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Abstract

In view of the recent advances in Internet of Things (IoT) devices and the emerging new

breed of smart city applications and intelligent vehicular systems driven by artificial intelligence,

fog radio access network (F-RAN) has been recently introduced for the next generation wireless

communications. The capability of F-RAN has emerged to overcome the latency limitations of

cloud-RAN (C-RAN) and assure the quality-of-service (QoS) requirements of the ultra-reliable-low-

latency-communication (URLLC) for IoT applications. To this end, fog nodes (FNs) are equipped

with computing, signal processing and storage capabilities to extend the inherent operations and

services of the cloud to the edge. However, due to their limited resources compared to the cloud, FNs

should utilize their valuable resources intelligently to satisfy various QoS requirements in synergy

and complementarity with the cloud. This dissertation considers the network slicing problem of

sequentially allocating the limited resources at the network edge (i.e., FNs) to vehicular and smart

city users with heterogeneous latency and computing demands in dynamic environments.

The network slicing problem for the edge resource allocation is formulated as a Markov de-

cision process (MDP), for which dynamic programming and reinforcement learning (RL) solutions

are proposed to adaptively learn the optimal slicing policy. The research conducted in this disser-

tation can be divided into two phases. Phase I considers a single FN with a tractable number of

states, where tabular solution methods are used such as dynamic programming and model-free RL

methods, which include Monte Carlo, SARSA, expected SARSA, and Q-Learning (QL). Phase II

vi



deals with a cluster of FNs coordinated with an EC with high-dimensional state space, where deep

RL (DRL) methods such as deep Q-networks (DQN) are adopted to address the high-dimensionality

using deep neural networks. A network slicing model based on a cluster of FNs coordinated with

an edge controller (EC) is developed to efficiently utilize the limited resources at the network edge.

Specifically, for each service request in a cluster, the EC decides which FN to execute the task (i.e.

locally serve the request at the edge) or to reject the task and refer it to the cloud to conserve

the edge resources for future users of potentially higher utility to the system (i.e., lower latency

requirement).

The developed network slicing model and the proposed RL and DRL algorithms quickly

learn the optimal policy through interaction with the IoT environment, which enables adaptive and

automated network slicing for efficient edge resource allocation in dynamic traffic and load profiles

of dense vehicular and smart city service requests with heterogeneous latency and computing needs.

This means providing a cost-effective service customization through virtual partitioning of the RAN

resources to enable low-latency IoT communications such as autonomous driving and public safety

operations. The proposed approach also adapts to various design objectives including edge resource

utilization, cloud offloading, and satisfying diverse QoS requirements.

vii



Chapter 1: Introduction

There is an ever-growing demand for wireless communication technologies due to several

reasons such as the increasing popularity of Internet of Things (IoT) devices, the widespread use

of social networking platforms, the proliferation of mobile applications, and the current lifestyle

that has become highly dependent on technology in all aspects.1 It is expected that the number of

connected devices worldwide will reach three times the global population in 2022 with 3.6 devices

per capita. However, in some regions, such as North America, the number of connected devices

is projected to reach about 13.4 devices per capita by 2022. IoT devices will constitute 50% of

the 29.3 billion connected devices globally by 2023 which makes the massive IoT a very common

concept, where Internet of Vehicles (IoV) and smart city applications are the fastest growing IoT

implementations at annual growth rates of 30% and 26%, respectively [5]. The emerging new breed

of IoT applications which involve video analytics, augmented reality (AR), virtual reality (VR),

and artificial intelligence (AI) will produce an annual worldwide data volume of 4.8 zettabytes by

2022, which corresponds to 4 times the traffic in 2016 and 184 times the data traffic in 2005, in

which wireless and mobile devices will account for 71% of this forcast [3, 6]. Equipped with variety

of sensors, radars, lidars, ultra-high definition (UHD) video cameras, GPS, navigation system, and

infotainment facilities, a connected and autonomous vehicle (CAV) will generate 4.0 terabyte of

data in a single day, of which 1.0 gigabyte need to be processed every second [7].
1Portions of this chapter were published in IEEE GlobalSIP [1], IEEE ICC [2], IEEE Access [3] and arXiv [4].
Copyright permissions from the publishers are included in Appendix A.
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This unprecedented demand for mobile data services makes it unbearable for service providers

with the current third generation (3G) and fourth generation (4G) networks to keep pace with it [8].

The design criteria for fifth generation (5G) wireless communication systems will include providing

ultra-low latency, wider coverage, reduced energy usage, increased spectral efficiency, more con-

nected devices, improved availability, and very high data rates of multi giga-bit-per-second (Gbps)

everywhere in the network including cell edges [9]. Several radio frequency (RF) coverage and ca-

pacity solutions are proposed to fulfill the goals of 5G including, beamforming, carrier aggregation,

higher order modulation, and dense deployment of small cells [10]. Millimeter-wave (mm-wave)

frequency range is utilized in 5G because of the spacious bandwidths available in these frequencies

for cellular services [11]. Massive multi-input-multi-output (MIMO) is also involved for excellent

spectral efficiency and superior energy efficiency [12].

1.1 Cloud and Fog RAN

Through centralization of network functionalities via virtualization, cloud radio access net-

work (C-RAN) architecture is proposed to address the big data challenges of massive IoT. In C-RAN,

densely-deployed disseminated remote radio units (RRUs) are connected through high capacity fron-

thaul trunks to a powerful cloud controller (CC) where they share a vast pooling of storage and

baseband units (BBUs) [13]. The centralized computing, processing, and collaborative radio in

C-RAN improves network security, flexibility, availability, and spectral efficiency. It also simplifies

network operations and management, enhances capacity, and reduces energy usage [14]. However,

considering the fast growing demands of IoT deployments, C-RAN lays overwhelming onus on cloud

computing and fronthaul links, and dictates unacceptable delay caused mainly by the large return

transmission times, finite-capacity fronthaul trunks, and flooded cloud processors [15]. The latency

2



limitation in C-RAN makes it challenging to meet the desired quality-of-service (QoS) requirements,

especially for the delay-sensitive IoV and smart city applications [16]. Hence, an evolved architec-

ture, fog RAN (F-RAN) is introduced to extend the inherent operations and services of cloud to

the edge [17]. In F-RAN, the fog nodes (FNs) are not only restricted to perform the regular radio

frequency (RF) functionalities of RRUs, but they are also equipped with computing, storage, and

processing resources to afford the low latency demand by delivering network functionalities directly

at the edge and independently from the cloud [18]. However, due to their limited resources compared

to the cloud, FNs are unable to serve all requests from IoV and smart city applications, and hence

they should utilize their limited resources intelligently to satisfy the QoS requirements in synergy

and complementarity with the cloud [19].

1.2 Network Slicing for Heterogeneous IoT Demands

IoT and smart city applications demand various computing, throughput, latency, availabil-

ity, and reliability requirements to satisfy a desired level of QoS. Some applications are more delay-

sensitive than others, while some can tolerate larger delays [20–22]. For instance, in-vehicle audio,

news, and video infotainment services are satisfied by the traditional mobile broadband (MBB) ser-

vices of high throughput and capacity with latency greater than 100 ms [20]. Cloud computing plays

an essential role for such delay-tolerant applications. Other examples of delay-tolerant applications

include smart parking [23], intelligent waste management [24], infrastructure (e.g., bridges, railways,

etc.) monitoring [25], air quality management [26], noise monitoring [27], smart city lighting [28],

smart management of city energy consumption [29], and automation of public buildings such as

schools, museums, and administration offices to automatically and remotely control lighting and air

condition [30].
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On the other hand, latency and reliability are more critical for other IoV and smart city

applications. For instance, deployment scenarios based on enhanced mobile broadband (eMBB)

require latency of 4.0 ms. Enhanced vehicle-to-everything (eV2X) applications demand 3-10 ms

latency with packet loss rate of 10−5. Ultra-reliable and low-latency communications (URLLC) seek

latency level of 0.5-1.0 ms and 99.999% reliability [31, 32], e.g., autonomous driving [33]. AI-driven

and video analytics services are considered both latency-critical and compute-intensive applications

[22]. For instance, real-time video streaming for traffic management in intelligent transportation

system (ITS) [34] requires a frame rate of 100 Hz, which corresponds to a latency of 10 ms between

frames [20]. Future electric vehicles (EVs) and CAVs are viewed as computers on wheels (COWs)

rather than cars because they are equipped with super computers to execute extremely intensive

computing tasks including video analytics and AI-driven functionalities. However, with the high

power consumption associated with such intense computing, COWs capabilities are still bounded in

terms of computing power, storage, and battery life. Hence, computing offloading to fog and cloud

networks is inevitable [35]. Especially in a dynamic traffic and load profiles of dense IoV and smart

city service requests with heterogeneous latency and computing needs, partitioning RAN resources

virtually, i.e., network slicing [36], assures service customization.

Network slicing is introduced for the evolving 5G and beyond communication technologies

as a cost-effective solution for mobile operators and service providers to satisfy various user QoS [1].

In network slicing, a heterogeneous network of various access technologies and QoS demands that

share a common physical infrastructure is logically divided into virtual network slices to improve

network flexibility. Each network slice acts as an independent end-to-end network and supports

various service requirements and a variety of business cases and applications. In this dissertation,
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we consider the network slicing problem of adaptively allocating the limited edge computing and

processing resources in F-RAN to dynamic IoT and smart city applications with heterogeneous la-

tency demands and diverse computing loads. We present a novel framework for resource allocation

in F-RAN for 5G by employing reinforcement learning methods to guarantee the efficient utiliza-

tion of limited FN resources while satisfying the low-latency requirements of IoT applications and

improve the overall system performance.

1.3 Related Work

There is an increasing number of works in the literature focusing on the edge resource

allocation problem and network slicing as an emerging network architecture for 5G and future tech-

nologies. Recently, a good number of works in the literature focused on achieving low latency for IoT

applications in 5G F-RAN. For instance, resource allocation based on cooperative edge computing

has been studied in [37–41] for achieving ultra-low latency in F-RAN. The work in [37] proposed a

mesh paradigm for edge computing, where the decision-making tasks are distributed among edge de-

vices instead of utilizing the cloud server. The authors in [38, 41] considered heterogeneous F-RAN

structures including, small cells and macro base stations, and provided an algorithm for selecting

the F-RAN nodes to serve with proper heterogeneous resource allocation. The number of F-RAN

nodes and their locations have been investigated by [42]. Content fetching is used in [19, 39] to max-

imize the delivery rate when the requested content is available in the cache of fog access points. In

[43], cloud predicts users’ mobility patterns and determines the required resources for the requested

contents by users, which are stored at cloud and small cells. The work in [40] addressed the issue of

load balancing in fog computing and used fog clustering to improve user’s quality of experience. The

congestion problem, when resource allocation is done based on the best signal quality received by
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the end user, is highlighted in [44, 45]. The work in [44] provided a solution to balance the resource

allocation among remote radio heads by achieving an optimal downlink sum-rate, while [45] offered

an optimal solution based on reinforcement learning to balance the load among evolved nodes for

the arrival of machine-type communication devices. To reduce latency, soft resource reservation

mechanism is proposed in [46] for uplink scheduling. The authors of [47] presented an algorithm

that works with the smooth handover scheme and suggested scheduling policies to ease the user

mobility challenge and reduce the application response time. Radio resource allocation strategies

to optimize spectral efficiency and energy efficiency while maintaining a low latency in F-RAN are

proposed in [48].

With regard to learning for IoT, [49] provided a comprehensive study about the advantages,

limitations, applications, and key results relating to machine learning, sequential learning, and rein-

forcement learning. Multi-agent reinforcement learning was exploited in [50] to maximize network

resource utilization in heterogeneous networks by selecting the radio access technology and allocat-

ing resources for individual users. The model-free reinforcement learning approach is used in [51]

to learn the optimal policy for user scheduling in heterogeneous networks to maximize the network

energy efficiency. Resource allocation in non-orthogonal-multiple-access based F-RAN architecture

with selective interference cancellation is investigated in [52] to maximize the spectral efficiency

while considering the co-channel interference. With the help of task scheduler, resource selector,

and history analyzer, [53] introduced an FN resource selection algorithm in which the selection and

allocation of the best FN to execute an IoT task depends on the predicted run-time, where stored

execution logs for historical performance data of FNs provide realistic estimation of it.
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A comprehensive study of network slicing in 5G system is considered in [36, 54]. Issues

and challenges of network slicing in Fog RAN is investigated in [36], where authors presented key

techniques and solutions in regards to radio and cache resource management as well as social-aware

slicing. [54] provides a comprehensive survey on network slicing which embraces the key princi-

ples, enabling technologies, challenges, standardization, and solutions including slicing solutions for

5G system, and illustrates the requirements and diverse use cases of network slicing considering

RAN sharing, end-to-end orchestration and management involving the radio access, transport and

core networks. Radio resource allocation for different network slices is exploited in [55–57] to sup-

port various quality-of-service (QoS) requirements and minimize the queuing delay for low latency

requests, in which network is logically partitioned into a high-transmission-rate slice for mobile

broadband (MBB) applications, and a low-latency slice which supports ultra-reliable low-latency

communication (URLLC) applications. While [55] focuses on efficiently allocating radio resources

and satisfying various QoS requirements, [56] investigates a joint radio and caching resource alloca-

tion problem.The authors in [57] proposed a hierarchical radio resource allocation architecture for

network slicing in which a global radio resource manager (GRRM) allocates subchannels to local

radio resource managers (LRRMs) in slices, which then assign resources to their end users. Two-

level resource management in C-RAN is explored in [58, 59]: an upper level for allocating fronthaul

capacity and computing resources of C-RAN among multiple wireless operators, and a lower level

for controlling the allocation of C-RAN radio resources to individual operators.

Reinforcement learning (RL) is embraced as a powerful tool to deal with dynamic network

slicing for adaptive resource allocation in F-RAN. In [1–3], the RL methods of Q-learning (QL),

Monte Carlo, SARSA, expected SARSA, and dynamic programming are utilized to learn the optimal
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resource allocation policy for a single fog node. The work [60] follows the problem formulation in [3]

with an extension to spectrum sharing between 5G users and incumbent users. As the complexity

of the control problem increases with more fog nodes, deep RL (DRL), which integrates deep neural

networks (DNN) with RL, is more advantageous to cope with the large state and action spaces [61].

