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Abstract

For a positive integer k, a k-square Sk (more generally, a square) in Z×Z is any set
{(i, j), (i+ k, j), (i, j + k), (i+ k, j + k)} ⊂ Z×Z. Let Sk denote the class of k-squares
Sk ⊂ Z× Z. A set A ⊂ Z× Z is said to be Sk-free if, for each Sk ∈ Sk, we have that
Sk 6⊆ A. For positive integers M and N , let LM,N = [0,M − 1] × [0, N − 1] be the
M ×N non-negative integer lattice. For positive integers k1, . . . , k`, set

ex(LM,N , {Sk1 , . . . ,Sk`}) = max {|A| : A ⊆ LM,N is Ski-free for all 1 ≤ i ≤ `} ,

and when {Sk1 , . . . ,Sk`} = {Sk}, we abbreviate this parameter to ex(LM,N ,Sk).

Our first result gives an exact formula for ex(LM,N ,Sk) for all integers k,M,N ≥ 1,
where ex(LM,N ,Sk) = (3/4 + o(1))MN holds for fixed k and min{M,N} → ∞. Our
second result identifies a set A0 ⊂ LM,N of size |A0| ≥ (2/3)MN with the property
that, for any integer k 6≡ 0 (mod 3), A0 is Sk-free. Our third result shows that |A0| is
asymptotically best possible, in that for all integers M,N ≥ 1, ex(LM,N , {S1,S2}) ≤
(2/3)MN +O(M +N). When M = 3m is divisible by three, our estimates on the error
O(M + N) render exact formulas for ex(L3m,3, {S1,S2}) and ex(L3m,6, {S1,S2}).

1 Introduction

We consider an extremal problem on finite lattices. For a positive integer k, a k-square Sk
(more generally, a square) in Z×Z is any set {(i, j), (i+k, j), (i, j+k), (i+k, j+k)} ⊂ Z×Z.
When k = 1, we call a 1-square a unit square, and when k = 2, we call a 2-square a bi-unit
square. Let Sk denote the class of all k-squares Sk ⊂ Z × Z. A set A ⊂ Z × Z is said to
be Sk-free if, for each Sk ∈ Sk, we have that Sk 6⊆ A. Now, for positive integers M and N ,
consider the M ×N non-negative integer lattice LM,N = [0,M − 1]× [0, N − 1]. For positive
integers k1, . . . , k`, let

ex(LM,N , {Sk1 , . . . ,Sk`}) = max {|A| : A ⊆ LM,N is Ski-free for all 1 ≤ i ≤ `}

denote the extremal number for the simultaneous avoidance of Sk1 , . . . ,Sk` in LM,N . When
` = 1 and k1 = k, we write this parameter as ex(LM,N ,Sk).

Our first result gives an exact formula for ex(LM,N ,Sk), for all integers M,N, k ≥ 1.

Theorem 1.1. For all integersM,N, k ≥ 1, where rM = M (mod 2k) and rN = N (mod 2k),

ex(LM,N ,Sk) = MN −
(
M − rM

2
+ max {rM − k, 0}

)(
N − rN

2
+ max {rN − k, 0}

)
.

We prove Theorem 1.1 in Section 2. Note that Theorem 1.1 gives ex(LM,N ,S1) = MN −
bM/2cbN/2c, for all integers M,N ≥ 1, and ex(LM,N ,Sk) = (3/4)MN , whenever M and N
are divisible by 2k.

Our next result concerns the parameter ex(LM,N , {Sk1 , . . . ,Sk`}) when ` ≥ 2.

Theorem 1.2. For all integersM,N ≥ 1, there exists A0 ⊂ LM,N of size |A0| = b(2/3)MNc+
1 with the property that for all positive integers k 6≡ 0 (mod 3), A0 is Sk-free.
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Remark 1.1. In some cases, Theorem 1.2 can be slightly improved: if M ≡ N (mod 3),
where M 6= N or 1 6= M ≡ 1 (mod 3), then |A0| = b(2/3)MNc + 2. We prove this, and
Theorem 1.2, in Section 3. �

Theorem 1.2 implies that for all positive integers k1, . . . , k` 6≡ 0 (mod 3), we have
ex(LM,N , {Sk1 , . . . ,Sk`}) ≥ (2/3)MN . Our final result shows that this bound is asymp-
totically best possible.

