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ABSTRACT 

 Multidimensional forced choice (MFC) testing has been proposed as a way of reducing 

response biases in noncognitive measurement. Although early item response theory (IRT) 

research focused on illustrating that trait scores with normative properties could be obtained 

using various MFC models and formats, more recent attention has been devoted to exploring the 

processes involved in test construction and how that influences MFC scores. This research 

compared two approaches for estimating Multi-Unidimensional Pairwise Preference model 

(MUPP; Stark et al., 2005) parameters based on the Generalized Graded Unfolding Model 

(GGUM; Roberts et al., 2000). More specifically, we compared the efficacy of statement and 

person parameter estimation based on a “two-step” process, developed by Stark et al. (2005) with 

a more recently developed “direct” estimation approach (Lee et al., 2019) in a Monte Carlo study 

that also manipulated test length, test dimensionality, sample size, and the correlations between 

generating thetas for each dimension. Results indicated that the two approaches had similar 

scoring accuracy, although the two-step approach had better statement parameter recovery than 

the direct approach. Implications, limitations, and recommendations for future MFC research and 

practice are discussed. 
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CHAPTER ONE: 

INTRODUCTION 

 Past research on multidimensional forced choice (MFC) testing has focused on 

developing psychometric methods that yield scores with normative properties, resistance to 

response biases such as faking, and validity for predicting organizational outcomes. Models such 

as the Multi-Unidimensional Pairwise Preference model (MUPP; Stark et al., 2005) and 

Thurstonian IRT model (TIRT; Brown & Maydeu-Olivares, 2011) have been shown to produce 

scores with normative properties (Brown et al., 2011; Joo et al., 2019; Lee et al., 2019, Stark et 

al., 2012). Meta-analysis (Cao & Drasgow, 2019) and a recent primary study (Wetzel et al., 2020) 

have shown that MFC measures are less susceptible to faking than rating scale measures, and 

MFC measures have criterion validity similar to rating scale measures in research contexts 

(Wetzel & Frick, 2019; Zhang et al., 2020). And MUPP personality tests, in particular, have been 

shown to predict citizenship behaviors, counterproductive work behaviors, and attrition in 

personnel screening environments (Drasgow et al., 2012; Stark et al., 2014) and utility for job 

classification (Nye et al., 2020).  

 As MFC item response theory (IRT) research is now well into its second decade and the 

number of applications has increased, more attention is being devoted to improving testing 

efficiency (Joo et al., 2019), differential item functioning detection (Lee et al., 2020), and, 

importantly, parameter estimation approaches that are fundamental to all applications (Lee et al., 

2019). This research focuses specifically on the latter. Accurately estimating statement and 

person parameters is the first, and probably most important, step in applying MFC models. 
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Different estimation approaches have been proposed to analyze noncognitive responses. Models 

such as the TIRT MFC model are based on the dominance model assumption that the 

relationship between latent trait level and the probability of endorsing or agreeing with a 

noncognitive statement is monotonic. Other models, such as the MUPP, allow one to use either a 

dominance or ideal point model to compute the probability of agreeing with statements 

composing MFC items and, accordingly, the preferential choice probabilities. Ideal point models 

assume that the relationship between latent trait level and the probability of agreeing with a 

noncognitive statement may be nonmonotonic, and Stark et al. (2005) recommended the 

generalized graded unfolding model (GGUM; Roberts, Donoghue, & Laughlin, 2000) for MUPP 

applications because it was found to fit rating scale personality data as good or better than 

popular dominance models (Stark et al., 2006). Other researchers have since found good fit for 

the GGUM to vocational interests (Tay et al., 2009), emotional intelligence (Cho et al., 2015), 

job satisfaction (Carter & Dalal, 2010), and attachment style (Sun, 2017) data. However, there is 

a continuing need for research exploring the efficacy of parameter estimation with ideal point 

models. This study specifically aims to advance MFC applications by focusing on the relative 

efficacy of two approaches to MUPP model parameter estimation based on the GGUM.  

 Two approaches have been proposed to estimate MUPP model parameters. Stark and 

colleagues (2005) described a two-step approach to MUPP test construction and scoring that 

begins with estimating GGUM (Roberts et al., 2000) parameters for a pool of noncognitive 

statements reflecting low, medium, and high levels of each trait of interest. The statements are 

administered using a four-point response rating scale format (Strongly Disagree, Disagree, Agree, 

Strongly Agree) to a large sample of examinees in a pretest study with instructions to answer as 

honestly and accurately as possible. The “honest” responses are dichotomized and calibrated, one 
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trait at a time. For high-stakes uses, social desirability ratings are also obtained for the pool of 

statements in a “fake-good” study, or by gathering subject matter expert (SME) judgments; the 

mean self- or SME rating for each statement serves as a social desirability parameter estimate. 

MUPP tests are then constructed for assessment purposes by pairing statements, similar in 

extremity and social desirability, using a table of test design specifications that delineates the 

combinations of dimensions that will compose the forced choice items. The preponderance of 

these pairings should be multidimensional to enhance resistance to faking, and care should be 

taken to ensure each item provides adequate IRT information for scoring. Finally, the MUPP 

tests are administered for assessment purposes, and the forced choice response data are scored 

using, for example, a multidimensional Bayes modal method (Stark et al., 2005) or some recent 

alternatives (e.g., Guan, Sun, & Carter, 2021; Lee et al., 2019). 

As an alternative, Lee et al. (2019) developed a Markov chain Monte Carlo (MCMC) 

method for estimating MUPP statement and person parameters directly from forced choice 

responses. Unlike the earlier two-step approach that is advantageous for CAT, because it allows 

any number of pairwise preference tests to be constructed dynamically after a statement pool has 

been calibrated (Stark et al., 2012), this “direct” approach takes into account the potential 

interplay of statements composing the administered pairwise preference items, and it is arguably 

better suited for building parallel test forms and differential item functioning analysis. The 

purpose of this research was therefore to investigate the overall efficacy and comparability of 

these two approaches to MUPP statement and person parameter estimation through a Monte 

Carlo simulation. Sample size, test dimensionality, number of items (pairs) per dimension, and 

the correlations among dimensions (i.e., latent trait correlations) were manipulated to explore 

estimation accuracy and precision in a range of realistic experimental conditions. The next 
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sections of this paper present the MUPP and GGUM models, the Monte Carlo study details, the 

hypotheses and research questions, and the statistical analysis of the simulation results. Results 

are then summarized, and the implications are discussed.  

The MUPP model 

The MUPP model (Stark, 2002; Stark et al., 2005) assumes that when a respondent is presented 

with a pair of statements (s and t) and is asked to select the statement in each pair that is more 

“like me”, the respondent evaluates each statement separately until a preference is reached. The 

preferential choice decision is operationalized as agreeing with one statement and disagreeing 

with the other. These agree/disagree joint probabilities depend on the respondent’s trait levels 

and the statement parameters estimated using an appropriate unidimensional IRT model. 

Mathematically, the probability of preferring statement s to statement t in an item is defined as: 

𝑃(𝑠>𝑡)𝑖
(𝜃𝑑𝑠 , 𝜃𝑑𝑡

) =  
𝑃𝑠𝑡{1,0}

𝑃𝑠𝑡{1,0}+𝑃𝑠𝑡{0,1}
=

𝑃𝑠{1}𝑃𝑡{0}

𝑃𝑠{1}𝑃𝑡{0}+𝑃𝑠{0}𝑃𝑡{1}
                                             (1) 

where i represents the ith item, 𝜃𝑑𝑠
 and 𝜃𝑑𝑡

 are the latent trait values for a respondent on 

dimension 𝑑𝑠  and 𝑑𝑡,  respectively, 𝑃𝑠𝑡{1, 0} is the joint probability of endorsing statement s and 

not endorsing statement t, 𝑃𝑠𝑡{0, 1} is the joint probability of endorsing statement t and not 

endorsing statement s, 𝑃𝑠{1} and 𝑃𝑡{1} are the conditional probabilities of endorsing statement s 

and t, respectively, 𝑃𝑠{0} and 𝑃𝑡{0} are the conditional probabilities of not endorsing statement s 

and t, respectively. To compute 𝑃𝑠{1}, 𝑃𝑡{1}, 𝑃𝑠{0}, 𝑃𝑡{0}, the dichotomous version of the 

GGUM was used for this study, in accordance with Stark et al.’s (2005, 2006) recommendations.  

The GGUM 

The GGUM (Roberts et al., 2000) is an ideal point model that assumes the probability of 

agreeing with a statement is a function of the distance between the statement and the respondent 

on the latent trait continuum. The closer the statement is to the respondent, the more likely the 
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respondent will agree. GGUM is often used in noncognitive assessment and can be applied to 

both dichotomous and polytomous responses. In the dichotomous version, the probabilities of 

agreeing (Z=1) and disagreeing (Z=0) with a statement are: 

𝑃(1) = (𝑍 = 1|𝜃) = 
exp(𝛼[(𝜃−𝛿)−𝜏])+exp(𝛼[2(𝜃−𝛿)−𝜏])

γ
                      (2.1) 

𝑃(0) = 𝑃(𝑍 = 0|𝜃) = 
1+exp(𝛼[3(𝜃−𝛿)])

γ
              (2.2) 

      γ= 1 + exp(𝛼[3(𝜃 − 𝛿)]) + exp(𝛼[(𝜃 − 𝛿) − 𝜏]) + exp(𝛼[2(𝜃 − 𝛿) − 𝜏]) 

where θ is the latent trait value of a respondent, 𝛼, 𝛿, and 𝜏 are the statement discrimination, 

location, and threshold parameters, and γ is the sum of the numerators in Equations (2.1) and 

(2.2). 
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CHAPTER TWO: 

METHOD 

This study investigated the recovery and comparability of MUPP statement and person 

parameters using the two-step and direct approaches described above. Although the 

comparability of statement parameters is of interest, the main question for applied purposes 

concerns the similarity of person parameter estimates (i.e., the trait scores). The simulation 

conditions in this study were based on previous simulation research involving the MUPP model 

(Stark et al., 2005; Stark et al., 2012; Joo et al., 2018; Lee et al., 2019) as well as conditions that 

are being explored in field research and practice.  

Simulation study design 

Five independent variables were manipulated: (1) sample size (N=400, N=800), (2) number of 

dimensions in the MUPP tests (6D, 12D), (3) number of items (pairs) per dimension (4, 6, 8), (4) 

estimation approach (direct, two-step), and (5) the correlations between generating thetas for 

each dimension (.00, .30). Sample size has been explored in several studies involving GGUM 

and MUPP estimation, and research has shown that at least 400 respondents are needed for 

reasonably accurate statement parameter estimates (e.g., de la Torre et al., 2006; Joo et al., 2017; 

Roberts et al., 2000; Stark et al., 2005). 6D and 12D tests were used to explore the effect of 

dimensionality, reflective of some widely used MFC vocational interest (Wang et al., 2017) and 

personality tests (Aon, 2015; Stark et al., 2014; White & Young, 1998). The effect of test length 

was explored, as in previous studies, by manipulating the number of items (pairs) per dimension 

(Stark et al., 2005; Stark et al., 2012). Total test length was determined by multiplying the 
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number of dimensions and the number of items per dimension (IPD) to keep the ratio of test 

length to dimensionality constant. For example, 6D tests of 4, 6, and 8 IPD resulted in test 

lengths of 24, 36, and 48 items, and similarly configured 12D tests had 48, 72, and 96 items, 

respectively. This approach has been used to ensure that each dimension (i.e., measured 

construct) is represented the same number of times with tests of different dimensionality. 

Whereas early simulation research explored nonadaptive testing with 10, 20, and 40 IPD (e.g., 

Stark et al., 2005, 2012), more recent studies have found adequate trait estimation with “shorter” 

(fewer IPD) measures (e.g., Lee et al., 2019). This research therefore systematically explored 

trait estimation with measures considerably fewer IPD than originally recommended.  

Test design 

Statement parameter generation. For comparison with previous research focusing on MUPP 

direct estimation, statement parameters were selectively drawn from Lee et al. (2019). In that 

study, location parameters (𝛿) were sampled from a combination of uniform distributions, 

consistent with U[-2, 2]; threshold parameters (τ) were sampled from U[-1.4, - .40]; and 

discrimination parameters (α) were sampled from distributions reflecting low (U[.75, 1.25]) and 

high discrimination (U[1.75, 2.25]). Because comparing estimation in low and high 

discrimination conditions was not a goal of this study, some additional parameters reflecting 

moderate discrimination were sampled from U[1.25, 1.75]. These statement parameters were 

tabulated and used to develop MUPP tests with the intended design specifications for each 

experimental condition. 

Test specifications. 6D tests having 4 IPD (6D/4) and 6D tests having 6 IPD (6D/6) were created 

by systematically selecting from the pool of generating statement parameters such that the mean 

and standard deviation of the discrimination (𝛼), location (𝛿), and threshold (τ) parameters were 
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approximately equal for every dimension measured in every test. Then 6D tests having 8 IPD 

(6D/8) were created by duplicating the 6D/4 test parameters and modifying the associated 

dimension numbers to create new items with the same psychometric properties for the longer test. 

