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Abstract

Wide area situational awareness (WASA) in smart grids includes automatic monitoring, percep-

tion and detection of anomalies in these systems. The goal of WASA is to make smart grids aware

of their physical and operational state for more effective operational decisions and control. As such,

tracking the system’s state or state estimation is one of the key objectives of WASA. The extensive

integration of cyber elements into smart grids, such as large deployment of various monitoring and

measurement devices, provides new opportunities to improve WASA. However, the tight coupling

of power grids with cyber components introduces vulnerabilities to cyber and physical stresses.

State estimation is one of the key functions in WASA. The conventional state estimators have

been widely deployed in utility control centers to help with monitoring the state of the system.

However, traditional model-based state estimation methods do not adequately meet the real-time

monitoring and accuracy requirements for smart grids. Many of the model-based state estimation

techniques are based on steady-state analysis, which cannot be accurate for modern power systems

due to highly dynamic and stochastic variations introduced by, for instance, distributed energy

generations and fast-changing loads. The availability of large volume of measurement data in smart

grids have opened new directions to complement the traditional state estimation techniques using

data-driven state estimation methods. In this dissertation, data-driven state estimation techniques

are developed to support the WASA functions, such as monitoring the state of the system and

detecting cyber and physical stresses in the system. The presented data-driven and machine learning

models include linear Minimum Mean Square Error (MMSE) estimation, Bayesian Multivariate

Linear Regression (BMLR) combined with Auto-Regressive AR(p) process, and Kalman filters and

Temporal Graph Convolution Neural Networks (T-GCNNs). In addition to the measurement data,

the T-GCNN can learn the features in the non-Euclidean domain of the system’s topology, which

can capture the structures and interactions among the components of power grids. The performance

vii



of the proposed techniques are evaluated using simulated power system measurement data under

various normal and stressed scenarios.

Moreover, low latency data processing is important for real-time WASA in smart grids. Dis-

tributed and local processing of data is a promising strategy that can improve system monitoring

tasks, as it satisfies the low latency requirements while avoiding the enormous overhead of transfer-

ring a huge volume of time-sensitive data to central processing units. Distributed data processing

may improve the efficiency of many tasks and one such task is state estimation in power systems. In

this dissertation, multi-region distributed state estimation is modeled and analyzed under various

information sharing techniques among the regions. The regions in the system are defined based

on physical distance and the correlation among the state of the components. Several data-driven

and machine learning models for centralized and distributed state estimation are evaluated for the

system with respect to the various ways of information sharing techniques. It is discussed that

the multi-region distributed state estimation can achieve comparable performance to centralized

techniques with reduce communication and computation cost.
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Chapter 1: Introduction

The age of the internet and data has revolutionized the way people interact with information.

Likewise, cyber-physical systems (CPS) are transforming the way people interact with engineered

systems. Composed of sensor networks, computational hardware, and communication technologies,

cyber-physical systems are platforms that monitor and control the interaction among physical and

cyber systems. Smart grids are examples of such cyber-physical systems. Figure 1.1 represents the

cyber and physical layers of a smart grid.

Figure 1.1: Cyber and physical layers of a smart grid.

As one of the most important cyber-physical systems, smart grids use advanced monitoring,

control, and communication technologies to provide a dependable and secure energy supply while

improving operational efficiency for electricity generation, transmission, and distribution [1]. The

state of the physical system (the power network infrastructure) is controlled and monitored by

the cyber system (including sensors, measurement devices, and communication elements) and fed

to the control centers and functions as input to help in more efficient and reliable operation of

the power systems. Moreover, timely responses are essential in the dynamic environment of smart

1



grids. Thus, real-time distributed computation and information processing of data streams in power

systems are essential to help deliver timely decisions for operating these critical infrastructures.

Due to the increasing integration of various distributed components, including distributed en-

ergy resources (DERs) and electric vehicles (EVs), there is a growing demand to improve the

reliability, energy efficiency, management, and security of the future smart grids considering the

dynamic and stochastic nature of these systems. Moreover, smart grids are being equipped with

various cyber components, including communication and computation elements, such as advanced

metering infrastructure (AMIs) and measurement devices, including phasor measurement units

(PMUs). These components are becoming more and more tightly integrated with power systems,

forming an Internet of things (IoT) framework for data collection and processing. The sensing

and measurement components are expected to generate a vast amount of data to support vari-

ous applications in smart grids, such as distributed energy management, generation forecasting,

grid health monitoring, fault detection, home energy management, wide area situational aware-

ness (WASA) functions, state estimation, etc. With the vast amount of data from these new

components, data-driven, machine learning, and artificial intelligence techniques are gaining more

attention to automate and further improve the performance of smart grids [2].

In the light of the above, the focus of this dissertation is on developing and evaluating data-

driven state estimation techniques both in centralized and distributed forms to support key functions

in WASA for smart grids. In this chapter, a short review of the WASA and its main objectives are

first discussed and then an overview of research challenges and contributions of this dissertation

are presented.

1.1 Wide Area Situational Awareness

Situational awareness is important in a variety of fields, including business, military, aviation,

and distributed engineered systems, such as smart grids. Situational awareness consists of three key

components: perception, response, and restoration. The perception component is focused on data

collection, sensing, monitoring, and descriptive analytics of data to track and monitor the state of

2



the system and also to identify vulnerabilities in the system. The response component is focused on

functions that support the reliable and secure operation of the system, including cyber and physical

stress detection and mitigation and demand and generation management supporting functions.

The restoration component supports system improvements and operations after stresses, system

planning and hardening and more. Providing the essential level of situational awareness in power

systems is challenging and has been the focus of a large body of research [3, 4]. The fundamentals

of situational awareness and failures and issues in control centers caused by insufficient situational

awareness in power systems are discussed in more detail in [3].

As the name suggests, WASA is situational awareness on a comprehensive and large-scale

implementation that makes smart grids aware of the situations in their geographically distributed

physical components and systems to enable efficient decision-making, operation, and control of the

system [5]. The information provided by WASA to operators and other control and management

functions is essential for well-informed decision-making and the reliable and efficient operation

of power systems. State estimation in smart grids is regarded as an essential part of the energy

management system (EMS) that enables WASA. The performance of the state estimation affects

many critical functions of smart grids.

1.2 Smart Grid State Estimation

State estimation is a numerical process to infer the state of system parameters from limited

measurement data. This is a vital function to monitor the status of the system’s components and

to ensure efficient and reliable operation of the system. Power system state estimation exploits

measurement data collected at Supervisory Control and Data Acquisition (SCADA) systems or

through PMUs and smart meters to produce an estimation of the power system’s status [6, 7].

Some of the primary functions of state estimators include topology processing, bad data detec-

tion, observability analysis, and state forecasting. State estimation takes the unprocessed measure-

ments from meters and transforms them into state information for the system and its downstream

applications, making it one of the most significant functions in EMS. Since the cyber and phys-

3



ical sides of contemporary power systems may not always be consistent with one another, state

estimation also functions as a crucial intermediary that can filter inaccurate data and information

produced by either side.

Historically, monitoring the power grid was challenging due to the small number of mea-

surement devices compared to the size of the power grid. Even with the increased deployment of

monitoring and sensing devices in today’s power grids, traditional state estimation techniques using

system models have to tackle challenges such as inaccurate system models, unbalanced operation,

renewable energy integration, and cyber-security issues. As such, data-driven state estimation tech-

niques have been pursued to complement traditional state estimation techniques. The data-driven

state estimation techniques also need to address challenges such as communication and computa-

tion limitations (e.g., bandwidth, latency, security, accuracy, processing power, and data storage

capacity) given the large scale of the smart grids. Moreover, state estimation algorithms aid in

wide-area monitoring, detection, and locating anomalies at various levels of cyber and physical

components of the smart grids. Thus smart grid state estimation is a critical function in enabling

the situational awareness functionalities.

1.3 Research Challenge and Motivation

This section discusses the research scope and challenges in situational awareness and particularly

the state estimation in smart grids considering data-driven approaches and cyber and physical

stresses in the system.

1.3.1 Data-Driven State Estimation for Wide Area Situational Awareness

As discussed earlier, state estimation is one of the main functions of the WASA. The conventional

state estimators have been widely deployed in utility control centers to help with monitoring the state

of the system. However, traditional state estimation methods do not adequately meet the real-time

monitoring and accuracy requirements for smart grids. Traditionally, power grids were not intended

to house variable (renewable) distributed generations. However, new smart grid technologies have

4



made it conceivable. Specifically, utility-scale energy storage and new sensors and actuators that

could observe and control the power grid at points ranging from generation through the transmission

to distribution are examples of such technologies supporting distributed generations.

Many of the model-based state estimation techniques are based on steady-state analysis, which

cannot be accurate for modern power systems due to highly dynamic and stochastic variations

introduced by, for instance, distributed energy generations and fast-changing loads. Besides, the

deployment of PMUs and the availability of a large volume of measurement data, introduce new

opportunities for improving and complementing the conventional model-based state estimation in

power systems. As such, in addition to conventional model-based state estimation, various data-

driven state estimation methods have been developed and studied recently. Along these lines, the

goal of the work in this dissertation is to evaluate new data-driven state estimation techniques that

can enable tracking the state of the system with the required precision using the collected data from

the system without the system model. Such data-driven approaches are particularly important when

there are inaccuracies or missing information in the system model.

1.3.2 Distributed State Estimation

Many of the data processing and computations related to monitoring the power systems have

been traditionally performed centrally on utility-owned servers or cloud platforms. Communicating

the large volume of data and its processing in central units inevitably adds delay and inaccuracies

in the state estimation and monitoring of the system. For certain time-sensitive functions, such

delays could affect the reliability and stability of the system. To address such issues, distributed and

local processing of data can provide a good solution, especially for time-sensitive functions. Data-

driven state estimation is one of such function that can improve the response time of the system,

particularly, to critical conditions, such as failures or cyber-stresses. The data-driven distributed

state estimation can provide a faster and more accurate estimation of current conditions in the local

regions as well as predicting future trends in state changes to identify abnormal conditions. New
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technologies, such as Edge or Fog computing, can provide a platform to enable these functions by

local and distributed processing of data to enhance system monitoring in power grids [8, 9].

While various data-driven state estimation approaches for smart grids, have been proposed and

studied in the literature [10, 11, 12, 13, 14, 15], most of them are centralized techniques [10, 11,

13, 14, 15]. Examples of distributed state estimation studies include [12, 16, 17], where the state

estimation has been implemented using various machine learning-based frameworks. To address

this challenge, in this dissertation, various distributed data-driven state estimation techniques under

various scenarios of information sharing among distributed regions are developed and studied. It

is demonstrated that multi-region distributed state estimations can speed up the system’s reaction

time, especially in response to urgent situations like failures or cyber stressors [12]. The focus of

this dissertation is specifically on interpretable and generalizable data-driven approaches for state

estimation including Kalman filters with information sharing in multi-region settings.

1.3.3 Cyber Physical Stress Detection and Mitigation

Due to increased dependency on cyber components, smart grids exhibit new vulnerabilities to

cyber threats. When cyber attacks occur jointly with physical attacks or failures in the power grid,

they could have even more serious impacts and cause large-scale blackouts with severe societal and

economic consequences [14].
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Figure 1.2: Historical time-line of reported cyber and physical attacks on various infrastructures
(energy infrastructure is indicated by red).

In the case of physical attacks or failures, the system’s stability can be maintained if the

Supervisory Control and Data Acquisition (SCADA) receives precise information about the status

of the components and take proper action accordingly. If however, the flow of information is

obstructed by a cyber attack, the status of the components will be unobservable to the SCADA,

which prevents the control center from taking necessary and appropriate actions in a timely manner.

Figure 1.2 presents the historical timeline of reported cyber-physical attacks, which is a clear
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indication of ever-increasing threats and concerns on cyber-physical system’s security, such as the

smart grid security.

In this dissertation, a scenario of joint cyber and physical attack on the smart grid is considered. It

is discuss how a data-driven method based on PMU data can help in recovering the status information

of the components. Specifically, scenarios in which an attacker conducts a physical attack on the

power system by disconnecting few transmission lines and simultaneously launches a cyber attack

on the communication system and prevents the flow of information from the region around the

physically attacked area or other regions of the system to the control center are considered. This

joint cyber attack leads to unobservability on a portion of the power system, which has experienced

line outages. The goal of the presented work is to use the PMU data from outside the attacked

zone (observable parts of the system) to estimate the state of the lines in the attacked zone using a

data-driven technique.

1.4 Key Contributions of this Dissertation

In this section, a summary of the key contributions of this dissertation is presented. A more

detailed discussion of each of the following is presented in the following chapters. The contribu-

tions are categorized into three classes centralized data-driven state estimation, distributed state

estimation, and state estimation for cyber-physical stress mitigation, following the discussions in

the previous section.

1.4.1 Centralized Data-Driven State Estimation

• Interpretable and generalizable data-driven approaches for state estimation based on Kalman

filters are presented. Both linear and non-linear Kalman filters, particularly extended and

unscented Kalman filters, with data-driven models to approximate the power system dy-

namics are considered. These data-driven models make the approach independent of the

system models, including the topology, admittance matrix of the system, and the physics

of the electricity. Moreover, a Bayesian Multivariate Linear Regression (BMLR) approach
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combined with the auto-regressive AR(p) process, and a Minimum Mean Squared Error

(MMSE) estimator are also considered and evaluated for state estimation in smart grids. The

performance of these models is compared with other data-driven models from the literature.

• A data-driven approach based on Graph Convolution Neural Networks (G-CNNs) is presented

for state estimation in smart grids. The G-CNN can learn the features in the non-Euclidean

domain of graphs, which can capture the structures and interactions among the components

of power grids. By integrating the temporal dependencies in the time-series data, a temporal

G-CNN (T-GCNN) is adopted for the data-driven state estimation problem. Specifically, a

message-passing G-CNN is used to capture the topological structure of the smart grid and the

gated recurrent units (GRU) are used to capture the dynamic variation of state information

for temporal dependencies. The performance of this method is evaluated for cases of full

measurement availability and availability of a subset of measurements.

1.4.2 Distributed Data-Driven State Estimation

• A wide range of distributed scenarios, from multi-region to fully distributed data-driven state

estimation settings is considered, where the regions are defined based on the geographical

distribution of the buses as well as their state correlations. The centralized data-driven

techniques based on Kalman filters and BMLR with AR(p) process are adjusted and extended

to be applied to the distributed scenarios. The performance of the presented data-driven

distributed techniques is studied under various region definitions on the system.

• Various information-sharing techniques among distributed regions of state estimation are

considered to improve the performance of the state estimation. These include defining re-

gions with overlapped buses and incorporating auxiliary buses in each region for information

sharing based on various statistical features of the neighboring regions. The performance

of the presented data-driven distributed techniques is studied under various message-passing
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settings and compared with various other data-driven and machine-learning-based state esti-

mation techniques from the literature.

• The performance of the BMLR with AR(p) estimation model has been evaluated under

normal operating conditions and partially unobservable scenarios. The partially unobservable

scenarios can model cases in which the data from a subset of PMUs become unavailable due

to, for example, cyber stresses such as the denial of service (DoS) attack or physical failures

of the PMUs.

1.4.3 State Estimation for Cyber Physical Stress Mitigation

• A joint cyber-physical attack is considered in which an adversary damages some lines physi-

cally (physical attack) and prevents the information flow from the attacked zone to the control

center to tamper the observability of the grid and mask the physical failure (cyber attack).

