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Abstract

MR guided Radiotherapy (MRgRT) marks an important paradigm shift in the field of

radiotherapy. Superior tissue contrast of MRI offers better visualization of the abnormal

lesions, as a result precise radiation dose delivery is possible. In case of online treatment

planning, MRgRT offers better control of intratumoral motion and quick adaptation to

changes in the gross tumor volume. Nonetheless, the MRgRT process flow does suffer from

some challenges that limit its clinical usability. The primary aspects of MRgRT workflow

are MRI acquisition, tumor delineation, dose map prediction and administering treatment.

It is estimated that the acquisition of MRI takes around 50% of the entire process. Further,

delineating the tumor volumes and generating the dose map plans are labor-intensive and

time-consuming yet necessary to prevent radio necrosis and associated toxicity. To this end,

this dissertation focuses on the two important aspects of MRgRT. First, acceleration of

reconstruction of multiparametric MRI (mpMRI). Second, prediction of precise dose maps

from the pre-radiation therapy mpMRI sequences without the need of manual contouring.

A joint reconstruction algorithm to accelerate the reconstruction of a series of complex

T1w images, T1 and proton density maps simultaneously from the undersampled k-space

data is presented. The ambiguity introduced by undersampling is resolved using model-based

constraints, and structural information from a reference fully sampled image as the joint

total variation prior. The algorithm is extended with minor modifications to accelerate the

reconstruction of complex T2w, T2*w images and their parameter maps. Validation of the

reconstructed images and parameter maps was carried out by computing tissue-type maps, as

well as the maps of the Proton Density Fat Fraction (PDFF), Proton Density Water Fraction

(PDwF), fat relaxation rate (R∗
2f ) and water relaxation rate (R∗

2w ) from the reconstructed

data by comparing them with Ground Truth (GT) equivalents. It is demonstrated that using
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only 18% k-space data, it is possible to identify the tissue type maps like fluid, muscle, tumor

and adipose with the same fidelity as that obtained using GT data. The mean T1 and T2

values in each tissue type were computed using only 18% k-space data, which were within

8%-10% of the GT values from fully sampled data. The PDFF and PDwF maps computed

using 27% k-space data were within 3%-15% of GT values and showed good agreement with

the expected values for the four tissue types. The next task focuses on directly predicting

the optimum Radiation Therapy (RT) dose maps from the pre-RT mpMRI. It is now well

established that the tumor volume comprises several different microenvironments. Hence,

predicting a voxel-wise dose map from the pre-RT and prescribed/desirable post-RT mpMRI

will yield better control of radionecrosis-related toxicity. Furthermore, it is also important

for the radiation oncologist to simulate voxel-wise radiologic outcomes of specific RT dose

map prescriptions on post-RT mpMRI. To accomplish these two tasks, end-to-end deep

neural networks are trained. The forward model is used to predict post-RT changes on

mpMRI using pre-RT mpMRI when administered with the radiation dose map. A variant

of the pix2pix GAN network is trained to predict post-RT ADC maps, T1wCE, T2w, T1w,

FLAIR MRI from pre-RT mpMRI and the radiation dose maps. The results of the forward

model are validated by identifying the tissue type maps like blood volume, gray matter,

white matter, edema, non-enhancing tumor, contrast enhancing tumor, hemorrhage, fluid

and comparing them with the GT maps. Further, the quantitative validation is carried out

by comparing the percentage of volumes of these tissue type maps from pre-RT, post-RT

and predicted post-RT mpMRI. The results of the forward model are also tested with the

simulated dose maps and comparing the changes on the predicted post-RT ADC maps that

are mechanistically relatable to voxel-level tumor response to therapies. Next, a variant of

pix2pix GAN is trained to predict the radiation dose maps from the pre-RT ADC maps and

the prescribed post-RT ADC maps. This is called as the inverse model. It is determined

from the simulated results that to achieve higher ADC values, higher RT dose maps are

required.
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In summary, the results of the feasibility study showed that it is possible to identify

various tissue type habitats from the reconstructed mpMRI scans using only 18% k-space

data. This dissertation also highlights that it is possible to alleviate the manual aspects of

Radiation Therapy planning by using pre-RT and post-RT mpMRIs to predict the Radiation

dose maps.
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Chapter 1: Introduction

1.1 Image Guided Radiotherapy

Image-Guided Radiotherapy (IGRT) is a process of using noninvasive imaging modal-

ities to guide the delivery of radiation therapy. High-quality imaging scans help guide the

accurate and focused radiation on the tumor region with minimal damage to the healthy

tissue [17]. The primary aim is to optimize the Radiotherapy (RT) plan to target potentially

radiation-insensitive lesions while avoiding radionecrosis and associated toxicity [71]. The

standard IGRT setup uses Computed Tomography (CT) imaging for treatment planning

and dose delivery. The radiation oncologist typically uses information from other imaging

modalities such as MRI, PET, etc. These imaging modalities augment the information from

previously acquired diagnostic quality CT scans when customizing the RT plan for a given

patient. In the treatment planning phase, procedures such as marker placement and immo-

bilization mask, depending on the requirement, are performed to identify the treatment site

[17]. The next step is a delineation of Gross Target Volumes (GTV), Clinical Target Volumes

(CTV), Planning Target Volumes (PTV) and Organs at Risk (OAR). GTV is the primary

tumor volume that needs to be treated. The microscopic extensions of the tumor not visible

with imaging in addition to the GTV is known as CTV. PTV is addition of CTV, safety mar-

gins for organs, patient movements, dose homogeneity within the CTV and position-related

uncertainties [114]. These prescriptions act as an optimization constraint to generate opti-

mal fluence maps that are used to deliver radiation therapies such as Intensity Modulated

Radiation Therapy (IMRT), Volumetric Modulated Arc Therapy (VMAT), Stereotactic Ra-

diosurgery (SRS), etc., as a single dose or in multiple fractions. The treatment response
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is then evaluated using the follow-up scans. Figure 1.1. shows a basic workflow of Image

Guided Radiotherapy.

While this workflow is successful, it suffers from limitations due to poor tissue contrast of

CT, the registration error between the planning CT and additional imaging modalities [92].

The misregistration error introduced during the therapy planning stage is often propagated

to the treatment stage. This may lead to higher Planning Tumor Volume margins and dose

spilling for organs at risk leading to increased risk of dose toxicity [34]. Radio opaque markers

known as fiducials are often used to identify the accurate tumor positions and limit the PTV

margins. However, these markers need to be implanted using surgery before therapy, which

is often stressful for patients [18]. Furthermore, with the advancements in IMRT and VMAT,

the requirements for the delineation of target volume have become more stringent [103].

Radiation treatment dose map planning is a critical step for effective control of cancer.

However, dose map planning is time-consuming and relies heavily on the experience and

expertise of the treatment planner. Several studies have been carried out to automate the

process of dose map planning such as Knowledge-Based Planning (KBP) [72][91]. However,

these methods required many model parameters. Additionally, the generated dose map may

be optimum but not clinically acceptable [84]. The present state-of-the-art IGRT prescribes

homogeneous radiation doses without considering the voxel level information. However, it

is now well established that the tumors are non-homogeneous and comprise several hetero-

geneous tumor microenvironments or habitats [55][16]. Tumor cells within distinct habitats

may be differentially sensitive to RT, with some habitats requiring dose escalation while

other habitats may provide scope for dose reduction with consequent decrease in risk of tox-

icity, radionecrosis to nearby normal tissues. In the next section, MR-Guided Radiotherapy

(MRgRT) is discussed, which offers an improvement over the standard state-of-the-art IGRT

system.
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Figure 1.1: Block Diagram of Online Adaptive Radiotherapy Process for MRgRT.

1.2 MR Guided Radiotherapy

The integration of MR imaging and linear accelerators (LINAC) has recently led to

MR-guided radiotherapy using MR-LINACs, which has become an important alternative to

standard Image-guided radiotherapy, that uses CT as the primary imaging modality. Com-

pared to CT, variants of MRI can be acquired with superior soft-tissue contrast. Moreover,

combination of information from multiparametric MRI can provide information on intratu-

moral habitats [98]. MRgRT has the advantage of planning and treatment positions being

performed on the same setup. As a result, registration errors and hardware-dependent image

distortion might be easy to handle [129]. Furthermore, target volume delineation and real-

time treatment RT adaption are possible with MRgRT. Real-time tumor response assessment

and RT adaptation are very important in case of daily targeting and planning optimization

where gross tumor volume evolves quickly. One of the examples is prostate cancer, where

the tumors between and during the treatments change very quickly [47]. In case of the

brain, when administered with Hypofractionated Stereotactic Radiosurgery, the resection

cavity may change in response to the radiation therapy, within 3 to 5 visits [15][48][24]. It

is determined that real-time online plan adaptation, better visualization of target position,

and constrained smaller PTV using MRI may prolong the reoccurrence of tumors and lower

the toxicity of thoracic lung cancer [24].
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Multiparametric MRI offers the potential for discriminating between radio-sensitive and

radio-resistant tumors. This feature may be used to optimize the radiation plan by dose-

escalating for lesions predicted to be radio-resistant or more likely to recur after treatment

[65]. In addition to anatomic or structural information, multiparametric MRI (mpMRI) se-

quences also provide functional information containing insights into biological processes and

tumor microenvironments. Functional MR imaging biomarkers such as Diffusion Weighted

Imaging (DWI) are useful for personalized biologically individualized voxel-level RT progno-

sis [111]. Changes in the micro-vascular properties in the presence of angiogenesis obtained

from Diffusion Contrast Enhanced (DCE) MRI are used as tumor biomarkers [14]. mpMRI,

particularly Apparent Diffusion Coefficient (ADC) maps, provide information about tumor

cell regrowth, inflammation, fibrosis and fat infiltration. For example, solid tumors with

dense cellularity have mean ADC values around 10−3mm2/s that shifts to higher values

in therapeutically responsive tumor regions following cytotoxic therapy. This occurs due

to a decrease in the intracellular space, restricted water mobility from cell death and the

consequent increase in the extracellular space, greater water mobility, [36]. The biological

insights obtained using the real-time mpMRI obtained from MRgRT may be useful in im-

proved tumor localization and hence optimized RT dose maps. In conventional radiotherapy

intra-treatment, tumor motion correction is usually obtained by higher PTV margins or im-

plants. However, with adaptive MRI-guided radiotherapy, stringent irradiation of the tumor

region is possible [59]. In MR- only treatment planning machines, the mpMRI is also helpful

in identifying the tissue types used to generate synthetic CT and in deriving the electron

density values necessary for radiation dose calculation [18].

1.3 Challenges of MR Guided Radiotherapy

There are certain challenges that must be overcome so that MRgRT LINAC can be

used for the benefit of patients. The entire pipeline for real-time MRgRT can be divided

into MRI acquisition, tumor segmentation, accurate estimation of radiation dose maps and
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administering treatment. It is important to determine the GTV, CTV, PTV and OAR

changes in real time to optimize the radiation maps and avoid damage to healthy tissues. As

noted by Thorwarth et al. in [111], MRI acquisition takes up around 50% of the total time

of this pipeline. Moreover, geometric accuracy for precise delivery of RT is an important

consideration for real-time MRI acquisition. Also, longer scans are vulnerable to motion-

related artifacts when compared to shorter scans. To counter this, real-time MR-guided

RT acquires the k-space data at higher readout bandwidths but at the cost of lower SNR

[18][117]. Moreover, when compared to diagnostic MRI scanners and the planning MRI or

MRI simulator, at present the MR LINAC 1.5 T high field (Elekta Unity, Elekta Instrument

AB, Stockholm, Sweden) and 0.35 T (MRIdian Linac, ViewRay, Oakwood, CA, USA) can

acquire only standardized limited built-in sequences [129]. While the 1.5 T MR LINAC can

acquire 3D-TSE T2w and T1w images, the acquisition of DWI is currently very challenging

[63][64]. The acquired DWI has a lower Signal-to-Noise Ratio (SNR) and highest possible

b-value measurement is 500 only due to the suboptimal hardware [129]. Specific Absorption

Rate (SAR) leading to tissue heating is one of the limiting factors for high field MRgRT

systems and also for some acquisition protocols [111]. Real-time 3D imaging effectively

corrects the intra-fraction motion for MR-only radiotherapy, however the acquisition and

reconstruction latency for 3D imaging may degrade the dose accuracy of radiotherapy [107].

MRgRT also requires accurate real-time identification of GTV, PTV, CTV and OAR

regions. Currently, deep learning methods have been very successful in the segmentation

of MRI. However, owing to the variability and diversity among different tumor types, the

generalizability of these algorithms remain challenging. Deep Learning methods have also

been tried for real-time estimation of dose maps using the anatomical structure contours

derived from MRI. However, the stringent requirements for real-time dose map prediction to

ensure robustness, accuracy and precision have limited their use mostly for research purposes

while its clinical translation remains challenging [111].
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1.4 Contributions

Information from multiple sequences is ideally required to properly define and visualize

intratumoral habitats, but acquisition of such a rich MRI dataset at adequate spatial reso-

lution is currently too time consuming for routine deployment in the clinical setting. In this

work, two important aspects of the MRgRT pipeline are addressed: Accelerate reconstruction

of mpMRI and predict the dose map from pre-RT mpMRI.

1. Developed an algorithm to accelerate the reconstruction of mpMRI from undersampled

k-space data and used these mpMRI sequences to identify the intra-tumoral habitats.

