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(is is a practice-led, conceptual paper describing selected means for action learning and concept motivation at all levels of
mathematics education. It details the approach used by the authors to devise insights for practitioners of mathematics teaching.
(e paper shows that this approach inmathematics education based on action learning in conjunction with the natural motivation
stemming from common sense is effective. Also, stimulating questions, computer analysis (internet search included), and classical
famous problems are important motivating tools in mathematics, which are particularly beneficial in the framework of action
learning. (e authors argue that the entire K-20 mathematics curriculum under a single umbrella is practicable when techniques
of concept motivation and action learning are in place throughout that broad spectrum. (is argument is supported by various
examples that could be helpful in practice of school teachers and university instructors. (e authors found pragmatic cause for
action learning within mathematics education at virtually any point in student academic lives.

1. Introduction

Nowadays, students require both cognitive and practical
experiences throughout the continua of their mathematics
education to be productive 21st century citizens. (e genesis
of this statement can be traced back to the writings of John
Dewey, who emphasized the importance of educational
activities that include “the development of artistic capacity of
any kind, of special scientific ability, of effective citizenship,
as well as professional and business occupations” ([1], p.
307). More recently, Billett [2], based on his studies of in-
tegrating learning experiences of tertiary students in the
disciplines related to nursing and like services in support of
human needs, suggested that “it might be possible to fully
integrate practice-based experiences within the totality of
higher education experiences that are generative of de-
veloping robust and critical occupational knowledge” (p.
840). (e main argument of the present paper is that in the
context of mathematics education, action learning (the
concept introduced in Section 3) is the very process to

impart these experiences in conjunction with concept
motivation (a term introduced in Section 2) when teaching
mathematics across the entire K-20 curriculum. To this end,
this practice-led, conceptual paper, detailing the approach
used by the authors to devise insights for practitioners of
mathematics teaching, offers a survey of selected means for
action learning across the formal mathematics education
continuum. To a certain extent, this paper promotes the idea
of learning through practice [3] in the context of mathe-
matics education. Arguments supporting the value of action
learning for all individuals involved (at the college level,
adding to the duo of student and mathematics instructor a
third community or university nonmathematics pro-
fessional) are presented (Sections 2–4). Also considered is
integration of computer-assisted signature pedagogy
(CASP) and nondigital technology as well as effective
questioning with action learning (Sections 5 and 6).

Students may joyfully experience formal mathematics
education for twenty years or more, and they can be mo-
tivated everywhere across the expansive mathematics
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curricula. Action learning in mathematics education com-
bined with rote theory brings mathematical topics to the real
world. Naturally, primary-level instances are of foundational
importance, and this is reinforced with secondary-level
action learning (Sections 4.1.1 and 4.1.2). (e open prob-
lems of mathematics can often be introduced to students in
primary, secondary, and tertiary education (Section 7).
Traditionally, classic results and open problems serve to
motivate not only the students but also the educators
themselves. Since effective mathematics teachers are needed,
action learning should be used promotionally at all levels of
mathematics education, knowing that future instructors are
amongst the current student population. Certainly, the
possibility of being involved in discovery is highly moti-
vational to all, including students and mathematics teachers,
at least.

2. Curiosity and Motivation

(ough the necessity of mathematical learning at the pri-
mary, secondary, and tertiary schools is common knowl-
edge, the question on how to teach mathematics is
controversial. As described in more detail in [4], with ref-
erences to [5–10], the controversy is due to a non-
homogeneity of teacher preparation programs, the
formalism versus meaning disagreement among mathe-
matics faculty, and various perspectives on the use of
technology. We believe that an appropriate way to teach
mathematics at all levels is to do it through applications
rather than to use traditional lectures, emphasizing the
formalism of mathematical machinery. Real-life applications
keep concerned people motivated while learning mathe-
matics. (is natural motivation can be considered as an age-
dependable process spanning from natural childhood cu-
riosity in the primary school to true intellectual curiosity at
the tertiary level. Regardless of the age of learners, one can
see curiosity as motivation “to acquire or transform in-
formation under circumstances that offer no immediate
adaptive value for such activity” ([11], p. 76). (at is, cu-
riosity and motivation are closely related psychological
traits.

Most of the studies on the development of curiosity deal
with the primary education. However, these studies can
inform our understanding of how curiosity turns into a
motivation to become high-quality professional. For ex-
ample, Vidler [12] distinguished between epistemic and
perceptual curiosity, which are manifested, respectively, by
“enquiry about knowledge and is shown, for example, when
a child puzzles over some science problem he has come
across . . . [and] increased attention given to objects in the
child’s immediate environment as, for example, when a child
stares longer at an asymmetrical rather than a symmetrical
figure on a screen” (p. 18). Likewise, adult learners at the
tertiary level can become motivated by their mathematics
instructor’s call for questions concerning information that
was shared or by their experiences with the world around
them as they try to interpret “the fabric of the world . . .

[using] some reason of maximum and minimum” (Euler,
cited in [13], p. 121).

Related to the tertiary level, Vidler [14] defined
achievement motivation as “a pattern of . . . actions . . .

connected with striving to achieve some internalized stan-
dard of excellence” (p. 67). (ere are also adult learners who
“are interested in excellence for its own sake rather than for
the rewards it brings” ([14], p. 69). Biggs [15] admits that
intrinsic motivation in the study of mathematics is associ-
ated with “the intellectual pleasure of problem solving in-
dependently of any rewards that might be involved . . .

[suggesting that] the aims of deep learning and of
achievement motivation ultimately diverge” (p. 62). A classic
example in support of this suggestion is a solution of the
(century old) Poincare conjecture by geometer Grigory
Perelman who, after almost a decade of “deep learning,”
declined several international awards for his work including
the Fields Medal (the mathematician’s “Nobel Prize”) and
($1 million) Clay Millennium Prize (https://www.claymath.
org/).

