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Abstract 

 In the early 20th century, Nobel laureate Otto Warburg made the observation that cells of 

a carcinoma had considerably higher glycolytic metabolism and considerably lower oxidative 

metabolism compared to cells of a normal tissue. He postulated that within this observation was 

the key to deciphering the differences between malignant and normal tissue. It is now well 

established that tumors of the breast are unequivocally acidic, caused by an abnormal amount 

of aerobic glycolysis, colloquially known as the Warburg effect. Over the last decades, our 

group, led by Dr. Robert J. Gillies, has set out to characterize the causes and consequences of 

this acidity in cancer. Major strides have been made in understanding how the acidic 

environment is developed, and the effects it has on the progression of the tumor. Important 

questions still exist in understanding how this acidity affects the phenotype of cellular 

populations within the tumor, how we can effectively target this acidic phenotype in the 

treatment of cancer, and how the glycolytic phenotype of cancer cells is regulated by acidity. 

The aim of this work was to contribute to the understanding of the two questions posited in the 

preceding text.  

Chapter 3: Early ducts of breast tumors are unequivocally acidic. High rates of glycolysis 

combined with poor perfusion lead to congestion of acidic metabolites in the tumor 

microenvironment, and pre-malignant cells must adapt to this acidosis to thrive. Adaptation to 

acidosis selects cancer cells that can thrive in harsh conditions and are capable of outgrowing 

the normal or non-adapted neighbors. This selection is usually accompanied by phenotypic 

changes. Epithelial mesenchymal transition (EMT) is one of the most important switches 

correlated to malignant tumor cell phenotype and has been shown to be induced by tumor 
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acidosis. New evidence shows that the EMT switch is not a binary system and occurs on a 

spectrum of transition states. During confirmation of the EMT phenotype, my results 

demonstrated a partial EMT phenotype in the acid-adapted cell population. Using RNA 

sequencing and network analysis we found 10 dysregulated network motifs in acid-adapted 

breast cancer cells playing a role in EMT. The further integrative analysis of RNA sequencing 

and SILAC proteomics resulted in recognition of S100B and S100A6 proteins at both the RNA 

and protein level. Higher expression of S100B and S100A6 was validated in vitro by 

Immunocytochemistry (IHC). I further validated our finding both in vitro and in patients' samples 

by IHC analysis of Tissue Microarray (TMA). Correlation analysis of S100A6 and LAMP2b as a 

marker of acidosis in each patient from Moffitt TMA approved the acid related role of S100A6 in 

breast cancer patients. Also, ductal carcinoma in situ (DCIS) patients with higher expression of 

S100A6 showed lower survival compared to lower expression. We propose essential roles of 

acid adaptation in cancer cells EMT process through S100 proteins such as S100A6 that can be 

used as therapeutic strategy targeting both acid-adapted and malignant phenotypes. 

Chapter 4: Evolutionary dynamics can be used to control cancers when a cure is not clinically 

considered to be achievable. Understanding Darwinian intratumoral interactions of 

microenvironmental selection forces can be used to steer tumor progression towards a less 

invasive trajectory. Here, we approach intratumoral heterogeneity and evolution as a dynamic 

interaction among subpopulations through the application of small, but selective biological 

forces such as intracellular pH (pHi) and/or extracellular pH (pHe) vulnerabilities. Increased 

glycolysis is a prominent phenotype of cancer cells under hypoxia or normoxia (Warburg effect). 

Glycolysis leads to an important aspect of cancer metabolism: reduced pHe and higher pHi. We 

recently showed that decreasing pHi and targeting pHi sensitive enzymes can reverse the 

Warburg effect (WE) phenotype and inhibit tumor progression. Herein, I used diclofenac (DIC) 

repurposed to control MCT activity, and koningic acid (KA) that is a GAPDH partial inhibitor, and 
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observed that one could control the subpopulation of cancer cells with WE phenotype within a 

tumor in favor of a less aggressive phenotype without a WE to control progression and 

metastasis. In 3D spheroid co-cultures, I showed that our strategy can control the growth of 

more aggressive MDA-MB-231 cells, while sparing the less aggressive MCF7 cells. In an animal 

model, we show that our approach can reduce tumor growth and metastasis. We thus propose 

that evolutionary dynamics can be used to control tumor cells' clonal or sub-clonal populations 

in favor of slower growth and less damage to patients. We propose that this can result in cancer 

control for tumors where cure is not an option. 

 In total, this work has provided knowledge to the field by better describing how cellular 

populations of breast cancer cells adapt to an acidic environment, and how fermentative 

glycolysis can be exploited to control breast cancer populations.
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Chapter 1: Introduction 

 

 The focus of this work was on the causes and consequences of acidosis in breast 

cancer. In order to best set the stage for the work done, this chapter will describe the clinical 

underpinnings of breast cancer, how breast cancer affects the global population, and the prior 

significance of acidosis in breast cancer.  

EPIDEMIOLOGY OF BREAST CANCER 

Breast cancer’s global impact 

According to the Global cancer Observatory (GCO) by the World Health Organization 

(WHO), breast cancer is the most commonly diagnosed malignancy, with 47.8 out of every 

100,000 people being diagnosed in 2020 [1], with cases almost exclusively seen in women. 

Breast cancer also represents the 2nd highest cause of cancer death with 13.6 people per 

100,000 people dying from breast cancer per annum, globally; being beaten only by lung cancer 

at 18.0 per 100,000 [1]. When looking only at cancer mortality in women, breast cancer beats 

out lung cancer as the number one cause of cancer death. As research pushes forward, one 

major problem is that the cure rate for breast cancer is hardly making strides. In low-income 

countries, breast cancer mortality rates are increasing, and in high-income countries mortality 

rates are stagnating [2]. While these outcomes are far from desirable, there has been a net 

improvement in treatment outcomes, but due to increased incidence rates mortality rates are not 

decreasing [3]. There exists a need to decrease breast cancer mortality rates, as it still remains 

the number one cause of cancer mortality among all women [4]. 



2 
 

Age and ethnicity related statistics  

The current mean age of breast cancer diagnosis, in the United States, is 58.6 years old 

with a standard deviation of 9.4 years [5]. There exists a range of diagnosis ages based on 

ethnicity, with non-Hispanic white women having the highest mean age of diagnosis at 60.4 with 

a standard deviation of 9.2 years, compared to Hispanic women who have the lowest mean age 

of diagnosis at 57.0 with a standard deviation of 9.5 years [5]. This disparity gets larger when 

looking at the percentage of breast cancer deaths that happen before the age of 50. Within this 

younger than 50 years old group, deaths from breast cancer occur in only 7.6% of non-Hispanic 

white women, compared to 20.1% of Hispanic women [5].  

When discussing incidence rate, the trends from ethnicity do not follow the mortality 

rates. Of women under 50 years of age in the United States, despite having the lowest mortality 

rate, non-Hispanic white women have the highest incidence rate for invasive breast cancer at 

49.2 per 100,000. Native American women represent the lowest incidence for this group at 28.6 

per 100,000. As for incidence of advanced stage breast cancer before the age of 50 years old in 

the United States, non-Hispanic black women have the highest rate at 23.1 per 100,000. Native 

American women again represent the lowest incidence for this group, at 13.4 per 100,000 [5].  

Differences in overall incidence, age of incidence, mortality, and stage among different 

ethnic groups likely stem from differences in genetic background, environmental exposures and 

socioeconomic status.   

CHARACTERIZATION OF BREAST CANCER  

 The term breast cancer represents a wide variety of diseases that have been 

characterized and categorized in order to best describe a given patient’s disease, with the end 

goal of finding their best treatment strategy. These categorizations can be broken down into 

tumor staging, and molecular characterization.  
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Staging of breast tumors  

Current guidelines for the staging of cancer are provided by the American Joint 

Committee on cancer (AJCC) and the Union for International cancer Control (UICC). The 

staging system maintained by these two groups is known as the TNM staging system, in which 

the (T) represents the overall status of the tumor, (N) represents the degree of lymph node 

involvement, and (M) represents metastatic presence. Following information regarding staging 

was obtained from the cancer Research UK website [6].  

The T stage of breast cancer can be broken down into 7 groups Tx, Tis (DCIS), Tis 

(Paget), T1, T2, T3, and T4. Tx represents a tumor size that cannot be determined, regardless 

of reason. Tis (DCIS) represents a ductal carcinoma in situ breast tumor, in which the tumor is 

confined to the ducts of the breast and has not invaded into surrounding breast tissue. Tis 

(Paget) represents a rare skin condition of the nipple that is associated with an early rash, 

irrespective of invasive status of the tumor. T1 represents a tumor that is 2 cm or less in 

diameter. T2 represents a tumor that is >2 and <5 cm in diameter. T3 represents a tumor that is 

>5 cm in diameter. Stage 4 represents an invasive tumor that has spread to the chest wall, 

breast skin, or both; sometimes also encompassing an inflammatory carcinoma.  

The N staging of breast tumors in divided into two groups, the pathological (pN) and the 

clinical (cN). pNX and cNX represent a nodal status that cannot be assessed. Both the 

pathological and clinical nodal staging methods go from a scale of pN1-pN3 or cN1-cN3, 

respectively; with the N number increasing with severity of the nodal involvement. The main 

differentiator between the two nodal staging methods is that the pathological system takes into 

account the number of lymph nodes involved, which the clinical staging method is focused 

mainly on the location of the nodes in which cells have disseminated to.  
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The M staging of tumors is given only 4 different possible designations. M0 represents a 

patient status in which no metastases are present. cMo(i+) is used to designate a patient in 

which medical imaging and physical examination do not show the presence of metastasis, but 

cancer cells can be found in laboratory tests, not localized to the primary tumor. cM1 represents 

a patient who does present visually of physically detectable metastases in a part of the body 

other than the breast. pM1 is the pathological designation used when metastasis larger than 

0.2mm across are observed upon tissue examination.  

Molecular characterization of breast tumors 

 With advances in nucleic acid technologies, it has now become commonplace that 

patients in the clinic presenting with breast cancer are profiled for the presence of germ-line 

mutations, somatic mutations, or changes in gene expression. The purpose of this testing is to 

better characterize the patient and their tumor, with the goal of using the best treatment 

available for their specific case.  

 The protein expression markers most synonymous with the subtyping of breast cancer 

are the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth 

factor receptor 2 (HER2). The significance of ER expression in breast cancer was demonstrated 

early in the molecular characterization of breast cancer with many papers in the late 1970’s 

implicating low expression of ER with increased tumor recurrence, faster cell proliferation rates, 

and decreased response to chemotherapy [7-9]. Around this same time, the PR status of breast 

tumors was taking shape with studies showing presence of a progesterone receptor in 1/3 of 

breast cancer patients tested [10], and the hope was this would be another marker of hormone 

status, as ER status was not sufficient to predict patient response to endocrine treatment. The 

significance of HER2 expression as a marker was demonstrated by that fact that it is 

overexpressed in 25%-30% of breast cancer patients, it was associated with poor clinical 

outcome, and it was almost exclusively caused by an amplification of the HER2 gene, which 
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would be clinically observable [11]. Expression of the ER and PR genes are positively correlated 

with one another, while the expression of HER2 is inversely correlated with their expression 

[12]. Molecular characterization of breast cancer was defined in a landmark study of gene 

expression in breast cancer patients. In this study, it was observed that ER+ patients expressed 

many proteins associated with luminal cells, placing them in the luminal category [13]. The 

luminal category of breast tumors has been further broken down into luminal A and luminal B, 

based on the expression of Ki67, with luminal A expressing low levels of Ki67 and luminal B 

expressing high levels of Ki67 [14]. It was also demonstrated that the ER- cancers should be 

placed in two distinct expression categories based on their expression of HER2, with tumors 

negative for ER and HER2 being deemed triple-negative basal-like tumors, and tumors negative 

for ER expression but positive for HER2 expression, being deemed HER2+ [13]. While the 

differentiation between these breast tumor types is not on the basis of metabolism, the 

metabolic profiles of these different tumor types vary greatly [15].  

INTRODUCTION TO ACIDOSIS IN BREAST CANCER 

Berlin, Germany 1925. Otto Warburg published an observation that, despite the 

presence of oxygen, cells of a carcinoma have considerably lower oxidative metabolism and 

considerably higher fermentative metabolism when compared to their normal counterparts. This 

phenotype has been deemed, “the Warburg effect”. Warburg himself postulated that within his 

observation was the key to deciphering what the true difference between a cancerous cell and a 

normal cell is. These insights have led to nearly a century of scientific investigation to answer 

one simple question, “Why do cancers have high aerobic glycolysis?”. This question has 

plagued some researchers for their entire careers, spawned endless debates about the “true” 

metabolic phenotype of cancer cells, and led to the investigation of countless subfields all 

centering around the increased propensity of cancer cells to carry out aerobic glycolysis. No 
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matter one’s opinion on the subject, it is hard to deny the vast impact this observation has had 

on cancer research for the past century.  

 In breast cancer the highly fermentative phenotype has been well established, with 

studies demonstrating increased glucose uptake via Fluorodeoxyglucose-Positron Emission 

Tomography (FDG-PET) [16], decreased extracellular pH via chemical exchange saturation 

transfer (CEST) magnetic resonance imaging (MRI) [17], and increased ratios of lactate:glucose 

in the serum of breast tumors compared to the bodily serum [18]. This increase in fermentative 

glycolysis does not come without consequence. The excess lactate and protons produced as a 

result of high fermentative glycolysis elicit tremendous changes in the tumor, stromal, and 

immune cell populations [19-23].  

 Associations between breast cancer and acidosis first began with anecdotal clinical 

cases of patients who presented with lactic acidosis of the blood [24, 25], with some noting that 

the lactic acidosis was resolved with the use of antineoplastic treatment [26]. It would later come 

to be accepted that the pH within tumors is much lower than that of normal tissue, associated 

with this increase in lactic acid fermentation and poor perfusion [27-30]. Major studies into the 

effects this high concentration of protons may have on tumor phenotype and progression began 

with the demonstration that low pH in the tumor microenvironment contributed to the local 

invasion of the tumor [19]. Since then, there has been interest surrounding how this low pH 

environment may affect the phenotype of tumor cells themselves, or drive evolution of the tumor 

cell population.   

 With the investigation into how low pH may affect tumor cell populations, there also 

exists considerable interest in the targeting of an acidic tumor microenvironment. It is known 

that the acidic environment promotes invasion [19], and that cell populations adapted to survive 

in the acidic environments are pushed toward an aggressive phenotype [31], and a partial 

epithelial to mesenchymal transition (EMT) state [21]. It has also been demonstrated that the 
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acidic environment in cancer is a significant force in the inhibition of immune function caused by 

the tumor microenvironment [32]. With all of this taken into account, there exists considerable 

interest in the targeting of the acidic microenvironment, either by preventing acid production or 

buffering the existing environment [33-35].   

 In this body of work, I set out to make contributions towards answering two questions 

relating to gaps in our understanding of the causes and consequences of acidosis in breast 

cancer. These questions are:  

1. How does the adaptation to an acidic microenvironment alter breast cancer cell 

phenotype?  

2. Can one target fermentative glycolysis in the treatment of breast tumors with the goal of 

controlling their progression?  

By investigating these questions, I hoped to gain a better understanding of how acidosis 

influences breast cancer progression, and how fermentative glycolysis could be targeted for the 

treatment of patients. Current treatment strategies using chemotherapeutic and targeted agents 

provide relief to many patients, while in others they fall short of providing a durable response. 

Alternative view points in the treatment of breast cancer, such as the ones proposed here, may 

be able to provide less morbid treatment options for those who would have been successful with 

current therapies, and also provide an efficacious treatment for those who would have failed.  
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Chapter 2: Metabolic Dynamics in the Breast Tumor Microenvironment 

 The metabolism of tumors is highly dependent on their environmental influences. Cell of 

origin, growth dynamics, heterogeneity, nutrient access, and current metabolic state, all play 

together to influence the metabolism of a tumor. This chapter will lay out the hypothetical factors 

leading to a fermentative phenotype in Breast Cancer and demonstrate how tumor metabolism 

can feedback to further alter metabolism, both transiently and stably.  

PHYSIOLOGY OF THE BREAST TUMOR 

In order to set the stage for the metabolic perturbations observed in breast carcinomas, 

one must first understand the physiology of a breast tumor. Of all observed breast tumors, 95% 

are classified as adenocarcinomas. As defined by the NIH on the cancer.gov website, 

adenocarcinomas are cancers that form from the lining of glandular tissues, which function to 

secrete a variety of fluids necessary for normal bodily function.  

The anatomy of a breast is composed of adipose and glandular tissue, held together by 

connective ligaments. Lobes of the breast are comprised of lobules containing alveoli with 

mammary secretory epithelial cells. Small and large ducts connect the alveoli for each lobe, in 

order to drain the secretions to the areola [36, 37]. These ducts are where the beginnings of 

breast malignancies take place. Epithelial cells line the ducts of the breast. Upon malignant 

transformation, ductal epithelial cells begin to grow into the duct forming a nodule within the 

duct. This nodule will grow into the duct, and likely reach a point at which it grows to the 

capacity of the duct. When confined to the inter-lumen of the duct, these tumors are labelled as 

Ductal Carcinoma in situ (DCIS) (Figure 2.1). Invasion into the area surrounding the duct is 

common, and represents a jump in staging to an invasive ductal carcinoma (IDC) (Figure 2.1). 
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Once at this stage, tumors can be classified as either IDC with metastases, or IDC without 

metastases.  

HOW DOES THE PHYSIOLOGY OF A BREAST TUMOR LEAD TO PERTURBED 

METABOLISM? 