(a) Developed a joint reconstruction algorithm to reconstruct a series of T1w images,

the corresponding proton density and T1 maps.

(b) Developed a framework to identify tissue type maps like fluid, adipose, muscle

and tumor.

(c) Repeated the joint reconstruction algorithm with minor modification to recon-

struct a series of T2w, T2*w images, the corresponding proton density, T2 and

T2* maps.

(d) Validated the reconstruction of T2*w images by implementing the fat and water

estimation framework to identify the proton density fat fraction, proton density

water fraction, field inhomogeneity, Ψ, relaxation rates of water R∗
2w and fat R∗

2f .

(e) Validated and compared the results of the proposed joint reconstruction frame-

work with the FCSA-MT Algorithm [51].

2. Developed an automated framework to enable optimal Radiation therapy dose planning

from pre-RT mpMRI.

(a) Performed data analysis on the mpMRI scans of Breast Cancer Metastases to

Brain (BCMB) patients to identify the changes between pre-RT and post-RT

mpMRI.
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(b) Performed data analysis to identify the key differences between the responding

and recurring lesions in BCMB patients.

(c) Developed a forward model to predict the post-RT changes on mpMRI using the

pre-RT mpMRI and the radiation dose maps.

(d) Developed an inverse model to predict the optimal RT dose map from pre-RT

ADC and prescribed/desired post-RT ADC.

(e) Validated the results of the forward model by subjecting the predicted post-RT

mpMRI to tissue type segmentation framework and comparing them to the ground

truth maps.

The results in this dissertation have been published as peer-reviewed article [95] and pre-

sented at several national and international conferences [67][94][93].

1.5 Dissertation Organization

The literature review and the research methodology used is described in the following

chapters.

1.5.1 Chapter 2-Brief Introduction to the Concepts of MRI

This chapter introduces the concepts related to MRI necessary to understand the first

task, i.e., accelerating the reconstruction of mpMRI from under sampled k-space. Basics of

MRI acquisition and comparison of different MRI sequences are described along with the

concepts of MRI reconstruction. A literature review on existing techniques to accelerate the

reconstruction of MRI are included in this chapter in addition to the introduction to fat and

water estimation methods. Finally, the multispectral analysis of MRI to identify the tumor

microenvironment is also included.

7



1.5.2 Chapter 3-Accelerating the Reconstruction of mpMRI

This chapter provides a detailed overview of the implemented joint reconstruction frame-

work. A brief description of how the data was collected and the underlying process is pro-

vided. Next, a detailed derivation of the mathematical objective function to reconstruct a

series of T1w images and the corresponding T1 maps is presented, followed by a compre-

hensive description of the optimization framework used to solve the objective function. An

extension of the joint reconstruction framework for T2w, T2*w images and the parameter

maps is also highlighted. In addition, the validation framework, the qualitative and quanti-

tative results are summarized. Finally, the chapter is concluded by presenting the summary

of the findings, possible extensions to the framework and discussions.

1.5.3 Chapter 4-Radiation Therapy Treatment Planning

A detailed description of the radiation therapy process flow is provided in this chapter

and the challenges of the radiation therapy process also discussed. Next, automated meth-

ods of radiation dose map planning and a brief literature review highlighting the strengths

and weaknesses of the methods are provided. Finally, a comprehensive review of the deep

learning-based framework to automate dose map planning is presented in this chapter.

1.5.4 Chapter 5-Image to Image Translation

This chapter briefly introduces neural networks. A mathematical perspective on the

Generative Adversarial Networks (GAN) is presented. The extension of GAN, i.e., the

pix2pix framework for image-to-image translation is also described.

1.5.5 Chapter 6-Prediction of Radiation Dose Maps from mpMRI

This chapter provides a detailed overview of the implemented deep learning-based frame-

work to predict images. A brief description of data acquisition, preprocessing and analysis is

presented along with a detailed description of the pix2pix GAN framework to predict post-
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RT mpMRI images from the radiation dose maps and pre-RT mpMRI. This is followed by

a description of the data pre-processing and deep learning framework for the inverse model,

i.e., to predict the radiation dose maps from pre-RT ADC and prescribed post-RT ADC.

Finally, the chapter is concluded by presenting the summary of findings and discussions.

1.5.6 Chapter 7-Conclusion and Future Work

A summary of the findings of this research is provided in this chapter. Then, directions

for future research with respect to improving the end-to-end framework for MRgRT has been

provided in this chapter. In particular, the extension of joint reconstruction framework to

accelerate the reconstruction of ADC maps is discussed. In addition, future directions for

improving the algorithm to predict radiotherapy dose maps is also discussed.
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Chapter 2: MRI

2.1 Introduction to MRI

MRI is a noninvasive imaging technique that produces high-resolution images with ex-

cellent soft tissue contrast of the anatomical organs. MRI signal is obtained by manipulating

the spin angular momentum of the hydrogen nucleus, i.e., a proton, which comprises a large

percentage of the human body [74]. In the absence of a magnetic field, the magnetic moments

of individual hydrogen nuclei in the tissue, mostly on water molecules precess randomly with

a net zero magnetic moment. Imposition of a strong external magnetic field generates a net

magnetic moment aligned with the field, which is manipulated using Radio Frequency (RF)

pulses and directional magnetic fields called gradients, to produce a signal. The MRI scanner

comprises primary magnets, gradient magnets, radiofrequency coils, RF detectors and the

computing device.

In the presence of the primary magnetic field, B0, the hydrogen protons align themselves

to the longitudinal magnetic field. The three gradient coils localize the body part that needs

to be scanned in x, y, and z-direction. The RF coil and detectors transmit the excitation pulse

and receive the signal from the excited spins. RF coils are designed for specific body regions.

Furthermore, multiple RF coils may also be used to improve the SNR of the acquisition.

When subjected to the gradient field, the hydrogen atoms align themselves in the direction of

the applied gradient field, resulting in a high longitudinal signal called spin-lattice relaxation

as seen in Figure 2.1. When an RF excitation pulse is applied to the precessing hydrogen

atoms, they are knocked off and result in a high signal in the transverse direction. As the

excitation pulse is removed, the transverse signal decays exponentially, called as transverse

relaxation, spin-spin relaxation process. Simultaneously, the longitudinal signal grows back
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Figure 2.1: Block Diagram of MRI Acquisition and Reconstruction.

to the maximum signal and is termed as the longitudinal relaxation process. The antenna

receives the RF signal emitted during this process and the analog signal is digitized using

the A/D conversion. The digitized frequency encoded information is recorded from left to

right as one of the lines of k-space data. The excitation process is repeated m times with

different gradient strengths. As a result, each k-space line has a unique phase along this

direction and is called phase encoding direction. The frequency encoding and the phase-

encoded information thus form the m× n k-space data, which is then processed to generate

the image of size m × n [74].

The transverse relaxation process is defined by the model Equation A · e−TE/T2 . Here,

TE is the echo time, T2 is the time constant of the transverse relaxation rate and A is the

proton density. The images resulting due to transverse relaxation process is called as T2

weighted, T2w, image and the corresponding relaxation maps are called as T2 maps. The

actual relaxation rate T2 is much faster than the effective relaxation rate T ∗
2 in the presence

of the field inhomogeneity and susceptibility. The relation between the actual and effective
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relaxation rate is given by Equation 2.1.

1

T ∗
2

=
1

T2
+

1

T
′
2

(2.1)

Here, 1

T
′
2

= γ∆Bi is the relaxation rate resulting due to field inhomogeneity ∆Bi in each

voxel, γ is a gyromagnetic ratio. Similarly, the longitudinal relaxation process is defined

by the model equation A · (1 − e−TR/T1) where, TR is the repetition time and T1 is the

time constant of the longitudinal relaxation rate. The resulting image is the T1 weighted,

T1w, image and the corresponding relaxation maps are called as T1 maps. The T1 and T2

relaxation rates depend on the tissue composition. For example, T1 relaxation rate is longer

for water-based tissue compared to the fat.

DWI is a type of MRI which measures the Brownian motion of the water molecules within

the tissue to be scanned. The molecular movement of the water molecule is a function of the

tissue type. For example, in case of a tumor, the diffusion of the water molecule is highly

impeded compared to that in the Cerebrospinal Fluid (CSF). The unrestricted movement of

the molecules in the homogenous medium is called isotropic diffusion. However, in the case

of biological tissue like axons, the movement of the water molecule will be constrained in

the axial direction. This is called anisotropic diffusion. DWI is acquired using two diffusion-

sensitizing gradient fields. When the body part that needs to be scanned is subjected to

these diffusion-sensitizing gradients as shown in Figure 2.2, the water molecules in motion

experience less refocus than the stationary water molecules. As a result, the signal from

highly diffused water molecules is less strong than that from the stationary case. If the

diffusion gradient is applied in x-direction the acquired DWI image Sx can be defined as

Sx = S0e
−bDxx . Here, b defines b-value which is the factor denoting the strength of the

diffusion sensitizing gradient fields applied in x direction. S0 is the DWI signal obtained for

b = 0. Correspondingly, the DWI images acquired when the diffusion gradient is applied

in y and z direction are defined as Sy = S0e
−bDyy and Sz = S0e

−bDzz respectively. The
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DWI in multiple different directions are combined to generate a trace DW image defined

as SDWI = (SxSySz)
1
3 = S0e

−bADC ; where ADC = (Dxx+Dyy+Dzz )
3

is the apparent diffusion

coefficient defining the diffusion constant. The echo times are longer for acquiring DWI

images. As a result, the areas of longer T2 values sometimes suffer from the “T2 shine-

through effect”. ADC maps are used to differentiate artifacts from true pathology and

are very important quantitative MRI type. In the case of lesions, strokes and abscesses

where there is restricted diffusion, the ADC values are lower and conversely, where there is

unimpeded diffusion, CSF, ADCs will be bright as highlighted in Figure 2.3 [4]. DWI images

are the combinations of x, y and z directions and when acquired in anisotropic directions are

called diffusion tensors. The corresponding images are Diffusion Tensor Images (DTI) that

are often used in the diagnosis of white matter pathologic features such as ischemia, edema

and axonal damage [2].

In addition to T1w, T2w and DWI there are other MRI sequences like Fluid-Attenuated

Inversion Recovery (FLAIR) are used to suppress the signals from fluid. In case of DCE

map the vascular information is augmented [58]. It can be deduced from the literature that

while each MRI sequence highlights specific tissue information, the combined analysis of the

acquired sequences can provide a wealth of information. Figure 2.3 shows an example slice

of the MRI sequences like T1w, T2w, FLAIR and ADC which have similar structural details

but different contrast.

2.2 MRI Reconstruction

In the acquired k-space data, each line of the k-space contains time-domain data from

the entire slice. The spatial information of a given voxel in each slice is encoded as a function

of frequency and phase. In order to decode the image from the k-space data, a 2D Fourier

Transform is carried out. The generation of the MR Image ‘u’ from the k-space data ‘k’ can

be defined by Equation 2.2.

u = E−1(k) (2.2)

13



Figure 2.2: Diffusion Weighted Imaging (Image Adapted from [68]. Permission is included
in Appendix C. ).

Here, E is the encoding matrix. If the acquired k-space data is twice the maximum

frequency, then the solution is immediate and the MR Image ‘u’ can be obtained by 2D

inverse Fast Fourier Transform of the k-space data as shown in Equation 2.3.

u = IFFT (k) (2.3)

Acceleration of the acquisition of MR Images is achieved by acquiring less k-space data,

i.e., below the Nyquist rate. Some of the methods wherein less data is acquired are non-

cartesian data acquisition, parallel imaging, compressed sensing and others. The simplest

solution to acquiring less data is skipping some lines from phase encoding direction. Less

k-space data reduces the acquisition time but the reconstruction problem becomes ill-posed.

As a result, solution using direct inversion is not possible. Iterative reconstruction methods

like conjugate gradient [104], non-linear conjugate gradient [8], alternating direction method
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Figure 2.3: Types of MRI Sequences.

of multipliers [10] and others are used to find solutions for the k-space data acquired below

the Nyquist rate.

2.3 Accelerating the MRI Reconstruction

Parallel Imaging (PI) methods, like Sensitivity Encoding (SENSE) and Penalised Auto-

calibrating Partially Parallel Acquisitions (GRAPPA) have been used to accelerate the acqui-

sition of MRI [97][44]. These are hardware-based techniques where instead of single receiver

coil, multiple coils with focused sensitivities are used to collect the k-space data. Using a

sophisticated MRI reconstructing algorithm, the information from multiple coils is processed

to reconstruct the MRI. However, the acceleration factors achieved by PI methods are limited

by the number of coils used for acquisition [27].

Prior-Information driven methods use techniques like regularization to obtain the solution

of the under determined system equations [123]. Equation 2.4 defines a least square term

with the regularization term.

min
u
||Eu − k ||22 + λJ (u) (2.4)

Here, J (u) is the regularizer; λ > 0 is the weighing term. Intuitively, the first term

enforces the data consistency requirement where the reconstructed images “u” are consistent

with the acquired k-space data. The regularizer term is a form of prior knowledge available
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about the solution space. In the case of MRI, various regularization priors have been used to

obtain the best estimates from undersampled k-space data. These priors try to exploit the

redundancy in the MR image domain, spatio frequency domain, k-space and time-domain,

for example, cardiac imaging, or a combination of them [113]. For dynamic imaging methods

like cardiac imaging, the temporal correlations between scans acquired at two-time points

are exploited to acquire accelerated MRI [80]. Methods such as k-t BLAST (Broad-use

Linear Acquisition Speed-up Technique) and k-t SENSE under-sample the RF data in both

the spatial and temporal domain [113]. In addition, some commonly used priors are total

variation-based priors, sparsity-based priors, low-rank-based priors, etc.

