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Using Digital Twins to Protect Biomanufacturing from 
Cyberattacks 

 

Brenden Fraser-Hevlin, Alec W. Schuler, B. Arda Gozen,                                    

and Bernard J. Van Wie 

 

 

1. Introduction 

Cybersecurity is critical to the national defense of the United States. This security 

interest also includes the biological domain in which medical information and 

biological systems are at severe risk. Attacks in both the cyber and biological 

domains can severely compromise national security and have shared 

characteristics: they are complex, fast paced and covert in nature, and difficult to 

predict. They have relatively low costs compared to traditional weapons, and they 

can significantly impact the effect of conventional attacks if used in combination.1 

A major intersection of these domains lies in the field of biomanufacturing: 

specifically, the production of biological medicines and devices for making them. 

Recent developments have resulted in increased focus on cybersecurity in this field. 

In 2019, the U.S. Bipartisan Commission on Biodefense held a panel to assess 

cybersecurity threats in the biotechnology industry, specifically examining the 

security vulnerabilities that would arise from the combination of cyber and 

biological domains.2 Dixon (2021) raised the issue of cybersecurity in biological 

systems as a potential new grey area in warfare. He defines “cyberbiosecurity” as 

a form of defense that covers the biological and medical information that comes at 

risk when living and nonliving systems are combined.2 New devices like biosensors 

are one example of potential risks. They can be used to monitor biological 

parameters in real time; while they are intended to observe the growth and health 

of living materials like cells, they could also be used in monitoring of biological 

weapons, as a surveillance tool. Another example arises with companies using 

bioinformatics algorithms to synthesize Deoxyribonucleic Acid (DNA) and 

proteins. The field of synthetic biology has seen the application of semiconductors, 

computer aided design and Artificial Intelligence (AI) being used to design and 

build biological material.2 The possibilities for scientific innovation in this field are 

considerable but introduce dangerous security risks. Biological research data could 

be exposed, or sequences of proteins could be altered to make faulty or even toxic 

molecules rather than the intended biopharmaceuticals.2 Thus, to fully assess these 

risks, the commercial biotechnology industry must be examined further.      

 

Biomanufacturing is on the verge of a fourth industrial revolution. The 

creation of artificial intelligence, machine learning, and cloud data storage has led 

to the rise of this Industry 4.0, which will allow for smarter, leaner, and faster 
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manufacturing in comparison to the past.3 Thanks to the continued development of 

the Internet of Things (IoT), it is now possible to fully monitor production in 

unprecedented ways, with a dynamic connection between physical systems and 

digital cloud analytics.3 Biotechnology has recently been expanding beyond the 

production of primary and secondary metabolites to new products such as cells and 

biological tissues.4  The recent rise of these new technologies has been a response 

to the increasing complexity of producing medicines. With these products, real-

time sensing and control is a necessity to ensure that the medicines retain their 

quality and can be manufactured efficiently and economically. Integration of cloud 

data analytics allows for process updates as soon as any change occurs, and 

integration of dynamic models to predict product outcomes. Even the Food & Drug 

Administration (FDA) has begun development on studies of models that can be 

used in regulation of real-time processes using cloud data, helping address the lack 

of standardization of this new technology.5 One newer concept in this field is digital 

twins: virtual systems that match the dynamic behavior of physical machines.5 As 

shown in Figure 1, a digital twin generally involves a physical product transmitting 

data to a cloud or internet-connected device, which then sends data to a virtual 

machine. Digital twins often incorporate process models, including first principles 

models (based on process physical properties and kinetic models), as well as 

compartmental models and hybrid models that incorporate AI and machine 

learning.3 With the high sensitivity of biological products, having a digital twin can 

be extremely valuable. Recent surveys found that 75% of companies that were 

using Internet of Things (IoT)-connected devices were  also using digital twins or 

plan to start using them.6 Digital twins generally use either mechanistic, 

(mathematical model-based) or data-driven (machine learning) approaches to 

simulate the production of their counterpart systems. Park et al.7 identified kinetic 

modeling as an ideal mechanistic method to represent the growth of cells and 

integrate a process with a digital twin. They show many bioprocessing operations 

are based on fundamental kinetic models, and addition of digital twins allows for 

 
Figure 1: Digital Twin Reactor Technology. The system includes a simulated primary 

reactor, with connection to a digital twin and real-time collection and transfer of cloud data. 
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real-time integration of a mechanistic model with the actual process, updating the 

bioprocess as needed based on predictions from the kinetic model. They argue 

digital twins also provide value given their ability to combine inputs from numerous 

sources and compare these inputs to key process indicators in real time. Digital 

twins, along with machine learning and data analytics, may also have utility in 

predicting and detecting cyberattacks of complex IoT-enabled manufacturing 

processes.   