Finally, 12D tests of 4, 6, and 8 IPD (12D/4, 12D/6, 12D/8) were created by duplicating the 

respective 6D test parameters and modifying the dimension numbers to reflect the higher 

dimensionality. As noted above, care was taken to ensure each dimension would be measured 

similarly well within a test by requiring each dimension to be represented the same number of 

times.  

 Tables 1-3 present detailed test specifications for the 6D/4, 6D/6, and 6D/8 MUPP tests, 

and Table 4 shows the corresponding means and standard deviations of the statement parameters. 

In Tables 1-3, the columns labeled s and t indicate the dimension(s) represented in the respective 

pairwise preference items, and the columns labeled 𝛼𝑠, δ𝑠, τ𝑠, 𝛼𝑡, δ𝑡, and τ𝑡 show the 

corresponding statement parameters. For illustration, note that in the 24-item 6D/4 test each 

dimension is represented in 8 different pairwise preference items, and in the 36-item 6D/6 test 

each dimension is represented in 12 different items. Note also that the means and standard 

deviations of the respective statement parameters are approximately equal for every dimension in 

every test, as shown in Table 4. The corresponding specifications for the 12D/4, 12D/6, and 

12D/8 tests are shown in Appendix Tables A and B.  

Data generation  

Person parameter generation. On each replication in each experimental condition, an NxD 

matrix of latent trait parameters () for the designated sample size and dimensionality was 

sampled from a multivariate normal distribution with zero means and the correlations between 

the generating thetas for each dimension set to .00 or .30.
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Table 1. Test Specifications for the 6D/4 MUPP Test. 

Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 

1 1 6 1.81    .60 -1.37 .75 -1.78 -1.17 13 1 5 .75 1.82 -1.37 .78 -1.61 -1.12 

2 1 3 1.83 -1.99 -.55 1.88 -.69 -1.24 14 4 5 1.80 -.68 -1.31 2.13 -1.03 -.91 

3 3 4 .81 -1.49 -.55 1.31 -1.12 -.41 15 2 4 .97 .56 -.98 1.88 1.23 -1.12 

4 2 4 1.77 1.36 -.65 1.83 -1.37 -1.31 16 3 6 2.06 -.10 -.97 1.94 .32 -.51 

5 3 4 1.98 .85 -.76 1.51 1.78 -1.28 17 2 5 1.98 -1.25 -1.12 1.92 -.29 -.68 

6 3 6 1.33 1.60 -.51 1.25 1.45 -1.12 18 4 5 .82 -1.91 -1.22 1.48 .98 -.65 

7 3 6 1.76 1.92 -.94 1.45 -1.08 -.95 19 1 2 2.00 1.25 -.73 1.34 .91 -1.21 

8 1 2 1.35 1.08 -.69 1.49 -.59 -.53 20 1 3 2.01 -1.63 -.80 1.52 -.48 -1.13 

9 1 5 1.56 -.22 -1.22 1.26 1.35 -.46 21 2 6 1.94 1.93 -1.13 1.97 -1.54 -.94 

10 2 6 1.88 -1.71 -1.20 1.83 -.49 -.56 22 4 6 1.85 .37 -.58 2.08 .99 -.69 

11 1 4 1.78 -1.16 -.91 2.11 1.45 -.46 23 2 5 1.76 -1.47 -.95 1.92 -1.72 -1.33 

12 5 6 1.84 1.89 -.54 1.93 1.87 -.97 24 3 5 1.76 -1.87 -.85 1.75 .18 -1.22 

 

 

Table 2. Test Specifications for the 6D/6 MUPP Test. 

 
Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 

1 1 6 1.81 .60 -1.37 .75 -1.78 -1.17 19 1 5 .75 1.82 -1.37 .78 -1.61 -.67 

2 1 3 1.83 -1.99 -.55 1.88 -.69 -1.24 20 4 5 1.80 -.68 -1.31 2.13 -1.03 -.91 

3 3 4 .81 -1.49 -.55 1.31 -1.12 -.41 21 2 4 .97 .56 -.98 1.88 1.23 -1.12 

4 2 4 1.77 1.36 -.99 1.83 -1.37 -1.31 22 3 6 2.06 -.10 -.97 1.94 .32 -.51 

5 3 4 1.98 .85 -.76 1.51 1.78 -1.28 23 2 5 1.98 -1.25 -1.12 1.92 -.29 -.68 

6 3 6 1.33 1.6 -.51 1.25 1.45 -1.12 24 4 5 .82 -1.91 -1.22 1.48 .98 -.65 

7 3 6 1.76 1.92 -.94 1.45 -1.08 -.95 25 1 2 2.00 1.25 -.73 1.34 .91 -1.21 

8 1 2 1.35 1.08 -.69 1.49 -.59 -.53 26 1 3 2.01 -1.63 -.80 1.52 -.48 -1.13 

9 1 5 1.56 -.22 -1.22 1.26 1.35 -.46 27 2 6 1.94 1.93 -1.13 1.97 -1.54 -.94 

10 2 6 1.88 -1.71 -1.20 1.83 -.49 -.56 28 4 6 1.85 .37 -.58 2.08 .99 -.69 

11 1 4 1.78 -1.16 -.91 2.11 1.45 -.46 29 2 5 1.76 -1.47 -.95 1.92 -1.72 -1.33 

12 5 6 1.84 1.89 -.54 1.93 1.87 -.57 30 3 5 1.76 -1.87 -.85 1.75 .18 -.66 

13 5 2 1.84 -.69 -.37 1.88 -.85 -1.2 31 5 1 .87 .56 -1.22 1.81 .01 -.69 

14 5 4 1.81 1.60 -1.37 1.88 .04 -1.24 32 3 1 1.76 .37 -.76 .93 .30 -.55 

15 4 5 1.80 -1.51 -.55 2.15 -1.59 -1.37 33 6 3 2.17 -.10 -1.17 2.13 -.59 -1.12 

16 6 3 1.76 1.62 -.94 1.83 -1.09 -1.31 34 4 2 .76 -.29 -1.01 .89 .40 -.53 

17 2 6 1.76 .04 -.94 1.83 -.88 -1.21 35 6 1 .84 -.71 -1.20 1.75 .02 -.68 

18 4 2 2.11 1.63 -.76 2.12 .35 -.57 36 3 1 .93 -1.09 -.24 2.15 -.49 -1.37 
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MUPP response data generation. True statement parameters and true trait scores were used to 

compute MUPP response probabilities via Equations (1), (2.1), and (2.2). These probabilities 

were then compared with random uniform numbers. If the computed probability was larger than 

the random number, the response was recorded as 1 (statement s preferred to statement t); 

otherwise it was recorded as 0 (statement t preferred to statement s).  

Estimation approaches 

Two-step approach. Dichotomous single-statement (i.e., rating scale) response data were 

generated based on the GGUM using the true statement parameters and trait scores for each 

dimension in the pairwise preference tests described above. Specifically, each GGUM response 

probability was computed using Equation (2.1) and compared with a random uniform number. If 

the response probability was larger than the random number, then the response was coded as 1 

(agree); otherwise 0 (disagree). The generated response data for the statements representing each 

dimension were then calibrated, one dimension at a time, using an Ox (Doornik, 2009) MCMC 

program for GGUM estimation developed by Joo et al. (2017). Next, these estimated parameters 

were treated as “fixed” and used to score the MUPP responses data described above. 

Direct approach. Statement and person parameters were estimated directly from the generated 

MUPP response data using an Ox (Doornik, 2009) MCMC program for GGUM-RANK 

estimation (Lee et al., 2019) which includes the MUPP model as a special case. 

Replication. Due to long runtimes for MCMC estimation in exploratory work, ranging from 1 to 

20 hours per replication in the experimental conditions, 20 replications per condition were 

performed. This number is consistent with recently published studies on MUPP estimation using 

the direct approach (e.g., Lee et al., 2019). 
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Table 3. Test Specifications for the 6D/8 MUPP Test. 

Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 

1 1 6 1.81 .60 -1.37 .75 -1.78 -1.17 25 1 5 .75 1.82 -1.37 .78 -1.61 -1.12 

2 1 3 1.83 -1.99 -.55 1.88 -.69 -1.24 26 4 5 1.80 -.68 -1.31 2.13 -1.03 -.91 

3 3 4 .81 -1.49 -.55 1.31 -1.12 -.41 27 2 4 .97 .56 -.98 1.88 1.23 -1.12 

4 2 4 1.77 1.36 -.65 1.83 -1.37 -1.31 28 3 6 2.06 -.1 -.97 1.94 .32 -.51 

5 3 4 1.98 .85 -.76 1.51 1.78 -1.28 29 2 5 1.98 -1.25 -1.12 1.92 -.29 -.68 

6 3 6 1.33 1.60 -.51 1.25 1.45 -1.12 30 4 5 .82 -1.91 -1.22 1.48 .98 -.65 

7 3 6 1.76 1.92 -.94 1.45 -1.08 -.95 31 1 2 2.00 1.25 -.73 1.34 .91 -1.21 

8 1 2 1.35 1.08 -.69 1.49 -.59 -.53 32 1 3 2.01 -1.63 -.80 1.52 -.48 -1.13 

9 1 5 1.56 -.22 -1.22 1.26 1.35 -.46 33 2 6 1.94 1.93 -1.13 1.97 -1.54 -.94 

10 2 6 1.88 -1.71 -1.20 1.83 -.49 -.56 34 4 6 1.85 .37 -.58 2.08 .99 -.69 

11 1 4 1.78 -1.16 -.91 2.11 1.45 -.46 35 2 5 1.76 -1.47 -.95 1.92 -1.72 -1.33 

12 5 6 1.84 1.89 -.54 1.93 1.87 -.97 36 3 5 1.76 -1.87 -.85 1.75 .18 -1.22 

13 5 2 1.81 .60 -1.37 .75 -1.78 -1.17 37 5 1 .75 1.82 -1.37 .78 -1.61 -1.12 

14 5 4 1.83 -1.99 -.55 1.88 -.69 -1.24 38 3 1 1.80 -.68 -1.31 2.13 -1.03 -.91 

15 4 3 .81 -1.49 -.55 1.31 -1.12 -.41 39 6 3 .97 .56 -.98 1.88 1.23 -1.12 

16 6 3 1.77 1.36 -.65 1.83 -1.37 -1.31 40 4 3 2.06 -.10 -.97 1.94 .32 -.51 

17 4 3 1.98 .85 -.76 1.51 1.78 -1.28 41 6 1 1.98 -1.25 -1.12 1.92 -.29 -.68 

18 4 2 1.33 1.60 -.51 1.25 1.45 -1.12 42 3 1 .82 -1.91 -1.22 1.48 .98 -.65 

19 4 2 1.76 1.92 -.94 1.45 -1.08 -.95 43 5 6 2.00 1.25 -.73 1.34 .91 -1.21 

20 5 6 1.35 1.08 -.69 1.49 -.59 -.53 44 5 4 2.01 -1.63 -.80 1.52 -.48 -1.13 

21 5 1 1.56 -.22 -1.22 1.26 1.35 -.46 45 6 2 1.94 1.93 -1.13 1.97 -1.54 -.94 

22 6 2 1.88 -1.71 -1.20 1.83 -.49 -.56 46 3 2 1.85 .37 -.58 2.08 .99 -.69 

23 5 3 1.78 -1.16 -.91 2.11 1.45 -.46 47 6 1 1.76 -1.47 -.95 1.92 -1.72 -1.33 

24 1 2 1.84 1.89 -.54 1.93 1.87 -.97 48 4 1 1.76 -1.87 -.85 1.75 .18 -1.22 
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Table 4. Parameter Means and Standard Deviations (in parentheses) in the 6D Tests. 

 
  Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Total 

6D/4 mean α 1.64  

(.42) 

1.62  

(.40) 

1.64  

(.41) 

1.64  

(.41) 

1.64  

(.44) 

1.65  

(.46) 

1.64  

(.42) 

 mean  -.03  

(1.43) 

-.03  

(1.40) 

-.03  

(1.38) 

-.03  

(1.42) 

-.03  

(1.37) 

-.03  

(1.39) 

-.03  

(1.40) 

 mean  -.96  

(.32) 

-.97  

(.25) 

-.87  

(.26) 

-.96  

(.40) 

-.86  

(.33) 

-.86  

(.25) 

-.91  

(.30) 

6D/6 mean α 1.64  

(.44) 

1.63  

(.44) 

1.65  

(.44) 

1.64  

(.46) 

1.65  

(.46) 

1.65  

(.48) 

1.64  

(.45) 

 mean  -.03  

(1.16) 

-.03  

(1.16) 

-.03  

(1.23) 

-.03  

(1.32) 

-.03  

(1.31) 

-.03  

(1.26) 

-.03  

(1.24) 

 mean  -.96  

(.33) 

-.95  

(.26) 

-.87  

(.32) 

-.94  

(.36) 

-.85  

(.37) 

-.92  

(.27) 

-.91  

(.32) 

6D/8 mean α 1.64  

(.42) 

1.63  

(.42) 

1.64  

(.40) 

1.64  

(.40) 

1.64  

(.42) 

1.63  

(.42) 

1.64  

(.41) 

 mean  -.03  

(1.35) 

-.03  

(1.35) 

-.03  

(1.36) 

-.03  

(1.36) 

-.03  

(1.35) 

-.03  

(1.35) 

-.03  

(1.35) 

 mean  -.91  

(.32) 

-.92  

(.25) 

-.92  

(.33) 

-.92  

(.33) 

-.91  

(.32) 

-.92  

(.25) 

-.91  

(.30) 
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MCMC prior distributions and initial values 

In both the two-step and direct estimation conditions, four-parameter beta priors (1.5, 1.5, .25, 3), 

(2, 2, -3, 3), and (2, 2, -3, 1) were used for estimating the (𝛼, 𝛿, 𝜏) statement parameters, 

respectively. For the four-parameter beta distribution, the first two hyperparameters influence the 

shape and the last two set the support (range). A four-parameter beta distribution is a common 

choice for item parameter priors in MCMC IRT estimation because the hyperparameters can be 

changed to produce a wide variety of distribution forms. For example, a (5, 5, -3, 3) four-

parameter beta distribution closely resembles a standard normal distribution. N(0, 1) was used as 

a prior for GGUM person parameter estimation, and a multivariate standard normal distribution 

with zero covariances among dimensions was used as a prior for MUPP person parameter 

estimation. All the initial values for 𝛼, 𝜏, and 𝜃 were set to 1, -1, and 0, respectively. 𝛿 values 

were initialized to 1 or -1 aligning with the signs of the true 𝛿 values, as in previous studies (e.g., 

Lee et al., 2019), as it is easy for subject matter experts to judge whether most noncognitive 

statements reflect a negative (lower) or positive (higher) level of a trait.  

