected clients at the first several rounds (i.e., cold

start), collecting the historical data for estimation is important for this policy. (ii) With the

successful participated clients estimation, how to optimize the selection decision on each ES

under the limited budget should be carefully considered, because the high variance of the

number of participated clients on each ES degrades the training performance. Therefore, we

equally separate the total budget for each ES (constraint (3.7b)). (iii) Due to the movement

of each client and the overlapping areas across all ESs, the available connecting ESs can be

considered as time-varying (constraint (3.7c)), we must decide the client-ES pairs, especially

for the clients in overlapping areas, which brings more difficulties to make an efficient client

selection decision. Note that constraint (3.7d) can guarantee that each client only can be

selected to communicate at most one ES. (iv) Since the selection decisions are based on

the estimated participated clients X̂t , the accuracy of participated clients estimation will

directly influence the training utility of NO. After finishing the edge model updates, ESs can

process the client selection for the next round (i.e., processing in DT, LC, and UT stages).

Furthermore, since the large computational capacity y t
m is large enough, it is reasonable

to assume that ESs can finish the decision before receiving the new local model updates.

Therefore, making a client selection policy does not impact the training time. The following

49

section will propose a policy based on the Multi-Armed Bandits (MAB) to address the

mentioned challenges.

3.3 Context-Aware Online Client Selection for Strongly Convex HFL

In this section, we formulate our client selection problem of HFL as a Contextual Com-

binatorial Multi-Armed Bandit (CC-MAB). The combinatorial property is because NO pays

computation resources from multiple clients for maximizing the training utility. The contex-

tual property is because NO leverages contexts associated with clients to infer their partici-

pated probabilities. In this chapter, whether successfully participating in the corresponding

ES depends on many side factors, which are collaboratively referred to as context. We use

contextual information to help infer the number of participating clients.

In CC-MAB, NO observes the context of clients at the beginning of each edge aggregation

round before making the client selection decision. Recall that the participated probability of

a client-ES pair depends on r tDT,n, y
t
n and r tUT,n in Eq. (3.4). At each edge aggregation round

t, ES can measure the the channel state c tDT,n by inferring the received signal strength of the

received local model updates [8, 30]. Based on c tDT,n and bandwidth btn, ESs can compute

the DT rate r tDT,n. In addition, since the movement speed of clients is much slower than the

transmission speed of wireless signals, while NO cannot know the UT rate r tUT,n, it is not

difficult to be inferred by r tDT,n (suppose that clients do not locate in the same area in each

edge aggregation round). Therefore, we set c tDT,n as context and use this information to help

significantly improve the participated probabilities of client-ES pairs.

Let ϕt
n,m ∈ Φ denote the context of client-ES pair (n,m) in edge aggregation round

t. Without loss of generality, we normalize ϕt
n,m in a bounded space Φ = [0, 1]2 using

min-max feature scaling. Let ϕ = {ϕt
n,m}∀m,n∈N t

m
denote the context of all clients on ESs.

The context of all clients on ESs are collected in ϕt = {ϕt
n,m}∀m,n∈N t

m
. Whether successful

participation of client n on ES m is a random variable parameterized by the context ϕt
n,m.

We slightly simplify the notation of selected clients and define the context-aware X t
n,m(ϕ

t
n,m).

50

Specifically, Xn,m is a mapping function for each client-ES pair (n,m), since the training

time of clients is usually location-dependent (e.g., the distance between the client and ES,

the communication environment, and other processing tasks on a client). We further define

pn,m(ϕ
t
n,m) ≜ E[Xn,m(ϕ

t
n,m)] as the expected value (i.e., the participated probability X t

n,m ∼

Bernoulli(ptn,m)) of Xn,m(ϕ
t
n,m).

3.3.1 Oracle Solution and Regret

Similar to the existing CC-MAB studies [29, 28], before providing our policy design, we

first give an Oracle benchmark solution to the client selection problem of HFL by assuming

that the NO knows the context-aware successful participated probability ptn,m(ϕ
t
n,m), ∀m, n ∈

N t
m. In this ideal setting, the utility function µ(st ;pt) is perfectly known by NO, and thus we

can get the optimal value of the client selection problem. The long-term selection problem

P1 can be decomposed into T independent subproblems in each edge aggregation round:

P2: maxst µ(st ;pt) (3.8a)

s.t.
∑

n∈stm
cn(y

t
n) ≤ B, ∀m ∈ M (3.8b)

stm ⊆ N t
m, ∀m, t (3.8c)

stm ∩ stm′ = ∅, m,m′ ∈ M, ∀t. (3.8d)

P2 is a combinatorial optimization problem with M Knapsack and a Matroid constraints.

The combinatorial property is because NO should choose a proper client selection decision to

optimize participated probabilities on all ESs in order to achieve higher convergence speed.

Knapsack constraints are from the constraint (3.8b), which bounds computation resources

payment on each ES.

To prove that (3.8c) is a matroid constraint, we first state the definition of the matroid.

A matroid E = ((X), (I)) is a system with independents sets, in which X is a finite set

(named the ground set) and I represents the set of independent subsets of X . It has the

three following properties: (1) ∅ ∈ I and X has at least one subset of X ; (2) For each

51

A ⊂ B ⊂ X , if A ∈ I, then B ∈ I; (3) If A,B ∈ I, and |A| < |B |, then ∃ ∈ B \ A such that

A{x} ∈ I.

In the subproblem P2, let X = ∪m∈MN t
m denote the ground set of matroid E = (X , I),

and I = {I1, I2, ... } consists of subsets of X (i.e., I1 ⊆ X , I2 ⊆ X , ...), where all I ∈ I includes

at most one client from N t
m for each m ∈ M. We can write I as I = ∪m∈Mstm, s.t. s

t
m ∈ N t

m,

∀m. In this chapter, I is the set of all feasible client selection decisions. Therefore, it can be

verified that Eq. (3.8c) is a matroid constraint [28].

Based on our analysis, it is easy to observe that P2 is NP-hard, and hence it can be solved

by brute force, if the size of the HFL network is moderate. If the HFL network is too large,

NO can use some commercial software to obtain the optimal solution (e.g., CPLEX [32]).

For simplicity, we define the optimal Oracle solution for each P2 in edge aggregation round

t is sopt,t . However, in practice, the prior knowledge of participated clients is infeasible, and

thus the NO has to make a selection decision st based on the estimated participated clients

X̂t in each edge aggregation round. Intuitively, NO should design an online client selection

policy to choose st based on the estimation X̂t . The performance of an online client selection

policy is calculated by utility loss compared with the Oracle solution, called regret. Suppose

that we have a selection sequence {s1, s2, ... , sT} given by a policy, the expected regret is:

E[R(T)] =
∑T

t=1
(E[µ(sopt,t ;Xt)]− E[µ(st ;Xt)]). (3.9)

The expectation is concerning with respect to the decisions made by the client selection

decision policy and the participated clients over contexts.

3.3.2 Context-aware Online Client Selection Policy

Now, we will present our online client selection decision policy name Context-aware

Online Client Selection (COCS). The COCS policy is designed based on CC-MAB. In edge

aggregation round t, the process of COCS of NO is operated sequentially as follows: (i) NO

observes the contexts of all client-ES pairs ϕt = {ϕt
n,m}n,m∈N t

m
, ϕt

n,m ∈ Φ. (ii) NO determines

52

its selection decision st based on the observed context information ϕt in the current round

t and the knowledge learned from the previous t − 1 rounds. (iii) The selection decision

st is applied. If s tn ̸= 0, ∀n ∈ stm, the clients located in the coverage area of ES m can be

selected by ES m for training in round t. (iv) At the end of each edge aggregation round,

the local model updates ∆t
n from which clients are observed by all ESs, which is then used

to update the estimated participated clients X̂n,m(ϕ
t
n,m) from the observed context ϕt

n,m of

client-ES pair (n,m).

It has two parameters K (t) and hT to be designed, where K (t) is a deterministic and

monotonically increasing function used to identify the under-explored context, and hT decides

how we partition the context space. The COCS policy is stated as follows:

For the initialization phase, given parameter hT , the proposed policy first creates a par-

tition denoted by LT for the context space Φ = [0, 1]2, which splits Φ into (hT)
2 sets.

Each set is a 2-dimensional hypercube with size 1
hT

× · · · × 1
hT
. Note that hT is an impor-

tant input parameter to guarantee policy performance. For each hypercube l ∈ LT , the

NO keeps a counter C t
n,m(l) for each client n ∈ N and each ES m ∈ M. For the tuple

(n,m, l) of a counter C t
n,m(l) for each client-ES pair (n,m), we define a selection event Vn,m,l

that represents a selection decision satisfying the three following conditions: 1) the client

n ∈ N t
m is selected to an ES m; 2) the ES m successfully receives the client n before τdead

(i.e., τ tn ≤ τdead); 3) the context of client-ES pair (n,m) belongs to l (i.e., ϕt
n,m ∈ l). The

counter C t
n,m(l) stores the number of times that the event Vn,m,l occurs until edge aggregation

round t. Each ES m also saves an experience E t
n,m(l) for each client n and each hypercube

l , which contains the observed participated clients indicators when a selection event Vn,m,l

occurs. The experience E t
n,m(l) is useful for making the future decision of whether to come

into the exploration or exploitation phase. Based on the observed participation indicators

in E t
n,m(l), the estimated participated probability for a selection event Vn,m,l is computed by:

p̂tn,m(l) = 1
C t
n,m(l)

∑
X∈E t

n,m(l)
X . In each edge aggregation round t, the COCS policy has the

following phases:

53

For the hypercube identification phase, if the local model updates ∆t
n of client n ∈ N t

m

can be successfully received by an ES m in edge aggregation round t, we obtain that l tn,m

is the hypercube for the context ϕt
n,m, the estimated participated probability of client n on

ES m is X̂ t
n,m = p̂tn,m(l

t
n,m). Let X̂

t = {X̂ t
n,m}∀m,n∈N t

m
denote the collection of all the estimated

participated probabilities. For making a client selection decision, the COCS policy needs to

check whether these hypercubes have been explored sufficiently to ensure enough accuracy

of the estimated participated probability for each client-ES pair (n,m). Therefore, we define

under-explored hypercubes Lue
m (ϕt) for the ES m in edge aggregation round t as follows:

Lue,t
m ≜

l ∈ LT

∣∣∣∣ ∃ϕt
n,m ∈ ϕt ,ϕt

n,m ∈ l , τ tn ≤ τdead

and C t
n,m(l) ≤ K (t)

 . (3.10)

Also, let N ue,t
m (ϕt) ≜ {n ∈ N t

m|l tn,m ∈ Lue,t
m (ϕt)} denote the collection of the under-explored

client n for each ES m. The challenge of COCS policy is how to decide whether the current

estimated participated clients are accurate enough to guide the client selection decision in

each edge aggregation round, which is referred to as exploitation or more training results,

which is referred to as exploration. COCS policy aims to balance the exploration and ex-

ploitation phases to maximize the utility of NO up to a finite round T . Now, we come

into the exploration phase. Firstly, let N ue,t
m (ϕt) ≜ {n ∈ N t

m|N ue,t
m ̸= ∅} denote an ES

m has under-explored clients, and N ed,t
m (ϕt) ≜ N \ N ue,t(ϕt) denote the ES m does not

have under-explored clients. If the ES m has a non-empty N ue,t
m , then COCS enters the

exploration phase, which includes the following cases:

1) All the clients have under-explored ESs. Intuitively, NO hopes to receive more local

training updates ∆t
n. Therefore, COCS policy aims to select as many clients that have

under-explored ESs sequentially solved by the following optimization:

maxst |st | s.t. (3.8b), (3.8c), (3.8d), (3.11)

where |st | is the size of the collection st = {st1, st2, ... , stM}.

54

2) Part of ESs have under-explored clients ∃N ue,t
m ̸= ∅. We divide this case into two

stages: NO firstly selects ESs that have under-explored clients m ∈ N ue,t
m by solving the

following optimization:

maxs̃t |s̃t | (3.12a)

s.t.
∑

n∈s̃tm
cn(y

t
n) ≤ B, ∀n ∈ N ue,t

m ,∀m ∈ M (3.12b)

stm ∈ N t
m ∪ {null}, ∀n ∈ N ue,t

m (3.12c)

s̃tm ∩ s̃tm′ = ∅, m,m′ ∈ M,∀t. (3.12d)

where s̃t is client selection decision on ES m that has under-explored clients and |s̃t | is the

size of the collection s̃t = {s̃t1, s̃t2, ... , s̃tM}. Secondly, ESs aim to select the explored clients

∀n ∈ N ed,t
m . Here, we assume that there exists ESs that B −

∑
n∈s̃tm

cn(y
t
n) ≥ cmin,t ,m ∈ M,

where cmin,t = minn∈N ed,t
m

cn(y
t
n),∀m. Therefore, ESs can select the clients n ∈ N ed,t

m with the

following constraint:

∑
n∈stm\s̃tm

cn(y
t
n) ≤ B −

∑
n∈s̃tm

cn(y
t
n), ∀n ∈ N ed,t

m . (3.13)

If not, NO does not need to select clients in N ed,t
m due to no budget left. Under this condition,

the client selection decisions are jointly optimized for the following optimization:

maxst µ(st ; X̂t) (3.14a)

s.t. B −
∑

n∈s̃tm
cn(y

t
n) ≥ cmin,t , m ∈ M, (3.14b)

(3.12b), (3.12c), (3.13). (3.14c)

For the exploitation phase, if the set of under-explored clients is empty (i.e., N ue,t
m =

∅,∀m), then COCS policy enters the exploitation phase. The optimal client selection decision

st is derived by solving P2 from the current estimated participated clients X̂t :

maxst µ(st ; X̂t) s.t. (3.8b), (3.8c). (3.15)

55

To this end, it comes into the update phase. After selecting the client-ES pair, COCS

policy observes whether the local model updates of selected clients can be received before

the deadline τdead; then, it updates p̂tn,m(l) and C t
n,m(l) of each hypercube l ∈ LT .

3.3.3 Performance Analysis

To present an upper performance bound of the COCS policy, we make the following

assumption that the participating clients are similar when their contexts are similar. It is

formalized by the following Hölder condition [29, 28], which is defined as follows:

Assumption 5. (Hölder Condition). If a real function f on D-dimensional Euclidean space

satisfies Hödel condition, there exists L > 0, α > 0 such that for any ϕ,ϕ′ ∈ Φ, it holds that

|fn(ϕ)− fn(ϕ
′)| ≤ L∥ϕ−ϕ′∥α for an arbitrary client n ∈ N , where ∥ · ∥ is the Euclidean norm.

By providing the design of the input parameters K (t) and hT , we show that COCS

policy achieves a sublinear R(T) = O(T γ) with γ < 1, which guarantees that COCS has

an asymptotically optimal performance. This means that the online client selection decision

via COCS policy converges with the Oracle solution. Because any edge aggregation round

is either in the exploration or exploitation phase, the regret can be divided into two parts

R(T) = Rexplore(T) + Rexploit(T), where Rexplore(T) and Rexploit(T) are the regrets due to

exploration and exploitation phases, respectively. The total regret bound is achieved by

separately bounding these two parts. Therefore, we present the following two lemmas for

bounding exploration and exploitation regrets.

Lemma 2. (Bound of E[Rexplore(T)].) Given the input parameters K (t) = tz log(t) and

hT = ⌈T γ⌉, where 0 < z < 1 and 0 < γ < 1
2
, the regret E[Eexplore(T)] is bounded by:

E[Eexplore(T)] ≤ 4N2MB

cmin
(T z+2γ log(T) + T 2γ),

where cmin = miny t
n ,∀n,t cn(y

t
n).

Proof. See in online Appendix A, available in the online supplemental material [127]. □

56

Lemma 2 shows that the order of Rexplore(T) is determined by the control function K (T)

and the number of hypercubes (hT)
D in partition LT .

Lemma 3. (Bound of E[Rexploit(T)].) Given K (t) = tz log(t) and hT = ⌈T γ⌉, where 0 <

z < 1 and 0 < γ < 1
2
, if the Hölder condition holds true and the additional condition

2H(t) + 2NMB
cmin L2

α
2 hαT ≤ Atθ is satisfied with H(t) > NMB

cmin t
− z

2 , A > 0, θ < 0, for all t, then

E[Rexploit(T)] is bounded by:

E[Rexploit(T)] ≤ NMB

cmin

(B/cmin∑
k=1

N

k

)π2

3
+

3NMB

cmin
L2

α
2 T 1−γα +

A

1 + θ
T 1+θ,

where cmin = miny t
n ,∀n,t cn(y

t
n).

Proof. See in online Appendix B, available in the online supplemental material [127]. □

Lemma 3 indicates that the regret of exploitation E[Rexploitation(T)] depends on the choice

of z and γ with an additional condition being satisfied. Based on the above two Lemmas,

we will have the following Theorem for the upper bound of the regret E[R(T)].

Theorem 4. (Bound of E[R(T)].) Given the input parameters K (t) = tz log(t) and hT =

⌈T γ⌉, where 0 < z < 1 and 0 < γ < 1
2
, if the Hölder condition holds true and the additional

condition 2H(t) + 2NMB
cmin L2

α
2 hαT ≤ Atθ is satisfied with H(t) > NMB

cmin t
− z

2 , A > 0, θ < 0, for all

t, then the regret E[R(T)] can be bounded by:

E[R(T)] ≤ 4N2MB

cmin
(T z+2γ log(T) + T 2γ)

+
NMB

cmin

(B/cmin∑
k=1

N

k

)π2

3
+

3NMB

cmin
L2

α
2 T 1−γα +

A

1 + θ
T 1+θ,

where cmin = miny t
n ,∀n,t cn(y

t
n).

Proof. See in online Appendix C, available in the online supplemental material [127]. □

The regret upper bound in Theorem 4 is given by properly choosing input parameters

K (t) and ht . However, the values of z , γ,A and θ are not deterministic. Next, we will show

the regret upper bound of E[R(T)] in these parameters design.

57

Theorem 5. (Regret upper bound). If we select z = 2α
3α+2

∈ (0, 1), γ = z
2α
, θ = − z

2
, A =

2NMB
cmin t−

z
2 + 2NMB

cmin L2
α
2 , and COCS algorithm runs with these parameters, the regret E[R(T)]

can be bounded by:

E[R(T)] ≤ 4N2MB

cmin
(log(T)T

2α+2
3α+2 + T

2
3α+2)

+
NMB

cmin

(B/cmin∑
k=1

N

k

)π2

3
+

(
3L2

α
2 +

2 + L2
α
2

(2α+ 2)/(3α+ 2)

)
NMB

cmin
T

2α+2
3α+2 ,

where cmin = miny t
n ,∀n,t cn(y

t
n).

The dominant order of the regret E[R(T)] is O
(

4N2MB
cmin T

2α+2
3α+2 log(T)

)
.

Proof. See in online Appendix C, available in the online supplemental material [127]. □

The dominant order of regret upper bound, which indicates the COCS policy in Theo-

rem 5 is sublinear. In addition, the regret bound is valid for any total rounds T , and it can

be used to characterize the convergence speed of HFL.

3.3.4 Complexity Analysis

The space complexity of COCS policy is determined by the number of counters C t
n,m(l)

and experiences E t
n,m(l) maintained for hypercubes. Because the counter is an integer for

each hypercube, the space complexity is determined by the number of hypercubes. The

experience E t
n,m(l) is a set of observed successfully participating clients’ records up to round

t, which requires a higher memory. However, it is unnecessary to store all historical records,

since most estimators can be updated recursively. Therefore, the NO only needs to keep the

current participated clients’ estimation for a hypercube. If COCS is run with the param-

eters in Theorem 5, the number of hypercubes is (hT)
2 = ⌈T

1
3α+2 ⌉2, and thus the required

space is sublinear in total rounds T . This means that when T → ∞, COCS will require

infinite memory. In the practical implementations, NO only needs to keep the counters and

experiences of hypercubes to which at least one of the observed contexts occurs. Therefore,

58

the practical space requirement of some counters and experiences is much smaller than the

theoretical requirement.

3.4 COCS Policy for Non-convex HFL

In this section, we will discuss the solutions for the client selection problems for non-

convex HFL (e.g., neural network), where the convergence speed is quadratically related to

the number of participated clients in each edge aggregation round [93, 159]. Similar to the

utility function of strongly convex HFL in Eq. (3.6), the utility function of non-convex HFL

is defined as follows:

µnon(s
t ;Xt) =

√
1

M

∑
m∈M

∑
n∈stm

X t
n,m. (3.16)

Therefore, the client selection problem of non-convex HFL in edge aggregation round t is

formulated as follows:

P3: maxst µnon(s
t ;Xt) s.t. (3.8b), (3.8c), (3.8d). (3.17)

The problem P3 is also a combinatorial optimization problem. While brute-force search can

always find the optimal solution, the complexity can be high due to the non-linear property in

Eq. (3.17). In order to address this problem, we aim to design an efficient polynomial runtime

approximation algorithm to solve P3 in the next subsection. In addition, the performance

guarantee of the approximation algorithm will be presented.

3.4.1 Approximated Oracle Solutions

To solve the problem P3, we firstly show that P3 is a monotone submodular maximization

problem with M knapsack and a matroid constraints. Below gives the definition of the

monotone submodular maximization [75]:

59

Definition 1. (Monotone Submodular Maximization.) A set function F : 2I → R is mono-

tone increasing if ∀A ⊆ B ⊆ I , F (A) ≤ F (B). In addition, the function F (·) is submodular

if ∀A ⊆ B ⊆ I and e ∈ I \ B, F (A ∪ {e})− F (A) ≥ F (B ∪ {e})− F (B).

Theorem 6. P3 is a monotone submodular maximization with M knapsack and a matroid

constraints problem.

Proof. See in online Appendix D, available in the online supplemental material [127]. □

To facilitate the solution for non-convex HFL in P3, approximation algorithms are ef-

ficiently obtained approximate solutions in polynomial runtime. Some existing studies are

focusing on solving the submodular maximization with knapsack and matroid constraints

[10, 24], and they proposed the approximation guarantee to the optimal solution. In this

chapter, we use the Fast Lazy Greedy (FLGreedy) algorithm in [10] to achieve the approxi-

mated oracle solution with 1
(1+ϵ)(2+2M)

-approximation guarantee, where ϵ is an error param-

eter in the FLGreedy algorithm. If ϵ is small, FLGreedy can achieve a high approximation

guarantee but have high computational complexity.

For coherence, we do not introduce the detailed FLGreedy algorithm here. The FLGreedy

algorithm acquires the client selection decision of the client sequentially, which starts with

the all-null decisions. In each edge aggregation round, it selects a client to an ES that gives

the largest incremental learning utility. Because each client can only be selected at most

one ES and each iteration decides the client selection decision for one client, the algorithm

terminates in at most M iterations. Based on the results for submodular maximization with

a knapsack and matroid constraints in [10], the FLGreedy algorithm guarantees to yield a

1
(1+ϵ)(2+2M)

-approximation for P3:

Lemma 4. In an arbitrary edge aggregation round t, let s∗,t be the client selection decision

solved by FLGreedy algorithm and sopt,t be the optimal client selection decision for the problem

P3, we will have µ(s∗,t ;Xt) ≥ 1
(1+ϵ)(2+2M)

µ(sopt,t ;Xt).

Proof. The proof follows [10] and hence is omitted. □

60

We use FLGreedy to approximate the optimal client selection decision with oracle infor-

mation on participating clients. Note that the actual performance of the FLGreedy algorithm

is usually much better than the 1
(1+ϵ)(2+2M)

approximation ratio in practice.

3.4.2 Performance of COCS Policy for Non-Convex HFL

The regret in Eq. (3.9) is used when the optimal oracle solutions can be derivable. Be-

cause the FLGreedy algorithm can efficiently approximate the optimal oracle solution for

P3 instead of obtaining the optimal oracle solution. As such, we leverage the definition of

δ-regret, which is usually used in MAB based on approximation algorithms [27]. For a δ-

approximation algorithm (i.e., the solution st solved by the approximation algorithm satisfies

µ(st ;Xt) ≥ 1
δ
µ(sopt,t ;Xt)), for problem P3, the δ-regret is defined as follows:

Rδ(T) =
∑T

t=1

1

δ
µ(sopt,t ;Xt)−

∑T

t=1
µ(st ;Xt). (3.18)

Because the FLGreedy algorithm for the P3 has an approximation ratio of 1
(1+ϵ)(2+2M)

, COCS

policy obtains δ = 1
(1+ϵ)(2+2M)

. The definition of δ-regret essentially compares the utility of

a policy with the lower bound of the approximated oracle solution.

Next, we aim to present the input parameters K (t) and hT and propose a regret upper

bound for the COCS policy. The regret analysis is also proved based on the Hölder condition

in Assumption 5. Given the input parameters K (t) and hT in Theorem 7, we achieve a

sublinear regret upper bound of COCS policy for P3 as follows:

Theorem 7. (δ-Regret Upper Bound.) If K (t) = t
2α+2
3α+2 log(t), hT = ⌈T

1
3α+2 ⌉, Hölder condi-

tion holds true and a δ-approximation is applied for optimization, then the dominate order

of δ-regret E[Rδ(T)] is O
(

4N2MB
δcmin T

2α+2
3α+2 log(T)

)
.

Proof. See in online Appendix E, available in the online supplemental material [127]. □

The regret upper bound given in Theorem 7 implies that COCS policy performs well if the

subproblem in each edge aggregation round can only be derived approximately. A sublinear

δ-regret can be achieved by the performance guarantee of δ-approximation algorithms.

61

Table 3.1: HFL network parameters.

Parameter Value
Number of clients, N 80
Number of ESs, M 3

Size of local model updates, s 0.18, 18.7, 31.3 (Mbits)
Computation workload, qn 2.41, 28.3, 11.6 (Mbytes)
Transmission power, P t

n 23dBm
Deadline, τdead 3, 20, 30 (sec)

Pricing function, bn(fn) U ∼ [0.5, 2] per Mbytes
Budget on each ES B 3.5, 40, 18
α in Hölder condition 1

hT in COCS 5
Local training epochs, E 2, 5, 5
Global aggregation, TES 5

Learning rate, η 0.001, 0.1, 0.01

3.5 Simulations

3.5.1 Setup

1) Datasets and training models: We set up the simulation with PyTorch and the com-

putation is conducted by a high-performance workstation with 2 NVIDIA RTX 2080 GPUs.

We have prepared two datasets for evaluating our proposed COCS algorithm. Specifically,

MNIST dataset [73] under a logistic regression, which is widely used for strongly convex FL

studies [80, 183]. For the non-convex HFL, we use the CIFAR-10 dataset [69] by adopting a

CNN with two 5×5 convolution layers (each with 64 channels), followed by 2×2 max polling,

two fully-connected layers with 384 and 192 units, and finally a softmax output layer. The

NLP dataset is built from the complete Works of William Shakespeare Shakespeare dataset

[107]. We use a two-layer LSTM classifier with 100 hidden units and an 8D embedding

layer. To this end, there is a densely-connected layer. For each simulation, we distribute the

dataset among N = 80 clients in a general non-iid fashion such that each client only contains

samples of only two labels.

