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ABSTRACT

Deep Learning (DL) has achieved the state-of-the-art performance across a broad spectrum of

tasks. From a statistical standpoint, deep neural networks can be construed as universal function

approximators. Although statistical modeling and deep learning methods are well-established as

independent areas of research, hybridization of the two paradigms via probabilistic deep networks

is an emerging trend. Through development of novel analytical methods under the statistical

and deep-learning framework, we address some of the major challenges encountered in the design

of intelligent systems which include class imbalance learning, probability calibration, uncertainty

quantification and high dimensionality. When modeling rare events, existing methodologies require

re-sampling strategies or algorithmic modifications. On the contrary, we introduce a cost sensitive

approach that could be promptly applied to any deep neural network architecture. Our research

corroborates that the proposed approach leads to significant performance gains in highly imbalanced

data and results in improved calibration. Moreover, deterministic neural nets are ignorant to

the uncertainty associated with their predictions and tend to produce overconfident predictions,

resulting in unreliable model predictions. Uncertainty-aware deep networks provide additional

insights to model predictions and produce a more informed decision and thus, is indispensable in

applications where the acceptable margin of error is significantly low. To this end, we present

a Bayesian-based deep probabilistic learning approach that provides a principled framework for

handling uncertainty. Furthermore, we address high dimensionality in time-to-event modeling which

is a common problem in computational biology such as in genomics. Our results suggest that in the

presence of limited but high dimensional data, inducing sparsity through shrinkage priors under

the Bayesian framework is a potent alternative to the machine learning methods. With theoretical

justification and sound empirical validation on data across different domains of cyber-security and

healthcare we provide validity for the proposed methods.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Deep Learning (DL) models with different deep architectures and learning paradigms have made

breakthroughs in various application domains. From a statistical point of view, neural networks

are non-linear function approximators that excel at learning complex feature representations from

data. Engrafting statistical methodologies in deep networks can be a more effective alternative in

the design of automated systems than methods that rely merely on one discipline. For instance, in

healthcare, integrated statistical and deep learning methods have recently emerged as a new direc-

tion in the automation of the medical practice unifying multi-disciplinary knowledge in medicine,

statistics, and artificial intelligence. This dissertation demonstrates how to formulate deep and

statistical learning-based models to address many core issues in the design of intelligent systems:

class imbalance, calibration, uncertainty, and high-dimensionality.

While the contributions made here have wide applicability in different domains, we mainly focus

on Bio-medical imaging. Over the past decade, the capacities of medical imaging devices have

increased tremendously and consequently, new statistical and deep learning methods for medi-

cal imaging analysis emerged. Clinical imaging has progressed into a powerful diagnostic tool

enabling identification of morphologic and biological changes facilitating histopathological diagno-

sis of diseases, treatment, and monitoring therapeutic response. For instance, in neuro-oncology,

brain tumor segmentation in medical scans aids in the evaluation of structural abnormalities and

identification of tumor-related complications. For a comprehensive overview on biomedical image

segmentation algorithms linking the two disciplines of statistics and deep learning, the interested

reader is referred to [1]. Similarly, dermoscopic images in skin lesion diagnosis provide indispens-

able information for the development of clinical models in skin cancer. Our experimental results

suggest that model-driven classical statistics and data-driven deep learning is a potent combination

for developing automated systems in clinical oncology.
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1.2 General Objectives

The current study is concentrated on developing analytical and algorithmic solutions in machine

learning and statistical analysis for solving pressing issues in the design of automated systems,

more specifically, class imbalance learning, uncertainty quantification and high dimensionality in

time-to-event analysis. Contributions made in each chapter is briefly discussed below.

1.2.1 Class Imbalance Learning and Confidence Calibration

Imbalanced class distribution is an inherent problem in many real-world classification tasks where

the minority class is the class of interest. Many conventional statistical and machine learning clas-

sification algorithms are subject to frequency bias and learning discriminating boundaries between

the minority and majority classes could be challenging. To address the class distribution imbalance

in deep learning, in chapter 3 (published in [2]) we propose a class re-balancing strategy based

on a class-balanced dynamically weighted loss function where weights are assigned based on class

frequency and predicted probability of ground truth class. The ability of dynamic weighting scheme

to self-adapt its weights depending on the prediction scores allows the model to adjust for instances

with varying levels of difficulty resulting in gradient updates driven by hard minority class sam-

ples. We further show that the proposed loss function leads to improved confidence calibration.

Experiments conducted on highly imbalanced data across different applications of cyber intrusion

detection (CICIDS2017 data set) and medical imaging (ISIC2019 data set) show robust generaliza-

tion. Theoretical results supported by superior empirical performance provide justification for the

validity of the proposed Dynamically Weighted Balanced (DWB) Loss Function.

1.2.2 Uncertainty Quantification in Deep Learning

While Deep Neural Networks (DNNs) are powerful algorithms capable of learning high level fea-

ture representations from data yielding high predictive accuracies, the model output in a standard

neural network does not produce a measure for model uncertainty. Knowing the model confidence

with which we can trust the output is desirable to explicitly process uncertain or ambiguous inputs.

Quantification of uncertainty is imperative in safety critical applications ranging from medical diag-

nosis [3] to autonomous driving [4], [5] where the cost of error is high. For instance, an autonomous

vehicle should not only identify the objects in its surrounding environment correctly, but it is equally

important to provide a reliable measure of confidence on its predictions that allows approaching
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areas of uncertainty with extra caution. In automated medical systems, the confidence of the net-

work being deployed in the diagnosis of the disease should be properly estimated and notified to

human specialists in the event of high uncertainty. Similarly, several other applications of Artificial

Intelligence (AI) such as climate forecasting and investment decision making rely upon assessment

of the uncertainty. Thus, the practical applicability of DL in real-world problems is enhanced if the

models provide a quantifiable measure of certainty of its predictions. In chapter 4, we construct a

deep probabilistic model to quantify uncertainty in deep learning and experimentally evaluate the

proposed approach on complex neuro-imaging data.

1.2.3 Sparse Bayesian Time-to-Event Modeling and Radiomics

High-dimensional data is common in several scientific domains where a parsimonious description

of the model with a lower-dimensional structure is often required. Bayesian framework is a po-

tent alternative to the standard frequentist approach in this context due to its desirable sparsity

inducing properties, the ability to incorporate domain knowledge, and easily accessible estimates

of uncertainty. In chapter 5 we focus on survival prediction of patients with Glioblastoma in-

volving high-dimensional quantitative radiomic features. We propose a sparse Bayesian approach

that leverages shrinkage priors to address high-dimensionality problem in time-to-event modeling,

more specifically, a Bayesian accelerated failure time (AFT) model with sparse properties. It is

empirically validated on complex neuro-oncology MRI data (BRATS2020) to predict the survival

of patients with Glioblastoma Multiform. The results suggest that image-based phenotyping pro-

vide incremental prognostic value over non-imaging clinical features. While the predictive ability

of the sparse Bayesian approach proposed is in par with the standard approaches, it lends more

insight into the prediction process through uncertainty information which is not readily available

in a non-Bayesian setting.

1.3 Contributions

To summarise, this dissertation documents the following key contributions:

• We provide a differentiable loss formulation for class imbalance learning and demonstrate that

the proposed approach allows to learn models that are already well calibrated. With experi-

ments in interdisciplinary domains of cyber-security and medicine we show the proposed ap-

proach is superior to traditional methods.
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• For safety critical systems uncertainty estimation is crucial. We provide methods for segmen-

tation uncertainty quantification with probabilistic deep learning and show their applicability

with experiments in clinical imaging.

• We present a sparse regression-based Bayesian accelerated failure time model where the sparsity

is induced across predictors through a shrinkage prior. We identify relevant imaging-based

prognostic factors that influence survival of patients with Gliobalstoma. We demonstrate that

inclusion of radiomic-based features enhance the predictive performance.

1.4 Dissertation Structure

The dissertation is structured as follows: Chapter 2 is concerned with providing deep learning

preliminaries to establish the necessary background for the subsequent chapters. The following

three chapters discuss our presented methods related to class imbalance, uncertainty and high-

dimensionality: class imbalance learning and confidence calibration in Chapter 3, segmentation

uncertainty in Chapter 4 and high dimensional time-to-event modeling in Chapter 5. In each

chapter, we provide a review of literature, introduce formulations and empirically validate the

methods with experiments in bio-medical imaging. Finally, Chapter 6 concludes the dissertation.

In Chapter 6, we provide a discussion on limitations, critical challenges, and future directions.

1.5 Notation

Unless otherwise stated, the notation used throughout the dissertation is as follows. Matrices

are represented by bold upper-case letters (e.g., X), vectors are signified with bold lower-case

letters (e.g., x) and the scalars are represented by non-bold lower-case letters(e.g., x). Features

(covariates) are denoted by x ∈ X where x is a row vector and X is the underlying population.

Subscripts with bold letters denote entire rows/columns ( e.g., xi). We assume that the empirical

data set X = {x1, . . . ,xn} is formed by n independently and identically distributed (abbreviated

by i.i.d.) draws from the population X . The likelihood function is expressed by p(x|θ) where

θ ∈ Θ are the model parameters from parameter space Θ. We represent the data set likelihood

by P (X|θ) =
∏n
i=1 p(xi|θ) where the factorization is due to the i.i.d. assumption. In supervised

learning tasks we denote the feature matrix by X and the response vector by y = {y1, . . . , yn}, and

the likelihood function is a conditional model p(y|x, θ) in which data set likelihood is represented by∏n
i=1 p(yi|xi, θ). Conditional distributions are expressed as P (X|θ) where θ is a random variable,
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but in the case where the parameters are fixed, P (X; θ) denotes the distribution. We use the

notation H,E and V to represent the entropy, expectation and variance operators, respectively.
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CHAPTER 2

DEEP LEARNING: PRELIMINARIES

In this chapter, we briefly provide statistical and mathematical underpinnings in deep learning.

Starting with preliminaries in standard neural networks, we then discuss their Bayesian formula-

tion to form the basis for the dissertation’s subsequent discussion on uncertainty estimation via

probabilistic deep learning.

2.1 Mathematical and Statistical Foundations in Deep Learning

The training paradigm of deep neural networks can be explained starting with linear models.

Let a data set of size n be denoted by D = {(xi, yi)}ni=1 where xi is the feature vector and yi is

the corresponding response. Let us first consider Generalized Linear Models (GLMs) [6] where the

response is assumed to follow an exponential distribution. The structural form of the model is such

that the expected value of the dependent variables is modeled through a transformation of inner

product between the feature vector and parameters:

E[yi|xi] = g−1(xiw + b), (2.1)

where E[y|x] is the conditional expectation, g : µ → R is the link function that linearly connects

the mean response to the covariates , w ∈ Rd is a parameter vector and b ∈ R is a scalar.

However, features in its original form may not be sufficient to predict the corresponding response

variable and one possible alternative is a feature transformation x̃ = h(x) where h(·) is the transfor-

mation function. For instance, h(·) can be specified by a polynomial expansion of the features, for

e.g., in two-dimensional case h(x) = (x1, x2, x
2
1, x1x1, x

2
2). Feature transformation can be parame-

terized x̃ = h(x; θ), where θ are the parameters such that feature representations are extracted by

the model which then leads to the adaptive basis function regression, E[yi|xi] = g−1(h(xi; θ)w + b).

Neural Networks can be considered as adaptive basis function regressors where a sequence of stacked

GLMs signify the basis function:
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E[yi|xi] = g−1(h(xi; W1,b1)w2 + b2), (2.2)

where h(xi; W1,b1) = f(xiW1 + b1) is the feature transformation.

The success of deep neural networks is due to their ability to extract representative features and

hidden structural knowledge from data automatically. We next briefly discuss feed-forward neural

networks in the context of supervised classification.

2.1.1 Feed-forward Neural Networks

In the supervised setting, in a training set with n training examples {xi, yi}ni=1 , each input

vector xi ∈ Rn is associated with a corresponding class label (classification target) yi ∈ {1, . . . , c}.

Given a feature vector x = (x1, . . . , xd) ∈ Rd with d individual features xi , a deep neural net-

work with L hidden layers can be represented by a non-linear function fθ : X → Y with model

parameters θ = {θ1, . . . , θL}. Here, θi = {Wi,bi}, where Wi is the weight matrix and bi is

the bias vector for layer i. Then the DNN presents a complex feature transformation through

a(x) = f(WL.f(. . . f(W2.f(W1.x + b1) + b2) . . . ) + bL). Typically, the mapping function f(·)

consists of an affine transformation (either matrix multiplication or convolution) and a non-linear

transformation (activation function). The general activation formula for the lth layer in the jth

node can then be represented by:

a
[l]
j = f [l](

∑
k

w
[l]
jka

[l−1]
k + b

[l]
j ), (2.3)

where a[l]
j is the activation of the jth neuron in the lth layer, g[l] is the activation function in the lth

layer, w[l]
jk is the weight connection in the lth layer from neuron j in (l − 1)th layer to neuron k in

hth layer and b[l]j is the bias term of the jth node in hth layer.