Theorem 1.3. Let integers M,N ≥ 1 be given, where N = 3n is divisible by three. Then,

ex(LM,3n, {S1,S2}) ≤
2

3
MN +

{
n if n ≡ 0 (mod 2),

n+ 1 if n ≡ 1 (mod 2).

Consequently, for all integers M,N ≥ 1, ex(LM,N , {S1,S2}) ≤ (2/3)MN +O(M +N).

Remark 1.2. Theorem 1.3 is best possible when n = 1, 2 and M = 3m > N is divisible by
three. Indeed, then Theorem 1.2, Remark 1.1, and Theorem 1.3 combine to give the formulas
ex(L3m,3, {S1,S2}) = 6m+ 2 and ex(L3m,6, {S1,S2}) = 12m+ 2. We have recently learned
from [1] (in progress) that a linear term in Theorem 1.3 is, to some extent, necessary. There,
it was shown that ex(LM,N , {S1,S2}) ≥ (2/3)MN + (2/27)N holds for (at least) infinitely
many pairs of integers M ≥ N ≥ 1. �

The paper is organized as follows. We prove Theorem 1.1 in Section 2. We prove
Theorem 1.2 in Section 3. We prove Theorem 1.3 in Section 4. We conclude the Introduction
with the following remark.

Remark 1.3. The problem of forbidding fixed squares in LM,N bears some resemblance to a
case of the classical problem of Zarankiewicz [4]. In the language of M×N lattices, one seeks
the maximum size z(M,N) = |A| of a subset A ⊂ LM,N which forbids an arbitrary rectangle
{(a, c), (a, d), (b, c), (b, d)} ⊆ LM,N . It is known from the work of Kővári, Sós, and Turán [2]
that z(M,N) < (N − 1)M1/2 + 2M , and a (projective plane) construction of Reiman [3]
shows z(N,N) = N3/2(1+o(1)). The maximum size |A| of a subset A ⊂ LM,N which forbids
an arbitrary square is discussed in [1]. �

Acknowledgment

The authors wish to thank the Referees, whose careful reading and helpful suggestions lead
to an improved presentation of our work. The second and third authors wish to thank
K. Milans, from whom they learned about the problems considered in this paper.

2 Proof of Theorem 1.1

Fix integers M,N > k ≥ 1. For an integer t ∈ Z, write t2k = t (mod 2k), where 0 ≤ t2k < 2k.
Set

Bk = {(i, j) ∈ LM,N : i2k ≥ k and j2k ≥ k} and Ak = LM,N \Bk, (1)

where Figure 1 gives a visual example of B3 ⊂ L13,11. We prove that ex(LM,N ,Sk) = |Ak|,
which (if true) implies the formula for ex(LM,N ,Sk) promised by Theorem 1.1. Indeed,
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Figure 1: The set B3 ⊂ L13,11.

let qM , qN ∈ N and 0 ≤ rM < 2k and 0 ≤ rN < 2k satisfy M = (2k)qM + rM and
N = (2k)qN + rN . Then, it is easy to see that

|Bk| = (kqM + max {rM − k, 0}) (kqN + max {rN − k, 0}) ,

which implies the formula for ex(LM,N ,Sk) = |Ak| = MN − |Bk| promised by Theorem 1.1.
To prove that ex(LM,N ,Sk) ≥ |Ak|, we show that Ak contains no k-squares. Indeed,

assume, on the contrary, that {(i, j), (i + k, j), (i, j + k), (i + k, j + k)} ⊂ Ak, and w.l.o.g.,
let i2k < k. If j2k < k, then (i+ k, j + k) ∈ Bk, and if j2k ≥ k, then (i+ k, j) ∈ Bk, which is
a contradiction either way.

To prove that ex(LM,N ,Sk) ≤ |Ak|, let A ⊆ LM,N be given satisfying that

(a) A contains no k-squares;

(b) |A| = ex(LM,N ,Sk).

Without loss of generality, assume that A is chosen to additionally satisfy that

(c) |A ∩Bk| is a minimum.