As mentioned previously, growth of a breast tumor happens within the breast duct. Vasculature 

of the duct is localized to the outer region, where the epithelial lining resides. As with most solid 

tumors, breast malignancies grow away from these vascularized regions as they expand into 

the lumen of the duct. Vasculature is responsible for the exchange of new and expended 

nutrients, an essential process for proper cellular function and tissue maintenance. As tumors 

grow and cells are increasingly separated from vascular networks, cells become deprived of 

essential nutrients and are enveloped in their own toxic waste products, relying only on a 

nutrients diffusion distance through the tissue for supply. Cells have mechanisms for sensing 

this lack of vascularity in their local region, and activate pathways to induce the growth of 

vascular network. This attempt to grow the vasculature usually is not sufficient to adequately 

perfuse cells and still results in cells deep in the tumor to be subject to harsh conditions. In order 

for cells to survive this, they must acclimate their metabolic strategies to fit the environment they 

are presented with. Two of the most important nutrients required for cellular metabolism are 

oxygen and glucose. In most normal functioning cells of the body, Glucose is converted into 

Pyruvate via a chain of enzymatic reactions known as Glycolysis. Pyruvate is then converted 

into acetyl-CoA and shuttled in the tricarboxylic acid cycle (TCA), which fuels the electron 

transport chain of the mitochondria. This is where oxygen is reduced, and large sums of 

adenosine triphosphate (ATP) are produced. Alternatively, a process known as fermentative 

glycolysis can take place in which pyruvate is converted into lactate, and lactate is shuttled out 

of the cell. This process is not energetically favorable, but can be done in the absence of 

oxygen. In the absence of glucose, the TCA cycle can be fueled by other methods such as the 
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uptake of glutamine or lactate. In 2004, a landmark paper was published by Robert Gatenby 

and my advisor, Robert Gillies [38], laying out a framework for how cells may adapt to have a 

highly fermentative phenotype. The key principle that causes this adaptation in cancer comes 

down to the diffusion limit of the nutrients. In tissues, oxygen diffuses a much shorter distance 

than does glucose. What this means for a tumor, is that there exists a population of cells within 

the tumor that is a distance away from vasculature that does not allow for adequate enough 

oxygenation to carry out oxidative phosphorylation, but does have concentrations of glucose 

sufficient to carry out glycolysis. Cells in this “zone” if you will, are pushed toward a glycolytic 

phenotype via hypoxia signaling mechanisms. Further discussion on how signaling mechanisms 

may regulate this process will take place in later sections. It is hypothesized that populations 

subjected to these environments will evolve to be better suited to the highly glycolytic dependent 

environment, or may acclimated via epigenetic mechanisms. 

HOW DOES PERTURBED METABOLISM ALTER BREAST TUMOR PHENOTYPE?  

This section comes from work previously published by myself, Pawel Swietach, Robert J. 

Gillies, and Mehdi Damaghi [39]. I was the major contributor to the writing of this article and 

aided in concept development.  

Molecular mechanisms of microenvironmental sensing 

Cancer evolution operates through selection, which requires a degree of phenotypic diversity to 

present a range of possible responses to microenvironmental selection forces, some of which 

confer selective advantage [40, 41]. Tumors can be described as complete ecosystems, 

containing cancer cells, stromal cells, vasculature, extracellular matrix, and the chemical milieu 

consisting of variables such as pH and oxygen tension [42-44].  During tumorigenesis - and 

similarly in response to therapy - the tumor ecosystem shows considerable plasticity because 

cancer cells shape their microenvironment, to which subsequent generations of them must 
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adapt to thrive, and these adaptations, in turn, fine-tune the microenvironment [45]. During the 

various stages of tumor progression, cells can be exposed to highly variable chemical 

stimulations, largely attributed to variable blood perfusion; for example, oxygen deprivation 

(hypoxia), nutrient deprivation, metabolic end-product build-up, and increased acidity. Overall, 

these stimuli would be considered, by normal standards, to be survivable to most cells but 

exerts some cost on cells fitness, and it is therefore axiomatic that cancer cells must adapt to 

these conditions if they are to thrive. Although the stimuli are survivable, they still impose stress 

on the cells which changes their fitness, requiring acquisition of a novel homeostatic balance 

that costs more energy for cells and can be lethal for cells in competition with other cells.  

Hypoxia is one of the main environmental factors a cancer cell must face in order to 

survive, thrive, and progress. Hypoxia imposes a metabolic stress on the cell, hindering its 

ability to carry out aerobic respiration. Therefore, the cell must be able to adapt to a hypoxic 

environment in order to survive. The cellular response to hypoxia is robust, and exerts most of 

its force via the transcription factors HIF-1α and HIF-2α.  Another HIF family protein, HIF-3α, 

functions to repress the responses directed by HIF-1α and HIF-2α. All three of these proteins 

carry out their function via dimerization with constitutively expressed HIFβ proteins in the 

nucleus which allows them to directly modulate transcription of proteins involved in the hypoxia 

response [46, 47], or in the case of HIF-3α repress the transcriptional response.  HIF-1α is a 

constitutively expressed protein, whose activity is regulated by the hydroxylation of conserved 

proline residues. In microenvironments of high oxygen tension (>5%), the proline residues are 

hydroxylated, tagging the protein for degradation by E3 ubiquitin ligases [48]. When oxygen 

concentrations are below the tolerable threshold for a given cell type, HIF-1α is not degraded, 

and increases in concentration to allow HIF-1α to induce transcription of its client genes [49].  

Nutrient deprivation is another major stressor within the tumor microenvironment. When 

the cell experiences a critical reduction in a particular nutrient, it must swiftly adjust in order to 
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maintain productivity in the terms of metabolism, proliferation, migration, or other processes 

essential to evolutionary success and survival. Two main nutrient sensing proteins implicated in 

cancer are AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin 

(mTOR) [50, 51]. These proteins are capable of sensing the current energy status of the cell 

and nutrient availability, respectively.  

The metabolic pathway directed by AMPK is highly context-specific; depending on the 

nutrient status of the cell. AMPK is responsible for the cellular response to glucose deprivation 

and acts as a metabolic switch from a highly glycolytic state to an oxidative state depending on 

the availability of glucose. This is particularly important in the context of cancer and the highly 

plastic nature of cancer metabolism. AMPK is activated by 5’-AMP, which indicates that the cell 

is not regenerating ATP at a fast-enough rate to meet demand. This induces the uptake of 

glucose and the induction of glycolysis to replenish the cellular ATP [50]. The induction of 

glycolysis via-a-vis respiration is likely due to the promptness with which glycolytic activation 

can occur [52].   

mTOR is present in the form of two different complexes, mTORC1 and mTORC2. These 

two complexes participate in associated, but distinct signaling pathways in nutrient sensing. 

mTORC1 becomes activated in response to various growth factors and amino acids that 

promote cell growth and proliferation. When inactive, mTORC1 represses growth and induces 

an autophagic response. mTORC2 is a sensor of glucose but also plays a role in amino acid 

signaling. mTORC2 is activated by acetyl-coenzyme A (Ac-CoA), which is produced in the 

cytoplasm via citrate lyase, when glycolytic flux is abundant. The result of mTORC2 activation is 

increased cell proliferation, in response to the increased glucose metabolism. mTORC2 has 

also been implicated in amino acid sensing by having the ability to suppress the function of the 

glutamine-cysteine transporter, system Xc transporter-related protein [51].  
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Aberrant perfusion in the tumor microenvironment allows a significant build-up of 

metabolites in the tumor interstitial fluid. The main metabolite that is commonly accumulated in 

the tumor interstitial fluid is lactic acid, which is associated with a decrease in pH. A decrease in 

extracellular and intracellular pH can dramatically modulate the activities of enzymes, some of 

which are more sensitive than others, depending on how significant the change in pH is and the 

isoelectric point of the enzymes optimal activity [53]. These alterations in enzyme activity are 

pleiotropic and leads to metabolic reprogramming.  Lactate in the tumor microenvironment is a 

by-product of increased glucose fermentation, which occurs even in the presence of oxygen, 

known as aerobic glycolysis or the Warburg Effect. Once produced, lactate is shuttled out of the 

cell, stoichiometrically with a proton, by monocarboxylate transporters (MCTs) 1-4. Sensing of 

extracellular pH is accomplished through a variety of plasma membrane associated proteins 

including two major classes of acid-sensing receptors:  i) G-protein coupled receptors (GPCR) 

such as Ovarian cancer G protein-coupled receptor 1 (OGR1), G-protein coupled receptor 4 

(GPR4), T-cell death-associated gene 8 (TDAG8), and ii) Acid-sensitive ion channels (ASICs) 

which include 7 proteins from 4 genes: 1a/b,2a/b,3,4,5, and Ca2+ channel that includes transient 

receptor protein channel vanilloid subfamily 1 and 2 (TRPV1 and TRPV2) [54]. Lactate can also 

be sensed and regulate cellular functions by activating the G protein-coupled receptors 

HCA1/GPR81, HCA2/GPR109A, and HCA3/GPR109B. These hydroxy-carboxylic acids (HCA) 

receptors control physiological homeostasis under changing metabolic and dietary conditions 

[55]. 

Cancer cells commonly overexpress many of the aforementioned acid sensors, and this 

can be correlated to tumor progression and poor outcome [56, 57]. Therefore, investigating 

these sensors as a factor in malignancy may identify relevant prognostic biomarkers or may 

reveal new therapeutic vulnerabilities. The sensors can be connected to pathways to activate 

transcription factors or overexpress other genes and proteins (Figure 2.2). However, 
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considering the ever-changing state of the microenvironment, we propose that epigenetic 

regulation may be a more effective factor in stabilization of emerging phenotypes in cancer 

cells. Adaptation to an acid-microenvironment has been shown to alter cell state by pushing 

cells into a partial EMT phenotype [58]; this may be a manifestation of these acid sensors 

inducing a stable epigenetic change. 

Heritable epigenetic modifications acquired through microenvironmental sensing 

One mechanism enabling cancer cells to adapt is through changes to gene expression 

via epigenetic regulation. Some modalities of epigenetic regulation are transient (e.g. histone 

acetylation) and are imposed to help cancer cells survive acute disruptions in their 

microenvironmental homeostasis. In contrast, other epigenetic mechanisms are more persistent 

(e.g. DNA methylation) and have the ability to be passed down through generations to endow 

further generations with memory on how to survive in the tumoral microenvironment.  

The term epigenetics was first created by CH Waddington who described it as “the 

causal interactions between genes and their products, which bring the phenotype into being”. 

While a commonly agreed upon definition is hard to find today, the term epigenetics in the 

modern era is commonly described as a permanent change in the way genes are expressed. 

Types of epigenetic regulation include histone modifications, DNA Methylation, and non-coding 

RNA [59], which can all impact one another to create a complex regulatory dynamic. A major 

question is: “How do the external factors of the tumoral microenvironment play into altering this 

complex dynamic”?  

It is commonly known that the epigenetic signatures of cancer cells are different 

compared to their untransformed counterparts [60-64]. Many of these epigenetic alterations 

exert their function by altering the metabolism of cancer cells [65], and are acquired by signaling 

cascades initiated by sensing of the extracellular environment. Some of the signaling cascades 
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that can lead to changes of epigenetic signatures were implied in the previous section and the 

specific alterations they are involved in will be discussed herein.  

In many solid tumors, intra-ductal hyperplasia leads to significant alterations in the 

physical microenvironment, especially in peri-luminal cells that are far (>160 microns) from their 

blood supplies.  Importantly, the diffusion distance of oxygen in tissues is 100-200 microns [66], 

meaning that the periluminal cells of DCIS can be profoundly hypoxic.  The depth and duration of 

hypoxia is dependent on the blood flow of the surrounding stroma. Hypoxia eventually selects for 

metabolic reprogramming, leading to acidosis, as well as exacerbating nutrient deprivation.  Over 

many years in this environment, these forces (hypoxia, acidity, nutrient deprivation) select for cells 

with more highly adaptable, aggressive, de-differentiated phenotypes [38, 45].  The resulting 

acidosis leads to genome instability, which could increase the rate of cancer evolution [67].  The 

source of cytoplasmic (and nuclear) acidosis is lactate accumulation as a byproduct of glycolysis. 

Lactate has been shown to have a variety of effects on the epigenetic mechanisms of the cell, 

some of which are confounding. Direct inhibition of histone deacetylases (HDACs) by lactate has 

been shown in separate studies [68, 69]; while others have reported multiple times on the increase 

in activity of the Sirtuin family of histone deacetylases upon exposure of cells to a chronically 

acidic extracellular environment [70, 71]. These examples represent combined sensing and 

epigenetic effector mechanisms that act directly on altering the epigenetic status of the cell.  

The oxygen sensing protein HIF-1α can regulate epigenetics in a variety of ways. Upon 

activation, HIF-1α leads to downstream signaling cascades important for the survival of cells in 

low oxygen environments. The ultimate effect of some of these signaling cascades is the 

epigenetic alteration of gene regulation (Figure 2.2). Two epigenetic mechanisms influenced by 

HIF-1α are histone methylation and DNA methylation (Figure 2.2). Unlike other epigenetic 

mechanisms, histone methylation can act in both activating and repressing fashions depending 

on the specific location of the covalent modification. The histone demethylase JMJD2B is 
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activated by HIF-1α (Figure 2.2), and is specifically targeted to H3K9me2/3 to demethylate the 

mark to a monomethylated state [72, 73]. The expression of ten-eleven translocation proteins 

1/3 (TET1/3) is also upregulated upon stabilization of HIF-1α. TET1/3 are 5-methylcytosine 

(5mC) oxidases, which convert 5mC into either 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), or 5-carboxylcytosine (5caC) via sequential reactions [74]. The result of 

these reactions is the deactivation of the methylation mark and the subsequent reactivation of 

the sequence being repressed by the methylation. This has been validated in neuroblastoma 

where it was shown that HIF-1α can induce HIF-1α/hypoxia specific DNA methylation signatures 

[75].The fact that HIF-1α activates DNA methylation supports the hypothesis of inheritable 

epigenetic changes to next generation that can be tracked in cancer cells. Contrary to the 

upregulation of TET by hypoxia-induced transcriptional programs, TET proteins have been 

shown to have their activity reduced directly by low oxygen availability in a tumor setting. TET 

activity is lost in vitro when exposed to hypoxic conditions, possibly via hypermethylation of 

tumor suppressor promoters in hypoxic regions of tumor samples [76]. The opposing forces of 

the transcriptional and functional regulation of TET proteins may demonstrate a physiological 

feedback system for regulating the epigenetic response to oxygen deprivation in order to 

attenuate the response (Figure 2.2). 

The sensing of nutrients by a cell is vitally important to its survival and can have long 

term effects on the downstream lineage of that cell via epigenetic modifications. Having this 

feed forward system of epigenetic regulation directed by nutrient signaling allows for increased 

fitness for subsequent generations. As mentioned previously, cellular nutrient sensing is mainly 

achieved through 3 essential proteins and protein complexes: AMPK, mTORC1, and mTORC2 

(Figure 2.2). AMPK is activated in response to cellular metabolic stress, and modulates gene 

transcription epigenetically in order to respond to this stress. Unlike the mTORC1/2 complexes, 

AMPK is able to modulate transcription directly by phosphorylation of Ser36 on histone H2B [77]. 
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This phosphorylation mark directly promotes the transcription of response genes needed to 

handle metabolic stress. Other papers report the direct phosphorylation of Ser36 on H2B by 

S6K1 [78], which is also a player in the LKB1-AMPK-mTORC1 signaling axis, with S6K1 being 

phosphorylated by mTORC1. mTORC1 is another player in the epigenetic response to nutrient 

sensing. As mentioned previously, mTORC1 is capable of sensing various growth factors and 

amino acids. A downstream target of mTORC1 nutrient sensing is SIRT4, which is repressed in 

response to mTORC1 activation [79]. SIRT4 is a lysine deacylase (Figure 2.3) [80], that has the 

ability to inhibit glutamine metabolism by inhibiting glutamate dehydrogenase (GDH). This 

inhibition of SIRT4 is achieved at the transcriptional level by mTORC1 stabilizing the CREB2-

βTrCp complex, preventing CREB2 from activating transcription of SIRT4 [79]. mTORC2 exerts 

its epigenetic function by activation of the AKT and SGK1 proteins. The effect of these proteins 

on epigenetic regulation is the inhibition of KMT2D, which is a histone methyltransferase 

specifically targeting H3K4 (Figure 2.3) [81]. Inhibition of KMT2D has been shown to have anti-

tumor effects in some cancers by not allowing the FOXA1-PBX-ER complex to access the DNA 

for transcription [82]. 

While the aforementioned mechanisms involve the sensing of nutrients to transduce 

downstream epigenetic changes, alterations in acetate level can directly influence the 

epigenetic status of the cell. Free Acetyl-CoA in the cell nucleus is produced by Acetyl-CoA 

synthetase (ACSS2), which catalyzes the conversion from Acetate, and by ATP-citrate lyase 

(ACLY) which catalyzes the conversion from citrate. The levels of free Acetyl-CoA directly 

influence the global acetylation status of histones [83], and henceforth have the ability to 

regulate epigenetics without the direct manipulation of an enzyme intermediate. While there is 

no direct sensing mechanism, this level of regulation could be seen as a sensor of the glycolytic 

state of the cell considering it has been shown that decreasing the amount of glucose available 

to a cell reduces the Acetyl-CoA abundance and lowers global histone acetylation [84].  
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A recently described mechanism of both environmental sensing and epigenetic 

modification is that of histone lactylation. In 2019, Zhang et al. described for the first time the 

modification of histones by lactate [85]. As is commonly known, lactate is built-up as a 

byproduct of glycolysis. This epigenetic modification may provide a direct mechanism for the 

regulation of gene expression in response to fermentative glycolytic activity of the cell.  

Effect of heritable epigenetic modifications on tumor metabolism 

Many epigenetic alterations that are acquired throughout tumor progression alter the 

metabolism of the tumor’s cellular population. While the previous section covered specific 

epigenetic alterations that occur in response to the metabolic microenvironment, this section will 

describe the role of epigenetic modifications in altering cancer cell metabolism.  

Lactate itself has the ability to alter the activity of epigenetic modifier proteins. The 

inhibition of HDAC’s by lactate demonstrated in previous studies [68, 69] has yet to be 

phenotypically implicated in the alteration of metabolic processes; yet it is likely this lactate-

mediated mechanism will play a role in altering metabolism. The activation of SIRT1 by 

extracellular acidosis, which is a consequence of acid-inhibition of glycolysis and the 

subsequent build-up of NAD+, has been shown to alter cellular metabolism through histone 

deacetylation leading to increased transcription of HIF-2α. This SIRT1/HIF-2α axis promotes the 

oxidative metabolism of glutamine, and suppresses the effects of HIF-1α, inhibiting hypoxia 

mediated induction of glycolysis [70]. Corbet et al. in a later study showed that SIRT1 as well as 

SIRT6 are essential for histone deacetylation and the induction of fatty acid metabolism when 

cells are chronically exposed to an acidic extracellular environment [71]. From a cell survival 

standpoint, this switch to other methods of energy metabolism when lactate has accumulated is 

intuitive, and has relevancy in the context of cancer progression that is discussed later.  
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In response to hypoxia, HIF-1α  activation leads to the induction of JMJD2B activity. 