As curiosity is the genesis of motivation to learn,
Mandelbrot [16], in a plenary lecture on experimental ge-
ometry and fractals at the 7th International Congress on
Mathematical Education, advised the audience of mostly
precollege mathematical educators of how to pivot on cu-
riosity when teaching mathematics: “Motivate the students
by that which is fascinating, and hope that the resulting
enthusiasm will create sufficient momentum to move them
through that which is no fun but is necessary” (p. 86). It is
this kind of motivation that the authors describe as concept
motivation. More specifically, in this paper, the term concept
motivation means a teaching strategy through which, using
curiosity of students as a pivot, the introduction of a new
concept is justified by using it as a tool in applications to
solving real problems. For example, the operation of ad-
dition can be motivated by the need to record the aug-
mentation of a large quantity of objects by another such
quantity, the concept of irrational number can be motivated
by the need to measure perimeters of polygonal enclosures
on the lattice plane (called the geoboard at the primary
level), or the concept of integral can be motivated by the
need to find areas of curvilinear plane figures.

Another mathematically relevant instrument of moti-
vation is concreteness. According to David Hilbert, math-
ematics begins with posing problems in the context of
concrete activities “suggested by the world of external
phenomena” ([17], p. 440). We believe that “concreteness” is
an appropriate synonym for motivation as it relates to
mathematics education. (e term concrete itself indicates
that a variety of ingredients are brought together and
synthesized. (e goal of learning mathematics is to con-
cretize notions, both theoretical and applied. It is helpful to
have a precise understanding of something. Humans in-
herently wish to have “full” knowledge of certain things. By
knowing details, and concretizing ideas, we reduce anxiety
associated with describing and using those ideas. Con-
creteness motivates all parties involved in mathematics
education. Even at the administrative level, there is un-
derstanding that “the FKL [Foundations of Knowledge and
Learning] Core Curriculum will provide you with the op-
portunity to explore a variety of vital areas of study, making

2 Education Research International

https://www.claymath.org/
https://www.claymath.org/


you more aware and engaged in understanding the chal-
lenges that our global realities require” ([18], italics added),
where the “realities” is given our emphasis. (is is moti-
vation for everybody, since we would all like to make use of
mathematical theory or, at least, see it applied. Conse-
quently, motivation is proportionally higher for adult
learners over children who may not see “usefulness” in
mathematics. At the University of South Florida, instructors
of certain courses (the calculus sequence, for example) are
asked to include the FKL statement in their syllabi.

Until recently, the terms “industrial” and “technical” had
rather pejorative connotations in mathematics education.
Traditional formal lecturing is still dominant in most
classrooms. However, there is often some “industry” or
“technique” in examining mathematical theory, so these two
notions are not complimentary. It is hard to identify a part of
the massive volume of K-20 mathematics curricula which
precludes either theory or eventual real-world application.
Furthermore, theory is implicitly included in STEM edu-
cation due to its science component.

In the context of mathematics teacher education, a focus
on applications gives future teachers one very important
ability of exemplifying mathematical ideas in ways which are
usable. (is ability can then be imparted to their own
students. One can recognize at the precollege level that
mathematics knowledge stems from the need to resolve real-
life situations of different degrees of complexity. (e cur-
riculum principle put forth by the National Council of
Teachers of Mathematics [19] includes the notion that all
students at this level should be offered experiences “to see
that mathematics has powerful uses in modeling and pre-
dicting real-world phenomena” (pp. 15-16). (is emphasis
on applications goes beyond the precollege level. Indeed,
mathematics has been greatly developing and penetrating all
the spheres of life, making collegiate mathematics education
a necessary yet controversial element of the modern culture.

3. Action Learning

Many people are pragmatic by doing what works. When
something does not work, one is compelled to ask questions
as to how to make it work. Beginning from the 1940s,
Reginald Revans started developing the action learning
concept, a problem-solving method characterized by taking
an action and reflecting on the results, as an educational
pedagogy for business development and problem-solving
[20, 21]. Since that time, action learning has come to describe
a variety of forms it can take and contexts it can be observed.
In the context of achieving high quality of university
teaching, “the target of action learning is the teaching of the
individual teacher” ([22], p. 7). In the general context of
improving professional performance, Dilworth [23] argues
that action learning starts with an inquiry into a real problem
so that regardless whether the problem is “tactical or stra-
tegic. . . [the process of] learning is strategic” (p. 36). Action
learning in mathematics education can be defined as
learning through student individual work on a real problem
followed by reflection on this work. In most cases, this work
is supported by a “more knowledgeable other.”

In mathematics education, action learning, the genesis
of which is in the early childhood experience, has natural
levels of maturity. Before we become concerned with the
day-to-day responsibilities attached to adulthood, we can
freely consider action learning in a game form. Our
fondness for gaming and for learning winning strategies
are carried into later life, both as means of entertainment
and as a tool for instructing the next generation of chil-
dren. (e motivation for action learning in mathematics
education gradually changes from winning games to
success in real-world ventures. (e key to success is the
ability to solve problems. Research finds that curiosity can
be characterized in terms of excitement about peculiar
observations and unexpected phenomena [24]. Addi-
tionally, “What children will be curious about depends in
large part on the nature of the world about them and their
previous experience” ([12], p. 33). Students at all educa-
tional levels seek concreteness, are naturally curious about
the real world, and enjoy benefits of action learning, es-
pecially when they use it repeatedly in mathematics ed-
ucation. In particular, in the postsecondary mathematics
curriculum for nonmathematics majors, the problems
should have applicability to reality. Interestingly, we seem
to return to “gaming” when we deal with pure theory, since
we might seek an abstract solution for the sake of solution
itself.

Max Wertheimer, one of the founders of Gestalt psy-
chology, argued that for many children, “it makes a big
difference whether or not there is some real sense in putting
the problem at all” ([25], p. 273). He gave an example of a 9-
year-old girl who was not successful in her studies at school.
In particular, she was unable to solve simple problems re-
quiring the use of basic arithmetic. However, when given a
problem which grew out of a concrete situation with which
she was familiar and the solution of which “was required by
the situation, she encountered no unusual difficulty, fre-
quently showing excellent sense” ([25], pp. 273-274). Put
another way, the best strategy to develop students’ interest in
a subject matter is to focus teaching on topics that are within
their basin of attraction. As William James, a classic of
American psychology, who was the first to apply it to the
education of teachers, put it, “Any object not interesting in
itself may become interesting through becoming associated
with an object in which an interest already exists” ([26], p.
62). Interest can be also used to develop motivation in
education as it “refers to pattern of choice among alter-
natives—patterns that demonstrate some stability over time
and that do not appear to result from external pressures”
([27], p. 132).