The feature vector in the last hidden layer is mapped to the output space Y to obtain the network

output which is passed through a softmax function to convert into normalized (pseudo) probabilities

for different possible output classes. In a softmax layer with c neurons, the probability of class j

given the feature vector x is computed as:

P (y = j|x) =
exp(a(x)TW[s]

j + b[s]
j )∑c

j=1 exp(a(x)TW[s]
j + b[s]

j )
, (2.4)
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where a(x) is the output of penultimate layer, and W[s]
j and b[s]

j are weights and bias terms in the

jth node connecting penultimate layer to the softmax layer, s.

To find the optimal model parameters, the network is then updated iteratively with respect to a

loss function L(f(xi; θ), yi) using an optimizer (traditionally, back-propagation algorithm):

arg min
θ

1
n

n∑
i=1
L(f(xi; θ), yi), (2.5)

where θ represents model parameters, n is the sample size and L is the loss function.

The predicted class label ŷ for any input instance x̃, is the index of the maximum predicted score

among all classes, arg maxj [P (y = j|x̃)]. The loss function for multi-class classification is usually

the categorical Cross Entropy (CE) which is defined as:

LCE(ŷ, y) = −
c∑
j=1

yj log (ŷj), (2.6)

where yj = 1 if training instance xi belongs to class cj and 0, otherwise. Particularly, the objective

function CE tries to maximize the likelihood of the target class for each training instance.

2.1.2 Convolutional Neural Networks

Deep learning models with different model architectures lend themselves to solve a large variety

of problems. While 2D-CNN models have become the de facto standard for image processing appli-

cations, 1D-CNN models have shown to be effective in various applications in sequence processing

such as anomaly detection [7], speech processing [8] and biomedical data classification [9].

The key attribute of neural networks is their ability to derive complex feature representations as

linear combinations of the inputs which are then used to model the target as a non-linear function of

the derived features. As in traditional machine learning, deep neural network based solutions do not

require application of feature engineering techniques since the feature learning process is completed

automatically. Through convolutional learning and spatial pooling operations, CNNs aggregate

local features to extract complex hierarchical feature representations from feature sequence.

CNNs are composed of two distinct alternating layer types: convolutional and sub-sampling

layers. The first convolutional layer in a CNN extract primitive features of network traffic while

the subsequent convolutional layers can deduce more sophisticated features. The activation unit

in a CNN represents the results of the convolution operation of the input data with a kernel.
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The convolution layer is followed by a max-pooling layer for dimensionality reduction of data.

Finally, the dense layer classifies the output classes combining all complex features identified by

convolutional layers. An example of a CNN architecture is depicted in Figure 2.1.

Figure 2.1.: Convolution and Max pooling layer operations in a CNN architecture. Figure depicts an example of
patch-wise segmentation with CNN architecture. The input to the CNN is an image patch and the output is the
probabilities for each class where the prediction for center pixel is the class with the highest score [1].

Feature map extraction using a one-dimensional convolution operation can be expressed as:

al+1
j (τ) = σ

 F l∑
f=1

K l
jf (τ) ∗ alf (τ) + blj

 , (2.7)

where the feature map j in layer l is denoted by alj(τ), non-linear function by (σ), the number of

feature maps in layer l by F l, convolution kernels by K l
jf and bias vector by bj .

2.2 Probabilistic Deep Learning

To highlight the preliminaries in uncertainty estimation, here we provide the main concepts

underlying the probabilistic representation of DL.

2.2.1 The Bayesian Interpretation of Neural Network Learning

LetD = {xi, yi}ni=1 denote the training set of size n where each input vector x = (x1, . . . , xd) ∈ Rd

is associated with a real-valued output, i.e. y ∈ R in a regression task, or a class label yi ∈ {1, . . . , c}

in a classification setting. Deep neural nets are non-linear parametric function approximators.

Given training inputs X = (x1, . . . , xn) and corresponding labels Y = (y1, . . . , yn), the objective

is to find the model parameters ω of a function fω : X → Y which approximates the true data

distribution. In a nutshell, a neural network models the likelihood p(y|x;ω) as a nonlinear function

9



of ω and x. A standard neural network optimizes the weights and biases ω = {Wl, bl}Ll=1 (network

parameters) and finds a single weight assignment or point estimate ω∗ by minimizing the expected

loss:

min
ω

Ex,y[L(f(x; ω), y)] ≈ min
ω

1
n

n∑
i=1
L(f(xi; ω), y). (2.8)

Alternatively, from a probabilistic perspective, this is equivalent to maximum Likelihood Esti-

mation (MLE) which seeks to maximize the likelihood of data given the weights:

max
ω

Ex,y[log p(D|ω)] ≈ max
ω

n∑
i=1

log p(yi|xi; ω). (2.9)

While neural networks typically perform well, they tend to produce over-confident predictions

and does not produce a coherent measure for uncertainty urging a shift towards probabilistic deep

learning. In the Bayesian probabilistic interpretation of deep neural networks, each model is speci-

fied by a prior and likelihood. Model averaging, also known as marginalization, is the key feature in

the Bayesian approach. Instead of directly optimising model weights and inferring point estimates,

the Bayesian extension of a Neural Network learns a probability distribution over the weights by

averaging over all possible model weights (Figure 2.2).

Figure 2.2.: Left: Deterministic neural network where Weights are point estimates. Right: Probabilistic neural
network where each weight is sampled from a probability distribution. [10]

(a) Bayesian Learning of the weights:

In the Bayesian framework, a prior distribution p(ω) is placed over the space of parameters

ω ∈ Ω, which is then updated according to the Bayes rule based upon the observed data to obtain

the posterior distribution. Prior distribution captures our prior belief on what the parameters of the
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model are, whereas the likelihood represents p(Y |X,ω) the probability that the data is observed

given some parameter ω. The posterior p(ω|X,Y ) is the distribution over possible values of ω

which allows to obtain the most probable function parameters based on observations. Posterior

distribution is computed as:

p(ω|X,Y ) = p(Y |X,ω) p(ω)
p(Y |X) , (2.10)

where p(Y |X) is the model evidence which marginalize the likelihood over ω ∈ Ω.

The marginal likelihood integral p(Y |X) =
∫
p(Y |X,ω) p(ω) dω is intractable, and therefore the

true posterior density p(ω|X,Y ) = p(Y |X,ω) p(ω)/p(Y |X) is intractable.

Typically, a standard matrix Gaussian prior is assumed over the weights, orW ∼ N (0, I). Let the

random output of the Bayesian neural network (BNN) be defined as fω(x). For a regression task,

the likelihood is typically a Gaussian p(y|fω(x)) = N (y; fω(x), σ2) with distribution parameters

mean (µ) and variance (σ2) equal to the model output fω(x) and observation noise, respectively. In

classification, model output is obtained via softmax function, p(y|fω(x)) = softmax(fω(x)). Thus,

the prior distribution can be determined based on the a priori known information and the likelihood

can be computed given the observed data. However, the calculation of posterior is computationally

expensive.

(b) Posterior predictive distribution

Each possible parameter configuration weighted based on the posterior distribution allows to

obtain the prediction of an unknown label. More formally, the predictive distribution of an output

y of a test input x∗ is obtained by computing a weighted expectation over all possible model

parameters Ω as follows:

p(y∗|x∗, X, Y ) = Ep(ω|X,Y )[p(y∗|x∗, ω)] (2.11)

p(y∗|x∗, X, Y ) =
∫

Ω
p(y∗|x∗, ω)︸ ︷︷ ︸

Data

p(ω|X,Y )︸ ︷︷ ︸
Model

dω, (2.12)

where Ep(ω|X,Y )[p(y∗|x∗, ω)] denotes the expectation of [p(y∗|x∗, ω)] with respect to p(ω|X,Y ) and

p(y∗|x∗, ω) is the conditional predictive distribution and p(ω|X,Y ) is the posterior over parameters.
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In equation 2.12, data uncertainty is represented by the posterior distribution over model output

y given model parameters ω. The posterior distribution over parameters given data characterizes

the model uncertainty [11].

While Bayesian inference amounts to conditioning on data and determining the posterior distri-

bution p(ω|X,Y ) of the model parameters, the computation of model evidence in the denominator

in posterior involves an integration over the high dimensional parameter space, which is often an-

alytically intractable. The true posterior p(ω|X,Y ) is therefore approximated via a variational

distribution qθ(ω), parameterised by θ [10, 12,13].

Since the integral in Eq. 2.12 is also intractable, it is typically approximated through sampling

strategies [14,15] as follows:

p(y∗|x∗, X, Y ) ≈ 1
M

M∑
m=1

p(y∗|x∗, ωm), ωm ∼ q(ω|X,Y ), (2.13)

where {p(y∗|x∗, ωm)}Mm=1 is an ensemble of M models and ωm are samples from an approximate

posterior distribution q(ω|X,Y ).

2.2.2 Variational Inference

Inference as optimization: Variational Inference (VI) [16] involves approximating the intractable

true posterior distribution p(ω|X,Y ) with an approximating variational distribution qθ(ω), param-

eterised by θ. The similarity between two distributions can be measured by the Kullback-Leibler

(KL) divergence [17], which is computed as follows:

KL(qθ(ω)||p(ω|X,Y )) =
∫

Ω
qθ(ω) log qθ(ω)

p(ω|X,Y )dω. (2.14)

The optimal approximation is the setting of the parameters θ that minimize the KL divergence

between the qθ(ω) and posterior distribution of interest:

θ∗ = arg min
θ

KL[qθ(ω)||p(ω|X,Y )]. (2.15)

Applying the Bayes rules allows us to re-write this optimization as:
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θ∗ = arg min
θ

∫
Ω
qθ(ω) log qθ(ω) p(Y |X)

p(Y |X,ω) p(ω)dω

= arg min
θ

log qθ(ω)− log p(ω)− log p(Y |X,ω)

= arg min
θ

KL[qθ(ω)||p(ω)]− Eqθ(ω)logP (Y |X,ω), (2.16)

where q(ω|θ) is the variational posterior, p(ω) is the prior and p(D|ω) is the likelihood. Since

log p(Y |X) is a constant, it is omitted from the optimization.

Variational objective: The variational objective of minimizing KL divergence is equivalent to

maximizing the variational lower bound, also called evidence lower bound (ELBO):

θ∗ = arg max
θ

Eqθ(ω)logP (Y |X,ω)−KL[qθ(ω)||p(ω)]. (2.17)

Maximizing the first term in ELBO, referred to as expected log likelihood with regard to qθ(ω)

enables obtaining qθ(ω) which explains the data best. The second term acts as a regularization

term, and aims to minimize KL divergence between the variational distribution and prior.

Then at inference, an approximate predictive distribution can be derived using the variational

predictive distribution:

p(y∗|x∗, X, Y )
∫

Ω
p(y∗|x∗, ω) qθ∗(ω)dω, (2.18)

where ω = {W}Li=1 is the set of weights for a neural network with L layers.

2.2.3 Bayesian Convolutional Neural Networks

We conclude this chapter by extending the previously discussed approximate Bayesian infer-

ence approach to CNNs which will facilitate obtaining model uncertainties for imaging data.

Consider the CNN architecture discussed in section 2.1.2 and in Figure 2.1. More formally, as-

sume a three-dimensional tensor x ∈ RHi−1×Wi−1×Ki−1 is fed into the ith convolutional layer,

where Hi−1 is the height, Wi−1 is the width and Ki−1 are the channels. Each convolution

layer is consisted of a series of filters known as kernels, denoted by kk ∈ Rh×w×Ki−1 for k =

1, . . . ,Ki, where h, w and Ki−1 denote the kernel width, height, and number of channels, respec-

tively. The convolution of kernels with the input at a specified stride s yields an output layer
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with dimensional equal to y ∈ RH
′
i−1×W

′
i−1×Ki , where H ′i−1,W

′
i−1 and Ki are the new height,

new width and the number of kernels, respectively. The sum of element-wise multiplication be-

tween kernel kk with a corresponding input patch yields the elements yi,j,k in the output layer:

[[x(i− h/2, j − w/2, 1), . . . , xi+h/2,j+w/2,1], . . . , [xi−h/2,j−w/2,Ki−1 , . . . , xi+h/2,j+w/2,Ki−1 ]].