 

Digital twins have many useful advantages, including lower machine 

downtime, enhancement of planning and scheduling in production, and 

performance of virtual commissioning  (i.e. providing a “commission twin” that 

simulates a process before investing real resources and expenses).6 The ability of 

digital twins to collect and analyze data from every stage of a product life cycle, 

and connect to the IoT in real time, is significant.3 Nonetheless, these innovations 

introduce new vulnerabilities that could be exploited by cyber criminals. The 

biomanufacturing industry is highly susceptible, with current cyber defenses 

considered by experts to be at an inadequate level. Any disruption to the global 

production chain can be massive, with the recent COVID-19 pandemic as a 

significant example.8 The healthcare sector has already been targeted frequently by 

hackers in the past. From 2010-2019, the number of data breaches in healthcare in 

the U.S. went up by 10% each year.9 In 2017, Merck & Co was targeted by 

ransomware hackers, causing the shutdown of their computer systems used to 

control manufacturing causing a major delay in vaccine distribution, and total 

expenses of $1 billion.9 With the frequent advances and increased sophistication in 

cyber attacker technology, these events are only expected to become worse. 

  

There is a need for standardized methods to track the collection of real-time 

data in networked operations and design with cyber protection in mind. Mylrea et 

al.8 proposed a framework for use of digital twins in this industry, which would be 

expected to improve preparedness for these attacks over time. The current gaps in 

digital twins are tied directly to cybersecurity, with technology, policy, and the 

workforce all identified as lacking effectiveness to detect and prevent cyberattacks. 

In general, there is a need for better cyber-physical monitoring, enhanced security 

control, and improved audit trails.8 The future of process control development will 

be key in providing both improvements to digital twin performance, and overall 

improvement in cyber protection for Digital Twin (DT) systems. Already, the 

chemical industries have integrated model predictive control and self-optimizing 

control, which use algorithms based on historical process data.10 Now, these 

advances must be applied in the new, but rapidly growing biomanufacturing 

industry. Previous work has demonstrated successful implementation of process 

control for cybersecurity in physical systems. Balta et al. created a digital twin 

architecture for an existing commercial 3D printer system, collecting data and 

introducing attacks that interrupted the system’s performance, with anomaly 

detection models designed to communicate with a novel network controller and to 

provide counteract attacks.11 Yet, examples of physical system implementation 

specifically for the biomanufacturing sector are limited. Currently, this field is 
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exposed to cyber-intrusion and would benefit from the development of process-

control based systems to prevent attacks.  

 

 In the present study, we propose a novel model system in which process 

control principles are used in tandem with a digital twin to detect cyberattacks and 

faults on a simulated small-scale biotechnology operation. The system provides a 

baseline to study the behavior of process control-based cybersecurity integrated 

with digital twins in a highly sensitive biologic process. This allows for efficient 

control of the process, but also prediction of the impact of sending cloud data to a 

digital twin wherein there are associated vulnerabilities. We lay the groundwork for 

further development of this critical technology, demonstrating the importance of 

being able to deliver real-time data using predictive models to increase efficiency 

and ultimately lower the cost of the process. The system is based on a novel 

Centrifugal Bioreactor (CBR) with for cancer immunotherapy.12 Expanding on the 

past development of the CBR, we now introduce a real-time process control 

framework to automatically regulate cell growth associated metabolites and 

simultaneously prevent cyberattacks. We have introduced a Digital Twin Reactor 

(DTR) counterpart which can collect data via Wi-Fi from the CBR in real time, and 

a simulated hack method that sends false data to the digital twin. In our system, we 

grow a culture of bovine killer T cells in a Simulated Physical Reactor (SPR) 

standing in for the CBR, with hacked signals sent to the DTR over a two-week 

period. In this study we seek to demonstrate successful integration of a real-time 

control system, to model, predict, and mitigate impacts of potential cyberattacks on 

biomanufacturing. The goal is to provide efficient process control while 

compensating for the associated vulnerabilities of delivering valuable cloud data. 

Our control system uses a DTR to increase efficiency and connect the capabilities 

of cloud analytics and machine learning, while also anticipating the possibility of 

cyberattacks that this introduces. 

 

2. Methods 

2.1 Centrifugal Bioreactor Design 

2.1.1 Physical Reactor Development 
 

Originally developed by Van Wie et al. for growth of mammalian and microbial 

cells,13 the CBR may be used for high density hybridomas,14 scaffold free tissue 

culture15, 16, 17 and most recently, for expansion of killer T cells for use in cancer 

immunotherapy.12 The recent developments of the system are a promising step 

forward for next generation biomanufacturing. Within this industry, 

immunotherapy is an area that will benefit from future innovations, and integration 

of digital twins and real time control. In this new form of medical treatment, a 

patient’s own immune system is used to fight cancers and other diseases; immune 

cells from the blood are isolated from the patient and expanded outside of their 

body.18 This treatment can be applied to many cell types, including Cytotoxic T 

Lymphocytes (CTLs) and genetically engineered Chimeric Antigen Receptor T 

cells.18 Currently, the process has only been made available to a select number of 
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patients, and mostly on a small scale, due to limitations in density and efficiency of 

the bioreactor systems used to expand the cells.12 The prototype system mentioned 

above and developed by Kaiphanliam et al.12 resolves these obstacles and uses a 

balance of centrifugal and fluid forces, as well as perfusion with continuous 

addition of fresh medium and removal of waste, to culture T cells faster than 

existing systems currently used in clinical and industrial settings. As shown in 

Figure 2, there are centrifugal and fluid forces acting on each cell in the chamber, 

due to the rotating motion of the reactor and the fluid flow from fresh medium 

entering the chamber, respectively. The force balance allows for achievement of 

higher cell densities and processing in a shorter time compared to existing reactor 