We will show that A∩Bk = ∅ (see Figure 1) so that (1) gives A ⊆ Ak, and hence |A| ≤ |Ak|.
Assume, on the contrary, that A ∩ Bk 6= ∅, and let (i, j) ∈ A ∩ Bk be the minimum

w.r.t. the lexicographic order on LM,N . Since (i, j) ∈ Bk, we have from (1) that i ≥ i2k ≥ k
and j ≥ j2k ≥ k, so consider the points (i − k, j), (i, j − k), (i − k, j − k) ∈ LM,N . Since
A contains no k-squares, not all of these points can belong to A. We now consider these
possibilities in cases (whose arguments are similar).

Case 1: (i− k, j) 6∈ A.
We claim that A∗ = (A \ {(i, j)})∪{(i−k, j)} contains no k-squares Sk, which contradicts

Conditions (a)–(c) (since |A∗| = |A| and |A∗ ∩Bk| < |A∩Bk|). Indeed, assuming otherwise,
a k-square Sk in A∗ must contain (i− k, j). Since (i, j) 6∈ A∗, we must have (i− 2k, j) ∈ A,
and so (i− 2k, j) ∈ A ∩Bk contradicts our choice of (i, j).
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Case 2: (i, j − k) 6∈ A.
Now, A∗ = (A \ {(i, j)}) ∪ {(i, j − k)} contains no k-squares, since otherwise a k-square

Sk in A∗ contains (i, j − k), and so (i, j − 2k) ∈ A ∩Bk contradicts our choice of (i, j).

Case 3: (i− k, j − k) 6∈ A.
Now, A∗ = (A \ {(i, j)})∪{(i−k, j−k)} contains no k-squares, since otherwise a k-square

Sk in A∗ contains (i−k, j−k) and at least one of (i−2k, j), (i−2k, j−2k), (i, j−2k) ∈ A∩Bk,
which contradicts our choice of (i, j). �

Remark 2.1. A similar proof shows Bk ⊂ LM,N is a smallest set meeting all k-squares of
LM,N . Indeed, clearly Bk meets all k-squares of LM,N , so let B ⊂ LM,N also do so, where
|B| = MN−ex(LM,N ,Sk) ≤ |Bk|. W.l.o.g., choose B so that |Bk\B| is a minimum. Assume
Bk \B 6= ∅, and let (i, j) ∈ Bk \B be the minimum w.r.t. the lexicographic order on LM,N .
Thus, for each x ∈ {(i − 2k, j), (i, j − 2k), (i − 2k, j − 2k) ∈ Z × Z, if x ∈ LM,N , then
x ∈ Bk ∩ B. Now, there exists y ∈ {(i− k, j), (i, j − k), (i− k, j − k)} so that y ∈ B \ Bk.
Define B∗ by replacing y ∈ B with (i, j) ∈ Bk, but leaving all other memberships intact.
Then, B∗ meets all k-squares of LM,N , while |B∗| = |B| and |Bk \B∗| < |Bk \B|. �

3 Proof of Theorem 1.2

Fix integers M,N ≥ 1. Define A = {(i, j) ∈ LM,N : i 6≡ j (mod 3)} and A0 = A ∪ {(0, 0)}.
Using case-analysis on MN (mod 3), one may show that |LM,N \ A| = dMN/3e. As such,
|A| = b2MN/3c and |A0| = b2MN/3c+1. For a fixed positive integer k 6≡ 0 (mod 3), we show
A0 contains no k-squares. Indeed, assume that Sk = {(i, j), (i+k, j), (i, j+k), (i+k, j+k)} ⊂
A0, for some (i, j) ∈ LM,N . If i = j = 0, then (k, k) ∈ A, which is impossible. We therefore
assume that (i, j) 6= (0, 0) so that Sk ⊂ A, and we consider the cases k ≡ 1 (mod 3) and
k ≡ 2 (mod 3).

Case 1: k ≡ 1 (mod 3).

Since (i, j) ∈ A, we have i ≡ j + 1 (mod 3) or i ≡ j + 2 (mod 3). If i ≡ j + 1 (mod 3),
then i ≡ j + k (mod 3), in which case (i, j + k) 6∈ A, a contradiction. If i ≡ j + 2 (mod 3),
then i+ k ≡ i+ 1 ≡ j (mod 3), in which case (i+ k, j) 6∈ A, a contradiction.

Case 2: k ≡ 2 (mod 3).