JMJD2B has been shown to be upregulated in ER-positive breast cancer [86] and bladder 

cancer [87], and its upregulation has been directly linked to induction by HIF-1α  in colorectal 

cancer [88] and gastric cancer [89]. This activation of JMJD2B directly drives the demethylation 

of H3K9me2/3 to its monomethylated state (Figure 2.3). JMJD2B has been shown to play a role 

in altering the expression of many cancer associated genes including cyclin-dependent kinase 6 

(CDK6) [87], and carbonic anhydrase 9 (CA9) [88], which can directly affect the transmembrane 

pH gradient. Also induced by hypoxia and HIF-1α  activation are the expression of TET proteins 

1 and 3 [74]. As mentioned previously, TET proteins are 5mC oxidases that allow for the 

expression of genes repressed by DNA methylation. Induction of TET in neuroblastoma has 

been shown to increase transcription of hypoxia response gene [90], and TET1 has been shown 

to be overexpressed in triple negative breast cancer (TNBC) where it is associated with 

hypomethylation (Figure 2.3) [91]. Hypomethylation increases the expression of associated 

genes such as Hexokinase II (HK2) in liver cancer [92] and glioblastoma multiforme [93]. 

Hexokinase II catalyzes the conversion of glucose to glucose-6-phosphate, an essential step in 

glycolysis. While CA9 and HK2 are both direct transcriptional targets of the HIF-1α mediated 

hypoxic response, this epigenetic regulation is important because it imposes the upregulation of 

these proteins over longer time scales and allows for the maintenance of the metabolic 

phenotype independently of oxygen status.  

Epigenetic marks induced by nutrient sensing proteins and complexes have the ability to 

greatly alter cellular metabolism, making a useful feed-forward mechanism for acclimation and 

adaptation to the current metabolic microenvironment. The phosphorylation of Ser36 on Histone 

2B is a significant epigenetic mark made by two proteins involved in nutrient sensing: AMPK 

and S6K1 [77, 78]. It has been shown that phosphorylation of Ser36 on Histone 2B is 

significantly increased upon treatment of cells with 2-Deoxy Glucose [77], which mimics a 
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glucose deprived environment. The resulting effect on the cellular transcription from 

phosphorylation of Ser36 on Histone 2B by AMPK is the recruitment of EZH2 [78]. EZH2 is a 

histone methyltransferase that trimethylates Lysine 27 on histone 3 when recruited. It has been 

shown in Drosophila that trimethylation of Lysine 27 on histone 3 reduces the glycolytic 

tendencies of the cell [94]. Considering the presence of this mark in glucose-deprived cellular 

states, it would intuitively make sense that the presence of this mark would decrease the 

glycolytic capacity of the cell. 

The suppression of SIRT4 by mTORC1 has profound effects on the metabolism of 

cancer cells, specifically inhibiting glutamine metabolism through inhibition of GDH. In colorectal 

cancer, decreased SIRT4 expression has been correlated with progression and increased 

invasive potential of cancer cells [95], and in both colorectal and gastric cancers lower SIRT4 

expression is associated with poor prognosis [95, 96]. All in all, this leads to the conclusion that 

when in the presence of sufficient amino acids and growth factors, the activation of mTORC1 

will lead to the inhibition of SIRT4 and the subsequent reactivation of glutamine metabolism 

which can promote tumor growth (Figure 2.3).  

 mTORC2 has the ability to modulate activity of KMT2D. KMT2D is inhibited downstream 

during mTORC2 activation, which in response, inhibits the access of the FOXA1-PBX1-ER 

complex from binding the DNA. Prevention of this complex from binding the DNA has been 

shown to reduce the expression of key proteins including: GREB1, SERPINA1, cFOS, and MYC 

[97]. Of these proteins, MYC has been shown to have the most substantial effects on 

reprogramming cancer metabolism in a type-specific manner. A comprehensive list of metabolic 

alterations in specific cancer types driven by MYC has recently been reviewed [98]. The effect 

MYC has on glycolysis is highly variable depending on the cancer type, with a MYC-associated 

increase in non-small cell lung cancer and hepatocellular carcinoma, and a MYC associated 

decrease in renal cell carcinoma and prostatic intraepithelial neoplasia. MYC’s effect on 
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glutaminolysis was cohesive in the various cancer types, with an associated increase 

demonstrated in hepatocellular carcinoma, pancreatic ductal adenocarcinoma, and renal cell 

carcinoma.  

In addition to the previously mentioned alterations in gene expression caused by 

stimulus-induced epigenetic modifications, epigenetic upregulation of MCT4 via 

hypomethylation of the SLC16A3 promoter has been shown in renal cancers [99]. Although no 

specific mechanism can be tied to this alteration, this increase in MCT4 expression will have 

profound consequences on the long-term progression and evolution of the tumor. 

Consequences of epigenetically altered metabolism on tumor progression 

As described previously, a resulting consequence of oxygen deprivation and stabilization 

of HIF-1α is the induction of TET1/3 and hypomethylation of the genome. Hypomethylation has 

been shown to upregulate the expression of Hexokinase 2 [92, 93], which is associated with an 

increase in glycolysis (Figure 2.4). Increased glycolysis will increase acidosis in the tumor 

microenvironment that can induce extracellular matrix remodeling [54]. Thus increased 

glycolysis and its sequelae are barriers that cancer cells must overcome in order to meet the 

energy demands of rapid proliferation and to survive and thrive in a more hostile environment. 

Altered glycolysis can also lead to Warburg phenotype leading to even more acidic 

microenvironment and more altered genome and epigenome alteration [38, 100].  

Despite the differing sensing mechanisms of the mTORC1/mTORC2 complexes and 

SIRT1, all mechanisms converge on a single metabolic alteration caused by epigenetic 

modification: the increase of glutamine metabolism. This may pose the opportunity to target 

glutamine metabolism as a cancer therapeutic, an idea that has drawn enough attention to 

warrant various reviews on that subject alone  [101, 102]. Although this may seem like a rational 

therapeutic target, cautionary narratives have been proposed as to the possible outcome of 
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creating a resistant cellular population with a heightened metabolic capacity [103]. While 

glutamine metabolism is non-essential in a normally proliferating cell, under periods of rapid 

proliferation, like tumor growth, glutaminolysis is an essential process [104]. This phenotype is 

selected for due to the high demand for metabolic building blocks produced from the TCA cycle. 

In the TCA cycle alpha-ketoglutarate can be carboxylated to citrate, which, if in abundance, is 

translocated to the cytoplasm where it is used for fatty acid synthesis. The end product of 

glutaminolysis is alpha-ketoglutarate, which is shunted into the TCA cycle to accelerate the 

process [105]. Supporting the TCA cycle with the necessary building blocks will give more 

chance to glucose to be turned into lactate in glycolysis and augment a Warburg phenotype. 

Glutamine-fed TCA cycle can also give more freedom to cancer cells to use glycolysis for their 

fluctuating ATP demand as a quick local source of energy for cancer cells [52]. 

HETEROGENEITY OF METABOLIC PHENOTYPES IN BREAST CANCER 

This section comes from a soon to be published review paper written by, myself, Bruna 

Victorasso Jardim-Perassi, Enakshi Sunassee, and Nimmi Ramanujam. I was involved in 

developing the idea for the paper, I directed all writing for the manuscript, and I contributed to 

writing the manuscript. 

While fermentative glycolysis is the main highway for the carbon metabolism in a breast 

tumor, the spatial heterogeneity within a breast tumor could lead to a variety of metabolic 

phenotypes, and it is well characterized that TNBC tumors are phenotypically diverse with 

respect to their markers of metabolism [106]. In a previous review we outlined how this process 

may be carried out through feedback between the environment and epigenetic regulation [39]. 

Access to vasculature is one of the main determinants for how a cell will decide to carry out its 

metabolic processes. Vasculature allows for an exchange of metabolic resources and products 

between the cancer cell population and the body at large [38]. Deprived of this exchange, cells 

deep in the tumoral lumen must adapt strategies to survive. There are two possible strategies 
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for how a cell might go about surviving in this environment. Strategy one requires that a cell 

become highly efficient in scavenging glucose from the microenvironment and become resistant 

to the toxic inhibitory effects of the by-products of glycolytic metabolism. This strategy is 

exemplified by the triple-negative breast cancer (TNBC) cell line, MDA-MB-231, with its lowly 

oxidative and highly glycolytic phenotype. It is also important to note, that in order for this 

strategy to be successful there must be a non-zero amount of glucose present. Strategy two is 

one is which the cells take a back-seat, and rely on fuel stores within the cell, entering into a 

quiescent state [107]. In an environment of high cell turnover, the former, more metabolic 

strategy may prevail in producing more of a cells lineage. In the case of ample vasculature 

access, it may be the case that a more oxidative metabolic phenotype is favored over a 

glycolytic phenotype due to the increased access to oxygen. In reality, the dynamic nature of the 

tumor microenvironment places cells in both perfused, oxygenated environments as well as, 

desolate nutrient-deprived environments. The ideal solution for this scenario is a plastic 

metabolic phenotype that allows cells to utilize both glycolytic and oxidative avenues of energy 

production. Work done in yeast suggests this “best of both worlds” phenotype may not exist, 

due to what is known in evolution as a pareto front. A pareto front is the dividing line of a 

restricted trait space the likes of which an organism cannot access. It was demonstrated in 

yeast, that the maximal of both fermentative and respiratory phenotypes was inaccessible [108]. 
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FIGURES  

 

Figure 2.1. Phases of Breast Cancer Progression.  

 

Figure 2.2. Mechanisms of environmental sensing and their effects on epigenetic modifiers. 
This figure depicts the various avenues by which cells are able to detect perturbations in the 
environment, and the downstream effects of this sensing on epigenetic modifiers. Oxygen 
sensing mechanisms trigger dimerization of HIF-1α and HIF-1β proteins to affect epigenetic 
modifiers; oxygen also direct modulates activity of epigenetic modifiers. Nutrient sensing can 
initiate a signaling cascade, largely mediated by the mTORC complexes and AMPK protein, 
with the ability to alter the activity of epigenetic modifying proteins. Acid sensing proteins located 



25 
 

on the outer membrane of the cell are able to sense the extracellular pH, but have no clear 
mechanism for altering the activity of epigenetic modifiers. 

 

Figure 2.3. Epigenetic alterations mediated by environmentally induced epigenetic modifiers. 
The epigenetic modifiers altered by the sensing of the cellular environment go on to carry out a 
variety of modifications to the epigenome. DNA methylation, and histone methylation and 
acetylation are the main downstream targets of the environmental sensing. Phosphorylation of 
histones by AMPK is also carried out in response to environmental sensing. 
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Figure 2.4. The effect of environmentally induced epigenetic modifications on tumor cell 
expression and metabolism. The epigenetic modifications made by the proteins influenced by 
the environmental sensing mechanisms go on to alter the metabolic state of the cell. These 
modifications can alter the cells ability to metabolize glutamine and carry out glycolysis, as well 
as influence the transcriptional status of tumor suppressor genes. 
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Chapter 3: Breast cancer adaptation to acidic microenvironment induces a partial 

epithelial to mesenchymal transition state 

 This work is adapted from the previous publication listed below. Mehdi Sadeghi, from 

Semnan University in Iran, completed and supervised the bioinformatics analysis in this work. 

All aspects of the biological study were completed or supervised by our team. We published our 

findings in Frontiers in Oncology [58]. 

INTRODUCTION 

The principal driver of evolutionary processes is the concept of survival of the fittest. 

Those given populations that are the most well adapted to survive in an environment are the 

ones that will persist. In higher order organisms, the surviving populations are those that have a 

set of static traits that make them successful in a given environment. At a cellular selection 

level, organisms have the ability to acclimate to a given environment and alter their phenotype 

to be more successful in surviving. This ability to alter phenotype in order to acclimate to a given 

environment is particularly important in the context of cancer cell survival. In order for a 

cancerous cell population to persist, it must be able to adapt and evolve to maintain its' fitness 

within a given tumoral environment [109-111]. Those cellular populations with the ability to more 

rapidly and efficiently adapt to the environment will have an advantage over the other cell 

populations when facing the challenges of a new or changing environment [112]. Epithelial to 

mesenchymal transition (EMT) is one of the phenotypic switches that promote cancer 

progression, invasion and metastasis. EMT tests a cancer cells ability to efficiently change 

cellular states in response to changing conditions, also denoted as cellular plasticity, which also 

often referred to in the cancer stem cell model [113, 114]. Although denoted as a transition, It 
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has been recently observed that the EMT process is non-binary and occurs on a spectrum of 

transition states that can have the characteristics of both epithelial and mesenchymal 

phenotypes [115, 116]. The transition to one of the intermediate states between epithelial and 

mesenchymal phenotype has been denoted partial EMT (pEMT), with cells expressing both 

markers of epithelial and mesenchymal cell status. pEMT states compared to complete EMT 

carry different migratory patterns during cancer metastasis [117, 118], and demonstrate the 

elevated plasticity of their epithelial progenitors [116]. Another cause of EMT can be functional 

heterogeneity of cancer cells that is the result of genetic and epigenetic makeup as well as their 

interactions with the microenvironment. It has been recently shown that phenotypic 

heterogeneity is a dynamic reversible state of highly plastic cancer cells and their response to 

microenvironmental changes in GBM [119]. Lately, there have been proposals for a strong 

connection between tumor plasticity and recreating intra-tumoral phenotypic heterogeneity [120] 

and also emphasizing the role of microenvironment in shaping spatial and temporal 

heterogeneity [121]. It looks like the relationship between tumor cell plasticity, and intra-tumoral 

heterogeneity with emerging new phenotypes such as EMT or pEMT in everchanging cancer 

microenvironments is getting more attention and will be new area of research. It has been 

shown that growth factors, such as epidermal growth factor (EGF), transforming growth factor-β 

(TGF-β), and basic fibroblast growth factor (bFGF/FGF2) are also able to induce EMT [122, 

123]. It has also recently reported that tumor microenvironment conditions such as hypoxia and 

acidosis can induce EMT [124, 125]. 

Adenocarcinomas initiate and evolve within the hostile microenvironment of avascular 

ducts, which are characterized by acidosis, hypoxia, reactive oxygen species (ROS), and 

nutrient deprivation [42, 126]. In particular, the acidic microenvironment of tumors strongly 

influences cancer progression and evolution. We have proposed that chronic acidosis induces 

genomic instability and selects for emergence of aggressive clones, leading to genomic diversity 
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and increased tumor heterogeneity [127-131], a proximal cause of malignancy and resistance 

[132]. Specifically, the acidified habitat imparts a Darwinian selection pressure that favors cells 

that adapt mechanisms to resist acid-mediated cell death. Further, the acidic microenvironment 

is also manifested in locally invasive cancers where it confers cancer cells a selective 

advantage over the stromal cells, leading them to invade to surrounding stroma. Indeed, an 

acidic microenvironment stimulates invasion and metastasis and also promotes remodeling of 

the extracellular matrix (ECM) [19, 20, 45, 54, 133]. Further, acidosis promotes angiogenesis via 

the release of VEGF [134](31) and impairs immune surveillance [135, 136]. Acid adaptation also 

pushes cancer cells toward a more aggressive phenotype through lysosomal redistribution [137] 

and plays a major role in subpopulation formation and evolution of solid tumors. 

Integrative analysis has received a lot of attention lately in biology and cancer biology 

specifically, due to its nature of inter-validating data in different levels of biology such as 

genome, transcriptome, proteome, and metabolome [138]. Different data integration approaches 

can help to combine various high throughput omics data to construct an integrative regulatory 

network. These networks can help to understand the molecular basis of carcinogenesis and 

provide a powerful framework for exploring new cancer biomarkers [139, 140]. With the 

advancements in network inference and construction methods, network analysis, and 

interpretation approaches it is feasible now to explore authentic and accurate molecular 

signatures. Another advantage of such analysis is discovery of groups of co-regulated 

molecules as a sub-network biomarker for treatment, diagnosis or prognosis applications. 

Expression profiling is a major key to unraveling gene expression patterns and the 

transcriptome. RNA sequencing is a next-generation sequencing (NGS) technology that 

sequences cDNA in order to provide accurate measurement of transcripts levels to define 

biological networks [141]. Networks are the language of complex systems like biological 

systems. Biological networks are used widely to model biological interactions at the molecular 
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level to understand biological processes particularly in the case of cancer [142]. To assess 

biological networks different techniques have been developed; centrality analysis is one of them 

[143, 144]. Centrality analysis ranks the nodes (genes in gene regulatory networks) based on 

their significance. In centrality analysis, adding topological parameters to biological data leads to 

sufficiently informative results that have been shown to be effective in exploring key signature 

molecules in biological processes [145]. Such biological network analysis has been used in 

cancer biomarker discovery [146]. 

Here in, we studied the effect of acid adaptation on early stage breast cancer evolution 

using the MCF7 cancer cell line. We studied EMT phenotypic switches as regulators of acid 

adaptation using RNA sequencing data and gene regulatory network analysis and by integrating 

the results to SILAC proteomics data. For that reason, we compared acid-adapted MCF7 breast 

cancer cell line RNA profile to parental MCF7 cells. The differentially expressed genes in the 

acid-adapted cells were used to construct a gene regulatory network. This network was 

implemented to explore sub-network biomarkers related to EMT by a set of robust criteria. We 

then compared our findings with the SILAC proteomics results and found S100 family proteins 

such as S100A6 and S100B are abundant in both sets of omics data. I validated both S100B 

from RNA sequencing and S100A6 from proteomics data, by Immunocytochemistry (ICC). I 

furthered our validation using IHC of breast cancer patient TMAs with 160 biopsy cores. S100A6 

expression was compared to LAMP2b as a biomarker of acidosis in solid tumors, and each 

core's LAMP2b expression was co-registered with S100A6 expression using Definiens tissue 

studio software analysis. The TMA co-registration analysis showed correlation of S100A6 with 

LAMP2b expression the most in early breast cancer stage, ductal carcinoma in situ, DCIS. 

Survival analysis of patients with different expression of S100A6 revealed correlation of high 

S100A6 expression with worse outcome in survival of breast cancer patients. When taken in 

total, I conclude that amongst many paths of EMT, S100 proteins may play critical roles in acid-
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induced EMT that can be responsible for cancer progression and survival of cancer cells in their 

continuously changing microenvironments. 