systems used for the same treatments. Past work has optimized the performance of 

the CBR using kinetic models, based on measured growth data from various cell 

lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Cell Growth Modeling 
 

The kinetic growth model used to represent the CBR system is based on a 

generalized set of Monod equations first published by Han et al.19 The model was 

most recently used in modified form by Kaiphanliam et al. (2023),12 to optimize 

the growth of bovine cytotoxic T cells (CTLs) in the CBR. The model accounts for 

the effects of the primary nutrients required by the cells to grow, glucose and 

oxygen, using these factors to determine the growth rate of the CTLs.12 Three of 

the primary model equations are provided here. Equation (1) represents a simplified 

equation for the cell growth rate in terms of the maximum specific growth rate, 

max, and the concentration of cells, CCell. Equation (2) provides the rate of change 

in glucose concentration inside the CBR chamber as a function of the difference 

between the glucose concentrations in the fresh feed stream entering (CG,FF) and 

the spent medium exiting the process (CG,out) as well as the volume of the system 

(VRxtr). It also includes a yield coefficient, YGC, which represents the amount of 

glucose used as cells expand. Finally, Equation (3) represents the concentration of 

dissolved oxygen inside the chamber, CO,out, based on the entrance oxygen 

 

 
 

Figure 2: Centrifugal bioreactor design. At left, conical cell chamber in the physical system 

prototype, mounted on a centrifuge disc with anti-twister tubing above. Right, balance of forces 

within a conical chamber. 
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concentration (CO,0) and the oxygen consumption rate (OCR), a measure of how 

much oxygen cells use as they grow12 and the total oxygenated fresh feed (QFF) 

plus the reoxygenated recycled medium rate. 

 

 
𝑑𝐶𝑐𝑒𝑙𝑙

𝑑𝑡
= 𝜇𝑚𝑎𝑥 ∙ 𝐶𝐶𝑒𝑙𝑙       (1) 

𝑑𝐶𝐺

𝑑𝑡
=

𝑄𝐹𝐹

𝑉𝑅𝑥𝑡𝑟
(𝐶𝐺,𝐹𝐹 − 𝐶𝐺,𝑜𝑢𝑡) − 𝑌𝐺𝐶 ∙ (

𝑑𝐶𝐶𝑒𝑙𝑙

𝜕𝑡
)    (2) 

𝐶0,𝑜𝑢𝑡 = 𝐶𝑂,0 −
𝑂𝐶𝑅∙𝑁𝑐𝑒𝑙𝑙

(𝑄𝐹𝐹+𝑅𝑒𝑐𝑦𝑐𝑙𝑒 𝑅𝑎𝑡𝑒)
     (3) 

 

2.1.3 Reactor Control Simulations 
 

In the present study, the physical CBR system is replicated via simulation in 

MATLAB Simulink, hereon referred to as the SPR. We have created a matching 

DTR in another installation of Simulink on a separate desktop computer and 

connected it to the SPR computer using MathWorks ThingSpeak, a cloud based IoT 

interface for MATLAB. Both simulations are based on the mathematical models 

introduced earlier; the model allows for calculation of live cell count based on the 

concentration of oxygen in the system. Sensor readings for glucose and oxygen are 

sent from the SPR computer to the DTR computer through ThingSpeak, integrating 

process control algorithms and allowing for real-time updating of fresh medium 

flowrates. The simulation is designed to be integrated with digital controllers, 

making it possible to transmit data from sensors and command flow rate changes 

in the actual physical CBR, and allowing for simple replacement of the virtual 

reactor with the real physical CBR system in future work.  
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The SPR simulation contains the CBR itself, sensors and pumps for glucose 

and oxygen, its controller, and a series of subsystems to emulate attacks and system 

disturbances. As shown in Figure 3 the controller receives inputs in the form of 

simulated glucose and oxygen sensor data, produced by the kinetic growth model, 

and adjusts outputs of fresh and recycled medium pumps as needed. The overall 

objective of the controller is to keep the glucose concentration above a specified 

minimum amount of 50 mg/dL while keeping the net flowrate, the sum of the fresh 

feed and recycle rates, constant until the target cell count is reached. The cell count 

is determined via calculation using the known dissolved oxygen concentration 

coupled with the oxygen consumption rate per cell per hour. This basic process 

control cycle consists of reading a moving average of glucose sensor data that has 

been contaminated with emulated Gaussian noise and increasing fresh feed rates 

when the average drops below a specified threshold, causing a spike in glucose 

concentration. Once a specified cooldown window is passed, the cycle can repeat, 

a. 

 
b. 

 
 

Figure 3: Process control simulation design in MATLAB Simulink.  (a) Design of Simulink 

model. including inputs of sensor data, response from controllers and actuators, and effects of 

cyberattack. (b) Disturbance detection and response model, showing the two possible responses 

based on whether the sensor reading falls within the normal CDF or outside of threshold, 

distinguishing attacks from faults. 
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increasing the fresh feed by larger amounts as the cell count increases until a 

maximum fresh feed rate is reached.  

