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Table 3.4: Comparison of mechanical properties and defect formation energies of diamond
and graphene for DFT, SED-REBO-I, SED-REBO-II, and experiment. To convert graphene
elastic constants to N/m we multiply by the interlayer distance in graphite, 3.34Å.

DFT SED-REBO-I SED-REBO-II Expt.

Graphene
C11 (N/m) 350.5 282.9 304.6 370.4 [101]
C12 (N/m) 69.6 103.7 121.8 46.4 [101]
σ∗ (N/m) 32.2 30.5 32.4 42 [25]
E2D (N/m) 336.7 2 44.9 255.9 364.2 [25]
SV Ef (eV) 7.65 7.48 7.76 -
DV Ef (eV) 7.85 7.74 8.27 -
SW Ef (eV) 5.01 5.67 5.87 -

Diamond
C11 (GPa) 1033.5 1126.0 1119.4 1076 [102]
C12 (GPa) 124.3 115.6 98.5 125 [102]
C44 (GPa) 555.47 719.5 765.4 576 [102]
σ∗ (GPa) 80.4 90.0 80.4 -

SV Ef (eV) 6.58 7.75 7.40 -
DV Ef (eV) 8.95 12.06 11.3 -

compare to DFT, we had to use a small sample which was approximately 10 Å in diameter.

The comparison of SED-REBO-I, SED-REBO-II and DFT are shown in Fig. 3.18. Both

versions of SED-REBO show excellent agreement to DFT.
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Figure 3.18: Energy versus displacement of pulled central atom as predicted by DFT, SED-
REBO-I and SED-REBO-II.
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3.4 Determining Impact of Vacancies on Mechanical Properties of Graphene

3.4.1 Simulation Methods: Nano-indentaion with spherical Indenter

Simulations of nano-indentation were performed using LAMMPS [103]. Circular graphene

sheets with radii of 150 Å were created, with an additional two layers fixed two imitate

the clamped edges in experimental set-up. To introduce vacancies, atoms were randomly

removed with the restriction that only mono-vacancies were produced. Vacancy densities

between 0.1− 5.0 % were sampled. For each indentation depth, an initial theoretical profile

of plates under a point load was imposed [104]. A repulsive spherical potential, which acts

as an ideal AFM nano-indeter, with radius 10 Å was then introduced into the center of the

sample, such that the surface of the indenter corresponded to the depth of the sample. The

atomic positions were then allowed to relax to to account for the spherical potential. In all

simulations, the atoms were thermalized initially by running NVT ensemble for 1 ps. For

each simulation a range of depths were sampled up to the critical depth δ∗ at which point

the samples experience critical failure.

3.4.2 Elastic Constants of graphene with vacancies

The force on the indenter is recorded at each indentation depth. At the end of the simulations,

E2D is calculated by fitting the corresponding force versus indentation depth to F (δ) =

πσ0δ + E2Dδ3/a2. The results of the nano indentation simulations are shown in figure 3.19.

For vacancy densities between 0.1 − 0.3%, we see virtually no difference between the force

profiles from indenting on pristine or defective graphene. For vacancy densities above 0.3 %,

we observe no stiffening effect for any of the vacancy densities sampled. Additionally we note

that the breaking strength of graphene, F ∗ is negatively correlated to the vacancy density

which is in agreement to experiment [28, 29, 105, 106]. The breaking in nano-indentation

experiments occurs at the indenter where the large tensile strains and is regulated by the

extreme stresses under the tip. Interestingly, we observe a steady increase in breaking

depth as a function of vacancy density suggesting that the large tensile stresses are relieved
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somewhat by the introduction of vacancies, essentially softening the bonds. We note that

this is contrary to all previous theoretical works which predict a stiffening of the bonds and

may be due to the shorter cut-off distance used in other REBO based potentials.0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
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Figure 3.19: Force vs. displacement curves for graphene membranes with Rmem = 150Å,
and various percentages of vacancy densities.

For completeness we also calculate the elastic constants by producing rectangular graphene

samples with the same vacancy densities, and measuring the tensile response to deformations

in the basal and orthorhombic planes.A similar trend is observed when performing defor-

mations in the basal and orthorhombic planes. The elastic constants C11 and C12 steadily

decrease with increasing vacancy density. The effect of vacancy density versus E2D for both

nano-indentation and elastic deformations is shown in Fig. 3.20. Contrary to observations

made in other theoretical studies [31,32,34], we see good agreement between predicted E2D

from both elastic deformation and nano-indentation methods.
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Figure 3.20: Calculated elastic constants obtained from elastic deformations, C11 and C11

versus vacancy density.
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Figure 3.21: Young’s modulus versus vacancy density as determined by elastic deforma-
tions to rectangular graphene sheets, and through nano-indentation simulations of graphene
membranes.