Reflection is as important as action. Being able to reflect
on action carried out constitutes the so-called internal
control when individuals think of themselves as being re-
sponsible for their own behavior, something that is different
from external control when seeing others or circumstances
being the primary motivation for an individual behavior
[28]. (ree basic questions commonly begin the action
learning process in addressing a real problem. We ask: First,
what should be happening? Second, what is stopping us from
doing it? (ird, what can we do?
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Action learning (often referred to in academia as action
research [29, 30]) has been traditionally used for teaching
business management and the social sciences [31, 32],
conducting scientific research [33], and teacher develop-
ment [22, 34–36]. In mathematics education [4, 37], action
learning, as a teaching method, has been adopted as ped-
agogy oriented on self-solving real problems followed up by
reflection. Learning is the primary goal, even though the
problem-solving is real and important. Learning is facilitated
by breaking out well-established mind-sets, thereby pre-
senting a somewhat unfamiliar setting for the problem. We
now have the technology-assisted, action learning pedagogy
for teaching mathematics through real-world problems,
guided by STEM instructors and community professionals,
employing a project component [4]. Digital technology is
seen at least within the requisite typology of themanuscripts.
It may go much further, of course, and include an essential
utility (e.g., a numerical integrator, a spreadsheet, or spe-
cialized software). Finally, action learning (with origins in
business education [20, 21]) provides an effective and clear
approach to mathematics education. (is approach was
developed out of different (and, as mentioned at the be-
ginning of Section 2, sometimes controversial) active
learning techniques which are ubiquitous among mathe-
matics educators across a variety of constructivist-oriented,
student-centered teaching contexts [38–41].

4. Action Learning in the Practice of
Mathematics Education

Our USF-SUNY team [4] has established that action
learning is a positive pedagogical feature throughout all
grade levels (K-20). One may argue that since many people
are lifelong learners, some of us may employ action learning
(perhaps as mathematics instructors) beyond K-20. Our
motivation to action learning mathematics can give young
students a taste of the interesting things known of mathe-
matics. (e underlying concepts can be quite sophisticated
and students may return to the ideas and take them further
as they gather experience. Examples of action learning are
presented in the subsections below by instruction level.
(ese examples are given with an emphasis on the goal of
concreteness, which in turn motivates the learners.
Employing a project component makes the “one + two”
Mathematics Umbrella model available at the tertiary level
(Section 4.2.2).

4.1. Motivation and Action Learning at the Primary and
SecondaryLevels. At the primary school level, mathematical
concepts can be motivated through the appropriately
designed hands-on activities supported by manipulative
materials. Such activities have to integrate rich mathe-
matical ideas with familiar physical tools. As was mentioned
above, an important aspect of action learning is its orien-
tation towards gaming. A pedagogical characteristic of a
game in the context of tool-supported mathematics learning
is one’s “thinking outside the box,” something that in the
presence of a teacher as a “more knowledgeable other”

opens a window to students future learning. Nonetheless,
the absence of support can be observed, as Vidler [12] put it,
“when a child stares longer at an asymmetrical rather than a
symmetrical figure” (p. 18) recognizing intuitively, through
perceptual curiosity, that stability of a figure depends on its
position. (at is, perceptual curiosity combined with cre-
ative thinking often transcends activities designed for one
level and merges into the study of more advanced ideas at a
higher cognitive level. (e following two sections demon-
strate how the use of two-sided counters and square tiles,
physical tools commonly used nowadays in the elementary
mathematics classroom, can support, respectively, the in-
troduction of Fibonacci numbers, allowing one through the
use of computing to open a window to the concept of the
Golden Ratio, and to connect the construction of rectangles
(out of the tiles) to the discussion of special numeric re-
lationships between their perimeters and areas. In both
cases, the transition from the primary level to the secondary
one can be facilitated by the use of digital technology. (at
is, mathematical ideas, born in the context of action
learning with physical tools, can be extended to a higher
level through computational experiments supported by
digital tools.

4.1.1. From Two-Sided Counters to the Golden Ratio through
Action Learning. Consider the following action learning
scenario:

Determine the number of different arrangements of one,
two, three, four, and so on two-sided (red/yellow) counters
in which no two red counters appear consecutively.

Experimentally, one can conclude that a single counter
can be arranged in two ways, two counters in three ways,
three counters in five ways, and four counters in eight ways
(Figure 1). In particular, Figure 1 shows that all the ar-
rangements with four counters can be counted through
recursive addition 3 + 5� 8 as they can be put in two groups
so that in the first group (with cardinality three), the far-right
counter is red, and in the second group (with cardinality
five), the far-right counter is yellow. By putting this idea into
action under the guidance of a teacher, a young student can
discover that the next iteration (five counters–13 ways, as
13� 5 + 8) agrees with the description of Figure 1. Aug-
menting, for consistency, the sequence 2, 3, 5, 8, 13 by two
ones (assuming that an empty set of counters has only one
arrangement) allows one to describe the completion of the
above action learning scenario (that is, reflecting on the
results of acting on concrete materials according to a certain
rule) through the sequence 1, 1, 2, 3, 4, 5, 8, 13, . . ., (in which
the first two numbers are equal to one and every number
beginning from the third is the sum of the previous two
numbers)—one of the most celebrated number sequences in
the entire mathematics named after Fibonacci (1270–1350),
the most prominent Italian mathematician of his time. As
part of reflection on the scenario, young students can be told
that as esoteric as Fibonacci numbers might seem, they are
likely to encounter them again.

Indeed, at the secondary level, Fibonacci numbers Fn

can be explored in terms of the ratios of two consecutive
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terms, (Fn+1/Fn). To this end, one can use a spreadsheet
to demonstrate that the ratios (Fn+1/Fn) approach the
number 1.61803 as n increases, regardless of the first two
terms of the sequence, F0 and F1. (e exact value of
limn⟶∞(Fn+1/Fn) � (1 +

�
5

√
)/2, the number known as the

golden ratio.(is is an example of how the use of a computer
can provide students and their teachers alike with an in-
formal bridge connecting a lower cognitive level with a
higher one. Without the ease of calculating the ratios of two
consecutive Fibonacci numbers provided by a spreadsheet, it
would be much more difficult to connect a simple action
learning activity of a specific arrangement of two-sided
counters to a cognitively more complex idea of the con-
vergence of the ratios to a number known from antiquity as
the golden ratio. Motivated by a computer, the golden ratio
can be discovered in the context of exploring a special
number sequence describing an action learning problem
appropriate for young children. In other words, a computer
can naturally open a window to students’ future action
learning (see a note about Alzheimer’s research in Section 6
below).