Applying DRL as a solution for core network slicing is investigated in [62, 63]. In [62], a

particular scenario with three service types (VoIP, video, URLLC) and hundred users is considered.

Resource reconfiguration of core network slices is studied in [63] with the aim of minimizing long-

term resource consumption. DRL-based centralized agent for C-RAN slicing is investigated in [64–

68]. In [64], Deep Q-network (DQN) is utilized by a cloud server to optimally manage centralized

caching and radio resources and support two transmission-mode network slices, hotspot slice which

supports high-transmission-rate users for MBB applications, and vehicle-to-infrastructure slice for

delay-guaranteed transmission. For better radio resource management, a DRL agent is used as a

slice manager in [66] to schedule users into three slice types, best effort rate, constant bit rate, and

minimum bit rate slices. In [67], a DRL agent at a centralized controller manages the allocation

of shared radio resources (bandwidth) among multiple base stations and different network slices

(VoLTE, eMBB, and URLLC) to maximize spectrum efficiency and service level agreements. A

general network slicing model is proposed by [68] in which an owner of a network provides physical

resources to tenants (service providers) to meet the service demand of their end users. With the aim

of maintaining high quality of service and maximizing the long-term revenue of service providers

through minimizing the reconfiguration cost, a centralized DRL agent reconfigures the allocated

resources for two network slices, eMBB and URLLC. Single base station slicing model is considered

in [65, 69–72]. C-RAN with single base station is investigated in [65], where Generative-adversarial-
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network distributed DQN (GAN-DDQN) is examined for dynamic bandwidth slicing among network

slices, each of which supports users of a particular service type. The dependency of radio resource

allocation and the number of slices supported by a single BS is studied by [69], in which distributed

DRL is utilized to achieve optimal and flexible radio resource allocation regardless of the number

of slices. The work in [70] follows [62] where a single base station provides three service types

(video,VoLTE, URLLC) and decides the bandwidth to allocate for each user request. In a vehicular

network, [71] employs a DRL agent at a single base station to allocate radio resources for users

that belong to four slices, cellular high-definition television slice, cellular ultra-low latency slice,

and two device-to-device slices, one from each cellular slice. In [72], a DRL agent at a single base

station is exploited to allocate uplink bandwidth to mobile users from various slices with the aim of

maximizing uplink throughput and minimizing energy cost. [73] utilizes DQN to dynamically select

the best slicing configuration in WiFi networks. DRL slicing in a hierarchical network architecture

for dynamic resource reservation is studied in [74], in which the infrastructure provider assigns

unutilized resources to network slices maintaining a minimum resource requirement and demand in

each slice, where DRL then is employed to efficiently manage reserved resources and maximize QoS.

However, the resource allocation problem considered in the network slicing literature focuses

on the dynamics of resource allocation among various network slices and layers, i.e., decides on

allocation of resources between FNs for URLLC applications and RRUs for MBB applications

while it is infeasible for mobile operators and service providers to keep changing the distribution of

resources in the network due to the huge accompanying operational expenditure (OPEX) to cover

all required hardware, software and license swaps as well as the implementation of any necessary

frequency reuse plans and fronthaul links capacity upgrade, and the impact of outages and prolonged
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testing, optimizing and fine tuning the network performance follow every single change. Hence,

deciding on resource allocation among network slices should be so thoughtful and deliberate, and

only after assuring that each slice utilizes its allocated resources efficiently. In this dissertation,

we zoom in to the allocated limited resources to FNs to optimize and guarantee their efficient

utilization.

1.4 Research Gaps and Contributions of this Dissertation

Despite the growing literature, still there exists a significant research gap: adaptively satis-

fying the QoS requirements of the URLLC applications while efficiently utilizing the local resources

in F-RAN. Motivated by this problem, we provide a novel network slicing framework for sequentially

allocating the FNs’ limited computing and processing resources at the network edge to various IoT,

vehicular, and smart city applications with heterogeneous latency needs. In this dissertation, we de-

velop Markov Decision Process (MDP) formulations for finite-horizon and infinite-horizon scenarios

for the considered resource allocation problem. We provide analytical solution for the finite-horizon

MDP using dynamic programming. For the infinite-horizon MDP, we consider two cases: (i) a

single uncoordinated FN, for which we exploit tabular RL algorithms like Monte Carlo, SARSA,

Expected SARSA, and Q-Learning for learning the optimum decision-making policy adaptive to the

IoT environment. (ii) an edge cluster of coordinating FNs with an edge controller, where a DRL-

based network slicing technique is proposed to ensure the efficient utilization of the edge computing

resources in dynamic IoV and smart city traffic profiles and task loads. Specifically, the DRL-based

network slicing technique in this dissertation contributes to resolving the following limitations of

the existing network slicing works.
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• Firstly, an uncoordinated RL-based network slicing and a single fog node slicing model as in

[60, 69–72] are not an ideal network slicing approach for 5G and future technologies. Especially

in dynamic environments, coordination among fog nodes is needed for more efficient utilization

of edge resources while satisfying the QoS needs of users. In this dissertation, we present a

coordinated network slicing model based on multiple fog nodes cooperating through an edge

controller.

• Secondly, a centralized RL-based cloud controller for an entire network to manage resource

allocation among various network slices as in [58, 59, 63–68] will have latency limitations,

especially for URLLC-based IoV, V2X, and smart city applications, such as autonomous

driving. Whereas, distributed and independent edge controllers (ECs), which are fog nodes

that serve as cluster heads, as proposed in this dissertation can avoid large transmission delays

and satisfy the desired level of QoS at FNs by making local real-time decisions for the received

service requests in a cluster.

• Thirdly, a fixed RL-based network slicing approach as in [55–57] with dedicated fog access

point resources for the URLLC slice and dedicated remote radio heads for the MBB slice can

cause inefficient utilization of edge resources, especially in a dynamic environment. The nature

of many smart city and IoV applications (e.g., autonomous vehicles) requires continuous edge

capabilities everywhere in the service area, hence radio, caching and computing resources

need to be available at the edge. In practice, the population of delay-sensitive and high-data-

rate services dynamically varies over time, and as a result a fixed URLLC or MBB slice will

be underutilized during light demand for low-latency or high-speed services, respectively. A

more flexible network slicing method as proposed in this dissertation would smartly adapt
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to the environment. We provide finite- and infinite-horizon Markov decision process (MDP)

formulations and RL algorithms to adaptively learn the optimal network slicing policy by

closely interacting with the IoT and smart city environment.

• Lastly, a hard RL-based network slicing and hierarchical slicing architecture as in [57, 62,

63, 68, 74] require frequent physical shifting of resources, and hence cannot address dynamic

environments with changing demands in a cost-efficient manner. With hard slicing, it will be

costly and impractical for cellular operators and service providers to keep adding and transfer-

ring further infrastructural assets, i.e., capital expenditure which includes transceivers (TRX)

and other radio resources, computing and signal processing resources such as, BBUs, CPUs

and GPUs, as well as caching resources and storage data centers. Such major network changes

could be considered as part of network expansion plans over time. In this dissertation, we

propose a cost-efficient, soft (i.e., virtual) network slicing method in F-RAN. We present exten-

sive simulation results to examine the performance and adaptivity of the proposed RL-based

network slicing methods in diverse intelligent vehicular systems and smart city environments

and different performance objectives.

1.5 Dissertation Organization

This dissertation is comprised of five chapters, including the current chapter, which intro-

duces the dissertation topics, C-RAN and F-RAN, network slicing for heterogeneous IoT demands,

related work, research gaps and dissertation contributions. The rest of the dissertation chapters are

organized as follow.
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Chapter 2 considers a single non coordinating fog node and proposes a finite-horizon Markov

Decision Process (MDP) formulation for the network slicing problem of allocation the limited re-

source at the single FN for IoT services with heterogeneous latency requirements. The optimum

solution (decision policy) for the finite-horizon MDP problem is provided using dynamic program-

ming.

In Chapter 3, provides infinite-horizon MDP formulations for the considered network slicing

problem for a single uncoordinated FN. Diverse RL tabular methods, specifically, Monte Carlo,

SARSA, Expected SARSA, and Q-learning (QL) are investigated for learning the optimum decision-

making policies adaptive to the IoT environment.

Chapter 4 considers the network slicing problem of allocating the limited resources at the

network edge (fog nodes) to vehicular and smart city users with heterogeneous latency and comput-

ing demands in dynamic environments. A network slicing model is developed based on a cluster of

fog nodes (FNs) coordinated with an edge controller (EC) to efficiently utilize the limited resources

at the network edge. The network slicing problem is formulated as infinite-horizon MDP and a deep

reinforcement learning (DRL) solution to adaptively learn the optimal slicing policy is proposed.

Finally, Chapter 5 summarizes this dissertation and presents the recommendations for future

research directions.

1.6 Publications Resulting from this Dissertation

The following publications are associated with this dissertation.
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Chapter 2: Dynamic Programming for Adaptive Network Slicing

Fog radio access network (F-RAN) has been recently proposed to satisfy the quality-of-

service (QoS) requirements of the ultra-reliable-low-latency-communication (URLLC) IoT applica-

tions, hence fog nodes are empowered with computing and storage resources to independently deliver

network functionalities at the edge of network without referring the users to the cloud.2 However,

due to their limited resources, fog nodes should utilize their resources intelligently for low latency

IoT applications to leverage the complementarity with cloud computing. We consider the problem

of sequentially allocating fog node’s limited resources to various IoT applications with heterogeneous

latency needs. We formulate the problem as a finite-horizon Markov Decision Process (MDP), and

present the optimal solution, known as the optimal policy, through dynamic programming. The

fog node learns the optimal policy through interaction with the IoT environment, which enables

adaptive resource allocation in different IoT environments. Comprehensive simulation results for

various IoT environments corroborate the theoretical basis of the proposed MDP method.

2.1 System Model

We consider the F-RAN structure shown in Fig. 2.1, in which FNs are connected through the

fronthaul to the cloud controller (CC), where a massive computing capability, centralized baseband

units (BBUs) and cloud storage pooling are available. To ease the burden on the fronthaul and the
2Portions of this chapter were published in IEEE GlobalSIP [1] and IEEE Access [3]. Copyright permissions from
the publishers are included in Appendix A.
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Figure 2.1: Fog-RAN system model. The FN serves heterogeneous latency needs in the IoT
environment, and is connected to the cloud through the fronthaul links represented by solid lines.
Solid red arrows represent local service by FN to satisfy low-latency requirements, and dashed
arrows represent referral to the cloud to save FN’s limited resources.

cloud, and to overcome the challenge of the increasing number of IoT devices and low-latency appli-

cations, FNs are empowered with capability to deliver network functionalities at the edge. Hence,

they are equipped with caching capacity, computing and signal processing capabilities. However,

these resources are limited, and therefore need to be utilized efficiently. An end user attempts to

access the network by sending a request to the nearest FN. The FN takes a decision whether to

serve the user locally at the edge using its own computing and processing resources or refer it to the

cloud. We consider the FN’s computing and processing capacity to be limited to N resource blocks

(RBs). User requests arrive sequentially and decisions are taken quickly, so no queuing occurs.

The QoS requirements of a wireless user are typically given by the latency requirement and

throughput requirement. IoT applications have various levels of latency requirement, hence it is

sensible for the FN to give higher priority for serving the low-latency applications. To differentiate

16



between similar latency requirements we also consider the risk of failing to satisfy the throughput

requirement. This risk is related to the ratio of the achievable throughput to the throughput

requirement. The achievable throughput is characterized by the signal-to-noise ratio (SNR) through

Shannon channel capacity. Shannon’s fundamental limit on the capacity of a communications

channel gives an upper bound for the achievable throughput, as a function of available bandwidth

(B) in Hz and SNR in dB, C = B log2 (1 + SNR). Hence, we define the utility of an IoT user request

to be a function of latency requirement, l (in milliseconds), throughput requirement, ω (in bits per

second), and channel capacity, C (in bits per second), i.e., u = f(l, ω, C). Since the utility should

be inversely proportional to the latency requirement, and directly proportional to the achievable

throughput ratio, µ = C/ω, we define utility as

u = κ(µζ/lβ), (2.1)

where κ, ζ, β > 0 are mapping parameters. This provides a flexible model for utility. By select-

ing the parameters κ, ζ, β a desired range of u and importance levels for latency and throughput

requirements can be obtained. Since F-RAN is intended for satisfying low-latency requirements,

typically, more weight should be given to latency by choosing larger β values.

FNs should be smart to learn how to decide (serve/refer to the cloud) for each IoT request

(i.e., how to allocate its limited resources), so as to achieve the conflicting objectives of maximizing

the average total utility of served users over time and minimizing its idle (no-service) time. The
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system objective can be stated as a constrained optimization problem,

max
a0,...,aT−1

T∑
t=0

1{at=serve}ut and min
a0,...,aT−1

T∑
t=0

1{at=reject}

subject to
T∑
t=0

1{at=serve} = N,

(2.2)

where at denotes the action taken at time t (either serves the request locally or rejects it and refers

to cloud), T denotes the termination time when all RBs are filled, N denotes the number of RBs,

and 1{·} is the indicator function taking value 1 if its argument is true and 0 if false. The goal

is to find the optimum decision policy {a0, a1, . . . , aT−1} for an IoT environment which randomly

generates {ut}. Note that the final decision is always aT = serve by definition, hence omitted in

the policy representation.

One straightforward approach to deal with this resource allocation problem is to apply

network slicing [36, 54] based on the user utility, in which the network is logically partitioned into

two slices [55–57], a fog slice handles high-utility IoT requests of low-latency demand, and cloud

slice considers low-utility users. Hence, a filtering standard is required for the FN to direct users’

requests to their corresponding network slices. For instance, we can define a threshold rule, such

as “serve locally if u > 5", if we classify all applications in an IoT environment into ten different

utilities u ∈ {1, 2, ..., 10}, 10 being the highest utility. However, such a policy is sub-optimum

since the FN will be waiting for a user to satisfy the threshold, which will increase the FN’s idle

time and make the CC busier. The main drawback of this policy is that it cannot adapt to the

dynamic IoT environment to achieve the objective. For instance, when the user utilities are almost

uniformly distributed, a very selective policy with a high threshold will stay idle most of the time,

whereas an impatient policy with a low threshold will in general obtain a low average served utility.
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A mild policy with threshold 5 may in general perform better than the extreme policies, yet it

will not be able adapt to different IoT environments. A better solution for the F-RAN resource

allocation problem is to use RL techniques which can continuously learn the environment and adapt

the decision rule accordingly.