Compressed sensing-based image reconstruction methods can be expressed as shown in

Equation 2.5.

min
u
||Eu − k ||22 + λ||Ψu||1 (2.5)

Here, Ψ is a sparsity enforcing transform domain. The premise for compressed sensing-

based MRI reconstruction methods is that the MR images may not be sparse but may be

expressed with lesser coefficients in the sparsifying transform domain. Few examples of the

sparse domains include difference function, wavelet domain, temporal domain in case of

cardiac imaging, etc [125][78]. Sparsifying transforms, like overcomplete dictionaries gener-

ated from the data model, wavelet domain, finite differences, spatiotemporal separations and

principal component analysis have also been used to estimate parameter maps directly from

undersampled k-space data [29][30][96][132]. Furthermore, low-rank and model-based meth-

ods have been used to estimate MRI parameter maps from nonlinear model equations [9].

Low-rank–based constraints representing the linearized version of parameter maps obtained

from training data [50][133] model consistency constraint (MOCCO) and MOCCO-local sub-

space have been used to estimate MRI parameter maps directly from the k-space data [81].

Total Variation (TV)-based priors [101] have been used by many researchers to compen-

sate for the aliasing/noise caused by undersampling. Total variation-based MRI reconstruc-
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tion in its basic form can be expressed by Equation 2.6.

min
u
||Eu − k ||22 + λ

N∑
n=1

|∇un| (2.6)

Here,
∑N

n=1 |∇un| is the total variation based prior. The MR images are only piecewise

smooth. When sampled below the Nyquist rate, aliasing introduces noise in the reconstructed

images, thereby increasing the TV [101]. As a result, the minimization of TV will smoothen

the images and preserve edge information [69]. The concept of total variation has also

been extended from the adjacent pixels to non-local regions to preserve the fine details of

the reconstructed MRI [26]. Joint patch-based total variation can better characterize the

image features [75]. In case of dynamic MRI there is a smooth transition in the temporal

direction, constraints like TV, sparsity-based and nuclear norms are used to accelerate MRI

reconstruction [51][127]. In addition, these second-order finite differences are beneficial when

compared to the first-order total variation, especially in minimizing the staircase effect [62].

The single-channel total variation-based reconstruction has been extended to multichannel

reconstruction. As mentioned in section 2.1, the different imaging modalities may highlight

different tissue information however, their structural information remains unchanged. Joint

reconstruction algorithms with different variants of TV priors were successfully used to jointly

reconstruct multi-contrast MR and MR-PET images with high fidelity [33][121][20].

Additionally, joint total variation was also extended to the parallel MRI reconstruction

and it has demonstrated superior performance to the reconstruction results of other parallel

MRIs like GRAPPA, CGSPIRiT, SAKE, etc [124]. Studies to investigate the effects of

various norms across different dimensions like contrast, modality, gradient and pixel have

been conducted[23]. Vectorial/scalar TV and isotropic/anisotropic TV have also been tested

by Researchers. In addition to using only the TV prior, combinations of compressed sensing

priors and low rank-based approaches are being investigated to improve the efficacy of joint

image reconstruction [52][127]. With the advent of deep learning methods, many studies
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focus on developing AI-based fast acceleration reconstruction techniques. Broadly, they can

be divided into the data-driven methods and model-based methods. Data-driven methods

rely on training and learning one-to-one mapping between the k-space and image domain. On

the other hand, model-based techniques rely on strong mathematical optimization algorithms

along with the training data, which reduces the number of training parameters. CNN-

based methods, encoder-decoder-based networks, GAN based networks are some of the deep

learning techniques that have been used to reconstruct T1w and T2w from the undersampled

k-space data to achieve acceleration factors up to 8 to 16 times [122][106][60].

2.4 Fat and Water Estimation

MRI signal is obtained from the precessing hydrogen proton that may be part of the

water which is attached to protein, carbohydrates or fat molecules. The desired signal

contrast from the given tissue can be obtained by adjusting the T1 and T2 relaxation times.

In general, the signal intensity from the fat is higher compared to other tissue types, which

often overshadows the tissues like edema, tumor and other pathologies. As a result, fat

suppression is necessary for better visualization of the intended pathology [8].

A number of techniques were demonstrated in the literature to separate the fat and water

efficiently. The relaxation time T1 of fat is smaller than other tissue types in the body. Hence,

techniques like Short T1 Inversion Recovery (STIR) which suppresses the short T1 values

have been used for fat suppression [8][3]. The triglyceride molecules of fat are better shielded

by electron cloud from the externally applied magnetic field than water’s hydrogen protons.

As a result, the hydrogen protons in fat precess at a lower frequency than in the water proton.

Chemical Shift based methods thus rely on the difference between the resonance frequency

of the hydrogen protons of water and fat. When compared to the water peak the largest of

the multiple fat peak is separated by approximately 3.5 ppm as shown in Figure 2.4. The

chemical shift gap is a function of the magnetic field strength [8][3]. Dixon method relies

on acquiring the MRI at specific echo times when the protons are in-phase and out-phase
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defined as Sin = W + F and Sout = W − F respectively. The in-phase and out-phase images

when added and subtracted generate water W = Sin+Sout
2

and fat F = Sin−Sout
2

only images

respectively [28]. This method suffered from local susceptibility effects and to overcome this

problem a 3-point method was tested [40][41].

Several improvements have been carried out to the original Dixon method for robust

estimation of water and fat. One such improvement was using the IDEAL (Iterative De-

composition of water and fat with Echo Asymmetry and Least-squares estimation) method

proposed for multi-coil acquisition with higher SNR and delimiting the phase unwrapping

problems [99]. However, the IDEAL method cannot estimate the T ∗
2 values. Correct esti-

mates of fat are hampered due to the incorrect T ∗
2 estimates resulting from iron deposits and

as a result, an extension to IDEAL was proposed to estimate the water content, fat content

and T ∗
2 along with the complex field map [128]. Yet, this method constraints the estimated

T ∗
2 value to be identical for water and fat. A different version proposed by Bydder et al.

does treat T ∗
2 of water and fat separately but constraints the T ∗

2 value of fat smaller than

that of water [13]. This makes the estimates of T ∗
2 values of water and fat interdependent

which may not be true. Chebrolu et al. estimated separate relaxation rates of water and fat

thereby improving the estimates of water and fat fractions [21]. In this work, the T ∗
2 MRI

reconstruction is validated by estimating the fat and water using the framework proposed

by chebrolu et al.

2.5 Multispectral Analysis of MRI

Several combinations of treatment methodologies are used for effective cancer manage-

ment. Tumor heterogeneity is an important factor that affects the treatment response and

their resistance to therapy, a deciding factor for the treatment to be successful. It is now

well-recognized that when a tumor develops, the heterogeneity of molecular signatures ex-

pressed by the cancer cells increases. Development of resistance to targeted anti-cancer

drugs frequently results from intratumoral heterogeneity of tumor phenotypes, the tumor
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Figure 2.4: Water and Fat Peak Separated by ∼3.5ppm. (Image Adapted from [4].
Permission is included in Appendix D)

microenvironment and the interplay between these two factors. One view of solid tumors is

that there is a continual Darwinian competition between drug-sensitive and drug-resistant

phenotypes, with the relative success of the drug-resistant sub-population being dependent

on the costs and benefits of the resistance mechanism in each microenvironmental tumor

niche [37]. Adaptive therapeutic regimens are being tested clinically to exploit Darwinian

dynamics within tumors to manage the development of resistance to therapies [35][131].

The promising feature of molecular imaging is that companion imaging diagnostics can

be developed to inform precision medicine by providing non-invasive assays of the frequency

and spatial distribution of the presence of specific molecular targets in a given patient’s

tumor [82]. It is determined that tumors comprise of several microenvironments that are

hypoxic, necrotic or viable hence, tumor properties like perfusion, oxygenation, cell density

and metabolism spatially vary within these microenvironments [55]. mpMRI like T1w, T2w,

FLAIR and ADC maps exploit and can highlight different physiological tissue properties.

They can therefore be used to visualize the tumor microenvironments. As seen in Figure 2.5,

complex tumor characteristics like cell density and viability can be identified from ADC maps

[55]. While T1w images can be important biomarkers for hemorrhage and blood products,
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T2w images can identify the edema and mobile lipids within the tumor [16]. DCE images

can highlight characteristics like perfusion, permeability and microvascular density within

the tumor and can be used to determine if the underlying tissue is hypoxic or normoxic [55].

As a result, voxel-wise coregistered mpMRI can be analyzed to differentiate between tumor

microenvironments.

The mpMRI can be compared to the satellite spectral images of the same geographical

area but with different local variations of reflectance and emittance, which are often analyzed

and fragmented into subregions using multispectral analysis. Analogously, multispectral

analysis has also been applied on mpMRI to identify intratumoral habitats [115][116][42][110].

ADC maps, T2w and proton density maps have been subjected to a k-means clustering

algorithm to identify the volumes of viable tumor tissue, necrosis and subcutaneous adipose

tissues [16].

Figure 2.5: Multispectral Analysis of mpMRI.
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Chapter 3: Framework to Identify the Intratumoral Habitats from mpMRI

3.1 Materials and Methods

3.1.1 Mice and Cell Culture

All procedures were approved by the IACUC at the University of South Florida, Tampa,

Florida, USA. Mice were housed and used in accordance with IACUC-approved protocol

number R1613 (Appendix F), standard operating procedures and IACUC principles of ani-

mal care and use, under a program fully accredited by AAALAC, with a written assurance on

file with the PHS/NIH. Animals were fed standard chow and housed in specific pathogen-free

conditions under a 12h/12h light/dark cycle. Female C57BL/6 mice (Charles River Labora-

tory, Inc.; Wilmington, MA) were inoculated with tumor cells at 7-8 weeks of age and 20 g

in body weight. Lewis Lung Carcinoma (LLC) cells were obtained from the American Type

Culture Collection and cultured in Dulbecco’s Modified Eagle Medium supplemented with

10% fetal bovine serum. 5x105 LLC cells harvested in logarithmic growth were inoculated

subcutaneously in volumes of 100 mL into the backs of six syngeneic C57BL/6 mice 1

3.1.2 Acquisition of Magnetic Resonance Imaging

All MRI measurements were made on a 7 T horizontal bore imager equipped with

600 mT/m self-shielded gradients (Bruker Biospin, Billerica, MA) using a 35 mm Litzcage

small animal imaging coil (Doty Scientific, Columbia, SC). Mice were anesthetized using

isoflurane, 2% in O2, 1.5 L/min and animal body temperature was continuously monitored

using a rectal thermometer (SAII, SA Instruments, Stony Brook, NY) and maintained at

1This chapter is published in NMR in Biomedicine[95]. Permission is included in Appendix A.
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37◦C by an external heater. Respiratory function was monitored using a pressure transducer

pad, SA Instruments, and maintained between 40-60 breaths/min.

All k-space data were acquired with cartesian encoding at the Nyquist Rate, from which

undersampled k-space data were created using sampling masks. First, T2w FSE k-space data

were acquired as high-quality anatomic reference information for the joint reconstruction

algorithm. Co-registered T2w, T2w*, and T1w k-space data were then acquired with a

common slab isocenter, number of slices (11), slice thickness (1 mm), field-of-view (35 mm

x 35 mm), and matrix size (128 x 128). T2w k-space data were acquired using a multi-slice

spin-echo sequence with a TR of 2400 ms, echo train length of 16 echoes, and echo spacing of

7.68 ms with the TE varied from 7.68 ms up to 122.88 ms. T2*w k-space data were acquired

using a multi-gradient-echo sequence with an echo train length of 10, echo spacing of 3.84

ms, and TE varied from 3.84 ms to 38.4 ms. In-phase and opposed-phase T2* maps were

calculated using TE ranging 3.84 ms to 38.4 ms, and 4.32 ms to 38.88 ms, respectively. A

series of progressively saturated T1w spin-echo images were acquired with TE = 6.44 ms

and TR = 232.3, 453.4, 737.5, 1136, 1808, and 5000 ms.

3.2 Joint Reconstruction Framework for T1w Images and T1 Maps

3.2.1 Proposed Method

The proposed algorithm is derived from the method reported by Ehrhardt and Betcke

[32] wherein a single T1w image ‘u’ was reconstructed from undersampled k-space data by

using a fully sampled T2w image ‘v’ to minimize the TV and improve confidence in the

preservation of edge information. This is expressed by Equation 3.1.

wTV (u) :=
N1∑

n1=1

N2∑
n2=1

w(n1,n2)|∇u(n1,n2)| (3.1)

Here, w(n1,n2)
= η/

∣∣∇v(n1,n2)∣∣η is a weighted total variation and η > 0.
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Figure 3.1: Block Diagram of Joint Reconstruction Algorithm.

We have extended the algorithm to jointly reconstruct a series of T1w images, AT1, proton

density maps for T1 and T1 maps from undersampled k-space data using prior information

from a co-registered high-quality fully sampled FSE reference image. In addition to this the

reconstructed series of T1w images must satisfy the longitudinal relaxation model equation.