A Probabilistic CNN allows to represent the parameter uncertainty in the form of probability

distributions (Figure 2.3). A standard CNN can be transformed into its probabilistic formulation by

placing a prior over each kernel. Posterior is analytically intractable, and each kernel-patch pair can

be integrated via approximate variational inference methods discussed above. More on probabilistic

deep learning and its application to uncertainty estimation will be discussed in Chapter 4.

Figure 2.3.: An example of a BCNN. Input image, filters and output are depicted in the figure. Left: each weight
has a single fixed value. Right: each weight is represented by a probability distribution. [18]
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CHAPTER 3

DYNAMICALLY WEIGHTED BALANCED LOSS: CLASS IMBALANCED

LEARNING AND CONFIDENCE CALIBRATION OF DEEP NEURAL

NETWORKS 1

3.1 Introduction

With Artificial Intelligence, mobile and Internet of Things (IoT) driving data complexity and

new sources of data, a new paradigm named big data has emerged. High class imbalance, often

observed in large-scale data sets [19], occurs when some classes are under-represented (minority)

compared with few classes that dominate (majority), introducing a distributional bias in favor of

the majority classes. Such a skewed class distribution with a biased learning process could result

in underestimation of minority class conditional probabilities hindering classification performance.

Despite decades of research, training unbiased models from highly imbalanced data sets continues

to be an open problem.

Data distribution imbalance is predominant in many real-world classification tasks, such as fault

diagnosis [20], [21], network intrusion detection [22], medical diagnosis [23], [24], electricity pilferage

[25] and fraudulent transactions [26], among others. Handling class-imbalance is of great importance

in these situations, where the minority class is the class of interest with respect to the learning

task. For instance, a malicious program should not be misclassified as benign which could lead to

more adverse consequences than the reverse. Similarly, a malignant skin lesion which is rare should

still be correctly identified. The same applies to several other application areas, where the accurate

detection of rare events is crucial. As conventional classifiers rely on balanced class distributions,

they will tend to misclassify minority observations of data with a skewed class distribution [27], [28].

Thus, a classifier which perform well and learn effectively from inherently more difficult and rare

classes is highly desirable.
1Portions of this chapter have been previously published in IEEE Transactions on Neural Networks and Learning

Systems (2021): https://doi.org/10.1109/TNNLS.2020.3047335, and have been reproduced with permission from
IEEE Publishing.
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Obtaining reliable probability estimates is crucial to make informed decisions in real-world ap-

plications. This is even more necessary for imbalanced data due to high uncertainty around rare

events. While classification of data featuring high class imbalance has received attention in prior

research, reliability of class membership probabilities in the presence of class imbalance has been

previously assessed only to a very limited extent [29], [30]. A closer look to the previous studies

on probability calibration shows that research on classification calibration under class imbalance in

the context of deep learning is so far lacking in the scientific literature.

Deep Learning (DL) has arguably become the most crucial breakthrough in machine learning

and has achieved the state-of-the-art performance in various applications. Deep Neural Networks

(DNNs) are comprised of sums of non-linearly transformed linear models [31] and, thus, are trained

to approximate non-linear functions between the input and output. In neural networks, the feed-

back generated by the loss function helps in optimizing the parameters. Due to the feasibility in

differentiable optimization, the most common choice for the loss function in multi-class classifica-

tion is the cross entropy. Classical cross-entropy based loss function gives equal importance for

each data instance, which will lead the network oversee classes with fewer number of observations.

Thus, cross entropy loss is improper in classification or segmentation tasks under class imbalance.

A simple heuristic method which is widely adopted to balance loss in the presence of class imbalance

is to set class weights inversely proportional to the class frequency [21], [32]. However, this strategy

reveals poor performance on large-scale real-world data. In contrast, we propose a dynamic strategy

to assign class weights with emphasis on hard to train instances and propose a novel loss function

called Dynamically Weighted Balanced (DWB) Loss which is capable of naturally handling the class

imbalance while also leading to improved calibration performance. To illustrate the generality of

the proposed approach, experiments are conducted on challenging real-world applications in cyber

intrusion detection and skin lesion diagnosis.

Contributions: The proposed approach is distinct in two ways with respect to the previous work:

(1) Instead of a fixed weighting scheme, the assigned weights self-adapts its scale based on the

prediction difficulty of the data instance. (2) We link class imbalance and reliability of confidence

estimates. To the best of our knowledge, prior research has not addressed both these issues in a

unified approach in the context of deep learning. The paper therefore presents the following major

novelties: (1) A differentiable loss formulation based on a class rebalancing strategy, where the

weights are dynamically changed during the course of training. (2) A framework that allows to
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learn models that are already well calibrated, thus simultaneously addressing both class imbalance

and reliability of class membership probabilities in deep neural networks.

3.2 Related Work

3.2.1 Class Imbalance

Despite recent advances in deep learning, the research on deep neural networks to address class

imbalance remain limited [33]. We briefly describe below the traditional methods and prominent

work in recent years on deep imbalanced learning.

Most of the previous efforts to handle class imbalance can be divided into two categories: data-

level and algorithmic-level methods. Data-level methods [34–41] alter the class distribution in the

original data by employing re-sampling strategies to balance the data set. The simplest forms

of re-sampling include random over-sampling and random under-sampling. The former handles

class imbalance by duplicating the instances in the rare minority class and thus, augmenting the

minority class, whereas the latter randomly drops instances from the majority class to match the

cardinality of minority class. Experiments conducted in [42] suggest that data sampling strategies

have little effect on classification performance, however, results in [43] demonstrate that random

over-sampling leads to performance improvements. While sampling strategies are widely adopted,

these methods manipulate the original class representation of the given domain and introduce

drawbacks. Particularly, over-sampling can potentially lead to overfitting and may aggravate the

computational burden while under-sampling may eliminate useful information that could be vital

for the induction process. Moreover, a classifier developed by employing sampling methods to

artificially balance data may not be applicable to a population with a much difference prevalence

rate since the classifier is trained to perform well on balanced data.

Algorithm-level approach involve adjusting the classifier, and can further be categorized into en-

semble methods and cost-sensitive methods. The most widely used methods include bagging [44]

and boosting [45] ensemble-based methods. Boosting algorithms such as AdaBoost work by placing

more emphasize on harder to train examples and using them to train subsequent classifiers. Ex-

periments in [46] suggests boosting performs better than sampling methods. Alternatively, hybrid

ensemble methods which combine sampling and boosting methods [47], [48] have also been proposed

in past literature. A thorough review on ensemble techniques for imbalanced data with emphasis
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on two-class problems is presented in [49]. While ensemble-based algorithms are worthwhile, the

use of multiple classifiers makes them more complex which leads to increased training times.

To reinforce the sensitivity of the classification algorithm towards the under-represented class,

cost sensitive learning methods incorporate class-wise costs into the objective function of the clas-

sification algorithm during training process. Cost parameters can be arranged in the form of a

cost matrix such that higher costs are associated with misclassification of an observation from

the minority class [50]. However, design of the cost matrix which includes different misclassifi-

cation costs associated with each class sample may require expert judgement. Another approach

to cost-sensitive learning is rescaling the data, performed by assigning training examples of dif-

ferent classes with different weights (re-weighting), re-sampling the training instances or shifting

the decision threshold based on their misclassification costs. These methods have been reported to

perform well on binary data [50]. In [28], authors study techniques which are proven to be efficient

in handling class imbalance. They conclude that while almost all methods are effective on binary

classification, some methods are only effective in binary case and that cost sensitive learning can

become highly complicated in multi-class setting.

Among recent contributions in deep imbalanced learning, Khan et al. [51] proposed a cost sensitive

approach where they optimized both the model parameters and cost parameters synchronously. In

the domain of computer vision, a recently proposed loss function called Focal Loss [52] for object

detection attracted considerable attention in which they promote harder samples by down-weighting

the loss assigned to well-classified instances. A meta-learning approach that determines per-sample

loss weights of the training data based on their gradient directions is presented in [53], but requires

an additional validation set and takes approximately three times the training time compared to

regular training. Zhang et al. [54] proposed an evolutionary cost-sensitive deep belief network

(ECS-DBN) to improve the imbalance classification performance of Deep Belief Networks (DBN).

However, their approach is prohibitively expensive since the class-dependent misclassification costs

are first optimized by an adaptive differential evolution algorithm (EA). A method that combines

hard sample mining with a newly introduced class rectification loss (CRL) function is proposed

in [55]. They adopt a batch-wise hard sample mining approach on the minority class. In [56], loss

reweighting is performed by the inverse effective number of samples. Based on the assumption that

the samples with too many similar gradient norms are the easy samples, authors in [57] suggested

a counting based approach called Gradient Harmonizing Mechanism (GHM).
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Current approaches for handling class imbalance in deep learning contains drawbacks with respect

to over-fitting, loss of information, complexity and require changes to the network architectures and

optimization process. Furthermore, existing methods for loss reweighting require careful tuning of

hyper-parameters which can be computationally expensive.

3.2.2 Confidence Calibration

Most of the previous studies have almost exclusively focused on either class imbalance or obtain-

ing calibrated probability estimates, but handling both these issues concurrently remains briefly

addressed in literature [29], [30]. In [29], authors show that probability estimates of the instances in

minority classes are unreliable and that the methods of handling class imbalance do not automat-

ically address calibration. Moreover, experiments in [30] demonstrates that strategies adopted to

mitigate effects of class imbalance such as under-sampling adversely affect probability calibration

of minority classes. In the context of neural networks, post-hoc calibration methods including ma-

trix scaling, vector scaling and temperature scaling are widely adopted for probability calibration.

Temperature scaling, proposed more recently by Guo et al. [58] gained significant attention. The

method is applied to the logits of the neural network and require a validation set to tune a temper-

ature parameter. However, the performance of these approaches in the presence of class imbalance

is not adequately explored.

Differing from previous methods which require a handcrafted cost matrix, assign fixed weights,

or involve algorithmic modifications, we propose a loss function incorporating a dynamic weighting

factor adjusted during the training process to address training bias of imbalanced data which also

result in well-calibrated confidence estimations. It does not require any additional hyper-parameter

tuning and can be promptly applied to any deep neural network architecture.

3.3 Dynamically Weighted Balanced (DWB) Loss

3.3.1 Loss Function Formulation

Revisiting Categorical Cross Entropy

Let the training set with n samples be denoted by D = {(xi, yi)}ni=1 ⊂ Rdx×Rdy , where X ⊂ Rdx

is the feature space and Y ⊂ Rdy is the label space. For each data instance i, xi ⊂ X is the input

feature vector and yi ⊂ Y = {1, 2, . . . , c} is the ground-truth class label. Consider a hypothesis

(classifier) from a parametric family F := {fθ : Rdx × Rdy |θ ∈ Θ} which maps input feature space
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to the label space f : X → Y and learns by minimizing the loss L(f(x; θ), y). Given a loss function

L : R× Y → R+ and a classifier f , the (empirical) risk is defined as RL(f) = ED[f(x; θ), y], where

the expectation is with respect to the the empirical distribution, D.

Consider a DNN with the softmax output layer with loss as the categorical cross entropy. Then

the parameters of DNN can be optimized with empirical risk minimization where risk is defined as:

RL(f) = ED[f(x; θ), yx] = − 1
n

n∑
i=1

c∑
j=1

yij log (fj(xi; θ)), (3.1)

where θ is the set of parameters of the classifier, yij is the jth element of one-hot encoded label of

the instance xi with yi = eyi ∈ {0, 1}c such that 1Tyi = 1,∀i, and fj(x; θ) ∈ Rc is the model output

with fj denoting the jth element of f . Since the output layer is a softmax,
∑n
j=1 fj(xi; θ) = 1 and

fj(xi; θ) ≥ 0, ∀j, i, θ.