RESULTS 

RNA sequencing of acid-adapted and non-adapted MCF7 cells unravels the EMT mechanism of 

breast cancer cells 

In order to study the effects of acidosis on EMT of breast cancer cells at early stages 

such as ductal carcinoma in situ (DCIS) I first probed the effect of chronic acid adaptation on 

EMT status of MCF7 breast cancer cell line using quantitative reverse transcription-polymerase 

chain reaction (qRT-PCR) (Figure 3.1A) and Immunofluorescent (IF) (Figure 3.1B) techniques. 

Acid adaptation showed some of the epithelial to mesenchymal phenotypes such as high 

expression of Vimentin or loss of membrane β-catenin and ZO-1 and didn't show some other's 

such as loss of E-Cadherins (Figures 3.1A,B). So, I concluded acid adaptation is a path to 

complete EMT and the status observed can be explained as partial EMT induced by acid 

adaptation that can be completed by further adaptation to acid or other microenvironmental 

conditions (Figures 3.1A,B). The partial EMT is reported in other publications and referred as a 

measure of plasticity [116, 118]. Then we carried out sequencing of RNA on a paired sample of 

MCF7 cells and its acid-adapted counterpart. MCF7 cells are ER, PR, and HER2 positive with 

many phenotypes of early neoplastic cells such as slow metabolism, and low rate of glycolysis 

and Warburg phenotype that makes them a proper model of studying acidosis at early stages of 

breast cancer [20, 53]. They are also tumorigenic but not metastatic i.e., injection of MCF7 into 

immunodeficient mice will result in tumor growth but not metastasis. For RNA extraction we 

used acid-adapted and non-adapted MCF7 (parental) at the same passage number with similar 

growth rate at the time of experiment. Our collaborators identified 1,928 differentially expressed 

genes in acid-adapted MCF7 cells compared to non-adapted MCF7 (Supplementary Table 1). 

Using STRING database, a regulatory interaction network based on experimentally validated 
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interactions was plotted. The constructed network was replotted in Cytoscape software for 

better visualization (Figure 3.2). Then we searched for EMT related markers in the RNA 

sequencing data and found that acid adapted cells show some of epithelial markers and some 

of the mesenchymal markers validating the partial EMT statues of acid adapted cells (Figure 

3.1C). 

 To obtain an interaction network, an effort to unravel the regulatory core related to EMT 

under the influence of acidosis was made through identifying and ranking 3-node and 3-edge 

motifs (Figure 3.3A). To this end, n = 3,320 three member motifs were identified in the network 

using Cytoscape NetMatchStar plugin. In order to take the significance of motifs in cellular EMT 

into account, GOBO terms related to EMT were explored. Then for motif ranking scheme a 

factor was considered for each motif based on the membership of its genes in these terms. In 

order to place more emphasis on EMT Cytoscape GPEC plugin was used for gene prioritization 

based on explored GOBP terms. It works based on a random walk with restart algorithm. GPEC 

helps to rank genes based on their association with specific diseases or biological pathways 

(EMT in our case) The obtained scores were considered as another weight in scoring function 

[147]. The log fold change, node degree and betweenness centrality were used in the scoring 

function as well. Using these factors in the scoring function the explored motifs were prioritized 

and ranked. The top 10 ranking motifs (Figure 3.3B) were selected for enrichment analysis 

toward EMT and acid adaptation. These motifs consist of 19 unique genes. Merging of these top 

ranked motifs leads to construct the underlying core subnetwork of the genes that were affected 

by acidosis and are related to EMT, differentiation and invasion of the tumor cells (Figure 3.3C). 

Integrative analysis of transcriptomics and proteomics of acid-adapted and non-adapted MCF7 

cells reveals the role of S100 proteins in acid-induced epithelial to mesenchymal transition 

For further validation of our findings in RNA sequencing and EMT related motif analysis 

at the protein level, we compared all the genes in the EMT motifs with their relative protein 
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change in our SILAC discovery proteomics of the MCF7 cell line published previously [20] as 

well as the MCF-DCIS (DCIS) cell line which we conducted SILAC proteomics on for this study. 

Since the focus of this study is on early adaption of breast cancer cells we selected DCIS cell 

lines and adapted them to acid for 3–6 months in the same process as the MCF7 cells. The 

SILAC proteomics approach was applied to compare the whole proteome of acid-adapted 

cancer cells to non-adapted counterparts. SILAC or stable isotope-labeled amino acids in cell 

culture is a quantitative mass spectrometry (MS) based technique that is used to compare the 

proteome of pairs of biological samples [148] which in our case is acid-adapted and acid-naive 

breast cancer cell lines. To minimize the rate of false-positive biomarker association, parallel 

SILAC experiments were conducted for each cell lines in which the acid-adapted or non-

adapted cells were labeled by growing them in SILAC “heavy” media (13C6 lysine and 

13C146N4 arginine), while the comparator cells (acid-naive or acid-adapted cells, respectively) 

were cultured in media containing the corresponding amino acids of naturally occurring isotopic 

distribution. The labeling strategy was reversed (flipped) to eliminate potential bias due to the 

media and incorporation of the stable isotope-labeled amino acids (Figure 3.4A) [149]. MCF7 

data was previously published for biomarker discovery of acid adaptation [20]. In DCIS SILAC 

proteomics, 2,841 proteins were detected with 466 unique proteins for acid-adapted DCIS cells 

and 323 unique proteins for non-adapted ones (Figures 3.4B,C and 3.5). We used fold change 

to plot our data and used 1.5-fold change cut off (Figure 3.4C). The same analysis and cut off 

was applied for both DCIS and MCF7 cells. To do integrative analysis, we looked for any 

proteins related to the five explored motif packs isolated from RNA sequencing data (Figure 

3.3C) in both MCF7 and DCIS proteomics with more than 1.5 ratio change in acid-adapted vs. 

non-adapted condition (Figure 3.4C). In order to perform integrative proteomics and 

transcriptomics data analysis we focused on 10 explored motifs based on motif ranking analysis 

(Figure 3.3C). This analysis has been conducted to ensure consistency of proteomics and 

transcriptomics data. Translational pattern of 19 differentially expressed genes were assessed 
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in MCF7 and DCIS proteomics data. We plotted the interactome map for these altered proteins 

that were identified through integration of transcriptome and proteome data (Figure 3.4D). In this 

figure nodes in rectangular shape have both gene expression and protein translation alteration 

and oval nodes only present alterations in transcriptomics level. Ten proteins out of 19 

discovered genes had more than 1.5-fold change in MCF7 and DCIS proteomics data (Figure 

3.4E). Among these genes the ones presented in Figure 3F are differentially expressed at the 

proteomics level in the DCIS and MCF7 cell lines (Figure 3.4F). Due to abundancy of the S100 

family proteins in both transcriptomics and proteomics data, this motif pack was chosen for 

further experimental validation. 

Acid-adapted MCF7 cells express higher S100A6 and S100B proteins 

To further validate the S100 motif discovered in both RNA sequencing and proteomics 

data in acid-adapted EMT analysis, I performed Immunocytochemistry (ICC) experiments on the 

acid-adapted and non-adapted MCF7 cells. We chose S100A6 and S100B from the family 

because of over expression of S100A6 at the protein level in both MCF7 and DCIS cells and 

S100B as one marker discovered in RNA sequencing of MCF7 cells and the proteomics of 

DCIS. To do the experiment, both AA MCF7 and NA MCF7 were seeded on the one slide with 

eight chambers on it and were treated with exactly equal amounts of antibodies. Slides were 

imaged using a Leica TCS SP5 confocal microscope with exact settings for both cells, and 

samples were imaged the same day. I found higher expression of both S100B and S1006 in 

acid-adapted MCF7 cells (Figures 3.6A,B). To confirm the acid adaptation status of the cells, I 

also stained the acid-adapted MCF7 cells and the non-adapted MCF7 cells with the known 

marker of acid adaptation, LAMP2b. I observed membrane localization of LAMP2b in the acid-

adapted MCF7 cells (Figure 3.6C), which is characteristic of acid-adapted cell populations. 
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S100A6 expression correlates with survival in breast cancer patients 

We then sought to clinically validate the identified S100 proteins expression in breast 

cancer patient Tissue Micro Arrays (TMA) that we have available at the Moffitt Cancer Center 

tissue core bank. On the basis of our previous findings, we hypothesized that an acidity 

biomarker should have two characteristics. First, due to the increase in glycolytic rate with 

breast cancer progression, there should be an association of progression with marker of acidity 

and second, the expression of the proteins should correlate somehow with the expression 

pattern of LAMP2b as it is a known marker of acidosis [20, 137]. In short, S100A6 and S100B 

proteins should increase with stage similar to LAMP2b. To test this, I analyzed protein 

expression of S100A6 and S100B via IHC of TMAs containing patient sample biopsies from 

different stages of breast cancer totaling 160 cores. While the protein expression of S100A6 

showed statistically (P < 0.0001) higher in tumor samples compared with adjacent normal 

breast there was no difference for S100B. The negative results of S100B could be the cause of 

problems with antigen specificity or epitopes that were used. I then continued my analysis with 

S100A6 by measuring the positivity of each core in different stages of breast cancer. Increased 

S100A6 expression correlates with increased tumor progression from DCIS to invasive ductal 

carcinoma (Figure 3.7A). There were notably significant differences between normal breast and 

DCIS, Invasive Ductal Carcinomas (IDCs), and IDCs with local metastases indicating the role of 

this protein in cancer progression and invasiveness. I then compared the survival of patients 

with high and low expression of S100A6 for each biopsy cores in three categories of DCIS, IDC 

and IDC with local metastasis. For defining high vs. low expression, we use the median of all 

the cores in each category as middle point and anything below the media was taken as low and 

vice versa. The data was analyzed using two testing methods: Mantel-Cox and Gehan-Greslow-

Willcoxon. The DCIS category showed significant difference between low and high expression 

(Figure 3.7B), which confirms our previous studies of DCIS as the most acidic tumors in breast 
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cancer. The difference wasn't significant for survival of patients with breast cancer at IDC, and 

IDC with local invasion stages, implying the importance of acidosis and acid related phenotype 

at early stages of cancer again (Figure 3.8). 

To further prove the correlation of S100A6 and acidosis we compared the positivity of 

LAMP2b as a marker of acidosis and S100A6 as our candidate, for each biopsy core in our 

TMA. Comparative analysis of S100A6 positivity from each biopsy core to LAMP2b expression 

of the same core showed a correlation between these two proteins (Figures 3.7C,D) validating 

the role of S100A6 in acid adaptation. 

DISCUSSION 

Deregulated energetics is a hallmark of cancer progression, and the deregulation of 

cellular energetics has a profound effect on the growth and progression of a tumor. The creation 

of an acidic tumor microenvironment (TME) is one of these major consequences of deregulated 

cancer cell energetics. When faced with the acidic TME the cancer cell population must either 

adapt or perish, with the former being the usual outcome due to the extraordinary ability of 

cancerous cell populations to adapt to a changing environment. This adaptation to an acidic 

TME is not a passive action and leads to permanent changes in the phenotype of the surviving 

population. Little is known about the phenotypic changes that occur throughout the arduous task 

of adapting to the acidic TME, and deeper insight into these changes will move us a step in the 

direction of targeting these aggressive populations therapeutically. 

Although the concept of lower pH in the tumor microenvironment is not a new discovery, 

the specific studying of acid-adapted cancer cell phenotypic switch is a relatively new realm of 

science. Previous investigations have found numerous phenotypic changes that occur during 

cancer cell populations adapting to an acidic environment such as, chronic autophagy [150], 

increased presence of lysosomal proteins in the plasma membrane [20], and heightened 
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aggressiveness [137]. Acidity in the intratumoral environment, not associated with acid 

adaptation, has also been shown to foster the stemness of cancer cell populations in 

osteosarcoma [151]. 

The aim of this study was to understand the role of acidic microenvironment in the EMT 

phenotypic switch, a demonstration of cancer plasticity and heterogeneity of cancer cell 

populations, and study their role in patient survival. We used a unique approach to identify vital 

regulatory sub-networks that are involved in the acid adaptation of cancer cell populations using 

integrative analysis of transcriptomic and proteomic data of selected cancer cells under an acid 

microenvironment that mimics one of the harsh selection pressures amongst many in solid 

breast tumors. The advantage of our approach is that our network analysis workflow 

encompasses different layers of information such as log fold change in cells, involvement of 

genes in partial and complete EMT processes and network centrality parameters which reflects 

gene regulatory role in the whole network. These considerations led to isolation of the motifs 

that may play a critical role in cancer cells' acid adaptation and pEMT. The discovered motifs 

also have significant regulatory function throughout the network from a structural perspective. 

Network centrality parameters were considered as a unique factor to weighting nodes. Log fold 

changes of motif genes were another parameter to rank motifs. Therefore, we have four 

parameters to rank the motifs: direct association of motif in EMT, motif prioritization score which 

is based on Cytoscape GPEC plugin and reflect indirect association of motif in EMT, centrality 

of the gene within the network, and expression behavior of motif in acidosis. When taken in 

total, these four parameters return the important motifs within the system. 

Here in, we demonstrated the correlation of cancer cells acid adaptation, EMT and 

patient's survival, based on EMT associated markers. My findings demonstrated a partial EMT 

phenotype in the acid-adapted cellular populations by correlation to EMT markers accepted in 

the field. This partial transition may represent a heightened degree of plasticity or metastatic 
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ability, with cells carrying phenotypic characteristics of both epithelial and mesenchymal cells. I 

observed downregulation of Snai1 in the acid-adapted group, which negatively correlates with 

E-cadherin expression, and is not typical of a traditional EMT switch. While this was not typical 

of the EMT response, we did observe EMT characteristics with heightened vimentin and N-

cadherin expression. Due to the observed changes in EMT markers caused by acute acidosis 

and acid adaptation, we believe the acid adaptation may target specific pathways in the EMT 

process, while neglecting others. I also proposed the important of S100 family proteins in the 

acid-adapted EMT phenotype, no matter if causal or consequential of the phenotype. These 

findings may be used for therapeutic advances targeting the link between acidosis and EMT, 

while also providing a better understanding of the protein players that are associated with the 

ability of a cell to adapt to chronic acidic conditions. 

METHODS 

Cell Culture and Acid Adaptation in vitro 

MCF7 cells were acquired from American Type Culture Collection (ATCC, Manassas, 

VA, 2007–2010) and were grown in DMEM-F12 (Life Technologies) with 10% fetal bovine 

serum (HyClone Laboratories) and 1% peniciline/stroptomycine added. Growth medium was 

buffered with 25 mmol l−1 each of PIPES and HEPES and the pH adjusted to 7.4 or 6.5. Cells 

were tested for mycoplasma contamination and authenticated using short tandem repeat DNA 

typing according to ATCC's. To achieve acid adaptation, cells were chronically cultured and 

passaged directly in pH 6.5 medium for ~2 months. Chronic low-pH-adapted cells underwent at 

least 20 passages. 

RNA Sequencing 

RNA sequencing was performed on MCF7 and acid-adapted MCF7 cells using the 

NuGen Ovation Encore Complete RNAseq kit, which generates strand-specific total RNAseq 
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libraries (Nugen, Inc., San Carlos, CA). Following quality control screening on the NanoDrop to 

assess 260/230 and 260/280 ratios, the samples were screened on the Agilent BioAnalyzer 

RNA Nano chip to generate an RNA Integrity Number (RIN) (Agilent Technologies, Santa Clara, 

CA). Hundred nanogram of DNase-treated total RNA was then used to generate double-

stranded cDNA, which was initiated with selective random priming allowing for the sequencing 

of total RNA, while avoiding rRNA and mitochondrial transcripts. After primer annealing at 65°C 

for 5 min, a first strand cDNA synthesis reaction was performed at 40°C for 30 min using kit-

supplied reverse transcription reagents. Second strand cDNA synthesis was performed in a 70 

μl reaction volume at 16°C for 1 h and the reaction was stopped by adding 45 μl of stop 

solution. The double-stranded cDNA was then fragmented to ~200 bp with the Covaris M220 

sonicator (Covaris, Inc., Woburn, MA), followed by purification with Agencourt RNAClean XP 

(Beckman Coulter Life Sciences, Indianapolis, IN). The fragmented DNA was suspended in 10 

μl of water and end repair was performed in a 13 μl for 30 min at 25°C, followed by a heat 

inactivation of 70°C for 10 min. Sample-specific indexed adapter was ligated to the end-repaired 

DNA for 30 min at 25°C, followed by a two-step strand selection process with an intervening 

1.8X volume RNAClean XP bead purification. 13 cycles of library amplification and a 1.2x 

volume RNAClean XP purification of the strand-selected library was performed, followed by 

resuspension of the library DNA in 30 μl of RNase-free water. Final libraries were screened for 

library fragment size distribution using an Agilent BioAnalyzer High sensitive DNA Chip. 

Libraries were then quantitated using the Kapa Library Quantification Kit (Roche Sequencing, 

Pleasanton, CA), normalized to 4 nM, and were sequenced on an Illumina NextSeq 500 150-

cycle high-output flow cell in order to generate ~40 million paired-end reads of 75-base per 

sample (Illumina, Inc., San Diego, CA) [152]. 
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RNA Sequencing Data Processing and Analysis 

The RNA-seq data analysis workflow has been provided schematically in Figure 3.9. 

Raw reads were quality-filtered to obtain clear data via removal of adaptor sequences, 

ambiguous or low-quality reads and reads with more than 5% N, using FastQC version 0.11.8 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and Trimmomatic version 0.39) 

[153]. Then clean reads were aligned to the reference genome (GRCh37) using HISAT2 version 

2.1.0 [154]. Finally, the read count values for aligned sequences of genes were computed to 

represent the expression levels of genes using HTSeq version 11.1 [155]. Differentially 

expressed genes (DEGs) between two groups were explored using R [156] package DESeq2 

version1.24.0 [157]. 

Genes with p-value <0.05 were selected as differentially expressed Genes. Benjamini-

Hochberg (BH) multiple testing correction was applied on results. 

Proteomics 

SILAC LABELING 

Acid-adapted and naive cells were labeled by SILAC. Cells were cultured in heavy 

SILAC media (Δ6-lysine and Δ10-arginine) for eight doubling time of MCF7. Extent of labeling 

was determined by LC–MS/MS analysis of tryptic peptides from labeled samples to ensure 

>90% labeling. 