MCMC convergence checks, number of iterations, and number of chains 

Convergence represents the status that the Markov chains have reached their stationary state. 

Convergence can be assessed using the Gelman-Rubin diagnostic index (Gelman & Rubin, 1992), 

which compares the variability of MCMC samples after “burn-in” within parallel chains with the 

variability of the samples between parallel chains. If the ratio of variability between parallel 

chains to within parallel chains is less than 1.2 (i.e., 𝑅̂<1.2), practical convergence has been 

reached (Brooks & Gelman, 1998). In exploratory work, it was found that 50,000 iterations were 

generally needed for the direct approach to achieve convergence, and fewer than 30,000 

iterations were needed for the two-step approach. Therefore, in the current study, 50,000 
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iterations were designated to foster convergence of both estimation approaches, and the first 

25,000 iterations in each chain were discarded as burn-in to exclude pre-stationary samples. 

Following previous studies, three chains were used. 

Indices of estimation accuracy and information  

Four indices were calculated to evaluate parameter estimation accuracy. First, for each 

replication, Pearson correlations (CORRs) between true and estimated parameters were 

calculated, and absolute biases (ABSs) were computed as the average of the absolute differences 

between true and estimated parameters across statements or respondents. For example, ABS (α̂) 

=
∑ |α̂−α|j

S
, where S is the total number of statements, j represents the jth statement, α̂ is the 

parameter estimate, and α is the true parameter. Root mean square errors (RMSEs) were 

calculated for each replication by taking the square root of the average of the squared difference 

between true and estimated parameters across statements or respondents. For example, RMSE 

( θ̂d) = √
∑ ( θ̂d−θd)

2
i

N
 where N is the total number of respondents, d represents the dimension, i 

represents the ith person (simulee),  𝜃̂𝑑 is the estimated person parameter, and 𝜃𝑑 is the true 

parameter for the dth dimension. Posterior standard deviations (PSDs) were also calculated by 

taking the square root of the variance of the MCMC posterior samples after burn-in for each 

replication. To have a single value of each estimation effectiveness index for each condition, the 

obtained CORR, ABS, RMSE, and PSD values for statement and person parameter estimates 

were averaged across replications and dimensions. Larger CORR and smaller RMSE, PSD, and 

ABS values indicate better generating parameter recovery. To compare the quality of the MUPP 

tests, MUPP item information (Joo et al., 2018) for each dimension in every test was also 

computed. The person parameter estimates in the 800 sample size conditions from both the two-
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step and the direct approaches were used for information calculation so that the population 

distribution was better represented than the 400 sample size conditions.  

Hypotheses and research questions 

It is well-known in the IRT literature that larger samples are beneficial to statement parameter 

estimation, and test length is positively related to person parameter estimation. In this study, 

better recovery of the generating (true) parameters is indicated by larger Pearson correlations and 

lower absolute bias, RMSE and PSD statistics. Thus, two hypotheses were proposed. 

 Hypothesis 1: Large sample size (N=800) conditions will have better statement 

 parameter recovery than small sample size (N=400) conditions across all types of MFC 

 tests.  

As in previous research by Stark et al. (2005, 2012), test length was defined in terms of IPD and 

allowed to increase as dimensionality increased, in order to ensure similar measurement 

precision for comparing 6D/4 and 12D/4, 6D/6 and 12D/6, and 6D/8 and 12D/8 tests. 

Consequently, the following hypothesis two hypotheses were proposed: 

Hypothesis 2: Tests with more IPD will result in better person parameter recovery than 

tests with fewer IPD.  

Hypothesis 3: Dimensionality will have no effect on person and statement parameter 

recovery. 

The two-step approach estimates statement parameters from single-statement responses in a 

forced-choice test development stage, and then uses the estimated statement parameters to score 

MUPP tests developed and administered for assessment purposes. In contrast, the direct 

approach estimates statement and person parameters directly from MUPP responses. Because 

there has been no previous research comparing the efficacy of the two estimation approaches for 
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statement parameters, rather than offering hypotheses, the following research questions were 

proposed.  

 Research question 1: Will the two-step or direct estimation approach provide better 

 statement parameter recovery?   

 Research question 2: Will the two-step or direct estimation approach provide better 

 person parameter recovery?    

Research question 3: How closely will the respective statement and person parameter 

estimates from the two-step and direct approaches accord, as indicated by Pearson 

correlations? 

Research question 4: Will the correlations between measured dimensions (i.e., 

correlations of .00 or .30 between generating thetas) influence person parameter recovery?  

Simulation research has shown that IRT trait estimates are robust (or perhaps insensitive) to 

estimation error in item parameters. For example, Stark et al. (2011) found that latent trait 

estimates based on SME and IRT estimates of statement location correlated above .90, when the 

SME and IRT location estimates correlated as low as .6. Similarly, Seybert (2013) found that 

trait scores based on the general and simple hyperbolic cosine models exhibited high correlations, 

although the former model was substantially more complex. Based on these findings, the 

following hypothesis was proposed.  

Hypothesis 4: MUPP trait scores for the two-step and direct approaches will be highly 

correlated (e.g., .90). 

The hypotheses and research questions above were tested using a combination of MANOVAs 

and ANOVAs with the parameter recovery and parameter difference indices as the dependent 

variables and the manipulating factors as the independent variables. Partial eta squared (p
2) and 
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eta squared (2) were used as effect size indices for the MANOVAs and ANOVAs, respectively. 

Values of .01, .06, and .14 are considered as small, medium, and large effects, respectively 

(Cohen, 1988).  
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CHAPTER THREE: 

RESULTS 

 Table 5 presents the average convergence rates across replications for each simulation 

condition and each statement parameter. The convergence rates in the two-step conditions were 

1.00, indicating all the estimated parameters reached convergence status. For the direct approach, 

convergence rates were mostly high, ranging from .80 to 1.00, except in the 12D/4 conditions, 

where convergence rates for alpha and delta were low (.42 to .65). Encountering difficulty in this 

condition is not surprising given that 4 IPD is well below previous “test length” 

recommendations (Stark et al., 2005, 2012), and these conditions were included intentionally to 

explore performance at the low end of the possible range. Nevertheless, to facilitate comparisons 

across conditions and accurately reflect true performance, all the parameter estimates, regardless 

of convergence status, were used to compute the parameter recovery indices.  

 Table 6 presents the statement parameter recovery results for the uncorrelated theta (gen 

= .00) conditions, averaged across dimensions and replications. Overall, the two-step statement 

parameter estimates had smaller error and higher correlations with the true (generating) 

parameters than the direct estimates, and the difference was most obvious in the recovery of . 

Specifically, across the two-step conditions, the correlations between true and estimated  

parameters ranged from .79 to .90, absolute biases ranged from .12 to .19, RMSEs ranged 

from .17 to .25, and PSDs ranged from .16 to .28; however, in the direct conditions, the 

correlations between true and estimated  parameters ranged from .60 to .66, absolute biases 

ranged from .19 to .22, RMSEs ranged from .24 to .27, and PSDs ranged from .70 to .72. For
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Table 5. Average Convergence Rates across Conditions. 

Sample 

Size  

Dimensions IPD gen Two-Step Approach Direct Approach 

Overall α   Overall α   

400 6 4 .00 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 

.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

6 .00 1.00 1.00 1.00 1.00 .99 1.00 .98 1.00 

.30 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 

8 .00 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 

.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

12 4 .00 1.00 1.00 1.00 1.00 .75 .65 .62 .98 

.30 1.00 1.00 1.00 1.00 .75 .65 .62 .98 

6 .00 1.00 1.00 1.00 1.00 .95 .97 .89 1.00 

.30 1.00 1.00 1.00 1.00 .95 .94 .90 1.00 

8 .00 1.00 1.00 1.00 1.00 .99 1.00 .98 1.00 

.30 1.00 1.00 1.00 1.00 .99 .99 .98 1.00 

800 6 4 .00 1.00 1.00 1.00 1.00 .99 1.00 .99 1.00 

.30 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 

6 .00 1.00 1.00 1.00 1.00 .99 1.00 .98 1.00 

.30 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 

8 .00 1.00 1.00 1.00 1.00 1.00 1.00 .99 1.00 

.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

12 4 .00 1.00 1.00 1.00 1.00 .61 .43 .42 .96 

.30 1.00 1.00 1.00 1.00 .63 .47 .47 .96 

6 .00 1.00 1.00 1.00 1.00 .90 .89 .80 1.00 

.30 1.00 1.00 1.00 1.00 .88 .85 .80 1.00 

8 .00 1.00 1.00 1.00 1.00 .98 .98 .95 1.00 

.30 1.00 1.00 1.00 1.00 .96 .96 .94 1.00 

Note. gen = Correlations between generating thetas for each dimension.
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discrimination parameters, in the two-step conditions, the correlations between true and 

estimated α parameters ranged from .74 to .90, absolute biases ranged from .15 to .24, RMSEs 

ranged from .19 to .30, and PSDs ranged from .19 to .32, whereas, in the direct conditions, the 

correlations ranged from .64 to .86, absolute biases ranged from .18 to .28, RMSEs ranged 

from .23 to .35, and PSDs ranged from .23 to .41. For location parameters, in the two-step 

conditions, the correlations between true and estimated  parameters ranged from .98 to .99, 

absolute biases ranged from .13 to .20, RMSEs ranged from .18 to .26, and PSDs ranged 

from .17 to .31, and in the direct conditions, the correlations ranged from .97 to .99, absolute  

biases ranged from .15 to .25, RMSEs ranged from .20 to .32, and PSDs ranged from .21 to .42. 

As expected, larger sample size was associated with better statement parameter recovery, and 

there were only negligible differences across corresponding 6D and 12D conditions. Interestingly, 

statement parameter recovery was also slightly better with more IPD, perhaps because the 

MCMC algorithms estimated person parameters along with statement parameters, and person 

parameter estimation generally improves with test length leading to better overall performance. 

(In the two-step conditions, however, note that the GGUM person parameter estimates from step 

one were discarded; the only interest was the statement parameters, which were treated as fixed 

in the subsequent MUPP test scoring step.) The correlations between the respective two-step and 

direct statement parameter estimates were also computed to examine concordance. The average 

overall correlation was .74. The average correlations for α, , and  were .69, .98, and .57, 

respectively (Research Question 3). A similar pattern of statement parameter estimation results 

was observed for the gen = .30 conditions, indicating the correlations between generating thetas 

for each dimension had no effect on statement parameter recovery. The full results for the gen 

= .30 conditions can be found in Appendix C. 



 

       21 

 Table 7 presents the recovery results for person parameters averaged across dimensions 

and replications. The two-step approach and the direct approach yielded similar person 

parameter recovery. Specifically, in the two-step conditions, the correlation between true and 

estimated thetas ranged from .78 to .90, absolute biases ranged from .33 to .47, RMSEs ranged 

from .43 to .63, and PSDs ranged from .41 to .58. In the direct conditions, the correlation 

between true and estimated thetas ranged from .77 to .90, absolute biases ranged from .33 to .49, 

RMSEs ranged from .43 to .64, and PSDs ranged from .41 to .62. The person parameter 

estimates for the two-step and direct approaches were highly correlated, with correlations of .98 

in both the gen = .00 and gen = .30 conditions, and negligible differences in terms of estimation 

efficacy (Research Question 3). As expected, person parameter recovery was better in conditions 

with more IPD, and the results were very similar across conditions with corresponding 

dimensionality and sample size, with one exception: for the direct approach, estimation was 

slightly better in the 6D/4 conditions than in the corresponding 12D/4 conditions where some 

convergence concerns were noted. Full person parameter recovery results for each dimension 

within the tests can be found in Appendix C. 