2) Contexts: For the context generation, in each edge aggregation round, we assume the

allocated bandwidth of all clients is sampling from a uniform distribution between U ∼[0.3,

62

1] for MNIST dataset and U ∼[2, 4] for CIFAR-10 dataset since the data and model sizes

are different for each dataset. Likewise, the available computation capacity of all clients is

also sampling from U ∼[2, 4] for MNIST dataset, U ∼ [8, 15] for CIFAR-10 dataset, and

U ∼[1, 2] for Shakespeare dataset. The distance d t
n,m between client and ES is from U ∼[0,

2]km. For SAFA, the distance d t
n between clients and CS is from U ∼[0, 10]km.

3) Parameters of HFL networks: Our simulated HFL network includes 3 ESs and 50

clients, where the radius of each ES is 2km. Within the coverage area, there are several

clients randomly distributed and communicated by the corresponding ES through a wireless

channel in each edge aggregation round. In the edge aggregation round t, the downlink

and uplink channel gain are decomposed of both small-scale fading and large-scale fading,

where the small-scale fading is set as Rayleigh distribution with uniform variance and the

large-scale fading are calculated by the path-loss with random shadowing g t
DT,n = g t

UT,n =

37.6 log(d t
n,m) + 128.1, where d represent the distance of client-ES pair (n,m). In order to

clearly show the performance difference of each benchmark, we set the parameter of our

simulated HFL network for the two datasets shown in Table 3.1.

3.5.2 Comparison Benchmarks

We compare the COCS policy to the following benchmarks: 1) Oracle: the Oracle algo-

rithm knows precisely whether one client can be received by the corresponding ES before

the deadline τdead with any observed context. In each aggregation round, it makes a client

selection decision to maximize the utility in Eq. (3.8a): brute-force for the strongly con-

vex HFL and GreedyLS for non-convex HFL. 2) Combinatorial UCB (CUCB): CUCB is

designed based on a classical MAB policy UCB [7]. It develops combinations of client selec-

tion decisions on all ESs to enumerate NO’s decision s. CUCB runs UCB with feasible NO

selection decisions s and learns the expected utility for each st . Since CUCB does not fit the

time-varying arm set, we set the static computation and transmission resource for client-ES

pairs. 3) LinUCB: LinUCB [76] is a contextual variant of running CUCB. LinUCB also aims

63

to learn the expected utility for client selection decision s, which assumes that the utility of

an arm is a linear function of client-ES pairs’ contexts. 4) Random: The Random algorithm

selects a client to an accessible ES randomly in each edge aggregation round under these two

constraints. 5) SAFA: SAFA [168] is an asynchronous FL algorithm. If some clients cannot

be received before the deadline, they will join the next aggregation stage.

3.5.3 Performance Evaluation of Strongly Convex HFL

1) Comparison of cumulative utilities: Figures 2 show the cumulative utilities and regret

obtained by the COCS policy and the other 4 benchmarks during 1,000 edge aggregation

rounds under logistic regression on the MNIST dataset. For the cumulative utilities in

Figure 3.3, it is observed that Oracle policy achieves the highest cumulative utilities and

provides an upper bound to the other benchmarks as expected. Among the others, COCS

policy significantly outperforms the other benchmarks and has a closed cumulative utility

performance to Oracle policy. The profit of the context of client-ES pairs can be shown by

comparing the performance of context-aware policies (LinUCB) and context-unaware policies

(CUCB and Random). More specifically, the results show that the cumulative utilities

of CUCB are similar to the Random policy. The disadvantage of CUCB comes from the

following two reasons: (1) an arm of CUCB is a combination of the selection decisions of all

client-ES pairs, and hence CUCB obtains a large number of arms. This means that CUCB is

difficult to enter the exploitation phase. (2) CUCB fails to capture the connection between

context and clients. The cumulative utilities of LinUCB are based on the context, for which

a CUCB arm is not effective to produce a good result due to the large arm set. The reason

that the cumulative utilities of SAFA are low (only higher than random) is that the average

distance between clients and CS is much larger than HFL. Therefore, due to the low value

of τdead, most clients cannot be received within one aggregation round. In Figure 3.3, we

notably depict the regret generated by the 4 benchmarks. It is easy to observe that our

proposed COCS policy incurs a sublinear regret.

64

0 200 400 600 800 1000 1200
Aggregation Round

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cu
mu

lat
ive

 U
tili

tie
s

1e5

Oracle
COCS
CUCB
LinUCB
SAFA
Random

0 200 400 600 800 1000
Aggregation Round

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
gr

et

1e5

COCS
CUCB
LinUCB
Random

Figure 3.3: Cumulative utilities and regret on MNIST.

0 25 50 75 100 125 150 175 200
Aggregation Round

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Te
st

 A
cc

ur
ac

y

Oracle
COCS
CUCB
LinUCB
Random
SAFA

0 25 50 75 100 125 150 175 200
Aggregation Round

8

10

12

14

16

18

20

22

24

Nu
m

be
r o

f C
lie

nt
s

Oracle
COCS
CUCB
LinUCB
Random
SAFA

0 25 50 75 100 125 150 175 200
Aggregation Round

0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725

Te
st

 A
cc

ur
ac

y

COCS B = 3.5
COCS B = 5
COCS B = 10

20 30 40
Impact of budget B

0

1000

2000

3000

4000

5000

6000

Cu
m

ul
at

iv
e

ut
ili

tie
s

Oracle
COCS
CUCB

LinUCB
Random

0 25 50 75 100 125 150 175 200
Aggregation Round

0.525
0.550
0.575
0.600
0.625
0.650
0.675
0.700
0.725

Te
st

 A
cc

ur
ac

y

COCS dead = 2
COCS dead = 4
COCS dead = 8

2 4 8
Impact of deadline dead

0

1000

2000

3000

4000

5000

6000

Cu
m

ul
at

iv
e

ut
ili

tie
s

Oracle
COCS
UCB

LinUCB
Random
SAFA

Figure 3.4: Training performance on MNIST.

Table 3.2: Final accuracy and edge aggregation rounds.

Policy
MNIST (70%) CIFAR-10 (60%) Shakespeare (45%)

Final Accuracy Round Final Accuracy Round Final Accuracy Round
Oracle 71.90 (74.85) 111 (70) 68.41 (73.81) 92 (58) 58.83 (61.24) 223 (180)
COCS 71.84 (74.57) 121 (74) 67.93 (73.12) 101 (63) 57.66 (60.39) 246 (192)
UCB 71.15 (73.53) 147 (86) 63.76 (68.16) 175 (120) 54.25 (57.19) 289 (219)

LinUCB 71.67 (74.26) 134 (79) 65.19 (72.30) 133 (82) 55.52 (59.87) 251 (201)
Random 70.81 (72.31) 161 (103) 62.25 (67.79) 207 (146) 47.30 (52.41) 339 (297)
SAFA 71.07 (73.40) 152 (93) 63.31 (66.93) 184 (129) 53.63 (56.18) 296 (230)

2) Training performance and client selection results: We use two metrics to evaluate the

training performance based on client selection policies: edge aggregation rounds to achieve

targeted testing accuracy and final testing accuracy. In Figure 3.4, we present the training

performance under logistic regression on the MNIST dataset. Oracle policy, as expected, re-

65

Table 3.3: Final accuracy and edge aggregation rounds without Z constraint.

Policy
MNIST (70%) CIFAR-10 (60%) Shakespeare (50%)

Final Accuracy Round Final Accuracy Round Final Accuracy Round
Oracle 71.90 (74.85) 111 (70) 68.41 (73.81) 92 (58) 58.76 (61.15) 227 (181)
COCS 71.20 (74.16) 126 (77) 66.10 (71.35) 109 (71) 57.13 (60.01) 251 (198)
UCB 69.98 (72.01) 181 (109) 61.54 (64.27) 196 (133) 53.11 (56.02) 311 (236)

LinUCB 70.97 (73.91) 142 (86) 64.43 (71.04) 146 (93) 55.03 (57.93) 259 (210)
Random 68.16 (70.03) 208 (149) 60.48 (63.20) 276 (208) 43.49 (47.93) 386 (348)

0 200 400 600 800 1000 1200
Aggregation Round

0.0

0.5

1.0

1.5

2.0

Cu
m

ul
at

ive
 U

til
iti

es

1e5

Oracle
COCS
CUCB
LinUCB
Random
SAFA

0 200 400 600 800 1000 1200
Aggregation Round

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
gr

et

1e5

COCS
CUCB
LinUCB
Random

0 100 200 300 400 500
Aggregation Round

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

 A
cc

ur
ac

y

Oracle
COCS
UCB
LinUCB
Random
SAFA

Figure 3.5: Training performance on CIFAR-10.

sults in the fastest convergence speed and highest accuracy among all benchmarks. Although

COCS performs slower than Oracle policy during the first several rounds due to exploration,

it achieves similar testing accuracy to Oracle in the 200th round. In particular, it is easy

to observe that COCS outperforms others. Due to the insufficient selection of clients all the

rounds, Random selection is considerably inferior to all other benchmarks. For clarifying the

training performance, we present an auxiliary Table 3.2 to emphasize the results, in which

the targeted accuracy on the MNIST dataset is set 70%. As is shown, our proposed COCS

policy only uses 121 rounds to achieve 70% test accuracy, which is 36, 13, 40, and 38 rounds

faster than CUCB, LinUCB, Random, and SAFA.

In Figure 3.4, we show that the temporal number of clients is selected in each edge

aggregation round. The upper bound and lower bound of clients are Oracle and Random

policies. Although COCS, LinUCB, and CUCB all have increasing levels due to obtaining

historical experiences, it is easy to observe that the increase of CUCB is very slow, and

COCS outperforms the other two benchmarks. The reason why the number of successful

participated clients is few in the first several rounds via the MAB-based policies is that most

of the selected clients cannot be received by ESs before the deadline τdead.

66

0 200 400 600 800 1000 1200
Aggregation Round

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Cu
m

ul
at

iv
e

Ut
ilit

ie
s

1e5

Oracle
COCS
CUCB
LinUCB
Random
SAFA

0 200 400 600 800 1000 1200
Aggregation Round

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
gr

et

1e5

COCS
CUCB
LinUCB
Random

0 100 200 300 400 500
Aggregation Round

0.2

0.3

0.4

0.5

0.6

Te
st

 A
cc

ur
ac

y

Oracle
COCS
CUCB

LinUCB
Random
SAFA

Figure 3.6: Training performance on Shakespeare.

Oracle COCS UCB LinUCB Random SAFA
30

32

34

36

38

40

Co
m

pu
ta

tio
na

l C
os

t (
M

B)

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72
Fi

na
l A

cc
ur

ac
y

Oracle COCS UCB LinUCB Random SAFA

180

200

220

240

260

Co
m

pu
ta

tio
na

l C
os

t (
M

B)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Fi
na

l A
cc

ur
ac

y

Oracle COCS UCB LinUCB Random SAFA
300

325

350

375

400

425

450

475

500

Co
m

pu
ta

tio
na

l C
os

t (
M

B)

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Fi
na

l A
cc

ur
ac

y

Figure 3.7: Computational cost on the three datasets.

3) Impact of budget B : Figure 3.4 shows that the training performance of COCS under

different budgets B (B = 3.5, 5 and 10). It is easy to observe that COCS has better perfor-

mance when NO increases the budget B . This is simply to explain because increasing the

budget can select more clients in each round to increase the utility of HFL. In particular,

when B = 5 NO only uses 77 rounds to achieve 70% test accuracy, which is much faster than

B = 3.5. However, the training performance does not have a significant improvement from

B = 5 to 10. Figure 3.4 presents the cumulative utilities of these five benchmarks after 200

edge aggregation rounds. Clearly, for all the benchmarks, the NO can achieve higher cumula-

tive utilities with an increasing budget. As can be observed, when the budget increases from

3.5 to 5, the benefit of client selection gradually increases. However, although the payment

budget is set large, the redundant selection does not have significant improvement. The

reason may be because some client-ES pairs performing poor transmission status cannot be

successfully received by ESs before the deadline τdead, even if NO increases the budget of

computation resources.

4) Impact of deadline τdead: Figure 3.4 depicts the training performance and Figure 3.4

depicts the cumulative utilities under different deadlines τdead = 2, 4 and 8. We can see

67

Oracle COCS UCB LinUCB Random SAFA
130

135

140

145

150

155

160

165

170
St

or
ag

e
Co

st
 (M

B)

0.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Fi
na

l A
cc

ur
ac

y

Oracle COCS UCB LinUCB Random SAFA
900

950

1000

1050

1100

1150

Co
m

pu
ta

tio
na

l C
os

t (
M

B)

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

Fi
na

l A
cc

ur
ac

y

Oracle COCS UCB LinUCB Random SAFA
1400

1450

1500

1550

1600

1650

1700

St
or

ag
e

Co
st

 (M
B)

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Fi
na

l A
cc

ur
ac

y

Figure 3.8: Storage cost on the three datasets.

that when NO increases the value of the deadline, the number of clients increases gradually,

which performs similarly to increasing budget B . However, if NO sets the deadline too large

(i.e., τdead = 8), training performance and cumulative utilities perform similarly to τdead = 4.

More specifically, cumulative utilities of COCS only increase from 5,125 to 5,378. It is easy

to observe that the impact of increasing τdead is less than increasing budget B . We consider

that less budget can control the number of selected clients, which is more dominant than the

impact of deadline τdead for the training performance both on convergence and accuracy.

3.5.4 Performance Evaluation of Non-convex HFL

We show the performance of non-convex HFL under the CNN model on the CIFAR-10

dataset and LSTM model on the Shakespeare dataset, where the utility is quadratically

related to the number of participated clients. We set the error parameter of FLGreedy al-

gorithm ϵ = 0.3. Figure 3.5 depicts the cumulative utilities and Figure 3.5 depicts regret.

Similar to the performance of strongly convex HFL, Oracle policy performs the best cumula-

tive utilities as expected, and COCS outperforms the other 3 benchmarks (e.g., 1.7× higher

than CUCB policy). In particular, the difference of cumulative utilities between Oracle and

COCS is smaller than the result, since this is an approximated Oracle solution in this case.

It is also observed that COCS achieves a sublinear regret in Figure 3.5. Figure 3.5 shows

the test accuracy of different client selection benchmarks on the CIFAR-10 dataset. Since

the training model and data size of CIFAR-10 is complicated enough, training performance

of different benchmarks are clear to see. Oracle policy has the best performance among all

benchmarks, which achieves 68.41% test accuracy. In Table 3.2, COCS policy can achieve

68

67.93% test accuracy, which is 4.17%, 1.74%, 5.68%, and 4.52% higher than LinUCB, CUCB,

Random, and SAFA policies.

Figure 3.6 shows the cumulative utilities, regret, and training performance on the Shake-

speare dataset under LSTM. The results are similar on other datasets, where COCS consis-

tently has the best performance except Oracle policy, and Random policy performs worst.

From the convergence performance perspective, COCS also outperforms the other three

benchmarks. We can conclude that COCS policy can improve the training performance for

HFL significantly both in strongly convex and non-convex settings.

3.5.5 Other Simulation Results

To present the efficiency of computation and storage, we show the trade-off between

computational cost and final accuracy in Figure 3.7, and the trade-off between storage cost

and final accuracy in Figure 3.8. It is worth noting that both two costs include training cost,

edge aggregation cost, and client selection cost. It means that if NO selects more clients, the

cost should increase. For example, on the Shakespeare dataset in Figure 3.7, COCS selects

17.29 more clients than the Random policy, but only increases 57.36MB, which indicates

that the client selection policy does not waste much computational cost. In addition, since

the large computational cost for solving the results of Oracle policy by the greedy algorithm,

the computational cost is high enough. In summary, we consider that making client selection

does not have an obvious impact on training costs.

3.6 Related Work

Clients selection can efficiently deal with the straggler problems and significantly improve

the performance of FL in terms of convergence speed and training latency. For example,

[158] designs a deep reinforcement learning algorithm (the local model updates and the

global model are considered as states) to select clients. [111] uses gradient information to

select clients. If the inner product between the client’s local and global gradient is negative,

69

it will be excluded. In [141], they develop a system model to estimate the total number

of aggregation rounds and design a greedy algorithm to jointly optimize client selection

and bandwidth allocation throughout the training process, thereby minimizing the training

latency. [176] designs a dynamic client sampling method. In the early aggregation rounds,

fewer clients are selected, and more clients are in later rounds. This method has been proven

to improve training loss and accuracy as well as decrease overall energy consumption.

HFL has been considered to be a more practical FL framework for the current MEC

system since the hierarchical architecture makes FL communication more efficient and sig-

nificantly reduces the impact of straggler [92]. Later, some studies improve the performance

of HFL from different perspectives or use it in some other applications. For example, [93, 159]

propose a detailed convergence analysis of HFL, showing that the convergence speed of HFL

achieves a linear speedup of conventional FL. Recently, FL has attracted more interest,

especially with the rapid development of ML applications on IoT devices. [81] designs a

hierarchical blockchain framework for knowledge sharing on smart vehicles, which learns the

environmental data through ML methods and shares the learning knowledge with others.

[167] uses HFL toadapt to personalized modeling tasks and protect private information.

The MAB problem has been extensively studied to address the key trade-off between

exploration and exploitation making under uncertain environment [130], and it has been

used in FL for designing the client scheduling or selection [170, 55, 165]. For example, [29]

considers a MAB problem for edge service provisioning with budget constrained and [28]

studies the optimal sniffer channel assignment for small cell cognitive radio networks. It has

also been widely used in FL for designing the client scheduling or selection [170, 55, 165]. [170]

designs a client scheduling problem and provides a MAB-based framework for FL training

without knowing the wireless channel state information and the dynamic usage of local

computing resources. To minimize the latency, [55] models fair-guaranteed client selection

as a Lyapunov optimization problem and presents a policy based on CC-MAB to estimate

the model transmission time. A multi-agent MAB algorithm is developed to minimize the

70

FL training latency over wireless channels, constrained by training performance as well as

each client’s differential privacy requirement in [165]. In this chapter, the COCS policy is

proposed to select clients for HFL. In FL, CS connects all clients and the available set of

selecting clients does not change in each aggregation round. However, in HFL, due to the

dynamic connection conditions of the client-ES pair and the limited available computing

capacities of clients in each edge aggregation round, we cannot assume that each ES can

make a selection decision for the same clients set, which indicates that the COCS policy

must face with two constraints for deciding which clients can be selected and how to rent the

computational resources. This two constraint can be divided into two different categories:

knapsack and matroid constraints rather than single constraint MAB problem [29, 28], which

brings more challenges than these studies.

3.7 Summary

In this chapter, we investigated the client selection problem to improve the training per-

formance for HFL. An online decision-making policy, called Context-aware Online Client

Selection (COCS), was designed for NO to make proper client selection decisions for each

client-ES pair. COCS was developed based on the CC-MAB framework, where NO observes

the context (i.e., downloading channel state and local computation resources) of client-ES

pairs and learns the participated probabilities to select clients and guide rental computa-

tion resources. Our proposed COCS policy departs from conventional optimization-based

algorithms, which can work in HFL networks with uncertain information. More specifically,

COCS addresses many practical challenges for HFL networks, and it is easy to implement

and achieves a provably asymptotically optimal performance guarantee. Although our COCS

policy has presented a superior performance in extensive HFL experiments, there are still

several future research questions. For example, considering the dynamic partition of context

space may improve the selection results, since it can generate more appropriate hypercubes.

A theoretical improvement of convergence speed from COCS should also be considered.

71

Chapter 4: LoMar: A Local Defense Against Poisoning Attack on FL

4.1 Abstract

Federated learning (FL) provides a highly efficient decentralized machine learning frame-

work, where the training data remains distributed at remote clients in a network. Though

FL enables a privacy-preserving mobile edge computing framework using IoT devices, recent

studies have shown that this approach is susceptible to poisoning attacks from the side of

remote clients. To address the poisoning attacks on FL, we provide a two-phase defense

algorithm called Local Malicious Factor (LoMar). In phase I, LoMar scores model updates

from each remote client by measuring the relative distribution over their neighbors using

a kernel density estimation method. In phase II, an optimal threshold is approximated to

distinguish malicious and clean updates from a statistical perspective. Comprehensive exper-

iments on four real-world datasets have been conducted, and the experimental results show

that our defense strategy can effectively protect the FL system. Specifically, the defense

performance on the Amazon dataset under a label-flipping attack indicates that, compared

with FG+Krum, LoMar increases the target label testing accuracy from 96.0% to 98.8%,

and the overall averaged testing accuracy from 90.1% to 97.0%3.

4.2 Background and Problem Formulation

4.2.1 Federated Learning

FL systems are developed to train a joint model w to address a distributed optimization

problem (e.g., image classification) in a decentralized network. Typically, an FL system

3This chapter was accepted in IEEE Transactions on Dependable and Secure Computing, November 2021.
Permission is included in Appendix D.

72

is composed of N remote clients and one aggregator. Considering that the whole training

data in the FL system is D and each remote client has its private training dataset (e.g.,

Di for the i -th client), we have D = {D1, ... ,Di , ... ,DN}, where the size of i -th private

dataset is denoted as li = |Di | and the total number of training samples is l = |D| =
∑N

i li .

Different from the conventional learning methods, the training data in FL is only stored

and processed on remote clients. Meanwhile, the aggregator maintains a joint model and

repeatedly updates it with the received local learning updates from remote clients according

to a certain aggregation rule. At the beginning of an FL process, the aggregator initializes a

joint model w0 and distributes it to all remote clients for local training. Specifically, at the

t-th iteration, the FL system repeats the following three steps to obtain the joint model wt

from the current wt−1.

1) The aggregator delivers the joint model wt−1 to all remote clients.

2) Each remote client performs its local learning process with its local training data and

the received joint model wt−1. During the local learning process, an updated local model

wt
i is produced by the stochastic gradient descent as wt

i = wt−1 − ηi∇Li(wt−1,Di), where ηi

is the learning rate of local model training and ∇Li(wt−1,Dli) denotes the gradient of local

optimization loss. Once the local training is finished (e.g., with several local epochs), each

client sends back the local training update ut
i = wt

i −wt−1.

3) The aggregator aggregates all local model updates to obtain the updated joint model

wt using a specific aggregation rule, e.g., the typical weighted averaging rule (FedAvg),

given by wt = wt−1 +
∑M

i=1 αiut
i ,where αi =

li
l
. Usually, the aggregation rule guarantees an

optimized solution for the distributed optimization problem in the FL system.

4.2.2 Attacker

In general, there are two types of poisoning attacks in the machine learning field: targeted

poisoning attacks and non-targeted poisoning attacks. Though the ultimate goal for both

types can be considered as decreasing the performance of the FL learned joint model, the

73

0 1 2 3 4 5
0

1

2

3

4

5

6

7

[u1, u2, u3, u4, …]
Label 1

Training

Update Vector u1

Primary Parameter

Label 1

Training
Primary Parameter

...

Label 7

Training

Label 7

Training

...

[u1, u2, u3, u4, …]

Update Vector un

[u1, u2, u3, u4, …]

[u1, u2, u3, u4, …]

Update Vector un+1

Update Vector uN

Primary Parameter

Primary Parameter

...

Label 7

Training
 [u1, u2, u3, u4, …]

Update Vector

Primary Parameter

ˆ
N M+
u

...

Figure 4.1: Model updates under attack on MNIST.

implementation details can vary. For example, the attacker in targeted poisoning attacks

typically aims to take control of a specific ratio of the learning objective (e.g., the targeted

labels in the image classification). Moreover, some of these attacks develop their attack

mechanisms based on a trade-off strategy to make the ML model converge on the other

labels while successfully controlling the target label. In this situation, the attacks are more

difficult to be detected. And for the non-targeted poisoning attacks, they usually manipulate

the ML model such that it would have a high error rate for testing data samples and be

unusable for further learning tasks, which do not target a specific classification label.

As FL gets more popular in recent years, the security problems in the FL systems gain

much interest from the ML community. Especially, compared to centralized learning models,

implementing an attack on the FL system is much easier because of its loose structure and

plenty of space between the remote clients and the aggregator. Therefore, multiple poisoning

attacks have been developed to break the FL systems, most of which describe their attacking

objective as an optimization problem and manipulate the joint model by sending poisoned

remote updates. For simplicity, we denote the joint model from a clean FL system as w while

the poisoned is represented as ŵ in the rest of this chapter. Note that for better presentation,

the attacker introduced in the following chapter is considered a targeted poisoning attack,

which intends to manipulate one specific label.

Usually, the attackers can produce the poisoned local training updates by injecting new

malicious clients into the system or manipulating original clean clients. In this chapter, we

74

consider the former scenario to present the notations. Note that the capacity of the attacker

in this chapter is regulated as follows: i) the attacker injects M malicious clients into the

FL system, where the budget of M is M ≤ 0.4N ; ii) by default, the number of target label

is considered as one. Hence, we denote the malicious training dataset, models, and updates

are denoted by Dm, wm, and um, respectively.

4.2.3 Defender

To address the poisoning attacks, we consider the ultimate goal of the defender to suc-

cessfully remove the malicious impact from the FL system. In general, there are two existing

types of mechanisms to develop a defender: i) one is to detect the malicious based on the

analysis of remote updates to the joint model (i.e., Auror[139]); ii) the other is to develop

a new aggregating function to achieve the FL learning objective with the poisoned remote

updates, which is also known as Byzantine tolerance (e.g., Krum [185]). However, exist-

ing defense mechanisms are proven to have weak performance against poisoning attacks on

distributed machine learning models, especially on FL. For example, as shown in [18], the

baseline label-flipping attack can bypass most of the existing defense approaches by adding

a simple stealth metric.

After reviewing existing poisoning attacks and defense mechanisms on FL, we summarize

the reason why current defenses fail. According to the principle of parsimony, a common

sense ML attack is that a successful attacker leverages an efficient yet effective impact on

the learning model. This indicates that compared to the clean benign updates, the poisoned

remote updates share a unique difference in their attack objectives. Intuitively, the poisoning

attacks on an FL system can be easily addressed if the defender finds a feasible measure-

ment to distinguish the clean and poisoned updates. However, due to the complexity (the

huge number of layers and high dimension of the input information) of the remote updates,

developing a precise criterion from a global view and considering the malicious as a global

anomaly can lead to the failure of developing a successful defense.

75

For instance, we introduce an observation of remote updates under label flipping 1 - 7

attack on the MNIST dataset with a logistic regression classifier in Figure 4.1, where the

defender needs to identify the malicious updates on label 1. However, the defense would fail

as the malicious updates may locate close to clean ones by only manipulating a small size of

parameters, which makes them hard to be detected.

To address this challenge, it is necessary to develop a new FL defense algorithm with

a feasible measurement of the remote updates for better maliciousness detection. As such,

we propose a new defender, called the Local malicious factor (LoMar). Different from the

existing defense methods, LoMar provides its malicious detection strategy based on the pa-

rameter features of the remote updates, which is considered to be a local criterion, instead

of from a global view. Specifically, LoMar uses a scored factor F (i) to denote the degree of

maliciousness for each remote client and develops a new aggregation rule on the aggregator

side, which comes with a binary controller δ(i) to protect the joint model from poisoned up-

dates. Formally, we describe the new aggregation rule of the FL system under the protection

of LoMar as follows:

w̃t = w̃t−1 +
∑N+M

i=1
δ(i)αiu

t
i . (4.1)

where w̃t denotes the joint model in a potentially poisoned FL system with LoMar protection.