Dynamic Weighting of Loss Function

The backpropagation of error algorithm which is typically used to train neural networks updates

the weights of the model in proportion to the errors made during training. As the misclassification

errors of data instances from each class are given the same importance, for severely skewed class

distributions this results in adapting the classifier in favor of majority class. While class imbalance

does not hinder model performance in simple classification tasks with clear class separation, it

affects classes that are inherently more difficult to classify. Training samples from classes with fewer

observations producing lower class probabilities are expected to be the harder instances. Moreover,

correct classifications tend to have greater softmax probabilities than those misclassified and out-

of-distribution instances [59]. In this context, we introduce a dynamic weighting based classifier

objective function based on the prediction probability of ground truth class to assign higher weights

to hard to train instances, which we term the Dynamically Weighted Balanced (DWB) Loss. Let

fj(xi; θ) be indicated by pij for convenience. Thus, pij is the predicted probability of the class j of

instance xi. We define Dynamically Weighted Balanced (DWB) Loss as:

LDWB = − 1
n

n∑
i=1

c∑
j=1

w
(1−pij)
j yij log (pij)− pij(1− pij), (3.2)

where wj is the class weight of class j, yij is the jth element of one-hot encoded label of instance

xi and pij is the predicted probability of the class j of instance xi.
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The proposed loss function is composed of two terms: dynamically weighted cross entropy and a

regularization component equal to the entropy of brier score which can be considered as a reliability

component that leads to better calibration (more on calibration is in section 3.3.2).

The class weights wj can be handled as a hyper-parameter that is learned from data by cross

validation or set proportional to inverse class frequency. We set wj equal to the log ratio of the

class frequency of the majority class and the class frequency nj (computed over the training data

set) as follows:

wj = log
(

max(nj |j ∈ c)
nj

)
+ 1. (3.3)

As such, misclassification errors for a class j with class-wise cost of wj will have wj-times more

penalty than misclassification errors for the majority class with weight equals to 1. For extremely

imbalance classes, log smooths the weights and to avoid major class weight being less than 1, we

add 1 to the log weights.

While a fixed-weighting approach based on class frequency balances the contribution from ma-

jority and minority classes, it does not discriminate between the easy and hard sample instances.

Instead, we apply class-wise weights of various magnitudes from the same class depending on the

prediction output and adjust the relative contribution of mispredictions. The loss function defined

in equation (3.2) optimizes a dynamically weighted training loss which reflects labels’ importance

level based on class frequency while promoting hard positives which are predictions with low con-

fidence scores.

For illustration purposes, we consider a case where class weight or class imbalance ratio, wj = 2.

Figure 3.1 provides an intuitive comparison of different losses: standard binary Cross Entropy

(CE), cross entropy with fixed class weights set to imbalance ratio, Focal Loss (FL) and proposed

Dynamically Weighted Balanced (DWB) Loss. It depicts how the proposed DWB loss reshapes

the loss function based on the prediction probability of the target by dynamically assigning the

importance weights. Note that the Focal Loss always produces a lower loss value when compared

with the standard cross entropy loss. This results in FL still down-weighting correct predictions

with low prediction scores (p < 0.6). On the contrary, the proposed DWB loss penalizes more than

the cross entropy if the predictions defined from the network outputs are confident and wrong.

We note two properties of the DWB Loss: (1) When a training instance is misclassified and pij
is small, the loss is up-weighted. (2) As pij goes close to 1, the weighting factor for well classified
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Figure 3.1.: Comparisons among proposed Dynamically Weighted Balanced (DWB) Loss and other commonly used
losses for classification: the standard Cross Entropy (CE) loss, cross entropy with fixed weights assigned and the
Focal Loss (FL) with hyper-parameter(γ) set to 2 (recommended). DWB Loss put more focus on hard to train,
misclassified examples through a dynamic weighting factor.

instance is close to 1, hence the loss is unaffected and equivalent to Cross Entropy. Differing

from FL which down-weights the contribution of easy samples, proposed DWB Loss focus more on

hard examples by up-weighting the misclassified examples while taking into account both sample

difficulty and the class frequency. Experiments suggest that the performance of the proposed loss

function is superior to the previous class balancing approaches, implying that it is a more effective

alternative to the existing methods.

We visualize dynamic class weights (dash lines) in Figure 3.2 for each class in imbalanced CI-

CIDS2017 data set assigning different predicted probabilities for ground truth. Note that pij = 1

corresponds to no re-weighting and pij = 0 corresponds to re-weighting by imbalance ratio (wj)

which is proportional to inverse class frequency (logarithm was not taken when computing the

weighting factor in Figure 3.2 for better illustration). Thus, the introduced self-adapting weight-

ing scheme enables smooth adjustment of the class-balanced term between re-weighting and no

re-weighting of objective function. The proposed cost sensitive learning approach with DWB loss

function is presented in Algorithm 1.

3.3.2 Improving Calibration using DWB loss

Biased training data with a skewed class distribution typically under-estimates the class proba-

bility estimates of minority class instances [29], and therefore, the predicted class probabilities are
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Figure 3.2.: Visualization of the weight term based on predicted probability of ground truth class (p) on long-tailed
CICIDS2017 data. Y-axis is in log scale. Solid blue line represents the number of samples in each class while the
dash line represents how the assigned weight changes w.r.t prediction probability of ground truth class. Note that
here we have not taken logarithm when computing the weighting factor for better visualization.

Algorithm 1 Cost Sensitive Learning with DWB Loss
Input: Training set (XT ,yT ), Maximum number of epochs M , Learning rate for θ, Class

weights w.
Output: Learned network parameters θ∗

1: Net← construct_DNN()
2: θ ← initialize_Net(Net) . Random Initialization
3: for b ∈ [1, B] do . Number of batches
4: for i ∈ [1, t] do . Number of samples in batch
5: pij ← Forward(xi,yi,Net, θ) . predicted probability of the class j of instance xi
6: wij ← (wj)(1−pij)

7: end for
8: L ← compute_loss . Eq. 3.2
9: ∇θ ← Backward(L,xb,yb,Net, θ)
10: θ∗ ← update_NetParams(Net, θ,∇θ)
11: end for
12: return θ∗

unreliable in class imbalance scenarios. The parameter estimation bias under class imbalance also

applies to models which typically produce calibrated probability estimates, such as logistic regres-

sion [60]. Obtaining well-calibrated probability estimates which are reflective of the true likelihood

of events [61] is highly desirable in real-world applications. The calibrated prediction probabili-

ties are in concordance with the true occurrence of the event of interest and perfect calibration is

formally defined as:

P(Y = y|p̂ = p) = p ;∀p ∈ [0, 1], (3.4)

where Y is a class prediction and p̂ is its associated confidence.
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The regularizing component of the DWB loss is equal to the entropy of conditional distribution

p = pθ(y|x) in Brier Score. Recall that entropy of a probability assignment is a measure of inherent

uncertainty [62]. Below we show that the DWB Loss minimizes a regularized upper bound on the

weighted Kullback-Leibler (KL) Divergence [17] between the true distribution q and the predicted

distribution p.

Considering a data instance with class label y, ground truth probability qy and class membership

probability estimate py, we proceed to obtain the following:

LDWB = −w(1−py)
y qy log (py)− py (1− py)

≥ −wy (1− py) qy log (py)− py (1− py)

;∀y, wy ≥ 1 and py ∈ [0, 1]

= −wy qy log (py)− wy | py qy log (py) | −py (1− py)

;∀y, log (py) ≤ 0

≥ −wy qy log (py)−max(qy) wy | py log (py) |

− py (1− py)

≥ −wy qy log (py) + wy py log (py)− py (1− py)

;∀y, qy ∈ [0, 1]

≥ w (CE(q,p)−H(p))− p (1 − p), (3.5)

where CE(q,p) is the cross entropy between true distribution q and predicted distribution p, and

H(p) is the entropy of p.

Since, CE(q,p) = KL(q||p) +H(q), the above inequality can be represented as:

LDWB ≥ w (KL(q||p) + H(q)︸ ︷︷ ︸
constant

−H(p))− p (1 − p)

≥ w (KL(q||p)−H(p))− p (1 − p), (3.6)

where KL(q||p) represents the KL divergence between target q and predicted p distributions.

The proposed loss constructs an upper bound on the weighted KL divergence with an additional

regularization equal to the sum of wH(p) and p(1 − p). While it seeks to minimize the deviation

of the predicted distribution from the true label distribution through KL divergence, it aims to

maximize the entropy terms, thereby penalizing over-confident predictions on the target as a form of
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regularization which leads to better calibration. While FL has shown to have calibration properties

in [63], we did not observe significantly improved results with it in our experiments.

3.3.3 DWB Loss Function Gradients

Let the predicted (unnormalized) output from the model be denoted by zi, where i ∈ {1, ..., c}.

The softmax function Rc → Rc, maps a vector z ∈ Rc to a vector p ∈ Rc which can be expressed

as:

pi(z) = ezi∑
j∈{1,...,c} e

zj
;∀i ∈ {1, ..., c} (3.7)

where z is a real vector.

Given that for a data instance with class label y, the only non-zero element of the one-hot encoded

vector y is at the y index, the DWB loss is simplified as:

LDWB = −w(1−py)
y log (py)− py (1− py). (3.8)

To check the impact of weighting factor on gradient updates, consider the first component of the

DWB loss, L1DWB = −w(1−py)
y log(py). It is equivalent to cross entropy loss when w = 1, for which

the loss function gradients are as follows:

LCE = − log (py) = − log
(

ezy∑
j e

zj

)
(3.9)

∇ziLCE = ∇zi

−zy + log
∑
j

ezj


= 1∑

j e
zj
∇zi

∑
j

ezj −∇zizy

= pi −∇zizy

= pi − 1(y = i), (3.10)

where

1(y = i) =


1 ; y = i

0 ; otherwise
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When wy 6= 1, the gradients of the dynamic weighting factor w(1−py) reduces to:

∇ziw(1−py)
y = ∇ziw

(
1− ezy∑

j
e
zj

)
y

= w

(
1− ezy∑

j
e
zj

)
y log (wy)∇zi

(
1− ezy∑

j e
zj

)

= −w(1−py)
y log (wy) [py 1(y = i)− py pi]. (3.11)

Using the product rule, we obtain the gradients of L1DWB as follows:

∇ziL1DWB = w(1−py)
y [1− py log (py) log (wy)] [pi − 1(y = i)]. (3.12)

Thus, when compared with cross entropy loss, the DWB loss weights each data instance by an

additional weighting factor. Consequently, the predictions that are less congruent with the provided

ground-truth labels are weighed more in the gradient update, which in turn provides more emphasis

on neural network training of difficult samples.

3.4 Experiments

3.4.1 Experimental set-up and Evaluation

Experiments: We evaluate the proposed approach on two challenging real-world tasks: Cyber-

Intrusion Detection and Skin Lesion Diagnosis, and a detailed description of each is provided in

subsequent sections (section 3.4.2 and section 3.4.3). The following loss functions are compared

in terms of classification and calibration performance: 1) Cross entropy is set as the baseline, 2)

Weighted Cross Entropy weights each data instance by the inverse frequency, 3) Focal Loss down-

weighs the easy samples, 4) (Proposed) DWB Loss dynamically weights loss contribution of each

data instance focusing on hard to train instances.

Classification Evaluation: In an extreme class imbalanced setting, a classifier that simply pre-

dicts any instance as belonging to the majority class could achieve a deceptively high accuracy. We

evaluate the model classification performance subject to four different metrics: Precision, Recal-

l/Sensitivity (Detection rate), F-measure and AUROC Score. Let us define a particular class j as a

positive instance and all other classes as negatives. The performance metrics for a particular class
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label (j) are defined as follows:

Precisionj(Pr) = TPj/(TPj + FPj)

Recallj(Re) = TPj/(TPj + FNj)

F1− scorej = (2× Pr ×Re)/(Pr +Re),

(3.13)

where TP are True positives, TN are True Negatives, FP are False Positives and FN are False

Negatives.

Precision reflects the proportion of a specific label classified correctly with respect to instances

which were predicted to belong in that class. Recall is defined as the proportion of instances that

are predicted to belong to a class and truly belong in the class. F1-Score is the weighted harmonic

mean of precision and recall. The average of the recall of each class is equivalent to balanced

multi-class accuracy. In addition to aforementioned classification metrics, we utilized Area Under

the Receiver Operating Characteristics (AUROC) as an evaluation criteria.

Calibration Metrics: We evaluate the calibration performance based on Expected Calibration

Error (ECE) [64], Maximum Calibration Error (MCE) and Brier Score (BS) [65]. While ECE is

the most common calibration metric, it has several drawbacks [66]. We use BS as the primary

metric for calibration evaluation which measures the average squared loss between the estimated

class membership probabilities and true class value. Lower values indicate better calibration. BS

is formally defined as follows:

BS = 1/n
n∑
i=1

c∑
j=1

(yij − pij)2, (3.14)

where n is the overall number of instances, with yij and pij denoting the jth element of one-hot

encoded class label and predicted probability of the instance xi, respectively.

3.4.2 Experiment 1: Cyber Intrusion Detection

An Intrusion Detection System (IDS) dynamically monitors network traffic to efficiently detect

cyber-attacks from normal legitimate traffic [67]. As network intrusions represent only a small

subset of all network traffic, the size of the benign traffic outweighs that of the malicious traffic.