 Test information was also calculated for each dimension in the 6D and 12D tests using 

the true statement parameters and the person parameter estimates from the large sample size 

(N=800) conditions. These results are shown in Tables 8 and 9. As intended, the information 

values were highly similar across the dimensions within each test because the respective 

statement parameters were selected to produce nearly equal means and standard deviations 

across dimensions during test design. Also, as expected, tests with more IPD provided 

proportionally higher information than tests with fewer IPD. For additional insight into the  

comparability of the various tests, reliabilities for each test were also computed by squaring the
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Table 6. Statement Parameter Recovery Results for the Uncorrelated Dimensions (gen = .00) Conditions. 

Sample Size  Dimensions IPD Recovery Statistics Two-step Approach Direct Approach 

α   α   

400 6 4 ABS .22 .20 .19 .26 .24 .22 

RMSE .27 .26 .25 .32 .31 .27 

PSD .32 .31 .28 .39 .37 .72 

CORR .80 .99 .79 .71 .98 .61 

6 ABS .21 .17 .15 .24 .19 .22 

RMSE .26 .23 .21 .30 .26 .27 

PSD .28 .24 .21 .33 .28 .71 

CORR .84 .99 .86 .79 .98 .61 

8 ABS .20 .17 .16 .23 .20 .20 

RMSE .25 .23 .21 .28 .26 .25 

PSD .26 .24 .22 .31 .28 .71 

CORR .83 .99 .83 .78 .97 .63 

12 4 ABS .24 .20 .18 .28 .25 .21 

RMSE .30 .26 .24 .35 .32 .26 

PSD .32 .31 .28 .41 .42 .72 

CORR .74 .99 .79 .64 .97 .60 

6 ABS .21 .18 .16 .24 .19 .21 

RMSE .27 .24 .22 .30 .25 .26 

PSD .28 .24 .21 .34 .29 .71 

CORR .83 .98 .84 .78 .98 .63 

8 ABS .20 .17 .16 .23 .19 .20 

RMSE .25 .23 .22 .28 .25 .25 

PSD .26 .24 .22 .31 .28 .71 

CORR .83 .99 .81 .78 .98 .63 
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Table 6 (Continued) 

 
800 6 4 ABS .18 .17 .15 .22 .20 .20 

RMSE .22 .23 .20 .27 .26 .25 

PSD .25 .24 .21 .31 .29 .71 

CORR .86 .99 .82 .80 .98 .63 

6 ABS .16 .13 .12 .20 .15 .21 

RMSE .21 .18 .17 .25 .20 .25 

PSD .21 .17 .16 .26 .21 .70 

CORR .90 .99 .90 .86 .99 .66 

8 ABS .15 .13 .12 .18 .15 .19 

RMSE .19 .19 .17 .23 .21 .24 

PSD .19 .17 .16 .23 .21 .71 

CORR .90 .99 .88 .86 .99 .66 

12 4 ABS .19 .17 .15 .25 .20 .20 

RMSE .24 .22 .20 .31 .26 .25 

PSD .24 .24 .21 .34 .33 .72 

CORR .85 .98 .85 .72 .98 .62 

6 ABS .16 .14 .12 .20 .16 .21 

RMSE .21 .19 .17 .25 .21 .26 

PSD .21 .18 .16 .26 .22 .70 

CORR .90 .98 .90 .86 .99 .64 

8 ABS .15 .13 .12 .18 .15 .19 

RMSE .19 .19 .17 .23 .21 .24 

PSD .19 .17 .16 .23 .21 .71 

CORR .90 .99 .87 .86 .98 .66 

Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; CORR = correlation between true 

and estimated parameters.
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correlation between the respective true and estimated thetas. As shown in Table 10, reliabilities 

were similar for the two-step and direct estimation approaches, and tests having more IPD had 

higher reliabilities than tests with fewer IPD. 

Statistical significance tests of hypotheses and research questions 

To formally test the proposed hypotheses and answer the research questions, MANOVAs were 

conducted. The results are presented in Table 11. Note that for MANOVA tests shown in bold in 

the Parameter column, the Box’s tests of equality of covariance matrices were significant, 

indicating the homogeneity of variance-covariance matrices assumption were violated. Therefore, 

the Pillai’s trace criterion, which is more robust to assumption violations (Tabachnick, Fidell, & 

Ullman, 2007), was used. The MANOVA results showed that sample size, IPD, dimensionality, 

and estimation approaches had statistically significant effects (p< .05) on the statement 

parameter recovery indices, and IPD, estimation approaches, and magnitude of correlations 

between generating thetas for each dimension had statistically significant effects on person 

parameter recovery indices. However, follow-up univariate tests, shown in Table 12, indicated 

that the effect of dimensionality on each statement parameter recovery index was not significant; 

in addition, neither estimation approach nor correlation between generating thetas had a 

significant effect on person parameter recovery indices. This indicates that there were differences 

on linear combinations of the parameter recovery indices, but not on the indices considered 

separately. Because the purpose was to test the significance of differences for each parameter 

recovery index, emphasis was thus placed on the univariate test results. There was a significant 

effect of sample size on α ABS, α RMSE, α PSD, α CORR,  ABS,  RMSE,  PSD,  CORR, 

with large effect sizes: 2 = .39, .40, .43, .31, .36, .33, .31, and .16, respectively.  parameters are 

sometimes difficult to estimate (e.g., Lee et al., 2019); therefore, the effect of sample size was
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Table 7. Person Parameter Recovery Results across Conditions. 

Sample 

Size  

IPD Recovery 

Statistics 
Two-step Approach Direct Approach 

6D/.00 

 

12D/.00 

 

6D/.30 

 

12D/.30 

 

6D/.00 

 

12D/.00 

 

6D/.30 

 

12D/.30 

 

400 4 ABS .47 .47 .45 .45 .47 .48 .46 .48 

RMSE .62 .62 .59 .59 .62 .64 .60 .62 

PSD .58 .57 .55 .57 .60 .61 .57 .62 

CORR .79 .78 .81 .81 .78 .77 .80 .78 

6 ABS .40 .40 .38 .38 .40 .40 .38 .39 

RMSE .53 .53 .51 .50 .53 .53 .51 .51 

PSD .49 .49 .47 .47 .50 .50 .49 .50 

CORR .85 .85 .86 .87 .85 .85 .86 .86 

8 ABS .35 .35 .34 .34 .35 .35 .34 .34 

RMSE .45 .46 .44 .44 .45 .45 .44 .44 

PSD .42 .42 .41 .41 .44 .43 .42 .43 

CORR .89 .89 .90 .90 .89 .89 .90 .90 

800 4 ABS .46 .47 .45 .45 .46 .49 .45 .48 

RMSE .61 .63 .59 .59 .61 .64 .59 .62 

PSD .57 .57 .55 .57 .58 .61 .56 .62 

CORR .79 .78 .81 .81 .79 .77 .81 .78 

6 ABS .39 .39 .38 .38 .39 .39 .38 .38 

RMSE .52 .52 .50 .50 .53 .53 .50 .50 

PSD .49 .49 .47 .48 .49 .49 .48 .50 

CORR .85 .85 .87 .87 .85 .85 .87 .86 

8 ABS .34 .34 .33 .33 .34 .34 .33 .33 

RMSE .44 .45 .43 .43 .45 .45 .43 .43 

PSD .42 .42 .41 .41 .43 .42 .41 .43 

CORR .89 .90 .90 .90 .89 .90 .90 .90 

Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; CORR = correlation between true 

and estimated parameters; 6D/.00 = 6 uncorrelated dimension; 6D/.30 = 6 dimension with .30 correlations between dimensions; 

12D/.00 = 12 uncorrelated dimension; 12D/.30 = 12 dimension with .30 correlations between dimensions.
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Table 8. Test Information by Dimension in the 6D Test Conditions. 

 
gen  Estimation 

Approach 
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 

.00 

6D/4 Direct 2.81 3.26 2.83 3.37 3.10 3.33 

Two-Step 2.81 3.27 2.82 3.39 3.10 3.31 

6D/6 Direct 4.64 4.96 4.83 4.91 4.76 5.16 

Two-Step 4.63 4.96 4.83 4.92 4.76 5.13 

6D/8 Direct 5.99 6.55 6.26 6.25 5.98 6.54 

Two-Step 5.98 6.54 6.27 6.27 5.99 6.53 

.30 

6D/4 Direct 2.78 3.29 2.88 3.43 3.28 3.41 

Two-Step 2.78 3.30 2.88 3.46 3.28 3.41 

6D/6 Direct 4.62 5.03 4.85 5.02 5.02 5.23 

Two-Step 4.61 5.02 4.85 5.03 5.03 5.22 

6D/8 Direct 6.09 6.66 6.34 6.34 6.09 6.64 

Two-Step 6.09 6.64 6.35 6.34 6.09 6.63 

Note. gen = Correlations between generating thetas for each dimension. 

 

 

Table 9. Test Information by Dimension in the 12D Test Conditions. 

 
gen  Estimation 

Approach 

Dim 

1 

Dim 

2 

Dim 

3 

Dim 

4 

Dim 

5 

Dim 

6 

Dim 

7 

Dim 

8 

Dim 

9 

Dim 

10 

Dim 

11 

Dim 

12 

.00 

12D/4 Direct 2.83 3.41 2.88 3.48 3.19 3.48 2.84 3.42 2.87 3.50 3.18 3.46 

 Two-Step 2.83 3.34 2.86 3.46 3.16 3.41 2.83 3.35 2.86 3.44 3.15 3.39 

12D/6 Direct 4.62 5.02 4.87 4.97 4.82 5.23 4.61 5.03 4.86 4.98 4.82 5.25 

 Two-Step 4.63 5.00 4.85 4.95 4.80 5.20 4.63 5.00 4.84 4.96 4.82 5.22 

12D/8 Direct 6.01 6.60 6.28 6.28 6.01 6.60 6.00 6.59 6.28 6.28 6.01 6.61 

 Two-Step 6.01 6.58 6.26 6.26 5.99 6.57 5.99 6.56 6.27 6.27 5.99 6.57 

.30 

12D/4 Direct 2.78 3.42 2.86 3.47 3.31 3.46 2.81 3.38 2.86 3.48 3.27 3.44 

 Two-Step 2.77 3.31 2.87 3.44 3.26 3.39 2.79 3.29 2.88 3.42 3.23 3.38 

12D/6 Direct 4.60 5.00 4.87 5.00 4.96 5.23 4.59 5.01 4.87 5.00 4.98 5.25 

 Two-Step 4.62 5.00 4.85 5.00 4.98 5.22 4.61 5.01 4.83 4.99 4.99 5.22 

12D/8 Direct 6.05 6.58 6.30 6.30 6.06 6.58 6.05 6.58 6.30 6.29 6.06 6.59 

 Two-Step 6.07 6.60 6.32 6.32 6.07 6.60 6.07 6.60 6.32 6.32 6.07 6.61 

Note. gen = Correlations between generating thetas for each dimension.



 

       27 

Table 10. Test Reliability. 

Estimation 

Approach 
gen Sample 

Size 6D/4 6D/6 6D/8 12D/4 12D/6 12D/8 

Direct .00 400 .61 .72 .79 .59 .72 .79 

800 .62 .72 .79 .59 .72 .81 

.30 400 .64 .74 .81 .61 .74 .81 

800 .66 .76 .81 .61 .74 .81 

Average .63 .74 .80 .60 .73 .81 

Two-Step .00 400 .62 .72 .79 .61 .72 .79 

800 .62 .72 .79 .61 .72 .81 

.30 400 .66 .74 .81 .66 .76 .81 

800 .66 .76 .81 .66 .76 .81 

Average .64 .74 .80 .63 .74 .81 

Note. gen = Correlations between generating thetas for each dimension. 

 

only significant on  RMSE with 2 = .17. This partially supported Hypothesis 1 that large 

sample size conditions would show better statement parameter recovery than small sample size 

conditions. IPD had statistically significant effects on person parameter (𝜃) recovery with large 

effect sizes ranging from .95 to .97. This supported Hypothesis 2 that tests with more IPD would 

result in better person parameter recovery than tests with fewer IPD. Interestingly, the number of 

IPD also had statistically significant effects on indices of α and  parameter recovery, even after 

Bonferroni correction, with large effect sizes ranging from .25 to .42. This was likely an indirect 

benefit of improved person parameter estimation stemming from MCMC joint estimation. 

Hypothesis 3, which stated that test dimensionality would have no effect on statement and person 

parameter recovery, was also supported by univariate tests. With regard to research questions, 

estimation approach had statistically significant effects on statement parameter recovery, with 

effect sizes ranging from .20 to .99 (Research Question 1). However, consistent with a previous 

study by Stark et al. (2011), there was no effect on person parameter recovery (Research 

Question 2). Indeed, person parameters based on the two estimation approaches correlated .98, 

supporting Hypothesis 4. This is an important finding for practice because it suggests that both 
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test development methods are viable for constructing MUPP tests for assessment purposes. 

Finally, using correlated (.30) vs. uncorrelated (.00) generating person parameters for the various 

dimensions had no significant effect on estimation (Research Question 4). Bonferroni post-hoc 

multiple comparisons were also conducted for IPD to perform pairwise comparisons between the 

means of 4, 6, and 8 IPD conditions. The results in Table 13 suggest that 8 IPD led to 

significantly better person parameter recovery than 6 IPD, which led to better person parameter 

recovery than 4 IPD. This further supported Hypothesis 2. For statement parameter recovery, 6 

IPD and 8 IPD were significantly better than 4 IPD for α and  recovery, but there was no 

difference between the longer test conditions.  