This constraint will enable to preserve the relative contrast between the reconstructed T1w

images.

As stated above, fully sampled Cartesian-encoded k-space data corresponding to T1w are

initially acquired, which were processed by 2D FFT to generate GT T1w images. Variable

density sampling masks with a high number of rows covering the center of k-space and

randomly selected rows farther from the center along the phase-encoding direction were used
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to generate undersampled k-space data for reconstruction. For a given rate of undersampling,

the same mask was applied to all the repetition times of T1w.

The output of the reconstruction is a series of T1w images of size N1-by-N2-by-M,AT1
(n1,n2),

and the T1 map. AT1
(n1,n2) and T1(n1,n2) are N1-by-N2 matrices of pixels representing A and

T1 maps, respectively. Undersampling a full data vector is represented using elementwise

(Hadamard) multiplication of the k-space data and a mask S of size N1 × N2 consisting

of zeros and ones. The objective function to minimize our joint reconstruction problem is

a linear combination of three terms: The least squares term that enforces the consistency

between the M (complex) reconstructed T1w MR images is expressed by Equation 3.2.

M∑
m=1

N2∑
n2=1

N1∑
n1=1

(S · Fu(m))(n1,n2) − k
(m)
(n1,n2)

)

2
(3.2)

The weighted Joint Total Variation (wJTV) can be defined by Equation 3.3.

M∑
m=1

N2∑
n2=1

N1∑
n1=1

η√
|∇v(n1,n2)|

2 + η2

M∑
m=1

|∇u(m)
(n1,n2)

| (3.3)

Here, the edge template ∇v(n1,n2) (where v is the fully sampled T2w FSE reference image)

is derived from the fully-sampled image. The parameter η ≥ 0 controls the weighting

w = η√
|∇v(n1,n2)|

2+η2
[32]. As a result, the minimization of the JTV for the given set of

T1w images would be a logical prior. The edge template is exploited to spare the TV

contribution of the edges in u(n1,n2)
(m) from the minimization. The least squares term that

enforces the consistency between the M reconstructed T1w MR images and the relaxation

model AT1
(n1,n2)

(1− e−tm/T1(n1,n2)) postulated in the given tissue using Equation 3.4.

M∑
m=1

N2∑
n2=1

N1∑
n1=1

[
|u(m)

(n1,n2)

∣∣∣−AT1
(n1,n2)

(
1− e

−tm/T1(n1,n2)
)]2

(3.4)
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Here, (tm)
M
m=1 are the operator-defined acquisition parameter TR, and T1(n1,n2) is the

average relaxation time of tissue in the pixel at coordinate (n1, n2). For readability we

suppress the subscripts and abbreviate the functional to be minimized using Equation 3.5.

min
u(m)∈CN1xN2,AT1,T1∈RN1×N2

M∑
m=1

{∥∥S ◦ Fu(m) − k (m)
∥∥2

2

2
+ α1

∥∥[Du](m)
∥∥1

1

+α2

∥∥∥u(m) −AT1
(
1− e−

tm
T11

)∥∥∥2

2

} (3.5)

Here, [Du](m) = η |∇um|√
|∇vm|2+η2

.

3.2.2 Optimization Framework

The optimization is executed iteratively using an alternating direction strategy. First,

we split the functional into computationally simpler sub-problems. For this, we rearrange

the unconstrained optimization problem into a constrained form using Equation 3.6.

min
u(m)∈CN1×N2,AT1,T1∈RN1×N2

M∑
m=1

{∥∥S ◦ x (m) − k (m)
∥∥2

2

2
+ α1

∥∥[Du](m)
∥∥1

1

+α2

∥∥∥F−1x (m) −AT1
(
1− e−

tm
T11

)∥∥∥2

2

} (3.6)

such that x = Fz and u = z . Here α1, α2 are Lagrangian coefficients. Note that ∥F−1x (m)−

AT1(1− e−
tm
T11 )∥22 = ∥x (m)− FAT1(1− e−

tm
T11 )∥22 since the 2-dimensional Fourier transform is

unitary. Accordingly, the associated scaled augmented Lagrangian is defined using Equation

3.7.

M∑
m=1


1
2

∥∥S ◦ x (m) − k (m)
∥∥2

2
+ α1

∥∥|Du(m)|
∥∥1

1
+ α2

∥∥∥F−1x
(m) −AT1(1− e−tm/T1)

∥∥∥2

2

+ρ
2

∥∥x (m) − Fz (m) + µ(m)
∥∥2

2
− ρ

2

∥∥µ(m)
∥∥2

2

+ ρ
2

∥∥u(m) − z (m) + γ(m)
∥∥2

2
− ρ

2

∥∥γ(m)
∥∥2

2

 (3.7)
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Here, µ(m) and γ(m) are (complex) scaled dual variables and ρ an augmented Lagrangian

parameter [10], and we have applied unitarity liberally. The alternating direction approach

for the minimization of Equation 3.7 proceeds as follows. Note that for each iteration of

the ADMM algorithm, L1 = 5 iterations of weighted FJGP (wFJGP), a variant of the Fast

Gradient Projection [7] and FJGP algorithm [51], and L2 = 15 iterations of the Levenberg-

Marquardt algorithm [45] were executed. A common number of iterations was heuristically

chosen for all undersampling rates to permit comparison of reconstruction results across

the different undersampling rates. L3 = 20 iterations of the ADMM algorithm yielded

satisfactory reconstruction results for all 30 slices. The regularization parameters of η =

0.1,α1 = 0.1,α2 = 0.008, ρ = 1 and µ = 10 are chosen heuristically for this dataset. For

fixed x , z ,AT1,T1, perform L1 iterations of the wFJGP algorithm using Equation 3.8.

argmin
u(m) ∈ CN1×N2

M∑
m=1

{
α1

∥∥∥[Du](m)
∥∥∥1

1
+

ρ

2

∥∥u(m) − z (m) + γ(m)
∥∥2

2

}
(3.8)

For fixed u, z ,AT1,T1, execute Equation 3.9.

argmin
x(m) ∈ CN1×N2

M∑
m=1

∥S◦x (m) − k (m)∥22 + α2∥F−1x
(m) −AT1(1− e−

tm
T1∥22

+
ρ

2

∥∥x (m) − Fz (m) + µ(m)
∥∥2

2

(3.9)

The objective function here is simply an uncoupled sum of (complex) quadratics, and the

solution is immediate and defined by Equation 3.10.

xm = [S + (ρ+ 2α2)]
−1

[
2α2FAT1

(
1− e−

tm
T1

)
+ k (m) + ρ

(
Fz (m) − µ(m)

)]
(3.10)

(Recall that S = ST = STS.)
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For fixed u, x ,AT1,R execute Equation 3.11.

argmin
z(m)

M∑
m=1

ρ

2

{∥∥x (m) − Fz (m) + µ(m)
∥∥2

2
+
∥∥u(m) − z (m) + γ(m)

∥∥2

2

}
=

F−1
(
x (m) + µ(m)

)
+ u(m) + γ(m)

2

(3.11)

again, an uncoupled sum of quadratics.

For fixed u, x , z execute L2 iterations of the Levenberg-Marquardt algorithm using Equa-

tion 3.12.

argmin
AT1,T1

M∑
m=1

N∑
n=1

∣∣∣z (m)
n −AT1(1− e−

tm
T1 )

∣∣∣2 (3.12)

Detailed steps of ADMM Algorithm and wFJGP are shown in Algorithm 1 and Algorithm

2 respectively. For the wFJGP algorithm derived from [51][7], the definition of PT and PU

are defined using Equation 3.13.

PT (x) = max (x , 0) (3.13)

PU is a projection operator and can be defined as PU (U ,V ) = (P ,Q) to satisfy the following.

Pn1,n2,m =
Un1,n2,m

max(1,
√∑m=M

m=1 U2
n1,n2,m + V 2

n1,n2,m)
,

n1 = 1, 2, ... ,N1− 1; n2 = 1, 2, ... ,N2− 1

=
Un1,N2,m

max(1,
√∑m=M

m=1 U2
n1,N2,m)

, n1 = 1, 2, ... ,N1− 1;

Qn1,n2,m =
Vn1,n2,m

max(1,
√∑m=M

m=1 U2
n1,n2,m + V 2

n1,n2,m)
,

n1 = 1, 2, ... ,N1− 1; n2 = 1, 2, ... ,N2− 1
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=
UN1,n2,m

max(1,
√∑m=M

m=1 V 2
N1,n2,m)

, n2 = 1, 2, ... ,N2− 1;

This algorithm was coded in MATLAB R2018b, The MathWorks, Inc., Natick,MA, USA

with standard and in-house developed functions and scripts that are available upon request.

On a basic workstation with an Intel I5 processor @ 3GHz and 8 Gb RAM the computation

times for reconstructing complex T1w and T2w images and corresponding parameter maps

was 108 s and 55 s respectively for the various % of k-space undersampling.

3.2.3 Extension Framework for T2w/T2*w Images and their Maps

We extended the joint reconstruction framework to reconstruct the series of T2w/T2*w

images and T2/T2* maps. While the data consistency term (3.2) and the joint total variation

term (3.3) are unchanged the constraint for model equation are defined by the transverse re-

laxation model equation defined by AT2
(n1,n2)

(e−tm/T2(n1,n2)). Correspondingly, the least squares

term that enforces the consistency between the M reconstructed T2w/T2*w MR images and

the transverse relaxation model equation postulated in the given tissue is defined as Equation

3.14.
M∑

m=1

N2∑
n2=1

N1∑
n1=1

[|u(m)
(n1,n2)

| − AT2
(n1,n2)

(e−tm/T2(n1,n2))]

2

(3.14)

Here, {tm}Mm=1 are the operator-defined acquisition parameter TE, and T2(n1,n2) is the

average relaxation time of tissue in the pixel at coordinate (n1, n2). In-phase and opposed-

phase T2*w images were reconstructed separately, to permit the use of a mono-exponential

relaxation model constraint for each set.
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Algorithm 3.1 ADMM Algorithm to Solve Joint Reconstruction

Input: km ≡ S ◦ km ∈ CN1×N2 MRI Data
S : Sampling Mask
L3 ∈ N number of iterations
um
0 = F−1(Skm) ∈ CN1×N2 Initialization of M images

AT1
0 (1− e−tm/T10)← um

0 Initialize AT1
0 ,T1 ∈ RN1×N2using Levenberg-Marquardt Method

Output: um ∈ CN1×N2

function: JointReconstruction(km,S,itr,um
0 ,A

T1
0 ,T10)

α1, α2 ≥ 0,η > 0, ρ0 ← 1 µm
0 , ν

m
0 ←0

for i = 1:L3 Compute
u
(m)
i update using weighted-(FJGP) algorithm with total L1 iterations

x
(m)
i ← 2α2FAT1

i−1(1−e−tm/T1i−1 )+k(m)+ρ(Fz
(m)
i −µ

(m)
i−1)

S+ρi−1+2α2

z
(m)
i ← F−1(x

(m)
i +µ

(m)
i−1+u

(m)
i +ν

(m)
i−1

2

AT1
i ,T1i ∈ z

(m)
i update using Levenberg-Marquardt Method with total L2 iterations

µ
(m)
i ← µ

(m)
i−1 + ρi−1(x

(m)
i − Fz

(m)
i )

ν
(m)
i ← ν

(m)
i−1 + ρi−1(u

(m)
i − z

(m)
i )

Update ρi ← ρi−1

return u
(m)
i

3.3 Validation Framework

We applied the joint reconstruction framework on 30 mouse slices, 6 mice with 5 slices

each. The quantitative validation of our reconstructed results was carried out using all 30

mouse slices at 4 stages of our framework, as discussed below.

3.3.1 T1w and T2w MRI

Mutual Information (MI) [25][11] is a metric of image matching calculated between

the reconstructed and GT image. MI values signify how similar the reconstructed images

are to the corresponding GT images on a pixel-by-pixel basis. The statistical analysis was

carried out over n = 30 mouse slices, 6 mice with 5 slices each since each slice from a

given mouse was reconstructed from under-sampled k-space data independently of the other

slices. Quantitative validation for reconstructed T1w and T2w images was carried out by

calculating the mean and SEM of MI values over n = 30 slices.
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Algorithm 3.2 weighted Fast Joint Gradient Projection (wFJGP) Algorithm

Input: ym ∈ CN1×N2 is a proximal point
α1 ∈ R,γ ∈ R, t0 ← 1, h0 ∈ R
L1 ∈ N number of iterations
ym = zm − vm

ρ
Initialization from ADMM Algorithm

w ∈ RN1×N2, P,Q,U,V ∈ CN1×N2

Output:um ∈ CN1×N2

Function: wFJGP(w,ym,L1,P
m
0 ,Q

m
0 ,U

m
0 ,V

m
0 , t0, γ) for j = 1:L1 Compute

gm
j ← α1w ◦ ∇[PT (y + α1div((P

m
j−1,Q

m
j−1) ◦ w))]

(Um
j ,V

m
j )← PU((P

m
j−1,Q

m
j−1) + γgm

j

hj ←
1+
√

1+4(tj−1)2)

2

(Pm
j ,Q

m
j )← (Um

j ,V
m
j ) +

tj−1−1

hj
(Um

j −Um
j−1,V

m
j −Vm

j−1)

hj ← tj
End For
um ← PT (y

m + α1div((U
m
j ,V

m
j ) ◦ w))

return um

3.3.2 T1 and T2 Maps

A tissue type segmentation framework is used to identify four tissue types, tumor, mus-

cle, fluid, and adipose, from the reconstructed T1 and T2 maps and compared to those

obtained from GT T1 and T2 maps. The GT T1 and T2 maps were obtained by fitting the

GT T1w and T2w images to the longitudinal and transverse relaxation model equations, re-

spectively. As shown in Figure 3.1, voxels were classified as fluid, adipose, muscle, or tumor

tissue types based on the following rules applied to the T1 and T2 maps. Voxels with T2

< 45 ms are classified as muscle. A mask of all the remaining voxels with T2 >= 45 ms is

applied to the T1 map. Voxels within this mask with T1 < 1500 ms are classified as adipose

tissue, with the remainder of voxels constituting a mask to which the following rules are ap-

plied: voxels with T1 > 3000 ms and T2 > 60 ms are designated as fluid, while voxels with

T1 > 2000 ms and T2 < 60 ms are designated as tumor tissue type. The threshold values

for T1 and T2 that comprise these rules are determined from the averages of values within

the hand-drawn region of interest over the four tissue types on GT images, n = 30, from 6
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Table 3.1: Quantitative Validation of Joint Reconstruction Algorithm.