The fact that the overwhelming majority of network traffic will be in the ‘benign’ class and rare

positive cases (malicious network traffic) will be in the ‘attack’ class, create an extreme class

imbalance problem. Intrusion detection can therefore be interpreted as a multi-class classification

problem under high class imbalance.

27



3.4.2.1 Dataset Description

We rely on an intrusion detection data set (CICIDS2017) published by the Canadian Institute

for Cyber-Security (CIC) at the University of New Brunswick (UNB) [68]. Captured network

flow records in the data set resembles the real-world network traffic and include both normal and

malicious attack traces. This flow-based data is captured within a five-day timeframe in 2017

and contains 3.1 million flow records. Each network flow record is characterized by 86 features

which can be categorized into time-based features (e.g. flow duration and inter-arrival packet time),

size of payload data (e.g. total application bytes and maximum size of the packets) and packet

count (e.g. source to destination packet count). Certain attack classes in the data set are highly

underrepresented categorizing intrusion detection for CICIDIS2017 as an extremely imbalanced

multi-class classification problem.

3.4.2.2 Implementation (Intrusion Detection System Model Overview)

While deep learning models can extract features automatically, conventional machine learning

classifiers involve a feature selection phase and hence, implemented under three stages: (a) Pre-

processing phase: includes data cleaning, stratified Train-Validation-Test split procedure and data

transformations; (b) Feature Selection phase: Implementation of correlation analysis followed by

feature selection through Recursive Feature Elimination with Cross Validation (RFE-CV); (c) Clas-

sification phase: involves model fitting and performance evaluation. Classification performance of

conventional classifiers and deep neural networks with different loss functions is then compared.

Data Pre-Processing Phase: The data set is comprised of separate attack files for each attack class.

We first combined all attack records into Denial of Service (DoS) attack file which encompasses

the largest number of Benign records. However, the prevalence rate of each attack in individual

data files remain approximately the same after merging them. Two attack types (Heartbleed and

Infiltration) were omitted since they constitute only a very small fraction of flow records. Individual

web attack classes were merged together into a single web attack category. Nominal Features that

are related to a specific network and another ten features that contained all zero entries were

removed from the data frame. After the pre-processing stage the data-frame dimension reduces to

911421 records with 66 network flow feature variables. For training purposes, we only considered

10% of the data (stratified sample). The network activity flow distribution across different attack

categories after pre-processing stage is depicted in Table 3.1 and Figure 3.3. Three subsets were
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Table 3.1: The distribution of network flows in each attack category

Class Category Count Percentage(%)

Benign 44002 48.2780
DoS Hulk 23107 25.3525
PortScan 15893 17.4374
DDoS 4183 4.5895
DoS GoldenEye 1029 1.1290
FTP-Patator 794 0.8712
SSH-Patator 590 0.6473
DoS slowloris 580 0.6364
DoS Slowhttptest 550 0.6034
Web Attack 218 0.2392
Bot 197 0.2161
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Figure 3.3.: Network activity flow distribution with network flow-count vary-
ing sharply across different attack categories.

obtained in a stratified manner for training (60%), validation (20%) and testing (20%) purposes.

Stratification enables to randomly split the data set while retaining the correct class distribution

in each subset, which is the recommended way of splitting data under class imbalance [69]. In

order to avoid biased results, feature vector is transformed by scaling each feature to a [0,1] range.

Categorical variable ‘class label’ was transformed through one-hot encoding.

Feature Selection Phase for conventional classifiers: For conventional Machine Learning (ML)

classifiers, we conducted a feature selection procedure to identify representative and distinguishable

features for intrusion detection. We first conducted a correlation analysis to identify possible

correlations. Considering 0.90 as the correlation coefficient threshold, 32 features with a correlation

magnitude greater than 0.90 were removed. Then, an optimal subset of features was obtained

through Recursive Feature Elimination with Cross-Validation (RFE-CV) which is used to train
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classical ML classifiers. The selected subset containing 11 features includes the total number of

data packets in the forward direction, the total quantity of bytes in the forward direction, the

maximum and mean values of the packet’s length in bytes in the forward direction, the maximum

value in bytes of the packet’s length in the backward direction, the mean and standard deviation

of the inter-arrival time of the flow in both directions, the number of packets per second in the

backward direction, the minimum length of the packets registered in the flow in both directions,

the total number of bytes sent in the initial window in the forward and backward directions.

1D Convolutional Neural Net (1D-CNN) Model: The one-dimensional convolution neural net-

work based intrusion detector had the best performance compared with other DL models. The

implementation of cost sensitive classification with CNN does not require a feature selection phase

since convolution layers are capable of extracting better representations from data automatically.

We consider 1D-CNN with convolutions in the spatial domain. The applicability of the 1D-CNN

model in CICIDS2017 network flow data can be justified as follows: We notice that there is high

correlation among features and data contain features that belong to similar groupings. Thus, there

is a local pattern in the features and the relative spatial positioning of the data is relevant with

local relationships in data providing more predictive information for the classification task. Hence,

the idea of local spatial correlation in CNN translates well to the problem at hand. We expect

interesting features to depend on short consecutive sub-sequences of the input. We treat the input

features as spatial dimension and the kernel is convolved over input features. We expect 1D-CNN

model to capture specific patterns from successive input features and thus derive a more robust rep-

resentation of features which contain important information for identification of malicious network

flows.

The intrusion detector 1D-CNN model architecture is depicted in Figure 3.4. It involves an input

layer (shape 66 x 1) , two convolutional layers with one-dimensional filter kernels of size 3, max

pooling layer with sub-sampling factor 2, a flattening layer, one dense layer and a final output

layer with the number of nodes equal to number of classes. The activation function of the hidden

dense layers is Rectified Linear Unit (ReLU) and Softmax is employed in the output layer for the

multi-class classification. Each network is trained for 200 epochs with Adam optimization [70]

method.
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Figure 3.4.: 1D-CNN Model Architecture. It includes two convolution layers and a pooling layer followed by a
standard fully connected neural network.

3.4.2.3 Experimental Results

Using the reduced feature subset obtained in the feature selection stage, we tested several widely

used traditional machine learning classifiers including Multinomial Logistic Regression, Random

Forests, Decision Tree, Gradient boosting and XGBoost. Their performance in terms of average

precision, recall and F1-Score is presented in Table 3.2 with multinomial logistic regression having

the worst performance. This result is not surprising and in consistent with the previous research

which have proven the performance degradation of conventional logistic regression under class

imbalance [60]. Except for multinomial logistic regression which is highly affected by the imbalanced

class distribution, other conventional classification algorithms seem to be performing well. However,

their performance is comparatively low in comparison to DL Models. While we experimented with

several different DNN and 1D-CNN model architectures, we only included the results of the best

performing 1D-CNN model in the paper. The average classification results in Table 3.2, as well

as the class-wise classification performance of 1D-CNN Model trained with different loss functions

in Table 3.3 suggest that the proposed DWB loss clearly outperforms the other commonly used

objective functions in cost sensitive learning. Specifically, F1 score and recall or the ‘Detection

Rate’ of attacks is highest with the proposed method for the most extremely imbalanced classes,

such as Bot attacks which occupy only 0.2% of data.

For CICIDS2017 data we provide only the results of our primary calibration metric, Brier Score

since values for other calibration metrics are extremely small that the difference is insignificant
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Table 3.2: CICIDS2017 Dataset: Average metric values (Percentages)

classification
Algorithm Precision Recall F1-score AUROC

Score

Conventional ML Classifiers
Multinomial
Logistic Regression 37.75 22.26 24.67 58.89

Decision Tree 94.43 95.75 95.05 97.85
Random Forest 95.57 95.66 95.60 97.80
XGboost 95.90 95.31 95.51 97.61
Gradient Boosting 91.55 91.36 91.02 95.64

DL: 1D CNN Model
CE Loss 97.15 96.00 96.50 97.97
Weighted CE 97.38 97.44 97.40 98.69
Focal Loss 96.96 98.05 97.49 98.89
DWB Loss 97.52 98.00 97.74 98.99

Table 3.3: CICIDS2017 Dataset: Class-wise Classification Performance

Benign Bot DDoS DoS
GoldenEye

DoS
Hulk

DoS
Slowhttptest

DoS
Slowloris

FTP
Patator PortScan SSH

Patator
Web
Attack

Precision

CE Loss 99.49 84.38 100 98.54 99.65 95.5 99.13 99.37 100 99.14 93.48
Weighted CE 99.87 85.71 99.76 97.15 99.14 96.43 99.13 99.37 100 96.61 93.33
Focal Loss 99.87 85.71 99.76 97.14 99.14 96.43 99.13 99.37 100 96.61 93.34
DWB Loss 99.82 88.1 99.88 99.5 99.5 95.5 99.13 100 100 100 91.3

Recall

CE Loss 99.67 69.23 99.88 98.54 99.5 96.36 98.28 99.37 99.97 97.46 97.72
Weighted CE 99.31 92.31 100 99.03 100 98.18 98.28 99.37 99.96 96.61 95.45
Focal Loss 99.31 92.31 100 99.03 100 98.18 98.28 99.37 99.97 96.61 95.45
DWB Loss 99.61 94.87 99.88 97.57 100 96.36 98.28 99.37 99.96 96.61 95.45

F1-Score

CE Loss 99.58 76.06 99.94 98.54 99.58 95.93 98.7 99.37 99.98 98.29 95.56
Weighted CE 99.67 91.14 99.7 97.8 99.8 96.83 98.7 98.4 99.98 98.29 91.11
Focal Loss 99.59 88.88 99.88 98.08 99.57 97.3 98.7 99.37 99.98 96.61 94.38
DWB Loss 99.72 91.36 99.88 98.54 99.75 95.93 98.7 99.68 99.98 98.29 93.33

(Table 3.4). The Brier Score is at its lowest when trained with the proposed DWB loss function

implying better calibration.

Table 3.4: CICIDS2017 Dataset: Calibration Performance

CE Loss Weighted CE Focal Loss DWB Loss

Brier Score 0.0067 0.0065 0.0116 0.0056

3.4.3 Experiment 2: Skin Lesion Diagnosis

Skin lesions are among the most common cancers worldwide with over 5,000,000 newly iden-

tified cases in the United States every year. Melanoma is the deadliest skin malignancy, but if

diagnosed early has a survival rate which exceeds 95%. To facilitate early and accurate detection
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of skin cancers, a fast and automated diagnosis system is crucial. Dermoscopy is a skin imaging

modality which is pivotal in detection of skin malignancies and supports towards implementation

of automated algorithmic systems. Lesion detection is one of the most challenging tasks in medical

imaging due to high similarity between lesions and intra-class variations with respect to texture,

color, size, shape and location. Class imbalanced nature of the diagnosis task makes it even more

challenging.

3.4.3.1 Dataset Description

We utilize ISIC2019 challenge skin lesion data [71–73], published by International Skin Imaging

Collaboration (ISIC) in ISIC Archive which is the largest publicly available repository of dermoso-

copic images. The goal is to classify skin lesions based on 25,3331 dermoscopy images available for

training which are unequally distributed among 8 different lesion categories. A sample of skin lesion

images in the ISIC2019 data set is provided in Figure 3.5. The skin lesion diagnosis distribution is

presented in Table 3.5 and Figure 3.6.

Figure 3.5.: A sample of different skin lesion categories from the ISIC2019
data set.

3.4.3.2 Implementation Details

To ensure the class distribution remains the same, we split ISIC2019 data to train-test-validation

subsets in a stratified manner such that train data contains 19,173 data entries, with validation and

test sets each having 1070 unique entries. Both skin lesion dermoscopic image data and meta data

were employed for lesion detection model implementation following a dual input strategy. Meta

data contains patient age, gender and anatomy site. Meta and dermoscopy data were pre-processed
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Table 3.5: The distribution of skin lesion diagnostic category

Diagnosis Category Count Percentage(%)

Melanocytic nevi (NV) 12875 50.83
Melanoma (MEL) 4522 17.85
Basal cell carcinoma (BCC) 3323 13.12
Benign keratosis (BKL) 2624 10.36
Actinic keratosis (AK) 867 3.42
Squamous cell carcinoma (SCC) 628 2.48
Vascular lesion (VASC) 253 1.00
Dermatofibroma (DF) 239 0.94
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Figure 3.6.: Skin Lesion Diagnosis distribution with lesion count varying
sharply across different diagnosis categories.

prior to training and images were augmented during training with random flipping, color, shift and

rotation transformations to ensure robustness to deformations, thereby better generalization.