 

Table 11. Multivariate Tests of Between Subjects Effects for Hypotheses and Research Questions. 

 

Hypothesis Factor Parameter Pillai’s 

Trace 

F Hypothesis 

df 

Error 

df 

Sig p
2 

Hypothesis 

1 

Sample size Statement 

parameter 

.84 14.72 12 35 .00 .84 

  Person 

parameter 

.15 1.88 4 43 .13 .15 

Hypothesis 

2 

IPD Statement 

parameter 

1.57 10.54 24 70 .00 .78 

  Person 

parameter 

1.55 37.39 8 86 .00 .78 

Hypothesis 

3 

Dimensionality Statement 

parameter 

.46 2.45 12 35 .02 .46 

  Person 

parameter 

.03 .34 4 43 .85 .03 

Research 

question 

1&2 

Estimation 

Approach 

Statement 

parameter 

1.00 3884.08 12 35 .00 1.00 

  Person 

parameter 

.40 7.09 4 43 .00 .40 

Research 

question 4 

Correlation Statement 

parameter 

.37 1.70 12 35 .11 .37 

  Person 

parameter 

.46 8.96 4 43 .00 .46 
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Table 12. Univariate Tests of Between Subjects Effects for Hypotheses and Research Questions. 
 

Hypothesis Factor Parameter DV SS df Mean 

Square 

F Sig 2 

Hypothesis 1 Sample size Statement 

parameter 
ABS_a .02 1.00 .02 29.77 .00 .39 

ABS_b .02 1.00 .02 25.71 .00 .36 

ABS_tau .01 1.00 .01 6.27 .02 .12 
CORR_a .07 1.00 .07 20.47 .00 .31 

CORR_b .00 1.00 .00 8.84 .01 .16 

CORR_tau .02 1.00 .02 1.43 .24 .03 
RMSE_a .04 1.00 .04 30.63 .00 .40 

RMSE_b .03 1.00 .03 22.90 .00 .33 

RMSE_tau .01 1.00 .01 9.42 .00 .17 
PSD_a .07 1.00 .07 35.11 .00 .43 

PSD_b .06 1.00 .06 20.15 .00 .31 
PSD_tau .01 1.00 .01 0.19 .67 .00 

Hypothesis 2 IPD Statement 

parameter 

ABS_a .02 2.00 .01 7.61 .00 .25 

ABS_b .02 2.00 .01 11.99 .00 .35 

ABS_tau .00 2.00 .00 1.12 .33 .05 
CORR_a .07 2.00 .04 10.43 .00 .32 

CORR_b .00 2.00 .00 3.57 .04 .14 

CORR_tau .02 2.00 .01 0.61 .55 .03 
RMSE_a .02 2.00 .01 7.73 .00 .26 

RMSE_b .03 2.00 .01 10.74 .00 .32 

RMSE_tau .00 2.00 .00 1.44 .25 .06 
PSD_a .05 2.00 .02 9.60 .00 .30 

PSD_b .08 2.00 .04 16.29 .00 .42 

PSD_tau .01 2.00 .01 0.09 .92 .00 

Person 

parameter 

ABS_theta .13 2.00 .06 651.73 .00 .97 

RMSE_theta .23 2.00 .12 544.99 .00 .96 

PSD_theta .21 2.00 .10 452.21 .00 .95 
CORR_theta .09 2.00 .05 449.49 .00 .95 

Hypothesis 3 Dimensionality Statement 

parameter 
ABS_a .00 1.00 .00 .70 .41 .02 

ABS_b .00 1.00 .00 .52 .48 .01 

ABS_tau .00 1.00 .00 .00 .98 .00 
CORR_a .01 1.00 .01 1.32 .26 .03 

CORR_b .00 1.00 .00 1.85 .18 .04 

CORR_tau .00 1.00 .00 .01 .93 .00 
RMSE_a .00 1.00 .00 .84 .37 .02 

RMSE_b .00 1.00 .00 .92 .34 .02 

RMSE_tau .00 1.00 .00 .00 .96 .00 
PSD_a .00 1.00 .00 .06 .81 .00 

PSD_b .00 1.00 .00 .50 .48 .01 

PSD_tau .00 1.00 .00 .00 .99 .00 

Research 
question 1&2 

Approach Statement 
parameter 

ABS_a .02 1.00 .02 17.66 .00 .28 
ABS_b .01 1.00 .01 11.59 .00 .20 

ABS_tau .04 1.00 .04 133.81 .00 .74 

CORR_a .05 1.00 .05 14.33 .00 .24 
CORR_b .00 1.00 .00 17.35 .00 .27 

CORR_tau .55 1.00 .55 615.39 .00 .93 

RMSE_a .02 1.00 .02 17.16 .00 .27 
RMSE_b .02 1.00 .02 12.01 .00 .21 

RMSE_tau .04 1.00 .04 87.00 .00 .65 
PSD_a .04 1.00 .04 15.09 .00 .25 

PSD_b .04 1.00 .04 11.26 .00 .20 

PSD_tau 3.08 1.00 3.08 3497.78 .00 .99 

Person 
parameter 

ABS_theta .00 1.00 .00 .08 .78 .00 
RMSE_theta .00 1.00 .00 .08 .79 .00 

PSD_theta .00 1.00 .00 .80 .38 .02 

CORR_theta .00 1.00 .00 .09 .76 .00 

Research 

question 4 

Correlation Person 

parameter 

ABS_theta .00 1.00 .00 .74 .40 .02 

RMSE_theta .01 1.00 .01 1.19 .28 .03 

PSD_theta .00 1.00 .00 .20 .66 .00 
CORR_theta .00 1.00 .00 1.32 .26 .03 

Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR = correlation between true and estimated parameters. 
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Table 13. Multiple Comparisons with IPD. 

 

Dependent Variable Comparison Mean Difference Sig 

ABS_a 4 - 6 .03 .04 

 4 - 8 .04 .00 

 6 - 8 .01 .67 

ABS_b 4 - 6 .04 .00 

 4 - 8 .04 .00 

 6 - 8 -.00 1.00 

ABS_tau 4 - 6 .01 .96 

 4 - 8 .02 .45 

 6 - 8 .01 1.00 

CORR_a 4 - 6 -.08 .00 

 4 - 8 -.08 .00 

 6 - 8 .00 1.00 

CORR_b 4 - 6 -.00 .16 

 4 - 8 -.01 .04 

 6 - 8 -.00 1.00 

CORR_tau 4 - 6 -.04 .92 

 4 - 8 -.03 1.00 

 6 - 8 .01 1.00 

RMSE_a 4 - 6 .04 .04 

 4 - 8 .05 .00 

 6 - 8 -.04 .63 

RMSE_b 4 - 6 .05 .00 

 4 - 8 .05 .00 

 6 - 8 .00 1.00 

RMSE_tau 4 - 6 .01 .87 

 4 - 8 .02 .30 

 6 - 8 .01 1.00 

PSD_a 4 - 6 .05 .02 

 4 - 8 .07 .00 

 6 - 8 .02 .58 

PSD_b 4 - 6 .09 .00 

 4 - 8 .09 .00 

 6 - 8 .00 1.00 

PSD_tau 4 - 6 .04 1.00 

 4 - 8 .03 1.00 

 6 - 8 -.00 1.00 

 

 

 

 

 

 



 

       31 

Table 13 (Continued) 

 

ABS_theta 4 - 6 .08 .00 

 4 - 8 .13 .00 

 6 - 8 .05 .00 

RMSE _theta 4 - 6 .10 .00 

 4 - 8 .17 .00 

 6 - 8 .07 .00 

PSD_theta 4 - 6 .09 .00 

 4 - 8 .16 .00 

 6 - 8 .07 .00 

CORR _theta 4 - 6 -.07 .00 

 4 - 8 -.11 .00 

 6 - 8 -.04 .00 

Note. Bonferroni Correction was used.   
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CHAPTER FOUR: 

DISCUSSION 

 This research compared two approaches to statement and person parameter estimation for 

the MUPP IRT model (Stark et al., 2005). A simulation study was conducted to compare the 

efficacy of the two-step approach to test construction and scoring proposed by Stark et al. (2005) 

with a more recently developed MCMC method (Lee et al., 2019) for estimating statement and 

person parameters directly from forced-choice responses. Results indicated the two-step 

approach was more effective in recovering generating statement parameters. However, the two-

step and direct approaches were both effective in recovering generating person parameters, and 

the respective latent trait estimates correlated highly. This is a fundamentally important issue for 

practice. It confirms the findings in previous studies (e.g., Stark et al., 2011; Seybert, 2013) that 

IRT trait scores are robust to statement/item parameter estimation error and suggests that both 

the two-step and the direct approaches are viable for MUPP scoring. However, if researchers are 

interested in building MUPP CATs for efficiency, the two-step approach, which allows a large 

calibrated statement pool being created, is recommended with possible DIF screening of the 

statement pool prior to operational testing. In contrast, if interest lies primarily in constructing 

alternate static (nonadaptive) forms and examining measurement invariance across comparison 

groups, then the direct approach, which takes into account the potential interactions of statements 

within items, may be preferable. Toward that end, researchers should include some extra items in 

each test form to allow for deleting any that are problematic.  
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Importantly, the observed differences in statement parameter recovery for the two-step 

and direct approaches may be attributable to differences in the complexity of the estimation 

models: GGUM vs. MUPP based on the GGUM. An alternative explanation is that statement 

parameter estimates are influenced by context. More specifically, when statements are presented 

in pairs for comparative judgments, their parameters differ from when they are evaluated one at a 

time in a long inventory using an ordered-categorical response format. Future research involving 

“think-aloud” protocols and statistical tests of MUPP model assumptions may be needed to 

address this possibility. For MUPP test construction purposes, if the former is the case, the two-

step approach should be preferred because it requires smaller sample size than the direct 

approach for statement calibration due to the model parsimony. If the latter is the case, the direct 

approach is recommended, but it appears substantially larger samples are needed for similar 

estimation efficacy. The large differences in the recovery of  parameters for the two approaches 

and the difficulty in accurately estimating  parameters also raise questions about the added 

value of allowing  parameters to differ across statements. Future research might, therefore, 

explore parameter recovery with simpler models that either constrain  parameters or focus 

exclusively on location and discrimination parameters. 

In addition to these important findings, this study advanced understanding of estimation 

efficacy with short nonadaptive tests (having as few as 4 IPD), in connection with dimensionality, 

sample size, and the magnitude of correlations between dimensions. The simulation indicated 

that correlations between generating and estimated person parameters can exceed .8 with 

nonadaptive tests having as few as 6 IPD, although longer tests yielding correlations above .9 

(8IPD) are desirable for high-stakes decision making. These results buttress the findings of Stark 

et al. (2012), which examined latent trait estimation for nonadaptive and adaptive MUPP tests.  
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 The study is not without limitations. First, due to the long run time of the algorithms, 

only 20 replications were performed for each condition. Future research could explore other 

estimation algorithms (e.g., Hamiltonian Monte Carlo) that are considered more efficient and 

could potentially reduce the run time. Future research might also include more levels of the 

manipulated factors, such as tests of even higher dimensionality that may be of interest in 

practice. Besides MUPP estimation, research on MUPP linking and differential item functioning 

(DIF) detection is also needed to facilitate MFC applications. Research exploring different 

methods of linking with MUPP tests is now underway, as well as research to examine the 

efficacy of DIF detection using adaptations of methods developed for unidimensional IRT 

models. 
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APPENDIX A: 

TEST SPECIFICATIONS FOR THE MUPP TESTS 

Table A1. Test Specifications for the 12D/4 MUPP Test. 