4.3 Design of LoMar Defense

4.3.1 Overview

Our motivations for developing the two-phase LoMar defense on the FL system come

from two main challenges: i) finding the local density distribution of the remote update

from the parameter perspective can be very difficult and expensive; ii) it is also extremely

hard to find an appropriate approach for the malicious detection of each remote update, i.e.,

the clean updates will be considered as malicious if the defense mechanism is too strict and

the poisoning updates cannot be fully detected if it’s too loose. Moreover, it is unrealistic

for the defender to obtain a clean joint model w for further analysis because the FL system

76

can not be trusted from the start of the FL training process as it might have been already

poisoned. In order to address these challenges, intuitively, although the true distribution

of each remote update is not available in the FL, we can obtain a local density estimation

for the i -th remote update as q̃(ui), based on which all possible poison attacks can be then

detected using the local outlier detection method.

In phase I, for the i -th remote update at the t-th iteration, LoMar finds its k-nearest

neighbors to be its neighborhood reference set Ui = {ui ,1, ... ,ui ,k}, where k ≪ N + M .

Achieving this in an FL system can be extremely difficult, as the probability distribution of

remote clients is not known to the aggregator. As such, we use a state-of-art non-parametric

estimation method, which is the kernel density estimation (KDE) [148], to estimate the local

density distribution function for ui according to each output label in the FL joint model.

Specifically, in this chapter we assume an extremely difficult scenario that the defender has no

idea about the number of malicious in the FL system. Thus, we pursue an alternative solution

that defines the value of k ≤ 0.4N to be a loose bound, corresponding to the maximum

number of potentially malicious. Particularly, in the recent studies of data poisoning attacks

against FL, the number of data poison is considered an important constraint. For example,

[56] sets an upper bound of the malicious budget at only 10%. And work in [43] shows that if

the size of malicious is up to 50%, the learning speed of the FL network can be very slow that

making the attack easy to be found. Then, we define the malicious factor F (i) to describe

the numerical malicious degree for the i -th client. We introduce the process of the KDE

estimation in LoMar in Figure. 4.2: i) the remote updates are divided by the dimension of

the parameter features in the pre-processing process; ii) the parameters are clustered based

on the output labels; iii) the kernel density estimation of each output label is performed and

being a product to one numerical output.

In phase II, we provide a boolean vector to determine the malicious status of an uncertain

remote update as 1 (clean) or 0 (malicious). In this procedure, a threshold ϵ is developed from

an inequality approach to manipulate the numerical factor F (i) in phase I into the boolean

77

Dimension 1

Dimension o

Dimension 1 Dimension 1

Dimension R

Dimension 1Di Dimension 1Dimension 1n 1

Malicious

Update um

u1

DiDimensioDiDiDi

u2

u3

DiDiDimememensnsion Dimension ioioDiDiDiDiDiDiDiDiDi

(a) Pre-processing (b) Label Clustering (c) Density Production

Figure 4.2: KDE estimation structure in LoMar.

output δ(i). Theoretical analysis is also performed regarding the selection of threshold in

terms of false alarm rate.

4.3.2 Phase I: Malicious Client Factor

In a FL system, the remote updates set at the t-th iteration is U = {ut
1,u

t
2, ... ,u

t
N+M}.

Note that in FL, the i -th remote update ut
i is always related to the iteration number, and

thus in the rest of this section, we simplify the ut
i to ui , where the superscript of ui would be

denoted to present the proposed LoMar algorithm. The process of finding the malicious client

factor F (i) comes from two steps: finding the k-nearest neighborhoods and developing F (i)

with the neighborhood from the local KDE. For the update ui , we develop a neighborhood

reference set Ui = {ui ,1, ... ,ui ,j , ... ,ui ,k}, which collects the k-nearest neighborhoods of each

update instead of the whole remote updates. To evaluate their relative positions to the

kernel center ui , we calculate the averaged l2 norm distance between ui to neighbors in Ui ,

where the averaged distance is defined as d̄i =
1
k

∑k
j=1 diff(ui ,ui ,j). To further explain this

definition, the function diff(·, ·) leverages a squared Euclidean distance || · ||2 between ui

and its neighbor. Additionally, we further investigate the difference of all updates in Ui to

represent the mean value of d̄i for each ui ∈ Ui as D̄i =
1

k(k−1)

∑k
i=1

∑k
j=1 diff(ui ,ui ,j), i ̸= j .

Intuitively, in low density areas, d̄i is large and the ratio d̄i
D̄i

will spread out. In high-

density areas, the result will be reversed. Previous studies [96, 22] have shown that the

k-nearest neighborhood mapping is adaptive to estimate the local sample density from the

distance perspective.

78

As we mentioned in Section 4.2, the objective of the FL system is to train a joint model

w for a distributed learning problem. Note that a typical machine learning problem usu-

ally comes with multiple output labels, e.g., MNIST which aims to recognize digits 0-9.

Therefore, it is obvious that for each ui , the updated parameters from remote clients make

different contribution to the output, which could be denoted as y = [y1, ... , yr , ... yR] , where

r ∈ [1,R] denotes the r -th output label. Considering the relationship between Ui and y to

be a probabilistic graph model, then we could use the expected probability distribution of

each output label, e.g., P(yr) = P(yr |Ui) for the r -th output, to approach the joint distri-

bution P(y) =
∏R

r=1 P(yr). Therefore, through our defender still has no access to the true

statistic distribution of ui , we can approach an estimated probability distribution based on

the analysis of each output label that satisfies
∑R

r=1 P(ui |yr) = 1. In this chapter, we use

a non-parametric kernel density estimation function to approach the estimated local distri-

bution for the i -th remote update ui with its k-nearest neighborhood Ui . Specifically, the

estimated distribution of i -th client on r -th output label is denoted as q̃(ur
i). Formally, the

process of obtaining the q̃(ur
i) can be formulated by:

q̃(uri) =
1

k

∑k

j=1
K

(
uri − uri ,j

hr

)
, (4.2)

where K (·) is the kernel function and ur
i ,j denotes the r -th output from the j-th neighbor in Ui .

And h is the bandwidth of K (·), which is a user-defined constant value that is correlated to the

learning classifier. Note that theoretically, the value of h could be different for each output

label. For better presentation, we consider it to be constant in this chapter. Particularly,

we consider the K (·) is a Gaussian function as K
(

uri −uri ,j
h

)
= 1

(
√

2π)h
exp
(
− |uri −uri ,j |

2h

)
. Based

on the estimated q̃(ur
i), we define the maliciousness factor F (i)r for the i -th remote update

for r -th output label in its neighborhoods as follows:

F (i)r =

∑k
j=1 q̃(u

r
j)

kq̃(uri)
, (4.3)

where ur
j , j ∈ [1, k] is the local neighbors of the i -th remote update on the r -th label. There-

fore, for each label, we could obtain a corresponding maliciousness degree factor F (i)r for

79

the i -th remote update. We then estimate the numerical maliciousness degree factor F (i) of

ui with the obtained ur
i according to each output label. Note that for two different outputs

r and r ′, we consider the probability distribution of ur
i and ur ′

i in the same neighborhoods

Ui could satisfy the following relationship that P(ur
i ,u

r ′
i |yr , yr ′) = P(ur

i |yr) · P(ur ′
i |yr ′). Then

the joint probability of P̃(ui) is: P̃(ui) =
∏R

r=1 P(ur
i).

Definition 2. From the relationship between each label uri and the remote update ui , we give the

definition F (i) from the obtained F (i)r that

F (i) =

∑k
j=1 q̃(uj)

kq̃(ui)
=

∑k
j=1

∏R
r=1 q̃(u

r
j)

kq̃
∏R

r=1(u
r
i)

=
R∏

r=1

F (i)r . (4.4)

Explanation. See Appendix B.1 in detail. □

Note that the obtained F (i) can be considered as the same as d̄i
D̄i

from the statistical

perspective: the negative exponential operator of kernel function indicates that the value

of d̄ becomes smaller when the difference between d̄ and D̄ grows larger. Specifically, we

consider the higher value of F (i) is, the relative position of ui is closer to the kernel center

of its local neighborhood. F (i) can lead to a more accurate estimation when the value of

h is customized for each dimension in each cluster and we set this parameter as a constant

value in our chapter for simplicity, as finding the optimal hyperparameter is not the goal

of this chapter. The process to obtain the maliciousness degree factor vector F (i) for the

remote client. For convenience, we assume that the output labels are already known at the

beginning of the LoMar defense. In summary, we use LoMar to obtain the malicious factor

in the following two steps: i) developing the k-nearest neighborhood map; ii) obtain q̃(ur
i)

and calculate the malicious factor vector F (i).

4.3.3 Phase II: Finding Decision Threshold

After the phase I of LoMar, we obtain the numerical malicious factor vector F (i) for each

remote client. In order to achieve the optimal defense goal in Eq. (4.1), LoMar develops a

binary controller with a feasible threshold ϵ to turn the numerical results F (i) into boolean

80

status δ(i) to finally identify and remove malicious clients. Formally, if F (i) ≥ ϵ, we consider

the remote client to be clean, otherwise malicious if F (i) < ϵ.

However, there are several issues in the process of finding ϵ in the poisoned FL system:

i) although the updates share similar features according to specific classifiers, the true dis-

tribution of ui is still unavailable; ii) the threshold ϵ can hurt the learning objective of FL

if it is too strict. To address these issues, we provide an asymptotic threshold of ϵ for our

LoMar, which aims to determine most of the malicious remote updates with a high positive

malicious detection rate to protect the clean updates in FL.

Firstly, we discuss the lower bound of ϵm for malicious updates in an FL system under

poisoning attacks. In particular, the following theorem tells the asymptotic false alarm rate

for a given ϵm:

Theorem 8. Assuming that the lower bound of the probability distribution of malicious

updates is ϵm, then the possibility of false detecting a clean update ui as malicious would be

P(F (i) > ϵm) ≤ exp

(
−4π(ϵm − 1)2(k + 1)2h̄

k(2k + ϵm + 1)2V 2

)
, (4.5)

where k is the size of its k-nearest neighborhoods, V denotes the neighborhood kernel density

distribution volume of ui and h̄ indicates the average bandwidth of ui (which is considered as

a constant in this chapter).

Proof. See Appendix B.2 in detail. □

Then, we consider an optimal condition that there is a trusted FL system, which consists

of only clean remote clients. In this scenario, there exists a statistical boundary for the

expectation of F (i) for the furthest clean update ui to the kernel center. The following

theorem shows how to determine the boundary of clean remote updates.

Theorem 9. Consider that the remote update ui is generated from a continuous distribution

in a FL system. Then, when N → ∞, there exist a boundary σ that F (i) = 1 where the

remote update ui is considered to be clean (not abnormal) as σ = E(D̄i)

E(d̄i)
= 1.

81

Proof. Considering the situation that the updates are uniformly distributed around ui , then

the discrete space Ui could be viewed as a continuous arbitrary distribution. The general

case when E(ui) = 0 would be:

E(D̄i) =
1

k(k − 1)
E
(∑k

j=1
K (ui ,ui ,j)

)
=

1

k

∑k

j=1
E(K (ui ,ui ,j) = E(d̄i), (4.6)

where E(D̄i) is the expectation of D̄i . Then we give a definition of the boundary σ as

σ = E(D̄i)

E(d̄i)
= 1. □

This shows that when the value F (i) reaches 1, we consider it locates at the boundary of

clean updates in an FL system without attacks. Thus, to protect the FL learning objective

and remove as many malicious remote updates in LoMar, we define the optimal threshold

ϵ = min{1, ϵm}. We introduce the development of finding an optimal ϵ and obtaining a

trusted joint model w̃t at the t-th iteration in LoMar.

4.3.4 Discussion

In this work, we develop a defense algorithm LoMar to address the poisoning attacks on

FL systems. Note that the training data distribution can have a significant influence on both

the implementation and defense of poisoning attacks against FL. Typically, as the degree of

non-i.i.d training data distribution increases, the learned local updates on the remote clients

can be more diverse, which leaves room for the implementation of the attackers and makes

it more difficult to develop a defense. Thus, we investigate the performance of the proposed

LoMar algorithm under different training data distributions and the results indicate that

compared to the existing works, LoMar is more robust under this situation.

We also investigate the performance of the proposed LoMar from the view of FL efficiency.

Note that as presented in [107], different from the centralized ML frameworks, the learning

speed of an FL network is dominated by the communication cost between the aggregator

and remote clients. As such, though the implementation of LoMar defense requires an extra

computational cost on the aggregator side, the impact on FL efficiency could be limited.

82

Moreover, the extra cost of LoMar could be mainly from the development of the k-nearest

neighborhood, which is proved as O(N) in [149]. Typically, in the settings of an FL network,

the computational power on the aggregator is much more powerful than remote clients that

we believe the linear cost on the aggregator is also limited.

Note that several studies have a close proposal of this chapter, which develop defense

approaches to remove malicious updates against poisoning attacks on FL. For example,

works in [139] provide Auror, which studies the statistical distribution of remote updates for

malicious detection. Meanwhile, [77] provides spectral anomaly detection (SAP) to detect

malicious updates for developing a robust FL system. We agree with Auror that though the

defender has no access to the training data distribution because of the privacy features, we

could approximate it via the observation and investigation of the parameters of the remote

updates during the training of the joint model.

However, similar to the existing centralized ML defense approaches, Auror and SAP

assume that the defender has access to a publicly trusted dataset, which shares the same

distribution with the clean training data. On the contrary, our LoMar uses a non-parametric

estimation method KDE, for studying the statistical features without knowing the clean

training data distribution, which preserves the important privacy feature of FL. Additionally,

the works in [151] investigate the label-flipping attack on FL and provide a PCA analysis-

based defense strategy for malicious detection. However, this approach assumes that the

malicious and clean updates could be easily divided into two clusters, which is still a global

anomaly detection approach that could be easily cheated by model poisoning attacks with

a stealth metric [18]. Moreover, we provide the performance evaluation of LoMar against

model poisoning attacks in Appendix B.1. In conclusion, compared to recent defense studies

on detecting malicious remote clients in FL, our LoMar approach can address the poisoning

attacker with stealth metric and develop the defense model under the privacy-preserved FL

framework.

83

4.4 Evaluation

4.4.1 Experiment Setup

To evaluate LoMar, we conduct extensive experiments under the FL framework on mul-

tiple real-world datasets. The experiments are performed with Pytorch [117] and we imple-

ment the FL framework with the Python threading library by designing remote clients as

lightweight threads.

We first introduce four real-world datasets used in this chapter. Especially, to present

the imbalanced number of data samples according to different output labels, we assume a

reasonable scenario that the training data samples in each remote client could be divided

into two parts: one subset of a major label with the most number of training samples and

one subset of all output labels with an equal number of samples. Specifically, we use a

hyperparameter λ ∈ [0, 1) to represent the ratio of major label training samples in the

remote client private dataset.

1) Real-world datasets: We consider four popular datasets in the FL field: MNIST [73],

KDDCup99 (network intrusion patterns classifier) [15], Amazon (Amazon product reviews)

[6], and VGGFace2 (facial recognition problem from Google image search) [23]. The general

information of each dataset is introduced in Table 4.1, which includes the size of the dataset

and the number of output labels.

2) Data partitioning settings: In the process of the training data partition, we introduce

the hyperparameter λ to control the imbalanced ratio of each remote client. For instance,

if the i -th remote client has li private training samples, then (1 − λ)li of the samples are

randomly selected from the whole training dataset and the other λli samples are chosen from

one specific label. For MNIST, we partition the dataset into 1000 remote clients and each

remote client has 600 training data samples. Because the KDD dataset has a low number

of features and the data samples in each label are imbalanced: some labels only have 20

data samples while others can have over 280,000 data samples. We consider each clean client

84

Table 4.1: Dataset information overview.

Dataset Dataset Size Classes Features
MNIST 70,000 10 784

KDDCup99 494,020 23 41
VGGFace2 7380 10 150528
Amazon 1500 50 10000

shares the same number of mixed labels and we set the number of remote clients to 23. For

the Amazon dataset, because the number of the features is extremely high and the number

of data samples per class is very low, we set the number of remote clients to 50 and each

client has 150 data samples. And for the VGGFace2 dataset, for simplicity, we use the pre-

processed training data before the FL training process (each training image is resized to 256

× 256). The number of remote clients is set to 200 and the partitioning of the training data

follows the same rule in MNIST.

3) Implementation settings: Note that our comprehensive experiments are developed

to evaluate the performance of the defense algorithms instead of finding the best learning

model with the highest FL learning performance. Based on this motivation, we implement

our learning model and we define the default experimental setting of the FL framework as

follows: The initialized joint model is set as w0 = 0. The number of FL iteration time is

set as T = 200. For each remote training process, the number of remote training is set

as E = 5. The batch size for each remote training SGD is 20. For MNIST, KDD, and

Amazon datasets, which are with less information in each training data sample, we use a

logistic regression model with one fully-connected layer. For VGGFace2, we implement a

DNN classifier SqueezeNet with the touch vision package [102]. The detailed architecture of

our SqueezeNet classifier is described in Table 4.2.

4) Compared defense algorithms: We compare our LoMar defense algorithm with the

following existing defense methods: 1) Krum [20] is developed to protect distributed learning

models by giving an alternative aggregation rule. At each iteration, this defense computes

the Euclidean distance between each update and removes the malicious updates from the

85

Table 4.2: SqueezeNet model setting.

Layer Type Size Parameters Value
Conv + ReLU 3 × 3 × 64 Layers 12
Max Pooling 3 × 3 Batch size 8
Conv + ReLU 7380 Momentum 0.9
Max Pooling 3 × 3 Weight decay 0.0001
Conv Kernel 10 × 512 Learning rate 0.001

Output 10

Table 4.3: Testing accuracy under the label-flipping attack.

MNIST KDD Amazon
Overall Target Other Overall Target Other Overall Target Other

LoMar 0.912 0.977 0.930 0.971 0.991 0.990 0.970 0.988 0.989
FG 0.783 0.911 0.512 0.901 0.989 0.965 0.922 0.971 0.970

Krum 0.883 0.051 0.815 0.692 0.022 0.970 0.823 0.084 0.915
FG + Krum 0.812 0.996 0.880 0.957 0.985 0.918 0.901 0.960 0.917

Median 0.655 0.925 0.610 0.555 0.971 0.708 0.572 0.959 0.500
No Defense 0.884 0.078 0.925 0.800 0.015 0.998 0.900 0.015 0.998
No Attack 0.931 0.982 0.946 0.980 0.996 0.998 0.990 0.994 0.996

aggregator which has a larger distance. The number of clients removed by the aggregator in

our chapter is set to M as the number of selected clients is N−0.5×M−2. 2) FoolsGold(FG)

[44] is a defense method against Sybil attacks [37]. It addresses the attacker by penalizing the

learning rate of the malicious updates, which are detected by evaluating the angle difference

between each update and the joint learning model. We claim that the memory usage in

the FG chapter violates the privacy-preserving rule of the FL system and we only take the

no-memory version of FG in this chapter. We set the inverse sigmoid function in the FG

method centers at 0.5 and the confidence parameter to 1. 3) Median defense method [185]

uses an aggregator which sorts the updated value of this parameter among all N +M clients

and picks the median value as the contribution to the joint model at each iteration. Note

that when N+M is odd, the median value comes from one update, and when N+M is even,

it comes from the average of two updates.

In this chapter, we consider two types of poisoning attacks on the FL system: the data

poisoning attack (which generates the poisoned remote updates by the malicious data) and

86

the model poisoning attack (which creates the remote malicious update based on the FL

aggregating rule and the attack objective). For the data poisoning attack, we implement the

Label flipping attack [19]. And for the model poisoning attack, we implement the stealthy

model poisoning method in [18]. Note that in this chapter, the attack methods we select

are the most representative and provide a general attacking formulation for different defense

algorithms in each category. For instance, [42] provides a typical local model poisoning

attack against Byzantine defense mechanisms, however, it only focuses on the Byzantine-

related algorithms while not providing a successful attack on other defense strategies. We

will introduce the experimental setting and the results of the model poisoning attack in

Appendix B.1.

The goal of the label-flipping attack is to take control of the target label(class) in the FL

system. Typically, the attacker addresses the target label by flipping the output of target

data samples from a source label. In our chapter, we consider the malicious and the clean

remote clients to share the same number of training data samples. Specifically, we introduce

a parameter τ ∈ [0.1, 1) to control the malicious ratio in our experiments. Similar to the

definition of λ, for the i -th remote client, the number of randomly selected training data

samples is (1 − τ)li and the number of label-flipped data samples is τ . We then introduce

our default attack implementation on the FL system corresponding to each dataset. For the

MNIST dataset, the attacker injects 100 malicious clients into the FL system. The source

label is set to digit 7 and the target label is set to digit 1. For the KDD dataset, we pick

two classes with more than 200,000 data samples as the source label and target label and

create 3 malicious clients whose poisoned samples are flipped from class 11 to 9. For the

Amazon dataset, we set the source label to 15 and the target label to 10. The number of

malicious clients is set to 5. For the VGGFace2 dataset, we pick up two target labels from

two different source labels as label 3 to label 2 and label 10 to label 9. For each target label,

we create 10 malicious clients and the total number of malicious clients is 20.

87

0.1 0.2 0.3 0.4

Malicious ratio ()

0.6

0.7

0.8

0.9
O

v
er

al
l

ac
cu

ra
cy

0.1 0.2 0.3 0.4

Malicious ratio:

0.5

0.6

0.7

0.8

0.9

O
v
er

al
l

ac
cu

ra
cy

0.1 0.2 0.3 0.4

Malicious ratio:

0.4

0.6

0.8

1

O
v
er

al
l

ac
cu

ra
cy

0.1 0.2 0.3 0.4

Malicious ratio:

0

0.5

1

T
ar

g
et

 l
ab

el
 a

cc
u
ra

cy

Krum

FG

No Defense

FG+Krum

Median

LoMar

0.1 0.2 0.3 0.4

Malicious ratio

0

0.5

1

T
ar

g
et

 l
ab

el
 a

cc
u
ra

cy

Krum

FG

No Defense

FG+Krum

Median

LoMar

0.1 0.2 0.3 0.4

Malicious ratio:

0

0.5

1

T
ar

g
et

 l
ab

el
 a

cc
u
ra

cy

Krum

FG

No Defense

FG+Krum

Median

LoMar

Figure 4.3: Overall and targeted accuracy on the three datasets.

0.1 0.3 0.5 0.7 0.9

Imbalanced hyperparameter:

0.2

0.4

0.6

0.8

1

O
v

er
al

l
ac

cu
ra

cy

0.3 0.5 0.7 0.9

Imbalanced hyperparameter:

0.2

0.4

0.6

0.8

1

O
v

er
al

l
ac

cu
ra

cy

0.1 0.3 0.5 0.7 0.9

Imbalanced hyperparameter:

0.2

0.4

0.6

0.8

1

O
v

er
al

l
ac

cu
ra

cy

0.1 0.3 0.5 0.7 0.9

Imbalanced hyperparameter:

0

0.2

0.4

0.6

0.8

1

T
ar

g
et

 l
ab

el
 a

cc
u

ra
cy

Krum

FG

No Defense

FG+Krum

Median

LoMar

0.1 0.3 0.5 0.7 0.9

Imbalanced hyperparameter:

0

0.2

0.4

0.6

0.8

1

T
ar

g
et

 l
ab

el
 a

cc
u

ra
cy

Krum

FG

No Defense

FG+Krum

Median

LoMar

0.1 0.3 0.5 0.7 0.9

Imbalanced hyperparameter:

0

0.2

0.4

0.6

0.8

1

T
ar

g
et

 l
ab

el
 a

cc
u

ra
cy

Krum

FG

No Defense

FG+Krum

Median

LoMar

Figure 4.4: Non-iid overall and targeted accuracy on the three datasets.

To evaluate the experiment results accurately, we introduce different evaluation metrics:

1) Target label accuracy. We use the target label accuracy to represent the testing perfor-

mance of the target labels, e.g., a defense algorithm can be considered to be failed if the

target label accuracy is low. 2) Another label accuracy. The other label accuracy indicates

the learning result on other labels except for the target label and the source label. For

88

example, in label flipping 1− 7 attack on MNIST, 1 is the source label while 7 is the target

label. If the testing results of other labels are low, we consider the FL system might be

harmed by the defender because those labels are not related to the attacker. 3) Overall

learning accuracy. We consider the overall learning accuracy denotes the average learning

accuracy of all labels in the FL system and it can show the overall learning performance for

compared defense methods under poisoning attacks. Note that the results of overall accu-

racy could be different from the summation of the target and overall accuracy because the

performance of the source label could be different due to the attack and defense strategies.

4) Malicious alarm confidence. We also use the receiver-operating characteristic (ROC) [35]

to evaluate the malicious alarm confidence of the compared defense algorithms. This metric

is introduced in Section 4.4.4.

4.4.2 Results and Analysis

We show the results of our experiments with tables and figures in this section, and we

provide a detailed analysis of the results based on our evaluation metrics.

1) Analysis of compared algorithms for each dataset: We give the comparison between

LoMar and other defense methods based on three datasets in Table 4.3. We can notice that

our LoMar defense model has the best defensive performance among all compared methods

on overall accuracy, target label accuracy, and source label accuracy in MNIST and Amazon

datasets, for example, LoMar can achieve 97.0%, 98.8%, and 98.9% in Amazon. The result of

KDDCup99 dataset shows that LoMar has the second-best learning accuracy on average of

all three features, 97.1%, 99.1%, and 99.0%. By taking both attack rate and overall accuracy

into consideration, LoMar has the best defensive performance among these defense methods

when the percentage of malicious updates increases.

The result of Krum on the three datasets shows that it is similar to the defense scenario

so that we can consider Krum cannot defend against label-flipping attacks sufficiently. FG

has the better performance of the target label but is worst for overall and other clean labels.

89

It indicates that FG can influence the clean labels with false malicious detection on clean

updates, e.g., 78.3%, 91.1%, and 51.2% for MNIST. Median has the worst performance

overall and another label accuracy. Although in all three datasets, it performs sufficiently of

the target label, 92.5%, 97.1%, and 95.9%. FG+Krum has the best defensive performance

among all three existing defense methods. However, it can still remove the clean updates

from FL by mistake, especially in MNIST dataset as the overall learning accuracy is only

81.2%.

2) Analysis of the different malicious ratios τ : Under different malicious ratios τ , we show

the performance with the compared defense methods on the MNIST dataset in Figure 4.3.

We can see that LoMar has the best performance on overall and target labels under the

different values of τ . Even with the number of malicious increasing, LoMar keeps the accuracy

as 90% overall and 98% target label. FG and FG+Krum perform sufficiently on the targeted

label, but their overall accuracy is worse than no defense scenario. Median defense takes the

worst performance as overall accuracy 65%. For Krum, we could find out that the target

label accuracy decreases with the increase of τ , even to 2% (similar to no defense).

For KDD in Figure 4.3, LoMar has highest overall and target testing accuracy 98% and

99%. The Median also performs worst for the whole testing 55%. The overall testing accuracy

of other defense methods decreases obviously, when τ increases, FG defense decreases from

90% to 63% with the malicious ratio increasing from 0.1 to 0.4. Krum defense cannot defend

the target label, which shows as similar to the no defense scenario.