 

Here, we have simulated a culture of CTLs in the SPR in MATLAB 

Simulink. The simulation utilizes the forward Euler method via Simulink’s built-in 

equation solvers to build the growth model discussed earlier and inputs the 

previously measured kinetic parameters for the CTLs12 in the model. In this work 

we set the simulation to culture cells for 300 hours at a sampling rate of 1 sample 

per sim hour, starting with an initial seeding of 1 x 106 viable cells. The process is 

modulated with a custom control framework and cyberattacks are introduced as 

discussed in the following sections. Cell growth, glucose and oxygen data have 

been collected and stored in Simulink in real-time.  

 

2.2 Digital Twin Reactor 

 

The objective in using the DTR is to provide fault and disturbance detection to the 

SPR through analysis of sensor concentrations and pump flowrates sent via 

ThingSpeak. There are eight signals (referred to as fault codes) the DTR can send 

to the SPR: no faults detected, oxygen sensor disturbance, oxygen sensor failure, 

glucose sensor disturbance, glucose sensor failure, recycle pump failure, fresh feed 

pump failure, and cyberattack detected. In general, these fault codes are triggered 

by finding unexpected differences in SPR sensor data to the DTR simulated sensor 

data, with the manner and method of the difference determining which type of fault 

is found. The fault codes are generated and sent to both the operator and the SPR, 

but no corrective actions are taken in response.  

 

2.3 Fault and Attack Simulations 

 

Although the types of faults a sensor and an actuator can experience are vast and 

varied, for the purposes of this simulation, only a single common case for each is 

considered. Based on recent experiments in which we performed initial tests on cell 

culture oxygen sensors, as well as past studies in literature,20 it is evident that 

oxygen sensor failure degrades its value to a low fixed reading that is 

experimentally determined, with small amounts of electrical noise present in the 

system. Conversely, real-time glucose sensors for cell culture, being a relatively 

recent development, have no predetermined failure condition. However, our initial 

experimental observations with a commercially purchased glucose sensor indicate 

a large increase in noise far beyond that seen during regular operation. Each of the 

actuators, the fresh medium and recycled medium peristaltic pumps, most likely 

fail by a motor, gearbox, or electrical fault, thereby shutting off their flow to the 

cell chamber. 

 

Our simulation framework features two subsystems that are used to emulate 

various system faults or cyberattacks. In the fault subsystem, each failure is 
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individually toggleable, and can be triggered at any predetermined time. The pump 

failures simulations are the simplest, and operate by reducing their respective 

flowrates to zero, regardless of controller’s commands. Known types of sensor 

faults can be categorized either as incipient failure, where the sensor readings are 

inaccurate due to insecure process conditions (even though the sensor itself has no 

actual fault), or abrupt failure, where the systems are damaged or suddenly shut 

down, which is clearly identified by major drops or increases in the sensor reading 

at the moment of the damage.21 Types of incipient failure include sensor bias, a 

very common occurrence where the sensor output is switched with a continual 

reading at an incorrect value, staying constant. Sensor drift is another type of 

incipient fault where the readings stray from the sensor’s calibration setting over 

time, with any subsequent readings going up or down as a function of time. Sudden 

failures can include damage to the system, but also noise from outside sources, 

usually due to physical impacts on the sensor.21  

 

To emulate oxygen sensor failure, assumed to be a stuck sensor fault, the 

sensed value is replaced with a fixed low non-zero value with added Gaussian noise 

at a higher level than what is typically added to the sensor, similar to methods 

discussed in previous literature.22 Glucose sensor failure, assumed to be a bias fault, 

is simulated by adding additional Gaussian noise to the sensor’s reading, with a 

range about four-fold larger than typically added by the standard noise subsystem.  

 

The attack subsystem is designed to falsify sensor data to deceive the SPR 

into making erroneous control decisions. This may be in the form of falsifying a 

system fault or may be done to convince the controller that a reactor run is 

completed despite being far from it. Faults and cyberattacks can be the most 

difficult to differentiate between if the attack is designed to simulate a sensor 

fault.23 In these attack simulations, a variety of parameters can be implemented: 

initial time of attack, attack onset time (e.g., instantly or over several timesteps), 

constant value to add or subtract, and scaling factor of sensor reading. Similar 

models have been used in literature to represent attacks of a constant linear 

magnitude24. Depending on the value of each parameter, different types of faults 

can be simulated, such as bias, drift, offset, and scaling, as well as combinations 

thereof.25,26 For example, an attack simulating a combination drift-scaling fault 

would, at a certain time and over the course of tens of samples, scale the sensor 

reading up by a scaling factor α and add a constant value δ. Conversely, a falsified 

steady-state reactor condition would consist of replacing and exponentially 

decreasing an oxygen sensor reading with a stagnant value.  

 

2.3.1 Failure and Cyberattack Detection 
 

The detection subsystem of the proposed framework is designed to differentiate 

between the three disturbances considered: noise, faults, and cyberattacks. This is 

accomplished by comparing SPR sensor data to DTR simulations in tandem with 

various analysis tools in real-time. There is wide variety of both cyberattacks and 
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faults to which a process control system may be susceptible, but in this study the 

DTR is designed to recognize only the single fault condition prescribed for each 

sensor and actuator and treats all other non-noise disturbances as cyberattacks. 

Figure 3(b) shows two of the many components of the detection subsystem that is 

used to determine the type of disturbance detected. There are several subsystems 

involved that produce unique flags as different disturbances are detected. 