The PMU data available from outside of the attacked zone is used to estimate the state of

the components in the attacked zone. Specifically, a linear MMSE estimation is developed

to estimate the state of the components in the attack zone in a centralized approach. An idea

to extend the MMSE to an iterative process with feedback to improve the performance of

estimation is also presented. The effects of various scenarios of attacks on the state estimation

performance are evaluated.

1.5 Structure of this Dissertation

This dissertation is organized as following. Chapter 1 presents a general overview of the

situational awareness, state estimation in smart grids. Chapter 2, presents an overview of related

work in state estimation in smart grids from centralized to distributed state estimation as well as

examples of work considering joint cyber physical stresses in smart grids. In chapter 3, centralized

data-driven state estimation techniques have been discussed including centralized linear and non-

linear Kalman filter models, MMSE, BMLR with AR(p) model, and T-GCNN model. Chapter 4
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discusses the grid partitioning technique and multi-region distributed state estimation techniques

along with information sharing strategies. A fully distributed Kalman filter have also been discussed

as a special case of multi-region state estimation. Chapter 5 presents the state estimation for recovery

of component states under a joint cyber and physical stress scenario. In Chapter 6 numerical results

and performance evaluation of various proposed techniques have been presented under various

scenarios of distributed estimation, information sharing, and normal operating conditions and

partially unobservable scenarios. The performance of the techniques in comparison with existing

work in the literature is also presented and discussed in this chapter. Chapter 7 presents an overall

summary and future direction of the research.

1.6 Publications Resulting from this Dissertation

[1] Hossain, Md Jakir, and Mia Naeini, "Multi-Area Distributed State Estimation in Smart

Grids Using Data-Driven Kalman Filters" Energies 15, no. 19: 7105, 2022.

[2] M. J. Hossain and M. Rahnamay–Naeini, "State Estimation in Smart Grids Using Temporal

Graph Convolution Networks," 2021 North American Power Symposium (NAPS), pp. 01-05, 2021.

[3] M. J. Hossain and M. Rahnamay-Naeini, "Data-Driven, Multi-Region Distributed State

Estimation for Smart Grids," 2021 IEEE PES Innovative Smart Grid Technologies Europe (ISGT

Europe), pp. 1-6, 2021.

[4] M. J. Hossain and M. Rahnamay-Naeini, "Line Failure Detection from PMU Data after a

Joint Cyber-Physical Attack," 2019 IEEE Power & Energy Society General Meeting (PESGM), pp.

1-5, 2019.

1.7 Summary

State estimation in smart grids is regarded as an essential part of the EMS that enables wide-area

monitoring of the system. The performance of the state estimation affects many critical functions of

smart grids. However, inaccurate or unavailable system models can challenge conventional power

system state estimation. As such, data-driven state estimation techniques have been pursued to
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complement the conventional approaches by exploiting the large volume of available energy data.

The data-driven approaches can also face challenges due to data communication and processing

delays as well as missing or inaccurate data due to, for instance, measurement/sensor failures and

cyber threats. Hence, developing effective mechanisms to improve the state estimation and the

related communication and computation delays and enabling the recovery of missing information

is crucial for enhancing the power system’s reliability and security. As such, the focus of this

dissertation is on developing and evaluating data-driven state estimation to improve the WASA.

The key contributions of this work are briefly discussed and more details on each will be discussed

in the following chapters.
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Chapter 2: A Review of the State of the Art in State Estimation in Power Systems

2.1 Introduction

State estimation is a crucial component of the EMS that enables wide-area system monitoring

in smart grids. The performance of the state estimation affects a variety of essential smart grid

functions. Inaccurate or unavailable system models can, however, provide a challenge to con-

ventional power system state estimation. Consequently, data-driven state estimate strategies have

been developed to supplement conventional approaches by utilizing the vast amount of energy

data that is readily available. Data-driven state estimation may also face challenges, such as data

transfer and processing delays and missing or erroneous data due to, for example, measurement

sensor failures and cyber stresses. Developing effective ways to enhance state estimation and the

associated communication and computation delays, as well as permitting the recovery of missing

information, is vital for boosting the reliability and security of the power systems. In this chapter, a

review of the state-of-the-art techniques in state estimation in power systems, ranging from conven-

tional techniques to data-driven approaches in centralized and distributed frameworks, is presented.

Moreover, state estimation under cyber and physical stresses has also been discussed briefly.

Various data-driven state estimation methodologies for smart grids have been developed and

explored in the literature [10, 11, 12, 13, 14, 15, 18], the majority of which are centralized

techniques [10, 11, 13, 14, 15]. However, real-time, wide-area smart grid monitoring requires low-

latency data processing. Historically, a significant amount of data processing and computations

related to power system monitoring have been performed centrally on utility-owned servers or in

the cloud. Smart grid state estimation and monitoring can be hampered by delays and inaccuracies

due to the huge amount of data that needs to be delivered and processed in centralized units. Such

delays may affect the system’s stability and reliability for some of the time-sensitive operations.
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Distributed and local data processing solutions are new approaches that are being pursued to address

the aforementioned challenges. They can improve system monitoring capabilities by satisfying low-

latency requirements and reducing the cost of transferring a huge volume of time-sensitive data to

central processing units.

Examples of distributed state estimation studies include [12, 16, 17, 18]. This chapter dis-

cusses several distributed data-driven state estimate strategies in a variety of scenarios, including

the sharing of information between distributed regions. It is shown that multi-region distributed

state estimations can improve the system’s response time, particularly in response to severe sce-

narios, such as system failures or cyber stressors [12]. New technologies, such as edge or fog

computing, can enable these functions with the aid of local and distributed data processing in

power grids [8, 19]. In the following subsections, more detailed discussions of the state estimation

techniques in power systems are presented. The reviews are organized under three main subsec-

tions, including centralized techniques, distributed techniques, and state estimation under cyber

and physical stresses.

2.2 Centralized State Estimation Approaches

In centralized state estimation techniques, it is generally assumed that the state information and

data from the measurement sensors (such as PMUs) are being processed in a centralized model.

The majority of the conventional and data-driven state estimation for power systems are centralized,

which will be discussed next.

2.2.1 Conventional Centralized State Estimation

Conventional power system state estimation techniques have been in use for a long time in

power systems. Such techniques rely heavily on power system models, including the connectivity,

attributes, and operating conditions of the components. A detailed review of various methods for

model-based power system state estimation can be found in [20, 21]. Power system state estimation

has traditionally been carried out using model-based static approaches, such as the weighted least
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square (WLS)-based method [22, 23]. As the least squares approaches have analytical solutions for

linear systems they were widely used for this purpose. Specifically, for the ease of use and quick

convergence, WLS-based algorithms are most commonly used state estimation technique in power

systems. Also, possess features that are optimal for certain kinds of error distributions, such as

Gaussian distribution, is one further significant reason why they are so widely used. Apart from the

WLS algorithm, other state estimation techniques, such as Least Absolute Value (LAV) [24, 25],

Weighted Least Absolute Value (WLAV) [26], and Schweppe Hubber Generalized M (SHGM) [27]

and their variations have been introduced in the literature.

The power grid’s state vector can be defined as a set of variables, which describe the state of

its components. By tracking the state variables other electric power quantities can be monitored

and tracked as well. Many attributes of power grid’s components, such as bus voltage magnitudes

and phase angles, real and reactive power injections and current attributes can be used to define

the state vector. The state estimation problem in general can be formulated as an overdetermined

system of nonlinear equations to be solves as an unconstrained optimization problem. Let z ∈ Rm×1

and x ∈ Rn×1 denote the vector of meter measurements and state vector, and m is the number of

samples, n is the number of states, respectively. The measurement equation is z = h(x) + e, where

h(x) ∈ Rm×1 is the nonlinear function relating the system states to the measurements and e is the

vector of the measurement errors. The residual can be defined as r = w(h(x)− z), where w ∈ Rm×n

is the diagonal weight matrix. The objective function of the general state estimation formulation,

J(x), for some of the popular techniques are summarized in Table 2.1.

In a comparative study [28], the accuracy of WLS, WLAV, and SHGM estimators were

assessed based on three criteria: bias, consistency, and quality. It has been demonstrated that the

WLS algorithm has superior performance in these three criteria. The popular WLS state estimation

in power systems is an iterative normal equations (NE) method. The NE method can handle zero

injections by assigning the zero injection equations larger weights. However, the weights might not

be well-conditioned, which would hurt the convergence. Many alternative solution methods have

been proposed to improve the accuracy and convergence of this technique. For example, in [29], an
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Table 2.1: The general formulation of conventional state estimation optimization.

Method General Formulation

WLS minimizex J(x) =
∑m

i=1 r2
i

LAV minimizex J(x) =
∑m

i=1 |ri|,
here |.| is the L1 norm

WLAV minimizex J(x) =
∑m

i=1 wi|ri|

SHGM minimizex J(x) =
∑m

i=1 |si|

si =

{
r2
i
2 if |ri| ≤ αwi

αwi|ri| − 1
2α

2w2
i otherwise

where α is the tuning parameter

alternative solution approach is proposed based on orthogonal transformations to alleviate the ill-

conditioning problems. Moreover, the formulation of WLS with equality constraints [30] has been

suggested to handle zero-injections. A method based on the direct elimination of variables using the

equalities is also suggested in [31]. Hachtel’s augmented matrix method for solving least squares

problems is used in [32]. When Hachtel’s method is compared to two different NE approaches, it

is found to significantly improve numerical stability, which is crucial for ill-conditioned systems.

Hachtel’s method takes less computing time than the standard NE method but requires slightly

more memory. In another comparative study, the NE methods, the orthogonal transformation

method, the NE with added constraints techniques, and Hachtel’s augmented matrix technique

have been studied and their performance have been compared [33]. Comparisons are performed

based on three factors: (i) computational effectiveness, (ii) implementation complexity, and (iii)

numerical stability. According to the theoretical study, the orthogonal transformation technique is

numerically the most stable. However, the effective fast decoupled version does not support the

orthogonal transformation method. It is demonstrated that both Hachtel’s method and the hybrid

NE methods offer good trade-offs between computational effectiveness and numerical stability.

Dynamic model-based state prediction and state forecasting have also been in use in power

system state estimation. Family of Gaussian filtering techniques, such as variations of Kalman

filters (KF) are extensively studied for power system state estimation problems. The popular
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variations are linear-KF [34], extended Kalman filter (EKF) [35, 36, 37, 35], unscented Kalman

filter (UKF) [38, 39], and Particle Filter (PF) [40]. In these approaches, power system dynamics

are modeled as a system of nonlinear equations as

x t+1 = f (x t ,ωt)

zt = h(x t , δt),
(2.1)

where x t is the state vector, zt is the measurement vector, ωt is the vector of white Gaussian noise,

δt is the vector of measurement noise at time instance t, and f (.) and h(.) are vector-valued nonlinear

functions describing the system and state equations. The size of the aforementioned vectors are

1 × N, where N is the number of buses in the system. The state of each bus at time t, xi,t , can be

represented by its attributes such as vi,t or θi,t , where vi,t and θi,t are the voltage and phase angle at

bus i at time t, respectively. The measurements at bus i at time t, zi,t , can represent the attributes,

such as pi,t ,qi,t ,vi,t ,θi,t , where pi,t and qi,t are real and reactive power injections, respectively. The

goal of the state estimation here is to estimate the vector x t+1 given the measurement zt .

As discussed in [41], traditionally, the state estimation has been solved using dynamic complex

power-flow equations, such as

pi,t =
N∑

j=1

|vi,t||vj,t||Yij| cos(θi,t − θj,t −∆ij)

qi,t =
N∑

j=1

|vi,t||vj,t||Yij| sin(θi,t − θj,t −∆ij).

(2.2)

Here, i and j are indices of buses in the system, ∆ij is the complex power angle, and Yij is the ijth

entry of the admittance matrix Y (|.| represents the absolute value). One of the challenges of this

approach for state estimation is the need for the system model, for instance, Y. The feasibility of

applying KF-based techniques in dynamic state estimation problems has been extensively studied

in [42]. A comparative study on the variations of the KF-based dynamic state estimation algorithm

has also been studied in [43, 44].
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2.2.2 Data-Driven Centralized State Estimation

The conventional and static state estimators need accurate system models and, in some cases,

may not allow for predicting the future operating points of the system. With the rapid deployment

of the PMUs, tracking the real-time dynamics of power system states is becoming possible. Thus,

power system dynamic state estimation has become a scorching topic in recent years [45, 21, 46].

The accessibility of a significant number of measurement data opens up new possibilities for

enhancing and complementing the traditional model-based state estimate in power systems. In

addition, the robustness of data-driven approaches to system and topology changes, as well as

missing or inaccuracies in system information, has made them the focus of many researchers

recently [10, 11, 12, 13, 14, 15]. Many of the centralized state estimation techniques are focused on

addressing the challenges regarding data quality issues, such as non-Gaussian measurement noise,

bad data, cyber stresses, missing data, and frequent topology changes. Examples of such techniques

based on forecasting-aided and predictive information filters are [14, 15, 47, 48, 49, 50].

Examples of data-driven and machine-learning-based state estimation techniques in power

systems include techniques based on neural networks [51, 13], the Bayesian approach [12, 52],

minimum mean squared error (MMSE) [14, 50], and the Kalman filter (KF) [11, 53]. Since

KF and its variations, including the extended Kalman filter (EKF) and the unscented Kalman

filter (UKF), have a great ability to model and express dynamic systems, many dynamic state

estimation algorithms for power systems are developed based on these techniques [11, 54, 46, 55,

56].

Specifically, EKF [57], UKF [58], Cubature Kalman Filter (CKF) [59], Particle Filter [60],

and Gaussian Mixture Filter [61] are examples KF variations that have been applied to the state

estimation problem in power systems. The state estimation methods based on regression-based

optimization using past measurements [14] and instantaneous correlations [47] of the measurements

have also been proposed in the literature.

With the availability of a vast amount of data from smart grid sensors, neural network-based

techniques are becoming increasingly popular in solving critical operations of smart grids [2].
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For instance, variants of artificial neural networks (ANN) [62], such as recurrent neural network

(RNN) [63], Long short-term memory (LSTM) [64], Residual Neural Network (ResNet) [65], and

Convolutional Neural Network (CNN) [66] have been adopted for solving data-driven forecasting-

aided state estimation in smart grids. In the later techniques, measurement data are fed as the input

to the models either as multivariate time series or images in Euclidean space. The aforementioned

techniques do not explicitly consider the information about the underlying graph structures in the

system data. Particularly, CNN generally handles data in Euclidean space and fails to address

non-Euclidean spaces created by graphs; especially when there is no spatial locality due to the

arbitrary structure of the graph [67].

To incorporate graph information, such as information on the topological structure of the

power system in the model, graph-aware machine-learning approaches have also been considered

in the literature for state estimation in power systems. Next, we briefly review state estimation

techniques that consider graph or topological information of the power system in their model.

G-CNN, first introduced in [68], extends the existing neural network methods for processing the

data represented in graph domains. The underlying structures and graph of connections among the

components of power grids suggest the potential of G-CNN to capture and use such information.

Applications of G-CNN to smart grid problems are emerging [69]. For instance, in [70], the

authors have modeled the fault localization problem as a graph search approach using G-CNN

in the distribution grid. The authors in [71] proposed a quasi-Monte-Carlo method based on G-

CNN to calculate the distribution characteristics of system power flow. The problem of intentional

islanding considering load-generation balance has also been addressed using G-CNN in [72]. A

physics-aware graph-pruned neural network model for distribution grid state estimation has been

proposed in [73]. Joint detection of false data injection attacks in smart grids using auto-regressive

moving average (ARMA) graph convolutional filters on G-CNN has been proposed in [74]. In

addition, in the G-CNN domain, both graph spectral filtering CNN and message-passing neural

networks are developed [75]. In this dissertation, both data-driven and machine-learning models,

with and without graph consideration, have been studied.
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2.3 Distributed State Estimation Approaches

Smart grids are large-scale infrastructures that are distributed over large geographical regions.