Mean T2 values (ms) Mean T1values (ms) Dice Coefficient
GT JTV FCSA-MT GT JTV FCSA-MT JTV FCSA-MT

36% 27% 36% 27% 36% 27% 36% 27% 36% 27% 36% 27%
135 125 126 129 131 3949 3208 3160 2756 2778 0.88 0.84 0.71 0.62
67 69 70 65 64 935 973 992 1062 1074 0.91 0.88 0.89 0.88
33 43 43 42 42 2344 2619 2736 2097 2072 0.91 0.86 0.86 0.79
53 51 51 52 52 2829 2664 2696 2239 2257 0.42 0.30 0.26 0.20

mice with 5 slices per mouse. The mean and SD of the reconstructed T1 and T2 maps were

calculated over n = 30 mouse slices for different undersampling rates and compared to the

corresponding mean and SD values in GT maps. To validate the tissue type segmentation

maps for different rates of undersampling, the mean and SEM of the dice coefficient values

were computed over n = 30 slices.

3.3.3 T2*w MRI

The GT T2*w images are subjected to the fat and water estimation framework proposed

by Reeder and colleagues [21] to obtain GT PDFF, PDwF,R∗
2f ,R

∗
2w , and Ψmaps. The process

is repeated for the reconstructed T2*w images obtained from the proposed algorithm. The

mean and SD of the PDFF, PDwF ,R∗
2f ,R

∗
2w in each of the tissue types across all reconstructed

30 mouse-slices is calculated and compared against their GT counterparts.

3.3.4 Comparison with FCSA-MT Algorithm

We have also compared results from our proposed algorithm to those obtained using the

FCSA-MT algorithm [52]. Briefly, T1w images are jointly reconstructed from the under-

sampled k-space data using the FCSA-MT algorithm. These reconstructed T1w images

are fit to the longitudinal relaxation model equation to compute T1 maps. This process is

repeated for T2w images and T2 maps. The T1 and T2 maps obtained thus are subjected

to the tissue type segmentation rules in Figure 3.1 to segment the images into adipose,

fluid, muscle, and tumor tissue types. The T2*w images are also reconstructed analogously
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using the FCSA-MT algorithm, and these are processed using the fat and water estimation

framework to compute maps of PDFF, PDwF,R∗
2f and R∗

2w .

3.4 Results

Figure 3.2 shows example T1w images of two mice for TR of 0.4 s (2nd, 4th columns)

and 5 s (3rd, 5th columns), reconstructed with 27% and 36% of the k-space data using

the sampling mask in the 1st column. MI values for reconstructed T1w images with the

different TR are presented in the last column of Figure 3.2. Expectedly, MI values increase

monotonically with the increasing amount of k-space used in the reconstruction at all TR.

However, the rate of improvement starts to flatten as more k-space data is used for the

reconstruction. For a given percent of k-space data, mean MI values are higher for higher TR.

Overall, the under-sampled reconstructions show good agreement with the GT T1 images,

last row, reflected in MI values ranging from 1.35-1.5. Qualitatively, edge information was

preserved (6th and 7th columns, zoomed-in images), and preservation of the relative contrast

within each image and across the different TR is also visible.

Figure 3.3a shows example T2w images of the same two mice and slices as in Figure 3.2,

acquired with TE of 15.36 ms (1st, 3rd column) and 46 ms (2nd, 4th columns), reconstructed

with 27% and 36% of the k-space data using the sampling mask shown in Figure 3.2. The

under-sampled reconstructions show good similarity with the GT T2w images (bottom row),

reflected in MI values ranging from 1.35 to 1.5. Preservation of the relative contrast within

each image and across the different TE and edge features in the under-sampled reconstruc-

tions (5th and 6th columns, zoomed-in images) is also visible. The similarity between the

under-sampled reconstructions and the GT T2w images of n=30 mouse slices imaged using

the various TE are summarized in Figure 3.3b as plots of MI values. As with T1w images, MI

values for T2w images are found to monotonically increase with the amount of k-space data

used at all TE, with a flattening rate of improvement at higher percentages of k-space data

used. The saturation of MI values, Figure 3.2 last column and Figure 3.3b as the amount of
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k-space data increases can be attributed to the truncation effects resulting from the approx-

imation of the wide range of Fourier frequencies with the limited number of Discrete Fourier

coefficients. For a given percent of k-space data, mean MI values are higher for lower TE.

Further, higher average MI values for shorter TE and longer TR images may be due to the

superior signal-to-noise ratio.

Figure 3.2: Reconstruction Results for T1w Images.

Figures 3.4a and 3.4b show example reconstructed T1 and T2 maps, respectively. Qual-

itatively, the T1 maps reconstructed using 27% and 36% of k-space data show a close re-

semblance to the GT T1 map (Figure 3.4a). Likewise, T2 maps reconstructed using 27%

and 36% of k-space data resemble the GT T2 maps (Figure 3.4b). Compared with the

GT maps, the reconstructed T1 and T2 maps appear to piecewise smoothen some regions,

though edge details are still visible. Tissue type segmentation is performed using the T1 and

T2 thresholding rules shown in Figure 3.1. Despite some loss of fidelity vis-à-vis the GT T1

and T2 maps, tissue type maps computed from under-sampled T1 and T2 maps show visual

agreement with tissue type maps computed from GT T1 and T2 maps (Figure 3.4c).

Quantitatively, some of the regions in T1 maps are underestimated compared to GTmaps,

especially in the fluid region. The underestimation of T1 values in the fluid tissue type may

be attributed to the longest TR acquired being only 5 s and the resulting fitting errors

being exacerbated during the reconstruction of under-sampled data. Mean, and SD values
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Figure 3.3: Reconstruction Results for T2w Images.

of T1 and T2 over all pixels within each objectively segmented tissue type are summarized

in Figures 3.4d and 3.4e, respectively, for different amounts of k-space data used in the

reconstructions. The SD values represent the true heterogeneity of T1 and T2 values within a

tissue type. From Figure 3.4d, the mean T1 values of adipose, muscle, and tumor tissue types

computed using 18-52% of the k-space data are comparable to GT T1 values. However, the

mean T1 values in fluid computed from under-sampled data are somewhat underestimated

compared to the GT T1 estimates. It can also be noted that the heterogeneity of T1 values,

i.e., the SD, within the adipose tissue type is lower than in other tissue types, possibly because
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of a T1-based rule used to define this tissue type. From Figure 3.4e, the mean T2 values

of the tumor, fluid, and adipose tissue types computed using 18-52% of the k-space data

are comparable to GT T2 values. In muscle, the estimated T2 values from under-sampled

k-space data are somewhat overestimated compared to GT T2 values. Lower heterogeneity,

i.e., SD, in the estimated and GT T2 values are observed within muscle and tumor relative

to fluid and adipose tissue. This may be a consequence of rules used to define these tissue

types; the muscle tissue type definition includes a rule that T2 should be lower than 45 ms,

while the tumor tissue type definition includes a rule that the T2 value is between 45 and 60

ms. Figure 3.4f presents a quantitative characterization of the similarity of the tissue type

maps computed from under-sampled data to the GT tissue type maps. The mean and SEM

of the Dice coefficient computed for tissue type maps of n = 30 different mouse slices are

depicted. Expectedly, the average Dice coefficient values increased as the amount of k-space

data used in the reconstructions increased for all tissue types. Tissue type maps computed

using 18% k-space data were visually similar to GT tissue type maps, with dice coefficients

ranging from 0.43-0.73 for tumor, fluid, adipose, and muscle tissue types.

As described in the validation framework, T2*w images reconstructed from under-

sampled k-space data are processed using the algorithm described by Reeder and colleagues

[21]. This algorithm’s outputs are maps of PDFF, PDwF, R∗
2f and R∗

2w , and the Ψ. The

PDFF, PDwF, R∗
2f and R∗

2w maps computed using 27% and 36% of the k-space data and the

corresponding GT maps are shown in Figures 3.5a and 3.5b for two example mouse slices.

The mean and SD of PDFF, PDwF, R∗
2f and R∗

2w computed within fluid, adipose, muscle,

and tumor tissue types are summarized in Figure 3.5c. Here too, SD measures the hetero-

geneity of the parameter values within a given tissue type as defined by the rules shown in

Figure 3.1. Some loss of fidelity for the estimated PDFF and PDwF maps vis-à-vis the cor-

responding GT maps is apparent in Figure 3.5a. Nonetheless, the higher PDFF in the tumor

region of both mice is preserved even on estimates from undersampled T2*w data. From

the PDFF plots shown in Figure 3.5c, 1st column, it can be deduced that the mean PDFF
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values are highest in adipose tissue (0.33), followed by tumor tissue (0.27), muscle (0.24),

and fluid (0.23). The relative order of PDwF computed in the four tissue types agrees with

expectations, with the highest PDwF computed in fluid (0.77), followed by muscle (0.76),

tumor (0.73), and adipose tissue (0.67). Non-zero PDFF values are obtained in the fluid

tissue type even for the GT PDFF maps, which may reflect the limitations of the algorithm

in [21].

Figure 3.4: Results of T1 and T2 Parameter Maps and Tissue Type Maps.

In the case of PDFF and PDwF the GT values in the different tissue types may be

inferred from physiology. But in the case of R∗
2f and R∗

2w the expected values are not as

readily apparent. Based on R2 differences between water and fat one would expect R∗
2f > R∗

2w ,

although susceptibility effects might dominate both relaxation rates. Figure 3.5b shows maps

of R∗
2f and R∗

2w computed from T2*w images reconstructed using 27% and 36% of the k-space

data in two selected mouse-slices. In general, the R∗
2f and R∗

2w maps from undersampled data

showed only moderate agreement with the corresponding GT maps. Moreover, both R∗
2f and

R∗
2w computed from undersampled T2*w data tended to be underestimates of corresponding

GT values in all tissue types (Figure 3.5c).
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Figure 3.5: Results of PDFF, PDwF and Relaxation Rates of Water and Fat.

We have compared the performance of the proposed joint reconstruction algorithm against

results obtained using the FCSA-MT algorithm with tuned regularization parameters [52].

In Figure 3.6, reconstructed T1w images for TR = 1.1 s and 5 s are shown in columns 1

and 2, while reconstructed T2w images for TE = 7.68 ms and 23 ms are shown in columns

4 and 5. For reference, the GT images are shown in the bottom row. Using 36% k-space

data, both the proposed algorithm and FCSA-MT produced images that are qualitatively

like the GT. When using 27% k-space data, there was greater blurring of some of the finer

details with the FCSA-MT algorithm compared to the proposed algorithm (Figure 3.6, 3rd

column). T1 maps computed using the proposed algorithm and FCSA-MT algorithm are

shown in column 6 of Figure 3.6. Both algorithms underestimate the T1 values in pixels that

have long GT T1 values, though the proposed algorithm performs somewhat better than the

FCSA-MT algorithm in this respect as summarized in Table 3.1. T2 maps computed using

the proposed algorithm and FCSA-MT algorithm are shown in column 7 of Figure 3.6. Both

algorithms tend to underestimate T2 in pixels with long T2 values, with the performance

of the two algorithms being generally comparable, as summarized in Table 3.1. Tissue type

segmentation results, using the rules in Figure 3.1 and the reconstructed T1 and T2 maps,

were superior with the proposed algorithm compared to the FCSA-MT algorithm both qual-

38



itatively (Figure 3.6, column 8) and on the basis of Dice similarity coefficient with the GT

tissue type maps (Table 3.1). PDFF maps computed using the two algorithms are compared

with PDFF maps from GT data in column 9 of Figure 3.6.

Figure 3.6: Comparison of Proposed Algorithm with FCSA-MT and GT.