Although the performance of LoMar reduces when more malicious clients are injected for

the Amazon dataset in Figure 4.3, it has a better result than other defense methods. Median

performs worst for the overall testing 58%, and the target label accuracy reduces from 98%

to 62%. Krum performs similar to no defense both on overall and target labels. FG+Krum

has overall accuracy 91%-83% and target label accuracy 99%-77%. The overall accuracy of

FG is 85%-71% and target label accuracy is 95%-52%.

90

Table 4.4: Testing accuracy under multi-labels flipping attack.

Overall Acc. Acc. 1 Acc. 7 Acc. 6 Acc. 9 Acc. 2 Acc. 5 Acc. 0 Acc. 8 Other Acc.
LoMar 0.885 0.962 0.895 0.936 0.864 0.844 0.786 0.955 0.836 0.875
Krum 0.734 0.834 0.800 0.765 0.750 0.624 0.586 0.750 0.687 0.801
FG 0.802 0.905 0.766 0.918 0.925 0.622 0.457 0.893 0.938 0.766

FG + Krum 0.415 0.859 0.802 0.996 0.991 0.398 0.204 0.040 0.000 0.359
Median 0.655 0.885 0.579 0.812 0.472 0.706 0.282 0.484 0.778 0.619

No Defense 0.705 0.822 0.809 0.763 0.748 0.632 0.585 0.749 0.688 0.771

4.4.3 Analysis of Imbalanced Samples with Different λ

We then evaluate the performance of LoMar with different values of λ, which denotes

the ratio of training samples in the major label at each private remote dataset. We setup

the range of λ = [0, 1, 0.9] and compare the performance of LoMar with the existing defense

approaches.

Figure 4.4 shows the overall and target label testing accuracy for different λ values. We

could notice from the results that when the value of λ increases, the learning performance

could decrease rapidly. We consider this phenomenon occurs because the introduced defense

approaches falsely predict the imbalanced clean updates as malicious, especially under a

higher imbalance degree. For example, the accuracy of Krum on the MNIST dataset reduces

from 61.2% to 15.5%. We also find that though LoMar has a decreased performance at the

same time, the decrease degree is lighter when compared to other defense methods. These

results show that LoMar still outperforms existing approaches when the remote training

samples are imbalanced.

1) Analysis compared algorithms under multiple-labels flipping attack: In this part, we

investigate the performance of LoMar under a label-flipping attack with multiple targets.

Difference from the previously introduced single target label-flipping attack, the malicious

updates in this scenario consists of four different source-target label pairs in the MNIST

dataset: 1 to 7, 6 to 9, 2 to 5 and 0 to 8. Note that we choose the source and target labels

based on common sense in the development of an attacker: the malicious is more difficult

to be found if two labels share a close distribution. Specifically, for better presentation and

comparison, we still set the percentage of malicious clients to 10% that each pair controls

91

25% of malicious updates. In this setting, 4 out of 10 classes are under attack and the

detailed experimental results are shown in Table 4.4.

LoMar has the best overall testing accuracy and the accuracy for other labels which are

clean 88.5% and 87.5%, and FG+Krum has the worst performance 41.5% and 35.9%, which is

lower than no defense scenario 70.1% and 77.1%. For each label, LoMar increases the testing

accuracy 10%-20% than no defense, for instance, LoMar is 93.6% for the label 6, and there

is only 76.3% without defense. Krum has a similar performance as the no defense scenario,

the degree of increase is -0.2%-1.2%. The result indicates that it has limited abilities to

defend the attack as the attack rate approaches the upper bound of an attacker in a system

without defense. For FG, we can find the defense performance against attacks from label

1 to label 7 and label 0 to label 8 is sufficient, and it fails to other attacks. We assume

that the reason FG fails to defend against this attack is that it penalizes the learning rate

of many clean updates. For FG combined with the Krum defense model, this method shows

extreme results, for example, it has the highest accuracy 99.6% at label 6, but it cannot

determine which label is 8, i.e., 0% for label 8. We infer the reason is that the combination

of FG and Krum causes more malicious alarms on clean updates which may come from the

features of these two defense mechanisms. The Median defense method does not increase the

performance sufficiently, but it performs very low for the label 5, i.e., 28.2%. Furthermore, on

the hand of learning accuracy, the Median defense fails to obtain a feasible learning accuracy

on both target labels and other non-target labels.

2) Evaluation of SqueezeNet for VGGFace2 dataset: We evaluate the defense performance

based on the training and testing classification matrix in Table 4.5. Although LoMar defense

is influenced by the attacker with 73.3% target label training accuracy and 83.9% of the

testing classification. It also has the best accuracy among these defenses. Moreover, it still

has the best overall accuracy both on training and testing as 83.0% and 89.7%, and the best

training accuracy for other labels 85.4%. We could notice that compared to the FG+ Krum

method, LoMar obtains a higher target accuracy and other label accuracy but lower overall

92

Table 4.5: Learning performance on the VGGFace2 dataset.

Training Overall Acc. Target Acc. Other Acc.
LoMar 0.830 0.733 0.854
FG 0.799 0.679 0.829

Krum 0.834 0.686 0.870
FG+Krum 0.862 0.705 0.846
No defense 0.834 0.653 0.880

Testing Overall Acc. Target Acc. Other Acc.
LoMar 0.897 0.839 0.912
FG 0.867 0.770 0.891

Krum 0.869 0.780 0.891
FG+Krum 0.884 0.831 0.898
No defense 0.872 0.789 0.893

accuracy. We consider this might be because the performance of the source label is enhanced

by the byzantine tolerance strategy, which is supported by the results in Krum.

Other defenses do not perform efficiently on the target label either training or testing

side, i.e., the accuracy of all defenses is lower than 70% and 80%. For Krum, we find that

the performance is only 3% better than with no defense and we consider this method has

almost zero ability on dealing with the attackers in this experiment. For FG, it has a weak

overall training accuracy of 79.9% and other clean labels 82.9%. This indicates that FG has

limited defense performance in addressing attackers at a DNN FL model. In conclusion, the

results in DNN models support that the LoMar defense algorithm has the ability to detect

attacks and outperforms other methods.

3) Impact of different λ and τ on VGGFace2: The results of impact with different τ on

VGGFace2 dataset in Figures 4.5 show that the performance of compared defense methods

does not have a significant reduction if more malicious clients are injected into the dataset.

It might come from the reason that the defense performance of compared defense methods

cannot remove the impact of the attacker completely even from the lowest ratio τ , and attack

objectives reach the upper bound as a low malicious update ratio. Figure 4.5 shows that

when imbalanced ratio λ increases from 0.1 to 0.7, the performance does not have obvious

93

0.1 0.3 0.7 0.90.5

Imbalanced data distribution: λ

0.2

0.4

0.6

0.8

1
O

v
er

al
l

ac
cu

ra
cy

Krum

FG

No Defense

FG+Krum

LoMar

0.1 0.2 0.3 0.4

Malicious ratio:

0.4

0.5

0.6

0.7

0.8

T
ar

g
et

 l
ab

el
 a

cc
u

ra
cy

Krum

FG

No Defense

FG+Krum

LoMar

0.1 0.3 0.7 0.90.5

Imbalanced data distribution: λ

0.2

0.4

0.6

0.8

1

O
v
er

al
l

ac
cu

ra
cy

Krum

FG

No Defense

FG+Krum

LoMar

0.1 0.3 0.5 0.7 0.9

Imbalanced data distribution: λ

0

0.2

0.4

0.6

0.8

1

T
ar

g
et

 l
ab

el
 a

cc
u
ra

cy

Krum

FG

No Defense

FG+Krum

LoMar

Figure 4.5: Learning performance on VGGFace2.

decreasing. When λ increases to 0.7, we can see existing defense methods reduce sharply,

but LoMar also keeps the reduction degree and sufficiently protects the system.

4.4.4 Malicious Alarm Evaluation

In this part, we further investigate the reasons that lead to the different experimental

results between our proposed LoMar and compared approaches under FL attacks. Specif-

ically, we study the false alarms in the defense approaches, which could be both the false

malicious and the false clean determinations. In this chapter, we use ROC analysis to study

this phenomenon, which is a state-of-art statistical model evaluation tool.

For the presentation, we first introduce several important parameters in the ROC analy-

sis. Generally, there are two benchmarks to illustrate the performance of a learned classifier

in ML, sensitivity, and specificity. In this work, we denote the number of true clean updates

as N and the number of malicious updates as M . Based on N and M , we add four corre-

sponding variables to introduce the definition of remote updates under the compared defense

approaches. Specifically, Nf is the number of updates that are falsely determined as clean

while Nt is the number of correctly determined clean updates. Meanwhile, Mt represents

the number of successfully detected malicious and Mf denotes the number of false alarms.

Obviously, we could notice that N = Nt +Mf and M = Nf +Mt . As such, the ROC analysis

considers the sensitivity as the rate of correctly determined clean updates Nt

N
and the speci-

ficity as the rate of correctly determined malicious Mt

M
. In this condition, we could obtain the

ROC curve, which is a plot of the sensitivity on the y axis and the values of 1− specificity on

the x axis. Note that the worst results for a defender classifier in the ROC curve reflect into

94

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
p
o
si

ti
v
e

ra
te

Krum

FG

FG+Krum

LoMar

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
p
o

si
ti

v
e

ra
te

Krum

FG

FG+Krum

LoMar

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
p
o
si

ti
v
e

ra
te

Krum

FG

FG+Krum

LoMar

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.2

0.4

0.6

0.8

1

T
ru

e
p
o

si
ti

v
e

ra
te

Krum

FG

FG+Krum

LoMar

Figure 4.6: ROC on MNIST, KDDCup99, Amazon, and VGGFace2.

a 45◦ diagonal line from (0,0) to (1,1), which indicates that malicious updates are detected

by random chance. And the better the classifier is, the area of the ROC curve is bigger.

Figure 4.6 shows the ROC curves of compared defense methods on datasets mentioned in

this chapter. Note that due to the mechanism of Median which obtains the joint model from

sorting each parameter of the updates and selecting the median value as the contribution to

the joint model, this method leads to a large number of false detecting and we only discuss

LoMar, FG, Krum, and FG+krum defense methods.

Firstly, we can notice that Krum has the worst results on each ROC curve. In Figure 4.6,

the Krum defense classifier is close to a 45◦ diagonal line from (0,0) to (1,1) which means

that the efficiency of Krum almost approaches a random chance. Secondly, the FG method

has the best ROC curve on the Amazon dataset and the FG combined with the Krum

method has the best performance on the KDD dataset as the curves are nearly a square

area. However, the results of these two defense methods on MNIST and VGGFace2 datasets

are not ideal as the areas are far smaller than the results from our LoMar defense method.

Especially, our LoMar defense has the best ROC curve on MNIST and VGGface2 datasets

and the second performance on KDD and Amazon datasets. Furthermore, the obtained

results show that our proposed LoMar has the best overall average ROC curve area on all four

datasets, and we believe that the results on ROC are related to defense performance results in

Section 4.4.2. The correlation between ROC curves and the FL model performance supports

our intuition that compared to existing defense methods, LoMar can develop a successful

malicious removing strategy, which provides less number of both the false malicious and the

false cleans in the learning process of the FL system.

95

4.5 Related Works

Poisoning is the most widespread type of attack in the history of the learning field [3, 5,

144, 110]. In general, poisoning attacks reduce the learning model accuracy by manipulating

the learning training process to change the decision boundary of the machine learning system.

Depending on the goal of poisoning attacks, we classify those attacks into two categories:

targeted poisoning attacks [138, 46, 179] and non-targeted poisoning attacks [19, 58, 180, 99].

Non-targeted poisoning attacks are designed to reduce the prediction confidence and mislead

the output of the ML system into a class different from the original one [115]. In targeted

poisoning attacks, the ML system is forced to output a particular target class designed by

the attacker [116]. Compared to non-targeted poisoning attacks, targeted poisoning attacks

are more difficult to be found by learning defense systems because targeted poisoning attacks

can affect the ML system on the targeted class without changing the output of other classes.

Recent studies [11, 18, 108, 44, 42, 17, 109, 151] on data poisoning attacks explore the

privacy and system risks of a decentralized machine learning system. Targeted poisoning

data attacks could manipulate the training dataset in the FL system in two ways: label

vector manipulation [171] and input matrix manipulation [11]. In label vector manipulation,

the attackers can directly modify the labels of the training data into a targeted class, e.g.,

Label flipping attack [171], where some labels of training data (known as the “target” classes

of the attacker) are flipped into another class to reduce the recognition performance of the

target classes. Meanwhile, the attackers can also train a generative model for producing

poisoning data [82]. On the other hand, the features of training data could be manipulated

to achieve the goal of targeted data poisoning attack by input matrix manipulation [18, 42].

One category of existing defense approaches on FL aims to separate the malicious and

clean remote clients, e.g., Auror [139]. However, Auror uses the trusted training data to

determine a threshold between malicious and non-malicious features, which is not realistic

in FL settings. Another type of method is developed based on Byzantine-tolerant learning

theory [52, 41, 172, 20, 44]. For instance, the Zeno defense algorithm in [173] removes several

96

largest descents in each local training iteration and combines the rest of the updates to be

the joint model. However, the measurement is based on Euclidean distance, which cannot

determine the true largest descents due to the dimension reduction. Trim Mean [83] method

achieves the goal by finding a subset of the training dataset to minimize the loss function.

The density-based anomaly detection is widely used in data outlier detection [149, 192,

193]. Several improvements of the basic density-based model have been proposed, for ex-

ample, a connectivity anomaly detection [150], or based on a reverse nearest neighborhoods

adding to the nearest neighborhoods and thinking about the relationship between different

values as a measurement of anomaly [137]. In [48], they proposed FIND, a density-based

detection to detect nodes with data faults that do not need to assume the sensing model nor

the event injections cost. [124] uses density estimation to detect the outlier data in large

data streams in online applications.

4.6 Summary

In this chapter, we propose a new two-phase defense algorithm called LoMar to address

the poisoning attacks against FL systems. In Phase I, LoMar define a kernel density-based

estimator to indicate the degree of the maliciousness for each update compared to the ref-

erence set, which is collected by its k-nearest neighborhoods. In Phase II, LoMar designed

an asymptotic threshold to provide a binary determination of the poisoned updates. Specif-

ically, the provided threshold also protects the clean updates of the FL system from being

regarded as malicious by the defender. Our empirical results on four real-world datasets with

the comparison against four existing defense methods demonstrate that LoMar can address

both data and model poisoning attacks against FL.

97

Chapter 5: How to Test the Randomness for Security?

5.1 Abstract

We revisit the traditional framework of wireless secret key generation, where two par-

ties leverage the wireless channel randomness to establish a secret key. The essence of the

framework is to quantify channel randomness into bit sequences for key generation. Con-

ducting randomness tests on such bit sequences has been a common practice to provide the

confidence to validate whether they are random. Interestingly, despite different settings in

the tests, existing studies interpret the results the same: passing tests means that the bit

sequences are indeed random.

In this chapter, we investigate how to properly test the wireless channel randomness to

ensure enough security strength and key generation efficiency. In particular, we define an

adversary model that leverages the imperfect randomness of the wireless channel to search the

generated key and create a guideline to set up randomness testing and privacy amplification

to eliminate security loss and achieve an efficient key generation rate. We use theoretical

analysis and comprehensive experiments to reveal that common practice misuses randomness

testing and privacy amplification: (i) no security insurance of key strength, (ii) low efficiency

of key generation rate. After revision of our guideline, security loss can be eliminated and

the key generation rate can be increased significantly4.

4This paper was published in IEEE Transactions on Information Forensics and Security, vol. 16, pp.
3753-3766, June 2021. Permission is included in Appendix D.

98

5.2 Background and Preliminaries

In this section, we briefly introduce the background of extracting secrets from the wireless

channel and then formalize the framework of secret key generation. To this end, we discuss

the scenario and assumptions in this chapter.

5.2.1 Extracting Random Secrets from Wireless Channels

Traditional cryptographic mechanisms (e.g., Diffie-Hellman and RSA [63]) reply on estab-

lishing computational difficulties for an adversary to achieve the goal of security. In wireless,

mobile or IoT domains [198, 169], many wireless security designs have been proposed to

leverage the reciprocal and random properties of wireless channel measurements (e.g., RSSI

and phase shifts) to generate a common secret sequence between Alice and Bob. In many

studies [9, 103, 59, 118, 156, 26, 90, 160, 161, 89, 154, 166, 198, 1, 122, 121, 25], such a

sequence is directly used as the secret key for the secure communication between Alice and

Bob. In this chapter, we use secret key generation as our main application scenario to study

how to test the wireless channel randomness for security, since it is the most representative

study of security designs leveraging wireless channel randomness.

Figure 5.1 shows a typical framework for Alice and Bob extracting a common secret

sequence from the wireless channel. The framework consists of design components in both

the wireless domain and the cryptographic domain. In the wireless domain (shown on the

left-hand side of Figure 5.1), Alice and Bob keep measuring the wireless channel response,

such as measuring the RSSI, CSI, or phase shifts between them, and then quantify the

measurements into bits [9, 103, 59, 161, 90, 198, 195]. Because of the reciprocal property of

the wireless channel, their measurements are likely to be the same from the channel between

them, and accordingly, their quantified bits sequences should also be likely the same.

Then, Alice and Bob can enter the cryptographic domain [59, 90, 169] as shown on the

right-hand side of Figure 5.1 and use information reconciliation [21] and privacy amplification

99

wireless
channel

information reconciliation

and privacy amplification

Alice

Bob

wireless domain cryptographic domain

measurement and

quantification

Secret bit

sequence

Figure 5.1: A framework of random secret key generation.

[16, 104] to compress their respective bit sequences (with low per-bit entropy) into the same

short sequence (with per-bit entropy expected to be near 1).

5.2.2 Formalizing the Framework of Secret Key Generation

For the framework to extract random bit sequences from the wireless channel, there

are two major components between Alice and Bob: the wireless domain design and the

cryptographic domain design, which are formally modeled in the following.

Definition 3. (Secret Bit Sequence Extraction Models) The wireless domain design is a

function fw : ΩD → {0, 1}L mapping a random channel property (e.g., RSSI or phase shifts)

in the continuous domain ΩD during a time duration D to a binary bit sequence in {0, 1}L,

which denotes the set of all bit sequences with length L.

The cryptographic domain design is a function fc : {0, 1}L → {0, 1}M mapping a binary bit

sequence with length L to a new sequence with shorter length M ≤ L, in which the correlation

among bits is minimized close to 0 by privacy amplification. When M = L, there is no

cryptographic domain in a secret key generation design [103, 1], we simply set function fc as

fc(x) = x for any input x .

A statistical randomness test is a function T : {0, 1}∗ → {{Accept H0}, {Accept H1}},

where {0, 1}∗ denotes the set of bit sequences with any length (e.g., length of L or M), H0

and H1 are null and alternative hypotheses denoting the events that the randomness test

succeeds and fails, respectively.

100

The objective of Alice and Bob is to leverage the random channel property between them,

denoted by ωD ∈ ΩD
5 during time period D, to compute a bit sequence KD = fc(fw (ωD)) ∈

{0, 1}M for their security design purpose.

In the extraction models, there is no evaluation that the bit sequence KD is sufficient

for security purposes. Therefore, security evaluation is another critical component for any

wireless channel randomness-based security design. To this end, NIST statistical randomness

test suite [14] is widely adopted as a common practice in the literature [103, 59, 161, 131] to

test whether the generated bit sequence is random for the security purpose.

5.2.3 Testing Randomness from Wireless Channels

The procedure of a randomness test in the NIST test suite [14] to test the bit sequences

extracted from the wireless channel is straightforward: for a bit sequence X quantified from

the wireless channel, compute the statistics of X based on a particular test, called P-value,

and compare this P-value with a threshold α. The test succeeds if the P-value is greater

than α, and fails otherwise.

For Alice and Bob, failing the NIST tests indicates that the wireless channel measurement

does not have enough randomness [59]. They have to wait for a better channel condition or

adjust their design parameters and then test again. Thus, randomness tests serve a critical

role in evaluating the security of a design leveraging wireless channel randomness.

Firstly, it seems perfectly fine to use randomness tests for security evaluation because they

are recommended for cryptographic use. But the key question here is not why, but how to use

them to test the wireless channel randomness for security? We notice that existing studies

adopt statistical randomness tests in different ways for security evaluations. Particularly,

two major discrepancies exist in the literature. 1) Where to set the randomness test? There

indeed exists a discrepancy in the literature to place the randomness test: a large number of

5Alice and Bob may not observe exactly the same ωD in practice because of noise and interference. In this regard, denote
by ωA

D and ωB
D Alice’s and Bob’s observations respectively. Robust wireless domain design aims to achieve fw (ωA

D) = fw (ωB
D)

and information reconciliation also ensures fc (fw (ωA
D)) = fc (fw (ωB

D)). So ωA
D ̸= ωB

T does not affect our security analysis. For the

sake of simple notation, we let ωT = ωA
T = ωB

T .

101

cryptographic domainwireless domain

1 2Two positions to test the

output bit sequences statistical randomness tests

Figure 5.2: The use of statistical testing in secret key generation.

designs [59, 122, 90, 89] choose to test the bit sequences at Position 2, and other designs test

at Position 1 [103, 1, 26]. 2) How to choose a critical parameter, the P-value threshold α,

in randomness tests? The value of α represents the confidence level of the test output. We

notice that α = 1% is dominantly adopted in existing studies [103, 1, 59, 122, 90] according

to the NIST test suite [14]. However, some studies choose α = 5% for the tests, for example,

[169] tests 200-bit sequences generated from the wireless channel between mobile devices.

These observations reveal that despite the advance in efficiently quantifying the wireless

channel randomness (e.g., RSSI or CSI) into bit sequences, the common practice of using ran-

domness testing exhibits discrepant setups for security evaluation. Are these setups equally

secure, or secure enough for a particular application? As a result, the focus of this chapter

is to design a rigorous mechanism to understand how to properly use randomness tests for

security evaluation of these security designs quantifying wireless channel randomness.

5.3 Problem Formulation and Research Statement

We first formalize the models in extracting secret bit sequences from the wireless chan-

nel, then identify research challenges and propose the guideline for setting up statistical

randomness tests.

5.3.1 Formalizing Statistical Randomness Testing for Security

It is clear in Definition 3 that extracting a secret bit sequence does not rely on the

statistical randomness test T . The role of T is to ensure security by denial: if the bit

sequence from the channel fails the test T , then the channel randomness is not sufficient for

security purpose.

102

However, a randomness test can be set up in many different ways (e.g., varying setups

observed in the literature: [103, 59, 90] vs [26, 169]). Since a randomness test only considers

some specific parts to evaluate the degree of randomness for a bit sequence, the bit sequence

can always pass a randomness test as long as its construction is biased toward the test.

Blindly setting up the randomness tests provides no guarantee of security. We have to

rethink how to quantify the extent to which the security by denial via a randomness test

meets the security goal of Alice and Bob, i.e., obtaining a secret bit sequence KD of length

M .

To this end, we need to design T in two steps: (1) Designing a technical adversary model

Eve against Alice and Bob. However, there is no such model proposed in the literature,

which makes a formal analysis for wireless randomness-based security difficult. (2) Defining

Eve’s attack success probability as a function of the randomness test. In this way, we can

quantitatively measure the benefit of security by denial via a randomness test and properly

set the test.

If the two steps are in place, we are able to evaluate whether a randomness test is

properly set up for protecting the system security. Specifically, we aim to compare Eve’s

strategy under the randomness test with the benchmark random guess (RG) strategy in

terms of the success probability, and set up the randomness test such that

P(Eve succeeds) ≤ P(RG succeeds). (5.1)

In other words, we must set up the randomness test such that Eve’s attack is no better

than RG. We also define the security loss due to the randomness testing as

Lsecurity = log2(P(Eve succeeds)/P(RG succeeds)). (5.2)

For example, if P(Eve succeeds) = 2−80 and P(RG succeeds) = 2−120, the security loss Lsecurity

is computed as 40, which is the difference between the exponents in the two probabilities.

In general, the security loss Lsecurity can have a negative value for some naive attack strategy

103

(e.g., Eve always tries a fixed guess every time, which is even worse than RG). In this chapter,

we only consider non-trivial cases with Lsecurity ≥ 0 (i.e., a security loss is non-negative).

5.3.2 Formalizing Statistical Randomness Testing for Efficiency

In Section 5.3.1, we formalize the role of statistical randomness testing from the security

perspective. It is also worth noting that efficiency for secret key generation is another impor-

tant factor to consider. Note that the efficiency comes from two aspects: randomness test T

(i.e., the probability of bit sequence can be accepted or rejected) and privacy amplification

rate Rprivacy (i.e., the compressed rate M/L). If the statistical randomness test T is set too

strict, it will be difficult to generate wireless secrets during a short period because T rejects

the channel samples too many times. On the other hand, privacy amplification allows the

input of a correlated bit sequence and compresses it into a short sequence with higher per-bit

entropy. A higher Rprivacy can lose the design of the test T , but at the same time reduce

the efficiency because more bits are compressed, which indicates more bits extracted from

a wireless channel are discarded. In this chapter, we only aim to achieve high efficiency by

controlling T and Rprivacy. Thus, we consider the efficiency E as our evaluation and formally

define it as

E = P(T accepts H0) · Rprivacy, (5.3)

and the efficiency loss is defined as Lefficiency = 1 − E . Note that there are two situations

of placing randomness test T in the literature: if we place randomness test T at position

1, P(T accepts H0) = P(T (fw (ωD)) accepts H0). If T is at position 2, P(T accepts H0) =

P(T (KD) accepts H0). For simplicity, we generalize these two situations into one formula

P(T accepts H0). With security loss Lsecurity and efficiency loss Lefficiency, we can quantitatively

evaluate a wireless secret bit generation design in terms of its security and efficiency. To

properly set up the randomness testing, we must ensure that its security loss Lsecurity is zero

under an adversary model and at the same time we also need to maximize its efficiency E

or, equivalently, minimize the efficiency loss Lefficiency.

104

5.4 Formal Adversary Model

We consider a wireless channel randomness-based design scenario shown in Figure 5.2.

We assume that all design specifications and parameters in the wireless domain (e.g., band-

width, carrier frequency, and quantization methods) and the cryptographic domain (e.g.,

cryptographic methods) in Figure 5.2 are known to the public. An adversary Eve can hear

all communications between Alice and Bob, but cannot access Alice’s or Bob’s antenna.

Therefore, she cannot directly measure the accurate channel response between Alice and

Bob. We assume that Eve can neither actively affect the wireless channel between Alice and

Bob, nor modify the content of any communication.

We also assume that Eve has a powerful yet finite computational capability. This enables

Eve to perform intensive computations, leveraging the imperfect randomness of the wireless

channel measurements, to search for the secret between Alice and Bob. Such an assumption

of Eve’s practical computational capability helps offer intuitive measurements of security

degradation to indicate the importance of correctly setting up statistical testing for wireless

security. For example, the 2017 SHA-1 collision attack has an estimated computational effort

equivalent to 263.1 SHA-1 calls [145]. We define Eve’s capability and objective as follows.