LYSIS AND DIGESTION 

Cells were lysed by sonication in a buffer of 50% trifluoroethanol and 50 mM ammonium 

bicarbonate, pH 8.0, and protein was measured by the Bradford method. Protein from heavy- 

and light-labeled cells was combined in equal amounts, and lysis buffer was added to bring the 

final volume to 200 μl. The combined protein was reduced with 100 μl of 40 mM TCEP/100 mM 
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dithiothreitol for 1 h at 37°C. Proteins were alkylated with 100 μl of 200 mM iodoacetamide for 

30 min in the dark at ambient temperature. The volume of the reduced and alkylated sample 

was brought to 1 ml with 50 mM ammonium bicarbonate, pH 8.0. Trypsin was added at a ratio 

of 1:50 and samples were digested at 37°C overnight. Digests were frozen at −80°C and 

lyophilized. Dried peptides were resuspended in HPLC water with 0.1% TFA and desalted on 

100-mg Thermo hypersep C18 columns. Eluted peptides were dried in a Speed-Vac and 

resuspended in HPLC water for isoelectric focusing fractionation. 

ISOELECTRIC FOCUSING FRACTIONATION 

Tryptic peptides were fractionated using a narrow-pH-range fractionation strategy. At the 

end of the isoelectric focusing programme, strips were manually cut into 20 fractions. Peptides 

were extracted and samples were combined in the following manner to achieve 15 fractions for 

LC–MS/MS analysis: (anode end) samples 1–2, 3–4, 5–6, 7–8, and 9–10 were combined to 

make five fractions, samples 11–20 were left as individual fractions. 

LC–MS/MS 

Samples were analyzed as duplicate injections for each fraction. A nano-flow ultra-high 

performance liquid chromatograph (RSLC, Dionex, Sunnyvale, CA) coupled to an electrospray 

ion trap mass spectrometer (LTQ-Orbitrap, Thermo Scientific, San Jose, CA) was used for 

tandem MS peptide-sequencing experiments. The sample was first loaded onto a pre-column (2 

cm × 75 μm ID packed with C18 reversed-phase resin, 5 μm particle size, 100 Å pore size) and 

washed for 8 min with aqueous 2% acetonitrile and 0.04% trifluoroacetic acid. The trapped 

peptides were eluted onto the analytical column (C18 Pepmap 100, 75 μm × 50 cm ID, Dionex). 

The 120-min gradient was programmed as: 95% solvent A (2% acetonitrile + 0.1% formic acid) 

for 8 min, solvent B (90% acetonitrile + 0.1% formic acid) from 5 to 15% in 5 min, 15 to 40% in 

85 min, then solvent B from 50 to 90% B in 7 min and held at 90% for 5 min, followed by solvent 
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B from 90 to 5% in 1 min and re-equilibration for 10 min. The flow rate on the analytical column 

was 300 nl min−1. Ten tandem mass spectra were collected in a data-dependent manner 

following each survey scan. The MS scans were performed in the Orbitrap to obtain accurate 

peptide mass measurements, and the MS/MS scans were performed in the linear ion trap using 

a 60-s exclusion for previously sampled peptide peaks. Mascot (www.matrixscience.com) 

searches were performed against the UniProt human database downloaded on 11 July 11 2012. 

Two missed tryptic cleavages were allowed, the precursor mass tolerance was 1.2 Da to 

accommodate selection of different isotopes of the peptide precursor. MS/MS mass tolerance 

was 0.6 Da. Dynamic modifications included carbamidomethylation (Cys), oxidation (Met), 

heavy lysine (Δ6) and heavy arginine (Δ10). 

Quantification of differences in protein expression between SILAC-labeled samples was 

performed as described using MaxQuant. Results were filtered to require a posterior error 

probability (PEP) score < 0.05 and summed intensity > 0. Candidates were selected among 

proteins that consistently showed at least a 1.5-fold increase under low-pH conditions across 

label-flipping experiments. 

NETWORK CONSTRUCTION  

The STRING database is a valuable resource for the exploration and analysis of 

functional gene/protein interactions [158]. STRING database was used to find conserved 

experimentally validated gene-gene interaction networks for the explored DEGs. Since STRING 

builds protein-protein interaction (PPI) networks thereby our network was constructed upon 

coding RNAs. 

MOTIF EXPLORING AND MOTIF RANKING 

Networks consist of smaller and repetitive structural units which are called motifs. 

Network motifs can be described as recurring circuits of interactions from which the networks 



43 
 

are made [159]. Motifs have important roles in biological networks and suggested that they 

accomplish overriding functions in biological networks. In this study, Cytoscape [160] 

NetMatchStar plugin [161] was used to find 3-node 3-edge network motifs in the gene regulatory 

network which retrieved from STRING database. 

In order to further our network analysis, multiple topological and biological parameters 

were determined and used. Log2 fold change of differentially expressed genes associated in the 

gene regulatory network (Supplementary Table 1), association of network's genes with 

biological processes involved in EMT (based on explored GOBP terms related to EMT) 

(Supplementary Table 2) and gene prioritization score (Supplementary Table 3) which were 

obtained from Cytoscape GPEC plugin [162], were considered as biological parameters. 

Betweenness centrality and node degree are two network topological parameters 

(Supplementary Table 4) which obtained using Cytoscape [160] NetworkAnalyzer [163] plugin 

and were considered besides biological parameters for network's robust motif ranking. Node 

degree indicates the number of connected edges to each node and betweenness centrality 

shows the control level of a node over interactions of other nodes in a network. This centrality 

parameter prefers the nodes that allow to connect non-directly connected clusters of a network. 

The next step was to find the most important motifs in the network. For this purpose, a 

ranking scheme [164] was performed based on a multi objective weighting function. This 

scheme is based on parameters which we gathered before: (i) Topological parameters, node 

degree and betweenness centrality, (ii) the presence of motif genes in EMT related biological 

pathways (see “Discussion” for more detail), (iii) the gene prioritization score obtained from 

Cytoscape GPEC plugin [162], (iv) acid-adapted MCF7 cell lines gene expression log2 fold-

changes (based on differential expression analysis of acid-adapted MCF7 cell lines vs. non-

adapted cell lines). Using this weighted multi-objective function in Equation 1, the motif ranking 

was performed. 
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GSij= w1j2.⟨nD⟩imax(nD)+w1j2.⟨nB⟩imax(nB)+w2j.⟨PP⟩imax(PP)             

+w3j.⟨GPS⟩imax(GPS)+w 4j.⟨|LFC|⟩imax(LFC) 

GSij is the ranking score for each motif (i = 1… n) in different weighting scheme (j = 1… 

13) as said in Table 1. Different weighting values including w1j to w4j are used to strike 

importance of used factors, <nD>i: average node degree for motif's node, <nB>i: average 

betweenness centrality of each node in a motif, <PP>i: number of genes in a motif involved in 

EMT related pathways, <GPS>i: average gene prioritization score obtained from GPEC, 

<|LFC|>i: average absolute log2 fold change for each motif. 

Five different sets of weighting scenarios including 13 different weighting schemes were 

applied (Table 1) to remove biasness between used parameters in motif prioritization. Each set 

pays more attention to specific parameters in Equation (1). In the first set, only one parameter is 

more important for ranking. In the sets 2–4, two, three and four parameters are important, 

respectively, and constantly have higher weights to the absolute LFC of the motif to explore 

phenotype-specific top ranked motifs. In the fifth set, equal weights allocated to all the 

parameters. This weighting scheme leads to 13 ranking score for each motif. After removing 

duplicated motifs, we selected the top 10 motifs from each weighting scenario for further 

analysis (Supplementary Table 5). 

Proteomics and Transcriptomics Integrative Data Analysis 

Integrative proteomics and transcriptomics data analysis was performed in roder to 

ensure about consistency of proteomic and transcriptomic data regarding explored motifs. In 

this regard 19 differentially expressed genes of the top 10 explored motifs cross referenced with 

SILAC proteomics data (DCIS and MCF7 cell lines) to see which of the following transcriptomes 

are alternatively translated in the proteomics level. 
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Examining Survival and Gene Alteration Changes 

cBioportal.org was used to examine the survival and gene alteration changes in breast 

cancer patient samples. For non-invasive breast cancer sample data, the set from Razavi et al. 

[165] was used, and for invasive breast cancer sample data the set from Curtis et al. [166] was 

used. 

Immunofluorescence 

Cells cultured at pH 6.5 chronically and pH 7.4 of with the same passage were rinsed 

with PBS, fixed in cold Methanol:Acetone (1:1) for 10 min and then blocked with 4% bovine 

serum albumin in PBS for 1 h. Samples were incubated with primary antibody of S100B and 

S100A6 (1:100) and secondary Alexa-Fluor 488 antirabbit (1:500) antibody) for 1 h in room 

temperature. Coverslips were mounted using ProLong Gold Antifade Reagent (Life 

Technologies) and images were captured with a Leica TCS SP5 (Leica) confocal microscope. 

Immunohistochemistry 

For human tissues, a TMA containing formalin-fixed and paraffin-embedded human 

breast tissue specimens was constructed in Moffitt Cancer Center histology core. The TMA 

contains 27 normal breast tissue, 30 DCIS, 48 invasive ductal carcinomas without metastasis, 

49 invasive ductal carcinomas with metastasis and 48 lymph node macro-metastases of breast 

cancer. Cores were selected from viable tumor regions and did not contain necrosis. A 1:400 

dilution of anti-LAMP2 (#ab18529, Abcam), anti-S100A6 antibody (Prestige Antibodies Powered 

by Atlas Antibodies, Sigma-Aldrich) and anti S100 protein were used as primary antibodies. 

Positive and negative controls were used. Normal placenta was used as a positive control for 

LAMP2, normal breast was used as a positive control for S100 and normal kidney was used as 

a positive control for S100A6. For the negative control, an adjacent section of the same tissue 
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was stained without application of primary antibody, and any stain pattern observed was 

considered as non-specific binding of the secondary. 

Immunohistochemical analysis was conducted using digitally scanning slides and 

scoring by three independent reviewers. The scoring method used by the pathologist reviewer 

to determine (1) the degree of positivity scored the positivity of each sample ranged from 0 to 3 

and were derived from the product of staining intensity (0–3+). A zero score was considered 

negative, score 1 was weak positive, score 2 was moderate positive, and score 3 was strong 

positive (2). The percentage of positive tumors stained (on a scale of 0–3). 

Statistical Analysis 

Statistical analysis and estimation of correlations in this study were performed using 

GraphPad Prism v.6. Correlation significance calculated by Pearson correlation. The p-values 

reported for survival analysis measured by cox regression hazard ratio and log rank tests. All 

paired tests were performed by Student's t-test. 
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FIGURES 

 

Figure 3.1. Acid adapted cells show partial EMT phenotype. (A) q-RT-PCR-analysis and (B) IF 

of EMT marker at RNA and protein level respectively show both markers of epithelial and 

mesenchymal phenotype are present in acid adapted cells confirming their transient EMT 

phenotype. (C) Analysis of RNA sequencing shows a mixed epithelial and mesenchymal 

markers. Heatmap plot for EMT related deferentially expressed genes in AA-MCF7 compared to 

MCF7. Each row represents a gene and each columns stands for a sample. Cells color is 

correlated to gene count in the corresponding sample. Color code for gene count: red, high 

expression; green, low expression. 
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Figure 3.2. Interaction map of our motif packs, obtained from STRING database illustrating the 

first shell of interactions for each motif pack. 
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Figure 3.3. RNA sequencing motif analysis unravels EMT related genes involved in acid 

adaptation. (A) Experimentally validated gene regulatory networks of differentially expressed 

genes. For better visualization Y files layout algorithm of cytoscape was used to organize the 

network. Two node interactions and disconnected nodes were omitted. (B) Top ten ranked 

motifs of our network, directed toward EMT. (C) Top 10 explored motifs based on ranking 

analysis were merged together. The association of some of genes like P4HB and CALR in 

multiple motifs which present in top 10 motifs leads to construct a small sub-network by merging 

of these motifs which leads to construct core regulatory subnetwork. 
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Figure 3.4. Integrative analysis of proteomics and transcriptomics data to discover the acidic 

microenvironment induced EMT genes. (A) A schematic of our SILAC proteomics design. We 

flipped the labeling to make sure the changes in protein expression is not affected by the type of 

labels. (B) Venn diagram and (C) Log 2 fold change of SILAC proteomics data discovered in 

each flipping experiment. (D) Integrated interaction map of the regulatory subnetwork and their 

related altered proteins in both DCIS and MCF7 cell lines. (E) Venn diagram indicating that 

among n = 45 transcripts (The subnetwork and it's near interactions) n = 12 proteins were 

differentially translated with the abundancy of S100 family. (F) The name of proteins that are 

discovered in DCIS and MCF7 proteomics and are correlated to the motif's from RNA 

sequencing data. 



51 
 

 

Figure 3.5. SILAC proteomics analysis of DCIS breast cancer cells. A) Number of unique 
proteins in acid adapted and non-adapted cancer cells labeled with heavy and light isotopes. B) 
Unique proteins in each flipping experiment group with stdev cut off 1.5 and 2. C) Log 2 ratio 
showing the fold change of all the proteins detected in our SILAC proteomics experiment in both 
flipping experiments. 
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Figure 3.6. Validation of higher expression of acid-induced EMT markers by 

Immunocytochemistry. (A) S100B protein expression in acid-adapted and non-adapted MCF7 

cells with the analysis on right. S100B expression is significantly higher in acid adapted cells. 

(B) S100A6 ICC of acid-adapted and non-adapted MCF7 cancer cells shows higher expression 

of S100A6 in AA MCF7 cells. (C) LAMP2b ICC of acid-adapted and WT MCF7 cancer cells. 

Acid-adapted MCF7 cells display membrane localization of LAMP2b, compared to cytoplasmic 

localization in non-adapted MCF7 cells. 
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Figure 3.7. Clinical validation of S100A6 expression correlation to acid phenotype in breast 

cancer. (A) TMA analysis of 160 biopsy cores stained with S100A6 antibody showed increased 

expression of this protein from normal to DCIS, IDC, and IDC with Mets. Data are shown as 

mean with standard deviation as error bar. T-test was used to determine p-value. (B) Kaplan-

Meier graph comparing DCIS patient's survival with low expression of S100A6 (Below the 

average) to patients with high S100A6 expression. Patients with high expression survived less 

than patients with low expression. (C) Representative images of core biopsies stained for both 

LAMP2b and S100A6 on sequential cuts. (D) Correlation analysis of LAMP2b and S100A6 in 

different stages of breast cancer. 
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Figure 3.8. Survival analysis of patients with high and low expression of S100A6 in different 

stages from IDC, and IDC with local metastasis respectively. 
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Figure 3.9. RNA sequencing data analysis workflow and the methodology of network analysis. 

A) Paired end reads from both Acid-Adapted (AA) and Non-AcidAdapted (NA) MCF7 cell-lines 

were processed and transformed to high quality trimmed reads then aligned to a reference 

genome to achieve count reads which have been used for differential expression analysis to 

explore Differential Expressed Genes (DEGs). Based on the STRING database an 

experimentally validated Gene Regulatory Network (confidence = 0.7) was constructed from 

DEGs. Network analysis was based on a scheme to explore and rank the network motifs with 

respect to EMT phenotype. B) Motif ranking has been performed using a multi objective 

weighting function and different network topological and biological parameters for nodes. Using 

weighting function leads to Pareto set of motifs which has been used to explore top 10 network 

motifs. These motifs were considered for further experimental validation. 
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Chapter 4: Inhibition of glycolysis allows for breast cancer control 

 The vast majority of the in vitro work and writing of this manuscript was completed by 

myself. Animal studies were completed by Samantha Byrne and Dominique Abrahams, and 

supervised by myself and Dr. Mehdi Damaghi. This work was adapted from the publication in 

Cancers (Basel) [167]. 

INTRODUCTION 

The initiation and development of cancers is associated with major metabolic alterations 

in response to dynamically changing microenvironmental conditions such as hypoxia and 

acidosis [38]. These forces will select for the fittest phenotype in the context of the current 

microenvironment. Cancer cells that are more plastic and adaptable can acclimate to an 

increasing array of emergent microenvironmental selective forces. Combined, these factors 

define tumors as highly dynamic ecosystems in which many different cancer cell subpopulations 

compete for space and resources [168]. The microenvironment around the cells can alter the 

local fitness of cancer cell subpopulations in a tumor; leading to possible dramatically different 

evolutionary trajectories selecting for cells with different phenotypic and genotypic properties 

[131]. We have previously reported how acid-producing and acid-resistant phenotypes can 

engineer the tumor ecosystem in order to increase their own fitness, allowing them to take over 

the population [19, 131]. We have also showed the different strategies that cancer cells acquire 

to adapt to their microenvironment [131]. Here, I investigate the impact of switching off certain 

phenotypes that give cancer cells a competitive advantage. By switching these off, one can 

influence the distribution of sub-populations with the end game of turning the majority of the 



57 
 

population into a less aggressive phenotype with decreased invasion and metastasis. The idea 

is to take away any evolutionarily acquired or selection driven advantages of the more 

aggressive clones in population to allow for non-aggressive cells to be able to compete [169]. 

Glycolysis is the prominent phenotype of cancer cells under hypoxia or normoxia 

(Warburg effect). Glycolysis produces acid, which must be removed from cells, resulting in an 

important aspect of cancer metabolism: i.e., reduced extracellular pH (pHe~6.5–6.7) and 

increased intracellular pH (pHi ≥ 7.2). For cells to compete they must adapt to these conditions 

and thus these adaptations can be used against them as a vulnerability [53]. Adaptive 

mechanisms include: increased expression and activity of acid extruders, such as 

monocarboxylate transporters (MCT) including: MCT1 and MCT4, Na+-H+ exchanger 1 (NHE1) 

and V-ATPases, as well as membrane bound exofacial carbonic anhydrases such as CA9 or 

CA12 to maintain an optimal pHi [53]. An optimal pHi gives cancer cells some proliferative 

advantages [53]. Herewith, we use two drugs that we are repurposing to target pHe and pHi 

metabolic adaptations so that the more aggressive cancer cell sub-populations lose their 

selective advantage over the less aggressive phenotypes. The first drug is diclofenac, a 

clinically used non-steroidal anti-inflammatory drug (NSAID), that has been shown to have an 

inhibitory effect on MCTs [170, 171]. Targeting MCTs is a promising approach that many groups 

are following to find treatment against the glycolytic phenotype of cancer cells such as MCT1/2 

inhibitors [172]. However, these drugs have not yet been successful in treating cancer, as cells 

have shown the ability to switch isoforms from e.g., MCT1 to MCT4 [53, 172]. Diclofenac is 

putatively a pan-MCT inhibitor [170]. 

The second drug is koningic acid (KA), a natural product produced by fungi, which 

inhibits the function of GAPDH [173, 174]. 