 
Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 

1 1 6 1.81 .60 -1.37 .75 -1.78 -1.17 25 1 5 .75 1.82 -1.37 .78 -1.61 -1.12 

2 1 3 1.83 -1.99 -.55 1.88 -.69 -1.24 26 4 5 1.80 -.68 -1.31 2.13 -1.03 -.91 

3 3 4 .81 -1.49 -.55 1.31 -1.12 -.41 27 2 4 .97 .56 -.98 1.88 1.23 -1.12 

4 2 4 1.77 1.36 -.65 1.83 -1.37 -1.31 28 3 6 2.06 -.10 -.97 1.94 .32 -.51 

5 3 4 1.98 .85 -.76 1.51 1.78 -1.28 29 2 5 1.98 -1.25 -1.12 1.92 -.29 -.68 

6 3 6 1.33 1.60 -.51 1.25 1.45 -1.12 30 4 5 .82 -1.91 -1.22 1.48 .98 -.65 

7 3 6 1.76 1.92 -.94 1.45 -1.08 -.95 31 1 2 2.00 1.25 -.73 1.34 .91 -1.21 

8 1 2 1.35 1.08 -.69 1.49 -.59 -.53 32 1 3 2.01 -1.63 -.80 1.52 -.48 -1.13 

9 1 5 1.56 -.22 -1.22 1.26 1.35 -.46 33 2 6 1.94 1.93 -1.13 1.97 -1.54 -.94 

10 2 6 1.88 -1.71 -1.20 1.83 -.49 -.56 34 4 6 1.85 .37 -.58 2.08 .99 -.69 

11 1 4 1.78 -1.16 -.91 2.11 1.45 -.46 35 2 5 1.76 -1.47 -.95 1.92 -1.72 -1.33 

12 5 6 1.84 1.89 -.54 1.93 1.87 -.97 36 3 5 1.76 -1.87 -.85 1.75 .18 -1.22 

13 7 12 1.81 .60 -1.37 .75 -1.78 -1.17 37 7 11 .75 1.82 -1.37 .78 -1.61 -1.12 

14 7 9 1.83 -1.99 -.55 1.88 -.69 -1.24 38 10 11 1.80 -.68 -1.31 2.13 -1.03 -.91 

15 9 10 .81 -1.49 -.55 1.31 -1.12 -.41 39 8 10 .97 .56 -.98 1.88 1.23 -1.12 

16 8 10 1.77 1.36 -.65 1.83 -1.37 -1.31 40 9 12 2.06 -.10 -.97 1.94 .32 -.51 

17 9 10 1.98 .85 -.76 1.51 1.78 -1.28 41 8 11 1.98 -1.25 -1.12 1.92 -.29 -.68 

18 9 12 1.33 1.60 -.51 1.25 1.45 -1.12 42 10 11 .82 -1.91 -1.22 1.48 .98 -.65 

19 9 12 1.76 1.92 -.94 1.45 -1.08 -.95 43 7 8 2.00 1.25 -.73 1.34 .91 -1.21 

20 7 8 1.35 1.08 -.69 1.49 -.59 -.53 44 7 9 2.01 -1.63 -.80 1.52 -.48 -1.13 

21 7 11 1.56 -.22 -1.22 1.26 1.35 -.46 45 8 12 1.94 1.93 -1.13 1.97 -1.54 -.94 

22 8 12 1.88 -1.71 -1.20 1.83 -.49 -.56 46 10 12 1.85 .37 -.58 2.08 .99 -.69 

23 7 10 1.78 -1.16 -.91 2.11 1.45 -.46 47 8 11 1.76 -1.47 -.95 1.92 -1.72 -1.33 

24 11 12 1.84 1.89 -.54 1.93 1.87 -.97 48 9 11 1.76 -1.87 -.85 1.75 .18 -1.22 
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Table A2. Test Specifications for the 12D/6 MUPP Test. 

 
Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 

1 1 6 1.81 .60 -1.37 .75 -1.78 -1.17 37 1 5 .75 1.82 -1.37 .78 -1.61 -.67 

2 1 3 1.83 -1.99 -.55 1.88 -.69 -1.24 38 4 5 1.80 -.68 -1.31 2.13 -1.03 -.91 

3 3 4 .81 -1.49 -.55 1.31 -1.12 -.41 39 2 4 .97 .56 -.98 1.88 1.23 -1.12 

4 2 4 1.77 1.36 -.99 1.83 -1.37 -1.31 40 3 6 2.06 -.10 -.97 1.94 .32 -.51 

5 3 4 1.98 .85 -.76 1.51 1.78 -1.28 41 2 5 1.98 -1.25 -1.12 1.92 -.29 -.68 

6 3 6 1.33 1.60 -.51 1.25 1.45 -1.12 42 4 5 .82 -1.91 -1.22 1.48 .98 -.65 

7 3 6 1.76 1.92 -.94 1.45 -1.08 -.95 43 1 2 2.00 1.25 -.73 1.34 .91 -1.21 

8 1 2 1.35 1.08 -.69 1.49 -.59 -.53 44 1 3 2.01 -1.63 -.80 1.52 -.48 -1.13 

9 1 5 1.56 -.22 -1.22 1.26 1.35 -.46 45 2 6 1.94 1.93 -1.13 1.97 -1.54 -.94 

10 2 6 1.88 -1.71 -1.20 1.83 -.49 -.56 46 4 6 1.85 .37 -.58 2.08 .99 -.69 

11 1 4 1.78 -1.16 -.91 2.11 1.45 -.46 47 2 5 1.76 -1.47 -.95 1.92 -1.72 -1.33 

12 5 6 1.84 1.89 -.54 1.93 1.87 -.57 48 3 5 1.76 -1.87 -.85 1.75 .18 -.66 

13 5 2 1.84 -.69 -.37 1.88 -.85 -1.20 49 5 1 .87 .56 -1.22 1.81 .01 -.69 

14 5 4 1.81 1.60 -1.37 1.88 .04 -1.24 50 3 1 1.76 .37 -.76 .93 .30 -.55 

15 4 5 1.80 -1.51 -.55 2.15 -1.59 -1.37 51 6 3 2.17 -.10 -1.17 2.13 -.59 -1.12 

16 6 3 1.76 1.62 -.94 1.83 -1.09 -1.31 52 4 2 .76 -.29 -1.01 .89 .40 -.53 

17 2 6 1.76 .04 -.94 1.83 -.88 -1.21 53 6 1 .84 -.71 -1.20 1.75 .02 -.68 

18 4 2 2.11 1.63 -.76 2.12 .35 -.57 54 3 1 .93 -1.09 -.24 2.15 -.49 -1.37 

19 7 12 1.81 .60 -1.37 .75 -1.78 -1.17 55 7 11 .75 1.82 -1.37 .78 -1.61 -.67 

20 7 9 1.83 -1.99 -.55 1.88 -.69 -1.24 56 10 11 1.80 -.68 -1.31 2.13 -1.03 -.91 

21 9 10 .81 -1.49 -.55 1.31 -1.12 -.41 57 8 10 .97 .56 -.98 1.88 1.23 -1.12 

22 8 10 1.77 1.36 -.99 1.83 -1.37 -1.31 58 9 12 2.06 -.10 -.97 1.94 .32 -.51 

23 9 10 1.98 .85 -.76 1.51 1.78 -1.28 59 8 11 1.98 -1.25 -1.12 1.92 -.29 -.68 

24 9 12 1.33 1.60 -.51 1.25 1.45 -1.12 60 10 11 .82 -1.91 -1.22 1.48 .98 -.65 

25 9 12 1.76 1.92 -.94 1.45 -1.08 -.95 61 7 8 2.00 1.25 -.73 1.34 .91 -1.21 

26 7 8 1.35 1.08 -.69 1.49 -.59 -.53 62 7 9 2.01 -1.63 -.80 1.52 -.48 -1.13 

27 7 11 1.56 -.22 -1.22 1.26 1.35 -.46 63 8 12 1.94 1.93 -1.13 1.97 -1.54 -.94 

28 8 12 1.88 -1.71 -1.20 1.83 -.49 -.56 64 10 12 1.85 .37 -.58 2.08 .99 -.69 

29 7 10 1.78 -1.16 -.91 2.11 1.45 -.46 65 8 11 1.76 -1.47 -.95 1.92 -1.72 -1.33 

30 11 12 1.84 1.89 -.54 1.93 1.87 -.57 66 9 11 1.76 -1.87 -.85 1.75 .18 -.66 

31 11 8 1.84 -.69 -.37 1.88 -.85 -1.20 67 11 7 .87 .56 -1.22 1.81 .01 -.69 

32 11 10 1.81 1.60 -1.37 1.88 .04 -1.24 68 9 7 1.76 .37 -.76 .93 .30 -.55 

33 10 11 1.80 -1.51 -.55 2.15 -1.59 -1.37 69 12 9 2.17 -.10 -1.17 2.13 -.59 -1.12 

34 12 9 1.76 1.62 -.94 1.83 -1.09 -1.31 70 10 8 .76 -.29 -1.01 .89 .40 -.53 

35 8 12 1.76 .04 -.94 1.83 -.88 -1.21 71 12 7 .84 -.71 -1.20 1.75 .02 -.68 

36 10 8 2.11 1.63 -.76 2.12 .35 -.57 72 9 7 .93 -1.09 -.24 2.15 -.49 -1.37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

       42 

Table A3. Test Specifications for the 12D/8 MUPP Test. 