3.5 Discussion

Our objective in this preliminary work is to demonstrate that the proposed image recon-

struction approach can recapitulate maps of broad tissue types using undersampled k-space

information. With the proposed framework, we jointly reconstructed a series of MRI and

their parameter maps using 18% k-space data with Cartesian undersampling that is readily

implementable on most preclinical MRI scanners. In this work, for a given percentage of

k-space data, a common pattern was used to undersample k-space data across all the TRs

in given series of T1w images. Greater improvements in the quality of reconstructions may

be obtainable by using randomly varied undersampling patterns across different TRs for ac-

quiring a given series of T1w k-space data. Qualitative image features and parameter maps

such as edge and contrast were efficiently preserved in the reconstructed images. Although

the mean T1 values in the fluid tissue type were underestimated relative to GT values, the

overall heterogeneity in the reconstructed maps was preserved, and tissue type maps could
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be objectively computed that bore a high similarity to GT tissue type maps based on Dice

coefficient values. The tumor T1 values of 2800 ms that we have measured are significantly

longer than the 1000-1800 ms at 4.7 T [83][120] and 7 T [134][70][126] reported in various

preclinical tumor models by other groups. The one noteworthy difference between our study

and these other studies is that in our mice, tumor cells were inoculated subcutaneously on

the backs of the animals rather than in the more common flank or orthotopic locations.

There were pockets of fluid around the tumor that were visible on the images and in the

parameter maps, which we have not previously noticed in flank tumor models, and this may

be an explanation for the longer T1 values that we measured. The tumor T2 values that

we measured (50-60 ms) agree with those reported recently by Tomaszewski et al. [112] in

pancreatic tumor xenografts grown in mouse hind limbs. In our case, the proposed algorithm

performed better than the FCSA-MT algorithm for the reconstruction of the T1w images

and T1 maps, while the fidelity to GT of the reconstructed T2w images and T2 maps was

comparable between the two methods. In the proposed algorithm, parameter maps are esti-

mated from reconstructed images at each iteration, which provides an additional constraint

on pixel values in the form of the relaxation model equation, in addition to information from

the JTV, and improves the accuracy of the results of the reconstruction process.

Accelerated mpMRI parametric mapping will enable objective mapping of tissue histo-

logical characteristics [115][116][42][110][89] and intratumoral habitats [55][16][98][38][108],

which in turn will enable the development of better imaging biomarkers for understanding

tumor resistance to therapies and the development of adaptive anti-cancer therapy regimens

[35][131]. Alternate approaches being investigated to this end include MR Fingerprinting

(MRF), which is a dictionary-based technique that is gaining popularity for accelerated ac-

quisition of mpMRI in research settings. Advances in MRF techniques for preclinical imaging

include the development of specialized pulse sequences for MR vascular fingerprinting [73]

and methods such as Regularly Incremented phase encoding MRF [5] to reduce sensitivity

to motion. Our proposed method can accelerate mpMRI parametric mapping with under-
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sampled Cartesian acquisition of k-space data. Accelerated methods for estimating PDwF,

PDFF, R∗
2f , R

∗
2w will enable improved understanding of tumor physiology and response to

therapies. On our scanner, fully sampled T1w, T2w and T2*w data required a total scan

time of approximately 34 minutes, which could theoretically be reduced to 6 minutes if

acquiring only 18% of the k-space data (Table 3.2). The saved scan time may be used for

acquiring additional functional MRI scans such as DW-MRI and DCE-MRI while keeping

the total scan time low enough that the known perturbations of mouse and tumor physiology

by prolonged anesthesia [77][6][56] are mitigated.

Table 3.2: Comparison of mpMRI Reconstruction Time.

MRI Scan Type Fully sampled 18% 27% 36% 52%

(128 lines) k-space k-space k-space k-space

T2-FSE 1(4 averages) 1 1 1 1
T2w series 5(1 average) 0.9 1.4 1.8 2.6
T1w series 20(1 average) 3.6 5.4 7.2 10.4
T2*w series 8(2 averages) 1.4 2.2 2.8 4.2
Total Time 34 7 10 13 18

The PDFF and PDwF maps computed from under sampled T2*w data were physiolog-

ically reasonable and compared well with corresponding GT maps. Computed from both

reconstructed and GT T2*w images, the R∗
2f and R∗

2w of adipose tissue were lower than the

corresponding values in the fluid tissue type; this was somewhat unexpected and may be

attributable to potentially higher susceptibility effects in the fluid tissue type arising from

endogenous sources such as iron. More concerning is the underestimation of R∗
2f and R∗

2w for

different undersampling rates compared to fully sampled data, which may be due to cumu-

lative errors during reconstruction introduced by undersampling, or fitting errors generated

from the fat and water estimation framework [21]; and these errors propagated to the tissue

type definitions.
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Chapter 4: Radiation Therapy

4.1 Basics of Radiotherapy Treatment

Radiotherapy is an important treatment technique for palliative or curative management

of cancer in addition to surgery, chemotherapy, immunotherapy and others. In the case of

radiotherapy, controlled ionizing radiation, X-ray or photon, is focused on the tumor cells

to damage the DNA of cancer cells [114][53]. Proton therapy uses proton beams and has

advantages of controlled depth deposition with a finite range. However, photon therapy is

the most common and delivered using techniques like Three-Dimensional Conformal Therapy

(3D CRT), IMRT and VMAT. The success of radiotherapy depends on the precise deposition

and gradation of the ionization onto the GTV, CTV and PTV region without affecting the

OAR and other healthy tissues. To achieve the acceptable and deliverable dose plan, optimal

machine parameters must be determined and this process is called as treatment planning

[84]. The acceptable deliverable dose plan looks for the dose distributions that do not exceed

define dose limit recommendations but must be sufficient enough to damage the DNA of the

cancer cells [114]. This can be done in two ways: forward planning and inverse planning. In

case of forward planning the beam parameters are fixed and correspondingly, the machine

parameters are determined. This is a long iterative process [84][114].

A more viable solution is the inverse planning process which defines treatment planning

as a constraint optimization problem defined using Equation 4.1.

min
x

f (x)subject to g1 (x) , g2 (x) , ... gn (x) ≥ 0 (4.1)
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Here, the objective function is defined voxel wise where we constraint the radiation dose

values received by each voxel based on their delimitations defined by GTV, CTV, PTV or

OAR. There can be multiple optimal solutions to this objective function but the clinically

viable plan is selected based on the experience of a treatment planner. Once the optimal

plan and the machine parameters are determined, the radiotherapy can be delivered to the

patient. The treatment therapy starts with the linear accelerator that generates high-energy

electron beams. The photon beams are guided by a Multi-Leaf Collimator (MLC) and

filters that project the desired shape on the tumor region [84][114]. It must be noted that

the treatment planning process is a time-consuming iterative task and often the treatment

delivery is spread over multiple sessions. This may change the delineations of GTV, CTV,

PTV and OAR. Further it may be required to optimize the machine parameters on the fly

and as a result, automated treatment planning methods are becoming more popular.

4.2 Knowledge Based Methods of Treatment Planning

Automated treatment planning methods have been developed since the 1980s to tackle

the labor and time-intensive task of manual radiotherapy treatment planning [39]. In general,

the KBP methods use the prior information from the clinically approved database to generate

new plans [19]. KBP methods can be classified into atlas-based methods and model-based

methods. Atlas-based methods find the closest match for the new patient from the existing

reference treatment plans followed by the transfer of parameters used as a starting point to

determine optimal plan for the new patients. The search for the atlas-based closest match

can be further divided into direct and indirect methods. Direct methods look for similarities

between the database and new patient using patterns like OARS, tumor location, dose

constraints, beam geometry, etc. The closest matched features are then used to predict the

dose parameters. The indirect method uses models to directly predict the dose parameter.

Next, the closest match case to the predicted dose parameter is selected [39][88]. From

the literature survey conducted by Ge et al. it may be deduced that direct methods are
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widely used for treatment planning process compared to the indirect methods [39]. Model-

based methods are more rigorous automated planning methods as they use the combination

of data from database and mathematical models to determine the treatment parameters

for a new case. Mathematical models like multi-linear, logistic regression, Support Vector

Machines and K-Nearest neighbors define the relationship between the feature vector and

model parameters. Some input features comprise PTV-OAR overlap, OAR distance to PTV,

Overlap Volume Histogram (OVH), etc. First, the mathematical model is solved using the

input feature to estimate the model parameters. When a new case is queried, the fitted

model predicts the Dose Volume Histogram (DVH). Recently, with the progress in database

integration, computer hardware and availability of large datasets, the domain of KBP is now

migrating towards the deep neural network frameworks that will be explored more in the

following section.

4.3 Neural Network-Based Radiotherapy Treatment Planning

KBP methods suffer from several disadvantages like identification of correct feature set

in terms of anatomical delineation, limited feature set derived from contours resulting in

missing inherent structure characteristics and 1D prediction of DVH lacking the spatial in-

formation [84][118]. In one of the studies for radiation-induced rectal bleeding it is deduced

that the performance of the dose distribution not only depends on the volumetric information

but also on the morphological aspects [12]. Therefore, neural network-based techniques like

Convolutional Neural Network (CNN) which incorporates the spatial information for dose

prediction may perform better. KBP based methods use machine learning models which use

structured data for precise predictions. Compared to conventional machine learning model

neural network architectures try to find out feature sets in high dimensions which are relat-

able for accurate dose map prediction [105]. Feature sets identified by the neural network

architectures are better at handing inter-patient variability when compared to the hand-

picked feature sets used in KBP [79]. In the literature, a standard workflow of a deep neural
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network to predict the clinical dose distributions comprises of the multi-layer neural network.

UNET [100] architecture is the most used neural network framework for dose map predic-

tion. Further, delineations like OAR, GTV, PTV, CTV targets, other anatomical contours

and beam configurations are widely used inputs [118][76][114]. The underlying framework

of densely connected nodes extracts the complex latent features in addition to the simple

handpicked contours. As a result, neural network architectures have an inherent advantage

over the standard KBP methods. In addition to the standard 2D U-NET architecture, other

variants like Hierarchically Densely Connected U-net (HD U-NET) offer advantages such as

extraction of features in the interslice direction without incurring high computation cost of

3D U-net. [90]. ResNet [22] architectures have also been used to improve the dose map

predictions. A Generative Adversarial Network with a feature extraction Dual Attention

Module (DAM) which incorporates better internal semantic information has also been tried

for dose map predictions [130].
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Chapter 5: Generative Adversarial Networks

5.1 Introduction to Deep Neural Networks

Deep Neural networks are a subset of supervised machine learning models. They are

comprised of numerous linear and nonlinear functional units called neurons. These neurons

perform simple computations to learn the complex relationships between the input and out-

put data. Training of the neural network is similar to the system identification method. The

unknown “parameters” of the network are learned by computing the error functions. The

unknown parameters are then tuned to the point that the minimum of the error function is

reached. One of the important differences between neural networks and other machine learn-

ing models is feature extraction. While standard machine learning models use handpicked

features, neural networks can determine unstructured features. This is very important for

tasks like image segmentation, object localization and detection, image analysis, image clas-

sification, etc. A Fully Connected Network (FCN) is a neural network wherein every neuron

in the given layer is connected to all the neurons in the next layer. They are very useful for

analyzing and predicting 1-D data where spatial or time series information is unimportant.

Conversely, the Convolutional Neural Network (CNN) incorporates spatial information

by using simple filters. They prevent the overfitting by using only neighborhood information

called as receptive field. As a result, CNN has been very successful in image processing,

analysis and synthesis tasks. Further, CNN has an important property of translational

equivariance, under some conditions. Since all the input images share the same weight,

CNNs can identify objects in each irrespective of their positions [49]. This property is very

useful in image processing tasks where blurring or noise due to motion is challenging. An

important requirement for training a deep neural network is large number of labeled datasets.
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However, in the case of medical image processing availability of the labeled dataset is sparse.

Generative Adversarial Networks are an important variant of neural networks which can

synthesize realistic images. Due to this, they find their applications in vast medical image

synthesis tasks [31]. The next two sections provide a mathematical introduction to GAN

and its variant pix2pix GAN [54].

5.2 Basics of GAN

GANs are a variant of deep neural network models used to synthesize realistic images.

The underlying mathematical idea is as follows: Determining the probability distribution

µ from the underlying training data set X ⊂ Rn is challenging since only a finite set of

samples from the large data set can be drawn. As a result, it is impossible to know the

exact distribution µ; instead, an approximate distribution ν is determined that will generate

samples similar to that in X [119]. In the case of GAN, there are two neural networks

generator and discriminator which are set in an adversarial setting. They are trained to

reach the zero-sum Nash equilibrium. The generator is a neural network that aims to find

the approximation of the distribution µ. The generator initially starts to draw samples

from the probability distribution γ which is N (0,1) and tries to find mapping function G

Rd → Rn such that if z ∈ Rd is drawn from distribution γ than G (z) has a distribution µ.