Model Architecture and Training: We relied on established methods for computer vision and used

the state-of-the-art deep learning models for image classification. We incorporated an EfficientNet

architecture (Figure 3.7), specifically EfficientNet (EN-B3), [74] since it performed significantly

better than the other experimented models. To be consistent with the chosen ImageNet pre-

trained model, the input images were resized to 300 x 300. The schematic diagram of the dual

input neural network model architecture is depicted in Figure 3.8. Network was trained for 30

epochs with Stochastic Gradient Descent (SGD) [75] optimization algorithm.

3.4.3.3 Experimental Results

We evaluate the impact of different loss functions for training to diagnose skin lesions and the

result of this analysis is presented in Table 3.6 and Table 3.7. Average classification metric val-
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Figure 3.7.: The architecture of EfficientNet-B0 [76]. The main building block of EfficientNet is mobile inverted
bottleneck convolution(MBConv).

Figure 3.8.: Schematic diagram of the dual-input neural network model architecture composed of a 2D-CNN
(EfficientNet-B3) and fully connected model.

ues of diagnosis categories and class-wise classification performance suggest that the DWB loss

considerably outperforms the other loss functions in terms of classification.

Table 3.6: ISIC2019 Dataset: Average Metric Values (Percentages)

Loss
Function Precision Recall F1-Score AUROC

CE Loss 66 64 65 80
Weighted CE 67 66 66 81
Focal Loss 64 60 61 78
DWB Loss 69 66 67 82

Calibration Performance evaluation results for ISIC2019 data are presented in Table 3.8 and

Figure 3.9. With DWB objective function, we observe calibration results which are much improved

over the other losses trained with the same network.

The experimental results are in consistent across detection tasks in different domains, imply-

ing that when trained with the proposed loss function, the model surpasses the performance of

conventional classifiers in terms of both classification and calibration.
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Table 3.7: ISIC2019 Dataset: class-wise classification (Percentages)

Skin Lesion Diagnosis Category
AK BCC BKL DF MEL NV SCC VASC

Precision

CE Loss 50 77 70 50 49 92 64 78
Weighted CE 41 79 71 75 49 93 50 78
Focal Loss 36 72 71 62 51 91 50 75
DWB Loss 42 78 74 88 56 93 50 75

Recall

CE Loss 62 81 63 50 54 93 41 70
Weighted CE 56 76 67 75 53 93 36 70
Focal Loss 50 67 67 62 49 93 27 60
DWB Loss 46 79 70 88 60 93 35 67

F1-Score

CE Loss 56 79 67 50 51 93 50 74
Weighted CE 47 77 69 75 51 93 42 74
Focal Loss 42 70 69 62 50 92 35 67
DWB Loss 46 79 70 88 60 93 35 67

Table 3.8: ISIC2019 Dataset: Calibration Metrics

Loss Function ECE MCE Brier Score

CE Loss 0.0553 0.2212 0.2596
Weighted CE 0.0330 0.1321 0.2622
Focal Loss 0.0612 0.2454 0.2458
DWB Loss 0.0295 0.0938 0.2389

Figure 3.9.: Probability calibration plot for ISIC2019 data. From the calibration curve, it is clearly evident that
models trained with standard cross entropy loss and its fixed weighed counterpart is poorly calibrated. The plot
further confirms that the proposed DWB loss is classification calibrated.
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3.5 Contributions and Concluding Remarks

The study leads to the following conclusions and contributions:

• To address class imbalance encountered in many practical, real-world classification tasks, we

presented a self-adapting weighting approach and introduced a novel loss function, named

Dynamically Weighted Balanced (DWB) Loss. Weighting scheme is based on class frequency

of training data and prediction difficulty of individual data instances. The prediction difficulty

is determined by the prediction score produced by the neural network.

• We further demonstrated that the regularization component in the proposed loss function leads

to improved calibration performance.

• Experiments in different domains: cyber intrusion detection (tabular data) and skin lesion

diagnosis (image classification) show consistent results implying robust generalization. A con-

siderable performance improvement was observed in rare minority classes with the proposed

DWB loss function over different kinds of other widely adopted loss functions when tested for

the same model architecture.

• Presented method can be adapted for any classification or segmentation task owning broad

applicability and its superior performance suggests the potential of cost-sensitive deep learning

based models for real-life deployment.
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CHAPTER 4

BAYESIAN-BASED PROBABILISTIC DEEP LEARNING FOR UNCERTAINTY

QUANTIFICATION WITH APPLICATIONS IN BIO-MEDICAL IMAGE

SEGMENTATION

4.1 Introduction

Technical advances have led multiple innovations into clinical practice supporting clinicians with

assistive information for clinical decision making. Multiple efforts have been made to integrate deep

learning (DL) and image-based findings in diagnostics, subsequently augmenting the efficacy of

clinical care. While there is a significant increase in clinical research on deep learning-based models

in healthcare, the level of uncertainty in model predictions is often inaccessible. Reliable uncertainty

estimation is imperative in safety-critical applications in medicine such as in radiation therapy

planning in cancer care, where radiation should be avoided in healthy sub-cortical structures.

This study aims to analyze segmentation uncertainties in neuroimaging, specifically, in brain

tumor diagnostics, which is an area of active research. Brain tumors are among the deadliest

malignancies. Gliomas are the most predominant primary tumors that develop within the brain

parenchyma. With a degree of biological aggressiveness spanning from slower-growing low-grade

gliomas (LGG) to more rapidly progressive high-grade gliomas (HGG), varying biological proper-

ties, patient prognosis, and treatment strategies, gliomas are highly heterogeneous. In tumor cell

morphology studies, neuroimaging plays a crucial role. Magnetic resonance imaging (MRI) as the

most widely adopted neuroimaging modality, serves as a non-invasive technique in lesion detection

and segmentation. MRI-guided diagnosis facilitates treatment which entails surgical tumor resec-

tion, radiation, and chemotherapy. In an automated system pipeline of tumor analysis, developing

robust volumetric automated segmentation algorithms is of utmost importance for extracting tu-

mor morphological information and to ascertain the degree of surgical resectability. Segmentation

enables volumetric tumor delineation, progression evaluation, and the quantitative assessment of

tumor diagnostic features. Segmentation of glioma entails partitioning of tumor cells into histolog-
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ical sub-regions as peritumoral edema (ED), necrotic core (NCR), enhancing and non-enhancing

tumor core (ET/NET), properties of which are reflected in the intensity profiles in tumor scans gen-

erated by MRI. Different types of imaging modalities provide useful biological information related

to tumor-induced neural tissue changes. The T1-weighted (T1), T1-weighted contrast-enhanced

(T1ce), T2-weighted (T2), and T2 fluid-attenuated inversion recovery (FLAIR) modalities are the

routinely used brain MRI image sequences. A 2D slice of each modality and the segmented scan

is depicted in Figure 4.1. While segmentation aids in precise localization and diagnosis through

objective quantification of tumor tissue composition and size, proper segmentation remains a key

challenge due to the intra-tumoral heterogeneity of tumor cells.

Figure 4.1.: On the left is an example of glioblastoma brain tumor in T1, T1-contrast, T2 and FLAIR modalities.
On the right is the ground truth segmentation of the tumor which specifies the class of each voxel [1].

Since lesion outlines are only defined by variations in intensity compared to surrounding non-

cancerous tissues, even manual segmentation by radiologists demonstrates considerable variation.

The intrinsically heterogeneous nature of tumors (in appearance, shape, and histology) poses an

additional layer of complexity. Thus, despite substantial advances made towards understanding the

molecular pathology of gliomas, challenges remain in the development of robust automated seg-

mentation models. Replacing deterministic model predictions with probability distributions would

allow characterizing model reliability, thereby enabling clinicians to review and revise unreliable

model predictions, which would have enormous potential value for clinical adoption.

While there are many forms of uncertainty relating to the measurement noise, structure of the DL

model (choice of architecture, number of hidden units and layers, etc.) and model parameters, un-

certainty is broadly categorized as epistemic and aleatoric (Figure 4.2), which explains uncertainty

in the model and the inherent noise in observations due to intrinsic stochasticity of the system,

respectively [77]. The combination of the two uncertainties resulting from model and data forms

the predictive uncertainty [78]. Integrating uncertainty information allows to account for model

misspecifications and evaluate the robustness for domain shift when modeling out-of-distribution
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samples. While uncertainty does not disappear in large data sets, epistemic uncertainty diminishes

as more data becomes available. However, aleatoric uncertainty resulting from intrinsic randomness

of data is irreducible with more data [79], but can be reduced by increasing the measurement pre-

cision. The majority of the studies typically address the uncertainty arising from one single source

where most studies are geared towards parametric uncertainty and total uncertainty remains briefly

addressed in the past literature.

High Epistemic 
Uncertainty

Aleatoric Uncertainty

True f
Observed data

Figure 4.2.: Epistemic uncertainty emerges from lack of knowledge resulting from a priori unknown data patterns and
represents the uncertainty in model parameters that best explains a given data set. Aleatoric uncertainty represents
randomness inherent in observations.

This study aims to develop a unified procedure for uncertainty quantification in biomedical im-

age segmentation integrating Bayesian inference with deep learning. Strengths and weakness of the

formulated framework is subsequently analyzed using complex neuroimaging data (BRATS2020).

The developed fully automated system for 3D multi-modal MRI brain tumor segmentation empow-

ered with uncertainty estimation demonstrates the proposed approach is a promising candidate for

quantifying uncertainty in biomedical image analysis.

4.2 Related Work

Driven by the advances in computer vision, an increasing number of studies in clinical research

have examined deep learning based algorithmic solutions for automated segmentation of medical

images [80–82]. However, the research in analyzing segmentation uncertainty in biomedical imaging

remains limited, which is nevertheless crucial for successful clinical translation. Here we present a

concise overview on novel contributions towards uncertainty estimation in medical imaging.

While Bayesian principles offer a theoretical framework for quantifying uncertainty, the computa-

tional cost of Bayesian Deep Nets can be prohibitively expensive. Hence, research efforts have been
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made to characterize uncertainty via approximate Bayesian inference, primarily, sampling-based

Monte Carlo methods and optimization-based variational inference. Among the well-established

methods for uncertainty estimation are drop-out at test-time [14] and Deep Ensembles [15]. Ow-

ing to its simplicity and scalability, Monte Carlo dropout based uncertainty has been leveraged

in a considerable body of literature in medical domain, for instance, in pulmonary nodule detec-

tion [83], diabetic retinopathy diagnosis [84], brain segmentation [85], phenotype prediction [86],

ischemic stroke lesion segmentation [87], and multiple sclerosis lesion segmentation [88]. Similarly,

researchers have also explored uncertainty as quantified by test-time augmentation [89]. A closer

look to the literature on uncertainty, however, reveals a number of shortcomings in popular meth-

ods. As argued in [90], MCMC dropout approach estimates the risk or intrinsic stochasticity in

a model, rather than the model uncertainty. Moreover, both deep ensembles and dropout involve

averaging over several models, which can be computationally expensive for very large networks.

More recent work have explored modeling the conditional probability distribution over the label

maps given an image, allowing for multiple plausible hypotheses for a single image [91–93]. For

instance, in [92] authors propose a Probabilistic Hierarchical Segmentation (PHiSeg) approach

where they adopt a variational auto-encoder framework and use separate latent variables at each

level of the network. However, these hierarchical architectures are memory intensive and involve

high-computational complexity.

4.3 Segmentation model construction from a probabilistic perspective

4.3.1 Parameter Uncertainty and Probabilistic layers

Let a training set D with n samples be denoted by D = {xi, yi}ni=1, where xi ∈ Rd is the

d-dimensional feature vector and yi is the corresponding output. In the context of voxel-wise

classification, each input x is an intensity and y ∈ {1, . . . ,K} is the space of K possible class labels.

In a standard neural network-based segmentation task, the network learns a function f : X → Y

which maps images x ∈ X to a segmentation map containing voxel-wise target labels y ∈ Y. The

objective is to learn a mapping that maximizes the conditional probability p(y|x).

The Bayesian framework enables capturing the uncertainty over model weights (parameter un-

certainty) that results in probabilistic interpretations of model predictions. Therefore, we seek

to learn a probabilistic function f : X → Y by placing Bayesian weights over the network layers

during training. Previous studies [94] have emphasized that Bayesian model average performance
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is robust to the choice of prior over the weights and, hence we assume a standard Gaussian prior,

W ∼ N (0, I). We are particularly interested in the predictive distribution stated in Eq. (2.12):

p(y∗|x∗,D) =
∫

Ω
p(y∗|x∗, ω) p(ω|D)dω, (4.1)

where p(y∗|x∗, ω) is the conditional predictive distribution and p(ω|D) is the posterior over param-

eters.