3.4.3 Conclusions

In conclusion, we have developed a modified SED-REBO-II, which extends the accuracy

of the binding energy curves of diamond and graphene and also improves the description

of the vacancy migration energy barrier resulting in the correct vacancy structure. A new
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functional form of Sij has been introduced which allows for increased flexibility in fitting.

We have shown that another possible application of screening functions is to assist in proper

description of exotic atomic environments.

Large scale nano-indentation simulations performed on samples with a wide range of

vacancy densities showed no effective stiffening of the elastic constants, and instead only

showed a lowering of the elastic constants as well as the breaking strength. We see good

agreement between E2D calculated from elastic deformations and nano-indentation simula-

tions, suggesting that difference found in previous theoretical simulations may be due to bad

descriptions of graphene at large tensile strains. On the matter of increasing the strength of

graphene by introducing mono-vacancies, there are still contradictory results in experiments

without clear explanation. Our calculations support the the findings that the strength of

graphene is only negatively impacted by the introduction of vacancies.
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4 Development of SNAP Machine Learning Potential For Carbon

4.1 Introduction

Understanding carbon’s response to extreme conditions is relevant for many active areas

of research including planetary physics, where experiments have suggested the existence of

diamond rain on ice giants such as Neptune and Uranus [44, 107–110], as well as the recent

discovery of carbon rich exoplanets such as the 55 Cancri e [46]. Previous DFT calculations

of the carbon P-T phase diagram predict the diamond phase to be stable from 0−1000 GPa

followed the BC8 phase which is predicted to be stable up to ∼ 2400 GPa [55], yet only the

diamond and liquid phase have been directly observed in high strain rate experiments within

pressure ranges of predicted BC8 stability. The most compelling experimental evidence

for the BC8 phase was made when flyer-plate experiments shocking diamond samples into

mixed phase regions of P-T space, revealed inflection points between the solid-mixed-liquid

pressure density curves suggesting a possible diamond-BC8-liquid triple point [48]. Shock

experiments on diamond have also shown that anisotropic effects play a significant role in

diamond’s strength [53].

Recent advances at high pressure facilities such as Sandia National Lab’s Z-machine [111],

the National Ignition Facility (NIF), and the National Nuclear Security Administration’s

Inertial Confinement Fusion (ICF) Center, have significantly extended the range of pressures

and temperatures achievable in experiments. A renewed interest in carbon’s high-pressure

properties has emerged with experiments focusing on shocking diamond in the split shock

wave regime [42,49,54] as well as experiments reaching megabar pressures investigating the

liquid phase of carbon [43]. These current works report conflicting results leaving outstanding
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questions about the strength of diamond at high pressures, the behavior of diamond upon

inelastic deformations, and why the transition from diamond to BC8, predicted by first

principles calculations has yet to be observed in experiment.

Molecular dynamic (MD) simulations complement experiments by providing insight into

the behavior of materials on the atomic level, but reliability of these predictions depends

on the accuracy of the potential energy description within the pressure-temperature (P-T)

space simulated. Ab-initio potentials such as density function theory (DFT) [81, 82] have

demonstrated excellent agreement with experiment when predicting equations of state and

phase boundaries for materials over large P-T ranges. However, the computational cost

associated with the single electron expression of potential energy restricts simulations with

DFT to a few thousand atoms. Large scale simulations of materials have traditionally

been carried out with classical interatomic potentials (IPs), which use physically informed

analytical expressions for potential energy [112]. These are typically in good agreement with

DFT for high symmetry phases near equilibrium, but as the P-T space becomes farther away

from equilibrium conditions, the transferability of these potentials diminishes considerably

rendering predictions within these regions unreliable. Thus, an outstanding challenge in

molecular dynamics is to provide reliable predictions with large-scale simulations in P-T

space far from equilibrium.

A state-of-the-art solution to this challenge is to apply machine learning principles to fit

physically diverse datasets to flexible expressions of energy that have no relation to physical

or chemical principles. Machine learning interatomic potentials (ML-IAPs) can be cate-

gorized by their choice of descriptors, which uniquely describe the local environments of

atoms and accompanying energy function. Although this is a relatively new area of research,

overviews of popular ML-IAPs have been conducted [113], and an assessment of computa-

tional performance and accuracy for several leading ML-IAPs has been performed [114].

In this work we use the quadratic variant of the Spectral Neighbor Analysis Potential

(SNAP) which formulates the energy in terms of hyper-spherical projections of local neigh-
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