Definition 4. (Eve’s Capability and Objective) Given Definition 3, Eve aims to develop

a key search strategy to maximize her success probability by performing N searches for the

secret KD , and N is called Eve’s capability.

5.4.1 Secrets Generated from Wireless Channel Randomness

Given the fact that all models in Definition 3 are publicly known, the objective of Eve is

to develop a strategy to efficiently search for KD without exact knowledge of Alice and Bob’s

channel response ωD . Existing studies have well explored the building of functions fw and

fc to obtain a key, but never fully investigated Eve’s strategy. Suppose Eve has no smarter

105

strategy but RG, if we assume that she has a maximum capability 264, the probability is

264/2128 = 2−64 to obtain a 128-bit key generated by Alice and Bob.

Is there a smarter strategy for Eve to do better? We first analyze how the wireless channel

generates secret bit sequences. [103] proposed the basic idea of the level-crossing algorithm:

the channel information (e.g., RSSI or CSI) is estimated over a time interval (TI) larger than

the coherence time, set two thresholds q+ and q− by calculating magnitude or phase; the

measured channel information will be quantified to 1, if it is greater than a threshold q+ or

0 less than q−. It is widely suggested in existing works [103, 59, 198] that the measurement

interval should at least equal the channel coherence time such that the measured samples

are considered approximately independent.

Nonetheless, this approximate independence assumption creates a very vague boundary

from the security perspective: the measurements from the wireless channel are correlated

[103, 59, 198, 64]; although the correlation becomes weaker and could be considered approx-

imately independent for traditional performance analysis when the measurement interval

increases, it still makes sense for security analysis to assume that the output bits from the

wireless domain are statistically correlated rather than approximately independent. In other

words, the input of function fw is regarded as a correlated signal, leading to a correlated

output model of fw .

Definition 5. (Wireless Bit Generation Model) Given a channel measurement and quan-

tification period D, the output from the wireless domain, denoted as bit sequence X =

fw (ωD) = [x1, x2, · · · , xL], is modeled as a binary correlated sequence with correlation coef-

ficient ρ ∈ [−1, 1] for consecutive bits xi and xi+1 for i ∈ [1, L − 1], which is written as

ρ = cov(xi ,xi+1)
σ(xi)σ(xi+1)

, where cov(xi , xi+1) = E ((xi − E(xi))(xi+1 − E(xx+1))) is the covariance be-

tween xi and xi+1, and σ(xi)
2 = E((xi − E(xi))2) is the standard deviation of xi .

Definition 5 offers a more practical and generic model compared with the traditional

one that assumes that channel samples are approximately independent with the sampling

duration larger than the coherence time used in the literature. Apparently, we can set

106

correlated and
continuous

time duration D

fw
01001...011

length L

fc

length M

11101...010

wireless bit
generation model

privacy
amplification

“smarter” search
performed here?
up to 2

L
 searches

 L>M

exhaustive search
performed here?
up to 2

M
 searches

the attack is
performed here?

be physically close

Figure 5.3: Eve’s perspective on the secret key generation.

ρ = 0 to obtain from the correlated model to the traditional one. Moreover, from a security

perspective, we should always assume a defective (rather than perfect) randomness model

for security design. A good wireless domain design should generate a bit sequence with

a correlation coefficient ρ close to 0. But we can never know if a design indeed achieves

0 in practice. Thus, it is always good to assume |ρ| > 0 even if it is a very small value.

Accordingly, Eve can leverage such a model to construct her attack strategy, which in turn

facilitates formal security analysis for statistically testing wireless channel randomness.

5.4.2 Eve’s Strategy

Given the bit generation model from the wireless domain, let us look at the secret bit

generation from Eve’s perspective, shown in Figure 5.3. As Eve knows KD = fc(fw (ωD)),

there are three straightforward strategies.

1) Search for the secret KD in the {0, 1}M space. There is no evident strategy better than

RG because the last step of fc is privacy amplification.

2) Search for the wireless domain output X = fw (ωD) in the {0, 1}L space. Then, compute

KD = fc(X) because fc is public. Note that L ≥ M , so is it really worth searching in a

potentially larger space? We find that leveraging the bit correlation to search for X in

{0, 1}L can result in a better success probability than RG in {0, 1}M .

3) Search for ωD , then compute KD = fc(fw (ωD)). We note that this is possible only if

Eve can physically access Alice’s or Bob’s antenna. We assume that Eve has no such access.

In the three strategies, we show that the second one for Eve (i.e., searching for X = fw (ωD)

then computing KD = fc(X)) can generate a higher success probability if Eve leverages the

107

correlation in the wireless bit generation model in Definition 5. Figure 5.4 illustrates an

example of how the first 4 bits x1, x2, x3 and x4 from X are generated: the wireless channel is

slowly varying and the wireless domain design samples and quantifies the channel response

into bits in a sequential way. The first two bits x1 and x2 are 1 and the channel changes so

the last two bits x3 and x4 are 0.

x1: 1 x2: 1 x3: 0 x4: 0

init

…

θ

θ

θ1-

θ1-

θ

θ1-

…

… …

…

1

0

z

1

0

1

0

1

0

Channel

response:

Generation

tree:

Bit sequences are

not equally probable

on generation tree

root

1 1

0
0

Figure 5.4: Bit generations from the wireless domain forms a generation tree.

According to Definition 5, we map the wireless-domain generation into an abstract pro-

cess in a generation tree as shown in Figure 5.4, which enumerates all possible bit values

generated sequentially. A path from the root to a leaf can represent a generated bit sequence.

For example, Figure 5.4 shows the path that generates 1100. We denote by θ the value tran-

sition probability in the tree (i.e., the probability that the values of two consecutive bits are

different). When the correlation coefficient is larger than 0, the correlation among bits means

that a generated bit is more likely to have the same value as the previously generated bit,

i.e., θ should be smaller than 0.5. If the correlation coefficient is smaller than 0, θ should be

larger than 0.5, respectively. As a consequence, all paths from the root to the leaves in the

tree exhibit different probabilities. This helps Eve because she can search for X by starting

from the most likely bit sequence towards the least likely bit sequence in the tree. We call

such a strategy maximum-likelihood tree search (MLTS).

MLTS maximizes Eve’s success probability if bits in X are statistically correlated (i.e.

|ρ| > 0), and has equal performance to RG otherwise (e.g., ρ = 0). In the following, we show

the attack performance of MLTS.

108

Theorem 10. (Maximum-Likelihood Tree Search) For the sake of simple notation, we let

Eve’s computational capability N in Definition 4 satisfy N =
∑n/2

i=0

(
L
i

)
+
∑n/2

j=0

(
L
j

)
, where

0 ≤ n ≤ L. Then, given the fact that a secret KD has been established, the attack success

probability of MLTS is

P(MLTS succeeds |KD established) (5.4)

= I 1−ρ
2
(L− n

2
,
n

2
+ 1) + I 1+ρ

2
(L− n

2
,
n

2
+ 1) = IMLTS,

where Ix(a, b) is the regularized incomplete beta functionIx(a, b) =
B(x ;a,b)
B(a,b)

with incomplete beta

function B(x ; a, b) =
∫ x

0
ta−1(1− t)b−1dt and complete beta function B(a, b) = B(1; a, b).

Proof: See Appendix C.1 for details. □

The advantage of MLTS is that it does not need to know the value of ρ and the transition

probability θ to work. Eve should always try to use MLTS in practice to search for X and

then compute KD . It is worth noting that we use the number of searches as an indicator

of computational complexity. We consider Eve performs one search on a sequence if Eve

spends some computations on the sequence. Due to the use of randomness testing and the

use of hundreds of bits as a key in today’s practice, Eve cannot easily exclude a wide range

of sequences of hundreds of bits (or easily prone to a large branch of the search tree) during

searching for the correct key. Eve has to test sequences one by one. Even for a bit sequence

that fails the randomness test, she still has to test it (thereby spending some computational

time) before knowing that it cannot be used as the key. Or Eve can skip the test and

directly spend computations on verifying if a key candidate is correct. These computations

on the bit sequence constitute one search even though the bit sequence is test-compliant or

not. Therefore, there is no straightforward way to skip all the sequences that are not test-

compliant. Knowing the fact that KD is established does not reduce the number of searches

to be performed by Eve. Note that we do not consider trivial cases here (e.g., Eve can simply

exclude all 0 or 1 bits).

109

x1: 11 x2: 10 x3: 10 x4: 00 x5: 01

init θ43
11

z

1010 00

Channel
response:

Generation
tree:

root

11

10
10

00

01

01

...

State 4

State 3

State 2

State 1

θ33 θ31 θ12

Figure 5.5: The secret key generation of 4-level quantization.

To improve the efficiency of key generation, multi-level quantization methods have been

developed in [184, 187]. The core of MLTS, which is to search from the most likely sequence

to the least likely sequence, can also be applied to multiple-level quantization. Fig. 5.5 shows

an example of 4-level quantization of the channel response. The quantization includes 4 states

(i.e., 11, 10, 01, 00). As the figure shows, the system first quantifies the channel response

to state 4 (11), then state 3 (10), state 3 (10), state 1 (00), and state 2 (01), which leads to

the sequence of 1110100001. The correlation between the two states is stronger if they are

closer. As a result, Eve’s MLTS can be executed from the most likely sequence to the least

likely sequence on a tree with multiple-bit states (instead of single-bit ones) as individual

nodes. In this chapter, we will focus on single-bit quantization as it has been widely used in

existing studies [103, 59, 156, 26, 90, 122, 169]. We provide a basic performance analysis of

MLTS for multiple-level quantization in Appendix C.2.

5.5 Guidelines for Statistical Randomness Test Settings

With the clearly defined MLTS-based attack model for Eve, we are ready to address

how Alice and Bob should test the wireless channel randomness for security. Alice and Bob

must make sure that they will not create a common secret from the wireless channel with a

high correlation over time. On the other hand, they never know the exact value of channel

correlation in practice. Then, it seems natural for them to test the channel first, and then

make a binary decision, which formalizes the role of the randomness test T in Definition 3.

110

In this section, we analyze Eve’s success probability as a function of randomness testing,

then propose the guideline for Alice and Bob to properly set up the randomness testing for

security and efficiency.

5.5.1 Eve’s Success Probability of Randomness Testing

Randomness testing aims to eliminate the security loss defined in (5.2) by denial and we

should make sure that Eve’s success probability is no better than the RG’s success probability

(i.e., no security loss). Based on Definition 3, we define P(Eve succeeds) as

P(Eve succeeds) = P(T Accept H0)P(Eve succeeds|H0) ≤ P(RG succeeds), (5.5)

where P(Accept H0) is the probability that randomness test T passes, which depends on

the settings of T . P(RG succeeds) = N2−M with Eve’s capability N and key length M .

P(Eve succeeds|H0) ≈ IMLTS obtained in (5.4), denoting the probability that Eve obtains the

key ΩD conditioned on randomness test T passes6.

According to our analysis, Eve should always use MLTS in practice and hope for a large

|ρ|. As a result, Eve’s success probability can be written as

P(Eve succeeds) = P(MLTS succeeds |KD established)P(KD established)

= IMLTS · P(T accepts H0) ≤ P(RG succeeds),

(5.6)

where the last equality follows from Theorem 10. Due to the fact that the binary sequence

can be considered random enough after privacy amplification, MLTS only can focus on the

sequence in the wireless domain. The more random (randomness test can reject large |ρ|

scenarios) and longer binary sequence (L ≥ M) could eliminate the security loss.

6Eve aims to search the wireless domain output X yielding the key KD . However, due to hash collision
in privacy amplification, there exists a probability P(collision) that Eve finds another bit sequence X ′ ̸= X
satisfying KD = fc(X) = fc(X

′). As a result, P(Eve succeeds) = IMLTS+P(collision), where P(collision) can
be approximated as 1 − (1 − 2−M)L in [51]. Since privacy amplification fc is always designed to make the
collision probability P(collision) negligible, for example, L = M = 32 and N = 16, IMLTS ≥ P(RG) =
1.53× 10−5 and P(collision) = 7.45× 10−9 such that IMLTS ≫ P(collision). Therefore, we approximate that
P(Eve succeeds) ≈ IMLTS for a sufficiently large capability N for Eve in this chapter.

111

5.5.2 Observations and Design Guideline

From (5.6), we can only guarantee that there is no security loss but the test T might be

set too strict to cause a lower efficiency E . Hence, efficiency E is also important and should

be considered at the same time as the design guideline. As a result, the design guideline

is proposed to find the settings for test T and the privacy amplification rate Rprivacy to

maximize efficiency under the constraint of no security loss, which is written as follows

max E = P(T accepts H0) · Rprivacy (5.7a)

s.t. IMLTS · P(T accepts H0) ≤ P(RG succeeds). (5.7b)

The design guideline aims to find the settings for test T and the privacy amplification

rate Rprivacy to maximize efficiency under the constraint of no security loss. (5.7b) ensures

that Lsecurity = 0 by selecting the proper P-value threshold α and Rprivacy. We provide the

theoretical analysis of how to calculate P(T accepts H0) for different α values under different

randomness tests in Appendix C.3. Although we have both theoretical results of IMLTS and

P(T accepts H0), there is no straightforward convex or concave property (i.e., increasing α

and decreasing Rprivacy may both satisfy (5.7b)). In practical systems, α and Rprivacy have

typical value ranges and we select α ∈ [0.0001, 0.3] and Rprivacy ∈ [0.1, 1] in this chapter.

Within the ranges, we use the greedy search with small granularity to find the best pair

that maximizes (5.7a). From the design guideline (5.7), we can answer the questions in

Section 5.2.3.

1) The cryptographic domain function fc is based on privacy amplification, however,

over-estimating the entropy cannot be avoided, since it is generally difficult to accurately

estimate the per-bit entropy of a physical source [155]. Consequently, if the randomness test

T is set in the cryptographic domain, it is equivalent to testing the output of a sufficiently

random sequence, and always passing the test T . Therefore, it is reasonable to test the

wireless domain output X = fw (ωD) when extracting randomness from the wireless channel.

112

2) Based on (5.7), we can solve the optimization function to find the sufficient P-value

threshold α and Rprivacy, instead of manually setting the parameters, to ensure no additional

loss in security and achieve high efficiency.

Randomness test T is an important part of the guideline (5.7). Rather than designing

a new randomness test, we focus on NIST randomness tests as they have been well struc-

tured and widely adopted [103, 59, 156, 26, 90, 160, 161, 89, 154, 198, 1, 122, 169]. In

order to configure the NIST randomness tests, we need to analyze the relationship between

P(T accepts H0) and (ρ,α) for a specific test. Hence, in the following, we present how to

bridge P(T accepts H0) to h(ρ,α), where h(·) represents the probability function of (ρ,α)

for a specific NIST test.

In many scenarios, multiple randomness tests can be used together for testing. This

combination can enhance security and indeed loosen the Rprivacy setting. However, the setup

for a single test in existing studies is not loosened even when multiple tests are used. This

has been common in existing studies for wireless key generation [103, 59, 156, 26, 90, 160,

161, 89, 154, 198, 1, 122, 169], hardware security [120], cryptography and software security

[100, 71]. This is due to two major reasons: i) it can be mathematically intractable to

analyze the joint correlation among multiple tests. The NIST guideline [14] performed such

a correlation study and only shows that empirically the correction among NIST tests is very

small. As a result, it can be difficult to show how much the setup for each test can be loosened

analytically. ii) Using a single-test setup can ensure the worst-case security guarantee even

when multiple tests are used. We also adopt this practice in the chapter and recommend

the use of the single-test setup for multiple-test scenarios.

5.5.3 Analysis of NIST Randomness Tests

There are fifteen tests provided in the NIST test suite [14], and we choose nine of them

which are commonly used in the existing literature [103, 59, 156, 26, 90, 160, 161, 89, 154,

198, 1, 122, 169]. The nine tests in our study are frequency test, frequency test within a block,

113

runs test, test for the longest run of ones in a block, discrete fourier transform test, non-

overlapping template matching test, approximate entropy test and serial test (serial test has

two orders). Based on the P-value computation formula, these tests can be categorized into

two classes: Gaussian and chi-square distribution. In the following, we use the most common

frequency test Tfreq as the representative to show the procedure of the relationship between

P(Tfreq accepts H0) and (ρ,α). The results of other tests are provided in Appendix C.3.

We use the function hfreq(ρ,α) to represent frequency test in NIST. Given a bit sequence

X = [x1, x2, ... xL] from Definition 5,

hfreq(ρ,α) = P(Tfreq accepts H0) = P(|Sfreq(X)| <
√
2erfc−1(α)), (5.8)

where Sfreq(X) = 1√
L

∑L
l=1(2xl − 1) is the statistics definition of frequency test. Since the

correlated sequence X can be considered as generating from a uniformly ergodic Markov

chain [60], Sfreq(X) can be derived by the Markov central limit theorem, only if we know the

mean and variance. |Sfreq(X)| ∼ N
(
0, 1+|ρ|

1−|ρ|

)
is followed by Gaussian distribution. Thus, we

have the hfreq(ρ,α) as follows

hfreq(ρ,α) = erf

(
erfc−1(α)

√
1− ρ

1 + ρ

)
, (5.9)

where erf and erfc−1 are error function and inverse complementary error function. Based on

the analysis of randomness test T , we can choose the proper pairs of P-value threshold α

and privacy amplification rate Rprivacy.

5.6 Experimental Evaluation

In this section, we obtain the security loss, efficiency loss, and bits mismatch rate of the

secret key generation by the wireless channel response. In the following, we first introduce

the experimental setup. Then, we compare the performance of existing secret key generation

methods before and after being revised by our design guideline in (5.7) under different

experimental environments, different randomness tests, and different lengths of keys.

114

5.6.1 Experimental Setup

1) Channel response measurements: The first step towards analyzing the randomness of

the secret key generation in the wireless domain is to collect a large number of channel infor-

mation (RSSI, CSI, and Phase shifts) in realistic environments. We use two USRP X310s,

acting as a transmitter and a receiver respectively, to build our experimental platform, where

each device is equipped with a UBX-160 daughterboard and a VERT 2450 antenna. The soft-

ware toolkit is GNURadio. We implement a typical training data-aided time and frequency

synchronization scheme based on [136] for channel probing whose procedure follows [103].

For the equalization, we adopt a frequency-domain OFDM equalizer with the aid of pilot

tones [57]. To measure the channel information, the transmitter consistently sends training

sequences (known as the preamble in wireless standards) to the receiver with fixed transmit

power. On this experiment platform, we collect more than 1 billion channel information in

total spanning over 24 hours in different environments with 2.4GHz carrier frequency and

1.0MHz bandwidth.

Table 5.1: Parameters setting of existing methods.

Examples Test setting domain α value RPrivacy Source
RT wireless 0.01 1 RSSI
ZR wireless 0.01 1 RSSI

TSCC wireless 0.05 0.5 Phase
TDS cryptographic 0.05 0.32 CSI
ASBG cryptographic 0.01 0.125 RSSI
RSKE cryptographic 0.01 0.24 RSSI

2) Secret key generation model: We compare the performance of 6 existing secret key

generation models: Radio-telepathy (RT) [103], Zero Reconciliation (ZR) [1], Temporally and

Spatially Correlated Coefficients (TSCC) [26], The Dancing Signals (TDS) [169], Adaptive

Secret Bit Generation (ASBG) [59] and Robust Secret Key extraction (RSKE) [122], where

the P-value threshold α, Rprivacy, different NIST statistical randomness test setting position

and source of secret key generation are shown in Table 5.1.

115

0 1 2 3 4

Security loss

0

0.2

0.4

0.6

0.8

1
E

ff
ic

ie
n

c
y
 l
o

s
s

RT

ZR

TSCC

TDS

ASBG

RSKE

Revised by our guideline

(a) Security loss vs
efficiency loss

Existing methods Our methods
0

0.01

0.02

0.03

0.04

0.05

0.06

B
it
s
 m

is
m

a
tc

h
 r

a
te

RT

ZR

TSCC

TDS

ASBG

RSKE

(b) Bits mismatch
rate

Existing methods Our methods
0

0.05

0.1

0.15

0.2

P
-v

a
lu

e
 t

h
re

s
h

o
ld

RT

ZR

TSCC

TDS

ASBG

RSKE

(c) P-value threshold
α

Existing methods Our methods
0

0.2

0.4

0.6

0.8

1

P
ri
v
a

c
y
 a

m
p

lif
ic

a
ti
o

n
 r

a
te RT

ZR

TSCC

TDS

ASBG

RSKE

(d) Privacy
amplification rate

Figure 5.6: Basic experimental performance.

3) Eve’s capability: The attacker Eve aims to obtain the secret key KD through MLTS

without knowing any channel information. Although a realistically powerful capability for

Eve is 263.1 [145], it is still statistically insignificant in the experimentation in order to crack

a long key, for example, the attack success probability of cracking a 128-bit key is about

2−64. Thus, we consider a more powerful capability of Eve with N = 296 such that attack

success probability increases from 2−64 to 2−32, where is observable in our experiments.

4) Evaluation metrics: The evaluation metrics used in our experiments are security loss

Lsecurity and efficiency loss Lefficiency defined in Section 5.3.2 as well as the bits mismatch rate

Rmismatch, which is the ratio of the number of bits that do not match between Alice and Bob

to the number of bits extracted from channel. All the experimental results are the average

value from at least 30 independent experiments.

5.6.2 Evaluation Results

1) Evaluation of existing secret key generation methods: We aim to show the perfor-

mance (i.e., Lsecurity and Lefficiency for 128-bit secret key) of existing methods with the P-value

threshold α and Rprivacy settings in the literature in comparison with the new values for

these parameters based on our design guideline. We collect the channel information under 5

meters laboratory environment and using the frequency test.

Figure 5.6a shows the security and efficiency losses of these seven different secret key

generation methods before and after new parameter settings based on our guideline. We

116

5m
 la

b

10
m

 la
b

5m
 lo

bb
y

10
m

 lo
bb

y

lib
ra

ry

m
ov

em
en

t

0

1

2

3

4

S
e
c
u
ri
ty

 l
o
s
s

RT

RT Revised

ASBG

ASBG Revised

(a) Lsecurity under
different
environments.

5m
 la

b

10
m

 la
b

5m
 lo

bb
y

10
m

 lo
bb

y

lib
ra

ry

m
ov

em
en

t
0

0.2

0.4

0.6

0.8

1

E
ff
ic

ie
n
c
y
 l
o
s
s

RT

RT Revised

ASBG

ASBG Revised

(b) Lefficiency under
different
environments.

2-ary 4-ary 8-ary

0

1

2

3

4

5

6

7

S
e
c
u
ri
ty

 l
o
s
s

RT

RT Revised

TSCC

TSCC Revised

(c) Lsecurity under
multiple level
quantizations.

2-ary 4-ary 8-ary
0

0.2

0.4

0.6

0.8

1

E
ff
ic

ie
n
c
y
 l
o
s
s

RT

RT Revised

TSCC

TSCC Revised

ASBG

ASBG Revised

RSKE

RSKE Revised

(d) Lefficiency under
multiple level
quantizations.

Figure 5.7: Experiments under in environments and quantizations.

1 2 5 10

Bandwidth (MHz)

0

0.5

1

1.5

2

2.5

3

3.5

4

S
e
c
u
ri
ty

 l
o
s
s

RT

RT Revised

ZR

ZR Revised

(a) Lsecurity under different
bandwidths.

1 2 5 10

Bandwidth (MHz)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
ff
ic

ie
n
c
y
 l
o
s
s

RT

RT Revised

ZR

ZR Revised

TSCC

TSCC Revised

ASBG

ASBG Revised

(b) Lefficiency under different
bandwidths.

Existing methods Our methods
0

2

4

6

8

10

12

K
e
y
 g

e
n
e
ra

ti
o
n
 r

a
te

 (
B

it
s
/s

e
c
)

RT

ZR

TSCC

TDS

ASBG

RSKE

(c) Key generation rate of
different methods.

Figure 5.8: Experiments in different bandwidths and methods.

can see that RT, ZR, and TSCC, which set the tests in the wireless domain, have higher

Lsecurity than others in the cryptographic domain, e.g., Lsecurity of RT is 4. Although setting

test T in the cryptographic domain can eliminate security loss, it leads to high efficiency

loss, e.g, ASBG has Lefficiency = 0.883. After the new settings based on our design guideline,

i) all of these methods have no Lsecurity; ii) Lefficiency significantly decreases. For example,

ASBG changes from 0.883 to 0.487 in terms of efficiency loss. Through the revision of

parameters based on our guideline, Rmismatch of all methods can be reduced, as shown in

Figure 5.6b. Figures 5.6c and 5.6d show the P-value threshold α and Rprivacy are calculated

by our design guideline, which indicate that different secret key generation methods need to

calculate different α and Rprivacy to eliminate security loss and achieve high efficiency. On the

other hand, Figures 5.6c and 5.6d also illustrate that if we choose a higher P-value threshold,

we also need a higher Rprivacy to eliminate security loss.

117

2) Evaluation of different experimental environments: The secret key generation method

may extract the secret keys with different randomness degrees under varying wireless com-

munication environments. We will show Lsecurity and Lefficiency with or without our design

guideline in different practical scenarios. Among the 6 secret key generation methods, we

select RT and ASBG, since they set the NIST test at different positions. We conduct exper-

iments to collect RSSI, CSI, or phase shift in different indoor environments. For the static

USRPs setting, we set the distance of two USRPs to be 5 and 10 meters in the 40m2 labo-

ratory, 10 and 25 meters in the 350m2 public lobby, and 25 meters in 450m2 campus library.

For the movement setting, we fix the position of one USRP and randomly move another one

in a laboratory. We consider the laboratory environment line-of-sight condition, and lobby

and library environments non-line-of-sight condition.

Figure 5.7a shows Lsecurity under different experimental environments, and that RT per-

forms the worst for each environment. After revision by our guideline, we eliminate all

security loss (i.e., Lsecurity = 0). From Figure 5.7b, we increase the Lefficiency from 0.05 to

around 0.4 of RT under each communication environment. In ASBG, since they set a small

original Rprivacy value, it incurs high Lefficiency = {0.85, 0.74, 0.87, 0.71, 0.68, 0.69} under dif-

ferent environments. After revision by our guideline, we properly set the new Rprivacy so that

ASBG performs more efficiently such that Lefficiency = {0.41, 0.49, 0.37, 0.39, 0.39, 0.38}.

3) Evaluation of multiple-level quantizations: Figures 5.7c and 5.7d show Lsecurity and

Lefficiency under m-ary quantization methods (m ∈ {2, 4, 8}) with 4 methods: RT, TSCC,

ASBG and RSKE. Due to the fact that ASBG and RSKE with original settings have no

security loss, we do not show them in Figure 5.7c for clearer illustration. In Figure 5.7c, we

can see that a larger value of m incurs a higher security loss (e.g., for RT, Lsecurity = 7 when

m = 8). After revision based on our guideline, we ensure Lsecurity = 0 for RT and TSCC.

In Figure 5.7d, it is observed that when we ensure Lsecurity =0 by setting up randomness

tests for different values of m, the efficiency Lsecurity approximately remains the same. This

118

Table 5.2: P-value threshold α and Rprivacy for different quantization methods.