Depending on the types, order, and hierarchy of flags triggered, fault source or 

attack detection flags are generated. To inform an operator that a disturbance of 

some kind has been detected, regardless of source, two precursor flags are used, 

one each for the glucose and oxygen sensor. These are triggered preemptively when 

any subsystem detects a problem and waits for additional faults to occur before 

deciding on the source and cause of the issue. Although these flags are generic and 

can be triggered in response to a wide variety of issues, they serve to give an 

operator time to prepare a response to any disturbance pre-emptively.  

 

The oxygen sensor failure detection subsystem compares sensor readings 

against a known fault range and is triggered when they stay within this range for an 

abnormally long period of time. The glucose sensor failure subsystem performs 

similarly except that it looks at the standard deviation of the data instead; an 

approximate known noise level of a regularly performing glucose sensor is 

considered, and if the standard deviation of a 10-sample moving average exceeds a 

threshold for several timesteps in a row, a glucose sensor fault code is generated. 

The fresh medium pump failure subsystem is used to observe the glucose sensor in 

response to an SPR-controller increase in fresh feed-recycle ratio. If a moving 

average of the glucose concentration does not increase several times within a 

window after the fresh medium pump flowrate has been increased, then the fresh 

feed pump is found to be unresponsive to commands and therefore has likely failed. 

The recycled medium pump failure subsystem utilizes oxygen sensor data instead, 

as the recycle pump provides most of the net flowrate and therefore contributes 

more oxygen to the reactor than the fresh medium pump. Recycle pump failure is 

evidenced by a sharp and sudden drop in oxygen concentration, followed by a more 

gradual but still abnormally rapid drop in oxygen thereafter. The detection 

subsystem is primed by this large drop and is formally triggered by consistent drops 

in oxygen concentration for several data points after.  

 

The cyberattack detection system chiefly revolves around the comparison 

of DTR data to SPR outputs. Both the SPR and DTR simulations are a series of 

differential equations based on the CTL kinetic model, and when solved using the 

same methods, the same timesteps, and the same initial conditions, they agree with 

each other exactly. Therefore, the values from the DTR and SPR readings should 

vary from each other only by a factor of the noise present from the sensors. This 

noise is simulated within the SPR by adding Gaussian noise to the sensor data, 

parameters of which are experimentally determined from actual glucose and 

oxygen sensors. The first detection subsystem is used to compute the magnitude of 

this noise by determining the standard deviation of the difference between the ideal 

DTR value and the true SPR reading on a moving window and used to verify that 
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the output of this function is within the acceptable range. If the value is too low, for 

both sensors an attack flag is triggered, as this would only be caused by an attack 

that scales down the sensor values considerably or outright replaces the sensor 

reading with a fixed value. For an oxygen sensor with a high standard deviation 

reading, the cause can certainly be attributed to falsified high noise or an upward 

scaling attack. For the glucose sensor, a high standard deviation may be due to a 

similar attack method but could also be attributed to a simple sensor fault, requiring 

additional detection methods to deduce the true cause. This involves the second 

detection method which utilizes a normal cumulative distribution function (CDF) 

to compute a deviation probability between the sensor reading and simulated value. 

A rolling window data set is used in conjunction with the difference between the 

two values to determine a probability between 0 and 1 that the sensor readings have 

deviated from their expected values, with higher probabilities implying a higher 

chance of deviation. If the probability exceeds a threshold for a specified period of 

samples, this flag is triggered. If a deviation flag is thrown in tandem with a low or 

high noise flag for either sensor, the ultimate result is determined to be a 

cyberattack. Conversely, if a deviation flag is triggered in tandem with an oxygen 

fault flag or a pump failure flag, then the DTR determines that sensor or actuator 

fault is the true cause of the deviation. 

 

3. Results 

3.1 Simulated Physical Reactor Culture 

Modeling of operation in a SPR culture under conditions of no anomalies is 

important to understand how key variables vary as the cells grow and how the 

process may be controlled to keep the cells growing with enough O2 and glucose. 

Results of the SPR bioreactor culture model are shown in Figure 4 below. The 

culture expands as expected based on the kinetic model, increasing from 1 x 106 to 

12 x 108 viable cells in 300 hours. Glucose drops from 185 mg/dL down to 20 

mg/dL after the cells reach exponential growth and consume the glucose, as 

anticipated, and dissolved oxygen concentration drops from an initial value of 0.245 

mM down to 0.15 mM, decreasing as the cells grow.  
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3.2 Digital Twin Reactor Culture 

As discussed earlier, the DTR is designed to collect data from the simulated SPR 

sensors and subsequently predict anticipated results using the kinetic model to 

determine if the process is running normally or if there is a sensor attack or failure. 

The DTR and SPR, when given the same flowrate parameters follow the same paths 

for glucose concentration, oxygen concentration, and cell count in the absence of 

system faults or cyberattacks. The minor discrepancies present can be explained by 

communication delays between the two simulations, because although every 

attempt is made to ensure that both reactors receive the same inputs simultaneously, 

an occasional delay leads to one sensor reading leading the other by a single 

timestep margin. Such differences are rarely more than 2%. When noise is added 

to the SPR’s sensors before being overlayed upon DTR data, the difference is not 

visually noticeable as the noise is larger in magnitude than the difference between 

the simulations. As such, the DTR only generates false positives for sensor faults 

and cyberattacks entirely due to communication delays from using ThingSpeak. 