2.2 Finite-Horizon MDP Formulation

We formulate the F-RAN resource allocation problem in the form of finite-horizon Markov

decision process (MDP). In finite-horizon MDP, there is a hard constraint on the FN in terms of

the value of time as it must terminate within a limited time Tf regardless whether the N slots are

filled or not. This means that the MDP will terminate either at the termination time Tf or before

if all slots are filled earlier. The utility of a user, denoted with u, has the same value as user’s

priority level, e.g., u ∈ {1, 2, 3, ..., 10}. We consider that the FN has N slots of serving resources.

The state of FN is denoted by s ∈ {st,n}, where t and n represent the time and the number of

occupied slots, respectively. We start at t = 0 with all slots available, thus the initial state is s0,0.

The finite-horizon MDP has multiple terminal states. All the FN states {sTf ,n : n = 0, 1, ..., N} and

{st,N : t = N,N + 1, ..., Tf} are terminal states. For a request from a user with utility ut, at time t,

if the FN decides to take the action at = serve, which means to serve the user at the edge, then it

will gain its utility value as a reward rt = ut, and one slot of the FN’s resources will be occupied.

Otherwise, for the action at = wait, which means to refer the current user to the cloud and wait for

a better future utility, the FN will maintain its resources but it will get a reward rt = −η, where

η is the penalty of waiting, whose role is to encourage less idle time. We define the state s of the

FN at any time as the number of available slots at that time, where future state is independent

of past states given the current state, i.e., Markov state. At every time step t, the FN receives a
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request from a user of utility ut, and FN takes an action at ∈ {serve, wait}. Based on its decision,

the FN receives an immediate reward rt ∈ {ut,−η}, and moves to a successor state s′. We define

the return Gt as the total discounted reward received from time t till the termination time which

is limited by Tf , Gt =
∑T−1

j=0 γ
jrt+j , where γ ∈ [0, 1] is the discount factor which represents the

importance of future rewards with respect to the immediate reward, and after termination r = 0.

γ = 0 ignores future rewards, whereas γ = 1 means that future rewards are of the same importance

as the immediate rewards.

Starting at the initial state s = s0,0, the objective is to find the optimal decision policy

which maximizes the expected initial return E[G0]. The state-value function V (s0,0), where V (s)

is shown in (2.3), is equal to the objective function E[G0]. Similarly, we define the action-value

function Q(s, a) as the expected return that can be achieved after taking the action a at state s, as

shown in (2.4). The expressions in (2.3) and (2.4) are known as the Bellman expectation equations

for state value and action value, respectively [75],

V (s) = E[Gt|s] = E[rt + γV (s′)|s], (2.3)

Q(s, a) = E[Gt|s, a] = E[rt + γQ(s′, a′)|s, a], (2.4)

where a′ denotes the successor action at the successor state s′.

The value of state s0,0 is the expected return considering all dynamics and episodes, i.e.,

V (s0,0 = E[G0]. The objective of the FN is to utilize the N resource slots for high priority IoT

applications in a timely manner. This can be done through maximizing the value of initial state
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V (s0.0). To achieve this objective an optimal decision policy is required, which is discussed in the

following section.

2.3 Optimal Policy

A decision-making policy π is a way of selecting actions. It can be defined as the set

of probabilities of taking a particular action given the state, i.e., π = {P (a|s)} for all possible

state-action pairs. The policy π is said to be optimal if it maximizes the value of all states, i.e.,

π∗ = arg max
π

Vπ(s),∀s. Hence, to solve the considered MDP problem, the FN needs to find the

optimal policy through finding the optimal state-value function V ∗(s) = max
π

Vπ(s), which is similar

to finding the optimal action-value function Q∗(s, a) = max
π

Qπ(s, a) for all state-action pairs. From

(2.3) and (2.4), we can write the Bellman optimality equations for V ∗(s) and Q∗(s, a) as,

V ∗(s) = max
a∈A

Q∗(s, a) = max
a∈A

E[rt + γV ∗(s′)|s, a], (2.5)

Q∗(s, a) = E[rt + γmax
a′∈A

Q∗(s′, a′)|s, a], (2.6)

where a′ denotes the action at t + 1 and A is the set of all possible actions. Since the goal of

maximizing the expected future rewards is already taken care of by the optimal value of the successor

state, V ∗(s′) can be taken out of the expectation in (2.5). Hence, the optimal policy is given by the

best local action at each state,

a∗ = arg max
a∈A

Q∗(s, a) = arg max
a∈A

E[rt + γV ∗(s′)|s, a]. (2.7)

This solution approach is known as Dynamic Programming.
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In our problem, first the user arrives, then we make a decision to serve or wait (refer to the

cloud), meaning that the reward u for serving and the reward −η for waiting are known at the time

of decision making. Thus, from (2.7), the optimal action at state St,n is given by

a∗t,n =


Serve if u > ht,n,

Wait otherwise,

(2.8)

where ht,n = γ[V ∗(st+1,n) − V ∗(st+1,n+1)] − η. Since the number of states is finite in the finite-

horizon case, we can use the backward induction technique to compute the optimal thresholds {ht,n}

assuming some training data {ut} is available to learn some key statistics of the IoT environment.

Starting with the terminal states, which have zero value, we can compute the optimal state values

and consequently the optimal thresholds for all states by moving backwards. Firstly, note that not

all states {st,n} are accessible for all t and n. Even if one slot is filled at each t, the states with n > t

are not accessible, as shown in Fig. 2.2. Secondly, note that there are Tf+1 terminal states with zero

value (Tf −N from early stopping with T < Tf and N + 1 from T = Tf , n = 0, 1, ..., N), which do

not require threshold, as shown with dark gray in Fig. 2.2. Next, note that for all the non-terminal

states at time Tf − 1, both serve and wait actions result in a terminal state with zero value, thus

the decision is made based on only the immediate rewards (u vs. −η). That is, at those states the

optimal action is always serve, hence the threshold on u is zero and the state value is E[u], as shown

in Fig. 2.2. Similarly, for t = Tf −N, ..., Tf − 2, there is a number of non-terminal states for which

both actions yield the same future value, hence have zero threshold and value E[u]. Specifically,

the states {st,n : t = Tf − l, n = 0, ..., N − l, l = 1, ..., N} have state value E[u] and threshold 0,

as shown with light gray in Fig. 2.2. Finally, for the (Tf − N)N remaining states in a diagonal
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Figure 2.2: FH state values and thresholds that need to be computed via backward induction
(green diagonal band). Start with the farthest state sTf−2,N−1 (checked green box) and traverse
backwards the diagonal band until the initial state s0,0 (see Algorithm 1). The terminal states
(dark gray), the trivial states whose optimal action is always serve (light gray), and the not
accessible states (red dotted) are also shown.

band, shown with green in Fig. 2.2, the state values and the corresponding thresholds need to be

computed backwards starting with the farthest state sTf−2,N−1 from the initial state s0,0. The total

reward is u if served, whereas it is γE[u]− η if waited, giving the threshold hTf−2,N−1 = γE[u]− η,

as shown by the checked green box in Fig. 2.2. Then, its state value is written as

V (sTf−2,N−1) = P (u > hTf−2,N−1)E[u|u > hTf−2,N−1]

+{1− P (u > hTf−2,N−1)}{γE[u]− η},
(2.9)

where the first and second terms correspond to the serve and wait actions, respectively. Note

that the probability P (u > hTf−2,N−1) and the expectation E[u|u > hTf−2,N−1] can be computed

through some observations {u} from the IoT environment. With V (sTf−2,N−1) computed, we can

now find the threshold for the two undiscovered neighboring states above it, namely sTf−3,N−2 and
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sTf−3,N−1 using

ht,n = −η + γ[V ∗(st+1,n)− V ∗(st+1,n+1)], (2.10)

from (2.8). Then, using the thresholds the state values are computed similarly to (2.9) as follows

V (st,n) = P (u > ht,n){E[u|u > ht,n] + γV (st+1,n+1)}

+{1− P (u > ht,n)}{γV (st+1,n)− η}.
(2.11)

Algorithm 1 Learning Optimum Policy for FH MDP
1: Select: γ ∈ [0, 1], η ∈ R;
2: for i = N − 1 : −1 : 0 do
3: for j = Tf − 1 : −1 : i do
4: hj,i = γ[V (sj+1,i)− V (sj+1,i+1)]− η;
5: Compute a← E[u|u > hj,i] and p← P (u > hj,i);
6: V (sj,i) = p{a+ γV (sj+1,i+1)}

+ (1− p){γV (sj+1,i)− η};
7: end for
8: end for
9: Return {hj,i}.

In the same way, by computing first the threshold and then the state value via (2.10) and (2.11),

respectively, the remaining states in the diagonal band are traversed backwards until the initial state

s0,0. The key statistics P (u > ht,n) and E[u|u > ht,n] are to be found from the IoT environment.

The procedure for finding the optimal policy is summarized in Algorithm 1, where by default the

terminal states have zero value, and x : −1 : y denotes the decrement by 1 from x to y. For

notational simplicity, the trivial states are also included in the loops at lines 2 and 3. The range for

the loops can be modified to exclude the trivial states.

Recall that the FN objective is to maximize the expected total served utility and minimize

the expected termination time. Hence, to compare the performance of dynamic network slicing
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provided in Algorithm 1 with the performance of a threshold-based static network slicing, which

does not learn from the interactions with environment, we define an objective performance metric

R as

R = E

[
M∑
m=1

um − θ(T −M)

]
, (2.12)

where a served utility is denoted with um, the number of served IoT requests in an episode is denoted

with M , (T −M) represents the total idle time, and θ is a penalty for being idle.

2.4 Simulations

We next provide simulation results to compare the performance of the FN when imple-

menting the MDP-based method, given in Algorithm 1, with that when a threshold-based slicing

is employed. We consider that the FN is empowered with computing and storage resources of five

slots, i.e., N = 5. We evaluate the performances in various IoT environments with different com-

positions of latency requirements. Specifically, we consider 10 utility classes with different latency

requirements to exemplify the variety of IoT applications in an F-RAN setting. By changing the

composition of utility classes, we generate 19 scenarios, 6 of which are summarized in Table 2.1.

Higher percentages of high-utility users make the IoT environment richer. Denoting an IoT envi-

ronment of particular statistics with E , in Table 2.1 we show the statistics of E1, E4, E7, E10, E15,

and E19. The last two rows in Table 2.1 show the probability ρ of utility being greater than 5, and

the expected value of u, respectively. The first 10 rows in the table provide detailed information

given by the probability of each utility value in an IoT environment. In the considered 19 scenarios,

ρ increases by 0.05 from 5% to 95% for E1, E2, ..., E19 respectively. The remaining 13 scenarios have
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Table 2.1: Utility distributions corresponding to a variety of latency requirements of IoT
applications in various environments

E1 E4 E7 E10 E15 E19
P (u = 1) 0.015 0.012 0.01 0.008 0.004 0.001
P (u = 2) 0.073 0.062 0.05 0.038 0.019 0.004
P (u = 3) 0.365 0.308 0.25 0.192 0.096 0.019
P (u = 4) 0.292 0.246 0.2 0.154 0.077 0.015
P (u = 5) 0.205 0.172 0.14 0.108 0.054 0.011
P (u = 6) 0.014 0.057 0.1 0.142 0.214 0.271
P (u = 7) 0.013 0.051 0.09 0.129 0.193 0.244
P (u = 8) 0.011 0.046 0.08 0.114 0.171 0.217
P (u = 9) 0.009 0.034 0.06 0.086 0.129 0.163
P (u = 10) 0.003 0.012 0.02 0.029 0.043 0.055

ρ = P (u > 5) 5% 20% 35% 50% 75% 95%
ū = E[u] 3.82 4.4 4.97 5.55 6.5 7.27

statistics proportional to their ρ values. We started with a general scenario given by E7 for the fol-

lowing IoT applications: smart farming, smart retail, smart home, wearables, entertainment, smart

grid, smart city, industrial Internet, autonomous vehicles, and connected health, which correspond

to the utility values 1, 2, ..., 10, respectively.

We consider the objective performance metric given in (2.12) to compare the performance

of the FN with N = 5 when applying the proposed dynamic programming algorithm (Algorithm 1)

with the threshold-based slicing algorithm. We consider a finite horizon of Tf = 10, which serves as

a strict termination time. Since we already have a time constraint on the FN which represents the

value of time, we consider η = θ = 0. As shown in Fig. 2.3, the dynamic network slicing algorithm

exhibits the best performance as it adaptively learns how to balance early termination with higher

utilities. It never terminates too early or too late (T ≈ 7.6 for all environments), as opposed to

the threshold-based slicing algorithm which is not adaptive to the environment. Dynamic slicing

26



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
IoT Environment

0

5

10

15

20

25

30

35

40

45
Pe

rf
or

m
an

ce
 (

R
)

Dynamic Slicing (RL)
Slicing Thld=1
Slicing Thld=2
Slicing Thld=3
Slicing Thld=4
Slicing Thld=5
Slicing Thld=6
Slicing Thld=7
Slicing Thld=8
Slicing Thld=9
Slicing Thld=10

Figure 2.3: Performance of FN with N = 5 and Tf = 10 in various IoT environments when
applying Algorithm 1 with η = 0, γ = 1, and the threshold-based network slicing algorithm with
different slicing thresholds.

algorithm adaptively learns how to achieve the objective for all IoT environments under a strict

termination time constraint.