Transmitting the large volume of data collected by thousands of sensors to a centralized unit

for processing imposes new challenges for the communication and computation systems as well

as satisfying time-critical operations. To address these challenges and to improve wide-area

situational awareness, distributed processing of data and computation of the system’s state are

promising solutions. Distributed solutions were pursued since the statistical formulation of state

estimation [6, 76, 77], when it was realized that for a chain of serially interconnected regions,

distributed updates could be invoked incrementally in space. In distributed state estimation, each

subsystem tracks the state of its components using local measurements and limited communications

with its neighboring subsystems or a central unit. Distributed state estimation may also serve the

regulations in information sharing in each region since it limits the information sharing among the

regions. Distributed state estimation is becoming increasingly popular, and a large body of work is

emerging in this direction.

2.3.1 Conventional Distributed State Estimation

Traditionally, state estimation in power grids has been done in a centralized framework. With

grid deregulation, increased awareness of information privacy and security, and more strict response

time requirements, more attention has been given to multi-area state estimation. A detailed review

of conventional techniques for multi-region distributed state estimation can be found in [78].

In this direction, hierarchical, multi-level approaches with global coordinators have been pro-

posed in the literature. These approaches involve breaking down the overall system into subsystems

and performing a two-level or multi-level state estimation computation in each level. Specifically,

state estimation is first performed in parallel for all subsystems in the lower levels of the hierarchy.

The coordination of these local estimates is then realized at an upper level of the hierarchy. This way

the higher levels receive and process a smaller number of variables to form a global state estima-
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tion [79]. In [80, 81], a comprehensive review of hierarchical distributed estimation techniques have

been presented, and several renditions of this approach can also be found in [80, 81, 82, 83, 84, 85].

The goal of the hierarchical scheme is to extend the conventional techniques in a multi-region

setting so that they can be applied to large-scale power systems. For instance, in [82], a fast

rectangular-coordinate method is proposed, which involves an extension of a fast second-order load-

flow method, and allows a fixed Jacobian matrix to be used in the hierarchical algorithm for state

estimation. In [83], a stochastic fractal search technique (SFS) is used to perform the local/region-

level state estimation and a simulated annealing technique is used at the global coordination

level for state estimation. KF-based state estimation techniques are also proposed in a hierarchical

fashion. For example, EKF for dynamic state prediction and hierarchical filtering for power systems

have been proposed in [86]. A comprehensive analysis for the experimental implementation of

KF-based hierarchical state estimation has also been performed in terms of computation power

and communication bandwidth requirements in [87]. The author has also compared central,

distributed, and hierarchical state estimation algorithms in terms of time complexity and concluded

that hierarchical Kalman filtering (HKF), needs about 34% communication bandwidth and O(1/N3)

computation power in subsystems compared to central state estimation, while giving approximately

the same level of estimation precision. Moreover, most of these hierarchical techniques assume

local observability, meaning that local state estimates, excluding the boundary bus measurements,

are uniquely identifiable. Such an assumption may not hold in a real-world scenario due to missing

or inaccurate information in the system. Moreover, the need for a central coordinator can also

hinder the system’s reliability.

To ease the computational and communication burden, another category of distributed state

estimation techniques are the ones, which do not assume any centralized coordinator. Examples of

such techniques include decentralized state estimation solutions, such as block Jacobian iterations

[88, 89], gradient-based WLS solutions [90], and approximate algorithm modifying the conven-

tional state estimation algorithms and applying a coupling constraints optimization technique [91].

These methods generally assume local observability; however, convergence is not always guaran-
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teed in these techniques. A novel decentralized parallel optimization algorithm called auxiliary

problem principle (APP) is proposed in [92]; however, it requires tuning of several parameters for

optimal performance. In [93], a spectral graph theory-based algorithm is proposed for this purpose.

The requirement for local observability is relaxed and the communication structure can be different

from the physical topology of the power network. However, each region is envisioned to maintain

a copy of the entire high-dimensional state vector.

Apart from popular distributed KF-based methods [94, 95] and distributed block Jacobian

approach, distributed and parallel optimization-based method [96, 97, 98, 99, 100] have also

been proposed for distributed state estimation. The key advantages of such approaches are the

decomposition and parallelization of the original problem and the absence of a central computation

unit. In [98], the authors proposed a bi-linear state estimation technique. In both linear stages,

the state estimation problem in each area is solved locally, with minimal data exchange with its

neighbors. The intermediate nonlinear transformation can be performed by all areas in parallel

without any need for inter-regional communication. In [99], an MMSE-based approach has been

proposed and a finite-time average consensus algorithm is utilized in conjunction with an influence

function to realize the proposed distributed approach within a totally distributed framework. A

distributed incremental Quais-Newton (D-IQN) algorithm has also been proposed for multi-region

distributed state estimation in [100], where the maximum correntropy criterion (MCC) is used in

the objective function in order to address the non-Gaussian noise scenario. In [101], a distributed

innovation-based model is proposed. The authors have approached the distributed model solution of

the state-of-the-art WLS through an Alternating Direction Method of Multipliers (ADMM), which

requires minimal information communication. Though some of the conventional approaches are

computationally efficient, some criteria, such as local observability, an accurate system model, the

need for global coordination, and stochastic and non-gaussian noise, may limit the performance and

applicability of such methods. Data-driven, distributed solutions may become a remedy to address

some of the issues faced by conventional approaches.
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2.3.2 Data-Driven Distributed State Estimation

Due to the constantly increasing complexity of power systems and higher penetration of stochas-

tic renewable generation, as well as increased deployment of sensing and monitoring devices, dis-

tributed state estimation is gaining more attention in these systems. As such, the development of

novel techniques to exploit the dynamic and large volume of energy data, along with increasing

their robustness, are important research problems to tackle. The focus of some of the distributed

data-driven and machine learning-based models for state estimation is to approximate the power

system dynamics in a region and use such approximation for state estimation. Moreover, dis-

tributed state estimation in power systems is considered in a wide range of scenarios, including

fully distributed, multi-region distributed, and multi-region distributed with collaborations among

the regions. Regions in such techniques are usually defined to consist of buses and their connec-

tions based on specific properties, such as their geographic proximity, state correlations, or other

data-driven or physics-based metrics of interactions among the buses [102]. A fully-distributed

scenario is a special case of a multi-region scenario, where each area has a single bus as the mem-

ber. A fully-distributed state estimation without information sharing/collaboration would mean a

univariate estimation.

An example of a fully distributed state estimation can be found in [103], which uses predictive

information filtering. Moreover, the work in [104] uses diffusion-based KF for fully distributed

state estimation in which a selected set of nodes in the system are allowed to share a subset of

intermediate estimates with their neighbors using information propagation strategies. A Gaussian

process-based distributed Bayes filter has been proposed in [105] for the dynamic distributed state

estimation. Examples of techniques that propose state estimation over regions in power systems

include [12, 106, 107, 108, 109, 18, 110]. In these examples, regions have been defined according

to a number of criteria, including geographic distance, operational similarity, and communication

resources [106]. The work in [8], for instance, addresses an early stress detection and locating

method based on a linear predictive filter that may be used over an edge computing platform for

regions determined based on geographical distances. The researchers in [108] offer a multi-region
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distributed state estimation solution that incorporates edge computing and uses local estimates

that are calculated using the belief propagation algorithm over spatially defined regions. In a

multi-region distributed setting, ANNs have also been taken into consideration for state estimation

problems in [109, 110]. In [110], to reduce the computational cost of the SE problem with distributed

computation, multiple ANN three-phase estimators are executed in parallel and integrated into a

multi-region state estimation architecture. A stochastic optimization mechanism-based differential

evolution algorithm (DEA) has been proposed in [111]. The algorithm is highly scalable. However,

a very robust and fast communication link between parallel processors is a fundamental requirement

in this algorithm. Emerging ANN techniques such as GCNN have also been proposed for multi-

region settings in [112].

In the multi-region framework for large-scale power systems, distributed cubature KF has also

been investigated for the state estimation problem in [113]. Special cases of multi-region distributed

state estimation, in which regions are defined based on each bus and its one-hop neighborhood,

which we term 1-hop neighborhood state estimation, have also been considered in the literature.

Examples of 1-hop neighborhood distributed state estimation techniques in power systems include

techniques based on neural networks [114], belief propagation [115], and KF [116, 117, 18].

For instance, the work in [116] uses diffusion-based KF for 1-hop neighborhood distributed state

estimation. Specifically, a selected set of buses in the system share a subset of intermediate estimates

with their neighbors. The proposed technique in [117] utilizes the information diffusion strategy in

modeling 1-hop neighborhood distributed KF to detect cyber-physical stresses. In this dissertation

data-driven state estimation methods that use the local information in the defined regions over the

system to provide fast and effective state estimates have been studied.

2.4 State Estimation Under Cyber and Physical Stresses

Security of the cyber-physical systems, including smart grids, has been the focus of much

research. Studying and mitigating the effects of joint cyber and physical attacks in CPSs are

categories of such research that have gained lots of attention recently [118, 119, 120, 121, 122]. For
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instance, Sultan et. al in [118, 119, 120] exploited a joint graph-based and power analysis approach

for state estimation and line failure detection. In [121], the authors considered coordinated cyber-

physical attacks that can lead to line outages. In the latter work, the goal is to identify the

most damaging and undetectable line outages using power system analysis and an optimization

framework. In [122], an in-depth review of the smart grid security from a CPS perspective is

presented, and prominent cyber-physical attack schemes with significant impact on the smart grid

operation and corresponding defense solutions have also been discussed. In [70], the authors have

modeled the fault localization problem as a graph search approach using G-CNN in the distribution

grid.

Other than the power-based and graph-based analyses of the security threats, many researchers

have used PMU data for detecting the line outage in power grids in case of failures or attacks. For

instance, in [123], the authors use PMU data along with the topology information to detect line

outages. State estimation of power systems using PMU data has also been extensively studied [124,

125, 126, 127, 128, 129]. For instance, in [125], a two-step hybrid state estimation combines both

the conventional WLS method and linear estimation that utilizes PMU measurements. In [128],

real-time fault detection and faulted line identification functionality is proposed based on computing

parallel synchrophasor-based state estimators. Based on the optimal filter and graph theory, a robust

distributed smart grid state estimation algorithm is proposed in [129] for defense against false data

injection attacks. A deep auto-encoding Gaussian mixture model (DAGMM) has been proposed as

a data-driven detection mechanism of stealthy false data injection attack against power system state

estimation is proposed in [130]. For instance, the work in [8] addresses an early stress detection

and locating method based on a linear predictive filter that may be used over an edge computing

platform for regions determined based on geographical distances.

In addition to new techniques based on graph and PMU data analyses, power system security

has been extensively studied using traditional state estimation methods [20, 45, 131, 132, 133]

in which accurate knowledge of the system model is required. The work in [131] provides a

survey discussing state of the art in electric power system state estimation. A review of power
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system dynamic state estimation techniques using conventional methods have also been discussed

in [45, 20]. Strategies for malicious data manipulation and data integrity attacks against state

estimation and countermeasures for such attacks have been reviewed in [133, 132]. Although many

powerful techniques have been developed in state estimation for power systems, the availability of

large volumes of data and data analytics techniques can provide new opportunities to help with state

estimation in special situations, for example, when the system model is not available or accurate

(such as in the cases of joint cyber attacks). The presented work in this dissertation is focused on

a data-driven approach for state estimation using PMU data for transmission line state estimation.

A state estimation method in case of joint cyber and physical attacks has also been discussed in

Chapter 6.

2.5 Summary

A review of conventional and data-driven state estimation strategies in power systems was

presented in this chapter. It was discussed that state estimation has been conducted in a centralized

manner in power systems, traditionally. However, the communication and computation burden of

processing the measurements from the vast deployed sensors in the system suggest the need for

distributed state estimation to reduce the communication and processing cost and to satisfy the

fast response time requirements of critical functions in power systems that rely on state estimation.

While some of the conventional distributed approaches are computationally efficient, criteria, such

as local observability, need for an accurate system model, the need for a global coordinator, and

stochastic and non-Gaussian noise, may limit their performance and applicability. Data-driven,

distributed approaches can be a solution to some of such challenges encountered by traditional

approaches. A brief review of central and distributed state estimation for both conventional and

data-driven approaches were presented in this chapter. Moreover, state estimation under cyber

and physical stresses in power systems was discussed. It was particularly discussed that the state

estimation can enable observability and recovery of the state of the components under cyber stresses.
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Chapter 3: Data-Driven Centralized State Estimation

3.1 Introduction

An important function of the wide-area monitoring systems in power grids is monitoring the state

of operational conditions of the system. The information provided by these systems to operators and

other control and management functions is essential for well-informed decision-making and reliable

and efficient operation of power systems. The conventional state estimators, which have been widely

deployed in utility control centers, have been in use to help with monitoring the state of the system.

As discussed in Chapter 2, conventional power system state estimation relies heavily on the power

system models, including the connectivity, attributes, and operating conditions of the components.

The steady-state analysis serves as the foundation for a good portion of the model-based state

estimation approaches. However, due to extremely dynamic and stochastic changes induced by, for

example, distributed energy generations (DEGs) and rapidly changing loads, steady-state studies

cannot be effective for current power systems. In addition, the widespread use of PMUs and

the availability of a significant amount of measurement data have created new possibilities for

enhancing and supplementing the traditional model-based state estimation used in power systems.

As a consequence of this, data-driven and machine learning-based approaches to state estimation

are receiving more attention. In this chapter, we present novel data-driven techniques for state

estimation in power systems. These techniques are discussed under a centralized setting in this

chapter, while some of these techniques have been studied under distributed setting in Chapter 4.

Specifically, techniques based on KF, Bayesian regression with auto-regressive approach, minimum

mean squares error, and graph neural network have been presented in this chapter. These techniques

are discussed under two categories of linear and non-linear techniques.
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3.2 Linear Data-Driven State Estimation

The techniques discussed in this category adopt a linear approximation of the system model and

its dynamics in developing the models. As data-driven linear state estimation methods, the MMSE

estimation, Bayesian linear regression with the auto-regressive process, and linear data-driven KF

have been discussed in this section. The MMSE method has the ability to estimate state of certain

components using the information from the rest of the system, which is important in mitigating

and recovering from the effects of cyber stresses. However, the presented MMSE technique does

not consider the temporal information from the measurement time-series. On the other hand,

Baysian regression combined with the auto-regressive process captures the temporal aspects of the

measurements and The data-driven KF model is also suitable to estimate the state of dynamic and

stochastic systems, while using a data-driven linear model to approximate the system model and as

such, the model can handle missing and inaccuracies in the system model information.