RT ZR TSCC TDS ASBG RSKE
α Rprivacy α Rprivacy α Rprivacy α Rprivacy α Rprivacy α Rprivacy

Frequency 0.11 0.50 0.08 0.47 0.17 0.68 0.09 0.48 0.13 0.62 0.16 0.60
Block of Frequency 0.21 0.67 0.18 0.59 0.27 0.79 0.19 0.61 0.25 0.72 0.20 0.63

Run 0.14 0.51 0.09 0.51 0.22 0.70 0.11 0.52 0.14 0.63 0.14 0.57
Longest Run of ones 0.13 0.48 0.18 0.57 0.21 0.66 0.10 0.47 0.17 0.61 0.17 0.66

DFT 0.07 0.61 0.14 0.62 0.14 0.71 0.09 0.54 0.13 0.62 0.11 0.68
Non-overlap 0.08 0.46 0.20 0.55 0.17 0.61 0.17 0.50 0.22 0.66 0.21 0.63

Approximate entropy 0.06 0.41 0.18 0.53 0.14 0.62 0.15 0.51 0.19 0.62 0.15 0.61
First order serial 0.06 0.44 0.11 0.41 0.15 0.61 0.09 0.44 0.11 0.57 0.08 0.59
Second order serial 0.04 0.40 0.09 0.42 0.14 0.60 0.11 0.47 0.08 0.51 0.09 0.61

indicates that simply adopting a multiple-level quantization method does not necessarily

mean a faster key generation rate with a security guarantee.

4) Evaluation of different bandwidths: Figures 5.8a and 5.8b show Lsecurity and Lefficiency

under different bandwidth settings {1, 2, 5, 10}MHz in the lobby environment. We do not

show the Lsecurity of ASBG and RSKE, since they have no security loss. When we increase

the bandwidth, it is easy to observe that Lsecurity decreases under RT and TSCC (e.g., for RT,

Lsecurity goes from 4 to 1). We can observe that the wireless signal with a larger bandwidth

makes the random bit sequence less correlated and therefore more random. From the effi-

ciency perspective, increasing bandwidth can decrease P(T accepts H0) such that Lefficiency

becomes smaller (e.g., for ASBG, Lefficiency decreases from 0.57 to 0.52).

5) Evaluation of key generation rates: For testing the key generation rate of each method,

we setup the 6 existing key generation methods for extracting 128-bit key sequences using

the parameters in Table 5.1 under 5 meters laboratory environment. Under the same envi-

ronment, we revise the parameters by our guideline and test the key generation rate. For

each experiment, we collect 10,000 bits and calculate the rate (bits/sec). The results are

shown in Figure 5.8c. We note that RT and ZR have higher rates with their original setups

but they both have security losses. Our setups ensure the maximum key generation rates

(e.g., 7.49 bits/sec for ASBG) without security loss.

6) Evaluation of different randomness tests T and Rprivacy: Table 5.2 indicates that no

tests can achieve the optimization goal in (5.7) by using α = 0.01. In other words, if we just

follow the recommendation of NIST, we may not eliminate the security loss and guarantee

119

Table 5.3: Lefficiency of different bit sequence length.

128-bit 256-bit 512-bit
Lefficiency Original Revised Original Revised Original Revised

RT 0.06 0.33 0.03 0.35 0.08 0.31
ZR 0.09 0.39 0.07 0.33 0.05 0.25

TSCC 0.58 0.37 0.57 0.31 0.55 0.24
TDS 0.71 0.57 0.71 0.48 0.73 0.30
ASBG 0.86 0.42 0.88 0.36 0.85 0.29
RSKE 0.73 0.57 0.70 0.44 0.68 0.21

efficiency of secret key generation. On the other hand, if we only focus on security, the

efficiency can be very low. Therefore, it is necessary to meet our guideline to consider both

efficiency and security aspects. It is noted that Table II shows different values of α and

Rprivacy for different randomness tests. This is due to the fact that each test has its own

P(T accept H0), which is provided in Appendix C.3, in our guideline and we need to solve

its own pair of α and Rprivacy based on the optimization (5.7a).

7) Efficiency of different lengths of secret key generation: Intuitively, if Eve’s attack

capability does not change, it should be more difficult to crack a longer key sequence. Thus,

randomness test T and privacy amplification should be set looser for a longer key sequence.

However, the existing methods use the fixed value α and Rprivacy for generating different

lengths of key sequence such that it is detrimental to the secret key generation efficiency

(suppose no security loss). We evaluate Lefficiency of 128, 256, and 512-bit secret key generation

before and after revision based on our guideline under the laboratory scenario and frequency

test. Eve’s attack capability is N = 296.

In Table 5.3, we can observe that it is more efficient to generate a longer secret key

sequence based on our guideline (e.g., for TDS with revised setups, Lefficiency is 0.57, 0.48

and 0.30 for the 128-bit, 256-bit and 512-bit cases, respectively). However, if we use the

parameter setting in the existing studies, Lefficiency does not change obviously, e.g., Lefficiency

of RSKE are 0.73, 0.70 and 0.68. Hence, our design guideline also offers an adaptive method

to generate keys with different lengths, which is not presented in existing studies.

120

5.7 Related Work

To provide the confidentiality of data transmission, secret key generation based on the

information of wireless channels is promising because of the efficiency and security [194, 123,

188, 98]. In [194], a proximity attack requires a minimal distance from the eavesdropper to

maintain perfect secrecy for secret key generation. The randomness test can provide a generic

threshold on required distances from an eavesdropper and good key refreshing rates. [123]

explores the use of wireless channel characteristics for establishing arbitrary-length secret

keys between Bluetooth devices. They verified the output secret bit streams generated

by Bluetooth achieve high entropy by the randomness test. [188] tests the randomness of

key bits, which quantifies a subcarrier’s channel response with different coherent times [98]

proposes to defend against threats of eavesdropping and fake data injection in underwater

acoustic networks, providing an overview of the advantages of RSSI based key generation

and exploring the major challenges from the unique features of acoustic communications.

Key establishment using physical layer characteristics [162, 191, 54], which are a much

richer source of secret information but high computational cost overhead. [162] reviews

different types of existing methods based on quantization, handling communication errors

and the feasibility and security issues related to these methods. The chapter [54] provides an

efficient secret key generation method using multipath relative delay from Ultra-wideband

(UWB) channels. They study a statistical characterization of UWB channels in a residential

scenario and evaluate key mismatch probability. [84] presents the key establishment that

uses the distance variation trends caused by the motion paths of two devices to each other.

Recently, some studies have started working on authenticating the transmitter and re-

ceiver based on prior coordination or secret sharing. [119] proposes physical-layer authenti-

cation schemes through adding low-power signal. [189] solves the authentication in IoT by

exploiting the fading of the wireless links between devices to be authenticated and a set of

trusted anchor nodes. [4] proposes a retroactive key setup to protect source authentication

121

and path validation into the realm of practicality. [190, 91] adapts fingerprint embedding to

keep message authentication and increased security by obscuring the authentication tag.

5.8 Summary

This chapter studies how to properly test the wireless channel randomness for security

and efficiency. In particular, we propose a new design guideline that can choose the P-

value threshold, a critical parameter of the randomness test, to ensure the security of the

wireless system as well as achieve a high secret bit generation rate with privacy amplifi-

cation. Since the practical channel information (CSI, RSSI, or phase shifts) is imperfectly

independent, we come up with a new cracking key attack called MLTS, which searches the

bit sequence by leveraging the Markov-dependent property. By turning a suitable P-value

threshold and privacy amplification rate, we formulate an optimization problem to maximize

the key generation rate under the constraint of no security loss. Our analysis indicates that

the randomness test T should be set in the wireless domain. We conduct different prac-

tical environments to validate the analysis of our guideline. By comparing to existing key

generation methods, results show that our guideline can improve these methods to be more

efficient and secure.

122

Chapter 6: Conclusion

In this dissertation, we analyze the current learning-based wireless networking perfor-

mance limitations and security issues. Then, we propose a new framework and client selec-

tion policy, especially for the FL learning framework. To this end, we design new defenses

and guideline for FL and wireless communication key generation.

For learning-based wireless networking, we first explored the shortcoming of the conven-

tional synchronous single-server network architecture, which must wait for the slowest client

and then process the aggregation. However, it cannot be avoidable that some clients locate

in complicated environments and perform poor wireless channel conditions. As a result,

these clients will prolong the training time. Although some existing studies proposed new

FL architecture HFL, they have not presented how to select clients to improve training per-

formance. To address this problem, we propose an online client selection policy called COCS,

which leverages the CC-MAB algorithm, and demonstrate our COCS policy can achieve sub-

linear regret in both convex and non-convex FL settings. Because of the poor convergence

performance of HFL, we propose a new multi-server FL architecture and the corresponding

FL algorithm, MS-FedAvg, to tackle this issue. Both the theoretical and empirical results

show that MS-FedAvg outperforms the existing multi-server FL system.

Although FL can protect users’ privacy, model poisoning attacks also successfully degrade

the FL performance. Although the Byzantine resilience aggregation rule can protect honest

clients, many new attack models have demonstrated that they can easily pass the test.

Therefore, we propose a new defense strategy called LoMar, which is based on the kernel

function to compare the distribution of local datasets. We present a detailed theoretical

analysis and extensive experiments, which indicate that LoMar outperforms the existing FL

123

defense strategies and sufficiently detects the model poisoning attack. Key generation based

on a wireless channel has been widely used in physical layer authentication. We revisit the

key generation scheme and find an interesting observation that wireless channel information

is not sufficiently random. As such, we propose a new attack that leverages this property to

manipulate the secret key. Instead of proposing a new key generation strategy, we design a

new guideline for how to use the wireless channel to generate the secret key.

124

References

[1] Syed Taha Ali, Vijay Sivaraman, and Diethelm Ostry. Eliminating reconciliation cost

in secret key generation for body-worn health monitoring devices. IEEE Trans. Mobile

Comput, 13(12):2763–2776, 2014.

[2] Mohammad Mohammadi Amiri and Deniz Gündüz. Federated learning over wireless

fading channels. IEEE Trans. Wireless Commun., 19(5):3546–3557, 2020.

[3] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning,

2(4):343–370, 1988.

[4] Katerina Argyraki, Suhas Diggavi, Melissa Duarte, Christina Fragouli, Marios

Gatzianas, and Panagiotis Kostopoulos. Creating secrets out of erasures. In Pro-

ceedings of the ACM MobiCom, pages 429–440, 2013.

[5] Javed A Aslam and Scott E Decatur. On the sample complexity of noise-tolerant

learning. Information Processing Letters, 57(4):189–195, 1996.

[6] Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

[7] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-

armed bandit problem. Machine learning, 47(2):235–256, 2002.

[8] Chen Avin, Yuval Emek, Erez Kantor, Zvi Lotker, David Peleg, and Liam Roditty.

Sinr diagrams: Towards algorithmically usable sinr models of wireless networks. In

Proceedings of the ACM PODC, pages 200–209, 2009.

125

[9] Babak Azimi-Sadjadi, Aggelos Kiayias, Alejandra Mercado, and Bulent Yener. Robust

key generation from signal envelopes in wireless networks. In ACM CCS, pages 401–

410, 2007.

[10] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing sub-

modular functions. In Proceedings of the SODA, pages 1497–1514. SIAM, 2014.

[11] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. How to backdoor federated learning. arXiv preprint arXiv:1807.00459,

2018.

[12] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jaehoon Amir Safavi. Mitigating

poisoning attacks on machine learning models: A data provenance based approach. In

Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, pages

103–110. ACM, 2017.

[13] Marco Barreno, Blaine Nelson, Anthony D Joseph, and J Doug Tygar. The security

of machine learning. Machine Learning, 81(2):121–148, 2010.

[14] Lawrence E Bassham III, Andrew L Rukhin, Juan Soto, James R Nechvatal, Miles E

Smid, Elaine B Barker, Stefan D Leigh, Mark Levenson, Mark Vangel, David L Banks,

et al. Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom number

generators for cryptographic applications. National Institute of Standards & Technol-

ogy, 2010.

[15] Stephen D Bay, Dennis Kibler, Michael J Pazzani, and Padhraic Smyth. The uci

kdd archive of large data sets for data mining research and experimentation. ACM

SIGKDD explorations newsletter, 2(2):81–85, 2000.

[16] Charles H Bennett, Gilles Brassard, Claude Crépeau, and Ueli M Maurer. Generalized

privacy amplification. IEEE Trans. Information Theory, 41(6):1915–1923, 1995.

126

[17] Arjun Nitin Bhagoji, Supriyo Chakraborty, Seraphin Calo, and Prateek Mittal. Model

poisoning attacks in federated learning. In In Workshop on Security in Machine Learn-

ing (SecML), collocated with the 32nd Conference on Neural Information Processing

Systems (NeurIPS’18), 2018.

[18] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Ana-

lyzing federated learning through an adversarial lens. In ICML, pages 634–643, 2019.

[19] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support

vector machines. In Proceedings of the 29th International Coference on ICML, pages

1467–1474, 2012.

[20] Peva Blanchard, Rachid Guerraoui, Julien Stainer, et al. Machine learning with ad-

versaries: Byzantine tolerant gradient descent. In NeurIPS, pages 119–129, 2017.

[21] Gilles Brassard and Louis Salvail. Secret-key reconciliation by public discussion. In

Workshop on Theory and Application of Cryptographic Techniques, pages 410–423,

1993.

[22] Leo Breiman, William Meisel, and Edward Purcell. Variable kernel estimates of mul-

tivariate densities. Technometrics, 19(2):135–144, 1977.

[23] Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. Vggface2: A dataset for

recognising faces across pose and age. In International Conference on Automatic Face

and Gesture Recognition, 2018.

[24] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximiza-

tion via the multilinear relaxation and contention resolution schemes. SIAM Journal

on Computing, 43(6):1831–1879, 2014.

127

[25] C. Chen and M. A. Jensen. Secret key establishment using temporally and spatially

correlated wireless channel coefficients. IEEE Trans. Mobile Comput, 10(2):205–215,

Feb 2011.

[26] Chan Chen and Michael A Jensen. Secret key establishment using temporally and spa-

tially correlated wireless channel coefficients. IEEE Trans. Mobile Comput, 10(2):205–

215, 2011.

[27] Lin Chen, Andreas Krause, and Amin Karbasi. Interactive submodular bandit. In

NIPS, pages 141–152, 2017.

[28] Lixing Chen, Zhuo Lu, Pan Zhou, and Jie Xu. Learning optimal sniffer channel as-

signment for small cell cognitive radio networks. In IEEE INFOCOM, pages 656–665,

2020.

[29] Lixing Chen and Jie Xu. Budget-constrained edge service provisioning with demand

estimation via bandit learning. IEEE J. Sel. Areas Commun., 37(10):2364–2376, 2019.

[30] Hoesang Choi and Hichan Moon. Throughput of cdm-based random access with sinr

capture. IEEE Trans. Veh. Technol., 69(12):15046–15056, 2020.

[31] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist:

Extending mnist to handwritten letters. In IJCNN, pages 2921–2926. IEEE, 2017.

[32] IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines

Corporation, 46(53):157, 2009.

[33] Guangming Cui, Qiang He, Xiaoyu Xia, Feifei Chen, Hai Jin, and Yun Yang.

Robustness-oriented k edge server placement. In IEEE CCGRID, pages 81–90, 2020.

[34] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentralized

network coordinate system. In ACM SIGCOMM, volume 34, pages 15–26, 2004.

128

[35] Elizabeth R DeLong, David M DeLong, and Daniel L Clarke-Pearson. Comparing

the areas under two or more correlated receiver operating characteristic curves: a

nonparametric approach. Biometrics, pages 837–845, 1988.

[36] Yucheng Ding, Chaoyue Niu, Yikai Yan, Zhenzhe Zheng, Fan Wu, Guihai Chen, Shao-

jie Tang, and Rongfei Jia. Distributed optimization over block-cyclic data. arXiv

preprint arXiv:2002.07454, 2020.

[37] John R Douceur. The sybil attack. In International workshop on peer-to-peer systems,

pages 251–260. Springer, 2002.

[38] Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang Liang.

Self-balancing federated learning with global imbalanced data in mobile systems. IEEE

Trans. Parallel Distrib. Syst., 32(1):59–71, 2020.

[39] Moming Duan, Duo Liu, Xinyuan Ji, Renping Liu, Liang Liang, Xianzhang Chen, and

Yujuan Tan. Fedgroup: Accurate federated learning via decomposed similarity-based

clustering. arXiv preprint arXiv:2010.06870, 2020.

[40] Rui Duan, Zhe Qu, Shangqing Zhao, Leah Ding, Yao Liu, and Zhuo Lu. Perception-

aware attack: Creating adversarial music via reverse-engineering human perception.

arXiv preprint arXiv:2207.13192, 2022.

[41] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Louis Alexandre Rouault. The

hidden vulnerability of distributed learning in byzantium. In ICML, number CONF,

2018.

[42] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning

attacks to byzantine-robust federated learning. In 29th {USENIX} Security Symposium

({USENIX} Security 20), pages 1605–1622, 2020.

129

[43] Yann Fraboni, Richard Vidal, and Marco Lorenzi. Free-rider attacks on model aggre-

gation in federated learning. In AISTATS, pages 1846–1854. PMLR, 2021.

[44] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in federated

learning poisoning. arXiv e-prints, pages arXiv–1808, 2018.

[45] Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An efficient

framework for clustered federated learning. NeurIPS, 33, 2020.

[46] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulner-

abilities in the machine learning model supply chain. CoRR, abs/1708.06733, 2017.

[47] Pengfei Guo, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, and Vishal M Patel.

Multi-institutional collaborations for improving deep learning-based magnetic reso-

nance image reconstruction using federated learning. In Proceedings of the IEEE/CVF

CVPR, pages 2423–2432, 2021.

[48] Shuo Guo, Heng Zhang, Ziguo Zhong, Jiming Chen, Qing Cao, and Tian He. Detecting

faulty nodes with data errors for wireless sensor networks. ACM TOSN, 10(3):1–27,

2014.

[49] Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mah-

davi. Federated learning with compression: Unified analysis and sharp guarantees. In

AISTATS, pages 2350–2358. PMLR, 2021.

[50] Dong-Jun Han, Minseok Choi, Jungwuk Park, and Jaekyun Moon. Fedmes: Speed-

ing up federated learning with multiple edge servers. IEEE J. Sel. Areas Commun.,

39(12):3870–3885, 2021.

[51] Val Henson. An analysis of compare-by-hash. In HotOS, pages 13–18, 2003.

130

[52] Tao Hou, Zhe Qu, Tao Wang, Zhuo Lu, and Yao Liu. Proto: Proactive topology

obfuscation against adversarial network topology inference. In IEEE INFOCOM, pages

1598–1607, 2020.

[53] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of

non-identical data distribution for federated visual classification. arXiv preprint

arXiv:1909.06335, 2019.

[54] Jingjing Huang and Ting Jiang. Dynamic secret key generation exploiting ultra-

wideband wireless channel characteristics. In IEEE WCNC, pages 1701–1706, 2015.

[55] Tiansheng Huang, Weiwei Lin, Wentai Wu, Ligang He, Keqin Li, and Albert Zomaya.

An efficiency-boosting client selection scheme for federated learning with fairness guar-

antee. IEEE Trans. Parallel Distrib. Syst., 2020.

[56] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein.

Metapoison: Practical general-purpose clean-label data poisoning. NeurIPS, 33, 2020.

[57] Xiaozhou Huang and Hsiao-Chun Wu. Robust and efficient intercarrier interference

mitigation for ofdm systems in time-varying fading channels. IEEE Trans. Veh. Tech-

nol., 56(5):2517–2528, 2007.

[58] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru,

and Bo Li. Manipulating machine learning: Poisoning attacks and countermeasures

for regression learning. In IEEE S&P, pages 19–35, 2018.

[59] Suman Jana, Sriram Nandha Premnath, Mike Clark, Sneha K Kasera, Neal Patwari,

and Srikanth V Krishnamurthy. On the effectiveness of secret key extraction from

wireless signal strength in real environments. In ACM MOBICOM, pages 321–332,

2009.

131

[60] Galin L Jones et al. On the markov chain central limit theorem. Probability surveys,

1(299-320):5–1, 2004.

[61] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis,

Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel

Cummings, et al. Advances and open problems in federated learning. arXiv preprint

arXiv:1912.04977, 2019.

[62] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian

Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for

federated learning. In ICML, pages 5132–5143. PMLR, 2020.

[63] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network security: private com-

munication in a public world. Prentice Hall Press, 2002.

[64] Hwanjin Kim and Junil Choi. Channel estimation for one-bit massive mimo systems

exploiting spatio-temporal correlations. In IEEE GLOBECOM, pages 1–6, 2018.

[65] Jakub Konecny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik, Ananda Theertha

Suresh, and Dave Bacon. Federated learning: Strategies for improving communication

efficiency, 2017.

[66] Jakub Konevcny, H Brendan McMahan, Felix X Yu, Peter Richtarik, Ananda Theertha

Suresh, and Dave Bacon. Federated learning: Strategies for improving communication

efficiency. arXiv preprint arXiv:1610.05492, 2016.

[67] Lingjing Kong, Tao Lin, Anastasia Koloskova, Martin Jaggi, and Sebastian Stich.

Consensus control for decentralized deep learning. In Proceedings of the 38th ICML,

volume 139, pages 5686–5696. PMLR, 2021.

132

[68] Xiangjie Kong, Kailai Wang, Mingliang Hou, Xinyu Hao, Guojiang Shen, Xin Chen,

and Feng Xia. A federated learning-based license plate recognition scheme for 5g-

enabled internet of vehicles. IEEE Trans. Ind. Informat., 17(12):8523–8530, 2021.

[69] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny

images. 2009.

[70] Yang Kuang, Tingwen Ruan, Zheng Jun Chew, and Meiling Zhu. Energy harvesting

during human walking to power a wireless sensor node. Sensors and Actuators A:

Physical, 254:69–77, 2017.

[71] John B Lacy, Donald P Mitchell, and William M Schell. Cryptolib: Cryptography in

software. In USENIX Security Symposium, 1993.

[72] Phu Lai, Qiang He, Mohamed Abdelrazek, Feifei Chen, John Hosking, John Grundy,

and Yun Yang. Optimal edge user allocation in edge computing with variable sized

vector bin packing. In ICSOC, pages 230–245. Springer, 2018.

[73] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-

ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[74] Jin-woo Lee, Jaehoon Oh, Sungsu Lim, Se-Young Yun, and Jae-Gil Lee. Tornadoaggre-

gate: Accurate and scalable federated learning via the ring-based architecture. arXiv

preprint arXiv:2012.03214, 2020.

[75] Jon Lee. A first course in combinatorial optimization. Number 36. Cambridge Univer-

sity Press, 2004.

[76] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit

approach to personalized news article recommendation. In Proceedings of the 19th

international conference on World wide web, pages 661–670, 2010.

133

[77] Suyi Li, Yong Cheng, Wei Wang, Yang Liu, and Tianjian Chen. Learning to detect

malicious clients for robust federated learning. arXiv preprint arXiv:2002.00211, 2020.

[78] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learn-

ing: Challenges, methods, and future directions. IEEE Signal Processing Magazine,

37(3):50–60, 2020.

[79] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and

Virginia Smith. Federated optimization in heterogeneous networks. Proceedings of

Machine Learning and Systems, 2:429–450, 2020.

[80] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the

convergence of fedavg on non-iid data. In ICLR, 2019.

[81] Xingyu Li, Zhe Qu, Bo Tang, and Zhuo Lu. Fedlga: Towards system-heterogeneity of

federated learning via local gradient approximation. arXiv preprint arXiv:2112.11989,

2021.

[82] Xingyu Li, Zhe Qu, Bo Tang, and Zhuo Lu. Stragglers are not disaster: A hybrid

federated learning algorithm with delayed gradients. arXiv preprint arXiv:2102.06329,

2021.

[83] Xingyu Li, Zhe Qu, Shangqing Zhao, Bo Tang, Zhuo Lu, and Yao Liu. Lomar: A

local defense against poisoning attack on federated learning. IEEE Trans. Dependable

Secure Comput., 2021.

[84] Zi Li, Qingqi Pei, Ian Markwood, Yao Liu, and Haojin Zhu. Secret key establishment

via rss trajectory matching between wearable devices. IEEE Trans. Inf. Forensics

Security, 13(3):802–817, 2017.

[85] Yingbin Liang, H Vincent Poor, and Shlomo Shamai. Secure communication over

fading channels. IEEE Trans. Inf. Theory, 54(6):2470–2492, 2008.

134

[86] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang

Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile

edge networks: A comprehensive survey. IEEE Commun. Surveys Tuts., 22(3):2031–

2063, 2020.

[87] Bo Lindqvist. A note on bernoulli trials with dependence. Scandinavian Journal of

Statistics, pages 205–208, 1978.

[88] Chen-Feng Liu, Mehdi Bennis, Merouane Debbah, and H Vincent Poor. Dynamic task

offloading and resource allocation for ultra-reliable low-latency edge computing. IEEE

Trans. Commun., 67(6):4132–4150, 2019.

[89] Hongbo Liu, Yang Wang, Jie Yang, and Yingying Chen. Fast and practical secret

key extraction by exploiting channel response. In IEEE INFOCOM, pages 3048–3056,

2013.

[90] Hongbo Liu, Jie Yang, Yan Wang, and Yingying Chen. Collaborative secret key ex-

traction leveraging received signal strength in mobile wireless networks. In IEEE

INFOCOM, pages 927–935, 2012.

[91] Jiazi Liu and Xianbin Wang. Physical layer authentication enhancement using two-

dimensional channel quantization. IEEE Trans. Wireless Commun., 15(6):4171–4182,

2016.

[92] Lumin Liu, Jun Zhang, SH Song, and Khaled B Letaief. Client-edge-cloud hierarchical

federated learning. In IEEE ICC, pages 1–6, 2020.

[93] Lumin Liu, Jun Zhang, Shenghui Song, and Khaled B Letaief. Hierarchical quan-

tized federated learning: Convergence analysis and system design. arXiv preprint

arXiv:2103.14272, 2021.

135

[94] Wanchun Liu, Xiangyun Zhou, Salman Durrani, and Petar Popovski. Secure commu-

nication with a wireless-powered friendly jammer. IEEE Trans. Wireless Commun.,

15(1):401–415, 2015.

[95] Xian Liu, Dawei Lu, Aiqian Zhang, Qian Liu, and Guibin Jiang. Data-driven machine

learning in environmental pollution: Gains and problems. Environmental Science &

Technology, 2022.

[96] Don O Loftsgaarden, Charles P Quesenberry, et al. A nonparametric estimate of a

multivariate density function. The Annals of Mathematical Statistics, 36(3):1049–1051,

1965.

[97] Siqi Luo, Xu Chen, Qiong Wu, Zhi Zhou, and Shuai Yu. Hfel: Joint edge association

and resource allocation for cost-efficient hierarchical federated edge learning. IEEE

Trans. Wireless Commun., 19(10):6535–6548, 2020.

[98] Yu Luo, Lina Pu, Zheng Peng, and Zhijie Shi. Rss-based secret key generation in

underwater acoustic networks: advantages, challenges, and performance improvements.

IEEE Communications Magazine, 54(2):32–38, 2016.