2.5 Summary

In this chapter, we proposed a finite-horizon Markov Decision Process (MDP) formulation

for the resource allocation problem in Fog RAN for IoT services with heterogeneous latency require-

ments. We provided the optimum solution (decision policy) for the MDP problem using dynamic

programming. Various IoT environments with different latency compositions were considered in the

simulations to evaluate the performance of the proposed dynamic network slicing approach. The nu-
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merical results corroborated the fact that MDP methods adapt to the environment by learning the

optimum policy from experience. We showed that the dynamic MDP-based slicing method always

dominates the static threshold-based slicing method, which does not learn from the environment.
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Chapter 3: Adaptive Network Slicing Using Tabular RL Methods

This chapter considers the F-RAN structure shown in Fig. 2.1 of Chapter 2 and the net-

work slicing problem of sequentially allocating the FN’s limited resources to IoT applications of

heterogeneous latency requirements.3 For each access request from an IoT user, the FN needs to

decide whether to serve it locally at the edge utilizing its own resources or to refer it to the cloud

to conserve its valuable resources for future users of potentially higher utility to the system (i.e.,

lower latency requirement). We formulate the Fog-RAN resource allocation problem in the form

of a Markov decision process (MDP), and employ several reinforcement learning (RL) methods,

namely Q-learning, SARSA, Expected SARSA, and Monte Carlo, for solving the MDP problem by

learning the optimum decision-making policies. We verify the performance and adaptivity of the

RL methods and compare it with the performance of the network slicing approach with various slic-

ing thresholds. Extensive simulation results considering various IoT environments of heterogeneous

latency requirements corroborate that RL methods always achieve the best possible performance

regardless of the IoT environment.

3.1 Infinite-Horizon MDP Formulation

RL can be thought as the third paradigm of machine learning in addition to the other

two paradigms, supervised learning and unsupervised learning. The key point in the proposed
3Portions of this chapter were published in IEEE ICC [2] and IEEE Access [3]. Copyright permissions from the
publishers are included in Appendix A.
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RL approach is that FN learns about the IoT environment by interaction and then adapts to it.

FN gains rewards from the environment for every action it takes, and once the optimum policy of

actions is learned, FN will be able to maximize its expected cumulative rewards, adapt to the IoT

environment, and achieve the objective.

For an access request from a user with utility ut, at time t, if the FN decides to take the

action at = serve, which means to serve the user at the edge, then it will gain an immediate reward

rt and one of the RBs will be occupied. Otherwise, for the action at = reject, which means to

reject serving the user at the edge and refer it to the cloud, the FN will maintain its available RBs

and get a reward rt. The value of rt depends on at and ut. For tractability, we consider quantized

utility values, ut ∈ {1, 2, . . . , U}.

We define the state st of the FN at any time t as

st = 10 bt + ut, (3.1)

where bt ∈ {0, 1, 2, . . . , N} is the number of occupied RBs at time t. Note that the successor

state st+1 depends only on the current state st, the utility ut+1 of the next service request, and

the action taken (serve or reject), satisfying the Markov property P (st+1|s0, ..., st−2, st−1, st, at) =

P (st+1|st, at), i.e., Markov state. Hence, we formulate the Fog-RAN resource allocation problem in

the form of a Markov decision process (MDP), which is defined by the tuple (S,A, P ass′ , Rass′), where

S is the set of all possible states, i.e., st ∈ S, A is the set of actions, i.e., at ∈ A = {serve, reject},

P ass′ is the transition probability from state s to s′ when the action a is taken, i.e., P ass′ = P (s′|s, a),

where s′ is a shorthand notation for the successor state, and Rass′ is the immediate reward received

when the action a is taken at state s which ends up in state s′, e.g., rt = Ratstst+1
∈ R. The return
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Gt is defined as the cumulative discounted rewards received from time t onward and given by

Gt = rt + γrt+1 + γ2rt+2 + ... =
∞∑
j=0

γjrt+j , (3.2)

where γ ∈ [0, 1] is the discount factor. γ represents the weight of future rewards with respect to the

immediate reward, γ = 0 ignores future rewards, whereas γ = 1 means that future rewards are of

the same importance as the immediate rewards. The objective of the MDP problem is to maximize

the expected initial return E[G0].

In the presented MDP, for an FN that has a computing and processing capacity of N RBs,

there are U(N + 1) states, st ∈ S = {1, 2, 3, . . . , U(N + 1)}, where U is the greatest discrete

utility level. At the initiation time t = 0, all RBs are available, i.e., b = 0, hence from (3.1),

there are U possible initial states s0 ∈ {1, 2, . . . , U} dependent on u0. The MDP terminates at

time T when all RBs are occupied, i.e., bT = N , hence similarly there are U terminal states

sT ∈ {UN + 1, UN + 2, . . . , U(N + 1)}. Note that a policy treating the MDP problem can continue

operating after T as in-use RBs become available in time by taking actions similarly to its operation

before T .

The reward mechanism Rass′ is typically chosen by the system designer according to the

objective. We propose a reward mechanism based on the received utility and the action taken for

it. Specifically, at time t, based on ut and at, the FN receives an immediate reward rt ∈ R =

{rsh, rsl, rrh, rrl}, and moves to the successor state st+1, where rsh is the reward for serving a high-

utility request, rsl is the reward for serving a low-utility request, rrh is the reward for rejecting a

high-utility request, and rrl is the reward for rejecting a low-utility request. A request is determined

as high-utility or low-utility relative to the environment based on a threshold uh, which is a design
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parameter dependent on the utility distribution in IoT environment. For instance, uh can be selected

as a certain percentile, such as the 50th percentile, i.e., median, of the utilities in the environment.

Hence, the proposed reward function is given by

rt =



rsh if at = serve, ut ≥ uh

rrh if at = reject, ut ≥ uh

rsl if at = serve, ut < uh

rrl if at = reject, ut < uh.

(3.3)

Remark 1: Note that the threshold uh does not have a definitive meaning with respect to

the system requirements, i.e., there is no requirement saying that requests with utility lower/greater

than uh must be rejected/served. The goal here is to introduce an internal reward mechanism for

the RL approach to facilitate learning the expected future gains, as will be clear later in this section

and the following section. For an effective learning performance, the reward mechanism should be

simple enough to guide the RL algorithm towards the system objective (see (2.2)) [75]. That is, its

role is not to imitate the system objective closely to make the algorithm achieve it at once, but to

resemble it in a simple manner to let the algorithm iteratively achieve a high performance.

Remark 2: Although a threshold uh is utilized in the proposed reward mechanism, its

use is fundamentally different than the utility filtering-based policy in network slicing approach

which always accepts/rejects requests with utility greater/lower than a threshold. While the utility

filtering-based policy considers only the immediate gain from the current utility, the algorithms

tackling the MDP problem, such as the RL algorithms, consider the expected return E[G0] which

includes the immediate reward and expected future rewards. Hence, the threshold uh does not
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Table 3.1: State transitions of 5-RB FN for a sample of IoT requests and random actions with
U = 10 and uh = 6

t ut bt st at rt st+1

0 5 0 5 reject rrl 9
1 9 0 9 serve rsh 13
2 3 1 13 reject rrl 13
3 3 1 13 serve rsl 28
4 8 2 28 serve rsh 36
5 6 3 36 reject rrh 31
6 1 3 31 reject rrl 40
7 10 3 40 serve rsh 47
8 7 4 47 reject rrh 49
9 9 4 49 serve rsh 54
10 4 5 54 · · ·
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Figure 3.1: State transition graph for the MDP episode given in Table 3.1 for an FN with N = 5,
U = 10, and uh = 6. Non-terminal states and terminal state are represented by circles and
squares, respectively, and labeled by the states names. Filled circles represent actions, and arrows
show the transitions with corresponding rewards.

necessarily cause the algorithm to accept/reject requests with utility greater/lower than uh; it only

plays an internal role in learning the expected future rewards.

State transitions for an FN with 5 RBs (N = 5), 10 utility levels (U = 10), and uh = 6, a

sample of IoT requests with utilities ut, and random actions at are shown in Table 3.1. At time t,

being at state st, and taking the action at will result in getting an immediate reward rt and moving

to the successor state st+1. The state transitions in Table 3.1 represent an episode of the MDP, it

starts at t = 0 and terminates at T = 10 with the states 5 → 9 → 13 → 13 → 28 → 36 → 31 →

40 → 47 → 49 → 54. The dynamics of this episode is shown through a state transition graph in
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Fig. 3.1, in which non-terminal states and terminal state are represented by circles and squares,

respectively, and labeled by the states names, filled circles represent actions, and arrows show the

transitions with corresponding rewards.

3.2 Optimal Policies

The state-value function V (s), shown in (2.3), represents the long-term value of being in

state s in terms of the expected return which can be collected starting from this state onward till

termination. Hence, the terminal state has zero value since no reward can be collected from that

state, and the value of initial state is equal to the objective function E[G0]. The state value can be

viewed also in two parts: the immediate reward from the action taken and the discounted value of

the successor state where we move to. Similarly, the action-value function Q(s, a) is the expected

return that can be achieved after taking the action a at state s, as shown in (2.4). The action

value function tells how good it is to take a particular action at a given state. The expressions in

(2.3) and (2.4) are known as the Bellman expectation equations for state value and action value,

respectively [75], where a′ denotes the successor action at the successor state s′.

Since (2.3) shows the relationship between the value of a state and its successor states,

similarly for the value of an action in (2.4), it is useful to show the dynamics of the MDP in a

backup diagram, as shown in Fig. 3.2 for a 2-RB FN (N = 2). The backup diagram provides an

overview for the possible episodes of the considered MDP, where the minimum termination time

required to reach a terminal state, at which all RBs are occupied (b = N), is T = 2 through the

episode u0 → 10 + u1 → 20 + u2, i.e., serve all the time. Note that early termination does not

necessarily maximize the return.
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Figure 3.2: The first 3 levels of the backup diagram for the MDP with 2-RB FN (N = 2).
Non-terminal states and terminal states are represented by open circles and squares, respectively,
and labeled by the states according to (3.1). rs ∈ {rsh, rsl} and rr ∈ {rrh, rrl} are the rewards for
serving and rejecting, respectively, and depend on uh.

The objective of the FN in the presented MDP is to utilize the N resource blocks for high-

utility IoT applications in a timely manner. This can be done through maximizing the value of

initial state, which is equal to the MDP objective E[G0]. To this end, an optimal decision policy is

required, which is discussed next.

A policy π is a way of selecting actions. It can be defined as the set of probabilities of taking

a particular action given the state, i.e., π = {P (a|s)} for all possible state-action pairs. The policy

π is said to be optimal if it maximizes the value of all states, i.e., π∗ = arg max
π

Vπ(s),∀s. Hence,

to solve the considered MDP problem, the FN needs to find the optimal policy through finding the

optimal state-value function V ∗(s) = max
π

Vπ(s), which is similar to finding the optimal action-value
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function Q∗(s, a) = max
π

Qπ(s, a) for all state-action pairs. The Bellman optimality equations for

V ∗(s) and Q∗(s, a) are shown in (2.5) and (2.6), respectively.

The notion of optimal state-value function V ∗(s) greatly simplifies the search for optimal

policy. Since the goal of maximizing the expected future rewards is already taken care of the optimal

value of the successor state, V ∗(s′) can be taken out of the expectation in (2.5). Hence, the optimal

policy is given by the best local actions at each state. Dealing with Q∗(s, a) to choose optimal

actions is even easier, because with Q∗(s, a) there is no need for the FN to do the one-step-ahead

search and instead it picks the best action that maximizes Q∗(s, a) at each state. Optimal actions

are defined as in (2.7).

After discretizing the utility into U levels, the state space becomes tractable with cardinality

|S| = U(N+1), hence in this case the optimal policy can be learned by estimating the optimal value

functions (either (2.5) or (2.6)) using tabular methods such as model-free RL methods (e.g., Monte

Carlo, SARSA, Expected SARSA, and Q-learning), which are also called approximate dynamic

programming methods [75]. Since the expectations involved in value functions are not tractable to

find in closed form, we resort to model-free RL methods in this chapter instead of exact dynamic

programming. Continuous utility values (see (2.1)) would yield infinite dimensional state space,

and thus require function approximation methods, such as deep Q-learning known as DQN [61], for

predicting the value function at different states, which we discuss in Chapter 4.

In our MDP problem, firstly FN receives a request from an IoT application of utility u, then

it makes a decision to serve or reject, meaning that the reward for serving rs ∈ {rsh, rsl} and the

reward for rejecting rr ∈ {rrh, rrl} are known at the time of decision making. Thus, from (2.3) and
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Algorithm 2 Learning Optimum Policy using Monte Carlo
1: Select: γ ∈ [0, 1], {uh, rsh, rsl, rrh, rrl} ∈ R;
2: Input: N (number of RBs);
3: Initialize: V (s)← 0, ∀s; Returns(s) (an array to save states’ returns in all iterations);
4: for iteration = 0, 1, 2, ... do
5: Initialize: b← 0;
6: Generate an episode: Take actions using (3.4) until termination;
7: G(s) ← sum of discounted rewards from s till terminal state for all states appearing in the

episode;
8: Append G(s) to Returns(s);
9: V (s)← average(Returns(s));

10: if V (s) converges for all s then
11: break
12: V ∗(s)← V (s), ∀s;
13: end if
14: end for
15: Use the estimated V ∗(s) to find optimal actions using (3.4).

(2.7), the optimal action at state s is given by

a∗ =


serve if rs + γEu[V ∗(s′serve = 10(b+ 1) + ut+1)] > rr + γEu[V ∗(s′reject = 10b+ ut+1)],

reject otherwise,

(3.4)

where s′serve is the successor state when a = serve, s′reject is the successor state when a = reject,

and Eu is the expectation with respect to the utilities u in the IoT environment.

A popular way to compute the optimal state values, required by the optimal policy as

shown in (3.4), is through value iteration by Monte Carlo computations. The procedure to learn

the optimal policy from the IoT environment using Monte Carlo is given in Algorithm 2. Given the

parameters N , γ, {uh, rsh, rsl, rrh, rrl}, and the data of IoT users {ut}, Algorithm 2 shows how to

learn the optimal policy for the considered MDP problem. Note that {ut} can be real data from

the IoT environment, as well as from simulations if the probability distribution is known. The
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Returns array at line 2 represents a matrix to save the return of each state at every episode, which

corresponds to an iteration. At line 3, we initialize all state values with zeros. Starting from the

initial state in each iteration b = 0, the current state values, which constitutes the current policy,

are used to take actions until the terminal state is reached. To promote exploring different states

randomized actions can be taken sometimes at line 6 [75]. G(s) in lines 7 and 8 represents a vector

of returns of all states appearing in the episode. Inserting these values into the Returns array, the

state values are updated by taking the average as shown in line 9. The algorithm stops when all

state values converge, the converged values are then used to determine actions as in (3.4).

Similar to (3.4), we can write the optimal action at state s in terms of Q∗(s, a) as follows,

a∗ =


serve if Q∗(s, serve) > Q∗(s, reject),

reject otherwise.