3.2.1 Minimum Mean Square Error Method

The MMSE method presented in this section enables estimating the state of certain components

(which can represent unobservable components in the system due to, for instance, lack of measure-

ment devices or cyber and physical stresses) using the information from the rest of the system. In

this model, a linear approximation of the nonlinear dynamics of the power system can be written

as x = G(z) + B, where x = [x1, x2, ... , xn]T is the state vector, z = [z1, z2, ... , zm]T is the measurement

vector, and G(z) is the linear function relating the state vectors to the measurements and n and m are

the number of states and measurements, respectively and B is the vector of intercepts. It is assumed

that the individual state variables are random variables and the statistical relationships among the

state variables can be characterized by specifying the mean and covariance. Let us assume the state

variable xi needs to be estimated in terms of the measurements z ∈ Rm. The linear estimate of

state variable xi can be expressed as x̂i = a1iz1 + a2iz2, ... , amizm + bi and the estimation error can be

expressed as ems = E[(xi − x̂i)2]. The problem is then identifying ai = [a1i , a2i , ... , ami ] and bi , such

that error ems is minimized. Denoting these parameters in a matrix form, such that aij ∈ An×m and
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bi ∈ Bn×1, the co-efficient matrix can be learnt as:

A = RzxR−1
z (3.1)

B = µx − Aµz. (3.2)

Here, A is the coefficient matrix, B is the vector of intercepts and Rzx and Rz are the cross-

correlation and auto-correlation matrices. Finally, µz and µx are the vector of mean value of

the measurements and the state variables. The overall MMSE state estimation model can be

summarized as:

x = Az + B (3.3)

A =


a1i , a2i , ... , ami

... ,
... , ... ,

...

a1n, a2n, ... , amn


n×m

(3.4)

B =


b1

...

bn


n×1

(3.5)

This method exploits the statistical relation among the variables in the system for state esti-

mation; however, it does not consider the temporal information in the measurement data. This

approach is specifically helpful in situations where a subset of the system states are unobservable

due to failure or cyber stresses or lack of mounted measurement devices to track the state of the

component. In such cases, using the available measurement and observable components, MMSE

can recover the unobservable states. This techniques and the scenarios that it is applied to are

discussed further in Chapter 5.
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3.2.2 Bayesian Regression Combined with Auto-Regressive Approach

As discussed in the previous section, the presented MMSE method only considers the statistical

relation among the state of individual component and do not consider the temporal information

in the measurement. The collected measurement from power systems are generally in the form

of time-series and contain important temporal information that can help in the estimation process.

In this section, to capture the temporal information in the data, a Bayesian approach has been

presented.

Specifically, the PMUs in power system sample the state of the system’s components and provide

a sequence of phasor measurement observations in a form of time series. We denote the phase angles

of buses in the system at time t by θt = [θ1t , θ2t , .., θNt ] and bus voltages by V t = [V1t , V2t , .., VNt ].

In this method, we will focus on phase angle time series, while the study can be applied to other

collected attributes from the system.

Measurements from the PMUs are multivariate time series while the consecutive measurements

have high auto-correlation among themselves. To capture this property of time series, we have

expanded our feature space with an AR(p) process such that θ′t = f (θt−1, .., θt−P), where θt−i is the

past observation at time t− i in the time series. Then the state estimation problem may be described

by linear regression as θ̂it = βTθ′t + et with coefficients as β, where the goal is to find maximum

likelihood (ML) estimate at node i, θ̂it , for θit while minimizing frobenius norm ∥ βTθ′t − θ̂it ∥.

However, the computed weight vector β in the linear regression may not be able to capture all

uncertainties, especially in the case of noisy measurements, since it only gives the ML estimate.

One solution to address this issue is to adopt the Bayesian approach to regression, which will learn

the probability distribution of all possible β values that describe the relations between θ′t and θ̂it .

The Bayesian linear regression with AR(p) can be realized as θ̂it ∼ N (βTθ′t ,σ2). Unlike linear

regression, which finds the ML estimate for coefficients β that describe the relationship between

the inputs and the outputs, we are interested in computing a probability distribution for β values

that describe this relationship. This can be calculated by defining prior distributions for β, and

later applying the Bayes rule to calculate the posterior distribution of β. There are several choices
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for the prior distribution of the coefficients. In this section, we follow the Bayesian regression

model described in [134]. The authors in [134] assumed conjugate normal inverse-gamma prior for

β,σ2, and used variational inference that makes the computations faster. Under this assumption,

the likelihood of the θ̂it can be written as in Equation 3.6.

ρ(θit|θ′t , β,σ2) = N (θit|θ′t , β,σ2) (3.6)

Note that in the Bayesian approach a general assumption is that the individual data streams

from the PMUs have Gaussian distribution, which may not be accurate and valid in all cases. Mod-

eling individual time series with their true distribution may improve the estimation performance.

However, in this case, the mathematical model may become intractable and will have a higher

computational cost.

3.2.3 Kalman Filter with Linear System Identification

The data-driven KF approach tries to develop models to track the dynamics of the power

system; specifically by approximating functions f (x) and h(x) in equation Equation 2.2 using PMU

measurement data. In this section, linear KF and linear data-driven models to approximate functions

f (x) and h(x) are considered. This technique is named multivariate linear regression KF (MLR-KF).

Specifically, for the multivariate time-series modeling, a Multiple Linear Auto-regressive (MLAR)

combined with Least Absolute Shrinkage and Selection Operator (LASSO) algorithm is utilized.

The multivariate time-series approximation, in this case, can be formulated as:

min
β1,...,βN×p

(
1

2M

M∑
l=1

(
x i,l −

N∑
j=1

p∑
τ=1

x j,l−τβ
i
j,τ

)2

+ λ
N∑

j=1

p∑
τ=1

∣∣β i
j,τ

∣∣ ) (3.7)

where M is the number of observations, N is the number of buses, β i
j,τ is the regularized coefficient

at time-lag τ for the jth bus when modeling bus i, |.| is the ℓ1 norm, and λ is the ℓ1 regularization

parameter controlling the boundary of the coefficients, and p represents the number of time-lag steps.

Once the coefficients of the MLAR model are learned, the data-driven KF model preliminaries can
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be defined as:

X = [x t , x t−1, ... , x t−p]T (3.8)

F =

 BN×(N×p)

W((N−1)×p)×(N×p)


(N×p)×(N×p)

(3.9)

Hi =
[

I 0
]

N×(N×p)
(3.10)

where x t is the vector of state attributes of all the buses in the system, F is the state transition

matrix in which B has β i
j,τ in its ith row and jτ th column, and W consists of an identity matrix

of (N × p − N) × (N × p − N) and a (N × p − N) × N vector of zeros in the last column of the

matrix. Matrix H is the observation matrix consisting of an N × N identity matrix and a matrix of

N × (N × p − N) zeros. Now, the multivariate KF model can be presented as:

(1) Prediction step:

Xk+1|k = FXk|k−1 (3.11)

Pk+1|k = FPk|kFT + Q (3.12)

(2) Correction step:

Kk+1 = Pk+1|kHT [R + HPk+1|kHT ]−1 (3.13)

Xk+1|k+1 = Xk+1|k + Kk+1[Zk − HXk+1|k ] (3.14)

Pk+1|k+1 = Pk+1|k − Kk+1[R + HPk+1|kHT ]K−1
k+1 (3.15)

where Xk+1|k and Xk+1|k+1 are the predicted and corrected state vectors; Pk+1|k and Pk+1|k+1 are the

predicted and corrected state covariance matrices. Kk+1 is the Kalman gain matrix, QNp×Np is the

modeling error matrix, and RN×N is the measurement error matrix. In the next section, the linearity

assumption of the model is relaxed, and a non-linear data-driven KF model is presented.
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3.3 Nonlinear Data-Driven State Estimation

In this section, data-driven nonlinear approximation of system dynamics are derived from

measurement data to estimate the state of the system. These models are expected to track the

state more closely due to the nonlinear dynamics of the power systems. In this section, extended

KF (EKF), unscented KF (UKF), and the temporal graph convolutional neural network (T-GCNN)

models have been presented. As discussed in Chapter 2, EKF and UKF are among the most popular

dynamic state estimation algorithms. The nonlinear estimation problem can be solved using an

EKF by first linearizing the state and/or measurement equations and then applying a standard KF

to the linearized estimation problem. However, the linearization process results in approximation

errors that can result in underestimating state uncertainties. On the other hand, the UKF selects

what is called sigma point samples from the filtering distribution and then propagates or updates

those samples all the way through the (nonlinear) state and measurement models. The updated

filtering distribution is represented by the weighted set of sigma points that were produced as

a result, and this distribution is then approximated as a moment-matched Gaussian distribution.

This leads to state estimates that can better capture the uncertainty in the states compared to the

estimates derived from the EKF. However, UKF has a higher computational cost compared to EKF.

In addition to KF-based model, we have adopted a neural network-based approach, T-GCNN, which

enables building nonlinear models while capturing both the temporal and topological information

among the components. In this model, the power system topology will be modeled as graph

structure and captured the underlying inter-relations among the variables. T-GCNN extracts the

topological information using graph convolution and temporal aspects of the measurements using

gated recurrent units. The details of these models are presented next.

3.3.1 Extended Kalman Filter with Nonlinear System Identification

In this section, the non-linear KF approach has been considered to better track the non-linear dy-

namics of power systems. In the general non-linear system of equations, presented in Equation 2.1,

functions f (.) and h(.) represent the non-linear measurement and system equations, respectively,
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which can be learned using data-driven techniques to track the system’s non-linear dynamics. To

this end, the data-driven multivariate polynomial regression (MPR) model [135] has been uti-

lized for non-linear system identification. Specifically, to have comparable linear and non-linear

KF models, the non-linear auto-regressive exogenous model (NARX) has been considered in this

section as follows:

xi,t =
nv∑
κ=1

ai,κγκ + ξi

γκ =
N∏

j=1

p∏
τ=1

xσj,τ
j,t−τ

N∑
j=1

p∑
τ=1

σj,τ ≤ η

(3.16)

where nv is the total number of unique combinations of N × p independent variables and p time-

lagged measurements. If the order of the polynomial is considered to be η, and γκ represents the

κ-th regressor.

Extended KF is a non-linear version of KF (here, named MPR-EKF), which specifies the

non-linear systems and state equations at step k as:

Fk =
δf
δX

∣∣∣∣
Xk

(3.17)

Hk =
δh
δX

∣∣∣∣
Xk

(3.18)

Then, the main steps in EKF estimation are as follows:

(1) Prediction step:

Xk+1|k = f (Xk|k−1) (3.19)

Pk+1|k = FkPk|kFT
k + Q (3.20)

(2) Correction step:

Kk+1 = Pk+1|kHT
k [R + HkPk+1|kHT

k ]−1 (3.21)
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Xk+1|k+1 = Xk+1|k + Kk+1[Zk − h(Xk+1|k)] (3.22)

Pk+1|k+1 = Pk+1|k − Kk+1[R + HkPk+1|kHT
k ]K−1

k+1 (3.23)

3.3.2 Unscented Kalman Filter with Nonlinear System Identification

The propagation of error in covariance in Equation 3.20 through the linearization of the un-

derlying non-linear model in EKF, as shown in Equation 3.17, can lead to poor performance in

highly dynamic systems. In such circumstances, the unscented KF can be applied, which generates

a minimal set of sample points (known as sigma points) around the mean using the deterministic

sampling technique known as the unscented transformation. The estimations of the new mean and

error covariance are then generated from these altered sigma points using non-linear functions. The

computation is performed in the following phases. First, sigma points are selected to propagate

from k to k + 1 time step using the best guess of pk and xk as follows, where pk is the diagonal

element of matrix Pk , and xk is an element of vector Xk .

x(i)
k = xk + x̃(i) for i = 1, ... , 2N (3.24)

x̃(i) =
(√

Npk

)T

i
for i = 1, ... , N (3.25)

x̃(i+N) = −
(√

Npk

)T

i
for i = 1, ... , N, (3.26)

where x(i)
k represents the sigma point, i is the index of the sigma point, and N is the number of buses

or states to be estimated. The variable x̃(i) denotes the change in sigma point, and both negative and

positive changes are considered in defining sigma points. Next, the non-linear function f (.) is used

to transform all the sigma points x(i)
k into x(i)

k+1 as x(i)
k+1 = f (x(i)

k ).

The initial state estimate will then be obtained by combining x(i)
k+1 values as follows:

x̂k+1|k =
1

2N

2N∑
i=1

x(i)
k+1 (3.27)
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p̂k+1|k =
1

2N

2N∑
i=1

(x(i)
k+1 − x̂k+1|k)2 + q, (3.28)

where q is the modeling error and an element of Q. Using the updated estimate x̂k+1 and p̂k+1,

new sigma points x̂(i)
k+1 will be computed as in Equations 3.24 to 3.26 to update the measurements

z(i)
k+1. Then, the updated estimate ẑk+1 can be calculated similarly to that of x̂k+1 in Equation 3.27.

The variance, pz (an element of PZ ), and covariance, pxz (an element of PXZ ), of the predicted

measurements are calculated as follows:

pz =
1

2N

2N∑
i=1

(z(i)
k+1 − ẑk+1|k)2 + ρ (3.29)

pxz =
1

2N

2N∑
i=1

(x(i)
k+1 − x̂k+1|k)(z(i)

k+1 − ẑk+1|k), (3.30)

where ρ is the measurement error and an element of R. The correction state can then be calculated

as follows (denoted in vector and matrix notation):

Kk+1|k+1 = PXZP−1
Z (3.31)

Xk+1|k+1 = Xk+1|k + Kk+1|k+1(Zk+1|k − Ẑk+1|k) (3.32)

Pk+1|k+1 = P̂k+1|k − Kk+1|k+1PZKT
k+1|k+1. (3.33)

One benefit of UKF over EKF is that it can reduce the computational complexity since it does

not require calculating the Jacobin matrix in the estimation process. This approach is referred to

as MPR-UKF in this method.

3.3.3 Temporal Graph Convolutional Neural Network Approach

Graph has an excellent ability to capture structural information of a network. Power systems

are complex interconnected networks where the physical topology also carries important spatial

information which may further improve the data-driven state estimation. In an effort to combine
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spatial and temporal information in state estimation process, a Spatial temporal graph convolutional

neural network based approach is proposed as follows.

In general, G-CNN combines the feature information and the graph structure to learn better

representations on graphs, for instance, via feature propagation and aggregation. In this method,

given the input measurement features Zt , the state estimation process is modeled in a message-

passing framework of Graph Neural Network [68]. In this framework, the state x1 of the node

n1 depends on the information contained in its neighborhood (see Figure 3.1). In the example

in Figure 3.1, the state of node n1 can be learnt by aggregating the information of its neighbours

using function f as x1 = f (x2, x3, x4, x5), where f (.) is a nonlinear function modeled in the neural

network. The same goes for each node of the graph. In this framework, message h (hidden node

state information) will be passed among neighbors for node-level state prediction.

Figure 3.1: An example of the message passing process in a neighborhood for G-CNN.

This step along with integrating the temporal dependencies in the data for one-step ahead

prediction of the system’s state can be modeled as

Zt = f1(.)Xt , (3.34)

Xt+1 = f2(.)Xt , (3.35)

Here, f1(.) and f2(.) are nonlinear functions of state variables Xt that will be learnt from the

measurement data. Particularly, the function f1(.) maps the measurements to the system state, and
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f2(.) does the one-step ahead forecasting. Instead of learning two separate nonlinear relationships,

both functions can be combined into one mapping function F (.) as Xt+1 = F (Zt , Xt). In this section,

a two layer spatio-temporal G-CNN is used to learn the mapping function F . Since power system

measurements are highly correlated multivariate time-series, to capture the spatial dependencies,

a graph convolution layer with message passing is used as the first layer of the network. The

second layer is a GRU layer, which is responsible for capturing the temporal dependencies of the

measurements.

The traditional CNN can obtain local spatial features in the Euclidean data space. Power

system graphs are complex networks and as such, CNN cannot accurately capture the embedded

spatial dependencies. G-CNN can learn the spatial features of complex graph structured data based

on the neighborhood aggregation (for message passing framework), given the adjacency matrix

A := {0, 1} ∈ RN×N , and feature matrix Z . A typical G-CNN layer [136] can be expressed as

follows:

Hl+1 = σ(D̃− 1
2 ÃD̃− 1

2HlWl). (3.36)

Here, Ã := A+ IN (where IN is the identity matrix of size N) and D̃ := IN
∑

j Ãi,j are the adjacency

and degree matrix, respectively. Moreover, σ(.) is the sigmoid activation function, l is the layer

number, Wl holds the weights of layer l, and Hl is the output of layer l. Multiple such layers can be

added on top of one another to create a multi-layer G-CNN model.