[99] Zhengping Luo, Zhe Qu, Tung Nguyen, Hui Zeng, and Zhuo Lu. Security of hpc

systems: From a log-analyzing perspective. EAI Endorsed Transactions on Security

and Safety, 6(21):e5, 2019.

[100] Jeaneth Machicao and Odemir M Bruno. Improving the pseudo-randomness properties

of chaotic maps using deep-zoom. Chaos: an interdisciplinary journal of nonlinear

science, 27(5):053116, 2017.

[101] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. A

survey on mobile edge computing: The communication perspective. IEEE Commun.

Surveys Tuts., 19(4):2322–2358, 2017.

136

[102] Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of

torch. In Proceedings of the 18th ACM international conference on Multimedia, pages

1485–1488, 2010.

[103] Suhas Mathur, Wade Trappe, Narayan Mandayam, Chunxuan Ye, and Alex Reznik.

Radio-telepathy: extracting a secret key from an unauthenticated wireless channel. In

ACM MOBICOM, pages 128–139, 2008.

[104] Ueli Maurer and Stefan Wolf. Secret-key agreement over unauthenticated public chan-

nels - Part III: Privacy amplification. IEEE Trans. Information Theory, 49(4):839–851,

2003.

[105] Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete

mathematics, pages 195–248. Springer, 1998.

[106] Matthew R McKay and Iain B Collings. General capacity bounds for spatially corre-

lated rician mimo channels. IEEE Trans. Inf. Theory, 51(9):3121–3145, 2005.

[107] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera

y Arcas. Communication-efficient learning of deep networks from decentralized data.

In Artificial Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[108] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov. Exploit-

ing unintended feature leakage in collaborative learning. In IEEE S&P, pages 691–706,

2019.

[109] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive privacy analysis of

deep learning: Passive and active white-box inference attacks against centralized and

federated learning. In IEEE S&P, pages 739–753, 2019.

[110] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari.

Learning with noisy labels. In NIPS, pages 1196–1204, 2013.

137

[111] Hung T Nguyen, Vikash Sehwag, Seyyedali Hosseinalipour, Christopher G Brinton,

Mung Chiang, and H Vincent Poor. Fast-convergent federated learning. IEEE J. Sel.

Areas Commun., 39(1):201–218, 2020.

[112] Ti Ti Nguyen, Vu Nguyen Ha, Long Bao Le, and Robert Schober. Joint data com-

pression and computation offloading in hierarchical fog-cloud systems. IEEE Trans.

Wireless Commun., 19(1):293–309, 2019.

[113] Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with het-

erogeneous resources in mobile edge. In IEEE ICC, pages 1–7, 2019.

[114] Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and Guoliang Xing. Clus-

terfl: a similarity-aware federated learning system for human activity recognition. In

Proceedings of the ACM MobiSys, pages 54–66, 2021.

[115] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,

and Ananthram Swami. Practical black-box attacks against machine learning. In

Proceedings of the ACM ASIACCS, pages 506–519, 2017.

[116] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael P Wellman. Sok:

Security and privacy in machine learning. In IEEE EuroS&P, pages 399–414, 2018.

[117] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017.

[118] Neal Patwari, Jessica Croft, Suman Jana, and Sneha K Kasera. High-rate uncorrelated

bit extraction for shared secret key generation from channel measurements. IEEE

Trans. Mobile Comput, 9(1):17–30, 2010.

[119] L Yu Paul, John S Baras, and Brian M Sadler. Physical-layer authentication. IEEE

Trans. Inf. Forensics Security, 3(1):38–51, 2008.

138

[120] Craig S Petrie and J Alvin Connelly. A noise-based ic random number generator for

applications in cryptography. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl.,

47(5):615–621, 2000.

[121] Satya Ponnaluri, Babak Azimi-Sadjadi, Yik-Kiong Hue, Tugba Erpek, Arash Komaee,

and Wade Trappe. A practical wireless reciprocity-aware key establishment protocol.

In IEEE MILCOM, pages 1107–1113, 2016.

[122] S. N. Premnath, P. L. Gowda, S. K. Kasera, N. Patwari, and R. Ricci. Secret key

extraction using bluetooth wireless signal strength measurements. In IEEE SECON,

pages 293–301, 2014.

[123] Sriram Nandha Premnath, Jessica Croft, Neal Patwari, and Sneha Kumar Kasera.

Efficient high-rate secret key extraction in wireless sensor networks using collaboration.

ACM TOSN, 11(1):2, 2014.

[124] Xiao Qin, Lei Cao, Elke A Rundensteiner, and Samuel Madden. Scalable kernel density

estimation-based local outlier detection over large data streams. In EDBT, pages 421–

432, 2019.

[125] Zhaonan Qu, Kaixiang Lin, Jayant Kalagnanam, Zhaojian Li, Jiayu Zhou, and

Zhengyuan Zhou. Federated learning’s blessing: Fedavg has linear speedup. arXiv

preprint arXiv:2007.05690, 2020.

[126] Zhe Qu, Rui Duan, Lixing Chen, Jie Xu, Zhuo Lu, and Yao Liu. Context-aware online

client selection for hierarchical federated learning. arXiv preprint arXiv:2112.00925,

2021.

[127] Zhe Qu, Rui Duan, Lixing Chen, Jie Xu, Zhuo Lu, and Yao Liu. Context-aware online

client selection for hierarchical federated learning. arXiv preprint arXiv:2112.00925,

2021.

139

[128] Zhe Qu, Rui Duan, Lixing Chen, Jie Xu, Zhuo Lu, and Yao Liu. Context-aware online

client selection for hierarchical federated learning. IEEE Transactions on Parallel and

Distributed Systems, 2022.

[129] Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated

learning via sharpness aware minimization. arXiv preprint arXiv:2206.02618, 2022.

[130] Zhe Qu, Xingyu Li, Jie Xu, Bo Tang, Zhuo Lu, and Yao Liu. On the convergence of

multi-server federated learning with overlapping area. IEEE Transactions on Mobile

Computing, 2022.

[131] Zhe Qu, Shangqing Zhao, Jie Xu, Zhuo Lu, and Yao Liu. How to test the randomness

from the wireless channel for security? IEEE Transactions on Information Forensics

and Security, 16:3753–3766, 2021.

[132] Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,

Jakub Konevcny, Sanjiv Kumar, and Hugh Brendan McMahan. Adaptive federated

optimization. In ICLR, 2021.

[133] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin

Pedarsani. Fedpaq: A communication-efficient federated learning method with periodic

averaging and quantization. In AISTATS, pages 2021–2031. PMLR, 2020.

[134] Abhijit Guha Roy, Shayan Siddiqui, Sebastian Pölsterl, Nassir Navab, and Christian

Wachinger. Braintorrent: A peer-to-peer environment for decentralized federated learn-

ing. arXiv preprint arXiv:1905.06731, 2019.

[135] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh

Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the

IEEE CVPR, pages 4510–4520, 2018.

140

[136] Timothy M Schmidl and Donald C Cox. Robust frequency and timing synchronization

for ofdm. IEEE Trans. Commun., 45(12):1613–1621, 1997.

[137] Erich Schubert, Remigius Wojdanowski, Arthur Zimek, and Hans-Peter Kriegel. On

evaluation of outlier rankings and outlier scores. In Proceedings of SDM, pages 1047–

1058. SIAM, 2012.

[138] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer,

Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning

attacks on neural networks. In NeurIPS, pages 6103–6113, 2018.

[139] Shiqi Shen, Shruti Tople, and Prateek Saxena. Auror: Defending against poisoning

attacks in collaborative deep learning systems. In Proceedings of the ACSAC, pages

508–519, 2016.

[140] Wenqi Shi, Sheng Zhou, and Zhisheng Niu. Device scheduling with fast convergence

for wireless federated learning. In IEEE ICC, pages 1–6, 2020.

[141] Yuanming Shi, Kai Yang, Tao Jiang, Jun Zhang, and Khaled B Letaief.

Communication-efficient edge ai: Algorithms and systems. IEEE Commun. Surveys

Tuts., 22(4):2167–2191, 2020.

[142] Nir Shlezinger, Mingzhe Chen, Yonina C Eldar, H Vincent Poor, and Shuguang Cui.

Uveqfed: Universal vector quantization for federated learning. IEEE Trans. Signal

Process., 69:500–514, 2020.

[143] David Slepian and Jack Wolf. Noiseless coding of correlated information sources. IEEE

Trans. Inf. Theory, 19(4):471–480, 1973.

[144] Guillaume Stempfel, Liva Ralaivola, and François Denis. Learning from Noisy Data us-

ing Hyperplane Sampling and Sample Averages, May 2007. working paper or preprint.

141

[145] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik Markov.

The first collision for full sha-1. In Crypto, pages 570–596. Springer, 2017.

[146] Sebastian U Stich. Local sgd converges fast and communicates little. In ICLR, 2018.

[147] Haijian Sun, Xiang Ma, and Rose Qingyang Hu. Adaptive federated learning with

gradient compression in uplink noma. IEEE Trans. Veh. Technol., 69(12):16325–16329,

2020.

[148] Bo Tang and Haibo He. Kerneladasyn: Kernel based adaptive synthetic data genera-

tion for imbalanced learning. In IEEE CEC, pages 664–671, 2015.

[149] Bo Tang and Haibo He. A local density-based approach for outlier detection. Neuro-

computing, 241:171–180, 2017.

[150] Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. Enhancing

effectiveness of outlier detections for low density patterns. In PAKDD, pages 535–548.

Springer, 2002.

[151] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data poisoning

attacks against federated learning systems. In ESORICS, pages 480–501. Springer,

2020.

[152] Nguyen H Tran, Wei Bao, Albert Zomaya, Minh NH Nguyen, and Choong Seon Hong.

Federated learning over wireless networks: Optimization model design and analysis.

In IEEE INFOCOM, pages 1387–1395, 2019.

[153] Tuyen X Tran and Dario Pompili. Joint task offloading and resource allocation for

multi-server mobile-edge computing networks. IEEE Trans. Veh. Technol., 68(1):856–

868, 2018.

[154] Gill R Tsouri and David MWagner. Threshold constraints on symmetric key extraction

from rician fading estimates. IEEE Trans. Mobile Comput, 12(12):2496–2506, 2013.

142

[155] Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry A McKay, Mary L Baish,

and Mike Boyle. Recommendation for the entropy sources used for random bit gener-

ation. NIST Special Publication, 800:90B, 2018.

[156] Jon W Wallace and Rajesh K Sharma. Automatic secret keys from reciprocal MIMO

wireless channels: Measurement and analysis. IEEE Trans. Inf. Forensics Security,

5(3):381–392, 2010.

[157] Ge Wang, Haofan Cai, Chen Qian, Jinsong Han, Xin Li, Han Ding, and Jizhong Zhao.

Towards replay-resilient rfid authentication. In Proceedings of the ACM MobiCom,

pages 385–399, 2018.

[158] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learning

on non-iid data with reinforcement learning. In IEEE INFOCOM, pages 1698–1707,

2020.

[159] Jiayi Wang, Shiqiang Wang, Rong-Rong Chen, and Mingyue Ji. Local averag-

ing helps: Hierarchical federated learning and convergence analysis. arXiv preprint

arXiv:2010.12998, 2020.

[160] Qian Wang, Hai Su, Kui Ren, and Kwangjo Kim. Fast and scalable secret key gener-

ation exploiting channel phase randomness in wireless networks. In IEEE INFOCOM,

pages 1422–1430, 2011.

[161] Qian Wang, Kaihe Xu, and Kui Ren. Cooperative secret key generation from phase

estimation in narrowband fading channels. IEEE J. Selected Areas in Communications,

30(9):1666–1674, 2012.

[162] Tao Wang, Yao Liu, and Athanasios V Vasilakos. Survey on channel reciprocity based

key establishment techniques for wireless systems. Wireless Networks, 21(6):1835–1846,

2015.

143

[163] Tian Wang, Lei Qiu, Arun Kumar Sangaiah, Anfeng Liu, Md Zakirul Alam Bhuiyan,

and Ying Ma. Edge-computing-based trustworthy data collection model in the internet

of things. IEEE Internet Things J., 7(5):4218–4227, 2020.

[164] YH Wang and Zejiang Yang. On a markov multinomial distribution. Mathematical

Scientist, 20(1):40–49, 1995.

[165] Kang Wei, Jun Li, Chuan Ma, Ming Ding, Cailian Chen, Shi Jin, Zhu Han, and

H Vincent Poor. Low-latency federated learning over wireless channels with differential

privacy. arXiv preprint arXiv:2106.13039, 2021.

[166] Yunchuan Wei, Kai Zeng, and Prasant Mohapatra. Adaptive wireless channel probing

for shared key generation based on PID controller. IEEE Trans. Mobile Comput,

12(9):1842–1852, 2013.

[167] Jinze Wu, Qi Liu, Zhenya Huang, Yuting Ning, Hao Wang, Enhong Chen, Jinfeng Yi,

and Bowen Zhou. Hierarchical personalized federated learning for user modeling. In

Proceedings of the Web Conference 2021, pages 957–968, 2021.

[168] Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis.

Safa: A semi-asynchronous protocol for fast federated learning with low overhead.

IEEE Trans. Comput., 70(5):655–668, 2020.

[169] Wei Xi, Chen Qian, Jinsong Han, Kun Zhao, Sheng Zhong, Xiang-Yang Li, and Jizhong

Zhao. Instant and robust authentication and key agreement among mobile devices. In

ACM CCS, pages 616–627, 2016.

[170] Wenchao Xia, Tony QS Quek, Kun Guo, Wanli Wen, Howard H Yang, and Hongbo

Zhu. Multi-armed bandit-based client scheduling for federated learning. IEEE Trans.

Wireless Commun., 19(11):7108–7123, 2020.

144

[171] Han Xiao, Huang Xiao, and Claudia Eckert. Adversarial label flips attack on support

vector machines. In ECAI, pages 870–875, 2012.

[172] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Generalized byzantine-tolerant

sgd. arXiv preprint arXiv:1802.10116, 2018.

[173] Cong Xie, Sanmi Koyejo, and Indranil Gupta. Zeno: Distributed stochastic gradient

descent with suspicion-based fault-tolerance. In ICML, pages 6893–6901, 2019.

[174] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang.

Multi-center federated learning. arXiv preprint arXiv:2005.01026, 2020.

[175] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei Wang.

Federated learning for healthcare informatics. Journal of Healthcare Informatics Re-

search, 5(1):1–19, 2021.

[176] Jie Xu and Heqiang Wang. Client selection and bandwidth allocation in wireless

federated learning networks: A long-term perspective. IEEE Trans. Wireless Commun,

20(2):1188–1200, 2020.

[177] Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Federated

learning with client-level momentum. arXiv preprint arXiv:2106.10874, 2021.

[178] Chengxu Yang, Qipeng Wang, Mengwei Xu, Zhenpeng Chen, Kaigui Bian, Yunxin

Liu, and Xuanzhe Liu. Characterizing impacts of heterogeneity in federated learning

upon large-scale smartphone data. In Proceedings of the Web Conference 2021, pages

935–946, 2021.

[179] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. Fake co-visitation injection attacks

to recommender systems. In NDSS. Internet Society, 2017.

[180] Guolei Yang, Neil Zhenqiang Gong, and Ying Cai. Fake co-visitation injection attacks

to recommender systems. In NDSS, 2017.

145

[181] Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial

worker participation in non-{iid} federated learning. In ICLR, 2021.

[182] Kai Yang, Tao Jiang, Yuanming Shi, and Zhi Ding. Federated learning via over-the-air

computation. IEEE Trans. Wireless Commun., 19(3):2022–2035, 2020.

[183] Shengwen Yang, Bing Ren, Xuhui Zhou, and Liping Liu. Parallel distributed logis-

tic regression for vertical federated learning without third-party coordinator. arXiv

preprint arXiv:1911.09824, 2019.

[184] Shimpei Yasukawa, Hisato Iwai, and Hideichi Sasaoka. A secret key agreement scheme

with multi-level quantization and parity check using fluctuation of radio channel prop-

erty. In IEEE ISIT, pages 732–736, 2008.

[185] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust

distributed learning: Towards optimal statistical rates. In ICML, pages 5650–5659,

2018.

[186] Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel restarted sgd with faster convergence

and less communication: Demystifying why model averaging works for deep learning.

In Proceedings of the AAAI, volume 33, pages 5693–5700, 2019.

[187] Kai Zeng, Daniel Wu, An Chan, and Prasant Mohapatra. Exploiting multiple-antenna

diversity for shared secret key generation in wireless networks. In IEEE INFOCOM,

pages 1–9, 2010.

[188] Junqing Zhang, Alan Marshall, Roger Woods, and Trung Q Duong. Efficient key gener-

ation by exploiting randomness from channel responses of individual ofdm subcarriers.

IEEE Trans. Commun., 64(6):2578–2588, 2016.

146

[189] Mengyang Zhao, Aadarsh Jha, Quan Liu, Bryan A Millis, Anita Mahadevan-Jansen,

Le Lu, Bennett A Landman, Matthew J Tyskac, and Yuankai Huo. Faster mean-

shift: Gpu-accelerated embedding-clustering for cell segmentation and tracking. arXiv

preprint arXiv:2007.14283, 2020.

[190] Shangqing Zhao, Zhuo Lu, Zhengping Luo, and Yao Liu. Orthogonality-sabotaging

attacks against ofdma-based wireless networks. In IEEE INFOCOM, pages 1603–1611,

2019.

[191] Shangqing Zhao, Zhuo Lu, and Cliff Wang. When seeing isn’t believing: On feasibility

and detectability of scapegoating in network tomography. In IEEE ICDCS, pages

172–182, 2017.

[192] Shangqing Zhao, Zhuo Lu, and Cliff Wang. How can randomized routing protocols hide

flow information in wireless networks? IEEE Trans. Wireless Commun., 19, 2020.

[193] Shangqing Zhao, Zhengping Luo, Zhuo Lu, Xiang Lu, and Yao Liu. Stateful inter-

packet signal processing for wireless networking. In ACM MobiCom, 2017.

[194] Shangqing Zhao, Zhe Qu, Zhuo Lu, and Tao Wang. Spectrum tomography attacks:

Inferring spectrum allocation mechanisms in multicarrier systems. In IEEE DySPAN,

pages 1–2, 2019.

[195] Shangqing Zhao, Zhe Qu, Zhengping Luo, Zhuo Lu, and Yao Liu. Comb decoding

towards collision-free wifi. In USENIX NSDI, 2020.

[196] Yuchen Zhao, Hanyang Liu, Honglin Li, Payam Barnaghi, and Hamed Had-

dadi. Semi-supervised federated learning for activity recognition. arXiv preprint

arXiv:2011.00851, 2020.

147

[197] Sihui Zheng, Cong Shen, and Xiang Chen. Design and analysis of uplink and downlink

communications for federated learning. IEEE J. Sel. Areas Commun., 39(7):2150–2167,

2020.

[198] Xiaojun Zhu, Fengyuan Xu, Edmund Novak, Chiu C Tan, Qun Li, and Guihai Chen.

Extracting secret key from wireless link dynamics in vehicular environments. In IEEE

INFOCOM, pages 2283–2291, 2013.

[199] Xinghua Zhu, Jianzong Wang, Zhenhou Hong, and Jing Xiao. Empirical studies of

institutional federated learning for natural language processing. In Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing: Findings,

pages 625–634, 2020.

148

Appendix A: Proofs of Chapter 2

In this appendix, we present all lemma and theorems in Chapter 2 in detail.

A.1 Proof of Lemma 1

In order to simplify the notations, we write w = wm in all the proofs.

Proof. For any client i ∈ Nθ and e ∈ [E], we have:

E∥wt,e
θ −wt∥2 = E||wt,e−1

i −wt − ηlg
t,e−1
i ∥2

≤ E∥wt,e−1
i −wt − ηl(g

t,e−1
i −∇Fi (w

t,e−1
i) +∇Fi (w

t,e−1
i)

−∇Fi (w
t) +∇Fi (w

t)−∇f (wt) +∇f (wt))∥2

≤
(
1 +

1

2E − 1
+ 6Eη2l L

2

)
E∥wt,e−1

i −wt∥2 + η2l σ
2 +

6Eη2l Nθ
N

α2
θ + 6Eη2l ∥∇f (wt)∥2

≤
(
1− 1

E − 1

)
E∥wt,e−1

i −wt∥2 + η2l σ
2 +

6Eη2l Nθ
N

α2
θ + 6Eη2l ∥∇f (wt)∥2.

Re-rolling the above inequality of the local epoch e, we obtain the following:

1

Nθ

∑
i∈Nθ

E∥wt,e
i −wt∥2 ≤

e−1∑
γ=0

(
1 +

1

E − 1

)γ(
η2l β

2
θ + 6Eη2l ∥∇f (wt)∥2

)
≤ 5Eη2l β

2
θ + 30E 2η2l ∥∇f (wt)∥2,

where β2
θ = σ2 + 6ENθ

N
α2
θ in short. □

149

A.2 Proof of Theorem 1

Proof. Based on the smoothness in Assumption 1, taking expectation of f (wt+1) over the

randomness in communication round t, we have:

E[f (wt+1)] ≤ f (wt)− Eηgηl ||∇f (wt)||2

+ ⟨ηg∇f (wt),E[(wt+1 −wt) + Eηl∇f (wt)]⟩︸ ︷︷ ︸
A1

+
L

2
η2g E||wt+1 −wt ||2︸ ︷︷ ︸

A2

. (A.1)

Now, we bound the term A1 as follows:

A1 = ⟨∇f (wt),E[(wt+1 −wt) + Eηl∇f (wt)]⟩

=

〈
∇f (wt),E

∑
θ⊆2M

[
−
∑
i∈θ

1

Nθ

E−1∑
e=0

ηl∇Fi (w
i
t,e) + Eηl

∑
θ⊆2M

1

Nθ

∑
i∈θ

∇Fi (w
t)

]〉

=
Eηl
2

∥∇f (wt)∥2 + ηl
2EN2

θ

E
[∥∥∥∥ ∑

θ⊆2M

∑
i∈θ

E−1∑
e=0

(∇Fi (w
t,e
i)

−∇Fi (w
t
i))

∥∥∥∥2 − ηl
2EN2

θ

E
∥∥∥∥ ∑
θ⊆2M

∑
i∈θ

E−1∑
e=0

∇Fi (w
t,e
i)

∥∥∥∥2

≤ Eηl

(
1

2
+ 15E 2L2η2l

)
∥∇f (wt)∥2 +

∑
θ⊆2M

5NθE
2L2η3l

2N
β2
θ −

ηl
2EN2

θ

E
∥∥∥∥ ∑
θ⊆2M

∑
i∈θ

E−1∑
e=0

∇Fi (w
t,e
i)

∥∥∥∥2,
where the last inequality is from Lemma 1. The term A2 can be bounded as follows:

A2 ≤
η2l
N2
θ

E
∥∥∥∥ ∑
θ⊆2M

∑
i∈θ

E−1∑
e=0

gt,ei

∥∥∥∥2 ≤ Eη2l
Nθ

σ2 +
η2l
N2
θ

E
∥∥∥∥ ∑
θ⊆2M

∑
i∈θ

E−1∑
e=0

∇Fi (w
t,e
i)

∥∥∥∥2,
where the last inequality is from the Assumption 2 and the fact E(∥x1 + · · · + xn∥2) =

E(∥x1∥2 + · · · + ∥xn∥2) if each x is independent with zero mean and E[gt,e
i] = ∇Fi(w

t,e
i).

150

Plugging terms A1 and A2 into (A.1) as follows:

E[f (wt+1)] ≤ f (wt)− Eηlηg

(
1

2
− 15E 2L2η2l

)
∥∇f (wt)∥2

+
LEη2l η

2
g

2Nθ
σ2 +

∑
θ⊆2M

5NθE
2L2ηgη

3
l

2N
β2
θ +

(
Lη2gη

2
l

2N2
θ

− ηgηl
2EN2

)
E
∥∥∥∥ ∑
θ⊆2M

∑
i∈θ

E−1∑
e=0

∇Fi (w
t,e
i)

∥∥∥∥2
(1)

≤ f (wt)− Eηlηg

(
1

2
− 15E 2L2η2l

)
∥∇f (wt)∥2 +

LEη2l η
2
g

2Nθ
σ2 +

∑
θ⊆2M

5NθE
2L2ηgη

3
l

2N
β2
θ

(2)

≤ f (wt)− cEηgηl∥∇f (wt)∥2 +
LEη2l η

2
g

2N
σ2 +

∑
θ⊆2M

5NθE
2L2ηgη

3
l

2N
β2
θ ,

where (1) is based on ηgηl ≤ 1
LE

and (2) is based on ηl ≤ 1√
30LE

. Rearranging and summing

the above results for all M regional servers from t = 0, ... ,T − 1, we have:

T−1∑
t=0

cEηgηlE[∇f (wt)] ≤
∑
m∈M

f (w0
m)− F (wT

m)

M
+
∑
m∈M

∑
θ⊆2M

(
Lηgηl
2MNm

σ2
m +

5Nm,θEL
2η2l

2MN
β2
m,θ

)
.

This completes the proof. □

A.3 Proof of Theorem 2

Proof. Under partial client participation strategy, we will use Et to represent the expectation.

Due to the smoothness in Assumption 1, taking expectation of f (wt+1) over the randomness

at t-th round as follows:

E[f (wt+1)] ≤ f (wt)− Eηgηl∥∇f (wt)∥2 + ηg ⟨∇f (wt),E[wt+1 −wt + Eηl∇f (wt)]⟩︸ ︷︷ ︸
B1

+
L

2
η2g E∥wt+1 −wt∥2︸ ︷︷ ︸

B2

. (A.2)

It is easy to observe that the term B1 in (A.2) is same as the term A1 in (A.1) in expectation.

Therefore, we only need to focus on the term B2. For Scheme I under unbiased partial client

participation, we assume the sampling subset S t = {l1, ... , ln, ... , lKθ
} in area type θ, we can

151

bound the term B2 as follows:

B2

(1)

≤
Eη2l
Kθ

σ2 +
η2l
K 2
θ

E
[∥∥∥∥ ∑

θ⊆2M

∑
n∈θ

E−1∑
e=0

∇Fln(w
t,e
ln

)

∥∥∥∥2]
(2)

≤
Eη2l
Kθ

σ2 +
η2l
K 2

∑
θ⊆2M

Kθ
Nθ

∑
i∈θ

E∥qi∥2 +
η2l
K 2

∑
θ⊆2M

Kθ(Kθ − 1)

N2
θ

E
∥∥∥∥∑

i∈θ
qi

∥∥∥∥2,
where (1) is based on the Assumption 2 and E∥x1 + · · · + xn∥2 ≤ nE(∥x1∥2 + · · · + ∥xn∥2);

(2) is based on the randomly sampling with replacement and qi =
∑E−1

e=0 ∇Fi(w
t,e
ln
). For∑

i∈θ E∥qi∥2, we have:

∑
i∈θ

E∥qi∥2 ≤ 15NθE
2L2η2l G

2
θ + (90NθE

4L2η2l + 3NθE
2)∥∇f (wt)∥2 +

3E 2N2
θ

N
α2
θ. (A.3)

Plugging terms B1, B2 and (A.3) into (A.2), if we set the learning rates as ELηgηl ≤∑
θ⊆2M

Kθ(Kθ−1)
K2 and the condition 30E 2L2η2l +

Lηgηl
Km

(90E 3L2η2l) < 1 holding, we have:

E[f (wt+1)] ≤ f (wt)− cEηgηl∥∇f (wt)∥2 +
ELη2gη

2
l

2K
σ2 +

∑
θ⊆2M

3NθE
2Lη2gη

2
l

KN2
α2
θ

+
∑
θ⊆2M

(
15NθE

3L3η2gη
4
l

KN
+

5NθE
2L3ηgη

3
l

2N

)
β2
θ .