(3.5)

The optimal action-value functions, required by the optimal policy as shown in (3.5), can be also

computed through the value iteration technique using different RL algorithms. The procedure to

learn the optimal policy from the IoT environment using the model-free SARSA, E-SARSA, and

Q-learning methods is given in Algorithm 3.

Algorithm 3 shows how FN learns the optimal policy for the MDP by estimating Q∗(s, a)

using QL, E-SARSA, and SARSA methods. The step size parameter α represents the weight we

give to the change in our experience, i.e., the learning rate, ε is the probability of making a random

action for exploration, and the batch size n represents the number of time steps after which we

update the Q(s, a) values. The Q array at line 3 represents a matrix to save the updated values of

the action-value functions of all states and actions in each iteration. In each iteration, we take an
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Algorithm 3 Learning Optimum Policy using QL, E-SARSA, and SARSA
1: Select: {γ, ε} ∈ [0, 1], α ∈ (0, 1], n ∈ {1, 2, ...};
2: Input: N (number of RBs);
3: Initialize: Q(s, a) arbitrarily in Q, ∀(s, a);
4: Initialize: b← 0;
5: for t = 0, 1, 2, ... do
6: Take action at according to π (e.g., ε-greedy), and store rt and st+1;
7: if t ≥ n− 1 then
8: τ ← t+ 1− n;
9: QL: G←

∑t+1
j=τ γ

(j−τ)rj + γ n max
a

Q(st+1, a);

10: E-SARSA: G←
∑t+1

j=τ γ
(j−τ)rj + γ nEa[Q(st+1, a)];

11: SARSA: G←
∑t+1

j=τ γ
(j−τ)rj + γ nQ(st+1, at+1);

12: Q(sτ , aτ )← Q(sτ , aτ ) + α[G−Q(sτ , aτ )];
13: Update Q with Q(sτ , aτ );
14: end if
15: if Q(s, a) converges for all (s, a) then
16: Q∗(s, a)← Q(s, a);
17: break
18: end if
19: end for
20: Use Q∗(s, a) estimated in Q for π∗ using (3.5)

action, observe and store the collected reward and the successor state. Actions are taken according

to a policy π such as the ε-greedy policy in line 6, in which a random action with probability ε is

taken to explore new rewards, and an optimal action (see (3.5)) is taken with probability (1− ε) to

maximize the rewards; with ε = 0, the policy becomes greedy. The condition at line 7 represents

the time, in terms of the batch size, at which we start updating the Q values of the actions taken

in the previously visited states. The way target G is computed for QL, E-SARSA and SARSA is

shown at lines 9-11. G represents the return collected starting from time (t+ 1−n) to n time-steps

ahead, and it contains two parts, the discounted collected rewards and a function of the action-value

for future rewards. The latter part changes for QL, E-SARSA and SARSA. For QL, the maximum

action-value is used considering all possible actions which can be taken from the state at t + 1.

Whereas, E-SARSA uses the expected value of Q(st+1, a) over possible actions at state st+1, and
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SARSA uses Q(st+1, at+1) considering the action that will be taken at time t+ 1 according to the

current policy. The way to update the action-value is shown at line 12, where τ is the time whose

Q estimate is being updated. At line 13, the matrix Q is updated with the new Q value and used

to make future decisions. The algorithm stops when all Q values converge. The converged values

represent the optimal action values Q∗ which are then used to determine optimal actions as in (3.5).

Recall that the FN objective is to maximize the expected total served utility and minimize

the expected termination time, as shown in (2.2). Hence, to compare the performance of FN when

using QL, SARSA, E-SARSA and MC provided in Algorithms 2 and 3 with the performance of a

fixed-threshold algorithm in the utility filtering-based network slicing, which does not learn from

the interactions with environment, we consider the objective performance metric R as defined in

(2.12), where a served utility is denoted with um, the number of served IoT requests in an episode

is denoted with M , (T −M) represents the total idle time for RBs, and θ is a penalty for being idle.

3.3 Simulations

We next provide simulation results to evaluate the performance of FN when implementing

the RL methods, Q-learning, SARSA, Expected-SARSA, and Monte Carlo, given in Algorithms

2 and 3. We also compare the RL-based FN performance with the FN performance when utility

filtering-based network slicing is employed with a fixed thresholding algorithm. We evaluate the

performances in various IoT environments with different compositions of IoT latency requirements.

For brevity, we do not consider the effect of ratio of the achievable throughput to the throughput

requirement in assessing the utility of a service request. Specifically, we consider 10 utility classes

with different latency requirements to exemplify the variety of IoT applications in an F-RAN setting.
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That is, we consider ζ = 0, β = 1, κ = 1 in (2.1), and discretize the latency-based utility to

10 classes (U = 10). The utility values 1, 2, ..., 10 may represent the following IoT applications,

respectively: smart farming, smart retail, smart home, wearables, entertainment, smart grid, smart

city, industrial Internet, autonomous vehicles, and connected health. By changing the composition

of utility classes, we generate 19 scenarios of IoT environments, 6 of which are summarized in Table

2.1. Higher density of high-utility users makes the IoT environment richer in terms of low-latency

IoT applications.

Denoting an IoT environment of a particular utility distribution with E , we show in Table

2.1 the statistics of E1, E4, E7, E10, E15, and E19. The first 10 rows in the table provide detailed

information about the proportion of each utility class in an IoT environment corresponding to a

latency requirement. The last two rows illustrate the quality or richness of IoT environments,

where ρ is the probability of a utility being greater than 5, and ū is the mean value of utilities in

the environment. In the considered 19 scenarios, ρ increases in steps of 0.05 from 5% to 95% for

E1, E2, ..., E19 respectively. The remaining 13 scenarios have statistics proportional to their ρ values.

We started with a general scenario given by E7, and changed ρ to obtain the other scenarios.

The simulation parameters shown in Table 3.2 are used for the presented results in this

section. The rewards R = {rsh, rsl, rrh, rrl} are chosen to facilitate learning the optimal policy.

We consider that the FN is equipped with computing, signal processing and storage resources of

15 resource blocks (RBs), i.e., N = 15. In a particular environment E , the threshold that defines

“high utility" is set to the mean of all utilities, i.e., uh = ū. We applied the greedy policy in our

simulations, hence ε = 0.
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Table 3.2: Summary of simulation parameters and their values

Parameter Description Value
γ discount factor 0.7
α learning rate 0.01
ε probability of random action 0
θ penalty of idle time 1
n batch/step size 1
N total number of resource blocks of FN 15
rsh reward for serving high-utility user 2
rsl reward for serving low-utility user −1
rrh reward for rejecting high-utility user −2
rrl reward for rejecting low-utility user 1
uh the threshold for “high-utility" mean

We firstly consider the MDP formulation for the IoT environment given by scenario E7 shown

in Table 2.1. By interaction with the environment, the FN updates the state value functions which

converge to the optimum policy. Fig. 3.3, shows how the FN learns the optimal policy using the

Monte Carlo (MC) method given in Algorithm 2 to estimate the optimal state values. With 15

RBs, there are 160 states, the last 10 of which are terminal states with b = 15 for which V (s) = 0.

The state-value functions of 16 states are given in 3.3. The remaining states have values within

a standard deviation σ = 0.5 of the selected 16 states. It is seen that for most of the states the

state values converges to the optimal value V ∗(s) after about 5000 iterations. This number can be

easily exceeded by the number of requests received by FN during a busy hour from a variety of IoT

applications [6].

We next apply SARSA, Expected SARSA and QL in the IoT environment E7, for learning the

optimal policy in (3.5) using the estimated Q∗(s, a) in Algorithm 3. The convergence of Q(s, serve)

andQ(s, reject) when using QL is shown in Figs. 3.4 and 3.5, respectively. In our MDP problem, QL

converges slightly faster than E-SARSA, SARSA and MC since it implements a greedy approach by
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Figure 3.3: Learning optimum policy of the MDP by applying the Monte Carlo method given by
Algorithm 2 to obtain the optimal state values required in (3.4). The IoT environment E7 is
considered, and the FN is equipped with 15 RBs. The 16 state values shown in the figure are a
sample of the 150 non-terminal state values.

selecting the maximum Q(s′, a′) when updating the return Gt as shown in Algorithm 3. However,

this is not a general rule as it depends on the nature of each problem. There are many factors

affecting the convergence rate, e.g., large values of the learning rate α make the Q-values bounce

around a mean value, whereas small values causes it to converge slowly.

Unnecessary exploration makes the convergence slower, controlled by the ε value in the ε-

greedy policy. The step size n after which we update the state values or Q-values affects also the

convergence dependent on the problem. For instance, MC updates the state values at the end of

an episode regardless of how long it is, which makes it slower to exploit the updated state values
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Figure 3.4: Learning the optimal action-value function Q∗(s, serve) required in (3.5) using the
Q-learning method given by Algorithm 3. Q-values converge to the optimal values after around
4000 episodes. The IoT environment E7 is considered, and the FN is equipped with 15 RBs.

in making better actions, whereas QL, SARSA and E-SARSA using n = 1 update the Q-value

every time step. Unlike MC, the FN needs to keep updating two Q-values for each state instead

of updating one state value. Hence, we have 300 Q-values to update in order to learn the optimal

policy.

We compare the performance of the RL methods, in terms of R, as shown in (2.12), with

that of the utility filtering-based network slicing with various slicing thresholds in the 19 IoT envi-

ronments. The utility filtering algorithm uses the same threshold for network slicing regardless of

the environment. For the RL methods, we consider the simulation setup shown in Table 3.2, and
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Figure 3.5: Learning the optimal action-value function Q∗(s, reject) required in (3.5) using the
Q-learning method given by Algorithm 3. Q-values converge to the optimal values after around
5000 episodes. The IoT environment E7 is considered, and the FN is equipped with 15 RBs.

for the utility filtering-based network slicing we consider all possible slicing thresholds 1, 2, ..., 10.

As shown in Figs. 3.6 and 3.7, the RL methods exhibit the best performance as they learn how

to balance early termination with higher total served utilities. It never terminates too early or too

late (T ≈ 27 for all environments as seen in Fig. 3.7), as opposed to the utility filtering-based

network slicing which is not adaptive to the environment. As seen in Fig. 3.6, the performance of

the utility filtering algorithm with slicing thresholds 1, 2, 3, 8, 9 are steadily below that of the RL

algorithms. The average termination time for slicing thresholds 1, 2, and 3 is about 15 which is

the minimum termination time, though they could not achieve good performance. Slicing threshold
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Figure 3.6: The performance in terms of R for the FN with N = 15, in various IoT environments
when applying the RL methods (QL, SARSA, E-SARSA and MC) given in Algorithms 2 and 3,
and the utility filtering algorithm in network slicing with different slicing thresholds. RL methods’
performances are indistinguishable here, and better than the conventional-filtering based network
slicing in all environments thanks to their learning and adaptation capability.

4 has a comparable performance to RL for the environments E2 − E5, after which its performance

starts to decline. Although slicing thresholds 5, 6, 7 have good performances close to RL for envi-

ronments with medium to high ρ, they perform far from RL for IoT environments with small ρ.

The performance of slicing threshold 10 is much worse than threshold 9 for all environments due to

the long termination time which exceeds 280 time-steps, thus it does not appear in Figs. 3.6 and

3.7.
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Figure 3.7: The average termination time T in time-steps for FN with N = 15 in various IoT
environments when applying the RL methods (QL, SARSA, E-SARSA and MC) given by
Algorithms 2 and 3, and the utility filtering algorithm in network slicing with different slicing
thresholds. RL methods manage to have a steady termination time in all environments.

The performance of the RL methods is very close to each other, hence it is not easy to

distinguish them in Figs. 3.6 and 3.7. For a clearer view, Fig. 3.8 compares the performance of the

four RL methods in terms of the performance ratio with respect to performance of slicing threshold

4, i.e., (RRL/RThld4). QL has the best performance with an average performance ratio of 104% in

all IoT environments with a peak of 106% in E9, followed by E-SARSA and MC. SARSA has the

same performance as QL because greedy policy, i.e., ε = 0, was used.
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Figure 3.8: Comparison between the performance of RL methods in terms of relative performance
with respect to the utility filtering algorithm in network slicing with slicing threshold 4. QL and
SARSA coincide due to the greedy policy used in the simulations.

3.4 Summary

In this chapter, we proposed an infinite Markov Decision Process (MDP) formulation for the

resource allocation problem in Fog RAN for IoT services with heterogeneous latency requirements.

Several reinforcement learning (RL) methods, namely Q-learning, SARSA, Expected SARSA, and

Monte Carlo, were discussed for learning the optimum decision-making policy adaptive to the IoT

environment. Their superior performance over utility filtering-based network slicing methods, and

adaptivity to the IoT environment were verified through extensive simulations. The RL methods

strike a right balance between the two conflicting objectives, maximize the average total served
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utility vs. minimize the fog node’s idle time, which helps utilize fog node’s limited resource blocks

efficiently. In the next chapter, we consider expanding the presented resource allocation framework

to more challenging scenarios such as dynamic resource allocation with heterogeneous service times

and number of resource blocks needed, and collaborative resource allocation with multiple fog nodes.
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Chapter 4: Deep RL for Adaptive Network Slicing in IoT Communications

Intelligent vehicular systems and smart city applications are the fastest growing Internet of

things (IoT) implementations at a compound annual growth rate of 30%.4 In view of the recent

advances in IoT devices and the emerging new breed of IoT applications driven by artificial intelli-

gence (AI), fog radio access network (F-RAN) has been recently introduced for the fifth generation

(5G) wireless communications to overcome the latency limitations of cloud-RAN (C-RAN). In this

chapter, we consider the network slicing problem of allocating the limited resources at the network

edge (fog nodes) to vehicular and smart city users with heterogeneous latency and computing de-

mands in dynamic environments. We develop a network slicing model based on a cluster of fog

nodes (FNs) coordinated with an edge controller (EC) to efficiently utilize the limited resources

at the network edge. For each service request in a cluster, the EC decides which FN to execute

the task, i.e., locally serve the request at the edge, or to reject the task and refer it to the cloud.