To perform forecasting-aided estimation on multivariate time-series, a GRU model is used. The

basic principle of GRU and LSTM models are roughly the same [137]. However, LSTM has a

comparatively complex structure and longer training time. Stacking the GRU model with G-CNN

creates a temporal G-CNN (T-GCNN), which was first proposed in [138]. The T-GCNN can be

described as follows

F (Zt ,A) = σ(ÂReLU(ÂZtW0)W1) (3.37)

ut = σ(Wu[F (Zt ,A), ht−1] + bu) (3.38)
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Figure 3.2: Schematics of the temporal G-CNN model for state estimation in the smart grid.

rt = σ(Wr [F (Zt ,A), ht−1] + bu) (3.39)

ct = tanh (Wc[F (Zt ,A), (rt ∗ ht−1)] + bc) (3.40)

ht = ut ∗ ht−1 + (1 − ut) ∗ ct (3.41)

Here, Â := D̃− 1
2 ÃD̃− 1

2 is the pre-processing of graph convolution layer. W0 ∈ Rβ×δ and

W1 ∈ Rδ×τ are the model weights, where the parameters β, δ, and τ denote the batch size, hidden

unit, and prediction length, respectively. In this model, rt is the reset gate, which is used to decide

how much of the past information to forget and ut is the update gate, which helps the model to

determine how much of the past information needs to be passed to the future. Moreover, ct is the

memory unit, which calculates information stored at time t and ht is the hidden state at time t.

The parameter b denotes the bias parameter at respective levels. Over the model training iteration

ht will slowly converge into model prediction Xt+1. Figure 3.2 shows the overall schematics and

information flow of T-GCNN model.
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3.4 Summary

In this chapter, several centralized data-driven state estimation approaches have been discussed.

We started the discussion by introducing few data-driven linear models to approximate the dynamics

of the power system including MMSE, Bayesian Multiple Regression combined with an Auto-

regressive approach, and linear KF. As nonlinear state estimation techniques, nonlinear KF-base

techniques, such as the Extended KF and the Unscented KF with nonlinear system identification

have been presented. We discussed that the linear MMSE is particularly helpful in scenarios in

which a sub set of components are unobservable due to, for instance, cyber and physical stresses.

The Bayesian approach considers the measurements as multi-variate time series to capture the

temporal information in the data in the estimation process. The data-driven system identification

techniques have been implemented to approximate the underlying power system dynamics in both

linear and nonlinear fashion in KF-based state estimation. These data-driven system models are

used specifically to develop linear, extended, and unscented KF models for state estimation in the

system. All these approaches are completely data-driven and do not require system topological

information. However, a data-driven approach based on G-CNN is presented for the state estimation

problem in smart grids. Since G-CNNs are deep learning-based methods that operate on the graph

domain, they lend themselves well to the problem of state estimation in smart grids with underlying

graph-based structures and interactions. A modified variant of G-CNN, namely temporal G-CNN

(T-GCNN), suitable for analyses of graph time series, is presented for one-step ahead state prediction

in smart grids. The T-GCNN model can deal with complex spatial dependencies over graphs as

well as temporal dynamics in the measurements. Specifically, a message passing G-CNN is used to

capture the topological structure of the smart grid network in the spatial dependency analyses, and

the gated recurrent units are used to capture the dynamic variation of state information for obtaining

the temporal dependencies. These data-driven models are particularly helpful in supporting state

estimation under conditions of missing or limited measurements, such as partial unobservability

due to failures or attacks in the sensing and monitoring system or the limited availability of PMUs.

40



Chapter 4: Distributed Multi-Region State Estimation

4.1 Introduction

Deregulation of energy markets, penetration of renewables, advanced metering capabilities,

and the urge for situational awareness, all call for system-wide power system state estimation.

Implementing a centralized state estimator though is practically challenging due to the large scale of

these systems, the communication bottleneck in real-time monitoring, regional disclosure policies,

and reliability issues.

Many of the data processing and computations related to monitoring the power systems have

been traditionally performed centrally in utility-owned servers or cloud platforms. Communicating

the large volume of data and their processing in central units, inevitably adds delay and inaccuracies

in the state estimation and monitoring of the system. For certain time-sensitive functions, such

delays could cost the reliability and stability of the system. To address this issue, distributed and

local processing of data can provide a good solution, especially for time-sensitive functions. Data-

driven state estimation is one of such functions that can improve the response time of the system,

particularly, to critical conditions, such as failures or cyber-stresses. The data-driven distributed

state estimation can provide a faster and more accurate estimation of current conditions in the local

regions as well as predicting future trends in state changes to identify abnormal conditions. New

technologies, such as Edge or Fog computing, can provide a platform to enable these functions by

local and distributed processing of data to enhance system monitoring in power grids [8, 9].

To enable local processing of data for distributed state estimation, local neighborhoods or

regions need to be defined over the physical layout of the power system. This will also allow

for provisioning the computational resources required for each region and their placement (for

example in an edge computing platform). While the partitioning of the power system to regions
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can be dictated by physical, geographical, or economical constraints due to the layout of the power

system and the communication and computing systems’ resources, the physics of the system and

relations and interactions among the components can also be considered in defining the regions

as they can affect the accuracy of the estimations. In this chapter, we consider the geographical

properties and the correlations among the PMU time series to define regions over the power system

for state estimation purposes. Additionally, a multi-region distributed state estimation framework

have been discussed. We will discuss some of the state estimation techniques presented in Chapter

3 under this distributed framework. In this framework, each local region will work independently

or in collaboration with other regions to compute the local estimates using the local measurements

and limited information from neighboring regions. This chapter discusses the information sharing

strategies among the distributed regions, that can improve overall estimation. Additionally, as a

special case of multi-region, a fully distributed state estimator based on KF has also been presented.

To easily keep track of the various state estimation techniques, the fully distributed state estimation

is denoted as Case-I, centralized estimation processes as Case-II, multi-region state estimation

without information sharing/ collaboration as Case-III, and with information sharing as Case-IV.

4.2 Power Grid Partitioning

We have considered multi-region distributed state estimation for smart grids. As such, the first

step is to define and identify partitions in the system that facilitate the distributed state estimation

using the local information within each region. We assume that the system consists of N buses

connected using transmission lines.

As computations are supposed to be local, the geographical proximity of the PMUs is one

criterion in defining the regions. To incorporate the dynamics and properties of the power system,

which can affect the state estimation performance, we consider the cross-correlations of PMU time

series at buses as the second criterion in defining the regions. This criterion will result in more

inter-related feature space for the estimation model, which can improve the estimation performance.
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In partitioning power systems, various criteria have been considered in the literature [139, 140].

Specifically, in this section, for multi-region state estimation, as the computations are performed

locally, the geographical proximity of the PMUs can be one criterion in defining the regions.

Further, cross-correlations among PMU time-series at buses can serve as the second criterion in

defining the regions as they enable capturing information on the dynamics and interaction properties

of the power system components. The latter criterion will result in more inter-related feature space

for the estimation model, which can improve the performance.

The objective is to divide the grid into J regions, where Si represents the collection of nodes

that make up a region, and S = {S1, S2, ... , SJ} signifies the set of regions. Given the total number

of regions J, the partitioning problem has been solved using a density-based clustering technique,

specifically k-means, to identify the non-overlapping regions. The grid will be partitioned using

k-means clustering while minimizing the sum of squared distances of the nodes within a region

and maximizing the spatial correlation. In this case, the cross-correlation values between the PMU

time-series of the buses and their geographical distance from one another are employed in the

feature space for the k-means algorithm. Figure 4.1 shows an example of a partitioned grid over

IEEE 118.
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Figure 4.1: An example of a partition over the IEEE 118 bus system using the modified k-means
partitioning discussed in Case-III for five regions.
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Figure 4.2a shows that non-homogeneous partitions will be formed by this strategy. However,

because of the limitations of the local computing and communication capabilities (e.g., commu-

nication bandwidth, storage, and computational power), substantial inequalities in the sizes of the

regions might not be appropriate. In order to overcome this issue, the aforementioned k-means

method is modified to develop a size-constrained k-means algorithm that can produce homogeneous

regions in terms of size. First, the grid will be divided into J non-homogeneous regions using the

k-means algorithm, as mentioned above (assumed N ≫ J). Then, the approximate ideal size of

the homogeneous partitions is defined by the expression ⌊N
J ⌋. In the following stage, the largest

partition will be determined, and ⌊N
J ⌋ PMUs that are closest to the region’s center will be chosen

and assigned to it. This area will be designated as finished and temporarily removed from the graph.

For the reduced graph, the same procedure will be repeated. To be more precise, the assignments

for the largest partition will be finalized when k-means is used to find J − 1 non-homogeneous

partitions on the reduced graph in the following step. Up till J homogeneous regions are obtained,

this process will be repeated. If there are PMUs left out in the last step (due to (N mod J) ̸= 0),

they will be assigned to their closest region. An example distribution of homogeneous region sizes

are presented in Figure 4.2b. This process is applied once before the state estimation and thus does

not affect the computational complexity or run-time of the state estimation techniques.

4.3 Muti-Region State Estimation Framework

For the local processing of data in distributed computing units, we consider edge computing as

an example supporting platform of multi-region distributed state estimation. First, the smart grid

is divided into regions and the center of each region µr (based on its geographical coordinates and

average cross correlation) is adjusted to its nearest PMU for optimal placement of edge computing

unit. Each edge computing unit is connected via wireless links to PMUs in the region and will

run the local state estimation in parallel. It collects the associated regional PMU measurements

(such as V , θ) and processes the data for one step ahead state estimation using the estimation
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Figure 4.2: Stacked representation of different region sizes for (a) non-homogeneous partitioning
and (b) homogeneous partitioning discussed in Case-III. Each color represents a different region.
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model (e.g., BMLR, Linear-KF, EKF, and UKF). Since data is being processed by local edge nodes

instead of being transferred to the central cloud servers, the overall communication latency will

be reduced and faster decision making can be achieved from the local estimations [8]. Finally,

local estimates can be used locally for responding to a situation identified or can be communicated

to the central systems and also be combined to achieve the overall system estimates. Figure 4.3

shows the general schematics of the multi-region state estimation on the IEEE 118 bus system. In

this figure, each colored node of the graph represents a bus in the system and the black solid lines

represent a transmission line. Different colors assigned to the nodes specify the regions defined

over the system. Note that in this figure, we do not consider the coordinated and collaborative

state estimation among the edge servers of different regions. We also assume that there is no

central coordinator to support the distributed estimation. However, collaborative state estimation

ad considering communication among the edge servers of different regions in a distributed manner

can also be considered, as is considered in [18, 110, 113] as well as later in this chapter. KF-based

linear and nonlinear methods (e.g., Linear-KF, EKF, and UKF) have been evaluated in Chapter 6

considering various method of collaboration in the same multi-region framework.

Figure 4.3: Schematics of the proposed multi-region DSE framework enabled by distributed edge
computing over the IEEE 118 bus system.
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4.4 Multi-Region State Estimation without Information Sharing

In this scenario, the distributed region will only utilize the local information for computing

the local state. No external information will shared among the region. The algorithms that have

been discussed in Chapter 3 in both linear and non-linear fashion will be evaluated in this setting.

The estimation algorithm will be applied to each region as if it is a centralized estimation process.

Although, this scenario may not be practical, we will utilize the results from this evaluation as

benchmark for other collaborative techniques. We will name this scenario as Case-III for referring

to when we discuss evaluations.

4.5 Multi-Region State Estimation with Information Sharing

In multi-region state estimation, allowing limited information sharing among the regions can

improve the estimation accuracy by making the estimation process aware of the overall state of

other regions and adaptive to changes in them. This case is an extension of non-collaborating state

estimation (Case-III), in which regions share selected data or features with their neighboring regions

to be used in the local estimation process (Case-IV). In this section, various information-sharing

schemes have been considered.

4.5.1 Information Sharing through Overlapped Regions

In this scenario, common buses among regions are considered to enable information sharing

among regions for the state estimation process. As such, instead of the partitioning mechanism

presented in section 4.2, a soft clustering technique, specifically, fuzzy c-means (FCM) clustering

[141, 142], has been utilized to allow overlapping regions. The partitioning mechanism in this case

is similar to the one presented in Case-III, except that buses can be assigned to multiple regions with

varying degrees of membership belonging, where the membership can be tuned through specified

thresholds (Case-IVa). The process for keeping the region sizes homogeneous is the same as the

hard partitioning mechanism presented in Case-III. An example of overlapped partition scenario
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has shown in Figure 4.4. The overlapping regions expand the feature space of individual regions by

capturing partial information about the dynamics of neighboring regions through common buses.
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Figure 4.4: An example of five overlapped regions discussed in Case-IVa.

4.5.2 Information Sharing through Auxiliary Buses

In this information-sharing technique, an auxiliary bus will be associated with each region,

which is responsible to summarize and share the information about that region with the rest of the

regions. As such, considering J regions, each region, say ith, will use data from its Ni buses plus

the data from J − 1 auxiliary buses representing the rest of the regions.

The next step in information sharing through auxiliary buses is to assign features to them, such

that the features embed the state information of the region that they are representing. The feature

associated with the auxiliary bus of the region i at a specific time instance is denoted by mi . In this

section, the following representing features are considered for mi:

• Mean of the state values of the buses of region i;

• State data of the bus with the largest variance in the region i;
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• State data of the bus in the region i with maximum average correlation with the rest of the

buses in the region i;

• State data of the bus in the region i with maximum average correlation with the buses in the

region j;

• As the first principal component of states in region i.

4.6 Fully Distributed State Estimation

A fully-distributed scenario is a special case of multi-region scenario, where each area has

a single bus as the member. A fully-distributed state estimation without information shar-

ing/collaboration would mean a univariate estimation. The assumption in the fully distributed

case is that the full set of measurements are available on all the buses in the system, and the goal is

to perform a 1-step-ahead prediction for the state of each bus using only the information from the

same bus. We will denote the fully distributed scenario as Case-I for simulation and comparison

purpose. In this case, the individual bus measurement time-series are modeled as an auto regressive

process as follows:

xi,t =
p∑

τ=1

ϕi,τxi,t−τ + ξi , (4.1)

Here, p represents the number of time-lag steps, and ξi is the modeling error, which is indepen-

dent of measurements.