In connection with the use of two-sided counters in the
context of Fibonacci numbers, it should be noted that many
teacher candidates believe that concrete materials can only
be utilized at the elementary level and beyond that level, they
are of no use. With this in mind, the authors would like to
argue that, just as with Fibonacci numbers, concrete ma-
terials can be used to introduce rather sophisticated concepts
in order to add the factor of concreteness to the study of
abstract ideas. In particular, two-sided counters can serve as
an embodiment of binary arithmetic in an introductory
computer science course. More specifically, if one writes
down the first 16 natural numbers in the binary form, then,
with the support of two-sided counters, one can see the
following. (ere are two one-digit numbers with no 1’s
appearing in a row (no red counters back to back), three two-
digit numbers with no 1’s appearing in a row, five three-digit
numbers with no 1’s appearing in a row, and eight four-digit
numbers with no 1’s appearing in a row.(e numbers 2, 3, 5,
and 8 are consecutive Fibonacci numbers which, thereby,
can be used as bits of students’ previous knowledge in
developing new ideas through action learning. For more
secondary (and tertiary)-level explorations with Fibonacci
numbers, see [43].

Evidently, motivation becomes connected to an antici-
pated future success as a consequence of adolescence. Stu-
dents now seek greater concretization of concepts. When
students at the secondary level have strong motivation for
action learning, they can, and do, produce undergraduate-
quality projects, as described for undergraduates in Section
4.2 below. (ere is a gradual sense of “seriousness” that
accompanies “mature” project work. (e fine examples of
action learning of secondary-level students performing on a
college level are seen with Lauren Woodbridge’s Publix
delivery project “Pallet Physics” ([44], v. 3, 2(8)), Bo Moon’s
quantum computation project “(e Subset Sum Problem:
Reducing Time Complexity of NP-Completeness with
Quantum Search” ([44], v. 4, 2(2)), Logan White’s rocket
project “Modeling Rocket Flight in the Low-Friction Ap-
proximation” ([44], v. 6, 1(5)), and Roshan Warman’s spin-
based computing project “Spintronic Circuits: (e Building
Blocks of Spin-based Computation” ([44], v. 7, 1(1)).

4.1.2. Creativity and Action Learning. Humans are creative
when they are motivated, and one may be more creative
following general, formative concretizations of ideas. It is
important to recognize student creativity early. Educators
see creativity as “one of the essential 21st century skills . . .

vital to individual and organizational success” ([45], p. 1).
Teachers’ ability to recognize creativity of their students that
may be hidden behind their immature classroom perfor-
mance is critical for successful teaching and productive
learning. If students’ hidden creativity is not acknowledged
and supported by a teacher, it would most likely remain
dormant if not vanish [46]. (e following story, drawn from
a second-grade classroom, supports the notion that teachers
are the major custodians of unfolding the creative potential
of young children.

An elementary teacher candidate, working individually
with a second-grade student (under the supervision of the
classroom teacher), asked him to construct all possible
rectangles out of ten square tiles (a real problem for grade
two), expecting the student to construct two rectangles, 1 by
10 and 2 by 5, each of which representing a multiplication
fact for the number 10, something that would be studied
later (in grade three). (e teacher candidate was surprised to
see three rectangles as shown in Figure 2. A large number of
teaching ideas for action learning can stem from the ac-
ceptance of the rectangle with a hole which manifests the
child’s hidden creativity. Some ideas can be connected with
secondary mathematics. To clarify, consider exploring the
relationship between area and perimeter of this rectangle
with a hole, counting both external and internal perimeters
(a teacher-guided reflection on taking action by a student
using concrete materials). One can see that the area is 10
square units and the perimeter is 20 linear units. (at is,
numerically, perimeter is twice the area. Comparing areas
with perimeters of rectangles has been known from the time
of Pythagoras [47]. In the action learning fashion, a situation
to be explored can be as follows: Are there other rectangles
with rectangular holes for which the perimeter is twice the
area? To this end, at the secondary level, one can introduce

Figure 1: Pictorial representation of Fibonacci recursion [42].
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four variables, a, b, c, and d, as lengths and widths of the
larger and smaller rectangles. From here, the relation
ab− cd� a+ b+ c+ d follows. Using Wolfram Alpha—a
computational knowledge engine available free online—one
can ask the program to solve the above equation over the
positive integers. (e following result would follow:

a≥ 2,

b>
a

a− 1
,

0< c< ab− a− b,

d � −
−ab + a + b + c

c + 1
.

(1)

Setting a� b� 3, one can choose c� 1 whence d� 1. (is
gives us a square with a square hole (Figure 3). (is example
shows how knowing algebra and affordances of technology
can inform practicing teachers’ work with young children in
promoting critical thinking and fostering creativity. (at is,
once again, technology serves as an informal bridge moti-
vating connection between two different grade levels of
mathematics curriculum. Whereas a teacher may not nec-
essarily see a rich learning milieu behind a nontraditional
response by a student, the very fact that such a response has
been accepted and praised would motivate this and other
students to continue being “out of the box” thinkers.

To conclude this section, note that the troika, an ele-
mentary student, a classroom teacher, and a teacher can-
didate, can be compared in the context of action learning
with that of an undergraduate student, a mathematics fac-
ulty, and a subject area advisor as described below in Section
4.2.2. (e similarity of the two milieus (years apart) is in
double supervision of a student action learning of mathe-
matics by a duo of “more knowledgeable others.”