We formulate the problem as infinite-horizon Markov decision process (MDP) and propose a deep

reinforcement learning (DRL) solution to adaptively learn the optimal slicing policy. The perfor-

mance of the proposed DRL-based slicing method is evaluated by comparing it with other slicing

approaches in dynamic environments and for different scenarios of design objectives. Comprehensive

simulation results corroborate that the proposed DRL-based EC quickly learns the optimal policy
4Portions of this chapter have appeared in arXiv preprint [4]. Copyright permissions from the publishers are included
in Appendix A.
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through interaction with the environment, which enables adaptive and automated network slicing

for efficient resource allocation in dynamic vehicular and smart city environments.

4.1 Network Slicing Model

We consider the F-RAN network slicing model for IoV and smart city shown in Fig. 4.1.

The two logical network slices, cloud slice and edge slice, support multiple radio access technologies

and serve heterogeneous latency needs and resource requirements in dynamic IoV and smart city

environments. The hexagonal structure represents the coverage area of fog nodes (FNs) in the

edge slice, where each hexagon exemplifies an FN’s footprint, i.e., its serving zone. An FN in

an edge cluster is connected through extremely fast and reliable optical links with its adjacent

FNs whose hexagons have a common side with it. FNs in the edge slice are also connected via

high-capacity fronthaul links to the cloud slice which includes a powerful cloud controller (CC) of

massive computing capabilities, a pool of huge storage capacity, centralized baseband units (BBUs),

and an operations and maintenance center (OMC) which monitors the key performance indicators

(KPIs) and generates network reports. To ensure the best QoS for the massive smart city and IoV

service requests, especially the URLLC applications and to mitigate the onus on the fronthaul and

the cloud, FNs are equipped with computing and processing capabilities to independently deliver

network functionalities at the edge of network. However, the edge resources at FNs are limited, and

therefore need to be used efficiently.

In an environment densely populated with low-latency service requests, it is rational for

the FNs to route delay-tolerant applications to the cloud and save the limited edge resources for

delay-sensitive applications. However, in practice, smart city and IoV environments are dynamic,
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Figure 4.1: Network slicing model. Edge slice is connected to cloud slice through high-capacity
fronthaul links represented by solid lines. Solid arrows represent edge service to satisfy QoS, and
dashed arrows represent task referral to the cloud-slice to save the limited resources of edge slice.

i.e., a typical environment will not be always densely populated with delay-sensitive applications. A

rule-based network slicing policy cannot ensure efficient use of edge resources in dynamic environ-

ments as it will under-utilize the edge resources when delay-sensitive applications are rare. On the

other hand, a statistical learning policy can adapt its decisions to the changing environment char-

acteristics. Moreover, it can learn to prioritize low-load delay-sensitive applications over high-load

delay-sensitive ones.
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We propose using edge controllers (ECs) to efficiently manage the edge resources by enabling

cooperation among FNs. In this approach, FNs are grouped in clusters, each of which covers

a particular geographical area, and manages the edge resources in that area through a cluster

head called EC. The cluster size k is a network design parameter which represents the number of

coordinated FNs in an edge cluster. An FN in each cluster is appointed as EC to manage and

coordinate edge resources at FNs in the cluster. The EC is nominated by the network designer

mainly based on its central geo location among the FNs in the cluster, like f1 and f3 in Fig. 4.1.

Note that unlike the cloud controller, the edge controller is close to the end users as it is basically

one of the FNs in a cluster. Also, the cluster size k is constrained by the neighboring FNs that

cover a limited service area such as a downtown, industrial area, university campus, etc.

All FNs in an edge cluster are connected together and with the EC through super-speedy

reliable optical links. The EC monitors all individual FN internal states, including resource avail-

ability and received service requests, and decides for each service request received by an FN in the

cluster. For each received request, the EC chooses one of the three options: serve at the receiving

FN (primary FN), serve at a neighboring FN, or serve at the cloud. Each FN in the cluster has

a predefined list Ni of neighboring FNs, which can help serving a received service request. For

instance, C = {f1, f2, . . . ,
?
fi, . . . , fk} is an edge cluster of size k, where

?
fi denotes the EC which can

be any FN in the cluster C. The network designer needs to define a neighboring list Ni ⊆ {C − fi}

for each FN in the cluster. An FN can hand-over service tasks only to its neighbors. Dealing with

IoV and smart city service requests, we call the FN which receives a request the primary FN f̂, and

call the FN which actually serves the request utilizing its resources the serving FN f̄. Depending on
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the EC decision, the primary FN or one of its neighbors can be the serving FN, or there can be no

serving FN (for the decision to serve at the cloud).

An IoV or smart city application attempts to access the network by sending a service request

to the primary FN , which is usually the closest FN to the user. The primary FN checks the utility

u ∈ U = {1, 2, . . . , umax}, i.e., the priority level of executing the service task at the edge, analyzes

the task load by figuring the required amount of resources c ∈ C = {1, 2, . . . , cmax} and holding

time of resources h ∈ H = {1, 2, . . . , hmax}, and sends the EC the task input (ut, ct, ht) at time t.

We consider the resource capacity of the ith FN fi ∈ C is limited to Ni resource blocks. Hence, the

maximum number of resource blocks to be allocated for a task is constrained by the FN resource

capacity, i.e., c ≤ cmax ≤ Ni. We partition the time into very small time steps t = 1, 2, ..., and

assume a high-rate sequential arrival of IoV and smart city service requests, one task at a time

step. ECs should be intelligent to learn how to decide (which FN to serve or reject) for each

service request, i.e., how to sequentially allocate limited edge resources, to achieve the objective of

efficiently utilizing the edge resources while maximizing the grade-of-service (GoS) defined as the

proportion of served high-utility requests to the total number of high-utility requests received.

A straightforward approach to deal with this network slicing problem is to filter the received

service requests by comparing their utility values with a predefined threshold. For instance, consider

ten different utilities u ∈ {1, 2, 3, ..., 10} for all received tasks in terms of the latency requirement,

where u = 10 represents the highest-priority and lowest-latency task such as the emergency requests

from the driver distraction alerting system, and u = 1 is for the lowest-priority task with highest

level of latency such as a service task from smart waste management system. Then, a straightforward

non-adaptive solution for network slicing is to dedicate the edge resources to high-utility tasks, such
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as u ≥ uh, and refer to the cloud the tasks with u < uh, where the threshold uh is a predefined

network design parameter. However, such a policy is strictly sub-optimum since the EC will execute

any task which satisfies the threshold regardless of how demanding the task load is. For instance,

while FNs are busy with serving a few high-utility requests of high load, i.e., low-latency tasks which

require large amount of resources c and long holding times h, many high-utility requests with low

load demand may be missed. In addition, this straightforward policy increases the burden on the

cloud unnecessarily, especially when the environment is dominated by low-utility tasks with u < uh.

A better network slicing policy would consider the current resource utilization and expected reward

of each possible action while deciding, and also adapt to changing utility and load distributions in

the environment. To this end, we next propose a Markov Decision Process (MDP) formulation for

the considered network slicing problem.

4.2 MDP Formulation at EC

MDP formulation enables the EC to consider expected rewards of all possible actions in its

network slicing decision. Since closed form expressions typically do not exist for the expected reward

of each possible action at each system state in a real-world problem, reinforcement learning (RL) is

commonly used to empirically learn the optimum policy for the MDP formulation. The RL agent

(the EC in our problem) learns to maximize the expected reward by trial and error. That means the

RL agent sometimes exploits the best known actions, and sometimes, especially in the beginning of

learning, explores other actions to statistically strengthen its knowledge of best actions at different

system states. Once, the RL agents learns an optimum policy (i.e., the RL algorithm converges)

through managing this exploitation-exploration trade-off, the learned policy can be exploited as

long as the environment (i.e., the probability distribution of system state) remains the same. In
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dynamic IoV and smart city environments, an RL agent can adapt its decision policy to the changing

distributions.

As illustrated in Fig. 4.2, for each service request in an edge cluster at time t from an IoV

or smart city application with utility ut, the primary FN computes the number of resource blocks ct

and the holding time ht which are required to serve the task locally at the edge. Then, the primary

FN shares (ut, ct, ht) with the EC , which keeps track of the available resources at all FNs in the

cluster. If neither the primary FN nor its neighbors has ct available resource blocks for a duration

of ht, the EC inevitably rejects serving the task at the edge and refers it to the cloud. Note that

in the proposed cooperative structure enabled by the EC, such an automatic rejection will be much

less frequent compared to the non-cooperative structure considered in [1, 3, 60, 69], where each FN

decides for its resources on its own. If the requested resource blocks ct for the requested duration ht

are available at the primary FN or at least one of the neighbors, then the EC uses the RL algorithm

given in the next section to decide either to serve or reject. In any case, as a result of the taken

action at, the EC will observe a reward rt and the system state st will transition to st+1. We next

explain the KPIs in an F-RAN to guide the design of the proposed MDP formulation.

4.2.1 Key Performance Indicators

Considering the main motivation behind F-RAN we define the Grade of Service (GoS) as a

key performance indicator (KPI). GoS is the proportion of the number of served high-utility service

tasks to the total number of high-utility requests in the cluster, and given by

GoS =
mh

Mh
=

∑T−1
t=0 1{ut≥uh}1{at∈{1,2,...,k}}∑T−1

t=0 1{ut≥uh}
, (4.1)
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where uh is a utility threshold which differentiates the low-latency (i.e., high-utility) tasks such

as URLLC from other tasks, at ∈ {1, 2, . . . , k} means serve the requested task at the ith FN in

the cluster, fi ∈ C = {f1, f2, . . . , fk}, and 1{·} is the indicator function taking the value 1 when its

argument is true, and 0 otherwise.

Naturally, a network operator would want the edge resources to be efficiently utilized. Hence,

the average utilization of edge resources over a time period T gives another KPI:

Utilization =
1

T

T−1∑
t=0

∑k
i=1 bit∑k
i=1 Ni

, (4.2)

where bit and Ni are the number of occupied resources at time t, and the resource capacity of the

FN fi in the cluster, respectively. Another KPI to examine the EC performance is cloud avoidance

which is given by the proportion of all IoV and smart city service requests that are served by FNs

in the edge cluster to all requests received. Cloud avoidance is reported over a period of time T ,

and it is given by

Cloud Avoidance =
m

M
=

∑T−1
t=0 1{at∈{1,2,...,k}}

M
, (4.3)

where m = mh+ml is the number of high-utility and low-utility served requests at the edge cluster,

and M = Mh +Ml is the total number of high-utility and low-utility received requests. Note that

M−m is the portion of IoV and smart city service tasks which is served by the cloud, and one of the

objectives of F-RAN is to lessen this burden especially during busy hours. Cloud avoidance shows a

general overview about the contribution of edge slice to share the load. It gives a similar metric as

resource utilization, which is more focused on resource occupancy rather than dealing with service

requests in general. While we use the resource utilization together with GoS to define an overall
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performance metric below, cloud avoidance is still used as a performance evaluation metric in Sec.

4.4.

To evaluate the performance of an EC over a particular period of time T , we consider the

weighted sum of the main two KPIs, the GoS and edge-slice average resource utilization as

Performance = ωgGoS + ωuUtilization. (4.4)

In Sec. 4.4, different performance scenarios are considered to evaluate the proposed DRL scheme

with respect to other slicing approaches in various vehicular and smart city environments.

4.2.2 MDP Formulation

An MDP is defined by the tuple (S,A, P a, Ra, γ), where S is the set of states, i.e., st ∈ S, A

is the set of actions, i.e., at ∈ A = {1, 2, . . . , k, k + 1}, P a(s, s′) = P (st+1 = s′|st = s, at = a) is the

transition probability from state s to s′ when action a is taken, Ra(s, s′) is the reward received by

taking action a in state s which ends up in state s′, i.e., rt ∈ Ra(s, s′), and γ ∈ [0, 1] is the discount

factor in computing the return which is the cumulative reward as shown in (3.2). γ represents how

much weight is given to the future rewards compared to the immediate reward. For γ = 1, future

rewards are of equal importance as the immediate reward, whereas γ = 0 completely ignores future

rewards. The objective in MDP is to maximize the expected cumulative reward starting from t = 0,

i.e., max
{at}

E[G0|s0], where Gt is given by (3.2), by choosing the actions {at}.

Before explaining the (state, action, reward) structure in the proposed MDP, let us first

define the task load Lt = ct × ht as the number of resource blocks required to execute a task
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Figure 4.2: EC decision for a sample service request received by f2, and the internal state of the
serving FN f1 with N1 = 5 and hmax = 4 (see (4.5)). The edge cluster size is k = 4 and f3 is the
EC.

completely, and similarly the existing load lit of FN i as the number of already allocated resource

blocks (see Fig. 4.2).

• State: We define the system state in a cluster of size k at any time t as

st = (b1t, l1t, b2t, l2t, . . . , bkt, lkt, f̂t, ut, ct, ht), (4.5)

where bit denotes the number of resource blocks in use at FN i at time t. Note that

bi(t+1), li(t+1) and in turn the next state st+1 are independent of the past values given the

current state st, satisfying the Markov property P (st+1|s0, s1, s2, ..., st, at) = P (st+1|st, at).

• Action: The EC decides, as shown in Fig. 4.2, for each service request by taking an action

at ∈ A = {1, 2, . . . , k, k + 1}, where at = i ∈ {1, 2, . . . , k} means serve the requested task at
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the ith FN in the cluster, fi ∈ C = {f1, f2, . . . , fk}, whereas at = k + 1 means to reject the job

and refer it to the cloud. Note that for a request received by fi, the feasible action set is a

subset of A consisting of fi, its neighbors Ni, and the cloud. Fig. 4.2 illustrates the decision

of the EC for a sample service request received by f2 at time t in an edge cluster with k= 4

FNs. Note that in this example the action at = 4 is not feasible as f4 /∈N2, and the EC took

the action at = 1, which means serve the task by f1. Hence, f1 started executing the task at

t while another two tasks (striped yellow and green) are in progress. At t+1, two resource

blocks are released as the job in clear-green is completed. Note that resource utilization of f1

decreased from 100% at t, i.e., internal busy state with b1t=5, to 60% at t+1.