Now, the model parameter Φi = [ϕi,1,ϕi,2, ...,ϕi,p]T , where (.)T denotes the transpose operation,

is defined as Φi = R−1
i ri . Here, ri,τ , the τ th element of vector ri , is the auto-correlation of bus xi

considering τ time-lagged samples, and Ri is defined as the following:

Ri =


1 ri,1 ... ri,t−p

... . . . ...
...

ri,p−1 ri,p−2 ... 1

 . (4.2)
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This AR model is used to design the f (.) and h(.) functions in Equation (1) as follows:

Fi =

Φi

W


p×p

(4.3)

Hi =
[

1 0
]

1×p
(4.4)

where Fi is the state transition matrix with matrix Wp−1×p that consists of an identity matrix of

1− p × 1− p and a p − 1× 1 vector of zeros in the last column of the matrix. The matrix Hi is the

observation matrix with a 1 in its first entity and a vector of 1 × p − 1 in the rest to capture that the

measurements, and the states are the same in this case. For simplicity of notations, hereafter, the

time index is dropped, and index k is used to keep track of KF iterations. Vector x i,k is the current

state of bus xi along with the past p−1 time-lagged states. The x i,k can be considered as the current

state in KF, and x i,k+1|k and x i,k+1|k+1 are the predicted and corrected state vector, respectively. Now,

the KF model can be presented as follows:

(1) Prediction step:

x i,k+1|k = Fix i,k|k−1 (4.5)

Pi,k+1|k = FiPi,k|kFT
i + Qi (4.6)

(2) Correction step:

Ki,k+1 = Pi,k+1|kHT [ρi + HiPi,k+1|kHT
i ]−1 (4.7)

x i,k+1|k+1 = x i,k+1|k + Ki,k+1[zi,k − Hix i,k+1|k ] (4.8)

Pi,k+1|k+1 = Pi,k+1|k − Ki,k+1[ρi + HiPi,k+1|kHT
i ]K−1

i,k+1, (4.9)

where Pi,k+1|k and Pi,k+1|k+1 are the predicted and corrected state covariance matrix, Ki,k+1 is the

Kalman gain matrix, Qi is an all-zero matrix except for the modeling error ξi at the first element,

and ρi is the measurement error.
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4.7 Summary

In this chapter, multiple regions or areas are considered over the power grid to implement

distributed state estimation. The distributed state estimation will support wide-area situational

awareness in power systems with reduced data transmission and processing delay by processing

the measurements locally in regions. Specifically, in multi-region distributed state estimation,

the models presented in Chapter 3 was considered in a distributed multi-region state estimation

framework. We partitioning of the power system into regions with geographical and power system

considerations (such as correlation among the PMU time series). We considered both homogeneous

and non-homogeneous region sizes in our study. We also discussed that the proposed method can

be implemented over a distributed computing platform, such as edge computing. The proposed

framework can lead to low latency and faster data processing, which results in improved wide-area

monitoring for smart grids. Various modes of information sharing among the regions have also

been discussed to allow a collaborative multi-region state estimation framework, which can also

improve the performance of distributed state estimation. The presented techniques and scenarios

for multi-region distributed state estimation with and without information sharing are evaluated in

Chapter 6.
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Chapter 5: State Estimation Under Cyber and Physical Stresses

5.1 Introduction

Modern power grids are becoming more and more equipped with cyber elements for sensing,

monitoring, communication, computation, and control, which make them exemplary complex

cyber-physical systems. Due to such increased dependency on cyber components, these systems

exhibit new vulnerabilities to cyber threats. When cyber attacks occur jointly with physical attacks

or failures in the power grid, they could have even more serious impacts and cause large-scale

blackouts with severe societal and economic consequences [118]. In the case of physical attacks

or failures, the system’s stability can be maintained if the SCADA receives precise information

about the status of the components and take proper action accordingly. If however, the flow of

information is obstructed by a cyber attack, the status of the components will be unobservable to

the SCADA, which prevents the control center from taking necessary and appropriate actions in a

timely manner.

On the other hand, cyber components provide invaluable opportunities for a more secure and

reliable operation of smart grids. For instance, the immense volume of energy data collected by

various sensors, such as PMUs, provide new opportunities for detecting, estimating and predicting

various events in the system using big data analytics techniques. In this chapter, we consider a

scenario of joint cyber and physical attack on the smart grid and discuss how a data-driven method

based on PMU data can help in recovering the status information of the components. Similar to

the work in [118, 119, 120], we consider the scenario in which an attacker conducts a physical

attack on the power system by disconnecting few transmission lines and simultaneously launches

a cyber attack on the communication system and prevents the flow of information from the region

around the physically attacked area or other regions of the system to the control center. This joint
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cyber attack leads to unobservability on a portion of the power system, which has experienced

line outages. The goal of the presented work is to use the PMU data from outside the attacked

zone (observable parts of the system) to estimate the state of the lines in the attacked zone using

a data-driven technique. The availability of large volumes of PMU data in future smart grids and

limitations of the traditional power system state estimation due to dependency on accurate power

system models, make the data-driven approaches more appealing than before as a complement to

the traditional state estimation or individually. In this section, we have specifically used a linear

minimum mean square error estimator for recovering the status information of components in

the attacked zone. We have evaluated various scenarios and observed that recovering the status

information of certain power components are more difficult than others and thus, we have proposed

an extension to the linear MMSE estimator by adding iterative feedback to the estimator, which

can improve the estimation performance. We have evaluated these data-driven estimation methods

in Chapter 6 on various scenarios of joint-cyber attacks including scattered and localized attacks.

The results show that the data-driven approaches can be promising approaches for state estimation,

particularly during cyber-physical attacks.

5.2 Stress Model

We consider joint cyber and physical attacks and thus the attack definition has two parts.

Specifically, to model the cyber attack, we assume that the attacker randomly selects a subset Ac of

transmission lines (i.e., Ac ∈ L) and masks the flow of information from them to the control center.

We call the set Ac the cyber attack zone or attack zone for short. Further, to model the physical

attack, we assume that a subset Ap of lines from the attack zone (i.e., Ap ∈ Ac) experiences physical

attack or failure.

Further, we consider two scenarios for the attack zone:
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5.2.1 Randomly Scattered Attacks

In case of randomly scattered attack scenario, the set Ac of transmission lines is geographically

scattered on the system. Figure 5.1a depicts one example of a scattered attack on the IEEE 118 test

case topology.

5.2.2 Localized Attacks

In case of localized attack scenario, the set Ac of transmission lines are all adjacent to each other

(i.e., have physical connection in the topology of the system). Figure 5.1b represents an example

of a localized attack scenario on IEEE 118 test case.

5.3 MMSE Under Joint Cyber and Physical Stresses

After a joint cyber and physical attack occurs in the system, we use the collected PMU dataset

and apply MMSE to estimate the status of the transmission lines (branches) in the unobservable

portion of the grid. We specifically use a linear MMSE estimation model, where the unobservable

portion of the grid is the estimation target and is denoted by Y . The size of vector Y is equal to

|Ac|, where |.| represents the cardinality of the set. The elements Yis of Y represent the power flow

through the unobservable transmission lines in the attack zone. In this section, we use the real power

flow through the lines to identify the physically attacked/failed lines. The rest of the information

outside the attacked zone provided by the PMUs are considered as the estimation features X , where

the size of vector X is given by (|L| − |Ac|) ∗ f and f is the number of feature parameters to be

used. Specifically, in this section we consider three possible feature parameters including real and

reactive power flow and the phase angel. We can use a single feature parameter or a combination

of them as well as certain lines or all the lines as a part of our estimation features.

The linear MMSE model suggests that our estimation of Y is related to features through

Ŷ = AX + B, where matrix A and column matrix B can be characterized based on the data such that

estimation error is minimized. Specifically, for linear MMSE we have matrix A = RXY R−1
X , where
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(b) Localized Attacks

Figure 5.1: Example of (a) scattered attack scenario, and (b) a localized attack scenario. The red
marked branches have experienced cyber attacks and became unobservable and the red dashed
lines indicate branches, which are physically attacked.

the matrix RXY and RX are the cross-correlation and auto-correlation matrices and B = µY − AµX ,

where µX and µY are the mean of the variables X and Y .

An important observation based on our simulations is that when a subset of the grid branches

changes their status (e.g., fail), not all the other lines will be effected equally due to such changes.

For example in Figure 5.1b, changes inside the red portion of the grid (e.g., failure in the attack
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zone) does not equally affect other branches outside the attack zone. Figure 5.2 shows a heatmap of

the real power flow changes in all transmission lines due to the changes in the status of components

inside the attack zone. This result is obtained based on 250 different scenarios with multiple

combinations of failed transmission lines inside the attack zone. Based on this observation we can

conclude that to determine the status of the unobservable components, one does not need data on

all other branches outside this zone. Thus we can use a feature selection mechanism based on such

analyses, which will allow selecting features with the most information to ease the computational

complexity.

Figure 5.2: Power flow changes in IEEE 118 branches due to state changes in attack zone shown
in Figure 5.1b. The state changes include failure of different combinations of lines inside the
attack zone.

5.4 Iterative MMSE with Feedback

As we will show in Chapter 6, when multiple lines becomes unobservable, it gets more difficult

to estimate the status of the line with an acceptable confidence level. To improve the performance

of the estimation, we can use a feedback mechanism in the linear MMSE to use the components

that are easier to estimate their states as features for estimating the rest of the components. Note

that this requires a pre-assessment of estimation capabilities for various components of the system,
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which can be a cumbersome task. In this section, we assume such information is available and has

been pre-evaluated for the components and thus the focus is on the concept of the feedback MMSE.

In this approach, we assume that if the status of a subset of unobservable branches can be

estimated with 90% confidence level (this level can be adjusted) then this subset will be used in the

next iteration of the estimation as additional estimation feature (as a part of vector X). This means

that the estimated components’s states with a predefined confidence level will no longer be a part

of the attack zone and thus the attack zone shrinks to a smaller size, which we again assume that

we know the estimation capability for the components inside the new attack zone. This feedback

process can continue until the status of the whole unobservable portion is estimated or no further

improvements are feasible.

5.5 Summary

In this chapter, we considered the effects of a combined cyber and physical stress scenario on

the estimation of the state of power system components. We considered scenarios, which can lead

to the unobservability of a portion of the grid and causes failures in transmission lines. In order

to estimate the state of the unobservable component of the grid when it was subjected to cyber

stressors, we used a data-driven technique using the data obtained from PMUs located outside of

the attack region. In particular, the linear MMSE method introduced in Chapter 3 was adopted. To

further enhance the performance of the estimation, another strategy that we suggested was iterative

estimation combined with feedback. In addition, we took into consideration two other kinds of

stress situations, which were localized attacks and scattered attacks. This study demonstrates the

significance of data as well as the efficacy of data analytics tools in the context of defending smart

grids against combined cyber and physical attacks.
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Chapter 6: Numerical Analysis and Performance Evaluation

6.1 Introduction

Empirical evaluation is important to understand the effectiveness of any theoretical methodolo-

gies. This chapter evaluates the data-driven approaches for state estimation described in Chapters

3 and 4 under centralized and multi-region settings. Both linear and non-linear state estimation

techniques are considered in a wide range of scenarios with various number of regions and informa-

tion sharing methodologies. Under centralized techniques MMSE, BMLAR, T-GCNN, KF, EKF,

and UKF are evaluated and under distributed state estimation fully distributed KF, multi-region

distributed BMLAR, KF, EKF, and UKF, and multi-area distributed with collaborations among the

areas for KF, EKF, and UKF have been evaluated. Regions are defined to consist of buses and their

connections based on specific properties, such as their geographic proximity, state correlations,

or other data-driven or physics-based metrics of interactions among the buses. The collaborative

distributed state estimation described in Chapter 4 has been evaluated through overlapped regions

and information sharing using auxiliary nodes with statistical attributes reflecting the neighboring

region’s states, such as mean, variance, and correlation among the states and their principal compo-

nents. The performance of the presented models under these scenarios and collaboration settings

has been evaluated using the IEEE 118 bus system and is compared with other data-driven and

machine-learning-based methods in the literature.

In all the evaluations, the IEEE 118 bus system has been used. We have simulated a large

dataset of PMU time series in both normal and also under partially unobservable scenarios using

MATPOWER [143] simulation toolbox. The considered unobservable scenarios (due to physical

failures or DoS stresses) are described details in later sections. We have used real load profiles

from the New York Independent System Operator (NYISO) and sampled at 30Hz to generate

58



PMU time series by solving power flow at each sample. From the simulation, the bus phase

angle time series, voltage magnitude, real, and reactive power flow have been recorded as the

measurements. The actual grid topology also presented in the form graph data, where each bus

have been presented as graph nodes and each transmission line as graph edges. To easily keep track

of the various state estimation techniques, the fully distributed state estimation is denoted as Case-

I, centralized estimation processes as Case-II, multi-region state estimation without information

sharing/ collaboration as Case-III, and with information sharing as Case-IV.

6.2 Centralized MMSE for State Estimation Under Cyber and Physical Stresses

The MMSE method described in Chapter 3, and MMSE under joint cyber and physical stresses

in Chapter 5 has the trainable parameter A and B that can be learned using the simulated data

as described above. The joint cyber and physical stress is a scenario when a portion of the grid

is unobserbable duo to cyber attack or sensor failure and among that unobservable set of buses,

a subset of buses could actually be physically failed. Two such scenario such as such as (i)

unobservable buses are randomly scattered throughout the network, (ii) unobservable buses are

confined in a geographical location have been evaluated here. The MMSE method with various

combination measurements features have been applied to unmask the unobservable and detect the

physically failed lines in the process. The iterative extension to the MMSE model have also been

evaluated and case studies from each scenario have been presented.

6.2.1 Randomly Scattered Attacks

To evaluate the performance of our trained estimator under the scattered attack scenarios, we

create randomly scattered attacked zones (where the lines under cyber attack are geographically

distant as shown in Figure 5.1a. We specifically create attack zones of size one to seven (while

larger attack zones are possible, we assume that attackers have limited resources and the size of the

attack zones are relatively small compared to the size of the grid.) We represent the attack zones

with size i by Fi , representing the unobservable components under cyber attack. In each of the
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randomly generated attack zones, there might be any number (≤ i) of physically failed lines. For

each size of attack zone, we have generated 250 random attack zones. The average estimation error

for each size of the attack zone is presented in Figure 6.1 when different features are used in the

estimation. We observe that the estimation error increases with attack size and combined features

gives the best estimate for the power flow status of branches.
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Figure 6.1: Average estimation error using different features for randomly scattered attack

6.2.2 Localized Attacks

To evaluate the performance of our trained estimator under the localized attack scenarios (as

shown in Figure 5.1b), we generate attack zones with topologically adjacent lines under cyber

attack. We call these attack zones, windows and consider sizes of one to seven for the attack zone.

In this case, we represent the attack zones with size i by Wi . Similar to the scattered attacks, we

generated 250 random scenarios of localized attacks for each window size. The average estimation

error for the localized attacks is shown in Figure 6.2, when different features are used in the

estimation. From the results, we observe that the estimation error increase with the attack size and

the combined features give the best estimate for the power flow of the branches.
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Figure 6.2: Average estimation error using different features for localized attack.

6.2.3 Detection of Physical Stresses

To evaluate the performance of the estimator in detecting the failed or physically attacked

components in the attack zone, we have evaluated the average detection rate for both scattered

and localized scenarios, where the failure is identified when the power flow through the line is

estimated to be below certain threshold. The results are shown in Figure 6.3. From the results, we

observe that the detection rate is lower for localized attacks (dashed lines) than the scattered attacks

(solid lines). This is because when a transmission line is affected by a physical attack or failure,

usually the adjacent lines will bear the most impact (as shown in Figure 5.1b) and thus the most

information to help with the estimation. In the localized attack scenarios, since information from

a portion of the locally adjacent lines are unavailable (due to the cyber attack), estimating the state

of components in the attack zone is more difficult.

Note that one of the key observations that we obtained from our estimation results is that the

estimation performance is different for various transmission lines. The results in Figures 6.1,

Figure 6.2 and Figure 6.3 show the average performance over all transmission lines, while Figure

6.4 shows the average performance of estimation for the individual lines in an attack zone. In the

notations used in this results Fij and Wij denote the jth transmission line in attack zone/window Fi

and Wi). The results are shown for attack size seven.
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Figure 6.3: Average failure detection rate for different attack sizes using different features.
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Figure 6.4: Average estimation error for individual lines in attack zone of size seven for (a) a
randomly scattered attack, (b) a localized attack using different features.