The posterior computation is analytically intractable and traditional MCMC methods do not

scale better over highly parametrized deep neural networks and large data sets. Thus, for com-

putational reasons, we adopt the variational inference [10,95] approach (Figure 4.3 and Algorithm

2), where posterior over weights is approximated by a tractable family of distributions qθ(ω), pa-

rameterized by θ. Typically, the reverse KL-divergence KL[qθ(ω)||p(ω|D)] is minimized to fit the

approximation. Since it includes the intractable posterior, it is rearranged to maximize the evidence

lower-bound (ELBO):

min
θ
KL[qθ(ω)||p(ω|D)] = max

θ
Eqθ(ω)[log p(D|ω)] +KL[qθ(ω)||p(ω)], (4.2)

where p(ω) denotes the prior on ω and Eqθ(ω)[log p(D|ω)] is the expected log-likelihood such that

p(D|ω) =
∏n
i=1 p(yi|xi, ω).

At the inference time, We obtain the approximate predictive distribution under the mean field

variational bayes (MFVB) assumption:

p(y∗|x∗,D) =
∫

Ω
p(y∗|x∗, ω) qθ∗(ω)dω, (4.3)

where qθ∗(ω) is approximated by a product of independent Gaussians:

qθ(ω) =
|ω|∏
i=1
N (ωi|µi, σ2

i ), (4.4)

where θ = {µi, σ2
i } are the variational parameters. The elements σi’s are from a diagonal covariance

matrix, thus implying that the neural network weights are considered to be uncorrelated.

Justification for MFVB: Mean field assumption posits isotropic Gaussian priors over weights

assuming neural network weights are independent. While prior studies have experimented with more

expressive families of distributions such as a multivariate Gaussians, incorporation of a-posteriori
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correlations incur additional parameter overhead imposing a heavy burden on the inference model.

Thus, their applicability is limited in practice due to computational inefficiency. As argued in [96],

complex posterior approximations for weights are not necessary in deep bayesian networks since the

difference between the full-covariance and mean-field approximations to the true posterior reduces

as the network becomes deeper.

Network Training: An iteration in the training process constitutes a forward and a backward pass.

During forward pass, the approximate cost function in Eq. 4.2 is evaluated through a single sample

drawn from the variational posterior distribution. Thus, in the stochastic forward pass, a sampling

step is involved and therefore, in order to implement backpropagation, we need to incorporate the

re-parameterization trick. More specifically, a function is defined as t(µ, σ, ε) = µ + σ
⊙
ε, where

ε ∼ N (0, 1), µ is the mean, σ is the standard deviation and
⊙

is the element-wise multiplication,

which essentially defines a deterministic function from which the gradients of µ and σ can be

calculated.

At inference, an unbiased estimator for expectation of posterior predictive distribution can be

obtained by sampling from the approximate distribution qθ(ω|D):

Eq[p(y∗|x∗,D)] =
∫
p(y∗|x∗, ω) qθ∗(ω)dω ≈ 1

T

T∑
t=1

pωt(y∗|x∗), (4.5)

where T represents the number of samples from multiple forward passes.
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Figure 4.3.: Process overview for developing a deep probabilistic neural network via variational
inference.
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4.3.2 Data-dependent Uncertainty

Data uncertainty is typically modeled as part of the likelihood function. In regression, for in-

stance, a distribution such as a Gaussian can be placed over the logits in order to induce a noise

corruption process. This allows us to obtain data dependent uncertainty in the form of variance of

the noise. In classification, network output can be treated as a distribution as described below.

In a multi-label setting, k-class discriminative task is transformed into k independent binary

classes. Let the conditional distribution in binary classification be denoted by g(x) := pŶ |X(1|x).

Note that in practice, for binary classification tasks we typically adopt a soft classifier g : X → [0, 1],

which can be obtained through sigmoid normalization. Let affine-transformed logits be denoted

by zj = wTj fk(x) + bj , where fk(x) is the model output in the penultimate layer, with wj and bj
representing the weights and biases in the last layer j. Then the sigmoid function for each specific

class is represented by:

p(ŷ(k)|x) = 1
1 + exp(−(wTk fω(x) + bk)

. (4.6)

Since we consider k-class binary classification, the output is the probability that the label is one, and

hence each label can be interpreted as a Bernoulli random variable: Y ∼ Ber(p) where p = σ(z),

such that σ is the sigmoid function. Therefore, the last layer can be treated as a probabilistic layer

that parameterizes a Bernoulli distribution. Input-dependent uncertainty exists in all classification

tasks, however, aleatoric uncertainty is closely related to the calibration, which implies how closely

the predicted probability reflects the ground truth likelihood.

To this end, we incorporate a classification-calibrated weighted binary loss in the objective func-

tion. In the k-class discriminative task, we can compute the cross-entropy loss component as the

summation of multiple binary cross entropy terms. Adapting from the DWB loss defined in chapter

3 that proved to improve calibration, we define a (fixed) weighted binary cross entropy as follows.

LWBCE = −w ylog(p) + (1− y) log(1− p) + 2p(1− p), (4.7)

where setting β > 1 reduces the number of false positives, y is the true label and p is the predicted

label.

We also leverage the DICE loss component in the loss function which is good at discriminating

between the foreground pixels from the background pixels, thus addressing class imbalance:
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LDICE = −
2∑
c=0

∑127
i,j,k=0 YcijkŶcijk∑127

i,j,k=0 Ycijk +
∑127
i,j,k=0 Ŷcijk

. (4.8)

Recall that the variational objective is to minimize the ELBO defined in 4.2. This leads to a

combined loss function which is the sum of modified cross entropy, DICE loss and the ELBO term.

We thus define our version of combined loss as follows:

Lcombined = LWBCE + LDICE + LELBO, (4.9)

where the contribution from each loss is equally weighted.

The training procedure of the Deep Probabilistic Learning model can then be summarized as

follows:

Algorithm 2 Variational Inference-based Deep Probabilistic Learning
Input: Data set D : {xi, yi}ni=1, Approximation of the posterior distribution qθ(ω)
Output: posterior distribution of the network parameters

1: while not converged do
2: Sample minibatch: D∗ : {xi, yi}mi=1
3: Sample from qθ(ω) the variational parameters θ = (µi, σ2

i ) for each weight of the network:
ω∗(i) ∼ qθi(ω(i))

4: Using the reparameterization trick, parameterize the network with the sampled parameters
5: Forward pass with batch of data
6: Compute stochastic gradients of the objective by backpropagation
7: Update parameters: θ = θ + α∇θL
8: end

4.3.3 Uncertainty Estimation

In segmentation, prediction map is obtained via voxel-wise classification and hence uncertainty

estimates are also produced voxel-wise, resulting in uncertainty maps with dimensions same as that

of the original input image. We measure each source of uncertainty as follows:

Data Uncertainty: Given a test input x∗ and training data D, the expected data uncertainty

can be captured by Ep(ω|D)H[p(y|x∗,D)] where H[p(y|x∗,D)] is the entropy of the model’s posterior

over classes calculated as:

H[p(y|x∗,D)] = −
∑
c

p(y = c|x∗, ω) log p(y = c|x∗, ω), (4.10)
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where y is the segmentation label, c is the segmentation category, p(y = c|x∗, w) is the network

output which is the probability of input x∗ being in class c, and w represents the model parameters.

Model uncertainty: Prediction is done through multiple forward passes. The final prediction is the

mean prediction (distribution mean) and the model uncertainty is reflected through the variability

in the mean prediction. Let Y i = (y1)i, . . . , (yM )i represents the predicted labels of voxel i for each

iteration M . Then the predictive variance can be computed as follows:

Vqθ(ω)[Ep(y|ω,x)[y]] = 1
M

M∑
m=1

(ymi − yimean)2, (4.11)

where M is the number of iterations.

Total uncertainty: Predictive uncertainty encapsulates both parameter and data uncertainty. We

quantify total uncertainty through the entropy of mean predictions, H[Ep(ω|D)p(y|x∗,D)], where

Ep(ω|D)p(y|x∗,D) denotes the average of predictions.

4.4 Experiments and Results

4.4.1 3D MRI Brain Tumor segmentation

Data Description: Our proposed framework is experimentally evaluated on the multimodal Brain

Tumor Segmentation challenge data (BRATS2020 data set) published by the Center for Biomed-

ical Image Computing and Analytics (CBICA), University of Pennsylvania [97–99]. It contains

clinically acquired, multi-institutional pre-operative multimodal MRI scans with accompanying tu-

mor sub-region delineations. For each patient, 4 MRI modalities, specifically, T1-weighted (T1),

T1-weighted contrast-enhanced (T1ce), T2-weighted (T2), and T2 Fluid Attenuated Inversion Re-

covery (T2-FLAIR) volumes are provided. Accompanying manually annotated ground truth la-

bels are approved by neuro-radiologists and comprise the necrotic and non-enhancing tumor core

(NCR/NET — label 1), the peritumoral edema (ED — label 2),the GD-enhancing tumor (ET —

label 4), and label 0 for everything else. The segmentation task involves partitioning the nested

glioma sub-regions and produce segmentation labels as whole tumor (WT) (label 1, 2, 4), tumor

core (TC) (label 1, 4) and enhancing tumor (ET)(label 4). Data is co-registered to a common

anatomical template with isotropic resolution 1mm3 and skull stripped. Images has the dimension

240 × 240 × 155 where 155 is the number of slices in the axial direction. Data set is consisted of

MRI scans from 369 subjects in the training set and 125 subjects in the validation set.
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Data Pre-processing: Data set consisting of 3D input images are too large to fit into GPUmemory.

All the input images were cropped into a size of 128× 128× 128 voxels.

Model Architecture: Segmentation performance of encoder-decoder like networks with various

architectural modifications have been experimentally investigated by several studies in past liter-

ature. However, in the seminal work by Isensee et al. [100], the authors show that such variants

do not provide an additional benefit and a well-trained U-Net [101] can yield competitive results

and is more effective. Therefore, we set a U-Net as the baseline segmentation model. Patches of

size 128 × 128 × 128 from each 4 modalities are fed into the network as input and thus the input

matrix has the shape 4 × 128 × 128 × 128. While the down-sampling layers store information in

the images at progressively lower resolutions, up-sampling layers reconstruct the segmentation map

at the original resolution. The output has the shape 3 x 128 x 128 x 128 where each 128 x 128

x 128 probability matrix represents the likelihood of each voxel belonging to one specific tumor

sub-region. The proposed probabilistic approach is implemented on top of the baseline U-Net

architecture, depicted in Figure 4.4.

Input image

Probabilistic
layer

Convolution
layer

Sigmoid
layer

Down-
sampling

Up-sampling

Channel
concatenation

Output

Figure 4.4.: Schematic U-Net like network architecture of the proposed probabilistic model.

While the provided expert annotated segmentation labels include 4 classes as (NCR/NET), ED,

ET and background, the segmentation evaluation is performed on 3 nested sub-regions: WT,

TC and ET. Prior work [100, 102–105] suggest that direct optimization for 3 sub-regions enhance

performance. We therefore adopt a multi-task approach where per-voxel classification for each
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tumor region as WT, TC and ET is considered a binary classification task, hence sigmoid activation

R→ [0, 1] is used in the last layer. Sigmoid over logits z is computed as sigmoid(z) = 1
1+exp(−z) .

Model Training: Using the combined loss defined in Eq. 4.9 and with an initial learning rate

of 10−4, model was trained for 100 epochs. If the validation loss plateaued for 5 epochs then the

learning rate was reduced by a factor of 0.5.

4.4.2 Quantitative Evaluation

Both training and validation data set performance were evaluated through the online evaluation

platform by CBICA, the Image Processing Portal (IPP).

Segmentation measures: Segmentation performance is evaluated subject to four metrics: Dice

score, sensitivity, specificity and Hausdorff distance (95% percentile). The Dice similarity is a

measure of pixel or voxel overlap between the ground truth and predicted regions. Sensitivity (recall

or the true positive rate) measures the correct overlap of tumor regions, whereas specificity (actual

negative rate) measures the correct overlap of non-tumor regions. Hausdorff distance evaluates

the maximum distance between the segmentation and ground truth boundaries. These criteria is

computed as follows:

Dice(P, T ) = 2|P1 ∩ T1|
|P1|+ |T1|

Sensitivity(P, T ) = |P1 ∩ T1|
(|T1|)

Specificity(P, T ) = |P0 ∩ T0|
|T0|

Hausdorff95(P, T ) = max{ sup
p∈P1

inf
t∈T1

d(p, t), sup
t∈T1

inf
p∈P1

d(t, p)},

(4.12)

where P1 is the predicted tumor region, T1 is the actual tumor regions, P0 is the predicted non-

tumor region and T0 is the actual non-tumor regions. In Hausdorff distance formula, sup represents

the supremum and inf, the infimum.