4.2. Undergraduate Mathematics and Action Learning

4.2.1. Comprehending Abstractness with Learning by Doing.
Mathematics language is abstract with greater abstraction
at higher levels. Traditionally, university mathematics for

nonmathematics majors is taught by distancing it from
reality with no connection to students’ professional interests.
In this setting, quite a number of soon-to-be professionals do
not see the importance of mathematics in their prospective
fields [48]. Furthermore, abstractness in teaching often re-
sults in the problem of communication. As noted in [49], in
connection with teaching engineering mathematics, there
may be discordance between terminology and ideas used by
a lecturer mathematician and their interpretation by the
students. As a result of being too theoretical, mathematics
education at the university level becomes ineffective: non-
mathematics majors study the subject matter “because they
have to.” An alternative approach to mathematics education
is based on the well-known and pragmatic notion of
“learning by doing” (e.g., [50–54]) which makes it possible a
meaningful interplay of pure and applied ideas. (is ap-
proach has great potential to bring experiential learning to
calculus—a basic course sequence in the tertiary mathe-
matics curriculum.

4.2.2. Mathematics Umbrella Model. (e entire collegiate
mathematics curriculum for nonmathematics majors can
benefit from action learning. It is found that, particularly at
the collegiate level, there should be a “middle-of-the-road”
stance on the relative weights given to theory and appli-
cation. (e Mathematics Umbrella Group (MUG) at the
University of South Florida (USF), initiated by Arcadii
Grinshpan in 1999 [55], takes this “stance.” It bridges the gap
between mathematics education and applications, while
inspiring STEM students to attain the mathematics skills
essential for success in their respective disciplines. (is
initiative led to the development of the Mathematics Um-
brella model in STEM education involving hundreds of
interdisciplinary (mathematics application) student pro-
jects. In the ten years since reporting that the MUG program
was the first organization to facilitate personalized mathe-
matics projects, dually advised by both mathematics and
subject area advisors, for teaching nonmathematics
majoring STEM students [56], MUG has remained unique in
this distinction. Each project is completed under double
supervision: a mathematics advisor (mathematics faculty)
and a subject area advisor (university or community pro-
fessional) who usually suggests a problem [4, 48, 55, 57–59].

(e hallmark of MUG is its stratagem of interconnecting
one undergraduate student with at least two professionals.
(e situation is illustrated in Figure 4. As a result, students
are exposed to a wider range of expertise than is normally
privy to the mathematics instructor alone.

Figure 3: A rectangle (square) with a square window [29].

Figure 2: Eight tiles—two rectangles with no windows.
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Another strong feature is the community ties which are
possible or the interdisciplinary connection that at least
takes place beyond the institution’s mathematics faculty.
Action learning brings “reality” to the abstractions of
mathematics. Even when mathematics instructors try to
supply problems with applications, the usefulness is not
known firsthand until the students put it to use. (is is a
motivational approach for all parties in the trio. Students
may later elect to conduct research in connection with their
project experiences. Also, they are likely to retain the
concepts involved longer than they might have in the “pure
lecture” approach.

4.2.3. Action Learning in Upper-Level Calculus Courses.
Action learning is a strong motivating factor for all par-
ticipants involved in the Mathematics Umbrella Group. (is
factor seems to be a common thread throughout the K-20
action learning spectrum.(e participants’ interest in action
learning may be proportional to individual experience.
Mathematics instructors may potentially get the biggest
benefit, but students are expected to know enough of the
theory to be motivated as well. For the undergraduate
mathematics courses such as calculus II and III, it is deemed
sufficient for students to prevail on several smaller tests and
homework assignments and then to devote their energies
toward action learning, rather than requiring them to
succeed on the final examination. In particular, this action
learning pedagogy helps students who are “marginally
successful” by allowing their final grades to include an action
learning component which is justifiably given significant
weight in the overall grading for the course.

More often, there are “standard achievers” who may be
very productive with their action learning projects. (ere is
the potential for students’ work to be published, or perhaps
even honored [4, 57], as many students have been over the
past two decades. (ese are fine motivators for all parties
involved in an action learning endeavor. Since action stems
from motivation, it is important to recognize the role of
“action motivators.” For the tertiary students, a powerful
motivator is often in learning something useful and
something on which to build or enhance a successful career.

Notably, students are naturally motivated by success in
their mathematics courses. (e influence of action learning
has been analyzed at the University of South Florida in
courses of engineering calculus involving thousands of
students enrolled in these courses and follow-up courses
from Spring 2003 to Spring 2015 [59]. Some results (grouped

by race and ethnicity) are given in Figure 5 [59]. (is figure
shows the effect of action learning, concurrent nonaction
learning sections, and historical (traditional) sections. (is
portion of the investigation involved 1589 action learning
students and 1405 students from courses not using the
action learning element. Finally, 2316 others were labeled
“historical,” meaning that they had taken the course before
Spring 2003 (i.e., before such a distinction was made as to
using or not using action learning in their courses). (e
researchers were careful to include confidence intervals for
their results. It is apparent that in this relatively large
subgroup from the larger study, all four of the race/ethnicity
categories favor being the action learning participants.(ere
is a lot of information from [59] for consideration. At any
rate, this and other results demonstrate the academic su-
periority in action over nonaction learning. (e pragmatic
conclusion is to provide action learning, since it works.

4.2.4. Action Learning as a Universal Educational Concept.
Motivation for mathematics instructors derives from ex-
posure to new experiences with action learning. (ere are
now many hundreds of action learning projects on record,
representing a wide range of topics. Additionally, there is
always some fine action learning going on, which is never
documented. Of those projects which are available in the
Undergraduate Journal of Mathematical Modeling:
One +Two (UJMM) [44], it is evident that virtually all fields
can employ action learning. (ere are projects dealing with
very specific branches of engineering, such as biomedical
nanotechnology. (ere are also many other projects outside
of “engineering proper,” like those featuring music or even
education. Others are cross-field types which defy clear
categorization. (e bridge types are quite often of special
interest. It motivates educators to see what comes up in the
mix and which fields may be connected through action
learning. (ese are the interdisciplinary features desired in
all of curricula (in the “curriculum universe” that is edu-
cation). Some details are available from the main Mathe-
matics Umbrella Group website (see Center for Industrial
and Interdisciplinary Mathematics). (e journal displays a
select subgroup of more than 2400 student projects sub-
mitted since 2000. An indication of the diverse nature of
project topics and student contributors is evident from the
variety of subject matters seen in the latest UJMM titles
([44], v. 8, 1-2): “Application of Simple HarmonicsModeling
a Shock” by Kai Raymond, “(e Forces Affecting a Sailboat”
by Kelly Stukbauer, “Optimization of a Fuel Cell” by
Eduardo Gines, “Analysis of Rainfall in Tampa” by Amy
Polen, “Approximating Surface Area of Fluctuating Lipid
Leaflets Using Weighted Grid Tessellation” by Ahnaf Sid-
diqui, “Rudimentary Model of Glucose Response to Stress”
by Nasha Rios-Guzman, “Organic Agricultural Analysis:
Efficiency of Common Practices” by Bradley Biega, “Using
the Entropy Rate Balance to Determine the Heat Transfer
and Work in an Internally Reversible, Polytrophic, Steady
State Flow Process” by Savannah Griffin, “Model Function of
Women’s 1500m World Record Improvement over Time”
by Annie Allmark, “Polycrystalline Silicon Solar Module