6.2.4 Iterative Estimator with Feedback

The results in Figure 6.4, suggests that due to the power system attributes and topological

location of the lines, it is easier to recover the unobservable information on the state of some

lines. Identifying such components using similar studies can help in the iterative estimator with

feedback discussed in section 5.4. In this section, we present two examples of attack zones with
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such components that can help improving the estimation of the rest of the components in the attack

zone. Although the results for the iterative estimator with feedback are very dependent on the attack

zone and the pre-assessment of our estimation capability for lines, these examples show how the

approach can help the state information recovery with such information in an iterative process. In

these examples, we use the linear MMSE estimator to find the status of the lines that we know they

can be estimated with 90% confidence rate. We will then update the attack zone size and use the

estimated states in the previous step as new features for estimation. The iterative process will go on

until all components are estimated with 90% confidence rate or we cannot improve the estimation

confidence for the remaining components. The steps of the process for a scattered and localized

attack are presented in Figure 6.5. In addition, feature selection using maximum variance in the

data (as shown in Figure 5.2) is also applied to eliminate the unnecessary PMU data for the lines

that were not impacted by the changes in the state of the components in the attack zone to ease

the computational complexity. These examples show that the iterative estimation with feedback

can improve the estimation in the attack zone. However, due to high computational complexity of

pre-assessments it requires further studies to alleviate this limitation.

6.3 Centralized and Multi-Region BMLAR Process for State Estimation

The previous state estimation method did not consider the measurement as time series. Whereas

the real world measurements are highly correlated multivariate time series data. To incorporate

these features into estimation process (as described in section 3.3.3) Baysian regression combined

with auto-regressive processes haev been introduced. Using the simulated data the spatial cross-

correlations of state variables have been calculated. Using the partitioning strategy discussed in

Chapter 4, the grid topology is divided into non-overlapping regions. We have solved the parti-

tioning in both non-homogeneous and homogeneous partition sizes using 1) geographical distance

(G), 2) geographical distance and cross-correlation (GC), 3) geographical distance in homogeneous
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Figure 6.5: Examples from localized attack and a scattered attack scenario with and without the
iterative estimation with feedback. The data pairs shown in each column represent the line number
and their detection rate. Bold-underlined values show the components with low detection rate in
each iteration.

partitioning (GS), and 4) geographical distance and cross-correlation in homogeneous partitioning

(GCS). We have compared the performance of estimation for these partitioning scenarios.

The performance of DSE in terms of average mean square error (MSE) is depicted in Figure 6.6

as a function of the number of regions for different partitioning strategies in both homogeneous

and non-homogeneous partition sizes. The average MSE is taken over all the buses of the system.

In this figure, the dashed line is the estimation error if the model was to be applied centrally using

the data from the whole system. From the figure, we see that partitioning the grid can improve the

overall estimation performance depending on the number/size of partitions. As the defined regions

consider the cross-correlation among the PMUs, in the smaller region sizes the feature space for the

model is more densely correlated thus improving the overall average estimation accuracy. However,

as the number of regions increases the model will have access to less information compared to the
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Figure 6.6: Average MSE over all the buses compared for different partitioning strategies and for
different number of regions.

larger partition sizes thus the overall estimation error increases again. The variation of estimation

error among different partitioning is small but the results show that incorporating correlation into

the partitioning process slightly improves the overall estimation accuracy. The best estimation

accuracy occurs when the number of partitions is homogeneous and small (less than ten). As such,

we will focus on a small number of GCS-based partitions for the rest of the analyses.
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Figure 6.7: MSE at each bus for five regions, R = 5 and GCS partitioning technique.
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Figure 6.8: Average MSE as a function of added noise (SNR) for central estimation and
multi-region estimation for R in the range of 2 to 10 and GCS partitioning technique.

Note that the estimation accuracy values are different at various buses of the system as shown

in Figure 6.7 Specifically, the state of some buses is difficult to estimate, which can be due to

their complex interaction dynamics with other components. The dotted line shows the average

performance for all buses. Figure 6.8 shows the average estimation performance as a function of

added Gaussian white noise to the PMU time series data. This added noise represents measurement

noise or communication channel noise. As expected the performance increases with the increase in

Signal to Noise Ration (SNR). The results also show that the estimator maintains good performance

for SNR values larger than 40db. Since our results show small variations of estimation error under

noise for different partition sizes, Figure 6.8 only depicts the MSE for the central case and for

averaged over the number of regions in the range 2 to 10.

To evaluate the performance of the DSE under partial unobservability, we have considered

scenarios that can be resulted from cyber stresses (such as DoS stresses) or the physical failure of

PMU devices or disconnections in their communication links. In such cases, the local and the central

servers will not receive any data or only receive the channel noise instead of the actual measurements

from the PMU. We have considered two different scenarios of partial unobservability: a) when

the unobservable PMUs are scattered throughout the grid randomly, and b) when the unobservable
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Figure 6.9: Average MSE for different stress sizes (number of unobservable buses) in two
different stress scenarios (scattered and grouped). The results are shown for the central estimation
and averaged multi-region estimation for R from 2 to 10 and GCS partitioning technique.

PMUs are localized geographically (for instance due to localized events such as earthquakes or

attacks). We have simulated 100 stress scenarios for each case and each stress size (i.e., number

of unobservable PMUs). The average MSE over all the buses under different stress scenarios for

different stress sizes is represented in Figure 6.9. As the variations of estimation error are very

small for different numbers of partitions, in this figure, we have presented MSE for the central

estimator and for the multi-region estimator averaged over the number of regions in the range 2

to 10. It can be observed that the estimation error rises as the number of unobservable buses

increases in both stress scenarios. However, the grouped stress cases impose more strain on the

estimator as the number of correlated features becoming unavailable increases in a region. In the

simulations, we have considered less than ten percent of the buses may become unobservable as a

result of the stress; however, these results can be extended to any number of stressed buses. Overall

the estimator retains promising performance under a small number of unobservable buses in both

scenarios. Figure 6.10 shows similar results for the MSE of recovering the state of unobservable

buses from other PMU data streams in both stress scenarios.

The estimation error of our proposed approach in this section, which is ∼= 8.6× 10−4 (averaged

over all buses for the number of partition < 10), is comparable to the state of the art physics-
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Figure 6.10: Average MSE of unobservable buses for different stress sizes (number of
unobservable buses) in two different stress scenarios (scattered and grouped). The results are
shown for the central estimation and averaged multi-region estimation for R from 2 to 10 and GCS
partitioning technique.

driven estimation techniques. For instance, the performance (the average estimation error over all

the buses) of the adaptive multi-region distributed Quasi-newton (A-DQN) algorithm presented in

[144] is∼= 5.8×10−4, which is slightly better than the proposed technique in the current method due

to collaboration consideration between the regions. However, the proposed technique in the current

method outperforms the physics-driven hybrid linear multi-region state estimation techniques [145],

which is based on the traditional weighted least square approach, with a performance of ∼= 1.38 ×

10−2 for average estimation error over all the buses.

6.4 Centralized and Multi-Region Data-Driven KF-based State Estimation

In this section centralized and multi-region distributed state estimation based on variations of KF

along with linear and non-linear system identifications have been evaluated. The fully distributed

KF implementation is discussed as a special case of mult-region where each region has only one

element. The measurement data x(V , θ, p, q), are utilized in the form of multivariate time-series.

The cross-correlations of state variables among the buses have been calculated and used in the

partitioning process (as discussed in Chapter 4) to divide the system topology into multiple regions.

68



Figure 6.11: The state estimation error at each bus for fully distributed and centralized estimation
using MLR-KF, MPR-EKF, and MPR-UKF.

Following the discussion in Chapter 3 (Linear and Non-linear KF) and Chapter 4, the state

estimation problem has been considered for a range of scenarios from fully centralized to multi-

region and fully distributed cases (labeled, Case-I to Case-IV). Moreover, various information-

sharing mechanisms for collaborative state estimation among multi-region (as discussed in Case-

IV) have been considered for the performance evaluation studies. These scenarios have been

considered for both linear and non-linear KF models. The results of the first study presented in

Figure 6.11, show the estimation error for the two extreme cases where the state estimation is

performed fully centralized or fully distributed. As expected, the estimation error is higher for

the fully distributed estimation case (Case-I) both for linear and non-linear KF models, which

is due to limited information used for estimation at each individual bus. On the other hand,

the fully centralized cases (Case-II) perform better due to full observability and full-information

access at all the buses. However, in the centralized cases, it is expected that the measurements

from the geographically distributed components of the system are communicated to a central

system for building models and developing functions such as state estimators. Communicating

those measurements to a remote central system naturally imposes higher communication costs

than localized models, which only use measurements from a local region in a distributed fashion.
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Figure 6.12: Average estimation error over a varying number of regions for a different mode of
information sharing among the regions for MLR-KF.

Studies have shown that lower dimensionality in the distributed estimation process results in low

communication cost [146]. In [8, 19], it is also discussed that distributed state estimation enabled

by new technologies, such as edge computing, can reduce computational cost over centralized

processing of data. Moreover, it can be observed that non-linear KF models, particularly UKF,

perform better in estimation by better enabling the capture of non-linear dynamics of the system.

Next, the state estimation performance for multi-region setting is considered both under a non-

collaborative setting (Case-III) and various information-sharing mechanisms under Case-IV for the

linear KF model. From Figure 6.12, it can be observed that as the number of regions increases,

the performance of the state estimation decreases. Note that here the performance is calculated by

taking the average estimation error over all the buses of the system. Moreover, it can be observed

that allowing information sharing by overlapping a small subset of buses among the regions in

Case-IV(a) overall results in better accuracy than in Case-III, which does not consider information

sharing. Another approach of information sharing discussed in Case-IV(b) is to allow sharing of a

few resenting features from each region to help with state estimation. Among the various features

discussed in Case-IV(b), sharing the state data of the bus in the region i with a maximum average
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correlation with the buses in the region j (named, Max Mutual Correlation case) results in better

performance on average and particularly for the number of regions higher than four.

Figure 6.13: Average estimation error over varying number of regions for different mode of
information sharing among the regions for MPR-EKF.

Figures 6.13 and Figure 6.14 also depict the performance of various modes of information

sharing over multi-region distributed state estimation for EKF and UKF, respectively. A key

observation here is that in the case of EKF and UKF with non-linear system approximations, the

estimation error is decreasing with the increase in the number of regions. This can be explained

through the characteristics of the average approximate entropy for different number of regions as

shown in Figure 6.15. Specifically, it has been discussed that entropy can be an indicator of the

level of non-linearity in the system [147, 148]. As can be observed from Figure 6.15, the average

entropy over regions increases with the increase in the number of regions. Since, large number

of regions are not generally practical to consider for power systems, the trend observed for small

number of regions (up to ten) is considered in the studies in this method. The result in Figure 6.15

suggests that as the number of regions increase the non-linearity increase and as such EKF and UKF

performance show slight improvements compared to the opposite trend observed in Figure 6.12 for

the linear KF model. Table 6.1 presents the average performance of various information sharing
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Figure 6.14: Average estimation error over varying number of regions for different mode of
information sharing among the regions for MPR-UKF.

approaches (i.e., average over various number of regions ranging from 1 to 10). From the table, it

can be observed that maximum mutual correlation based information sharing approach results in

the lowest estimation error for KF, EKF, and UKF. This result suggests that in the multi-region state

estimation setting, sharing the state information of the bus with the maximum correlation with the

buses of the other region can help improving the performance of the model, while still only using

local information.

While Table 6.1 shows the average performance with small differences, if Figures 6.12, 6.13,

and 6.14 are considered, it can be observed that for different number of regions, the performance

gain from different information sharing approach are different. Specifically, a comparatively wider

range of variations in performance for different information sharing approaches for different regions

can be observed. From Figure 6.16 we can also see that specific information sharing approaches

show different performance for different number of regions.

Next, the performance of the proposed techniques in this section are compared with some of

the existing methods in the literature including historical averaging (HA) [149], support vector

regression (SVR) [150], MMSE state estimation method [14], BMLAR [12], temporal graph T-

72



Figure 6.15: Average approximate entropy as a measure of system non-linearity for different
number of regions.

Table 6.1: The average RMSE for state estimation using MLR-KF, MPR-EKF, and MPR-UKF for
various information-sharing techniques.

Methods MLR-KF MPR-EKF MPR-UKF

No Collaboration 0.012963 0.011971 0.00897
PCA 0.0129616 0.0119706 0.00895
Mean 0.0129612 0.0119709 0.0089499

Variance 0.012961 0.0119707 0.0089493
Self Correlation 0.0129572 0.0119708 0.0089491

Mutual Correlation 0.012957 0.01197 0.0089475
Overlapped 0.012959 0.011972 0.008972

GCNN [13]. For comparison purposes, these techniques are applied to two scenarios, including

centralized state estimation and multi-region state estimation with four regions. The number of

regions are selected as four as it shows a good balance of state estimation performance based

on the results presented in previous figures and also from practicality perspective. Also, no

information sharing is considered in this comparison as the techniques from the literature are

mainly developed for centralized setting with no information sharing mechanism in their original

form. The average estimation error in the form of RMSE for Linear-KF, EKF, and UKF are

presented in Table 6.2 as 0.01295, 0.01197, and 0.00897, respectively, with UKF showing leading
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Figure 6.16: Performance of various information sharing mechanisms for various regions in
comparison with average performance as shown in Table 6.1 for MPR-UKF.

performance. While T-GCNN shows slightly better performance compared to MPR-UKF, it uses

topological information (system’s adjacency matrix) as an input. However, the availability of

accurate topological information in certain cases cannot be considered. Additionally, the sensitivity

to noise has been evaluated for SNR 90dB, 60dB and 30dB and the results in Table 6.3 show that

linear-KF is more susceptible to noise compared to the non-linear KF models. However, the

proposed methods retain acceptable performance up to 60dB of SNR.

Table 6.2: The average RMSE for various state estimation techniques for the centralized and
multi-region state estimation with four regions and no information sharing.

Models Centralized Multi-region with No
Information Sharing

HA 0.7950 0.0791
SVR 0.04290 0.0435

MMSE 1.2530 1.3394
BMLAR 0.04000 0.0348
T-GCNN 0.00534 0.009
MLR-KF 0.0129 0.01295

MPR-EKF 0.01206 0.01197
MPR-UKF 0.0091 0.00897
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Table 6.3: The average RMSE for various noise levels for the proposed state estimation techniques
with four regions and no information sharing.

Models Multi-region
with No

Information
Sharing

Multi-region
with No

Information
Sharing and
90dB SNR

Multi-region
with No

Information
Sharing and
60dB SNR

Multi-region
with No

Information
Sharing and
30dB SNR

MLR-KF 0.01295 0.0183 0.01834 0.03645
MPR-EKF 0.01197 0.01197 0.011976 0.011977
MPR-UKF 0.00897 0.00897 0.008976 0.008978

6.5 Centralized TGCN for State Estimation

State estimation algorithms that have been discussed in previous section did not consider any

spatial information such as the network topology of the smart grid. Whereas incorporating the

spatio information may greatly improve over the data-driven state estimation techniques. In this

section the T-GCNN discussed in Chapter 3 will be evaluated. From the simulation, time-series

measurements of real power flow, reactive power flow, voltage angle, and voltage magnitude have

been recorded. We have tested the T-GCNN algorithm for two scenarios as follows.

6.5.1 Scenario-I: Full Set of Measurements Are Available

In this scenario, the assumption is that measurements are available at all the buses in the system.