 
Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 Item s t 𝛼𝑠 δ𝑠 τ𝑠 𝛼𝑡 δ𝑡 τ𝑡 

1 1 6 1.81 .60 -1.37 .75 -1.78 -1.17 49 1 5 .75 1.82 -1.37 .78 -1.61 -1.12 

2 1 3 1.83 -1.99 -.55 1.88 -.69 -1.24 50 4 5 1.80 -.68 -1.31 2.13 -1.03 -.91 

3 3 4 .81 -1.49 -.55 1.31 -1.12 -.41 51 2 4 .97 .56 -.98 1.88 1.23 -1.12 

4 2 4 1.77 1.36 -.65 1.83 -1.37 -1.31 52 3 6 2.06 -.10 -.97 1.94 .32 -.51 

5 3 4 1.98 .85 -.76 1.51 1.78 -1.28 53 2 5 1.98 -1.25 -1.12 1.92 -.29 -.68 

6 3 6 1.33 1.60 -.51 1.25 1.45 -1.12 54 4 5 .82 -1.91 -1.22 1.48 .98 -.65 

7 3 6 1.76 1.92 -.94 1.45 -1.08 -.95 55 1 2 2.00 1.25 -.73 1.34 .91 -1.21 

8 1 2 1.35 1.08 -.69 1.49 -.59 -.53 56 1 3 2.01 -1.63 -.80 1.52 -.48 -1.13 

9 1 5 1.56 -.22 -1.22 1.26 1.35 -.46 57 2 6 1.94 1.93 -1.13 1.97 -1.54 -.94 

10 2 6 1.88 -1.71 -1.20 1.83 -.49 -.56 58 4 6 1.85 .37 -.58 2.08 .99 -.69 

11 1 4 1.78 -1.16 -.91 2.11 1.45 -.46 59 2 5 1.76 -1.47 -.95 1.92 -1.72 -1.33 

12 5 6 1.84 1.89 -.54 1.93 1.87 -.97 60 3 5 1.76 -1.87 -.85 1.75 .18 -1.22 

13 5 2 1.81 .60 -1.37 .75 -1.78 -1.17 61 5 1 .75 1.82 -1.37 .78 -1.61 -1.12 

14 5 4 1.83 -1.99 -.55 1.88 -.69 -1.24 62 3 1 1.80 -.68 -1.31 2.13 -1.03 -.91 

15 4 3 .81 -1.49 -.55 1.31 -1.12 -.41 63 6 3 .97 .56 -.98 1.88 1.23 -1.12 

16 6 3 1.77 1.36 -.65 1.83 -1.37 -1.31 64 4 3 2.06 -.10 -.97 1.94 .32 -.51 

17 4 3 1.98 .85 -.76 1.51 1.78 -1.28 65 6 1 1.98 -1.25 -1.12 1.92 -.29 -.68 

18 4 2 1.33 1.60 -.51 1.25 1.45 -1.12 66 3 1 .82 -1.91 -1.22 1.48 .98 -.65 

19 4 2 1.76 1.92 -.94 1.45 -1.08 -.95 67 5 6 2.00 1.25 -.73 1.34 .91 -1.21 

20 5 6 1.35 1.08 -.69 1.49 -.59 -.53 68 5 4 2.01 -1.63 -.80 1.52 -.48 -1.13 

21 5 1 1.56 -.22 -1.22 1.26 1.35 -.46 69 6 2 1.94 1.93 -1.13 1.97 -1.54 -.94 

22 6 2 1.88 -1.71 -1.20 1.83 -.49 -.56 70 3 2 1.85 .37 -.58 2.08 .99 -.69 

23 5 3 1.78 -1.16 -.91 2.11 1.45 -.46 71 6 1 1.76 -1.47 -.95 1.92 -1.72 -1.33 

24 1 2 1.84 1.89 -.54 1.93 1.87 -.97 72 4 1 1.76 -1.87 -.85 1.75 .18 -1.22 

25 7 12 1.81 .60 -1.37 .75 -1.78 -1.17 73 7 11 .75 1.82 -1.37 .78 -1.61 -1.12 

26 7 9 1.83 -1.99 -.55 1.88 -.69 -1.24 74 10 11 1.80 -.68 -1.31 2.13 -1.03 -.91 

27 9 10 .81 -1.49 -.55 1.31 -1.12 -.41 75 8 10 .97 .56 -.98 1.88 1.23 -1.12 

28 8 10 1.77 1.36 -.65 1.83 -1.37 -1.31 76 9 12 2.06 -.10 -.97 1.94 .32 -.51 

29 9 10 1.98 .85 -.76 1.51 1.78 -1.28 77 8 11 1.98 -1.25 -1.12 1.92 -.29 -.68 

30 9 12 1.33 1.60 -.51 1.25 1.45 -1.12 78 10 11 .82 -1.91 -1.22 1.48 .98 -.65 

31 9 12 1.76 1.92 -.94 1.45 -1.08 -.95 79 7 8 2.00 1.25 -.73 1.34 .91 -1.21 

32 7 8 1.35 1.08 -.69 1.49 -.59 -.53 80 7 9 2.01 -1.63 -.80 1.52 -.48 -1.13 

33 7 11 1.56 -.22 -1.22 1.26 1.35 -.46 81 8 12 1.94 1.93 -1.13 1.97 -1.54 -.94 

34 8 12 1.88 -1.71 -1.20 1.83 -.49 -.56 82 10 12 1.85 .37 -.58 2.08 .99 -.69 

35 7 10 1.78 -1.16 -.91 2.11 1.45 -.46 83 8 11 1.76 -1.47 -.95 1.92 -1.72 -1.33 

36 11 12 1.84 1.89 -.54 1.93 1.87 -.97 84 9 11 1.76 -1.87 -.85 1.75 .18 -1.22 

37 11 8 1.81 .60 -1.37 .75 -1.78 -1.17 85 11 7 .75 1.82 -1.37 .78 -1.61 -1.12 

38 11 10 1.83 -1.99 -.55 1.88 -.69 -1.24 86 9 7 1.80 -.68 -1.31 2.13 -1.03 -.91 

39 10 9 .81 -1.49 -.55 1.31 -1.12 -.41 87 12 9 .97 .56 -.98 1.88 1.23 -1.12 

40 12 9 1.77 1.36 -.65 1.83 -1.37 -1.31 88 10 9 2.06 -.10 -.97 1.94 .32 -.51 

41 10 9 1.98 .85 -.76 1.51 1.78 -1.28 89 12 7 1.98 -1.25 -1.12 1.92 -.29 -.68 

42 10 8 1.33 1.60 -.51 1.25 1.45 -1.12 90 9 7 .82 -1.91 -1.22 1.48 .98 -.65 

43 10 8 1.76 1.92 -.94 1.45 -1.08 -.95 91 11 12 2.00 1.25 -.73 1.34 .91 -1.21 

44 11 12 1.35 1.08 -.69 1.49 -.59 -.53 92 11 10 2.01 -1.63 -.80 1.52 -.48 -1.13 

45 11 7 1.56 -.22 -1.22 1.26 1.35 -.46 93 12 8 1.94 1.93 -1.13 1.97 -1.54 -.94 

46 12 8 1.88 -1.71 -1.20 1.83 -.49 -.56 94 9 8 1.85 .37 -.58 2.08 .99 -.69 

47 11 9 1.78 -1.16 -.91 2.11 1.45 -.46 95 12 7 1.76 -1.47 -.95 1.92 -1.72 -1.33 

48 7 8 1.84 1.89 -.54 1.93 1.87 -.97 96 10 7 1.76 -1.87 -.85 1.75 .18 -1.22 
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APPENDIX B: 

PARAMETER MEANS AND STANDARD DEVIATIONS IN THE 12D TESTS 

Table B1. Parameter Means and Standard Deviations (in parentheses) in the 12D Tests. 

  Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Dim7 Dim8 Dim9 Dim10 Dim11 Dim12 Total 

12D/4 mean 

α 

1.64 

(.42) 

1.62 

(.40) 

1.64 

(.41) 

1.64 

(.41) 

1.64 

(.44) 

1.65 

(.46) 

1.64 

(.42) 

1.62 

(.40) 

1.64 

(.41) 

1.64 

(.41) 

1.64 

(.44) 

1.65 

(.46) 

1.64 

(.42) 

 mean 

 

-.03 

(1.43) 

-.03 

(1.40) 

-.03 

(1.38) 

-.03 

(1.42) 

-.03 

(1.37) 

-.03 

(1.39) 

-.03 

(1.43) 

-.03 

(1.40) 

-.03 

(1.38) 

-.03 

(1.42) 

-.03 

(1.37) 

-.03 

(1.39) 

-.03 

(1.40) 

 mean 

 

-.96 

(.32) 

-.97 

(.25) 

-.87 

(.26) 

-.96 

(.40) 

-.86 

(.33) 

-.86 

(.25) 

-.96 

(.32) 

-.97 

(.25) 

-.87 

(.26) 

-.96 

(.40) 

-.86 

(.33) 

-.86 

(.25) 

-.91 

(.30) 

12D/6 mean 

α 

1.64 

(.44) 

1.63 

(.44) 

1.65 

(.44) 

1.64 

(.46) 

1.65 

(.46) 

1.65 

(.48) 

1.64 

(.44) 

1.63 

(.44) 

1.65 

(.44) 

1.64 

(.46) 

1.65 

(.46) 

1.65 

(.48) 

1.64 

(.45) 

 mean 

 

-.03 

(1.16) 

-.03 

(1.16) 

-.03 

(1.23) 

-.03 

(1.32) 

-.03 

(1.31) 

-.03 

(1.26) 

-.03 

(1.16) 

-.03 

(1.16) 

-.03 

(1.23) 

-.03 

(1.32) 

-.03 

(1.31) 

-.03 

(1.26) 

-.03 

(1.24) 

 mean 

 

-.96 

(.33) 

-.95 

(.26) 

-.87 

(.32) 

-.94 

(.36) 

-.85 

(.37) 

-.92 

(.27) 

-.96 

(.33) 

-.95 

(.26) 

-.87 

(.32) 

-.94 

(.36) 

-.85 

(.37) 

-.92 

(.27) 

-.91 

(.32) 

12D/8 mean 

α 

1.64 

(.42) 

1.63 

(.42) 

1.64 

(.40) 

1.64 

(.40) 

1.64 

(.42) 

1.63 

(.42) 

1.64 

(.42) 

1.63 

(.42) 

1.64 

(.40) 

1.64 

(.40) 

1.64 

(.42) 

1.63 

(.42) 

1.64 

(.41) 

 mean 

 

-.03 

(1.35) 

-.03 

(1.35) 

-.03 

(1.36) 

-.03 

(1.36) 

-.03 

(1.35) 

-.03 

(1.35) 

-.03 

(1.35) 

-.03 

(1.35) 

-.03 

(1.36) 

-.03 

(1.36) 

-.03 

(1.35) 

-.03 

(1.35) 

-.03 

(1.35) 

 mean 

 

-.91 

(.32) 

-.92 

(.25) 

-.92 

(.33) 

-.92 

(.33) 

-.91 

(.32) 

-.92 

(.25) 

-.91 

(.32) 

-.92 

(.25) 

-.92 

(.33) 

-.92 

(.33) 

-.91 

(.32) 

-.92 

(.25) 

-.91 

(.30) 
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APPENDIX C: 

PARAMETER RECOVERY RESULTS 

Table C1. Person Parameter Recovery Results for the 6D and Uncorrelated Dimensions (gen 

= .00) Conditions. 

 
Estimation 

Approach 

Sample 

Size  

IPD Recovery 

Statistics 

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Overall 

Direct 400 4 ABS .48 .46 .49 .46 .48 .46 .47 

RMSE .64 .60 .65 .61 .63 .61 .62 

PSD .61 .58 .61 .57 .61 .59 .60 

CORR .77 .80 .76 .80 .77 .78 .78 

6 ABS .41 .40 .41 .39 .39 .40 .40 

RMSE .57 .53 .55 .51 .51 .51 .53 

PSD .52 .49 .50 .49 .50 .49 .50 

CORR .82 .85 .84 .86 .86 .86 .85 

8 ABS .34 .34 .35 .35 .35 .34 .35 

RMSE .45 .44 .45 .46 .46 .44 .45 

PSD .44 .43 .44 .43 .44 .43 .44 

CORR .89 .90 .89 .89 .89 .90 .89 

800 4 ABS .47 .45 .48 .46 .47 .45 .46 

RMSE .63 .59 .64 .60 .62 .59 .61 

PSD .60 .57 .60 .57 .59 .57 .58 

CORR .77 .80 .77 .80 .78 .81 .79 

6 ABS .40 .39 .40 .39 .39 .39 .39 

RMSE .56 .52 .53 .52 .52 .51 .53 

PSD .51 .48 .50 .48 .49 .48 .49 

CORR .83 .86 .85 .86 .85 .86 .85 

8 ABS .35 .33 .34 .35 .34 .33 .34 

RMSE .46 .43 .45 .46 .45 .43 .45 

PSD .43 .42 .43 .43 .43 .42 .43 

CORR .89 .90 .89 .89 .89 .90 .89 

Two-Step 400 4 ABS .48 .46 .49 .45 .47 .45 .47 

RMSE .64 .60 .65 .60 .62 .60 .62 

PSD .60 .56 .59 .56 .58 .57 .58 

CORR .77 .80 .76 .80 .78 .80 .79 

6 ABS .40 .39 .41 .38 .39 .40 .40 

RMSE .55 .53 .56 .52 .52 .52 .53 

PSD .51 .47 .49 .48 .49 .48 .49 

CORR .83 .85 .84 .86 .86 .86 .85 

8 ABS .34 .34 .35 .35 .35 .34 .35 

RMSE .45 .44 .45 .46 .46 .44 .45 

PSD .43 .42 .42 .42 .43 .42 .42 
CORR .89 .90 .89 .89 .89 .90 .89 
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Table C1 (Continued) 

 
 800 4 ABS .47 .45 .48 .45 .47 .45 .46 

RMSE .63 .59 .63 .60 .62 .59 .61 

PSD .59 .56 .59 .55 .58 .56 .57 

CORR .77 .81 .78 .80 .79 .81 .79 

6 ABS .40 .39 .40 .39 .39 .39 .39 

RMSE .55 .52 .53 .51 .52 .51 .52 

PSD .50 .48 .49 .47 .49 .48 .49 

CORR .83 .86 .85 .86 .86 .86 .85 

8 ABS .34 .33 .34 .34 .34 .33 .34 

RMSE .45 .43 .45 .45 .45 .43 .44 

PSD .43 .42 .43 .42 .43 .41 .42 

CORR .89 .90 .89 .89 .89 .90 .89 

Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR = correlation between true and estimated parameters. 
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Table C2. Person Parameter Recovery Results for the 12D and Uncorrelated Dimensions (gen 

= .00) Conditions. 

 
Estimation 

Approach 

Sample 

Size  

IPD Recovery 

Statistics 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 Overall 

Direct 400 4 ABS .50 .47 .51 .47 .48 .47 .49 .47 .52 .48 .49 .46 .48 
RMSE .66 .62 .67 .63 .64 .61 .66 .62 .69 .63 .64 .61 .64 

PSD .63 .58 .64 .59 .62 .60 .63 .59 .66 .58 .62 .61 .61 

CORR .75 .79 .74 .77 .77 .79 .75 .79 .74 .79 .77 .78 .77 

6 ABS .41 .39 .40 .39 .40 .39 .41 .39 .40 .39 .40 .39 .40 
RMSE .57 .51 .53 .52 .52 .53 .57 .53 .54 .52 .52 .51 .53 

PSD .51 .49 .50 .49 .50 .49 .52 .48 .50 .48 .50 .49 .50 

CORR .83 .86 .85 .85 .85 .85 .81 .85 .84 .86 .85 .86 .85 

8 ABS .35 .34 .35 .34 .35 .34 .35 .34 .35 .35 .35 .35 .35 

RMSE .46 .45 .45 .45 .46 .44 .46 .45 .46 .46 .46 .45 .45 

PSD .43 .43 .43 .42 .44 .42 .44 .43 .42 .43 .43 .42 .43 
CORR .89 .89 .89 .89 .88 .89 .89 .89 .89 .89 .88 .89 .89 

800 4 ABS .50 .47 .50 .47 .49 .48 .50 .47 .51 .47 .49 .47 .49 

RMSE .67 .61 .66 .62 .64 .63 .67 .62 .67 .62 .64 .62 .64 

PSD .62 .58 .63 .58 .62 .60 .64 .59 .63 .58 .61 .59 .61 
CORR .75 .79 .75 .79 .77 .79 .74 .79 .74 .79 .77 .79 .77 

6 ABS .41 .38 .40 .39 .40 .39 .40 .38 .40 .39 .40 .39 .39 

RMSE .57 .51 .54 .51 .52 .51 .56 .51 .54 .51 .52 .52 .53 
PSD .50 .48 .49 .48 .49 .48 .51 .48 .49 .48 .49 .49 .49 

CORR .82 .86 .84 .86 .85 .86 .82 .86 .84 .86 .85 .86 .85 

8 ABS .35 .34 .34 .34 .35 .33 .35 .34 .34 .35 .35 .34 .34 

RMSE .46 .44 .45 .44 .46 .43 .46 .44 .45 .45 .46 .44 .45 
PSD .43 .42 .42 .42 .43 .41 .43 .41 .42 .43 .43 .41 .42 

CORR .89 .90 .90 .90 .89 .90 .89 .90 .89 .89 .89 .90 .90 

Two-Step 400 4 ABS .48 .46 .49 .46 .47 .46 .48 .47 .49 .47 .47 .46 .47 
RMSE .64 .61 .64 .62 .62 .59 .65 .61 .66 .62 .63 .60 .62 

PSD .60 .55 .59 .56 .58 .56 .60 .56 .59 .56 .57 .57 .57 

CORR .76 .80 .77 .78 .78 .80 .76 .79 .76 .79 .79 .79 .78 

6 ABS .41 .39 .40 .39 .40 .39 .41 .39 .40 .40 .40 .39 .40 

RMSE .56 .51 .54 .52 .53 .53 .56 .52 .53 .53 .53 .51 .53 

PSD .50 .47 .49 .47 .49 .48 .51 .48 .49 .47 .49 .48 .49 
CORR .83 .86 .85 .86 .85 .85 .82 .86 .85 .85 .85 .86 .85 

8 ABS .35 .34 .35 .34 .35 .34 .35 .34 .35 .35 .35 .35 .35 

RMSE .45 .45 .46 .45 .46 .45 .45 .45 .46 .46 .47 .46 .46 

PSD .43 .41 .42 .42 .43 .42 .43 .42 .42 .41 .43 .42 .42 
CORR .89 .89 .89 .90 .89 .89 .89 .90 .89 .89 .88 .89 .89 

800 4 ABS .48 .46 .49 .46 .47 .46 .48 .45 .49 .46 .47 .46 .47 

RMSE .65 .60 .65 .61 .63 .61 .65 .61 .65 .61 .63 .61 .63 
PSD .59 .56 .60 .55 .58 .56 .59 .56 .59 .56 .58 .56 .57 

CORR .76 .80 .76 .80 .78 .80 .76 .80 .76 .79 .78 .80 .78 

6 ABS .40 .38 .40 .38 .40 .39 .40 .38 .40 .39 .39 .39 .39 

RMSE .55 .50 .53 .51 .52 .51 .55 .51 .54 .51 .52 .51 .52 
PSD .50 .48 .50 .47 .49 .47 .51 .47 .50 .47 .48 .48 .49 

CORR .83 .86 .84 .86 .85 .86 .83 .86 .84 .86 .86 .86 .85 

8 ABS .35 .34 .34 .34 .35 .33 .35 .33 .34 .34 .35 .34 .34 
RMSE .46 .44 .44 .44 .46 .43 .46 .44 .45 .45 .46 .44 .45 

PSD .42 .41 .42 .42 .43 .41 .43 .41 .42 .42 .43 .41 .42 

CORR .89 .90 .90 .90 .89 .90 .89 .90 .89 .89 .89 .90 .90 

Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR = correlation between true and estimated parameters. 
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Table C3. Statement Parameter Recovery Results for the .30 Correlated Dimensions Conditions. 