Math faculty

Community
professionals

Students

Non-math
faculty

(i) Significantly increased
motivation and STEM retention

(ii)

(iii)

(iv)

(v)

Real-life problems in the field of
interest
Better understanding and
retention of calculus
Connecting with the professional
community
Opportunities for research

Figure 4: Applied mathematics projects connect students with
academic and industrial STEM professionals [4, 57].
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Power Max” by Jaynil Patel, “Optimization of a Water Gas
Shift Reaction” by Ali Albuloushi, and “Tsunami Waves” by
Samantha Pennino.

In addition to the many published undergraduate pro-
jects, there are “action learning scenarios,” which might be
viewed as amalgams of different action learning experiences.
Several idealistic problems have this mixed experience
derivation. (e problems might be considered typical of
what might be considered in a project, rather than being
actual examples. (ese scenarios provide mathematics in-
structor motivation to include action learning with the usual
largely theoretical course content. (e experiences would
likely be shared by any mathematics instructors having
similar positions in mathematics education. (e immediate
motivation here is to expand our understanding of the re-
lationship between mathematics theory and solving actual
problems in the real world.

5. Motivating Questions as the Major Means of
Learning Mathematics

5.1. Questions as Instruments of Action Learning. Questions
posed generally become more sophisticated as students
mature. Instructors at all levels of mathematics education
use knowledge and experience to answer questions. Con-
crete and confident responses are desired, with the occa-
sional possibility (generally at higher levels) that questions
may require additional reflection prior to their exposition. In
the context of problem-posing and problem-solving, it is
important that one distinguishes between two types of
questions that can be formulated to become a problem:
questions seeking information and questions requesting
explanation of the information obtained [60]. Similar to two
types of signs—the first-order symbols and the second-order
symbolism [61] —one can refer to questions seeking in-
formation as the first-order questions and those requesting
explanation as the second-order questions [46]. Whereas the

first-order questions can be answered using different
methods, it appears that not all methods can be used to
provide an explanation of what was obtained in search for
information, that is, to provide an answer to a second-order
question. Often, the request for explanation is an intelligent
reflection on a method that provided information.

What does it mean that teachers need to possess “deep
understanding” of mathematics? Why do they need to have
such understanding? (ere are several reasons for pro-
spective teachers to be thoroughly mathematically prepared
in order to have positive effects on the progress of young
learners of mathematics. First, in the modern mathematics
classroom, students of all ages are expected and even en-
couraged to ask questions. In the United States, the national
standards already for grades pre-K-2 suggest, “Students’
natural inclination to ask questions must be nurtured. . .

[even] when the answers are not immediately obvious” ([19],
p. 109). Support to this suggestion can be found in the
following comment by an elementary teacher candidate: “It
is okay not knowing the answer to the question but it is not
okay with leaving that question unanswered.” (e candidate
describes herself as “the type of educator that will always
encourage my students to ask themselves some of those same
questions that will allow them to participate in some pro-
found thinking.”

5.2. International Character of Learning through Asking
Questions. Just across the border with the United States, the
Ontario Ministry of Education in Canada, through their
mathematics curriculum for early grades, sets expectations
for teachers to be able to “ask students open-ended ques-
tions. . . encourage students to ask themselves similar kinds
of questions. . . [and] model ways in which various kinds of
questions can be answered” ([62], p. 17). In order to develop
such proficiency, “teachers should know ways to use
mathematical drawings, diagrams, manipulative materials,
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and other tools to illuminate, discuss, and explain mathe-
matical ideas and procedures” ([63], p. 33). In Chile,
mathematics teachers are expected to “use representations,
call on prior knowledge, put forward good questions, and
stimulate an inquisitive attitude and reasoning among
students” ([64], p. 37). In Australia, mathematics teachers
know how to motivate “curiosity, challenge students’
thinking, negotiate mathematical meaning and model
mathematical thinking and reasoning” ([65], p. 4). (e
repertoire of learning opportunities the teachers offer to
their students includes continuous search for alternative
approaches to solving problems as well as helping students
to better learn a specific problem-solving strategy with which
they have been struggling. National mathematics curriculum
in England uses such terms as “practice with increasingly
complex problems over time . . . [and] can solve problems
. . . with increasing sophistication” ([66], p. 1). Towards this
end, teachers have to be prepared to deal with situations
when natural quest for inquiry leads students towards this
sophistication and increase in complexity of mathematical
ideas. (e need for this kind of teacher preparation is
confirmed by a teacher candidate who put it as follows: “If a
student asks why, and a teacher cannot explain how
something has come to be, the student loses all faith and
interest in the subject and respect for the teacher.”

At the undergraduate level, second-order questions are
often discussed. Mathematics instructors are aware that such
questions can be valuable for stimulating further inquiries. It
may be true that mathematics encountered at the primary
and early secondary levels should be unimpeachably un-
derstood by mathematics instructors and that students can
be “sure” of what is taught. When we begin dealing with, say
set theory or two/three-dimensional geometry, there can be
enigmatic results which truly stimulate learners to consider
studying highermathematics.(e curiosities of mathematics
are the things which learners are likely to find attractive.
Certainly, it is good for the mathematics instructor to have
deep understanding of the topic; however, there may be
details to an answer which defy immediate conjuring. In a
few rare cases, an answer is not even available. It is expected
that students’ maturity will allow them to accept that at the
higher mathematics levels they are not to lose faith and
respect for the instructor, if an explanation is deferred. At
earlier stages in mathematics education, learners believe that
mathematics is perfect. However, mathematics is just as
imperfect as anything else devised by human beings. Stu-
dents should know this.