• Reward: In general, a proper rewarding system is crucial for an RL agent to learn the optimum

policy of actions that maximizes the KPIs. The RL agent at the EC collects an immediate

reward rt ∈ Ra(s, s′) for taking action a at time t from state s which ends in the successor

state s′ in the next time step t+ 1. We define the immediate reward

rt = r(at,ut) ± rLt (4.6)

using two components. The first term r(at,ut) ∈ {rsh, rsl, rrh, rrl, rbh, rbl} corresponds to the

reward portion for taking an action a ∈ {1, 2, . . . , k, k + 1} when a request of specific u is

received, and the second term

rLt = cmax × hmax + 1− Lt, (4.7)
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considers the reward portion for handling the new job load Lt = ct × ht of a requested task.

For instance, serving low-load task such as L = 3 is awarded more than serving a task with

L = 18. Similarly, rejecting a low-load task such as L = 3 should be more penalized, i.e.,

negatively rewarded especially when u ≥ uh, than rejecting a task with the same utility and

higher load such as L = 18. The two reward parts are added when at = serve, and subtracted

if at = reject. We define six different reward-component r(a,u) ∈ {rsh, rsl, rrh, rrl, rbh, rbl},

where rsh is the reward for serving a high-utility request, rsl is the reward for serving a

low-utility request, rrh is the reward for rejecting a high-utility request, rrl is the reward for

rejecting a low-utility request, rbh is the reward for rejecting a high-utility request due to

being busy, and rbl is the reward for rejecting a low-utility request due to being busy. Note

that having a separate reward for rejecting due to a busy state makes it easier for the RL

agent to differentiate between similar states for the reject action. A request is determined as

high-utility or low-utility based on the threshold uh, which is a design parameter that depends

on the level of latency requirement in an IoV and smart city environment.

4.3 Optimal Policies and DQN

The state value function V (s) represents the long-term value of being in a state s. That is,

starting from state s how much value on average the EC will collect in the future, i.e., the expected

total discounted rewards from that state onward. Similarly, the action-value function Q(s, a) tells

how valuable it is to take a particular action a from the state s. It represents the expected total

reward which the EC may get after taking the particular action a from the state s onward. The

state-value and the action-value functions are given by the Bellman expectation equations (2.3)

and (2.4), respectively [75], where the state value V (s) and the action value Q(s, a) are recursively
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presented in terms of the immediate reward rt and the discounted value of the successor state V (s′)

and the successor state-action Q(s′, a′), respectively. a′ denotes the action at the next state s′.

Starting at the initial state s0, the EC objective can be achieved by maximizing the expected

total return V (s0) = E[G0|s0] over a particular time period T . To achieve this goal, the EC should

learn an optimal decision policy to take proper actions. However, considering the large dimension of

sate space (see (4.5)) and the intractable number of state-action combinations, it is infeasible for RL

tabular methods to keep track of all state-action pairs and continuously update the corresponding

V (s) and Q(s, a) for all combinations in order to learn the optimal policy. Approximate DRL

methods such as DQN is a more efficient alternative for the high-dimensional EC MDP to quickly

learn an optimal decision policy to take proper actions, which we discuss next.

A policy π is a way of selecting actions. It can be viewed as a mapping from states to

actions as it describes the set of probabilities for all possible actions to select from a given state,

i.e., π = {P (a|s)}. A policy helps in estimating the value functions in (2.3) and (2.4). π1 is

said to be better than another policy π2 if the state value function following π1 is greater than

that following π2 for all states, i.e., π1 > π2 if Vπ1(s) > Vπ2(s), ∀s ∈ S. A policy π is said to be

optimal if it maximizes the value of all states, i.e., π∗ = arg max
π

Vπ(s), ∀s ∈ S. Hence, to solve

the considered MDP problem, the DRL agent needs to find the optimal policy through finding

the optimal state-value function V ∗(s) = max
π

Vπ(s), which is similar to finding the optimal action-

value function Q∗(s, a) = max
π

Qπ(s, a) for all state-action pairs. From (2.3) and (2.4), we can write

the Bellman optimality equations for V ∗(s) and Q∗(s, a) as in (2.5) and (2.6), respectively. The

expression of optimal state-value function V ∗(s) greatly simplifies the search for optimal policy as

it subdivides the targeted optimal policy into local actions: take an optimal action a∗ from state s
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which maximizes the expected immediate reward followed by the optimal policy from successor state

s′. Hence, the optimal policy is simply taking the best local actions from each state considering

the expected rewards. Dealing with Q∗(s, a) to choose optimal actions is even easier, because with

Q∗(s, a) there is no need for the EC to do the one-step-ahead search and instead it picks the best

action that maximizes Q∗(s, a) at each state. The optimal action for each state s is given by (2.7).

The optimal policy can be learned by solving the Bellman optimality equations (2.5) and

(2.6) for a∗. This can be done for tractable number of states by estimating the optimal value

functions using tabular solution methods such as dynamic programming, and model-free RL methods

which include Monte Carlo, SARSA, expected SARSA, and Q-Learning (QL) [3]. However, for high-

dimensional state space, such as ours given in (4.5), tabular methods are not tractable in terms of

computational and storage complexity. Deep RL (DRL) methods address the high-dimensionality

problem by approximating the value functions using deep neural networks (DNN).

Deep Q-Network (DQN) is a powerful DRL method for addressing RL problems with high-

dimensional input states and output actions [61]. DQN extends QL to high-dimensional problems

by using DNN to approximate the action-value functions without keeping a Q-table to store and

update the Q-values for all possible state-action pairs as in QL. Fig. 4.3 demonstrates the DQN

method for EC in the network slicing problem, in which the DQN agent at EC learns about the IoV

and smart city environment by interaction. The DQN agent is basically a DNN that consists of an

input layer, hidden layers, and an output layer. The number of neurons in the input and output

layers is equal to the state and action dimensions, respectively, whereas the number of hidden layers

and the number of neurons in each hidden layer are design parameters to be chosen. Feeding the

current EC state s to the DNN as an input and regularly updating its parameters, i.e., the weights
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Figure 4.3: The interaction of the DQN-based EC with the IoV and smart city environment.
Given the EC input state s = (b1, l1, . . . , bk, lk, f̂, u, c, h), the DQN agent predicts the action-value
functions and follows a policy π to take an action a which ends up in state s′, and collects a
reward r accordingly.

of all connections between neurons, DNN is able to predict the Q-values at the output for a given

input state. The DRL agent at EC sometimes takes random actions to explore new rewards, and

at other times exploits its experience to maximize the discounted cumulative rewards over time and

keeps updating the DNN weights. Once the DNN weights converge to the optimal values, the agent

learns the optimal policy for taking actions in the observed environment.

For a received service request, if the requested resources are affordable, i.e., ct ≤ (Ni − bit)

for any fi ∈ {f̂i,Ni}, the EC makes a decision whether to serve the request by the primary FN or

one of its neighbors, or reject and refer it to the cloud. From (2.7), the optimal action at state s is

given by,
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a∗ =


i ∈ Ã if Q∗(s, i) = max

a∈Ã
Q(s, a),

k + 1 otherwise,

(4.8)

where Ã denotes the set of possible serve actions to execute the service task by fi ∈ {f̂i,Ni}. The

procedure to learn the optimal policy from the IoV and smart city environment using the model-free

DQN algorithm is given in Algorithm 4.

Algorithm 4 Learning Optimum Policy Using DQN
1: Select: {γ, ε} ∈ [0, 1], ρ ∈ (0, 1], n ∈ {1, 2, . . . , D};
2: Create DNN model and target model with weights w and ŵ, respectively;
3: Initialize: w, ŵ, the replay memory M with size D;
4: Initialize: s;
5: for t = 0, 1, 2, . . . , T do
6: Take action at according to π = ε-greedy, and observe rt and st+1;
7: Append the observation (st, at, rt, st+1) to M;
8: s← st+1;
9: Sample a random minibatch of n observations from M;

10: for j = 1, 2, . . . , n do
11: Predict Q̂j(sj |ŵ);

12: yj =

{
rj if t+ 1 = T,

rj + γmax
a′

Q̂j(s
′, a′|ŵ) otherwise.

13: Fit the DNN model for (sj , yj) by applying gradient descent step on
(

yj − Q̃j
)2

with
respect to w;

14: end for
15: if (t mod τ) = 0 then
16: ŵ← ρw + (1− ρ)ŵ;
17: end if
18: if w converges then
19: w∗ ← w;
20: break
21: end if
22: end for
23: Use w∗ to estimate Q∗(s, a) required for π∗ using (4.8).

Algorithm 4 shows how the EC learns the optimal policy π∗ for the considered MDP. It

requires the EC design parameters k, N , Ni, and uh, and selecting the DNN hyper-parameters γ,
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the target update rate ρ, the probability ε of making a random action for exploration, the replay

memory capacity D to store the observations (s, a, r, s′), the minibatch size n of samples used to

train the DNN model and update its weights w, and the data of the IoV and smart city users u,

c, h. Note that u, c and h can be real data from the IoV and smart city environment, as well

as from simulations if the probability distributions are known. The DNN target model at line 2

is used to stabilize the DNN model and avoid divergence by reducing the correlation between the

action-values Q(s, a) and the targets y = r + γmax
a′

Q(s′, a′) through only periodical updates of the

target model weights ŵ. In each iteration, we take an action and observe the collected reward and

the successor state. Actions are taken according to a policy π such as the ε-greedy policy in which

a random action with probability ε is taken to explore new rewards, and an optimal action (see

(4.8)) is taken with probability (1− ε) to maximize the rewards. Model is trained using experience

replay as shown in lines 9-14. At line 9, a minibatch of n random observations is sampled from

M. The randomness in selecting samples eliminates correlations in the observations to avoid model

overfitting. At line 11, we estimate the output vector Q̂ of the target model for a given input

state s in each experience sample using the target model weights ŵ. Q̃ and Q̂ are the predicted

vectors of the k+1 Q-values for a given state s with respect to w and ŵ, respectively. The way to

compute the target for sample j is shown at line 12. At line 13, we update the model weights w

by fitting the model for the input states and the corresponding targets. A gradient decent step is

applied to minimize the squared loss
(
yj−Q̃j

)2
between the target and the model predictions. The

gradient descent converges to the global minima of the quadratic loss function when the DNN is

over-parametrized, i.e., with large training data and large number of hidden neurons [76–78]. The

target model weights are periodically updated every τ time steps as shown at line 16, where the

update rate ρ exemplifies how much we believe in our experience. The algorithm stops when the
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Figure 4.4: The structure of the edge cluster considered in the simulations. The neighboring lists
N1,N2, . . . ,N7 include the adjacent FNs only.

DNN model weights w converge. The converged values are then used to determine optimal actions,

i.e., π∗ as in (4.8).

4.4 Simulations

We next provide simulation results to evaluate the performance of the proposed network

slicing approach in dynamic IoV and smart city environments under different performance evaluation

criteria. We compare the DRL algorithm given in Algorithm 4 with the serve-all-utilities (SAU)

algorithm in which the EC serves all coming tasks when requested resources are available, serve-

high-utilities (SHU) algorithm where the EC filters high-utility requests and serve them if the

available resources are enough, and the QL algorithm independently running at each FN following

a local version of our MDP formulation [3]. The QL algorithm at each FN corresponds to the non-

cooperative scenario, hence this comparison will help evaluate the importance of cooperation among

FNs. In the non-cooperative scenario, each FN operates as a standalone entity with no neighbors

to handover tasks when busy, and no EC to manage the edge resources.
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Table 4.1: Utility distributions corresponding to a variety of latency requirements of IoV and
smart city applications in various environments

E1 E2 E3 E4 E5
P (u = 1) 0.015 0.012 0.008 0.004 0.001
P (u = 2) 0.073 0.058 0.038 0.019 0.004
P (u = 3) 0.365 0.288 0.192 0.096 0.019
P (u = 4) 0.292 0.230 0.154 0.077 0.015
P (u = 5) 0.205 0.162 0.108 0.054 0.011
P (u = 6) 0.014 0.071 0.142 0.214 0.271
P (u = 7) 0.013 0.064 0.129 0.193 0.244
P (u = 8) 0.011 0.057 0.114 0.171 0.217
P (u = 9) 0.009 0.043 0.086 0.129 0.163
P (u = 10) 0.003 0.015 0.029 0.043 0.055

P (u ≥ uh = 8) 2.3% 11.5% 22.9% 34.3% 43.5%
ū 3.82 4.589 5.55 6.5 7.27

Table 4.2: Simulation setup

Parameter Description Value
Ni resource capacity of FN fi 7
C set of possible resource blocks {1, 2, 3, 4}
H set of possible holding times 5×{1, 2, 3, 4, 5, 6}
ωg weight for GoS {0.7, 0.5, 0.3}
ωu weight for resource utilization {0.3, 0.5, 0.7}
uh threshold for a “high-utility" 8
D capacity of DNN replay memory 2000
γ reward discount factor 0.9
α learning rate 0.01
ε probability of random action 1.0 with 0.9995 decay
n batch size 32
τ ŵ update interval 1000
ρ ŵ update rate 0.2

Table 4.3: Considered rewarding systems

Scenario ωg ωu R {rsh, rrh, rbh, rsl, rrl, rbl} rL
1 0.7 0.3 R1 {24,−12,−12, −3, 3, 12} (see (4.7))
2 0.5 0.5 R2 {24,−12,−12, 0, 0, 12} (see (4.7))
3 0.3 0.7 R3 {50,−50,−50, 50,−50,−25} 0
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Figure 4.5: The performance and main network KPIs for DQN-based EC while learning the
optimum policy in the IoV and smart city environment E3 under scenario 1 of Table 4.3.