The most common occurrence is when the communication delay coincides with a 

change in flowrate. While the SPR will respond to its controller’s command, the 

DTR will continue running with the old flowrate until the new command finally 

reaches it. The DTR will then read consistently lower glucose values than the SPR, 

triggering a false positive for a disturbance, typically in the form of a cyberattack. 

If communication delays are not present – or if they do not occur during a critical 

control action time – the simulations match well, as shown in Figure 4. This is 

because the disturbance detection is designed to explicitly ignore sections of data 

lost due to connection delays.  

 

3.3 Fault and Cyberattack Simulations 

 

a     b 

 
Figure 4: Results of SPR/DTR culture under regular operation. Plot shows the resulting 

increase in cell count and decreases in glucose and O2 concentrations. At left, (a) cell count in 

SPR/DTR. At right, (b) glucose concentrations and dissolved O2 concentrations in SPR/DTR. 
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Fresh feed pump failure detection, shown in Figure 5(a), is found to be as slow as 

145 samples on one occasion and is rarely ever faster than 90 samples. This is 

because a flowrate increase needs to be initiated for the detection algorithm to run. 

If the failure occurs long before the reactor glucose concentration reaches the 

minimum threshold, then it can take tens or hundreds of samples to reach the 

concentration criteria needed to require a flowrate increase, such as in the case of a 

fresh feed pump failure at 80 hours. Additionally, if the failure occurs after the fresh 

medium flowrate has been maximized, there will be no further increases to 

command, and therefore no trigger for the fresh feed pump failure detection will 

occur. Recycle pump failure, shown in Figure 5(b), typically takes 10 to 30 samples 

to detect, although the software may be used to accurately determine an issue that 

has occurred.  

 

As shown in Figure 5(c) and 5(d), and 5(e) and 5(f), respectively, glucose 

sensor and oxygen sensor faults are detected most reliably of any disturbance. On 

average, the glucose disturbance flag is generated within 20 samples of the fault 

first occurring, and the oxygen disturbance flag within 15 samples. In both cases, 

the digital twin consistently and correctly identifies the issue for each respective 

fault within 10 samples thereafter independent of the time the fault occurs. Actuator 

failure detection, particularly the fresh medium pump, is generally less reliable in 

terms of accuracy and timing than sensor failure detection. For the oxygen and 

glucose sensor attacks that do not emulate the predetermined fault condition, a 

disturbance flag is consistently generated between 15 and 25 samples, with an 

additional 10 samples required to accurately determine that the source of the 

disturbance is an attack. Attacks that onset instantaneously are typically detected a 

few samples sooner than those that onset over a period of tens of samples. For both 

sensors, both attack detection methods – deviation and noise detection – are utilized 

to make the correct decision about the source of the disturbance. When the attacks 

are designed to perfectly falsify sensor failures, the attack detection does not 

correctly identify the source. While the detection system correctly generates a 

disturbance flag, it attributes the disturbance to the incorrect source. Glucose sensor 

attacks of this variety reliably trigger a glucose sensor fault flag, while oxygen 

sensor attacks generate a mix of oxygen sensor faults and recycle pump faults.  

13

Fraser-Hevlin et al.: Using Digital Twins to Protect Biomanufacturing from Cyberattacks

Published by Digital Commons @ University of South Florida, 2024



 

a     b 

 
c     d 

 
e     f 

 
 

Figure 5: Data from process simulation, comparing equipment faults, cyberattacks, effects 

on SPR/DTR operation, and response at various time points. (a), failure of recycle pump (b), 

failure of fresh feed pump, (c), failure of glucose sensor, (d), cyberattack on glucose sensor, (e), 

failure of O2 sensor, (f), cyberattack on O2 sensor. 
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4. Discussion 

4.1 Comparison of Simulated Physical Reactor to Digital Twin Reactor 

Under normal operation, both the SPR and the DTR perform as expected. The 

outcomes found in our study match the results achieved in the real physical CTL 

CBR culture performed by Kaiphanliam et al.12 Thus, the simulations are well-

suited to provide a baseline process control framework to the real-world CBR 

process in future work. However, introduction of attacks and faults presents further 

complexity for the process, especially when a system is to be brought online with 

the function of cloud data transfer. For a complicated mechatronic system with 

network connection, determining the appropriate administrative and technical 

countermeasures in response to a disturbance requires an accurate assessment of 

the source. Falsely attributing a component failure to a cyberthreat can waste 

resources securing a network that is already secure or investigating something other 

than the physical system. Conversely, conflating a cyberattack for a component 

failure not only squanders replacement parts and diagnostics time, but more 

importantly allows a cyberthreat to spread throughout a network completely 

undetected, potentially intruding into attached databases or other network- 

connected machines. Therefore, simulation detection methods place an emphasis 

on properly assessing the source of the disturbance and require additional 

processing power and time to do so. Under certain circumstances, such as a falsified 

sensor failure, the DTR may incorrectly attribute a cyberattack as a physical fault 

or vice-versa, but an operator would nonetheless be made well-aware of an issue 

with the system. These fault codes are designed to be utilized as a guide in tandem 

with rigid troubleshooting procedures such as physical testing of sensors purported 

to have failed rather than a standalone detection and response mechanism. The 

delays to decreased glucose readings being recorded by the DTR, which can lead 

to false detection of an attack.  