6. Computer-Assisted Signature Pedagogy and
the 3P Model of Learning and Teaching

Curiosity and motivation can also be supported by the use of
digital tools as instruments of action learning. As it was
shown through examples from precollege mathematics
education, computers can facilitate a transition from one
cognitive level to another (higher) one. (is is consistent
with the modern-day use of computers in mathematics
research when new results stem from computational ex-
periments. For example, the joy of transition from visual to

symbolic when two-sided counters were suggested as means
of recursively developing Fibonacci numbers, which could
then be modelled within a spreadsheet where, perhaps by
serendipity, a definitive pattern in the behavior of the ratios
of two consecutive terms could be discovered.(is discovery
motivates the formal explanation of why the ratios behave in
a certain way. Likewise, the transition from numeric de-
scription of rectangles in terms of perimeter and area leads
to their formal representation. While a rectangle with a hole
was discovered by thinking “out of the box,” the availability
of a digital tool facilitates the transition from visual to
symbolic with the subsequent use of the latter representation
in a mathematical modeling situation.

(e power of computational modeling can serve as a
motivation for developing and then exploring more com-
plicated recurrence relations than that of Fibonacci num-
bers. As discussed in [58], the use of spreadsheet modeling
can be applied in the context of Alzheimer’s research to
study transgenic mice population focusing on a financial
feasibility of purchasing two parent mice (male and female)
and raising a population of mice of a specified size. An
effective approach to this problem involves the theory of
recurrence relations that originally were introduced at the
secondary level through Fibonacci numbers. (e results
obtained through spreadsheet modeling can then be used to
verify theoretical results. For more details on this project, see
[55].

All this leads to the notion of computer-assisted sig-
nature pedagogy (CASP) when encouraging reflection and
supporting analysis of the action taken by a student in the
context of action learning provides CASP with the deep
(rather than surface) structure of teaching [67] employed by
a teacher as a “more knowledgeable other.” Similarly, in an
earlier publication, Biggs [15] distinguished between the
surface and the deep structures of student approaches to
learning by describing the former approach in terms of a
student “investing minimal time and effort consistent with
appearing to meet requirements . . . [whereas the latter
approach is] based on interest in subject matter of the task;
the strategy to maximize understanding” (p. 6). By adapting
Dunkin and Biddle’s [68] the presage-context-process-
product model of classroom teaching, Biggs [15] in-
troduced now famous 3P model of student learning pivoted
by student believes about learning in general and their
current learning milieu (presage), student approach to
learning (process), and student learning outcome (product).
An inquiry into how the fist P of the model affects its second
P and, as a consequence, the third P was carried out by
Lizzio, Wilson, and Simons [69] who came out with seven
theoretical propositions. One of those propositions was
based on an argument that if university students perceive
their professors’ teaching of courses as robust, then they are
more likely to select the deep approach to learning. (e
authors found this argument to be true not only for the case
of tertiary mathematics content courses but also for
mathematics methods courses for prospective school
teachers. In the modern-day teaching of mathematics, the
appropriate use of technology is an important characteristic
of the learning environment. In particular, in the context of
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student approach to learning at the deep structure under the
umbrella of CASP, one can amplify the use of a single digital
tool like a spreadsheet by other modern technologies such as
Wolfram Alpha. To this end, CASP, structured by the deep
approaches to teaching and learning, can include the use of
the so-called integrated spreadsheets [70] which support
mathematics teaching at all educational levels with com-
putational robustness of student learning.

7. Problems and Conjectures That Inspire
and Motivate

(e student of mathematics (at any level of education) is
likely to encounter exposure to the “futility” of mathematical
perfection. In mathematics, there are easily expressed
questions (conjectures) which defy answers (proof). It seems
to be analogous to the Heisenberg uncertainty principle
where there are “limits to precision” in finding both position
and momentum, for example. (e important notion is that
there are not always “standard” solutions to mathematical
problems. Knowing this, students can possibly develop
further mathematics to resolve some problems. (ere is a
“nonstandard” action learning at work in these cases. (e
initial pondering is largely theoretical, but eventually an
application will be summoned. Notice that the problem need
not even be solved, much is bound to be learned in the
attempt. (is process is motivational. Also, the reflection
brings concreteness to the concepts within the problem and
relates to the overall “nature” of problems and problem-
solving.

Real-life applications of mathematics provide a great
deal of stimulation for various kinds of research in the
subject matter field, involving professional mathematicians
and students of different majors alike. (is is not to say that
applied mathematics is the only meaningful source of the
development of mathematical thought. Indeed, there are
many problems within mathematics itself that used to
motivate and keep motivating those who seek to gain full
appreciation of mathematics as a fundamental science. Some
of these problems (sometimes referred to as conjectures) can
be recommended to be a part of mathematics curriculum for
nonmathematics majors as well as for teacher candidates.
(e authors’ experience indicates that theorems and con-
jectures with origins in both pure and applied mathematics
have the potential to trigger imagination and thought
process of those whose mind is open to challenge.

For example, the statements and historical details of such
exciting problems as Fermat’s Last (eorem proved by
Andrew Wiles [71] and Bieberbach’s conjecture proved by
De Branges [72] (see also [73]) may be included into some
basic mathematics courses for nonmathematics majors.
Proofs of these theorems not only require more than ele-
mentary means but also are enormously complex. However,
as Stewart [74] noted, “the fact that proof is important for
the professional mathematician does not imply that the
teaching of mathematics to a given audience must be limited
to ideas whose proofs are accessible to that audience” (p.
187). Let us take a look at them.