In previous work of systems analysis of cancer cells’ metabolic vulnerabilities [53], we 

observed that GAPDH is highly pHi sensitive and has a key role in promoting a WE phenotype. 
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This pH sensitivity of GAPDH means that the effects of its inhibition on cell proliferation are 

enhanced at an acidic intracellular pH. This acidic pHi vulnerability is the reasoning for coupling 

with diclofenac, which I demonstrated to be a potent inhibitor of MCT activity, causing 

decreased intracellular pH. Other groups also reported GAPDH as a selective WE phenotype 

target [173] that can be partially and irreversibly inhibited by KA. 

Evolutionary-based therapies use Darwinian principles to delay the proliferation of 

aggressive populations regardless of their genotype states [131, 169, 175]. These therapies can 

be guided by the use of mathematical models of cell population dynamics based on competing 

mechanisms of cancer cell sub-population within the tumor [176, 177]. Conventional maximum 

dose therapy (MDT) permits an unopposed proliferation of resistant and/or more plastic cells by 

removing sensitive and/or less plastic cancer cell populations, a phenomenon known as 

“competitive release” in ecology [169]. With “competitive release”, clonal and sub-clonal 

population balance is not maintained amongst all different clones. Alternatively, evolution-based 

therapies use Darwinian principles to delay the proliferation of resistant populations [131, 169], 

maintaining clonal and sub-clonal population balance. A form of evolutionary therapy is adaptive 

therapy (AT), where the competitive release of resistant clones is delayed by the application of 

intermittent or dose-varying therapeutic regimens, to maintain a balance between sensitive and 

resistant clones to successfully control tumor growth [169, 178, 179]. In this approach, I exploit 

metabolic adaptations to acidosis as a vulnerability for the more aggressive tumor cells in order 

to attenuate cancer growth. The representative cell lines, less aggressive (MCF7) and more 

aggressive (MDA-MB-231), were selected based on the previously described phenotypes [180-

184]. 
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RESULTS 

Diclofenac and koningic acid reduce the glycolytic activity of cancer cells 

H+-monocarboxylate transporters (MCTs) play a major role in transporting organic 

anions such as lactate across cell membranes. Since the transport cycle is coupled to H+ ions, 

the activity of MCTs also affects intracellular pH (pHi) within cells [185]. It has been shown that 

MCT inhibition decreases cancer cells’ aggressive phenotypes [172, 186, 187] by reducing the 

lactate efflux, leading to acidification of pHi and buildup of intracellular [lactate] [53]. It has been 

shown that diclofenac can inhibit MCTs [170] and that koningic acid (KA) can inhibit GAPDH 

[173, 188, 189], which is very sensitive to pHi [53] (Figure 4.1A). As proof of principle, I 

measured the effect of diclofenac and KA on glucose consumption and lactate production of 

MCF7 and MDA-MB-231 breast cancer cell lines. In both cell lines, diclofenac and KA reduced 

the lactate production (Figure 4.1B) and glucose consumption (Figure 4.1C) significantly within 

72 h of treatment. Notably the effect was larger in the more highly glycolytic MDA-mb-231 cells. 

I then measured the activity of both drugs in the 3D culture of MCF7 and MDA-MB-231 

spheroids over time. I observed that both drugs showed effects as early as 24 h (Figure 4.2A,B). 

These results indicated that both drugs are effective in inhibiting glycolysis as proposed and can 

work both in 2D and 3D experiments. I also measured the glutamine and glutamate 

concentration in the media following treatments of both cell lines with both drugs under 

normoxia and hypoxia and found no differences among the groups (Figure 4.2C). 

Diclofenac inhibits MCT activity 

To test whether the effect of diclofenac treatment on glycolysis was due to inhibition of 

lactate export, I measured MCT activity before and after treatment with diclofenac using pHi as 

a reporter of transmembrane flux. To rule out if the effect on pHi change is because of NSAID 

activity of diclofenac, I also measured the MCT activity on the same cells treated with aspirin. 
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Using a superfusion microscopy system and cells loaded with the pH reporter dye SNARF-1, I 

measured the time course of pHi during superfusate maneuvers that trigger net transmembrane 

flux of lactate (Figure 4.1D). When presented with extracellular lactate, cells acidified, and when 

extracellular lactate was withdrawn, cells alkalinized. The rate of these pHi changes are 

measures of MCT activity. In the presence of diclofenac, however, efflux of lactate was 

completely inhibited in both cell lines. Controls included another NSAID, aspirin, which was 

without effect. As these are acute effects, cell death was not expected to play a role (vide infra), 

and we further ruled it out, due to the inability of dead cells to retain the SNARF-1 dye. To 

confirm that diclofenac was acting on a specific transport process, i.e., MCT, rather than 

causing a generalized tightening of membrane permeability, experiments were repeated with 

acetate in place of lactate. Compared to lactate, acetate can permeate the cell membrane in an 

MCT-independent manner by partitioning across the lipid matrix as acetic acid, and its efflux 

was unaffected by diclofenac (Figure 4.1E). This suggests that the action of diclofenac is 

targeted to MCT, the main route for lactate traffic in and out of cells. The results of this assay 

are not indicative of what is expected to be seen under physiological conditions. The large 

changes in pH observed in these experiments are not sustained for long periods of time, and 

are induced by superphysiological lactate levels. The purpose of these experiments was solely 

to determine the effects of Diclofenac on a cells ability to export lactate; not to demonstrate 

specific pHi values under drug treatment. 

Diclofenac and koningic acid decrease the viability of cancer cells 

To test if the effects on glycolysis translate into the effective killing of cancer cells, we 

assessed the survival of cells using CCK8 viability assays and CelltiterGlo (see Methods) in 

both hypoxia and normoxia. We experimented with both normoxic and hypoxic conditions as 

they both commonly occur in the microenvironment of solid tumors such as breast cancer, and 

cell viability will be expected to be much more sensitivity to glycolysis inhibition under hypoxic 
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conditions. In solid tumors, cells that are further than 160 micrometers from the vasculature they 

experience a hypoxic condition that makes the cells glycolysis dependent [20, 31]. Many cancer 

cells overexpress or over-activate MCTs to deplete the lactate produced under the hypoxic 

conditions, although this response is not universal as shown in supplemental Figure 4.3. Under 

normoxia (Figure 4.4A) and hypoxia (Figure 4.4B) cell survival was measured after treatment 

with diclofenac, KA, or both in MCF7 and MDA-MB-231 cells. As shown in Figure 4.4A, 

diclofenac alone reduced the viability of MDA-mb-231, and MCF10/DCIS cells, which are highly 

glycolytic and tumorigenic, as well as MCF-7 cells which are tumorigenic and only moderately 

glycolytic. Notably there was no effect on viability of MCF10AT cells, which are neither 

tumorigenic nor glycolytic. More pronounced effects with a similar distribution were observed 

with KA and the combination of DIC + KA. Surprisingly, the effect of DIC on viability under 

hypoxia (Figure 4.4B) was less significant cf. normoxia (Figure 4.4A), whereas the effects of KA 

and the DIC + KA combination were no different. To test the activity of the drug on viability and 

H+ export flux in the same experiment we performed a viability assay while monitoring the 

acidification of conditioned media. Inhibition of MCTs or GAPDH should reduce rate of media 

acidification. After treatment and before viability assays we measured the pHe of the media 

using the Five EasyTM/FiveGoTM pH meter (Mettler Toledo, Columbus, OH, USA see 

Methods). The acidification was reduced by both drugs and the pH of media was neutral, 

validating the effect of both diclofenac and KA on lowering glycolytic activity of cells (Figure 4.5). 

To determine the effect of diclofenac and KA on the pHi of cancer cells, I measured the 

pHi of a panel of breast cancer cell lines (MDA-MB-231, MCF-DCIS, MCF7, 4T1, H605, and 

T47D), loaded with SNARF-1-AME (Figure 4.4C). For 16 h, cells were treated with diclofenac 

(100 µM), KA (1 µM), or aspirin (300 µM), and then imaged in buffered RPMI media. All cell 

lines exhibited a significantly lower pHi with the treatment of diclofenac, and 4 of the 6 

diclofenac treated cell lines had significantly lower pH than the aspirin group. 
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Considering the different microenvironment in solid tumors such as hypoxia and acidosis 

and their combination we wanted to test if inhibiting MCTs and GAPDH have an effect on the 

viability of cancer cells. These conditions are also very important to be targeted because they 

are specific for tumors and not experienced by normal cells. Therefore, we performed the 

survival assays on both MCF7 and MDA-MB-231 cells under four possible combinations of 

change in oxygen level and pH as following: (i) Normal pH-Normoxia, (ii) Low pH-Normoxia, (iii) 

Normal pH-Hypoxia, and (iv) Low pH-Hypoxia. Targeting MCTs and GAPDH under different 

microenvironments reduces the cancer cell’s viability (Figure 4.6). The effect was greatest with 

the combination of both drugs and under the most unique condition of solid tumors -hypoxia, 

and acidic pH (Figure 4.6). 

Diclofenac and koningic acid reduce the Warburg phenotype of cancer cells 

The Warburg effect (WE) phenotype is defined by a high glycolytic rate even in the 

presence of oxygen (aerobic glycolysis) and is associated with the progression and 

aggressiveness of cancers [190-193]. We recently showed that inhibiting proton pumps such as 

MCTs and pH-sensitive glycolytic enzymes such as GAPDH or GPI, reduces the WE phenotype 

of cancer cells [53]. Here we used the same strategy to reduce the WE phenotype by 

repurposing diclofenac from a NSAID to an MCT inhibitor and a natural product produced by 

fungi, koningic acid to target GAPDH. Above, I already showed that these compounds can 

reduce the glycolytic phenotype of cancer cells, and here I am using Seahorse measurements 

to confirm the inhibitor effect of these products on aerobic glycolysis. Seahorse can measure 

the glycolytic condition through simultaneous of proton efflux (ECAR) and mitochondrial 

respiration (OCR), which can be used to assess WE phenotype [53, 194]. In the first experiment 

I interrogated at the real-time effect of diclofenac of KA on ECAR and OCR of MCF7 cancer 

cells (Figure 4.7A,B). KA and diclofenac monotonically increased the OCR compared to control 

and the combination of the two had the greatest effect (Figure 3A). KA and diclofenac both 



63 
 

caused an initial drop of ECAR that lasted for 150 min that slowly returned to control levels. The 

recovery of ECAR to KA was more rapid compared to either conditions that contained diclofinac, 

which may be due to differences between GAPDH and MCT regulation (Figure 4.7B). This could 

imply that even if the cells over-activate or overexpress the GAPDH, because the pHi is too low 

the phenotype can’t be survived. I also measured the WE phenotype (ECAR/OCR) of these 

cells in three different time points: (i) right before drug injection, (ii) 5 h after injections, and (iii) 

12 h after injections (black arrows in Figure 4.7A). These results showed that a combination of 

KA and diclofenac has the highest effect on decreasing the Warburg phenotype of cancer cells 

in mentioned time points (Figure 4.7C). To confirm this finding, I also performed a Seahorse 

experiment based on glycolytic rate assay that measured the maximum glycolytic capacity of 

cells by, first, shutting down mitochondrial respiration and then glycolysis (Methods). This assay 

also showed the highest inhibition of WE phenotype by the combination of KA and diclofenac in 

both MCF7 and MDA-MB-231 breast cancer cells (Figure 4.7D). 

Reducing Warburg phenotype can change population dynamics 

Cancer evolution is a result of genetic diversification and clonal selection within the 

adaptive landscapes of tissue ecosystems. Therapeutic approaches can destroy some cancer 

clones, but it may also create a new space and different selective pressure resulting in 

expansion of resistant and most probably more aggressive clones aka “competitive release” in 

ecology and evolution. Evolutionary based therapeutic design can be used to control cancers 

when a cure is not possible. For that reason, understanding Darwinian intratumoral dynamics 

and their interactions with microenvironmental selection forces is critical to steer a tumor into a 

less invasive phenotype. 

In 3D spheroid experiments I investigated the competitive release strategy to develop a 

new treatment design. Two distinct cell types were used to provide insight into the dynamic 

interactions among tumor cell subpopulations, a crucial element of intratumor heterogeneity. 
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Mixed-culture competition experiments in spheroids can successfully track competitive 

outcomes amongst different cell types [195]. In 3D spheroid experiments differences in growth 

rates, carrying capacities and competition coefficients can be determined accurately [195]. For 

this experiment, I mono- and co-cultured MCF7-GFP and MDA-MB-231-RFP cells (1:1 ratio) 

and treated them with DMSO (control), diclofenac, KA, or combination of KA and diclofenac 

(Figure 4.8A–C). As a control experiment I grew spheroids in different microenvironmental 

conditions and with different ratios of MCF7 to MDA-MB-231 cells. In any microenvironmental 

condition and with any ratio of the two cancer cells, MDA-MB-231 cells always eventually 

dominated the MCF7 cells and took over the whole population (Figure 4.9). After treating the 

spheroids with diclofenac, KA, or the combination, I showed that these metabolically designed 

drugs can steer the population dynamics towards the less aggressive phenotype cells (MCF7-

GFP). Figure 4.8A,B are controls showing effect of the agents on monocultures. Figure 4.8C 

shows that, in co-culture conditions, the green signal that belongs to MCF7-GFP was increased 

in response to both drug and the combination, compared to the control group. These results 

show that it may be possible to control population dynamics in tumors based on their metabolic 

vulnerability. 

Evolutionary designed therapy controls tumor growth and metastasis in vivo 

To translate my in vitro 2D and 3D results to in vivo we then performed animal 

experiments in female NSG mice. The experimental design was similar to the 3D spheroid 

experiment co-culture -MCF7 and MDA-MB-231 cells were mixed in 1:1 ratio and inoculated into 

the mice mammary fat pad. Mice were randomized into four groups of six mice per group and 

treated with diclofenac, KA, both, or none (DMSO). Primary tumor growth was unaffected by 

either monotherapy cf. controls, but there was a significant decrease caused by the combination 

of diclofenac and KA (Figure 4.10A). 
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At the end of the experiment we extracted the tumors and all the vital organs from each 

mouse and scored for metastasis. Notably, the diclofenac + KA combination group was 

metastasis-free, while all other groups had measurable metastases across multiple sites (Figure 

4.10B). These results indicate that evolutionary therapeutic approaches based on metabolic 

targeting can be used to control tumor growth and even change aggressive phenotypes such as 

metastasis. 

DISCUSSION 

Tumor evolution follows the Darwinian principles; meaning nature selects for phenotype 

not genotype [169]. When cancer initiates and develops, many clones and sub-clones emerge 

that are genetically heterogeneous with many of them presenting the same phenotype such as 

the Warburg effect (WE) phenotype [45]. The emergence of one phenotype from many clones 

with different genetic backgrounds implies the fitness of the selected phenotype to the selection 

forces. The WE phenotype is associated with progression and invasion of many cancers and is 

defined by a high glycolytic rate in the absence or presence of oxygen (aerobic glycolysis). Most 

cancer cells reprogram their metabolism in favor of aerobic glycolysis despite the presence of 

plentiful oxygen in their microenvironment, implying higher fitness of WE phenotype. 

During the evolution of tumor cells and through adaptation to constantly variable 

microenvironment, tumor cells adapt and acquire phenotypes helping them survive and grow. 

These acquired characteristics can be used as a new vulnerability against them. As mentioned 

previously, we recently showed that certain targets for inhibition of glycolysis have increased 

effects of inhibition at a lower intracellular pH [53]. To test this principle, I coupled Diclofenac, a 

compound I demonstrated to be a potent inhibitor of MCT’s, with koningic Acid, a known 

inhibitor of GAPDH. The MCT inhibition by Diclofenac provided a decrease in phi in vitro which I 

believe enhances the effectiveness of KA, based on the previous work. In this paper I showed 

that targeting the WE phenotype in mixed populations of cells can stabilize the population 
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dynamics, preventing more glycolytic populations from taking over as they typically would. We 

used a simple model of co-culture of two cell lines with extremely opposing characteristics: 

MDA-MB-231 cells that are triple-negative fast proliferating, tumorigenic and metastatic in 

mouse xenograft models that are also highly glycolytic with WE phenotype and MCF7 cells that 

are ER/PR positive, slow-growing and tumorigenic in mouse xenografts with the help of 

estrogen pellets but not metastatic and very low glycolytic and not WE phenotype. The co-

culture of these two cell lines was used as a simple population model of tumor heterogeneity to 

monitor the population dynamics of the tumor. In the future, these findings will be confirmed and 

expanded in a more complex, transgenic tumor model, to observe the effect of real intratumor 

heterogeneity in cell subpopulation. Using this metabolic targeted strategy, I showed that it may 

be possible to control tumor population dynamics and heterogeneity. This metabolically targeted 

treatment strategy was able to successfully control tumor growth and metastasis in the mouse 

xenograft model. Therefore, we propose a novel strategy of cancer control for the tumor where 

a cure is not an option. We propose evolutionary principles of tumor growth that can be used to 

control tumor cells’ clonal or sub-clonal population in favor of slower growth and less damage to 

patients. 

METHODS 

Cell culture 

MCF-7 and MDA-MB-231 cells were acquired from American Type Culture Collection 

(ATCC, Manassas, VA, USA, 2007–2010) and were maintained in DMEM-F12 (Life 

Technologies, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (HyClone 

Laboratories, Logan, UT, USA). Cells were tested for mycoplasma contamination and 

authenticated using short tandem repeat DNA typing according to ATCC’s guidelines. Cells 

were treated with diclofenac (1 μM) and/or koningic acid (1 μM) dissolved in the media of the 

cells. 
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Hypoxia cell culture 

For hypoxia conditions we used a Biospherix X-Vivo Hypoxia Chamber. The conditions 

in each hypoxia chamber kept at 37 °C, 5% CO2, with 0.1% O2 and 94.9% N2 or 1.0% O2 and 

95% N2. The chamber was quality controlled and calibrated according to the manufacturer’s 

specifications (Biospherix, Parish, NY, USA). 

Transfection (GFP/RFP plasmids) 

To establish stable cell lines, the MCF-7 and MDA-MB-231 cells were infected with 

Plasmids expressing RFP or GFP using Fugene 6 (Promega, Madison, WI, USA) at early 

passage and were selected using 2 µg/mL puromycin (Sigma, St. Louis, MO, USA). 

Mettler Toledo Five EasyTM/FiveGoTM pH Meter 

The pH meter was first calibrated by using standard pre-made calibration buffer 

solutions for pH 4, 7, and 10. Then using the pH probe the pH of the control media used to grow 

the spheroids was measured. This pH was used as a baseline to compare the pH of the pHe 

media of the spheroids. 