 

Upcoming work with the DTR/SPR combination will focus on full 

integration of the DTR with the physical prototype CBR system, including 

connection to a Wi-Fi integrated microcontroller. The demonstrated application of 

the DTR here allows for plug-and-play replacement in the real physical reactor. 

With applications being expanded beyond the simulated systems, this allows for 

anticipation of new types of equipment failures. For example, the real system will 

allow for consideration of sensor and pump replacement, in the instance of a failure 

detection or the occurrence of an attack that permanently damages a pump. An 

automated system that re-directs flow to a different pump in the event of a detected 

failure would be a valuable addition to the system.  
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4.2 Fault and Cyberattack Simulations 

The digital twin is best suited to detect oxygen sensor and glucose sensor failure as 

evidenced by the consistent detection of such faults. Nearly all simulations 

involving a timed sensor fault resulted in DTR detection within a few samples 

independent of the failure time. When detecting fresh feed or recycle pump failures, 

the DTR is useful in detecting both, but the conditions under which they can be 

detected in a timely manner are limited. For example, the fresh medium pump fault 

detection can only be tracked after the controller has commanded a flowrate 

increase to the pump, limiting the detection only to times when such an increase is 

required. When the fresh medium pump failure occurs early in the run, at 80 hours, 

the fault is initially attributed to a glucose sensor attack, before the flowrate increase 

command at 220 hours finally causes the detection subsystem to accurately assess 

a pump failure. This can be solved by having the DTR poll the SPR for a fresh 

medium flowrate increase if the glucose sensor is reading lower than anticipated to 

confirm that the glucose concentration is still responsive to flowrate changes.   

 

Many of the shortcomings of the digital twin can be addressed with 

additional sensors elsewhere in the system. Redundant glucose and oxygen sensors, 

or sensors placed at different points in the fluid path, e.g., both upstream and 

downstream of the cell chamber, would be useful to verify sensor operation as well 

as to better validate the inner mechanics of the cell chamber.27 Additionally, visual 

verification, either with video processing or by having an operator physically check 

on the system, would greatly augment the digital twin’s troubleshooting process. In 

the case of pump failure, confirmation of whether a peristaltic pump is rotating 

would be invaluable information to the DTR. Performing such physical checks, 

which may or may not be achievable without human intervention, would allow for 

more accurate fault and cyberattack detection, including a wider variety of types of 

such disturbances. Machine learning may also be a useful tool in training a digital 

twin to detect both faults and cyberattacks.3 Hypothetically, every single failure 

mode for each sensor and actuator can be simulated at every single possible time 

during the reactor run, with the final data set being used to train a machine learning 

algorithm. Such algorithms can also be configured to learn past events, such as false 

positive flags to continually improve their performance. Furthermore, such training 

data can be shared across different bioreactor systems across secure cloud 

integrations through federated learning approaches.28 Through such methods, the 

DTR can more accurately predict the source of the fault should one occur within 

the SPR, and it can further be used to determine if the system is being attacked if 

no pattern is matched. This will require an attacker to have an extremely in-depth 

understanding of the operation of the system to falsify a sensor failure, as more 

minor differences between the machine learning dataset and the actual data will be 

more likely to be attributed to a cyberattack than with the current methodology. 

Coupled with the addition of more sensors and verification tools, a digital twin with 

machine learning capabilities can be a very powerful and resilient process control 

tool.  
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 In general, the larger the magnitude of the attack, the more of an effect it 

has on the cell growth rate, while also making them easier to detect. Therefore, 

most attacks that slip past the detection system are typically not of enough 

magnitude to have a significant effect on the growth rate or final cell count. 

Perfectly emulated falsified failure attacks, which would require intimate 

knowledge of the sensor’s specification and extensive data logging to design, 

cannot be properly detected, and use of our system will reveal it to be a fault rather 

than an attack. This sort of attack is difficult to properly detect and counter using 

purely process control methods and highlights the need for additional layers of 

security. These can be more technical methods such as more typical cybersecurity 

measures but can also include administrative controls like restricting access to 

system specifications and materials lists to approved personnel. The more 

knowledge a would-be attacker has about a system, the more it could be tuned to 

be undetectable, meaning preventing an attacker from gaining that information can 

be just as important as being able to detect it. For a device that has publicly available 

component lists or specifications, this type of attack may not be detectable at the 

process level, thereby reinforcing the need for more traditional cybersecurity 

measures deployed elsewhere. Implementing cybersecurity measures on a local 

process controller is a final defense method and should be utilized as such.  

 

4.3 Scale-up of the CBR/DTR Combination for Commercial 
Biomanufacturing 

The integration of DTR systems in biomanufacturing is an important step forward 

to increase product yields and refine efficiency for biological processes. In 

comparison to other chemical industries, biomanufacturing is still on a smaller 

scale, particularly for immunotherapy production, with many current bioreactors 

limited by their maximum cell densities and overall efficiency.12 As these processes 

increase in complexity, and more capacity for higher production levels is 

introduced, the number of DTR-based systems will need to go up. The current level 

of security for the industry opens many risks that need to be addressed for safe 

implementation of this technology on a large scale. As presented here, a framework 

for process-focused cybersecurity exists, but for a single, small-scale reactor. Our 

current work focuses on a single CBR system with an 11-mL chamber, suitable for 

production of T cells for a single immunotherapy treatment. Future developments 

will focus on expansion to larger scales, with several chambers and centrifuge disks 

present, to achieve greater cell yields for multiple patients. In this case, for every 

subsequent reactor connected to the system, an additional digital twin should be 

added. This will introduce further potential for cyberattacks, and thus, the control 

system should be re-examined and analyzed to expand upon possible attack types. 