Fermat’s Last (eorem states that equation xn + yn � zn

has no nonzero integer solutions for x, y, and z when n> 2. In
particular, this theorem can be introduced to different
populations of mathematics students as a way of answering
the question: Is it possible to extend the interpretation of
Pythagorean triples as partitioning a square into the sum of
two squares to include similar representations for higher
powers? As detailed elsewhere [75], the use of a spreadsheet
with secondary teacher candidates enables a way of visu-
alizing Fermat’s Last (eorem by modeling nonexisting
solutions to the above equation for n> 2 in much the same
way as for n � 2. Likewise, it is quite possible that with the
help of technology or through other means, a natural bridge
between the statement of Fermat’s Last (eorem and some
geometric properties of modular elliptic curves in Wiles’s
proof will be accessible to future mathematics students.

(e Bieberbach conjecture states that for each n � 2, 3, . . .

and each analytic function f(z) � z + a2z
2 + a3z

3 + . . .

that is one-to-one in the unit disk D � z : |z|< 1{ }, the in-
equality |an|≤ n holds.(is legendary result with its stunning
record alone (see, e.g., [76]) can inspire students’ interest in
learning such important mathematical concepts as one-to-
one functions, power series, convergence, and Taylor co-
efficients which, in particular, are appropriate to be discussed
with engineering majors. (e deep geometric roots of the
Bieberbach conjecture are worth mentioning here as well. For
example, its proof for n � 2 is based on presenting a plane set
area as a contour integral and thus it is accessible to non-
mathematics majors enrolled in an upper-level calculus
course.

(ere is also famous Goldbach’s conjecture [77] which
asserts that every even number greater than two can be
written as the sum of two prime numbers (perhaps, in more
than one way). It would be miraculous, if the conjecture was
found to be false. So far, no counter example has been found.
While searching for a counter example seems fruitless, it has
been shown empirically that Goldbach’s conjecture is true
for all even numbers greater than two and less than some
known number having 17 digits.

Another famous yet easy to understand problem is the
Palindrome conjecture [78]. It deals with the property of
palindromes (i.e., integers that read the same backward as
forward) to attract whole numbers under the following
procedure: start with any whole number, reverse its digits,
and add the two numbers; repeat the process with the sum
and continue to see that it leads to a palindrome. Re-
markably, this “number game” has been mentioned recently
as one of the twelve unsolved problems in contemporary
mathematics [79]. It is this problem and as noted in the
Principles and Standards for School Mathematics [19], its
educational potential for middle school students to “ap-
preciate the true beauty of mathematics” (p. 21), that mo-
tivated a secondary teacher candidate to work with one of
the authors on developing computational learning envi-
ronments for instructional presentation of and experi-
mentation with a large class of recreational problems both
solved and unsolved [80]. As Gauss put it, “In arithmetic the
most elegant theorems frequently arise experimentally as the
result of a more or less unexpected stroke of good fortune,
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while their proofs lie so deeply embedded in darkness that
they defeat the sharpest inquiries” (cited in [81], p. 112).

It appears that using technology for meaningful ex-
perimentation with numbers under the umbrella of CASP
has the potential to inspire and motivate students already at
the precollege level towards new discoveries in elementary
number theory. By expanding our understanding of
mathematics in any way, we potentially expand our ability to
“flourish.” (is is the inherent value and motivation for
action learning. All of mathematics is conjectured to provide
applications. We only need be motivated to devise those
applications.

8. Conclusion

(is paper, using the authors’ experience in mathematics
teaching and supervising applications of the subject matter
in the practice of public schools and industry, introduced the
framework of the joint use of action learning and concept
motivation in the context of K-20 mathematics education.
Different examples of the action learning—an individual
work on a real problem followed by reflection under
the supervision of a “more knowledgeable other”—have
been provided. Such supervision may include a “duo of
others”—a classroom teacher and a teacher candidate in a
K-12 school, and mathematics faculty and subject area
advisor at a university. (e paper has demonstrated that
action learning of mathematics goes hand in hand with
concept motivation—a teaching methodology where the
introduction of mathematical concepts is motivated by
(grade appropriate) real-life applications which may include
student action on objects leading to formal description of
this action through the symbolism of mathematics. (is
approach is based on notable recommendations by math-
ematicians [5, 16, 17] and educational psychologists
[1, 25, 26, 61].

(e main concluding message of the paper is that by
repeatedly utilizing concept motivation and action learning
at all levels of mathematics education, overall student suc-
cess has great potential to improve. (is message is sup-
ported by examples of creative thinking of young learners in
the classroom grounded in comprehensive collaboration of
school teachers and university faculty (in the spirit of the
Holmes Group [82]). Likewise, the message was supported
by examples of student interest in the study of calculus
through action learning in a real-life setting. It appears that
the emerging student interest in mathematics is due to
action learning and concept motivation having been used to
rectify the widespread formalism in mathematics teaching
which, in particular, has become an obstacle to the success of
STEM education [4, 7, 8]. When students have experience
with action learning of mathematics during their school
years, they are likely to continue learning the subject matter
in the same vein, thereby avoiding many bumps of the
secondary-tertiary transition. As mentioned in Section 4.2.3,
research on implementing action learning of engineering
calculus, involving thousands of students at the University of
South Florida [4, 59], indicates that while students’ interest
in action learning may be proportional to an individual

experience of that kind, their learning outcomes demon-
strate academic superiority of action learning over other
pedagogical means of calculus delivery.

At the onset of formal mathematics education, school-
children should begin experiencing action learning and
concept motivation pedagogy enhanced, as appropriate, by
asking and answering questions and learning to use tech-
nology. As was shown in the paper, not only K-12 mathe-
matics curricula of many countries support student learning
through asking questions but also their future teachers
appreciate that kind of mathematical learning. Likewise,
computer-assisted signature pedagogy [37] can be used to
maximize student understanding of mathematics and to
encourage their deep approach to learning [15]. University
undergrads have greater motivation than schoolchildren in
order to handle the responsibilities of adulthood. Yet, both
populations of students can still be motivated by their
natural “age-defying” curiosity. In this regard, stimulating
questions, the affinity for using computers, and classical
famous problems are important motivating tools in the
study of mathematics. Subsuming the entire K-20 mathe-
matics curriculum under a single umbrella is practicable
when techniques of concept motivation and action learning
are in place throughout that educational spectrum. Finally,
there is clearly a pragmatic reason for exposing students to
the action learning rainbow, and that is because among
today’s students are tomorrow’s teachers. (e process
should continue to flourish.
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