The sample predicted by the generator is critiqued by the discriminator network. It outputs

a probability D (x) : Rn → [0, 1] for every sample x stating if the sample comes from the

desired distribution. Initially, the generator is not good at predicting the samples from the

desired distribution and hence it is easy for discriminator to determine that the sample is

fake. But as the γ → µ , generator predicts more and more realistic samples and it becomes

difficult for discriminator to tell the difference. Iteratively when these networks are tuned

the improvement in one network (Generator) cannot be achieved without degrading the per-

formance of another network (Discriminator). It is expected that when these two-players

zero-sum minmax game reaches equilibrium the generator will produce complex photorealis-
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tic images which discriminator cannot identify [87][43]. This can be mathematically defined

by Equation 5.1.

min
G

max
D

V (D,G ) := min
G

max
D

(Ex∼µ [logD (x)] + Ez∼γ [log (1− D (G (z)))]) (5.1)

While the basic GAN can generate photorealistic images for a given training dataset, it

has no control on the types of images that are generated. conditional GAN [86] is a variant

of basic GAN that can map the complex relationship between the points in the latent space

and the target space. Hence, conditional GAN is used for the targeted image generation

using some conditions like class labels, image type, etc. The data sample x is augmented

with some additional information y (class labels, image types) in both discriminator and

generator. This can be represented using Equation 5.2.

min
G

max
D

Vc (D,G ) := min
G

max
D

(Ex ,y∼µ [logD (x , y)] + Ez,y∼γ [log (1− D (y ,G (y , z)))]) (5.2)

5.3 Pix2Pix GAN

Pix2Pix is a variant of GAN that translate images from the input domain to the target

domain. In case of pix2pix GAN, in addition to the euclidean norm of the conditional GAN,

an L1 loss function is added to preserve the fine details of the predicted images without

blurring [54] and is defined by Equation 5.3.

LL1 (G ) = Ex ,y ,z [∥x − G (y , z)∥1] (5.3)

Hence, the final objective function can be defined using Equation 5.4.

G ∗ = argmin
G

max
D

Vc (D,G ) + λLL1 (G ) (5.4)
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Further, the generator of pix2pix network is a “U-Net” based architecture [100] with skip

connections between layer i and layer n − i , where n is the total number of layers in the

architecture. The GAN discriminator preserves the high frequencies in the generated images

by restricting the discriminator loss computation using local image patches. The patch GAN

discriminator thus penalizes structures at the scale of patches.

A pix2pix GAN framework is optimized iteratively so that when the generator network

is trained, the discriminator network is held constant. Similarly, when the discriminator is

being trained generator network is unchanged. Pix2pix framework is widely used for image-

to-image translation tasks like converting aerial photos to maps, medical image translation,

synthesizing MRI from CT [57], etc.
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Chapter 6: Prediction of Optimal Radiation Therapy Dose Maps from the

mpMRI

6.1 Relation between Radiation Dose Maps and mpMRI

As seen from the literature review, most of the work on dose map prediction has been

done using the anatomical contours and structures as the input. Drawing delineations is time-

intensive and need to be done by an expert. Further, as the therapy progresses, the drawn

delineations may not hold true next time in the treatment process due to the anatomical

changes. In this work, we want to determine the latent representations of the complex

relations between pre-RT and post-RT MRI in response to radiation therapy. We hypothesize

that pre-RT and post-RT T1w, T1w-CE, T2w, and FLAIR MRI, and particularly ADC

maps, contain sufficient information to predict the radiosensitivity of BCMB lesions. We

will characterize the voxelwise relationship between RT dose, pre-RT intensities on T1w,

T1wCE, T2w, FLAIR, and ADC, and post-RT changes in intensities on these images. We

call this a “forward model” that can predict the post-RT changes on mpMRI using the pre-

RT mpMRI and the RT dose maps. This will enable the radiation oncologists to simulate the

dose maps and determine their effects on post-RT MRI. We have also developed an “inverse

model” to predict the optimal dose map from the pre-RT ADC and prescribed/desired post-

RT ADC values. In this work, we demonstrate that the information contained in spatially

co-registered pre-RT and post-RT MRI is sufficient to predict the delivered RT dose map and

vice-versa. Both these models have been trained end-to-end without the need for manual

contouring2.

2This work is published in International Journal of Radiation Oncology.Biology.Physics [66]. Permission
is included in Appendix B
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Figure 6.1: Histogram of Post-RT Acquisition Time Gap vs. Number of Subjects.

6.2 Data Preprocessing

In a retrospective IRB-approved study, planning CT images and associated RT dose

maps, and T1w, T1wCE, T2w, FLAIR images, and ADC maps acquired at pre-RT, post-

RT (15 to 158 days) and at tumor recurrence (54 to 831 days) in 24 BCMB subjects were

curated from our Radiology and Radiation Oncology databases [85]. Figure 6.1 shows the

histogram of the number of subjects against the delta time between pre-RT and post-RT

mpMRI acquisitions. The dataset comprises recurring and responding lesions, 24 lesions.

BCMB subjects received a mean SRS dose of 21 Gy, range: 15-30 Gy, in 1-5 fractions.

The data preprocessing steps are summarized in the block diagram shown in Figure 6.3.

mpMRI images from all scan dates were co-registered to the planning CT using MIRADA-

RTx (Mirada Medical, Denver, CO, USA). GTV contours and the RT dose map associated

with the planning CT could be applied to the mpMRI after co-registration. Voxel intensities

were calibrated on T2w, FLAIR, T1w and T1wCE images using two reference normal tissues

[108]. T1w and T1wCE were calibrated using the same ‘slope’ and ‘intercept’ calculated from

the same subject and scan session. ADC and RT dose maps are not calibrated. Intensity-

calibrated voxels on co-registered mpMRI were assigned to objectively defined tissue types

[46]. All the images were cropped to size 256 x 256. End slices without any visible tissue
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Figure 6.2: Quantitative Validation of Forward Model.

were removed from the dataset. Figure 6.4 shows the example slice from our data set. The

first column shows planning CT, administered Dose map and the corresponding GTV. Rows

1,2 and 3 show the pre-RT mpMRI, post-RT mpMRI and mpMRI acquired at recurrence,

respectively. Maps of objectively defined tissue types defined in Figure 6.2. The tissue type

maps are computed from MRIs of an example subject provide visual confirmation of the

utility of the intensity-calibration process (last column Figure 6.4).

52



Table 6.1: Mean and Standard Deviation Estimated from Training Data.

MRI Scan Type Mean Std Subjects

ADC 1.13E+03 588 18
FLAIR 572 104 18
T2W 101 42 16

T1W and T1WCE 970 206 17
RT Dose Map 3.9 8.9 18

Figure 6.3: BCMB Data Preprocessing.

Variance normalization was done by calculating each scan type’s global mean and stan-

dard deviation, as defined by Equation 6.1.

variancenormalizedMRItype =
Image −meanMRItype

stdMRItype
(6.1)

Each scan type’s global mean and standard deviation are shown in the Table 6.1. Mean

and standard deviation were obtained from subjects with only spin-echo sequences; hence

variable subject numbers can be observed for each scan type. From the histograms of

variance-normalized intensities of all voxels within the brain mask pooled over all subjects

and scan dates, we identified low and high thresholds, as seen in the Table 6.2. We then

scaled the voxel values between -1 and +1 by using the Equations 6.2 and 6.3.

scaledMRItype = mMRItype × (variancenormalizedMRItype ) + cMRItype (6.2)

mMRItype =
2

HMRItype − LMRItype
(6.3)

cMRItype = 1− 2×HMRItype

HMRItype − LMRItype
(6.4)
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The global low and high thresholds used for scaling are tabulated in Table 6.2. We divided

our dataset into training and test sets with 18 and 6 subjects. We then generated a simulated

post-RT mpMRI for training. The simulated post-RT mpMRI for training the forward and

inverse model was generated using the pre-RT and post-RT mpMRI. The range of the RT

dose map in our data is 0-36 Gy. Correspondingly, we generated a sigmoidal function defined

by S = 1
1+exp (−RT+13)

shown in Figure 6.5. We generated the post-RT simulated image by

incorporating information from pre-RT and post-RT mpMRI using the Equation 6.5.

postRTtargetMRI = preRTMRItype (1− S(RT )) + postRTMRItype × S(RT ) (6.5)

Figure 6.4: Example Slice from BCMB Dataset.

Intuitively the equation(6.5) states that for lower values of RT, the post-RT target must

be the same as pre-RT MRI and for higher values of RT, the post-RT target will be equal to

post-RT MRI. We generated the post-RT training MRI value for all the 5 MRI types, T1w,

T1wCE, T2w, FLAIR and ADC, for training our forward and inverse models.
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Table 6.2: Identified Global Low and High Threshold from Training Data.

MRI Scan Type Low Threshold(L) High Threshold(H) Subjects

ADC -1.93 4.02 18
FLAIR -5.48 5.52 18
T2W -2.41 3.9 16

T1W and T1WCE -4.7 4.02 17
RT Dose Map -0.44 4.01 18

Figure 6.5: Scaling Factor Used for Generating the Training Images.

6.3 Preliminary Data Analysis

A preliminary data analysis was conducted to determine the relationship between the

pre-RT and post-RT mpMRI when subjected to an RT dose map using 24 subjects. Within

the RT dose maps, we computed the mean and standard deviation for differences between the

pre-RT and post-RT mpMRI. Figure 6.6 shows the results of the changes between the post

and pre-RT mpMRI as a function of the RT Dose map. Delta changes are apparent from the

plots where RT values are greater than 20. To determine the characteristics of the responding

and recurrent tumor, we computed volume change, post-RT - pre-RT mpMRI, within six

different tissue types, namely fluid, GM, WM, hemorrhage, BV+CE and NE+Edema. We

then determined the positive/negative sign change for 14 recurrent and 10 responding lesions,

as shown in Figure 6.7. The total number of tumors with negative volume change in both

recurrent and responding tumor type was higher in WM, Hemorrhage and NE+Edema. The
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total number of tumors with positive volume change in responding tumor type was higher in

BV+CE. However, no specific conclusions can be drawn for responding and recurrent tumor

types using the tissue type maps with this limited dataset.

Figure 6.6: Delta Changes of mpMRI vs. RT Dose Plots.

6.4 Model Architecture

We use a variant of Pix2Pix architecture [54] for training the forward and inverse model

shown in Figures 6.8 and 6.9, respectively. The main components of the architecture are the

generator and discriminator, as discussed below.

6.4.1 Generator

The generator of our framework is a variant of the UNET architecture [100]. At its

core, it is an encoder-decoder network with contracting and expanding pathways that can

efficiently encode the latent representations of the data at the input channel. The skip

connections of the network add the higher resolution feature maps from the encoder to

enhance the learning process. The entire network can be formed using UNET up and UNET

down blocks. The UNET up block has a convolution filter of size 4 x 4, batch normalization,
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Figure 6.7: Tumor Volume Change for Recurrent and Responding Lesions.

except the first block and leaky ReLU. The UNET down block has a transposed convolution

filter of size 4 x 4, batch normalization, drop out layer and ReLU activation. The input to

the generator is C = 6, pre-RT T1wCE, T1w, FLAIR, T2w, ADC and RT dose maps, shown

in Figure 6.8 in the case of a forward model and C = 2, pre-RT and post-RT ADC, for the

inverse model shown in Figure 6.9. Tanh activation was used at the output layer. A detailed

architecture of the generator is attached in Appendix G.

Figure 6.8: Proposed Forward Model.
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6.4.2 Discriminator

The discriminator is a patchGAN discriminator, as described in [54]. A standard dis-

criminator outputs only one value stating if the input image is real or fake. In the case

of patch GAN, the output patch is of size 16 x 16 encompassing the local features. Our

discriminator is a five-block module where each module has a convolution filter of size 4 x

4, Batch normalization and Leaky ReLU. The output layer is a sigmoidal activation layer.

The input to the discriminator is an MRI image in the case of the forward model and RT

dose maps in the case of the inverse model. The detailed architecture of the discriminator

is attached in Appendix H.

Figure 6.9: Proposed Inverse Model.

6.5 Training and Implementation

We trained both the discriminator and generator using ADAM optimizer [61]. The learn-

ing rate η=0.0002, β1=0.5 and β2=0.999. In case of generator BCE vs. L1 loss were weighted

by a factor of 1:100 [54]. We added gaussian noise with zero mean and exponentially decay-

ing std deviation to both real and fake input of discriminator. While experimenting, it was

observed that the discriminator was overpowering the generator without adding noise. After

noise imputation, the training between the discriminator and generator could be balanced.
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For both the generator and discriminator we initialized weights from gaussian distribution

with µ=0, σ=0.02.

We trained our forward model with 5 pre-RT mpMRI and RT dose maps at the input

against the post-RT target MRI. We run five forward models for target MRI T1wCE, T1w,

T2w, FLAIR and ADC maps separately. Our inverse model was trained for pre-RT ADC

maps and post-RT ADC maps at the input against the RT Dose maps. We determined the

number of epochs for each forward model by calculating the correlation values between the

ground truth and the predicted values. The number of epochs was then chosen by identifying

the breakpoint where the correlation improvements became stagnant. Figure 6.10 shows the

examples of the correlation vs. the number of iteration plots computed for T1wCE and

FLAIR training data. We alternate a single gradient descent step between the discriminator

and the generator for each epoch. The implementation of our algorithm is performed using

Python 3.9 and we implemented the Pix2Pix architecture in TensorFlow 2.0. Our hardware

is comprised of i7 CPU with 128 GB RAM and GEforce-GTX1660 SUPER 6GB RAM GPU.