Again, i ≡ j+1 (mod 3) or i ≡ j+2 (mod 3). If i ≡ j+1 (mod 3), then i+k ≡ i+2 ≡ j
(mod 3), in which case (i + k, j) 6∈ A, a contradiction. If i ≡ j + 2 (mod 3), then i ≡ j + k
(mod 3), in which case (i, j + k) 6∈ A, a contradiction proving Theorem 1.2. �

We now argue the assertion of Remark 1.1. Assume M ≡ N (mod 3), where M 6= N or
1 6= M ≡ 1 (mod 3). Define Â0 = A0 ∪ {(M − 1, N − 1)}. Note that (M − 1, N − 1) 6∈ A0

because M ≡ N (mod 3) and (M,N) 6= (1, 1). For k 6≡ 0 (mod 3), we claim Â0 contains
no k-squares. Indeed, if Â0 contains a k-square Sk, then (M − 1, N − 1) ∈ Sk, because A0

contains no k-squares. Now, (M − 1− k,N − 1− k) ∈ Â0. Since M ≡ N (mod 3), it must
be that k = M − 1 = N − 1, contradicting M 6= N or M ≡ 1 (mod 3).

4

Theory and Applications of Graphs, Vol. 3 [2016], Iss. 1, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol3/iss1/2
DOI: 10.20429/tag.2016.030102



4 Proof of Theorem 1.3

Let integers M,N ≥ 1 be given, where N = 3n is divisible by three, and let A ⊆ LM,N be a
given subset containing neither unit nor bi-unit squares. Our goal is to show that

|A| ≤ 2

3
MN +

{
n if n ≡ 0 (mod 2),

n+ 1 if n ≡ 1 (mod 2).
(2)

In Section 4.1, we prove (2) when n = 1. In Section 4.2, we use the case n = 1 to prove (2)
in general.

4.1 Proof of (2) when n = 1

For each (i, j) ∈ LM,3, define

ai,j =

{
1 if (i, j) ∈ A,
0 if (i, j) 6∈ A,

ai =

 ai,2
ai,1
ai,0

 , and A = {a0,a1, . . . ,aM−1}, (3)

so thatA is the set of incidence columns ofA. For 0 ≤ s ≤ 3, letA(s) = {ai ∈ A : ||ai||2 = s},
and define a characteristic function χs : A → {0, 1} by χ−1s (1) = A(s). We prove the following
fact momentarily.

Fact 4.1. |A(3)| ≤ |A(0)|+ |A(1)|+ χ3(a0)χ2(a1) + χ2(aM−2)χ3(aM−1).

Fact 4.1 quickly implies (2) when n = 1. Indeed, we have M = |A| =
∑3

s=0 |A(s)|, and
so |A(2)| = M − |A(0)| − |A(1)| − |A(3)|. Therefore,

|A| =
M−1∑
i=0

||ai||2 =
3∑
s=0

s|A(s)| = 2M + |A(3)| − |A(1)| − 2|A(0)|

Fact4.1

≤ 2M + χ3(a0)χ2(a1) + χ2(aM−2)χ3(aM−1), (4)

which implies (2) when n = 1. It remains to prove Fact 4.1. �

Proof of Fact 4.1. We begin with a couple elementary observations for a fixed 1 ≤ i ≤M−2.
First, ||ai−1||2 ≤ 2 or ||ai+1||2 ≤ 2, since otherwise A contains a bi-unit square. Moreover,
if ||ai||2 = 3, then ||ai−1||2 ≤ 1 or ||ai+1||2 ≤ 1, since otherwise an easy case analysis reveals
that A contains a unit or a bi-unit square.

Now, define the graph G = (V = A, E) by putting, for each ai 6= aj ∈ V = A,
{ai,aj} ∈ E if, and only if, ai ∈ A(3), aj ∈ A(0) ∪ A(1), and |i − j| = 1. Since every edge
of G has exactly one endpoint in A(3), we have

∑
ai∈A(3) degG(ai) =

∑
aj∈A(0)∪A(1) degG(aj).