4.4.1 Simulation Environments

We evaluate the performances in various IoV and smart city environments with different

compositions of user utilities. Specifically, we consider 10 utility classes that represent different

latency requirements to exemplify the variety of IoV and smart city applications in an F-RAN

setting. Considering Table 2.1 and by changing the distribution of utility classes we generate 5 IoV

and smart city environments as summarized in Table 4.1. Higher density of high-utility applications

makes the IoV and smart city environment richer in terms of URLLC applications. Denoting an

IoV and smart city environment of a particular utility distribution with E , we show in Table 4.1
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Figure 4.6: The performance of the edge slice when the EC applies the DRL Algorithm 4, SAU
and SHU for the coordinated FNs, and the uncoordinated QL based FNs case with NEC
considering scenario 1 in Table 4.3 with ωg = 1− ωu = 0.7.

the statistics of E1, E2, E3, E4, and E5. The probabilities in the first 10 rows in Table 4.1 present

detailed information about the proportion of each utility class in the environment corresponding

to the latency requirement of diverse IoV and smart city applications. The last two rows interpret

the quality or richness of IoV and smart city environments, where ū is the mean of utilities in an

environment, and P (u ≥ uh) is the percentage of high-utility population. We started with a general

environment given by E3 for the following IoV and smart city applications corresponding to the

utility values 1, 2, . . . , 10, respectively: smart lighting and automation of public buildings, air quality
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Figure 4.7: The performance of the edge slice when the EC applies the DRL Algorithm 4, SAU
and SHU for the coordinated FNs, and the uncoordinated QL based FNs case with NEC
considering scenario 2 in Table 4.3 with ωg = 1− ωu = 0.5.

management and noise monitoring, smart waste management and energy consumption management,

smart parking assistance, in-vehicle audio and video infotainment, driver authentication service,

structural health monitoring, safe share rides, smart amber alerting system and AI-driven and

video-analytics tracking services, driver distraction alerting system and autonomous driving. Then,

we changed the utility distribution to obtain the other environments.
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Figure 4.8: The performance of the edge slice when the EC applies the DRL Algorithm 4, SAU
and SHU for the coordinated FNs, and the uncoordinated QL based FNs case with NEC
considering scenario 3 in Table 4.3 with ωg = 1− ωu = 0.3.

4.4.2 Simulation Parameters

The simulation parameters used in this section are summarized in Table 4.2. We consider an

edge cluster of size k = 7, where each FN has a computing and processing resource capacity of seven

resource blocks, i.e., N = 7. The central FN f5 acts as the EC, and the neighboring relationships

are shown in Fig. 4.4. In a particular IoV and smart city environment E , the threshold that defines

“high utility" is set to uh = 8, i.e., u ∈ {8, 9, 10} is a high-utility application with higher priority

for edge service. To make the resource allocation of the network slicing problem more challenging,
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we consider a request arrival rate of at least five times the task execution rate, i.e., holding times

increment by five times the arrival interval. The probabilities of c ∈ C = {1, 2, 3, 4} are 0.1, 0.2,

0.3, and 0.4, respectively, whereas the probabilities of h ∈ H = {5, 10, 15, 20, 25, 30} are 0.05, 0.1,

0.1, 0.15, 0.2, and 0.4, respectively.

We consider a fully connected DNN structure for DQN with an input layer of 18 neurons,

2 hidden layers of 64 and 24 neurons, respectively, and an 8-neuron output layer. Linear activation

function is used at the output layer and ReLU activation is considered for the other layers. The

Huber loss function and the RMSprop optimizer are considered with 0.01 learning rate, 10−4 learning

decay, and momentum of 0.9. The ε-greedy policy is adopted in DNN training where ε starts at

1.0 for 10% of the time in training and then decays at a rate of 0.9995 to a minimum value of 10−3

to guarantee enough exploration over time. As it depends on the nature of the problem, there is

no rule of thumb to tune DNNs. However, the key factors and main DNN hyper-parameters to

optimize for quick convergence include the loss function, the optimizer, the interval τ to update

target weights, the update rate ρ, the exploration rate ε, the learning rate α, the discount factor γ,

the randomness of the samples and the batch size n, replay memory size D, and a proper rewarding

system to expedite the learning. The values of all hyper-parameters in this section are chosen based

on extensive experiments.

We examine the KPIs explained in Sec. 4.2.1, GoS, resource utilization, cloud avoidance,

as well as the overall performance (see (4.4)-(4.3)) considering the three scenarios shown in Table

4.3 with the weights ωg = 1 − ωu = 0.7, ωg = ωu = 0.5, and ωg = 1 − ωu = 0.3. Each scenario

in Table 4.3 represents a new problem, hence the rewarding systems R1, R2, and R3 are chosen

to facilitate learning the optimal policy in each scenario. The two reward components, r(a,u) ∈
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{rsh, rrh, rbh, rsl, rrl, rbl} and rL for each rewarding system are provided in Table 4.3. Note that

unlike R2 and R3, R1 encourages rejecting low-utility requests with higher loads to accommodate

the performance requirement of scenario 1, which puts higher weight on GoS with ωg = 0.7. On

the other hand, R3 promotes serving regardless of the request utility and the task load as the

performance in scenario 3 is in favor of achieving higher resource utilization with ωu = 0.7.

4.4.3 Simulation Results

We train the DRL agent at the EC in various environments and under different performance

scenarios provided in Tables 4.1 and 4.3, respectively. By interaction with the environment as

illustrated in Fig. 4.3, the EC learns the optimal policy using the DQN method given in Algorithm

4. Considering the environment E3 and the performance scenario 1, Fig. 4.5 shows an example for the

learning curve of the proposed DQN-based EC in terms of the overall performance and KPIs which

quickly converge to the optimal scores. Starting with exploration through taking random actions

for 30k time steps, the EC initially performs improperly and provides a relatively low GoS (i.e.,

many high-utility requests are missed) while utilizing the resources mainly for low-utility requests.

However, as the algorithm learns the optimum actions from reward feedback, the exploration rate

decays and the performance starts to improve. As a result, the EC quickly aligns with the objectives

of scenario 1 putting more emphasis on GoS by prioritizing high-utility users for edge service.

Next, we compare DQN-EC given in Algorithm 4 with SAU-EC, SHU-EC, and QL with

no EC (QL-NEC) under the three scenarios given in Table 4.3. Figs. 4.6-4.8 show that the DRL-

based EC adapts to each scenario and outperforms the other algorithms in all IoV and smart city

environments. For scenario 1 in Fig. 4.6, SHU-EC has a comparable performance to DQN-EC

because SHU algorithm promotes serving high-utility requests all the time, which matches with the
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(a) DQN-EC, ωg = 0.7 and ωu = 0.3.
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(b) DQN-EC, ωg = ωu = 0.5.
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(c) DQN-EC, ωg = 0.3 and ωu = 0.7.
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(d) SAU-EC, all scenarios.
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(e) SHU-EC, all scenarios.
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(f) QL-NEC, ωg = 0.7 and ωu = 0.3.
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(g) QL-NEC, ωg = ωu = 0.5.
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(h) QL-NEC, ωg = 0.3 and ωu = 0.7.

Figure 4.9: The score of the main three individual KPIs, GoS, resource utilization, and cloud
avoidance when the EC applies Algorithm 4, SAU and SHU for coordinated FNs, and the
uncoordinated QL at FNs with no EC, under the 3 scenarios in Table 4.3.
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focus on GoS in scenario 1 design objective with ωg = 0.7. However, in poor IoV and smart city

environments with less high-utility population such as E1 the performance gap increases. This gap

shrinks as environment becomes richer and SHU-EC achieves a performance as high as the DQN-

EC score in E4 and E5. The performance of SAU-EC slightly increases while moving from E1 to E3

and becomes stable afterwards even for the richer environments E4 and E5 since SAU-EC does not

prioritize high-utility tasks. Unlike the other algorithms, QL-NEC shows a declining trend since the

network slicing problem becomes more challenging with uncoordinated FNs while moving towards

richer environments in this scenario. Fig. 4.7 represents scenario 2 with equal weights for GoS

and resource utilization, where SAU-EC is the second performing algorithm following DQN-EC.

With less importance for GoS, the performance of SHU-EC is as low as the QL-NEC in E1 and

although it grows while moving to richer environments, it does not reach a comparable level until

E4 and E5. The uncoordinated FNs with QL-NEC is more steady in scenario 2. Fig. 4.8 shows the

performances in scenario 3 in which more emphasis is put on resource utilization than GoS with

ωu = 0.7. It is observed that SHU-EC fails to achieve a comparable level of performance compared

to DQN-EC while SAU-EC does.

Fig. 4.9 provides the detailed KPI scores for GoS, resource utilization and cloud avoidance

for all algorithms considering the three design scenarios in all environments. DQN-EC always adapts

to the design objective and the IoV and smart city environment. It maximizes GoS in scenario 1

as shown in Fig. 4.9a, balances GoS and utilization for scenario 2 as observed in Fig. 4.9b, and

promotes resource utilization for scenario 3 as shown in Fig. 4.9c. QL-NEC in Figs. 4.9f-4.9h

tries to behave similarly as it learns by interaction, but unfortunately the uncoordinated FNs in

the edge slice cannot achieve that. Note that, DQN-EC learns the right balance between GoS and
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resource utilization in each scenario. For instance, even though SHU-EC is the second performing in

Fig. 4.6 following DQN-EC, it has lower utilization and cloud avoidance scores, i.e., less edge-slice

contribution to handle service requests as shown in Fig. 4.9e. Similarly, SAU-EC is well-performing

in scenario 2 compared to DQN-EC as shown in Fig. 4.7, however, it does not learn to balance GoS

and utilization as DQN-EC does in Fig. 4.9b.

Finally, we test the performance of the proposed DQN algorithm in a dynamic IoV and smart

city environment. In Fig. 4.10, we consider the design objectives of scenario 1 in Table 4.3 and a

sampling rate of 5×10−4. To generate a dynamic IoT environment we start with 40 samples for the

initial environment and then change E every 30 samples. More samples is considered for the initial

E since we start with vacant resource blocks for all FNs in the edge slice. We consider a dynamic

IoV and smart city environment whose composition of high-utility requests, i.e., low-latency tasks,

changes over a day. Starting in the morning busy hours with E4, the density of high-utility requests

drops over time to E1 during the late morning hours. It starts growing to reach E2 by noon and E3

in the evening, and then peaks again during the night busy hours with E5. These 5 environments

represent different distributions over diverse levels of utilities, i.e., different latency requirements of

the various IoV and smart city applications. Hence, they can be thought as different traffic profiles

during the day in terms of the required QoS. The changes during the day directly affect the overall

distribution of the environment over time and makes it dynamic. In the proposed algorithm, once

the EC detects the traffic profile, i.e., the environment, it applies the corresponding optimal policy

π∗4 given in (4.8) to maximize the expected rewards in E4. Right after the density of low-latency

tasks drops over time to E1, i.e., at t = 80K, the EC keeps following π∗4 until it detects the change

from the statistics of task utilities, which results in a slight degradation in its performance since π∗4
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Figure 4.10: The performance of the proposed DQN and the straightforward SHU policy for
network slicing in a dynamic IoV and smart city environment considering the design objective of
scenario 1 in Table 4.3. Although SHU performs well in rich environments, it cannot adapt to the
other environments as expected. The proposed DQN policy on the other hand learns to adapt to
different environments.

is no longer optimal for the new environment E1. However, after a short learning period, the EC

adapts to the dynamics, and switches to the new optimal policy π∗1. Similarly, as seen for the other

transitions from E1 to E2, E2 to E3, and E3 to E5, DQN-EC successfully adapts to the changing IoV

and smart city environments. Whereas, the straightforward SHU-EC policy performs well in only

the rich environments for which it was designed, and cannot adapt to the changes in the environment

as expected.
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4.5 Summary

In this chapter, we developed an infinite-horizon Markov decision process (MDP) formula-

tion for the network slicing problem in a realistic fog-RAN with cooperative fog nodes. A deep

reinforcement learning (DRL) solution is proposed for the edge controllers (ECs), which are the fog

nodes that serve as cluster heads, to learn the optimal policy of allocating the limited edge comput-

ing and processing resources to vehicular and smart city applications with heterogeneous latency

needs and various task loads. The deep Q-Network (DQN) based EC quickly learns the dynamics

through interaction with the environment and adapts to it. DQN-EC dominates the straightforward

and non-cooperative RL approaches as it always learns the right balance between GoS and resource

utilization under different performance objectives and environments. In a dynamic environment

with changing distributions, DQN-EC adapts to the dynamics and updates its optimal policy to

maximize the performance.
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Chapter 5: Conclusions and Future Directions

This dissertation is an effort towards improving the quality of service (QoS) for Internet

of Things (IoT) users with various latency and computing demands through intelligently utilizing

the edge resources in fog RAN (F-RAN). The considered network slicing problem of sequentially

allocating the computing, signal processing, radio, and storage resources at the fog nodes (FNs) to

intelligent vehicular and smart city applications with heterogeneous requirements is formulated as

finite-horizon and infinite-horizon Markov decision processes (MDPs). A single FN slicing model is

first developed with a tractable number of states, where tabular solution methods such as dynamic

programming and model-free RL methods, in particular Monte Carlo, SARSA, expected SARSA,

and Q-Learning (QL), were used to learn the optimum slicing policy.

The presented resource allocation framework in Chapter 2 and Chapter 3 is then expanded

to more challenging scenarios such as collaborative resource allocation with multiple fog nodes for

heterogeneous service times and number of resource blocks. To this end, a network slicing model

based on a cluster of FNs coordinated with an edge controller (EC) with high-dimensional state

space is developed. Deep RL (DRL) methods such as deep Q-networks (DQN) is adopted to address

the high-dimensionality in learning the optimal policy of allocating the limited edge computing and

processing resources to vehicular and smart city applications with heterogeneous latency needs and

various task loads.
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Various IoT environments with different latency and diverse task loads compositions were

considered in the simulations to evaluate the performance of the proposed dynamic network slicing

approaches. The numerical results corroborated the fact that MDP methods adapt to the environ-

ment by learning the optimum policy from experience. We showed that the dynamic MDP-based

slicing methods always dominate the static threshold-based slicing methods, which do not learn from

the environment. The RL methods can strike a right balance between the two conflicting objectives,

maximizing the average total served utility vs. minimizing the FN idle time, which helps utilize

limited FN resources efficiently. The deep Q-Network (DQN) based EC quickly learns the dynamics

through interaction with the environment and adapts to it. DQN-EC dominates the straightforward

and non-cooperative RL approaches as it enables collaboration among a set of neighboring FNs. In

a dynamic environment with changing distributions, DQN-EC adapts to the dynamics and updates

its optimal policy to maximize the performance.

As future work, the presented DRL based network slicing framework can be expanded by

developing novel multi-agent algorithms to achieve the desired self-optimized network structure

which can autonomously, timely, and softly configure its end-to-end resources to satisfy the needs

for diverse IoT applications and maximize the overall network performance. The multi-agent DRL

solutions for the interactions between intelligent vehicles and AI-enabled communication infrastruc-

ture can be extended to other areas like robotics, industry, agriculture, transportation, and various

smart city applications. Another direction is to develop novel algorithms to improve the learning

performance in multi-objective problems.
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