Viability assays 

CCK8 Cell viability was measured after treatment with drugs (diclofenac and koningic 

acid or both) and DMSO as control using Cell Counting Kit-8 (CCK-8) under different 

microenvironmental conditions such as normoxia, hypoxia, normal pH, or low pH. CCK8 is a 

sensitive colorimetric-based viability assay based on Dojindo’s highly water-soluble tetrazolium 

salt, with WST-8 as its active agent. CCK8 was used to measure viability as it is not pH 

sensitive and can be added to the cells directly in their niche, without fixation or change of 

media. For measuring viability, cells were seeded in a 96-well plate (with triplicate of the same 
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samples), and viability was measured at the indicated intervals. The experiments were repeated 

at least two times. 

CellTiter-Glo® This 3D Cell Viability Assay is designed to determine the number of 

viable cells in 3D cell culture based on quantitation of the ATP through based on Luminescent 

Cell Viability Assay chemistry. The lytic capability of the reagents is much higher than the 2D 

assay and the assay is compatible with 96 well-plate formats of our spheroid experiments that 

make it ideal for high-throughput screening. In our assay 72 h after treatment of spheroid with 

inhibitors, the lysis buffer directly added to each well containing one sphere of MDA-MB-231 or 

MCF7 cells. The plates were incubated in RT for 10 min on a rocking shaker. Then the assay 

mixture containing luciferin and luciferase was added and the luminescent was measured after 

5 min incubation in RT. 

Glycolytic rate measurements (Seahorse) 

Glycolytic rate of MCF7 and MDA-MB-231 cancer cells was measured using Seahorse 

XF96 extracellular flux analyzer and a glycolysis rate kit (Seahorse Biosciences, Billerica, MA, 

USA). All the seahorse experiment has been performed in the absence of CO2/HCO3−. Oxygen 

consumption rate (OCR) and extracellular acidification rate (ECAR) of cancer cells were 

determined by seeding them on XF96 microplates in their growth medium until they reached 

over 90% confluence. In these studies, seeding started with 20,000 cells (80% of the well area). 

Measurements were determined 24 h later when the cells reached 90% confluence. One hour 

before the seahorse measurements culture media were removed and cells were washed 3 

times with PBS followed by the addition of base medium (non-buffered DMEM supplemented 

with 25 mM glucose). Finally, data were normalized for total protein content of each well using 

the Bradford protein assay (ThermoFisher, Waltham, MA, USA). Seahorse measurements were 

performed with 4–6 technical replicates and these experiments were repeated at least 2 times. 
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The WE phenotype (“Warburgness”) can be expressed as the ratio of glycolysis (ECAR) to 

oxidative phosphorylation (expressed as the oxygen consumption rate, OCR) from the GST. 

Metabolic profiling 

Cells were seeded in a regular 96-well plate for 2D culture and in U bottom 96 well 

plates for 3D spheroid culture in their growth medium containing 10% FBS under standard 

culture condition. Once cells reach 90% confluence for 2D or caring capacity for 3D (usually 

when the growth of spheres is steady and they don’t get bigger), the growth media were 

removed and placed in a new 96 well plate with the same order as the original plate for 

metabolic profiling using YSI machine (YSI 2900 multi-analyte system (YSI, Yellow Springs, OH, 

USA)). We used at least 150 μL of media in each well to make sure there was enough media for 

each assay in the machine. Sensors in YSI were changed weekly and calibrated before each 

experiment. Final data of the lactate, glucose, glutamine, and glutamate in conditioned media 

were normalized to the protein amount per well or the confluency of each well imaged right 

before metabolite measurements. 

MCT activity 

Cells were plated on four chamber Lab-Tek chambered cover glass slides 1 day prior to 

experimenting, and cultured in RPMI media containing 10% FBS and 1% P/S. On day of 

experimentation, media was replaced with RPMI containing 10% FBS, 1% P/S, 25 mM HEPES, 

and 25 mM PIPES, to stabilize pH while outside of the 5% CO2 incubator. Once the assay was 

ready to begin for a given group, 5-(and-6)-Carboxy SNARFTM-1, Acetoxymethyl Ester, Acetate 

was added 8 min prior to experimentation at a concentration of 10 μg/mL. Prior to 

experimentation, the pH calibration curve of the 5-(and-6)-Carboxy SNARFTM-1, Acetoxymethyl 

Ester, Acetate dye was conducted using the nigericin method as described previously [196]. 

Once the 8 min incubation period was up, imaging began and superfusion with the 30 mM 
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lactate solution (solutions listed in extended data file) and the SNARF-1 ratio was allowed to 

stabilize. The superfusion setup used in the experiments consists of a peristaltic to flow the 

media, a custom manufactured fluidic switch system which allows for the rapid changing of 

solutions, and a vacuum pump to aspirate media from the opposite side of the chamber. Once 

stabilized, cells were instantaneously switched to the 0 mM lactate solution and maintained in 

such until the velocity of the SNARF-1 ratio began to level off. Cells were then switched back to 

the 30 mM lactate condition and allowed to stabilize again. Once stabilized, the cells were 

switched to the same 30 mM lactate solution, this time either containing (X concentration of 

Diclofenac or Aspirin). Cells were maintained in the drug treatment solutions for 20 min in order 

for the drugs to take effect, and then switched to the 0 mM lactate solution containing the same 

concentration of drug they were treated with. 

pHi measurement 

Cells were plated on four chamber Lab-Tek chambered cover glass slides 1 day prior to 

experimentation and cultured in RPMI media containing 10% FBS and 1% P/S. On day of 

experimentation, media was replaced with RPMI containing 10% FBS, 1% P/S, 25 mM HEPES, 

and 25 mM PIPES, to stabilize pH while outside of the 5% CO2 incubator. Once the assay was 

ready to begin for a given group, 5-(and-6)-Carboxy SNARFTM-1, Acetoxymethyl Ester, Acetate 

was added 10 min prior to experimentation at a concentration of 10 μg/mL. After the 10 min, 

cells were washed 2 times with drug containing media and fresh drug containing media was 

resupplied to the cells. Change in pHi caused by each drug was measured by converting the 

SNARF-1 ratio to pHi and comparing pre- and post- treatment pHi’s. 

Spheroid mono- and co-culture 

Perfecta3®96-Well Hanging Drop Plates or non-adhesive U shape bottom 96 well plates 

were used to grow the primary spheres containing 10,000 total cells. 10% Matrigel was used for 
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the primary spheroid construction as follows. After cells were counted they were diluted as 200 

cells per μL of media. Then the cells mixture was cooled down in ice for 10 min and 10% 

Matrigel (melted in ice in the 4-degree Celsius walk-in fridge overnight) was added and directly 

seeded in the U plates. The plates were centrifuged for 1 min 500 RPM. For each experimental 

condition, the ratio between MCF-7-GFP and MDA-MB-231-RFP was 0, 50, or 100 percent as 

follows: 0/100, 50/50, 100/0. Each ratio had 4–8 replicates for each experiment. An Incucyte 

microscope kept at 37 °C and 5% CO2 was used to image the spheroid growth every 6 h over 

approximately 30 days. Images and fluorescent intensity were analyzed in Incucyte built-in 

software and image J. Relative fluorescent units (RFUs) were normalized by averaging 

red/green fluorescence when the corresponding cell type was absent then subtracting this value 

from other fluorescent values of that cell type. Drug treatments were directly added to the 

growth media of the spheroids and renewed every 3 days. 

Animal experiments 

MCF7 and MDA-MB-231 breast cancer cell lines were grown in T-225 flask and 

harvested at 70–80% confluency. Both cells were authenticated by short tandem repeat 

analysis and tested for mycoplasma. 10 million cells in 200 μL cold PBS and 10% Matrigel was 

inoculated into cleared mammary fat pads of SCID mice (eight- to ten-week old females). Tumor 

measurements were done by calipers every other day and ultrasound once a week. Mice had 

free access to water and food for the whole duration of the experiment. For mixed cultures, a 

1:1 mixture of 5 million MDA-MB-231 and 5 million MCF7 cells were injected. One week before 

cell injection, an estrogen pellet (0.72 mg slow-release, Innovative Research of America) was 

implanted to allow for the growth of ER-positive MCF7 tumors. The concentration of diclofenac 

given to each mouse was 40 mg/kg. As for the KA the concentration was 1 mg/kg. These 

concentrations remained the same when the mice were treated with both drugs. The control 

mice were injected with DMSO in PBS. The mice were treated by intraperitoneal injections once 
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on Monday, Wednesday, and Friday weekly. At the end of the experiment tumors were 

extracted, then the size and weight of them were measured. Vital organs were also extracted 

and looked for metastasis. 

Animal studies were performed by the guidelines of the IACUC of the H. Lee Moffitt 

Cancer Center (that was approved by the University of South Florida IACUC committee: IACUC 

5331R).
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FIGURES 

 

Figure 4.1. Diclofenac and koningic acid reduce the glycolytic activity of cancer cells. (A) 
Schematic showing effect of Diclofenac (1 μM) to reduces the activity of MCT transporters 
leading to acidification of the intracellular pHi. Koningic acid (KA) reduces glycolytic activity by 
inhibiting GAPDH that has an alkaline pH optimum. (B) Lactate production was reduced in both 
MCF7 and MDA-MB-231 cells after treatment with diclofenac, KA, or both. (C) Glucose 
consumption was reduced in both MCF7 and MDA-MB-231 cells after treatment with diclofenac, 
KA, or both. (D) MCF7 and MDA-MB-231 cells were treated with diclofenac or Aspirin to 
measure the effect of drug on their lactate transport abilities. Line (a) represents the switch from 
a 30 mM lactate environment to a 0 mM Lactate environment. Line (b) represents the switch 
from a 0 mM lactate environment to a 30 mM lactate environment. Line (c) represents the switch 
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from a 30 mM lactate environment − drug treatment to a 30 mM lactate environment + drug 
treatment. Line (d) represents the switch from a 30 mM lactate environment + drug treatment to 
a 0 mM lactate environment + drug treatment. (E) MCF7 and MDA-MB-231 cells were treated 
with diclofenac or Aspirin to measure the effect of drug on their pHi altering effects. Line (a) 
represents the switch from a 30 mM acetate environment to a 0 mM acetate environment. Line 
(b) represents the switch from a 0 mM acetate environment to a 30 mM acetate environment. 
Line (c) represents the switch from a 30 mM acetate environment − drug treatment to a 30 mM 
acetate environment + drug treatment. Line (d) represents the switch from a 30 mM acetate 
environment + drug treatment to a 0 mM acetate environment + drug treatment. p-values are 
represented as follows: *** p < 0.001, **** p < 0.0001. 

 

Figure 4.2. Glucose consumption was reduced in both MCF7 and MDA-mb-231 cells after 72 
hours treatment with diclofenac, KA, or both. (A) Time point measurement of lactate production 
in both MCF7 and MDA-mb-231. (B) Time point measurement of glucose consumption in breast 
cancer cell lines. Data are represented as mean with SD as error bars. (C) Glutamine and 
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glutamate concentrations in conditioned media of MCF7 and MDA-mb-231 cells treated with 
Diclofenac, Koningic acid, and both compared to the non-treated control in hypoxia (0.1% 
oxygen) and normoxia. p-values are represented as follows: * p < 0.05, ** p < 0.01, *** p < 
0.001, **** p < 0.0001. 

 

Figure 4.3. ICC Analysis of MCT Expression in Breast Cancer Cell Lines. ICC staining and 
analysis of 4T1, DCIS, H605, T47D, MCF7, and MDA-MB-231 cell lines. (a) DAPI, MCT4, and 
MCT1 staining of aforementioned breast cancer cell lines under normoxic oxygen conditions. (b) 
DAPI, MCT4, and MCT1 staining of aforementioned breast cancer cell lines under hypoxic 
oxygen conditions. (c) Quantitative analysis of ICC staining. T-test p-values are represented as 
follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Figure 4.4. Diclofenac and koningic acid decrease the viability of cancer cells. (A,B) Viability of 
different breast cancer cell lines (MDA-MB-231, MCF7, MCF DCIS, MCF10AT) were measured 
in 2D using CCK8 kit under normoxia (A) and hypoxia (B) and different treatments. Diclofenac 
combination with GAPDH inhibition had the highest effect on cell viability. Interestingly other 
NSAID drugs such Aspirin or Ibuprofen didn’t have any effect on cell viabilities. Error bars 
plotted as SD. (C) Intracellular pH measurement of MDA-MB-231, MCF-DCIS, MCF7, 4T1, 
H605, and T47D cancer cells using SNARF1, after 16 h treatment. Diclofenac decreased the 
pHi significantly in all cell lines. Error bars plotted as SEM. T-test p-values are represented as 
follows: * p < 0.05, ** p < 0.01, **** p < 0.0001. 
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Figure 4.5. Media pH of cells treated with diclofenac, KA, or combination of both. T-test p-
values are represented as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

Figure 4.6. Survival assay of breast cancer cell lines in different microenvironmental conditions. 
Targeting MCTs and GAPDH under different microenvironments reduces the cancer cells’ 
viability. The effect is the most with the combination of both drugs and under the most unique 
condition of solid tumors, hypoxia, and acidic pH. The data is normalized to non-treated for each 
cell line in each condition and presented as mean with error bars as SD. T-test p-values are 
represented as follows: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 
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Figure 4.7. Diclofenac and koningic acid reduce the Warburg phenotype of cancer cells. (A) 
Oxygen Consumption Rate (OCR) and (B) Extracellular acidification rate (ECAR) of MCF7 
cancer cells treated with, KA, diclofenac, and combination of both in real-time. (C) Energy map 
extracted from A and B under different treatments. A combination of KA and diclofenac had the 
highest effect on the reduction of WE phenotype in MCF7 breast cancer cells. (D) Glycolytic rate 
assay of both MCF7 and MDA-MB-231 cells confirmed the maximum reduction of WE 
phenotype with the combination of KA and diclofenac for 72 h. All the seahorse experiments 
were done in 6 replicates per condition and the data is normalized to the protein concentration 
of the cells per each well. The data is represented as the mean with the error bars as SD. T-test 
p-values are represented as follows: **** p < 0.0001. 
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Figure 4.8. Spheroid 3D co-culture shows the role of evolutionary designed treatment in tumor 
cells population dynamics. (A) Images of the spheroids of MCF7 cells that were fluorescently 
tagged with GFP in monoculture. (B) Images of spheroids of MDA-MB-231 cells fluorescently 
tagged with RFP in monoculture. (C) Co-culture of MCF7-GFP and MDA-MB-231-RFP. The 
ratio in co-culture is 1:1 for experiment initiation. The top row are the pretreatment images and 
the bottom raw for each condition is the last time point images. Underneath the images is a 
fluorescent signal analysis of the spheroid experiment under all four treatment conditions. Each 
experiment has 8 replicates. The data are represented as mean with the error bars as SD. 
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Figure 4.9. Mono- and co-culture of fluorescently tagged breast cancer cell lines. In different 
microenvironmental conditions and with any initial ratio of MCF7-GFP: MDA-MB-231-RFP, the 
more aggressive cells, MDA-MB-231 always win. The spheroids are grown in normoxia but will 
have hypoxia at the center; considering the size of spheres that reach 1–2 mm, we know that 
the oxygen concentration can vary from normoxia at the surface of spheres to hypoxia in the 
center. 
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Figure 4.10. Animal experiments confirm the efficiency of evolutionary designed therapy. (A) 
Female NSG mice injected with a mixture of 5 million MCF7 and 5 million MDA-MB-231 breast 
cancer cells and randomized into four groups of 6 and treated with, DMSO, diclofenac, KA, and 
combination. Tumor size is measured every two or three days by calipers and also once a week 
with ultrasound. Data is presented is measurements by calipers and are mean with SD as their 
error bars. (B) The number of metastasis sites in vital organs such as liver, lungs, kidney, and 
spleen at the endpoint. The data is represented as mean with the error bars as the SD. T-test p-
values are represented as follows: ** p < 0.01, *** p < 0.001. 
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Chapter 5: Implications of Findings and Future Directions 

 At this point it should be well conveyed that the goal of this study was to further 

characterize the causes and consequences of acidosis in breast cancer. Herein, the 

implications of the findings of each study and possible future directions to better describe 

phenomena observed will be discussed.  

IMPLICATIONS OF FINDINGS, LIMITATIONS, AND FUTURE DIRECTIONS 

Chapter 3: Breast Cancer Adaptation to Acidic Microenvironment Induces a Partial Epithelial to 

Mesenchymal Transition State 

 As mentioned, deregulated energetics is a hallmark of cancer progression. In breast 

cancer, the result of this metabolic rewiring is an increase in a fermentative glycolytic 

phenotype. Consequentially, the products of fermentation must be released by the cell in this 

cycle of glucose metabolism. While vasculature clears the acidic products of fermentation, the 

rate of glucose supply and lactate removal is nearly equal, with the steady-state pH at which a 

given area of the tumor reaches, depending on the rate of glucose fermentation. This 

environment is harsh for cells, resulting is large amounts of cells death. In order for populations 

to survive, cells must adapt at the population level, or acclimate at the individual level in order to 

be sustained. Due to the imperative of cells adapting to these conditions, understanding how 

this adaptation occurs and identifying key players may provide a targetable window in 

combating tumor evolution.  

In this study, I set out to further describe how breast cancer cells are able to adapt to the 

harsh conditions of an acidic environment, and what phenotypic changes occur during this 
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adaptation. Adaptation of cancer cells to an acidic environment had been studied previously, 

with investigations showing the increased plasma membrane expression of the lysosomal 

marker LAMP2b, enhanced aggression, and an increased invasiveness and metastatic capacity 

[20, 137, 197]. It has also been shown that acute acidosis can induce expression of EMT 

markers [125, 198]. During this work, we wanted to observe the effects of chronic acidosis on 

this acid induced EMT phenotype.  

This study used MCF7 and MCF-DCIS that were adapted for growth under acidic 

conditions. Over many rounds of selection, MCF7 and MCF-DCIS cancer cells were able to be 

adapted to grow under acidic conditions, at a rate equal to those grown under normal pH 

conditions. This process was done in a previous publication and the cells used were from said 

work [20]. The significance of the demonstration that breast cancer cells could adapt to grow in 

an acidic environment was notable, because this meant that there was a significant possibility 

that populations of cells within a tumor could also adapt to grow under these conditions. In said 

publication, it was also demonstrated that the markers of this acid-adaptation were present in 

acidic environments of the tumor, further implicating this process in tumors.  