By the preceding observations, all aj ∈ A(0) ∪ A(1) have degG(aj) ≤ 1, and all ai ∈ A(3),
except possibly a0 and aM−1 (if they belong to A(3)), have degG(ai) ≥ 1. Thus,

|A(0) ∪ A(1)| ≥
∑

aj∈A(0)∪A(1)

degG(aj) =
∑

ai∈A(3)

degG(ai)

≥ |A(3) \ {a0,aM−1}|+ χ3(a0) degG(a0) + χ3(aM−1) degG(aM−1)

= |A(3)| − χ3(a0) (1− degG(a0))− χ3(aM−1) (1− degG(aM−1)) .
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Fact 4.1 now follows. Indeed, assume, e.g., that χ3(a0) = 1, and observe then χ2(a1) =
1− degG(a0). For χ3(a0) = 1 gives a1 6∈ A(3), and so degG(a0) = 1, iff a1 ∈ A(0) ∪ A(1), iff
a1 6∈ A(2), iff χ2(a1) = 0.

4.2 Proof of (2)

We use (4) to prove (2). For integers 0 ≤ j ≤ n − 1 and 0 ≤ s ≤ 3, define LM,3,j =
[0,M−1]×[3j, 3j+2] and Aj = A∩LM,3,j, and as in (3), define Aj = {a0,j,a1,j, . . . ,aM−1,j},
A(s)
j ⊆ Aj, and χs,j : Aj → {0, 1}. Observe that (4) implies that for each 0 ≤ j ≤ n− 2,

|Aj| = 2M + 2 =⇒ |Aj+1| ≤ 2M and |Aj+1| = 2M + 2 =⇒ |Aj| ≤ 2M. (5)

To see (5), assume, e.g., that |A0| = 2M + 2 and |A1| ≥ 2M + 1. By (4), χ3,0(a0,0) =

χ2,0(a1,0) = 1, and w.l.o.g., χ3,1(a0,1) = χ2,1(a1,1) = 1. Then, a0,0 = a0,1 =
[

1 1 1
]T

,

and since A0, A1 each contain no unit squares, a1,0 = a1,1 =
[

1 0 1
]T

. Now, we have
that {(0, 2), (1, 2), (0, 3), (1, 3)} ⊂ A, a contradiction.

To prove (2), call an index 0 ≤ j ≤ n − 1 big (medium) ((small)) if |Aj| = 2M + 2
(|Aj| = 2M + 1) ((|Aj| ≤ 2M)). Let β (µ) ((σ)) be the number of big (medium) ((small))
indices 0 ≤ j ≤ n− 1. On the one hand, σ+µ+ β = n, and so µ = n− σ− β. On the other
hand, we have

|A| =
n−1∑
j=0

|Aj| =
∑
j is big

|Aj|+
∑

j is medium

|Aj|+
∑

j is small

|Aj| ≤ (2M + 2)β+ (2M + 1)µ+ 2Mσ

= 2M(σ + µ+ β) + µ+ 2β = 2Mn+ n+ β − σ =
2

3
MN + n+ β − σ.

Observe that β ≤ σ + 1, and when n is even, β ≤ σ (which implies (2)). Indeed, let
0 ≤ j1 < · · · < jβ ≤ n− 1 be the big indices. Then (5) implies that σ ≥ β− 1, since between
every consecutive pair j` < j`+1 is at least one small index. More strongly, σ ≥ β holds if
j1 ≥ 1, or jβ ≤ n− 2, or j`+1 ≥ j` + 3, for some 1 ≤ ` < β. Otherwise, j1 = 0, j2 = 2, j3 = 4,
. . . , 2(β − 1) = jβ = n− 1, and so n is odd. �
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[3] Reiman, I. Über ein Problem von K. Zarankiewicz. Acta Mathematica Academiae Sci-
entiarum Hungariacae, 9: 269–273, 1958.

[4] Zarankiewicz, K. Problem P 101. Colloq. Math., 2: 301, 1951.

6

Theory and Applications of Graphs, Vol. 3 [2016], Iss. 1, Art. 2

https://digitalcommons.georgiasouthern.edu/tag/vol3/iss1/2
DOI: 10.20429/tag.2016.030102


	An Extremal Problem for Finite Lattices
	Scholar Commons Citation

	Theory and Applications of Graphs
	2016

	An Extremal Problem for Finite Lattices
	John Goldwasser
	Brendan Nagle
	Andres Saez
	Recommended Citation

	An Extremal Problem for Finite Lattices
	Cover Page Footnote


	An Extremal Problem for Finite Lattices