Additionally, as biosensor design expands and allows for better reading of critical 

process parameters including glucose and dissolved oxygen, for larger scale-

processes, the anticipated sensor readings and failures will need to be modified. 

Lastly, one aspect that our control system does not address is regulation of the 

centrifuge speed. While this is a constant parameter throughout a standard culture 

process, it may be subject to dynamic changes at higher cell densities or differing 
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cell types, depending on the possible need for high centrifuge speeds at greater cell 

densities. At any point, if the centrifuge rotor were to be remotely operable as part 

of the control loop, it would become vulnerable to attacks. This would require the 

design of new centrifuge failure scenarios akin to those designed for the pump 

failure modes. Nonetheless, our system is prepared for future large-scale expansion. 

 

4.4 Application of the CBR/DTR Combination in Cyber and Biological 
Defense 

With the continued development of biotechnologies, the analysis of potential cyber 

threats in this domain will need to be expanded. Our system provides a key small-

scale example that can be applied to some of the most dangerous threats to national 

security in the biological domain: high-containment laboratories or HCLs. These 

labs contain the deadliest and most dangerous infectious diseases, vaccines, and 

pathogens.29 Many of these facilities are already being connected to networks to 

increase process efficiency. Data for toxic pathogens are being stored in cloud 

databases, making this a prime target for opportunistic attackers. In these labs, 

automated bioreactors are already in use. While traditional cybersecurity is a 

critical point of defense for these systems, it is also necessary to implement security 

principles in the design of bioreactor automation. The development of new means 

to synthesize proteins and DNA may also result in greater threats of biological 

warfare. Already, many companies are commercially synthesizing DNA, an 

industry that makes millions every year.  

 

Current efforts to integrate cybersecurity in this field have focused on data 

storage and analysis, using computer algorithms to compare all sequences to a 

database of known dangerous sequences.30 But, the security systems have not 

addressed the actual manufacturing systems used to produce the sequences, which 

is a key area of weakness. Our case provides a basis for the application of security-

focused process control. Many of the process control systems in the biotech 

industry are designed to anticipate various failure modes including those due to 

human error and are thus reducing the impact of human interaction by increasing 

automation.31 These are also designed to predict equipment failure, as in our case. 

However, as discussed earlier, there are limited examples of an automated control 

system for biotechnology processes that may be used to anticipate cyberattacks in 

real time. For biomanufacturing process control systems to be fully implemented 

in a safe manner, there is a need for dynamic modeling to predict and identify 

threats as they happen, which we have provided in the present work. High-security 

laboratories, both in industry and in government settings, are an ideal starting point 

for real-world implementation of our system. These facilities employ bench-scale 

operations that produce dangerous products and would benefit from the integration 

of dynamic failure and attack prediction. Once a successful framework has been 

established on this scale for the most critical of products, it can then be expanded 

to large commercial scale processes, providing dynamic prevention of cyberattacks.  
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5. Conclusions 

In closing, we have developed a novel model system to study the impact of 

cyberattacks in next-generation smart biomanufacturing. Our automated process 

system controls the concentrations of glucose and oxygen, as well as feed and 

recycle flowrates, for a novel centrifugal bioreactor for T cell therapies, using 

process control simulations. The system may be used to reliably detect both attacks 

and sensor failures using process control and a digital twin reactor that runs 

simultaneously in parallel to the real system, ensuring that the instance of an attack 

is immediately detected and distinguished from an equipment failure. The 

framework we designed is well-suited for implementation in laboratories that 

handle sensitive biological research and for bioreactors that produce dangerous 

pathogens and viruses. The system is designed to allow for simple, plug and play 

integration of controller hardware in addition to physical bioreactors. In future 

work, we will be implementing the process control system in our physical 

centrifugal bioreactor prototype. As the field of biosecurity expands, and new 

potential threats of biological warfare are introduced, it is critical that the full scope 

of cybersecurity in this industry is examined, and every process step is protected. 

In our work, we demonstrate that process-control-based cybersecurity is a feasible 

first step towards preventing cyberattacks within the massive biotechnology 

industry.  
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Appendix 

 

All simulations were designed in MATLAB 2023a. As of submission, copies of 

the files and programs used for this publication can be found at: 

https://github.com/alecschulerWSU/CySER_digitalTwinReactor 
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a.     b. 

 
c.     d. 

 
e.     f. 

 
 

Additional data from faults and cyberattack simulations and their effects on SPR/DTR 

operation, along with detection. (a) Second fresh pump fault simulation with over 100 

sample detection time. (b) Falsified oxygen fault attack with incorrect detection as recycle 

pump failure. (c) Second constant value glucose sensor attack (d) Falsified glucose fault 

attack with incorrect detection as fault. (e) Second recycle pump fault simulation with 10 

sample detection time. (f) Second glucose sensor attack with correct detection within 30 

samples. 
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