Phenotypic plasticity is a new hallmark of cancer [199]. Unlocking this plasticity is an 

important aspect of cancer progression because it allows cells to access different phenotypes to 

better adapt to whatever given current environment they are exposed to. An early indicator of 

this plastic phenotype was work done describing the stem-like properties of an epithelial to 

mesenchymal transition (EMT) observed in cancer [200]. While observed in cancer, EMT is a 

fundamental process in the normal development of embryos. EMT has gone on to be well 

described as an important factor in cancer progression, invasion and metastasis [201]. More 

recently, dynamic expression of markers from both epithelial and mesenchymal phenotypes has 

been described in circulating tumor cells of breast cancer patients [202], leading to the 

conclusion that a partial transition state is possible. It is now accepted that a partial EMT state is 
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a common cellular phenotype in breast cancer, and this partial EMT phenotype is heavily 

implicated in metastasis [203]. Prior to this work, it was shown that acidosis was able to 

modulate the expression of EMT markets in cancer cells [198, 204]. I began by confirming this 

phenotype in the acid-adapted breast cancer cell lines and found that the cells had 

characteristics of both epithelial and mesenchymal cells, placing them in the partial EMT 

category. This was a substantial finding, as we now know and was just mentioned, a partial 

EMT phenotype is heavily associated with a metastatic phenotype in cancer [203]. Having 

access to both the characteristics of epithelial and mesenchymal phenotypes may allow a cell to 

better adapt to the dynamic environmental conditions within a tumor, if they are able to 

modulate their state based on the given environment. It is possible that the acid-adaptation 

process selects for cells already exhibiting this hybrid EMT phenotype, with an ability to tune 

their phenotype to the acidic environment for survival. 

To further investigate this partial EMT phenotype in the acid-adapted cell populations, 

our collaborators conducted an integrative analysis of proteomic and transcriptomic data from 

the acid-adapted cell lines. This led to the discovery of the S100 family proteins, S100B and 

S100A6 as upregulated in the acid-adapted cell lines, associated with the EMT process. S100 

proteins are Ca2+ binding proteins. S100B is expressed in a large number of cell types and has 

been shown to modulate STAT3 and NF-κB pathways [205-207]; while also being associated 

with poor prognostic outcomes in breast cancer [208]. S100A6 has been shown to modulated 

apoptotic pathways [209, 210] and was previously associated with tumorigenesis in a variety of 

cancer types [211]. I further went on to validate the expression of S100B and S100A6 in vitro 

and S100A6 in samples from breast cancer patients. It was found that the expression of 

S100A6 was significantly higher in breast cancer patients of any stage, compared to normal 

breast. The significance of this finding is broad and deep, with these proteins being heavily 

implicated in driving the EMT process in other cancer types [212, 213], and cells expressing 
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high levels of S100 family of proteins being shown to be selected for in pancreatic cancer while 

driving a partial EMT phenotype and metastasis [214].  

In total, I showed that cells adapted to an acidic microenvironment display a partial EMT 

phenotype. We then conducted integrative transcriptomic and proteomic analysis to identify 

S100A6 and S100B as upregulated hits in multiple acid-adapted breast cancer cell lines. These 

hits proved to be significant, as they were validated by in vitro ICC staining and in breast cancer 

patients by IHC staining of patient samples. Evidence from this work, taken with other studies 

conducted on the role S100 proteins play in the EMT and metastases processes, suggests that 

adaptation of cancer cells to an acidic environment in breast cancer may be interrelated with the 

EMT process and ultimately, metastasis and mortality in patients.   

As mentioned previously, the goal of this study was to investigate the role adaptation to 

an acidic microenvironment plays in the EMT process and which protein players may be 

contributing to this transition. As with any study, there exist limitation to the methods of 

investigation.  

 We began the study by demonstrating a heterogeneous change in expression of EMT 

associated markers in the acid-adapted MCF7 cell line. I did this with both 

immunocytochemistry (ICC) and quantitative PCR (qPCR). The purpose of using these methods 

of expression detection was both to validate any changes in expression, and also to check for 

discrepancies between the two methods, as expression changes in protein and RNA levels are 

not always in agreement. While reproducible, these results are limited as there was only one 

method of protein detection and one method of RNA detection used. For further validation, 

protein expression techniques such as western blotting or flow cytometry could have been used, 

as functionally, protein levels matter most for the state of a cell. Additionally, these expression 

experiments could have been conducted in another acid-adapted cell line in order to confirm the 
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phenotype observed. Although, we felt this unnecessary as the association between long-term 

acidosis and EMT had already been demonstrated by other groups.   

 After we had identified the hits from the integrative proteomics and transcriptomics 

analysis, I then set out to validate these hits. I did so using ICC as a measure for expression of 

the two identified hits, S100A6 and S100B. I also stained for LAMP2B as a control, which is an 

established marker of an acid-adapted breast cancer phenotype. A similar critique to the 

validation of EMT marker expression, more in vitro methods could have been done here to 

confirm the expression of the S100A6 and S100B proteins. At the time, it was not felt to be 

necessary as the hits came from the previously well carried out proteomic and transcriptomic 

analysis from the same cell lines. It was also planned to carry out analysis of expression of 

S100A6 in a tumor microarray (TMA) of patient samples, which has more clinical significance 

than any in vitro analysis of cell lines.  

 The in vivo analysis of the expression of S100A6 was carried out in a TMA of breast 

cancer patient samples. The TMA contained samples from normal breast, DCIS, IDC and IDC 

with metastasis. I stratified the patients by these subtypes and compared expression of S100A6. 

While I found an increase in S100A6 with progressing subtypes, it may have also yielded 

significant results if I classified patients in another manner, such as their molecular subtype. 

While I validated S100B in vitro, resources only allowed us to validate S100A6 in the patient 

samples, so a clear additional step would have been to conduct these same analyses with 

expression of S100B in patients.  

 For additional experiments that could have been outside of further validating what I had 

shown, more could have been in implicating S100A6 and S100B in the mechanism of the EMT 

process. While no claims were made that the EMT process was a direct result of S100A6 of 

S100B expression, determining if a knockout of either of these proteins hindered the acid-

adaptation process or attenuated the acid-adapted EMT phenotype would have been an 



87 
 

obvious additional step. Additionally, it could have been tested if over-expression of either of 

these proteins in the parental cell line could produce an acid-resistant phenotype similar to the 

acid-adapted cell lines.  

 In total, the work done in this study demonstrated that MCF7 cells adapted to survive 

under acidic conditions display a partial EMT phenotype. The answer to whether the adaptation 

process induced the EMT phenotype or if the EMT phenotype is preexisting and selected for, is 

still up for question. Our integrative analysis approach identified hits in the S100A6 and S100B 

proteins, which were shown to be upregulated in the acid adapted MCF7 cells at the protein 

level via ICC. Lastly, we demonstrated that S100A6 expression increases with staging in breast 

cancer patients, and a decrease in survival of patients with DCIS breast cancer is associated 

with higher expression of S100A6. After further investigation, S100A6 may provide a reasonable 

target in the selective targeting of acid-adapted cell populations in patients presenting with early 

stage breast cancer.  

Chapter 4: Inhibition of glycolysis allows for breast cancer control 

 Breast tumors are reliant on glucose metabolism and ultimately carry out abnormal 

levels of glucose fermentation. This fermentation is the main contributor to the overarching 

theme of this work, tumor acidosis. By targeting glycolysis, it is possible that one would be able 

to not only inhibit breast cancers main metabolic pathway, but also attenuate the acidic 

microenvironment that is a driver of tumor evolution and progression. 

In this study I set out to build upon previous work demonstrating in silico that inhibition of 

GAPDH under conditions of enhanced acidity within the cell may provide a unique therapeutic 

vulnerability in breast cancer [53]. Inhibition of glycolysis in the treatment of cancer is not a 

novel strategy, as there have been previous groups to show the effect inhibition of glycolysis 

has on tumor growth and cancer cell death [215, 216], but the approach used was novel. 
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Recently, it has been shown that discriminating tumor subpopulations by their adaptive 

strategies, or phenotype, rather than their genotypic or transcriptomic identity may provide 

better insight into tumor populations and their evolution [131]. Therefore, our strategy was to 

target the glycolytic phenotype as a whole, rather than a specific molecularly identifiable 

subpopulation.  

 I began this study by validating the efficacy of the drugs in slowing the glycolytic rate of 

breast cancer cells, via the metrics of glucose uptake and lactate secretion. The drugs chosen 

were diclofenac sodium and koningic acid as the pH decreasing agent and GAPDH inhibitor, 

respectively. I then went on to validate that the drug chosen to lower the intracellular pH of the 

cells, diclofenac Sodium, carried out its intended function of inhibiting monocarboxylate 

transporters (MCTs), the main transporters of lactate and protons in cancer. By slowing the 

release of protons, the intracellular pH would decrease. Previous studies suggested that 

diclofenac Sodium was an inhibitor of MCT transport in T-cells [170], and I confirmed this finding 

using an instantaneous measure of lactate transport in the breast cancer cell lines. This is 

significant as diclofenac Sodium is a common therapeutic agent in the formulation of creams 

designed to relieve arthritic and muscle pain. The accepted mechanism of action for diclofenac 

Sodium is as a cyclooxygenase-1 and -2 (COX-1 and -2) inhibitor, but there are many other 

reported mechanisms of action in the literature [171]. Demonstrating that diclofenac Sodium is a 

potent inhibitor of lactate transport may explain its high efficacy in relieving muscle pain and 

inflammation, as muscle and immune metabolism are highly dependent on lactate export [217, 

218]. The use of koningic acid as a GAPDH inhibitor was not novel, as its inhibition has been 

heavily characterized in previous studies [189, 219], including its use in targeting the Warburg 

effect [173]. 

We then went on to demonstrate that diclofenac and koningic Acid were effective at 

decreasing breast cancer cell viability, both individually and in combination. Notably, decreases 
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in viability were not observed with treatment from aspirin or ibuprofen, both known to be 

inhibitors of cyclooxygenases, further strengthening the evidence for diclofenac’s other 

mechanisms. To determine if I had achieved the desired effect of lowering the intracellular pH, I 

measured the intracellular pH of the breast cancer cell lines after treatment with diclofenac and 

observed significant decreases in most groups. Notably, the decreases in intracellular pH were 

not as severe as would be expected with the observation of total lactate flux inhibition from 

diclofenac. It has since been described that inhibition of MCT inhibitors alone does not reduce 

the overall flux of lactate production due to a proportional increase in the transmembrane driving 

force of lactate upon inhibition of extracellular lactate flux [220]. To determine how treatment 

with diclofenac and koningic acid effects the metabolism of breast cancer cell lines, Seahorse 

measurements of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR). 

With these experiments, I showed that combination treatment with diclofenac and koningic acid 

results in breast cancer cells exhibiting a more oxidative state.  

Cellular populations within a tumor are highly heterogeneous and independent, and as 

such they must compete with each other for survival. This is a result of Darwinian selection by 

survival of fittest, and understanding what allows one population to outcompete another may 

help in our understanding of tumor progression. Competition experiments among cancer cell 

lines have been done to model how two distinct populations within a tumor may interact and 

compete with one another [195]. In this work, I conducted spheroid competition experiments 

with MCF7 and MDA-MB-231 breast cancer cell lines. It was observed that when cultured in 

mixture, the MDA-MB-231 cell line quickly and consistently took over the population. Given the 

phenotypic nature of these two cell lines, I equate this to a highly glycolytic and aggressive cell 

line being able to outcompete the more benign. Interestingly, when treated with diclofenac, 

koningic acid, or the combination of the two, the population dynamics of the two cell lines were 

more stable, and the two co-existed in the spheroid. To validate if this was caused by the effect 
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of these drugs on metabolism, I repeated the co-culture of MDA-MB-231 and MCF7 in 

spheroids with media containing different concentrations of glucose and different pH levels. I 

found that growing these co-culture spheroids at low pH allowed for the extended maintenance 

of the MCF7 population. Low pH is known to be a potent inhibitor of glycolysis and lactate 

transport, as is the combination of diclofenac and koningic acid. Notably, it has been shown 

previously that competition between cancer cell populations results in tumor suppressing effects 

[221].  

To finish this study, I wanted to measure the effect the drug combination of diclofenac 

and koningic acid would have on tumor growth and metastasis in vivo. We conducted a tumor 

growth experiment with injections containing a 50:50 ratio of MDA-MB-231 cells to MCF7 cells. 

We observed a slight but significant decrease in tumor volume at the end point in the group of 

mice treated with the combination of diclofenac and koningic acid. The most striking result from 

this experiment was the difference in presence of metastases. In the group of mice receiving 

treatment with the combination of diclofenac and koningic acid, there were 0 metastases 

present in any of the 6 mice. This result was significantly less metastases compared to not only 

the control group, but also the two monotherapy groups receiving only diclofenac or only 

koningic acid. It is estimated that 90% of cancer deaths are attributed to metastasis [222]. 

Creating a treatment strategy that is effective at preventing metastasis could have significant 

clinical impact. Most patients presenting with only a primary tumor will receive resection or some 

cytotoxic treatment with the goal of decreasing the tumor burden. Our treatment strategy did not 

reverse tumor growth, and as such would be difficult to implement as a first line therapy. Where 

this strategy may hold bearing is as a maintenance therapy after the tumor burden has been 

reduced, in order to prevent the growth of spontaneous or dormant metastasis that frequently 

occur in breast cancer patients who received prior treatment.  
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While this work holds a place in the larger sum of literature, there were limitations to the 

methods of investigation used. In this study I set out to test the efficacy of a proof-of-concept 

treatment strategy proposed in publication by our group and others, previously. This involved a 

dual-drug therapy targeting the glycolytic pathway, in which a GAPDH inhibitor was used, and 

its effect acted synergistically with a decrease in intracellular pH. Studies involving 

demonstration of efficacy of these drugs in achieving their intended effects on cell metabolism 

were comprehensive, demonstrating how these drugs worked in tandem to alter tumor 

population dynamics and growth could have been improved by additional experiments.   

 During my spheroid experiments, I conducted mixed cultures of MCF7 and MDA-MB-231 

cell lines. While MCF7 and MDA-MB-231 represent two opposite ends of the breast cancer 

spectrum, being hormone receptor positive and lowly metastatic vs hormone receptor negative 

and highly metastatic, the study would have been enhanced by including competition 

experiments conducted with a range of cell lines. The changes in population dynamics observed 

with drug treatment or changes in microenvironmental conditions may not hold true if two cell 

lines of the same receptor status or of similar metastatic nature were pitted against one another. 

Another notable and contradictory finding in the spheroid experiments was that of viability. 

When treating spheroids with the diclofenac and koningic acid individually or in combination, 

decreases in growth were observed, but cell death did not appear to be occurring. In our CCK8 

viability assays, it appeared that the drugs were inducing cell death. The CCK8 assay relies on 

dehydrogenases for its efficacy. It is possible that our drug combination was altering 

dehydrogenase activity, without having the large affect on viability that we observed. In the 

future, conducting viability assays with alternative measures would be suggested.  

 Once I determined that treatment with the dual-drug therapy was sufficient to maintain 

heterogeneity among the mixed culture of MCF7’s and MDA-MB-231’s, I wanted to determine 

what this would mean for tumor growth and metastasis. During this we showed that the drug 
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combination was successful in decreasing tumor volume and metastasis. While we would not 

have been able to ensure the same distinct heterogeneity our model had (mixture of two cell 

lines) it may have been beneficial to observe the effects of this treatment on a different model of 

breast cancer metastasis. This would have given a more broad significance to the findings, and 

may have aided in pushing these findings in the clinical direction. For the investigation of 

metastasis, it may have also been beneficially to image resected tissues to check for the 

presence of fluorescently labelled cells, in order to ensure that while there were no visible 

presence of metastasis, there were also no micro-metastases present.  

 An interesting relationship that was observed in this study was between cancer cell 

competition, metabolism, and environment. Modulating the glycolytic pathway, altering glucose 

concentrations, and altering media pH, were all sufficient in altering the competition between 

MCF7 and MDA-MB-231 cell lines. With cancer development being an evolutionary process, 

and competition as a main driver of natural selection, understanding how cancer cells compete 

with one another for resources could provide deep insight into cancer progression. I hypothesize 

that this competition for resources is a main driver in the initiation and progression of tumors. 

Further investigation into this observation with the modulation of additional resources, or the 

competition of additional cell lines may yield significant findings about the nature of competition 

for resources in a tumor. 

 The final conclusion of the paper was that treatment of tumor bearing mice with the 

diclofenac and koningic acid dual-therapy was able to completely ablate metastasis. Metastasis 

is the number one cause of cancer patient death, and metastasis can occur after resection of 

the primary. A final direction for this work would be to see how this combination therapy works in 

preventing metastasis in a model of breast cancer recurrence, in which the primary has been 

removed. If effective, this treatment strategy may be effective as a post-operative therapy for 

patients who do not present with metastases, but are at high risk for recurrence or metastasis.  
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 In summary of this work, it was demonstrated that diclofenac sodium is a potent inhibitor 

MCT function. We also demonstrated that treatment of cells with diclofenac was able to 

decrease the intracellular pH of breast cancer cells, providing an opportunity to test our 

therapeutic strategy. The diclofenac and koningic acid combination therapy was effective in 

reducing the Warburg phenotype of the cells and altering the cells fermentative metabolism. 

Treatment of MCF7 / MDA-MB-231 co-culture spheroids with our diclofenac and koningic acid 

combination therapy was sufficient to maintain population heterogeneity, allowing the MCF7 

population to be maintained when it otherwise would not. Lastly, treatment of in vivo mouse 

models implanted with MCF7 / MDA-MB-231 cell mixtures with our diclofenac and koningic acid 

combination therapy was able to significantly decrease tumor growth and completely ablate 

visible metastasis. With further investigation, this treatment strategy may have an opportunity to 

provide therapeutic benefit to post-operative breast cancer patients in the future.  

CONCLUDING REMARKS 

 In total, the aim of this work was to further the fields’ understanding of how acidosis 

alters the phenotype of breast cancer cells, and to present an alternative strategy for how one 

may go about targeting the acidotic phenotype in breast cancer. There is no doubt that acidosis 

contributes greatly towards altering the phenotype of breast tumors. Understanding the 

culmination of the effects it has, and how the causes or consequences of acidosis can be 

attenuated to improve patients’ outcomes should be an imminent mission of the cancer research 

community.  
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