As such, this case is a multivariate time-series forecasting problem described as

Xt+1 = F (Zt−p, A, ). [p ∈ N] (6.1)

6.5.2 Scenario-II: A Subset of Measurements Are Available

In this scenario, the assumption is that measurements are available only at a subset of buses (i.e.,

at n ∈ N o), which can be identified, for instance, using a PMU placement strategy to ensure full
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observability of the system. Three different PMU placement strategies for the IEEE 118 bus system

have been adopted and considered from [151] as shown in Table 6.4 to evaluate the performance

of the presented state estimation technique for different availability of the measurements. Note

that the measurement at the rest of the buses are modeled as white Gaussian noise, which can, for

instance, represent the channel noise. The state estimation process in this case will estimate the

state of all the nodes from the available measurements of N o buses along with one-step ahead state

prediction.

Table 6.4: Three PMU placement strategies for the IEEE 118 test case system

PMU Placement Strategy BUS index

O1 2, 5, 10, 11, 12, 17, 20, 23, 25, 29, 34, 37, 40,
45, 49, 50, 51, 52, 59, 65, 66, 71, 75, 77, 80,

85, 87, 91, 94, 101, 105, 110, 114, 116

O2 1, 5, 10, 12, 13, 17, 21, 25, 28, 34, 37, 40, 45,
49, 52, 56, 62, 63, 68, 70, 71, 75, 77, 80, 85,

87, 90, 94, 102, 105, 110, 114

O3 1, 4, 5, 6, 8, 9, 10, 11, 12, 17, 18, 19, 20, 21,
22, 24, 25, 26, 27, 28, 30, 32, 34, 37, 40, 43,
45, 49, 50, 56, 59, 61, 62, 63, 64, 65, 67, 68,
69, 70, 71, 72, 73, 75, 77, 79, 80, 83, 85, 87,
89, 90, 92, 94, 96, 100, 101, 105, 106, 108,

110, 111, 112, 114, 116, 117, 118

Table 6.5: T-GCNN model simulation parameters

Key Value

GRU units 64

p 7

learning rate 0.001

epoch 250

training ratio 0.8

batch size 32
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The model parameters used for the evaluations are presented in Table 6.5. Specifically, for the

hyper-parameter p, its effects on the performance of the model have been evaluated for up to 12

sequence lengths. Since the lowest RMSE is observed at p = 7 (as shown in Figure 6.17), and

a large value of p will increase the model complexity and thus the execution time, this value is

considered for the rest of the evaluations.

(a)

(b)

Figure 6.17: The evaluation of the impacts of sequence length, p, on the performance of the model
based on (a) the average RMSE, and (b) the execution time (training and testing).

The performance of the T-GCNN for state estimation in the smart grid is compared with some

baseline forecasting models for state estimation including History Average (HA) model, Support
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Vector Regression (SVR) model, Minimum Mean Square Error optimization-based model, Bayesian

Multivariate Regression combined with Auto-Regressive model, and LSTM. As can be observed

from the results presented in Table 6.6, the presented T-GCNN shows superior performance in state

estimation compared to the aforementioned models.

Table 6.6: The average RMSE for various state estimation techniques for the defined Scenario I
and II for the availability of measurements.

Models Scenario-I Scenario-II(O1) Scenario-II(O2) Scenario-II(O3)

HA 0.7950 0.89675 0.91307 0.70449

SVR 0.04290 0.84007 0.85523 0.66068

MMSE 1.2530 1.4510 1.53070 1.33950

BMLAR 0.04000 0.72340 0.74300 0.45660

LSTM 0.04473 0.99445 0.98533 0.53607

T-GCNN 0.00533 0.01452 0.01278 0.01215

Moreover, according to [63], the average RMSE for the state estimation in the IEEE 118

case based on Gauss-Newton, 6-layer Feed-forward Neural Network (FNN) and 8-layer FNN,

and Prox-linear net are 4.71 × 10−2, 1.645 × 10−3, 2.366 × 10−3, and 2.97 × 10−4, respectively.

Here, the two layer T-GCNN, which considers both the spatial (in the form of a graph) and

temporal information shows a competitive performance of 5.33 × 10−3 for the scenario when full

measurements are available. G-CNN also improves performance for Scenario-II, where only a

subset of PMU measurements are available. For different subsets of available PMUs, performance

slightly improves with larger number of available PMUs (as in Scenario:II-O3).

6.6 Summary

In this chapter, the proposed data-driven, centralized, multi-region distributed, linear and non-

linear state estimation frameworks for smart grids have been evaluated. These data-driven models

are particularly helpful in supporting state estimation under missing or limited measurements, such

as in cases of partial unobservability due to failures or attacks in the sensing and monitoring system
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or limited availability of PMUs. The presented models are also evaluated under various distributed

settings, which can support low-latency requirements of critical functions and reduce the com-

munication overhead through state estimation using local data from each region. Various modes

of information sharing among the regions have also been studied to improve the performance of

distributed state estimation. It has been shown through numerical evaluations that the distributed

state estimation using data-driven linear and nonlinear Kalman filters with selective feature sharing

among the regions, particularly sharing the state of a node with the highest correlation with the

other region, can lead to comparable results to centralized state estimation. The presented models

also show a leading performance compared to some of the other data-driven and machine-learning

models in the literature. Another key observation from Figures 6.7 and Figure 6.11 is that regardless

of the type of algorithm being used, due to the dynamic nature, individual buses have different

estimation accuracy. This could be due to the load variations or the non-Gaussian noise statistics

present in the system. Among all the centralized estimation techniques discussed, T-GCNN led to

the best performance, an RMSE of 0.0053, followed by the MPR-UKF at 0.0091, which indicates

that the nonlinear algorithms have the ability to approximate actual system dynamics with more

precision compared to the linear approximations. Additionally, the T-GCNN algorithm also has

an added advantage as it can also incorporate spatial information such as grid adjacency matrix in

the estimation process. This could also become a limitation if accurate spatial information is not

available. However, modifications can be made to the T-GCNN algorithm to use an interaction-

driven virtual topology rather than the actual grid topology, which needs further investigation in

the future.

79



Chapter 7: Conclusion and Future Direction

7.1 Introduction

Wide-area situational awareness (WASA) is essential in operating the large scale power systems

under normal and stresses situations. Tracking the state of the system to provide the necessary

awareness about the operating conditions of the power systems is essential in efficient and reliable

operation of power systems. State estimation is one of the key functions for this purpose, which

has been studied in this dissertation.

Due to substantial penetration of distributed energy resources, such as distributed generation,

demand-responsive loads, storage devices, and renewable energy generation, power systems have

recently seen higher level of stochasticness, fluctuation and complexity. On the other hand, vast

deployment of monitoring, sensing, communication and computation devices have produced a

powerful platform to collect and process data from these systems. To improve situational awareness

in these highly dynamics systems with tightly coupled cyber elements, a first step can be applying

advanced real-time data processing techniques from machine learning and artificial intelligence

domain to handle the large volume of the data for better tracking of the state of the system. As

such, the focus of the work presented in this dissertation is on developing and studying data-driven

state estimation techniques under various scenarios, ranging from central, multi-region, and fully

distributed settings to support improved state estimation over large scale power systems both under

normal and cyber and physical stresses scenarios.
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7.2 Concluding Remarks

In this dissertation, we presented a review of existing conventional and data-driven state estima-

tion techniques for power systems. We discussed that one of the key limitations of the conventional

techniques is that they heavily rely on system models and in case of inaccuracies or missing infor-

mation and highly dynamic systems, for instance due to renewable resources, these model may not

produce accurate estimations of the system states. As such, we focused on data-driven techniques,

both in the form of linear and non-linear models, which use the measurement data to track or recover

the state of the system by approximating the non-linear dynamics of the power system without the

need for system model.

We first discussed the data-driven models in a central setting, in which we assumed all the

measurement from the components of the system are available in a central unit for processing

and developing the state estimation models. Later, we presented a distributed multi-region state

estimation framework that allows generating local state estimates under information sharing and

without information sharing among the regions.

We started by discussing linear models, such as, MMSE-based state estimation, which allows

recovering unobservable or partially observable states of the component from the measurements

of the rest of the system. To capture the time dependent aspects of the measurements, a Bayesian

technique combining Bayesian multiple linear regression with an auto-regressive process was

presented next. Furthermore, given the KF family’s reputation and demonstrated ability to express

linear and nonlinear system dynamics, linear KF, extended KF, and unscented KF-based state

estimation techniques have been proposed for use in conjunction with linear and nonlinear system

identification techniques. The data-driven system identification approximated the power system

dynamics in a data-driven manner, removing system model reliance for the state estimation process.

Finally, a spatial feature, such as topological information, was considered that enables capturing the

underlying relationships among the variables. A temporal graph convolutional network has been

developed, which uses the graph topology of the system combined with temporal characteristics in

the measurement time-series in its model.
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In the distributed multi-region framework, we also discussed that the proposed framework can

be implemented over a distributed computing platform, such as edge computing. The proposed

framework can lead to low latency and faster data processing, which results in improved wide-area

monitoring for smart grids. We also considered partially unobservable scenarios that can result

from cyber or physical stresses on PMUs and showed that the distributed estimation approach can

handle the estimations under such scenarios well. Further, power grid partitioning into regions with

geographical and power system considerations (such as correlation among the PMU time series)

was discussed. We considered both homogeneous and non-homogeneous region sizes in our study.

We showed that the distributed state estimation can achieve better estimates compared to its central

counterpart when the grid is partitioned into few regions.

In the distributed framework, in order to boost collaboration across surrounding regions, several

information sharing methodologies were developed, which can limit data sharing among regions

while improving accuracy of state estimation over no-collaboration. Specifically, it was shown

through numerical evaluations that the distributed state estimation using data-driven linear and

non-linear Kalman filters with selective feature sharing among the regions; particularly, sharing

the state of a node with highest correlation with the other region, can lead to comparable results to

centralized state estimation. The presented models also show a leading performance compared to

some of the other data-driven and machine learning models in the literature as were discussed in

the evaluation of the techniques.

Finally, a joint cyber and physical attack on smart grids was considered, which results in

unobservablity of a portion of the grid while causing transmission lines failures. We used a data-

driven approach to estimate the state of the unobservable portion of the grid under cyber attack from

the PMU data available outside the attack area. Specifically, a linear MMSE approach was used and

was trained based on the simulated PMU data. We also proposed the idea of iterative estimation

with feedback to improve the estimation performance. Further, we considered two different types

of attack scenarios including localized and scattered attacks and showed that estimating the state

of components in a scattered attack is easier compared to localized attacks. This study shows the
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importance and the power of data and data analytics methods in addressing joint cyber and physical

attacks on smart grids.

7.3 Future Research Directions

The dynamics of power systems are governed by various physical and operational attributes of

these systems. Modern power grids’ dynamics are more complex and exhibit stochastic properties

due to increasing deployment of new technologies for renewable resources and energy storage sys-

tems. As such, state estimation techniques that can capture such complex dynamics and stochastic

behavior are yet under study. Moreover, distributed forms of state estimations are gaining more

attention as their supporting technologies emerging and the need for them growing. On the other

hand, the underlying interactions and interconnections among the components of power systems

are important attributes that their effects are reflected in the measurement data from these systems;

however, they are not yet captured enough in the state estimation models. Moreover, the form of

underlying structure to be considered for power system structural interactions has been limited to

its physical topology. Improving each of the aforementioned areas require research investments in

these supporting domains. In this direction, we have identified few open research problems that

can be the direction of future studies.

7.3.1 State Estimation in the Presence of Non-Gaussian Noise

Renewable energy and smart grid advancements are altering the generation and usage of elec-

tricity. This new combination begins to alter the character of electric grid dynamics. According

to data, the electrical grid is suffering more frequent and severe frequency fluctuations during

normal operation, which vary further from the steady-state assumption in classic static state es-

timation [152]. The stochastic variation introduced by distributed and renewable energy sources

results in highly nonlinear and non-Gaussian system dynamics. Many dynamic state estimations

are based on Kalman filters or a set of Gaussian filters that provide estimates of the state in terms of

minimum mean squared error. However, modern power grids are becoming increasingly nonlinear
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and non-Gaussian. Finding a closed-form solution for the state estimate under non-Gaussian noise

is quite challenging, hence approximation techniques have been suggestion in such cases. Several

studies have attempted to extend these models to non-Gaussian noise environments. For example,

the researchers in [153] have shown that one strategy to handle such scenarios with non-Gaussian

noise statistics is to decompose (or approximate) the noise using the sum of many Gaussian pro-

cesses and then apply the Kalman filter model. In another technique, researchers [58] recommended

creating redundant measurements from projected states using linearized batch mode regression and

then filtering out data with non-Gaussian noise statistics using the generalized maximum likelihood

(GM)-estimator. Chapter 3 presents nonlinear dynamic state estimation strategies; however, the

robustness of these techniques in the presence of non-Gaussian noise requires further exploration.

7.3.2 State Estimation Over Data-Driven Power Grid’s Graph of Interactions

The interconnected components with complex interactions within power systems make them

complex networks that can be represented by graphs. In addition to the physical topology of the

power grid, various data-driven and power physics-based methods have modeled and revealed the

underlying graph of interconnections in smart grids [154]. In Chapter 3, a data-driven nonlin-

ear graph-based state estimation method (T-GCNN) was presented, which allowed capturing the

topological structure of the component interactions based on the physical structure of the power

system as well as temporal information from the measurements. Though incorporating grid topol-

ogy within the model can enhance the state estimation accuracy, accurate system topology may

not always be available or there may be other interactions among the components that are not

well-represented in the physical topology. To address this challenge, one solution could be to use

a data-driven approach to learn the graph of interactions among the components of the system.

In [154], it was demonstrated that multiple virtual typologies can be constructed while taking

into account varying levels of interaction among the components. The advantage of interaction

graphs is that interactions among components are topologically local, which simplifies the analysis,

particularly during anomalous events. Inferring and learning the underlying graph of interactions
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that best supports the state estimation process is another research direction that can improve state

estimation.

7.3.3 Edge Computing Platform for Distributed State Estimation

One of the key research direction to support fast and effective state estimation in power systems

is developing distributed computational platforms to support distributed state estimation. Edge

computing can be a candidate platform for critical and time-sensitive applications in the monitoring

and operation of power systems. In a collaborative work presented in [8], we explored one of the

important operations for smart grid reliability, situational awareness, and discussed the role that

edge computing can play to enhance this operation by enabling state estimation locally at the edge

nodes. We notably focused on the network of PMUs as an example of the industrial internet

of things in smart grids and discussed the edge-computing platform architecture to enable data

analytics for state estimation using the PMU time-series. Furthermore, in [19], we have highlighted

the promise of edge computing in supporting privacy conscious federated learning for distributed

non-intrusive load monitoring function. In [108], researchers has also highlighted the significance

of high speed communication technologies, such as 5G technology, to support distributed state

estimation. Multi-region distributed state estimation techniques presented in Chapter 4 may benefit

considerably from edge computing and sophisticated communication network technologies. As

such, to make these techniques ready for implementation more research is needed in the direction

of their enabling technologies.

7.3.4 Improved Information Sharing for Multi-Region State Estimation

Privacy and security has became increasingly important to maintain security from adversarial

attacks. For example, in [106] researchers intended to protect the network database and the

network communication channels against attacks and data manipulations via a blockchain (BC),

an encryption-based system design. Additionally, the volume of shared information among multi-

region is also important considering the limitation of distributed computational hardware or data
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communication channel as discussed in Chapter 4. Our main goal in this dissertation was to

show that the data-driven distributed state estimation approach with limited information sharing

can achieve competitive performance compared to the central techniques. We used Kalman filter

algorithms with simple statistical messages to evaluate the objective. Thus construction and

selection of information to be shared with neighboring regions that can improve the distributed

state estimation while maintaining privacy and security of the system suggest more investigation.
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