Figure 6.10: Iteration vs. Correlation Values for Training Data.
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6.6 Validation Framework

6.6.1 Forward Model

A qualitative and quantitative validation is performed on six test subjects. The trained

forward models are tested using six test subjects to predict post-RT ADC, FLAIR, T1wCE,

T1w and T2w images. Histograms of the Post-RT and the Predicted Post-RT ADC, FLAIR,

T1wCE, T1w and T2w values within the Brain Mask and GTV are computed. The tissue

type maps like Blood Vessel, Enhancing Tumor, Fluid, Non-Enhancing Tumor, Edema, Gray

Matter, White Matter and Hemorrhage are estimated from pre-RT, post-RT and predicted-

post-RT mpMRI using the algorithm shown in Figure 6.2 [108]. Next, the percentage volume

of tissue type maps is computed for pre-RT, post-RT and predicted-post-RT mpMRI. As

discussed in section 1.1, ADC maps contain information mechanistically relatable to voxel-

level tumor response to the therapies [36][1]. Hence, to validate our forward model for

boundary conditions, expected values, we used ADC maps. We simulated the RT dose map

values by increasing the RT values within the GTV of the brain mask. The simulated RT

dose map and the pre-RT mpMRI were then used to predict the post-RT ADC values. We

then compared the histograms of the predicted-post-RT ADC values for increasing RT Dose

Map values within the GTV.

6.6.2 Inverse Model

The trained inverse model to predict the RT-Dose Map from pre-RT and post-RT ADC

is also tested using six test subjects. We simulated the desired post-RT ADC map by using

the pre-RT ADC map. We prescribed the desired ADC values within the GTV of pre-RT

ADC, leaving the values outside the GTV unchanged. We then used the pre-RT ADC map

and the desired post-RT ADC as input to the inverse model to predict the RT Dose Map.

Finally, we compared the histograms of the predicted RT dose maps resulting from the

increasing simulated ADC values.
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6.7 Results

Figures 6.11 and 6.12 show the histogram of the actual and predicted post-RT T2w,

FLAIR, T1w, T1wCE and ADC values, whole brain, obtained from 18 training and six

test subjects, respectively. The training plots show that the forward model has effectively

learned the probability distribution from the training data and the predicted histograms

are contained within the standard deviation of the actual post-RT training data. The test

histograms for the predicted values look similar to the actual values except for T1wCE data.

This may be due to the T1wCE acquisition scheme which comprises of GRE and spin echo

sequence. T1wCE sequences of our training data were mostly acquired using the spin echo

technique. However, 50% of T1wCE sequences of the test data were acquired using the GRE

pulse sequence.

Figure 6.13 shows the result of the forward model. Post-RT ADC map is predicted using

pre-RT mpMRI (only pre-RT ADC is shown) and the delivered dose maps as the input to

the forward model. The overall predicted post-RT ADC map looks similar to actual post-

RT ADC maps. However, it can be observed that predicted post-RT ADC values within

the treated GTV are underestimated compared to actual post-RT ADC. This can also be

verified from the histograms of the predicted and actual post-RT ADC values within the

GTV obtained from the six test subjects shown in Figure 6.14. Overall, the histograms

of all predicted post-RT mpMRI for test data are underestimated for higher values and

overestimated for lower values compared to the actual post-RT mpMRI. Figure 6.15. shows

the comparison of the histogram of predicted post-RT mpMRI and actual post-RT mpMRI

within the GTV from the 18 Training subjects. The predicted post-RT histograms within

the GTV of all image types closely resemble that calculated from the actual data.

Figure 6.16 compares the tissue type maps computed from pre-RT, post-RT and predicted

post-RT mpMRI for two different slices obtained from two subjects. Colors red, yellow, blue,

brown, cyan, green, white and magenta signify Blood Volume (BV), Contrast Enhancing

(CE) tumor, fluid, Non-Enhancing (NE) Tumor, edema, Gray Matter (GM), White Matter
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Figure 6.11: Predicted Histograms within the Brain Mask for Training Subjects.

Figure 6.12: Predicted Histograms within the Brain Mask for Test Subjects.
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Figure 6.13: Results of the Forward Model.

Figure 6.14: Predicted Histograms within the GTV for Test Subjects.
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Figure 6.15: Predicted Histograms within the GTV for Training Subjects.

(WM) and hemorrhage respectively. Overall, the tissue type maps of the predicted post-

RT and actual post-RT for both the slices (top and bottom row) look similar. Most of

the pixels within the tumor GTV of predicted post-RT are identified as a fluid that agrees

with the actual post-RT. However, the combinations of pixels at the boundary of the GTV

signifying CE, edema and NE are classified as NE tumors. For subject 6 (bottom row),

the NE tumor within the GTV of predicted post-RT is consistent with the actual post-

RT. Next, the percentage volume of tissue types like fluid, GM, WM, hemorrhage, BV+CE

(BV and CE combined), NE+Edema (NE and Edema combined) from pre-RT, post-RT

and predicted post-RT mpMRI are computed and shown in Figure 6.17. As expected,

the BV+CE volume has shrunk for post-RT mpMRI compared to pre-RT mpMRI. The

computed BV+CE volumes for predicted post-RT are close to the actual post-RT volumes.

However, for subjects 1 and 3, the BV+CE volumes are underestimated, and for subject 4,

it is overestimated. Further, the NE+Edema tissue type for the predicted post-RT is mostly
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Figure 6.16: Tissue Type Maps Computed from Forward Model.

underestimated. The computation of the % volume for the training data is shown in Figure

6.18, 6.19, and 6.20.

Figure 6.21 shows the simulated results of the forward model for two slices from two

different subjects. The first row shows the GTV and actual pre-RT and post-RT ADC

maps. The next two rows show the simulated post-RT ADC maps resulting from an increase

in the RT values within the GTV at the input of the forward model. As the RT dose map

values increase within the GTV, the predicted post-RT ADC values within the GTV also

increase. This agrees with the expected values of ADC, which increase in response to the RT

due to cell death increasing extracellular space. This can also be verified from the histograms

of predicted post-RT ADC values within the GTV shown in Figure 6.22. As expected, as

the amount of RT dose map increases, the histogram of the predicted post-RT ADC values

shifts to the right.
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Figure 6.17: Quantitative Validation of Forward Model for Six Test Subjects.

Finally, Figure 6.23 shows the inverse model results for two slices from two subjects. As

seen in the Figure 6.23 (left), the input to the inverse model is a pre-RT ADC map and

prescribed post-RT ADC maps with increasing ADC values within the GTV. The output of

the inverse models is the RT dose map. As the Figure 6.23 (right) shows, the predicted dose

maps increase as the prescribed ADC values within the GTV increase. This means that the

RT dose map values must be high to generate high ADC values. This can also be verified

from the histogram of the predicted RT dose map values within the GTV shown in Figure
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Figure 6.18: Quantitative Validation of Forward Model for 1-6 Training Subjects.

6.24. As the ADC values increases within the GTV, the histograms of the predicted RT dose

maps shift towards the right.

6.8 Discussions

Our objective for this preliminary work is twofold. Firstly, we demonstrate the voxelwise

relationship between the RT Dose and pre-RT mpMRI intensities to predict the changes in

intensities on the post-RT mpMRI using the forward model. Next, using the inverse model,
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Figure 6.19: Quantitative Validation of Forward Model for 7-12 Training Subjects.

we also predict the RT dose map for producing prescribed changes on the post-RT ADC.

Overall, the results of the predicted post-RT mpMRI from the forward model resemble those

computed from the actual post-RT mpMRI. However, the distribution of the intensities

within the GTV of predicted-post RT mpMRI have lower standard deviations compared to

the actual for all mpMRI types, which is also evident from the histograms of the predicted

post-RT mpMRI. There may be multiple reasons which resulted in underestimations of the

predicted values. Firstly, our preliminary data analysis suggested that the apparent changes

68



Figure 6.20: Quantitative Validation of Forward Model for 13-18 Training Subjects.

between pre and post-mpMRI occur for high RT values, especially for RT > 20. Futher, the

number of voxels that received the RT ≥ 10, i.e., had tumor contours was hardly 0.1% of

all the voxels in the 24 BCMB subject. Also, the time between the acquisition of pre- and

post-RT mpMRI is variable, ranging from 15 to 158 days. As discussed in the introduction,

ADC intensities are very sensitive to the time of acquisition after the RT, which may have

affected the ADC values in the considered dataset. Qualitatively, the predicted post-RT

tissue type maps closely resemble those estimated from the actual post-RT dose map. Some
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Figure 6.21: Simulated Predictions of Forward Model.

Figure 6.22: Simulated Predicted Histograms from the Forward Model.

loss of fidelity for the predicted post-RT tissue type maps vis-à-vis the corresponding GT

maps in the GTV is apparent. This may be due to cumulative errors introduced by five

predicted post-RT MRIs and the rules for estimating the tissue type maps. An alternate

approach to tackle these limitations will be to use the GAN techniques like multimodal GAN,
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Figure 6.23: Simulated Predictions of the Inverse Model.

which can synthesize all five post-RT MRI sequences using one neural network architecture

[102]. Further, to handle the problem of an unbalanced dataset where in our case, only 0.1%

of data received high radiation values, the forward model could be improved by penalizing

the GAN loss for the minority class.

The simulated results of the proposed forward model meet the boundary conditions, i.e.,

the expected changes on the ADC when administering the high RT values. Similar condi-
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Figure 6.24: Simulated Predicted Histograms from the Inverse Model.

tions could be checked for other MRI types, given that enough data is available to identify

the voxel-wise RT sensitivity for other MRI types. Further, they would provide criteria for

defining a favorable post-RT MRI appearance of the tumor. This information could then

be used as an input to the inverse model to improve the prediction of RT dose maps. Fur-

ther, these voxel-level parameters could inform an eco-evolutionary model to predict tumor

dynamics. The simulated results of the proposed inverse model meet the expectations of

requiring higher RT values to generate higher ADC values within the GTV. However, the

improvement in the results may be obtained by training the model by incorporating all the

five pre-RT and post-RT mpMRI types.
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Chapter 7: Conclusions and Future Work

7.1 Conclusions

In this work, the two aspects of the MRgRT LINAC are discussed. First, accelerating the

reconstruction of multiparametric MRI (mpMRI). Second, prediction of precise dose maps

from the pre-radiation therapy mpMRI sequences without the need of manual contouring.

With the proposed Joint Reconstruction Framework, we accelerated the reconstruction of

T1w, T2w, and T2*w by approximately five fold for preclinical mice data. We developed

a single algorithm that could reconstruct a series of complex images and their parameter

maps. Further, the complex T2*w images were used to estimate the fat and water content

and their relaxation rates. With our approach, we could identify the tissue type maps like

adipose, fluid, muscle, and tumor with high accuracy using only 18% of the under-sampled

k-space data. To alleviate the manual aspects of RT planning and generate the optimized

RT dose maps necessary for local tumor control and decreased toxicity, forward and inverse

models using a variant of pix2pix GAN neural networks were trained. It was possible to

predict the post-RT mpMRI changes using pre-RT mpMRI and RT dose maps using the

forward model. In agreement with the expectations, the forward model also predicted the

increasing post-RT ADC values within the GTV with increasing simulated RT doses in the

range of 1 to 51 Gy. With the inverse model, we determined that higher RT values are

required to generate higher ADC values within the GTV. Finally, it is envisioned that the

forward models will assist the radiation oncologist in initial RT dose plan optimization, while

the inverse model may be useful for daily RT plan optimization.
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7.2 Future Work

The current work uses preclinical and clinical data for demonstrating the acceleration

of joint reconstruction mpMRI and the prediction of optimal dose maps, respectively. In

future work, we want to test our model end to end. We want to use the accelerated data set

to predict the optimal RT dose maps. The end-to-end framework could use the accelerated

mpMRI dataset to identify the sub-segments of tumor i.e. habitats. The precise identification

of the habitats can then be used to generate voxel level dose predictions which can better

control the local tumor habitats.

In future work, we plan to improve the proposed joint reconstruction algorithm to directly

estimate the R∗
2f and R∗

2w and their corresponding A maps from the under sampled k-space

data. In the proposed framework, we define um = AT1(1− e−
tm
T1 ), i.e., reconstructed images

“u” must satisfy the relaxation model equation. The left side of our equation is complex since

we defined u as a complex quantity. However, the right side of our equation is approximated

as real, i.e. we defined A and T1 as real quantities. So, the complex u is approximated

by the real A and T1 which may not be exact. Hence, in future work we can improve this

approximation using a complex A. Our ultimate goal is to extend this approach to objectively

define physiologically meaningful sub-segments of tumors i.e. habitats using undersampled

data, for which we anticipate needing to include multiple additional rules based on R∗
2w , R

∗
2f ,

PDFF, PDwF, ADC, and microvascular parameters calculated from DCE-MRI. In future

work, we aim to extend this image reconstruction approach to ADC mapping as well. Since

the acquisition of ADC maps is a time consuming, we anticipate developing a neural network-

based framework which can use the undersampled DWI k-space data to estimate the ADC

maps.

The deep learning framework implemented for the forward and inverse model uses a

conventional data-driven approach wherein we used the training data to map the input

distributions to the target distributions. In future work, we want to use the model-driven

approach to improve our prediction. We know that the relation between the RT dose map and
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the pre-RT mpMRI to predict post-RT mpMRI is a complex process. Further, mathematical

and biological models have been used to model the interaction between the tumor cells and

the tissue microenvironments [109]. If we can incorporate these model equations into the

deep neural network, we might be able to improve our prediction results. This will also be

useful in cases where the amount of labeled data is scarce. At present, we have trained our

deep learning framework for BCMB tumor types. In future work, we may want to update

our model to incorporate other tumor types. In future work, we want to collect more data

and identify the voxelwise relationship between RT dose and pre-RT intensities on mpMRI

in locally responding and recurrent lesions.
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