Rearranging and summing the above results from t = 0, ... ,T − 1, we have:

T−1∑
t=0

cEηgηlE[∇f (wt)] ≤
∑
m∈M

f (w0
m)− F (wT

m)

M
+
∑
m∈M

ELη2gη
2
l

2MKm
σ2
m

+
∑
m∈M

∑
θ⊆2M

3Nm,θE
2Lη2gη

2
l

MKmN2
m

α2
m,θ +

∑
m∈M

Eηgηl
M

∑
θ⊆2M

(
Lηgηl
KmNm

+
5Nm,θEL

2η2l
2Nm

)
β2
θ .

For bounding the term B2 in Scheme II, we have:

B2 =
η2l
KN

∑
θ⊆2M

∑
i∈N

E−1∑
e=0

E
∥∥∥∥gt,ei −∇Fi (w

t,e
i)

∥∥∥∥2 + η2l
K 2

E
∥∥∥∥∑

i∈θ
I{i ∈ S t}

E−1∑
e=0

∇Fi (w
t,e
i)

∥∥∥∥2

=
Eη2l
K

σ2 +
η2l
K 2

∑
θ⊆2M

E
∥∥∥∥∑

i∈θ
P{i ∈ S t

θ}qi
∥∥∥∥2.

152

For bounding ∥
∑

i∈θ P{i ∈ S t
θ}qi∥2, we have:

∥∥∥∥∑
i∈θ

P{i ∈ S t
θ}qi

∥∥∥∥2 =∑
i∈θ

P{i ∈ S t
θ}∥qi∥2 +

∑
x ̸=y

P{x , y ∈ S t
mi
}⟨qx ,qy ⟩

+
K 2
θ

Nθ

∑
i∈θ

∥qi∥2 −
Kθ(Kθ − 1)

2Nθ(Nθ − 1)

∑
x ̸=y

∥qx − qy∥2.
(A.4)

Plugging (A.4) and (A.4) into (A.2), we have:

E[f (wt+1)] ≤ ∇f (wt)− Eηgηl

(
1

2
− 15E 2L2η2l

)
||∇f (wt)||2 +

ELη2gη
2
l

2K
σ2 +

∑
θ⊆2M

5NθEL
2η3l

2N
β2
θ

+
Lη2gη

2
l

2K 2

∑
θ⊆2M

E
∥∥∥∥∑

i∈θ
P{i ∈ S t

θ}qi
∥∥∥∥2 − ηgηl

2EN2

∑
θ⊆2M

E
∥∥∥∥∑

i∈θ
qi

∥∥∥∥2
≤ ∇f (wt)− Eηgηl

(
1

2
− 15E 2L2η2l −

∑
θ⊆2M

Lηgηl(Kθ − 1)

2K (Nθ − 1)
(90E 3L2η2l + 3E)

)
||∇f (wt)||2

+
ELη2gη

2
l

2K
σ2 +

∑
θ⊆2M

2E 2Lη2gη
2
l Nθ(Nθ − Kθ)

KN(Nθ − 1)
α2
θ

+ Eηgηl
∑
θ⊆2M

(
15Nθ(Nθ − Kθ)E

2L3ηgη
3
l

2NK (Nθ − 1)
+

5NθEL
3η2l

2N

)
β2
θ

≤ ∇f (wt)− cEηgηl∥∇f (wt)∥2 +
ELη2gη

2
l

2K
σ2 +

∑
θ⊆2M

2E 2Lη2gη
2
l Nθ(Nθ − Kθ)

KN(Nθ − 1)
α2
θ

+ Eηgηl
∑
θ⊆2M

(
15Nθ(Nθ − Kθ)E

2L3ηgη
3
l

2NK (Nθ − 1)
+

5NθEL
3η2l

2N

)
β2
θ .

Rearranging and summing the above results from t = 0, ... ,T − 1, we have:

T−1∑
t=0

cEηgηlE[∇f (wt)] ≤
∑
m∈M

f (w0
m)− F (wT

m)

M

+
∑
m∈M

∑
θ⊆2M

2E 2Lη2gη
2
l Nm,θ(Nm,θ − Km,θ)

MKmNm(Nm,θ − 1)
α2
m,θ

+
Eηgηl
M

∑
m∈M

∑
θ⊆2M

15Nθ(Nθ − Kθ)E
2L3ηgη

3
l

2NK (Nθ − 1)
β2
m,θ

+
Eηgηl
M

∑
m∈M

∑
θ⊆2M

5NθEL
3η2l

2N
β2
m,θ +

∑
m∈M

ELη2gη
2
l

2MKm
σ2
m.

This completes the proof. □

153

A.4 Proof of Theorem 3

Proof. For biased partial participation schemes, we can bound E[f (wt+1)] as same as the

results in (A.1). However, we cannot directly leverage the results of B1 in (A.2), since the

result of unbiased sampling in each type area EKt
m
(wt) = 1

Nm

∑
i∈Nm

wt
i ,m, which is widely

used in FL studies [80, 62, 181] is not fit to the biased participation strategy. Therefore, we

present a new result the result from the whole regional model to each type area as follows:

EKt
m,θ

[wm,θ] = EKt
m,θ

[
1

Km,θ

∑
l∈Kt

m,θ

wt
m,l

]
=

1

Km,θ

∑
l∈Kt

m,θ

El [w
t
m,l] =

1

Nm,θ

∑
i∈Nm,θ

wt
m,i . (A.5)

Based on Equation (A.5), we can bound B1 for the Scheme I of the unbiased partial client

participation as follows:

B1 ≤
Eηl
2

∥∇f (wt)∥2 + Eηl
2K

∑
θ⊆2M

∑
i∈θ

E∥(∇Fi (w
t,e
i)

−∇Fi (w
t
i))∥2 −

ηl
2EK 2

∑
θ⊆2M

E
∥∥∥∥∑

i∈θ

E−1∑
e=0

∇Fi (w
t,e
i)

∥∥∥∥2

≤ Eηl

(
1

2
+ 15E 2L2η2l

)
∥∇f (wt)∥2 +

∑
θ⊆2M

5KθE
2L2η3l

2K
β2
θ −

∑
θ⊆2M

ηl
2EN2

θ

E
∥∥∥∥∑

i∈θ

E−1∑
e=0

∇Fi (w
t,e
i)

∥∥∥∥2,
(A.6)

For bounding B2, we have:

B2 ≤
Eη2l
K

σ2 +
∑
θ⊆2M

η2l Kθ
K 2Nθ

∑
i∈θ

∥qi∥2 +
∑
θ⊆2M

η2l Kθ(Kθ − 1)

K 2N2
θ

∥∥∥∥∑
i∈θ

qi

∥∥∥∥2. (A.7)

154

Plugging (A.6) and (A.7) into (A.2), we can bound E[f (wt+1)] as follows:

E[f (wt+1)] ≤ ∇f (wt)− Eηgηl

(
1

2
− 15E 2L2η2l

)
∥∇f (wt)∥2

+
∑
θ⊆2M

5KθE
2L2ηgη

3
l

2K

(
σ2 +

6EKθ
K

α2
θ

)
+

ELη2gη
2
l

2K
σ2

+
ELη2gη

2
l

2K
σ2 +

Lη2gη
2
l

2K

∑
θ⊆2M

∑
i∈θ

∥qi∥2

≤ ∇f (wt)− Eηgηl

(
1

2
− 15E 2L2η2l −

∑
θ⊆2M

LηgηlK
2
θ

2K 2Nθ
(90E 3L2η2l + 3E)

)
∥∇f (wt)∥2

+
∑
θ⊆2M

(
5KθE

2L2ηgη
3
l

2K
+

15K 2
θ E

2L3η2gη
4
l

2K 2Nθ

)
β2
θ +

∑
θ⊆2M

3K 3
θ E

2Lη2gη
2
l

K 3Nθ
α2
θ +

ELη2gη
2
l

2K
σ2

≤ ∇f (wt)− cEηgηl∥∇f (wt)∥2 +
ELη2gη

2
l

2K
σ2

+ Eηgηl
∑
θ⊆2M

(
5KθEL

2η2l
2K

+
15K 2

θ E
2L3ηgη

3
l

2K 2Nθ

)
β2
θ +

∑
θ⊆2M

3K 3
θ E

2Lη2gη
2
l

2K 3Nθ
α2
θ.

Rearranging and summing the above results from t = 0, ... ,T − 1, we have:

T−1∑
t=0

cEηgηlE[∇f (wt)] ≤
∑
m∈M

f (w0
m)− F (wT

m)

M
+
∑
m∈M

ELη2gη
2
l

2MKm
σ2
m

+
∑
m∈M

∑
θ⊆2M

3K 3
m,θE

2Lη2gη
2
l

2MK 3
mNm,θ

α2
m,θ +

∑
m∈M

∑
θ⊆2M

Eηgηl
M

(
5L2Km,θη

2
l

2Km
+

15K 2
m,θE

2L3ηgη
2
l

2K 2
mNm,θ

)
β2
m,θ.

155

For the Scheme II of biased partial client participation strategy, we have:

E[f (wt+1)] ≤ ∇f (wt)− Eηgηl

(
1

2
− 15E 2L2η2l

−
∑
θ⊆2M

LηgηlKθ(Nθ − Kθ)

2KNθ(Nθ − 1)
(90E 3L2η2l + 3E)

)
∥∇f (wt)∥2

+
ELη2gη

2
l

2K
σ2 +

∑
θ⊆2M

3ELη2gη
2
l Kθ(Nθ − Kθ)

2K 2Nθ(Nθ − 1)
α2
θ

+ Eηgηl
∑
θ⊆2M

(
5KθEL

2η2l
2K

+
15E 2L3Lηgη

3
l Kθ(Nθ − Kθ)

2KNθ(Nθ − 1)

)
β2
θ

≤ ∇f (wt)− cEηgηl∥∇f (wt)∥2 +
ELη2gη

2
l

2K
σ2 +

∑
θ⊆2M

3ELη2gη
2
l Kθ(Nθ − Kθ)

2K 2Nθ(Nθ − 1)
α2
θ

+ Eηgηl
∑
θ⊆2M

(
5KθEL

2η2l
2K

+
15E 2L3Lηgη

3
l Kθ(Nθ − Kθ)

2KNθ(Nθ − 1)

)
β2
θ .

Rearranging and summing the above results from t = 0, ... ,T − 1, we have:

T−1∑
t=0

cEηgηlE[∇f (wt)] ≤
∑
m∈M

f (w0
m)− F (wT

m)

M

+
∑
m∈M

ELη2gη
2
l

2MKm
σ2
m +

∑
m∈M

∑
θ⊆2M

Eηgηl
M

(
5Km,θEL

2η2l
2Km

+
15E 2L3Lηgη

3
l Km,θ(Nm,θ − Km,θ)

KmNm,θ(Nm,θ − 1)

)
β2
m,θ

+
∑
m∈M

∑
θ⊆2M

3E 2Lη2gη
2
l Km,θ(Nm,θ − Km,θ)

2MK 2
mNm,θ(Nm,θ − 1)

α2
m,θ.

This completes the proof. □

156

Appendix B: Proofs of Chapter 4

In this appendix, we present all lemma and theorems in Chapter 4 in detail.

B.1 Explanation of Definition 2

Proof. The i -th remote update ui comes from the local training process on the private

dataset Di , which could be denoted as a set of training sample pairs Di = {xi , yi} where xi is

the training dataset input vector and yi is the output result. Additionally, we can describe

the relationship between predicting output vector from the learning classifier (donated as ŷi)

and the input matrix xi as ŷi = softmax(uT
i × xi + b), where b is the bias of learning model.

As the learning update ui is high correlated to the training data distribution, (which is also

assumed in [139]), we assume that ui follows a similar distribution with x. Then the result

probability of y at a certain output label r ∈ [1, 2, ...R] can be written as P(yr) = P(yr |U),

where U = {u1,u2, ... ,uN+M}. However, in our defender, the distribution of ui is not known

to the defender and we could estimate the probability distribution of y according to each

label. Specially, assuming that the contribution from the parameters in ui are independent

for each output label as P(ur
i ,u

r ′
i |yr) = P(ur

i |yr)P(ur ′
i |yr) when r ̸= r ′, then we can estimate

the density distribution of ui from the distribution of y as

P(ui) = P((u1i ,u2i , ... ,uRi)|yr)P(yr)

=
∏R

r=1
P(uri |yr)P(yr) =

∏R

r=1
P(uri |y)P(y).

Then the value of F (i)r for r -th label can be written as

F (i)r =

∑k
j=1 q̃(u

r
j)

kq̃(uri)
=

∑k
j=1 q̃(u

r
j |y)|P(y)

kq̃(uri |y)P(y)
(B.1)

157

Taking this equation into the definition of F (i) as

F (i) =

∑k
j=1 q̃(uj)

kq̃(ui)
=

∑k
j=1

∏R
r=1 q̃(u

r
j |y)P(y)

kq̃
∏R

r=1(u
r |y)P(y)

=
∏R

r=1
F (i)r .

This completes the proof. □

B.2 Proof of Theorem 8

Proof. The density estimation at ith update ui is

q(ui) =
1

k + 1

k∑
j=1

1

(2π)r/2hr
exp

(
−
|ui ,j |2

2h̄

)
(B.2)

and similar in [149] the average local density estimation in the neighborhood of ui could be

defined as

q̄(ui) =
1

k

∑k

j=1
q(uj) =

1

k(k + 1)

∑k

j=1

1

(2π)
r
2 hr

exp

(
−
|ui − ui ,j |2

2h̄

)
(B.3)

Assuming that ui ,j is uniformly distributed in a o dimension ball Bβ, where β is the radius

of the ball (i.e., the distance between kth nearest neighborhood and ui) we can calculate the

expectation of q(ui) and q̄(ui)

E(q̄(ui)) = E(q(ui)) =
1

V
=

2π(r−1)/2βr−1

Γ((r − 1)/2 + 1)
(B.4)

where V is the volume of Bβ. The rest of proof is followed by the McDiarmid’s Inequality

[105] which gives the upper bound of the probability that a function of g(ui ,1, ... ,ui ,j , ... ,ui ,k)

deviates with the expectation. Let g : Rr → R,∀j ,∀ui ,1,ui ,k ,u′
i ,j ∈ Ui , we have

|g(ui ,1, ... ,ui ,j , ... ,i ,k)− g(ui ,1, ... ,u
′
i ,j , ... ,ui ,k)| ≤ ξi ,j (B.5)

158

For all γ > 0, we have P(g − E(g) ≥ γ) ≤ exp

(
−2γ2∑k
j=1 c

2
i ,j

)
. For g1 = q(ui),

|g1(ui ,1, ... ,ui ,j , ... ,ui ,k)− g1(ui ,1, ... ,u
′
i ,j , ... ,ui ,k)|

=
K (ui ,j/h̄)− K (u′i ,j/h̄)

h̄r (k + 1)
≤ 1− exp(−β2/2h̄)

(2π)r/2h̄r (k + 1)
= ξ1

(B.6)

For g2 = q̄(ui),

|g2(ui ,1, ... ,ui ,j , ... ,ui ,k)− u2(ui ,1, ... ,u
′
i ,j , ... ,ui ,k)|

=
K
(
ui ,j
h̄

)
−
(
u′i ,j
h̄

)
+ 2

∑k
j=1

[
K
(
ui−ui ,j

h̄

)
−
(
u′i−ui ,j

h̄

)]
h̄r (k + 1)

≤ 1− exp(−β2/2k̄) + 2k(1− exp(−2β2/h̄))

(2π)r/2h̄r (k + 1)
= ξ2 (B.7)

The probability of LMF is

P(LMF (i) > ϵm) = P[q̄(ui − ϵmq(ui))] = P(g − E(g) > θ), (B.8)

where θ = (ϵm − 1)/V . We are only interested in the case of LMF (i) > 1, i.e., ϵm > 1, and

θ > 0. Following by the McDiarmid’s Inequality, we have

P(LMF (i) > ϵm) ≤ exp

(
− 2θ2∑k

j=1 ξ
2

)
= exp

(
−2θ2

kξ2

)
≤ exp

(
−2(ϵm − 1)2(k + 1)2(2π)r h̄2r

k(2k + ϵ+ 1)2V 2

)
(B.9)

This completes the proof. □

159

Appendix C: Proofs of Chapter 5

In this appendix, we present all theorems in Chapter 5 in detail.

C.1 Proof of Theorem 10

Because we cannot know the correlation coefficient exactly, we need to consider the

positive and negative correlation simultaneously. Let θ be the transition probability on the

generation tree, and we assume θ < 0.5. In [87], they proved that θ = 1−ρ
2
. Because Eve

cannot know the bit sequence is positive correlation or not, she needs to search from the

most likely bit sequences happen with probabilities θL and (1 − θ)L simultaneously. MLTS

searches for X compute KT = fc(X) from the most likely bit sequence towards the least

likely one in {0, 1}L. Given the fact KD has been established, the MLTS success probability

searching for KD is

P(MLTS succeeds | KD established)

=

n/2∑
i=0

(
L

i

)
θi (1− θ)L−i +

n/2∑
i=0

(
L

i

)
(1− θ)iθL−i

= I 1−ρ
2

(
L− n

2
,
n

2
+ 1
)
+ I 1+ρ

2

(
L− n

2
,
n

2
+ 1
)
, (C.1)

where 0 ≤ n ≤ L, and Ix(a, b) is the regularized incomplete beta function that has been

defined previously. □

C.2 MLTS for Multi-level Quantization

If we use m levels to quantify the wireless information, each level can be represented by a

b-bit string, where m = log2 b. The multi-level quantization is also called m-ary quantization.

Here, we redefine the correlation coefficient ρm of consecutive bit arrays xmi and xmi+1, where

160

xmi = {xmi ,1, ... , xmi ,m} in bit sequence X as follows

ρm =

∑m
j=1(x

m
i ,j − x̄mi)(xmi+1,j − x̄mi+1)√∑m

j=1(x
m
i ,j − x̄mi)2

√∑m
j=1(x

m
i+1,j − x̄mi+1)

2
. (C.2)

For the b-ary quantization, transition probability θr ,s (i.e., P(xmi+1 = s|xmi = r)), where r

and s are the states, r , s ∈ {1, 2, ... ,m} in transition matrix Φ ∈ Rm×m as θr ,s = ρδr ,s +

(1 − ρ)/2m, where δr ,s is Kronecker delta [164]. m-ary searching is equivalent to dividing

the L-bit sequence to 2m−1 blocks and the number of possible initialization is n
2m
. Thus,

P(MLTS succeeds | KD established) is given as

P(MLTS succeeds | KD established)

=

(L
2m−1

0

)
θ

L
2m−1

1,1 + · · ·+
(L

2m−1

1

)
θ

L
2m−1−1

1,1 θ1,2 + · · ·

+

(L
2m−1

1

)
θ

L
2m−1−1

1,1 θ1m + · · ·+
(L

2m−1

n
2m

)
θ

L
2m−1−

n
2m

1,1 θ
n
2m

1,2

+ · · ·+
(L

2m−1

n
2m

)
θ

L
2m−1−

n
2m

1,1 θ
n
2m

1,2 + · · ·

=
m∑
s=1

n
2m∑
i=0

(L
2m−1

i

)
θ

L
2m−1−i
s,s θis,¬s =

m∑
s=1

Iρ+ 1−ρ
2m

(
L

2m−1
− n

2m
,
n

2m
+ 1

)
,

where θs,¬s is the transition probability from state s to the rest of states except s.

C.3 Theoretical Results of NIST Randomness Tests

Due to the page limitation, we give the results of other 7 different tests and ignore the

proof. From NIST test suite [14], we can conclude that the P-value can be calculated by

Gaussian distribution: frequency test (Frequency), run test (Run) and DFT test (DFT) and

Chi-square distribution: frequency test within a block test (BlockFreq), longest run of ones in

a block test (LongRun), non-overlapping template matching test (Nonoverlap), approximate

entropy test (AppEntropy), first order serial (1storder) and second order serial (2ndorder).

For Run test, P(Trun accepts H0) = hrun(ρ,α) = 1
2
erf
(
αf +µf
σf

√
2

)
+ 1

2
erf
(
αf −µf
σf

√
2

)
, where

αf = 2
√
2Lπ(1 − π)erfc−1(α), µf = Lλ − 2L(1 − π) and σf =

√
Lλ(1− λ). The definition

161

of π is the probability of Il , and λ is the meaning of Il = 1 if the lth element ̸= the (l-1)th

element; Il = 0 otherwise.

For DFT test, P(TDFT accepts H0) = hDFT(ρ,α) = 1
2
erf
(
αf +µf
σf

√
2

)
+ 1

2
erf
(
αf −µf
σf

√
2

)
, where

αf = erfc−1(α)
√

PDFT(1− PDFT)
n
4
, µf = 0.95n

2
− PDFT

n
2
, and σf =

√
(0.95)(0.05)n

4
. Accord-

ingly, PDFT = P(n|Sj(R)| < −n ln(0.05)), where Sj(R) is defined in NIST.

For BlockFreq test, The statistic is χ2(obs) = 4M
∑N

i=1(πi −
1
2
)2. Similar to the result of

Frequency, πi ∼ N (1
2
, 4(1+ρ)

1−ρ). The probability is P(Tlongestrun accepts H0) = hlongestrun(ρ,α) =

igam
(

N
2
, 2igamc−1(N/2,α)·χ2(newobs)

χ2(obs)

)
− igam

(
N
2
,χ2(newobs)

)
, where igam is incomplete gamma

integral function and igamc−1 is inverse complemented incomplete gamma integral func-

tion. obs is the statistic by calculating the number and newobs is calculated by the exact

distribution P(πi).

For LongRun test, The statistic is χ2(obs) =
∑K

i=0
(vi−Nπi)

2

Nπi
, where πi is the statistical

probability of obs for i , K and N are defined in NIST test suite. The exact distribution of

vi is P(vi) = ξ0Mi1T , where ξ0 is the initial [1/2, 1/2, 0, ... , 0]1×(i+1), 1
T is the transpose of

the row vector 1 = [1, 1, ... , 1]1×(i+1), and the (i + 1)× (1 + 1) matrix M is

M =



0 1
2

1
2 0 · · · 0

0 P00 P01 0 · · · 0

0 P10 0 P11 · · · 0

...
...

...
...

. . . 0

0 P10 0 0 · · · P11

0 P10 0 0 · · · 0


where P00 = P11 = 1/2 + ρ/2 and P01 = P10 = 1/2 − ρ/2. The probability of longestrun is

P(Tlongestrun accepts H0) = hlongestrun(ρ,α) = igam
(

K
2
, 2igamc−1(K/2,α)·χ2(newobs)

χ2(obs)

)
−igam

(
K
2
,χ2(newobs)

)
.

For Nonoverlap test, the statistic is χ2(obs) =
∑N

i=1
(Wi−µ)2

σ2 , where µ = (M −m + 1)/2m

and σ2 = M
(

1
2m

− 2m−1
22m

)
. Now, we will compute the exact distribution of Wi . Let Wi be

a template with binary numbers from A = {0, 1}, and define the indicator variable Ia(Wi)

162

of the appearance of Wi at the position a is Ia(Wi) = I [Xa−m+1 = a1, ... ,Xa = am] with

the expectation η = π(a1)
∏m−1

t=1 P(at , at+1). β = (M − m + 1)y , where y is the solution of

equation ye = η. Because the Markovian hypothesis and the combinatorial structure of the

problem requires some more notations in addition, e = 1+
∑m−1

t=1 ϵ(t)C (t), where ϵ(t) = 1, if

there is an overlap of length t two W s; ϵ(t) = 0, otherwise. C (t) = P(am, at+1), if t = m− 1;

P(am, at+1)
∏m−1

l=t+1 P(al , al+1), if t < m − 1.

The quantity C (t) can be thought of as being the probability of observing the m − t

last letters of W successively. Now, Wi follows by Poisson distribution Wi ∼ Po(η). Thus,

P(Tnonoverlapping accepts H0) = hnonoverlapping(ρ,α) =

igam
(

N
2
, 2igamc−1(K/2,α)·χ2(newobs)

χ2(obs)

)
− igam

(
N
2
,χ2(newobs)

)
.

For AppEntropy test, the statistic is χ2(obs) = 2N[log 2−ApEn(m)], where ApEn = ϕ(m)−

ϕ(m+1), m is the overlapping block size and ϕ(m) =
∑2m

i=1
freq of block i

N
× log(freq of block i

N
). Based

on Markov dependent random variables, we define P(m)
i = P(Ui1)P(Ui2|Ui1) · P(Uim |Uim−1),

where the conditional probability can be calculated by transition matrix with ρ in [87]. Now,

we can define the new AppEntropy as χ2(newobs) = 2N[log 2− ˜ϕ(m) + ˜ϕ(m+1)], where ˜ϕ(m) =∑2m

i=1 P
(m)
i logP(m)

i . Thus, we obtain that P(TAppEntropy accepts H0) = hAppEntropy(ρ,α) =

igam

(
2m−1,

igamc−1(2m−1,α)·χ2(newobs)

chi2(obs)

)
− igam

(
2m−1, χ

2(newobs)
2

)
.

For 1storder test, vim , vim−1 and vim−2 denotes the m-bit, m−1-bit and m−2-bit matching

pattern. U is each random variable from source emitting in one matching block. For Markov

dependent random variables, we can obtain each matching probability of different matching

pattern Pim(vim = Uj) = P(U1) × P(U2|U1) × · · · × P(Um|Um−1), and the expectation is

Eim(vim = Uj) = n×P(U1)× · · · ×P(Um|Um−1). The statistic of ψ
2
m =

∑2m

im=1
(vim−Eim)2

Eim
. Then,

we compute ∆ψ̂2
m = ψ2

m − ψ2
m−1 and ∆2ψ̂2

m = ψ2
m − 2ψ2

m−1 + ψ2
m−2. The probability of first

order serial is P(T1storder accepts H0) = h1storder(ρ,α) = igam
(
2m−2, 2igamc−1(2m−2,α)·∆ψ̂2

m

∆ψ2
m

)
−

igam
(
2m−2, ∆ψ̂2

m

)
.

For 2ndorder test, we can obtain that P(T2ndorder accepts H0) = h2ndorder(ρ,α) =

igam
(
2m−3, 2igamc−1(2m−3,α)·∆2ψ̂2

m

∆2ψ2
m

)
− igam

(
2m−3, ∆2ψ̂2

m

)
.

163

Appendix D: Copyright Permissions

This is the permission for the reuse of contents in Chapter 2.

164

This is the permission for the reuse of contents in Chapter 3.

165

This is the permission for the reuse of contents in Chapter 4.

166

This is the permission for the reuse of contents in Chapter 5.

167

	Improving Wireless Networking from the Learning and Security Perspectives
	Scholar Commons Citation

	tmp.1675263963.pdf.ZBFEA