 
Sample Size  Dimensions IPD Recovery 

Statistics 

Two-step Approach Direct Approach 

α   α   

400 6 4 ABS .22 .20 .18 .25 .24 .21 

RMSE .29 .26 .24 .32 .31 .26 

PSD .32 .31 .28 .38 .36 .72 

CORR .78 .99 .79 .71 .98 .61 

6 ABS .21 .17 .15 .24 .20 .22 

RMSE .27 .23 .21 .30 .26 .27 

PSD .28 .24 .21 .33 .29 .71 

CORR .83 .99 .86 .79 .98 .62 

8 ABS .20 .17 .15 .22 .20 .20 

RMSE .25 .23 .21 .28 .27 .25 

PSD .26 .24 .22 .31 .28 .71 

CORR .83 .99 .83 .79 .98 .63 

12 4 ABS .23 .21 .18 .30 .28 .22 

RMSE .29 .27 .24 .37 .38 .27 

PSD .32 .31 .28 .40 .45 .72 

CORR .78 .98 .79 .59 .96 .59 

6 ABS .21 .17 .16 .25 .21 .22 

RMSE .27 .23 .21 .31 .28 .27 

PSD .28 .24 .21 .33 .30 .71 

CORR .83 .99 .84 .77 .98 .63 

8 ABS .20 .17 .16 .23 .20 .20 

RMSE .25 .23 .22 .29 .27 .25 

PSD .26 .24 .22 .30 .28 .71 

CORR .83 .99 .82 .77 .98 .63 

800 6 4 ABS .19 .17 .15 .23 .19 .20 

RMSE .24 .22 .20 .28 .25 .25 

PSD .25 .24 .21 .30 .28 .71 

CORR .85 .99 .83 .80 .99 .65 

6 ABS .16 .13 .12 .19 .15 .21 

RMSE .20 .18 .16 .24 .20 .26 

PSD .21 .17 .15 .25 .21 .70 

CORR .90 .99 .90 .86 .99 .65 

8 ABS .15 .13 .12 .18 .15 .20 

RMSE .19 .19 .17 .22 .21 .24 

PSD .19 .17 .16 .23 .21 .71 

CORR .90 .99 .88 .87 .99 .65 

12 4 ABS .19 .17 .15 .27 .24 .20 

RMSE .24 .22 .20 .33 .32 .25 

PSD .25 .24 .21 .33 .36 .72 

CORR .84 .99 .84 .69 .97 .64 

6 ABS .16 .14 .12 .21 .17 .21 

RMSE .20 .19 .17 .26 .24 .26 

PSD .21 .18 .16 .26 .23 .70 

CORR .91 .99 .90 .84 .98 .65 

8 ABS .15 .13 .12 .18 .17 .19 

RMSE .19 .19 .17 .23 .22 .24 

PSD .19 .17 .16 .23 .21 .71 

CORR .90 .99 .88 .85 .99 .66 

Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR = correlation between true and estimated parameters. 
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Table C4. Person Parameter Recovery Results for the 6D and .30 Correlated Dimensions 

Conditions. 

 
Estimation 

Approach 

Sample 

Size  

IPD Recovery 

Statistics 

Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Overall 

Direct 400 4 ABS .46 .45 .48 .45 .45 .45 .46 

RMSE .60 .58 .63 .59 .59 .58 .60 

PSD .57 .56 .60 .56 .58 .57 .57 

CORR .81 .81 .78 .81 .81 .81 .80 

6 ABS .39 .39 .40 .37 .38 .38 .38 

RMSE .52 .51 .53 .49 .50 .50 .51 

PSD .49 .49 .49 .48 .49 .49 .49 

CORR .85 .86 .85 .87 .87 .87 .86 

8 ABS .34 .33 .34 .34 .34 .33 .34 

RMSE .44 .42 .44 .44 .44 .43 .44 

PSD .43 .42 .42 .42 .42 .42 .42 

CORR .89 .91 .90 .90 .90 .90 .90 

800 4 ABS .45 .44 .47 .44 .45 .44 .45 

RMSE .59 .58 .61 .58 .59 .57 .59 

PSD .58 .56 .59 .55 .56 .55 .56 

CORR .80 .81 .79 .82 .81 .82 .81 

6 ABS .38 .38 .38 .37 .38 .37 .38 

RMSE .51 .50 .50 .49 .49 .49 .50 

PSD .48 .48 .49 .47 .48 .47 .48 

CORR .86 .87 .87 .88 .87 .87 .87 

8 ABS .33 .33 .33 .33 .33 .33 .33 

RMSE .43 .42 .43 .43 .43 .42 .43 

PSD .42 .41 .42 .42 .42 .41 .41 

CORR .90 .91 .90 .90 .90 .91 .90 

Two-Step 400 4 ABS .45 .44 .48 .45 .45 .45 .45 

RMSE .59 .58 .63 .59 .59 .58 .59 

PSD .57 .54 .58 .54 .55 .55 .55 

CORR .81 .81 .78 .81 .81 .82 .81 

6 ABS .38 .38 .40 .38 .38 .38 .38 

RMSE .51 .51 .53 .50 .50 .50 .51 

PSD .48 .47 .48 .47 .47 .47 .47 

CORR .86 .86 .85 .87 .87 .87 .86 

8 ABS .34 .33 .34 .34 .34 .33 .34 

RMSE .44 .43 .44 .44 .44 .43 .44 

PSD .42 .41 .41 .42 .41 .41 .41 

CORR .90 .90 .90 .90 .90 .90 .90 

800 4 ABS .45 .44 .47 .44 .45 .44 .45 

RMSE .59 .57 .61 .58 .59 .58 .59 

PSD .57 .54 .58 .53 .55 .54 .55 

CORR .80 .82 .79 .82 .81 .82 .81 

6 ABS .38 .38 .38 .37 .38 .37 .38 

RMSE .51 .49 .50 .49 .49 .49 .50 

PSD .47 .47 .47 .46 .47 .46 .47 

CORR .86 .87 .87 .88 .87 .88 .87 

8 ABS .33 .33 .33 .33 .33 .33 .33 

RMSE .43 .42 .43 .43 .43 .42 .43 

PSD .41 .41 .41 .41 .41 .40 .41 

CORR .90 .91 .90 .91 .90 .91 .90 

Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR = correlation between true and estimated parameters. 
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Table C5. Person Parameter Recovery Results for the 12D and .30 Correlated Dimensions 

Conditions. 

 
Estimation 
Approach 

Sample 
Size  

IPD Recovery 
Statistics 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 Overall 

Direct 400 4 ABS .47 .46 .54 .46 .47 .45 .46 .45 .57 .45 .47 .46 .48 

RMSE .62 .60 .70 .60 .62 .58 .61 .59 .74 .59 .62 .60 .62 

PSD .63 .59 .70 .59 .61 .60 .62 .59 .74 .59 .63 .62 .62 
CORR .79 .80 .73 .79 .78 .81 .79 .81 .68 .81 .80 .80 .78 

6 ABS .39 .38 .39 .38 .39 .38 .39 .38 .39 .38 .39 .38 .39 

RMSE .54 .51 .51 .50 .50 .50 .53 .50 .51 .49 .50 .50 .51 
PSD .50 .49 .50 .50 .50 .49 .51 .49 .52 .48 .50 .52 .50 

CORR .85 .86 .87 .87 .87 .87 .85 .87 .87 .87 .87 .87 .86 

8 ABS .34 .33 .34 .33 .35 .34 .34 .33 .34 .34 .34 .34 .34 

RMSE .44 .43 .44 .43 .45 .44 .44 .43 .44 .43 .45 .44 .44 
PSD .43 .43 .43 .43 .44 .42 .44 .43 .43 .43 .44 .43 .43 

CORR .90 .90 .89 .90 .89 .90 .90 .90 .90 .90 .89 .90 .90 

800 4 ABS .47 .47 .52 .45 .48 .46 .50 .46 .51 .46 .48 .45 .48 
RMSE .61 .61 .68 .60 .63 .60 .65 .61 .67 .60 .62 .59 .62 

PSD .60 .60 .67 .59 .63 .59 .67 .59 .66 .59 .61 .59 .62 

CORR .79 .80 .73 .80 .78 .80 .76 .79 .74 .80 .79 .81 .78 

6 ABS .38 .38 .41 .38 .39 .38 .38 .37 .41 .38 .38 .37 .38 
RMSE .52 .49 .54 .49 .50 .50 .51 .49 .54 .49 .50 .48 .50 

PSD .50 .49 .54 .49 .49 .49 .50 .49 .54 .48 .49 .49 .50 
CORR .85 .87 .86 .87 .86 .87 .85 .87 .85 .87 .87 .87 .86 

8 ABS .34 .33 .33 .33 .34 .32 .34 .33 .33 .33 .33 .33 .33 

RMSE .44 .42 .43 .43 .44 .42 .44 .42 .43 .43 .43 .43 .43 

PSD .43 .42 .43 .43 .43 .42 .43 .42 .43 .43 .43 .42 .43 
CORR .90 .90 .90 .90 .90 .91 .90 .90 .90 .90 .90 .91 .90 

Two-Step 400 4 ABS .46 .45 .47 .45 .45 .44 .45 .45 .47 .44 .45 .44 .45 

RMSE .60 .59 .61 .59 .59 .57 .60 .59 .62 .58 .60 .58 .59 
PSD .59 .55 .58 .55 .57 .55 .59 .55 .59 .55 .57 .56 .57 

CORR .80 .81 .80 .80 .80 .81 .79 .81 .79 .82 .81 .81 .81 

6 ABS .39 .38 .39 .38 .38 .38 .38 .38 .38 .38 .38 .37 .38 

RMSE .53 .50 .51 .50 .50 .50 .51 .50 .50 .50 .50 .49 .50 

PSD .48 .47 .48 .47 .47 .47 .49 .47 .48 .46 .47 .47 .47 

CORR .85 .87 .86 .87 .87 .87 .86 .87 .87 .87 .87 .87 .87 

8 ABS .33 .33 .34 .33 .34 .34 .34 .33 .34 .34 .34 .33 .34 
RMSE .43 .43 .44 .43 .45 .44 .44 .43 .44 .44 .45 .43 .44 

PSD .42 .41 .42 .41 .42 .41 .42 .41 .41 .41 .42 .41 .41 

CORR .90 .90 .90 .90 .89 .90 .90 .90 .90 .90 .90 .90 .90 

800 4 ABS .45 .44 .47 .44 .45 .45 .46 .44 .47 .44 .45 .44 .45 
RMSE .59 .58 .62 .59 .59 .58 .60 .58 .62 .58 .59 .58 .59 

PSD .57 .55 .60 .55 .57 .56 .58 .56 .59 .55 .57 .56 .57 

CORR .81 .81 .78 .81 .80 .81 .80 .81 .79 .82 .81 .82 .81 

6 ABS .38 .37 .39 .37 .38 .38 .38 .37 .38 .37 .37 .37 .38 

RMSE .51 .48 .51 .49 .50 .50 .51 .49 .50 .49 .49 .48 .50 

PSD .49 .47 .48 .47 .48 .47 .49 .47 .49 .46 .48 .47 .48 
CORR .85 .87 .86 .88 .87 .87 .86 .87 .86 .88 .87 .88 .87 

8 ABS .33 .33 .33 .33 .33 .32 .34 .33 .33 .33 .33 .33 .33 

RMSE .43 .42 .43 .42 .43 .42 .43 .42 .42 .43 .43 .43 .43 
PSD .42 .41 .42 .41 .42 .41 .42 .41 .41 .41 .42 .41 .41 

CORR .90 .91 .90 .91 .90 .91 .90 .91 .91 .90 .90 .91 .90 

Note. ABS = absolute bias; RMSE = root mean square error; PSD = posterior standard deviation; 

CORR = correlation between true and estimated parameters. 
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