Uncertainty performance evaluation: Uncertainty maps associated with the voxel labels are cre-

ated for each tumor sub-region WT, TC and ET. Uncertainty values are normalized between 0 and

100 denoting the confidence of per-voxel classification from most confident (0) to most uncertain

(100). Model performance can be assessed by filtering out uncertain voxels at different thresholds,

T (0 ≤ T ≤ 100), and calculating the Dice score on the remaining voxels. To monitor the true

positives (TP) and true negatives(TN) that are filtered out at each T , the ratio of filtered TP
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(FTP) and filtered TN (FTN) is calculated. FTP is calculated as FTP = (TP100 − TPT )/TP100,

where TPT represents true positives at threshold T . FTN is calculated similarly. Uncertainty is

evaluated based on the area under the curve (AUC) with respect to: (1) Dice vs T , (2) FTP vs

T , (3) FTN vs T , for different threshold values T , which are referred to as Dice AUC, filtered true

positive (FTP) ratio AUC and filtered true negative (FTN) ratio AUC.

4.4.3 Experimental Results

In this subsection, we report results of performance evaluations of the proposed method against

the benchmark methods.

Qualitative Results: Figure 4.5 depicts the qualitative results for a sample of four subjects in

BRATS2020 data-set, evaluated with deterministic, MC Dropout and probabilistic SegNet. While

predictions are similar to ground truth for most pixels and show high confidence, tumor contours

are associated with high uncertainty which is reasonable since the tumor boundaries are difficult

to discern. Deviations of predicted segmentation’s from the ground truth, primarily in the central

part of the tumor, are consistent with the regions of high uncertainty. It is worth to notice that

in row 3, both deterministic and MC dropout model mis-classify the tumor region as tumor core.

Only the probabilistic SegNet yields a closer prediction to that of ground truth and depict high

uncertainty in the regions the network is uncertain about. The three models demonstrate notably

different levels of uncertainty.

Quantitative Results: The quantitative results of segmentation performance and uncertainty

estimation for the deterministic, MC Dropout and probabilistic models are reported in Table 4.1

and Table 4.2, respectively. Box plots for the segmentation performance on validation data are

depicted in Figure 4.6. Uncertainty maps with the MC dropout method is generated through

10 stochastic forward passes and estimating voxel-wise standard deviation. In terms of both the

segmentation and uncertainty performance, the proposed probabilistic deep network outperforms

or in par with the other methods.
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Figure 4.5.: Qualitative results of four representative subjects on the BRATS 2020 data set: (a) T2 slice; (b) Ground-
truth segmentation; Prediction of (c) deterministic model, (d) MC Dropout model, and (e) proposed probabilistic
SegNet; Predictive entropy of (f) deterministic model, (g) MC Dropout model, and (h) proposed probabilistic SegNet.

Table 4.1: Segmentation Performance Evaluation: Results on BRATS2020 training and validation
sets as generated by the online portal

Training Set

Method
Dice Score Sensitivity Specificity Hausdorff95 Score

ET WT TC ET WT TC ET WT TC ET WT TC
U-Net 0.7584 0.8945 0.8319 0.7756 0.9009 0.8413 0.9997 0.9991 0.9994 26.7559 7.5559 11.1538
MC-dropout 0.7608 0.8983 0.8271 0.7584 0.8993 0.8679 0.9997 0.9991 0.9992 24.4996 6.4273 10.1783
Probabilistic SegNet 0.7699 0.8987 0.8613 0.7840 0.9058 0.8710 0.9995 0.9996 0.9993 23.6278 6.9347 10.1489

Validation Set

Method
Dice Score Sensitivity Specificity Hausdorff95 Score

ET WT TC ET WT TC ET WT TC ET WT TC
U-Net 0.6937 0.8791 0.7771 0.6976 0.9019 0.7743 0.9997 0.9989 0.9995 44.5283 8.8968 18.3084
MC-dropout 0.6982 0.8782 0.7756 0.6907 0.8833 0.7953 0.9997 0.9991 0.9993 43.2667 5.9141 16.7405
Probabilistic SegNet 0.6821 0.8718 0.7185 0.7130 0.9090 0.7273 0.9996 0.9992 0.9993 46.5851 16.5599 26.5780
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Figure 4.6.: Evaluation of the mean segmentation performance of the probabilistic SegNet and comparison against
deterministic U-Net and MC dropout modeling approaches on validation data. Boxes extend values extending from
first to third quartile. The central line in each box indicates the median and outliers are represented with dots.

Table 4.2: Uncertainty Estimation Performance Evaluation: Results on BRATS2020 training and
validation sets as generated by the online portal

Training Set

Method
Dice AUC FTP Ratio AUC FTN Ratio AUC

WT TC ET WT TC ET WT TC ET
MC-dropout 0.8867 0.8277 0.7613 0.0051 0.0051 0.0031 0.0001 0.0001 2.42E-05
Probabilistic SegNet 0.8984 0.8626 0.7711 0.0073 0.0070 0.0026 0.0003 0.0001 7.49E-05

Validation Set

Method
Dice AUC FTP Ratio AUC FTN Ratio AUC

WT TC ET WT TC ET WT TC ET
MC-dropout 0.8784 0.7664 0.6928 0.0062 0.0052 0.0032 0.0001 0.0001 2.60E-05
Probabilistic SegNet 0.8825 0.7745 0.6988 0.0072 0.0072 0.0030 0.0002 0.0002 6.34E-05
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4.5 Contributions and Concluding Remarks:

• We presented an approach for predictive uncertainty estimation of bio-medical image segmen-

tation utilizing Bayes by Backprop method under the variational inference framework.

• We evaluated and compared the quality of uncertainty gained using MC dropout at test time

and frequentist inference to that achieved from probabilistic back-propagation.

• While the segmentation performance with the variational inference approach is in par with the

deterministic network, it additionally incorporates the two desiderata imperative for safety-

critical applications, a measure of uncertainty and regularization.

• Through empirical evaluations on complex neuro-imaging data we demonstrated that the prob-

abilistic deep learning scheme naturally handles uncertainty and regularization.
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CHAPTER 5

RADIOMICS IN NEURO-ONCOLOGY: A SPARSE BAYESIAN APPROACH

FOR MODELING HIGH-DIMENSIONAL DATA IN GLIOBLASTOMA

SURVIVAL PREDICTION

5.1 Introduction

In epidemiological and clinical studies, the analysis of time until the occurrence of an event of

interest such as the time from diagnosis of a disease until recurrence or death after some treatment

is particularly common. Event-time analysis has applications in a range of disciplines including

medicine, engineering, and econometrics. While standard regression procedures could be applicable

for time-to-event modeling when censoring is not present, it may not be adequate as time to event

is restricted to be non-negative and the distributions are often positively skewed. The main focus in

this study is on event-time regression involving high-dimensional data where we analyze radiomic-

based imaging data for survival prediction.

Data is said to be high-dimensional when the number of covariates p exceeds the number of obser-

vations n, often written as p >> n. High dimensional data is common in many scientific disciplines

such as genomics in computational biology, where identification of a subset of covariates associated

with the response is particularly important. Unless properly handled, high dimensionality may lead

to over-fitting and raise statistical issues in the analysis. While there are several well-established

sparse regression approaches, Bayesian methods are favorable due to their ability to produce prob-

ability estimates over the model parameters enabling uncertainty quantification. This is even more

important in clinical research where data acquisition is expensive, and the number of observations

are limited. In the presence of limited data, model fits are subject to more variation resulting in

high uncertainty.

While medical images are widely adopted in clinical research to assess biophysical properties of

tumor cells, imaging-based studies often require analysis in the high-dimensional space. Radiomics,

a method to extract clinically important features from high-dimensional clinical images, is com-
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monly used to perform image-based tumor phenotyping. Radiomics research constitutes a relatively

new area and its emerging role in neurology as a quantitative imaging biomarker has been influ-

ential. However, clinical imaging-based survival prediction is challenging, and high dimensionality

poses additional challenges.

In this study we focus on predicting survival time and conducting risk factor analysis with pre-

operative scans of patients with Glioblastoma Multiforme (GBM). Gliomas are a type of brain

tumors that originate in glial cell with glioblastoma multiforme being the most aggressive, in which

tumor cells infiltrate surrounding healthy brain tissues. Despite extensive studies to better un-

derstand the GBM cancer biology, owing to its genetic and clinical heterogeneity among patients,

prognosis remains poor. Since it is clinically important to examine whether radiomic phenotyping

has incremental prognostic value over the other clinical information, we aim to analyze the perfor-

mance of GBM patient survival through radiomic feature-based statistical models combined with

clinical features. Due to the natural handling of uncertainty through probabilistic interpretations

of parameters, we adopt a sparse bayesian regression-based approach for survival modeling. In

this study we present a sparse regression-based Bayesian AFT model in the context of radiomics

survival prediction. Sparsity is induced across predictors using a shrinkage prior.

5.2 Related Work

Radiomics: Recent studies in bio-medical literature have reported performance improvements on

survival prediction when radiomic features are incorporated. For example, findings in the study

by Burgh et al. [106] suggest MRI features provide added value when predicting Amyotrophic

lateral sclerosis (ALS) patient survival category as short, medium or long term survivors. Rayner

et al. [107] demonstrated analyses on routinely collected CT images yield promising results when

predicting patient longevity. A study conducted by Bae et al. [108] explore the applicability of

MRI radiomic features combined with clinical and genetic profiles to predict the survival of GBM

patients. They extracted 796 radiomic features from MRI scans, out of which 18 features were

identified as significant. Nie et al. [109] adopted a 3D CNN to extract features from pre-operative

brain images and in conjunction with clinical features they predicted survival of glioma patients

via a support vector machine. However, features extracted through deep learning are abstract

and the predictors are unknown, hence the degree of bias in the predictors cannot be determined.

Prior research on glioma also suggest that patient age alone can predict the survival of the patient

relatively well when compared with methods that incorporate more complex radiomic features [110],
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[111]. While this can be considered a first step towards a more profound understanding of survival

factors, additional studies are required to understand the key tenets of GBM survival prediction

more completely.

Sparse Learning: Among the sparse learning methods for addressing high-dimensionality, regu-

larization of the objective function through a penalized term is a common approach. For instance,

least absolute shrinkage and selection operator (lasso) [112] impose L1-norm penalty on the re-

gression parameters which shrinks them towards zero. Conversely, Bayesian penalization encode

sparsity through the prior distribution. In high-dimensional survival data, the Laplace prior is

commonly used [113–115], which is the Lasso equivalent under the Bayesian framework. The gold

standard in sparsity priors is the spike-and-slab-prior [116] which is a discrete-continuous mixture,

more specifically a point mass at zero (spike) and a diffused distribution (slab), but it is computa-

tionally inefficient in practice. A more recent prior, referred to as the horseshoe prior [117] received

considerable attention within the research community, however it’s configuration is complicated.

Heavily influenced by the work in [118], we incorporate a continuous relaxation of the spike-and-slab

prior in our Bayesian AFT model, which is described in more detail in Section 4 .

5.3 Background, concepts and notation

5.3.1 Survival analysis preliminaries

Let survival data of size n be denoted by D = {xi, ti, δi}ni=1, where xi = [xi1, . . . , xip] ∈ Rp are

the covariates and (ti, δi) are the event pairs such that ti indicates the time-to-event of interest and

δi is the binary event indicator. Typically, δi = 0 for a censored instance and δi = 1 for an event

that is observed. The survival function S(t) indicates the probability that the event of interest does

not occur within the observation window that ends at time t and can be characterized by,

S(t) = P (T ≥ t) = 1− F (t) = exp
(
−
∫ t

0
h(s)d(s)

)
, (5.1)

where T is the survival time which is non-negative and continuous. For censored instances T is

latent. F (t) is the cumulative distribution function of the event of interest which represents the

probability that the event occurs within t days.

Alternatively, the probabilistic behavior of survival time T can be characterized by its hazard

function and density function. The conditional hazard rate function h(t|x) represents the instan-
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taneous rate of the event occurrence at time t given covariates x, for the population group that is

still at risk at time t which is defined as:

h(t|x) = lim
dt→∞

P (t ≤ T ≤ t+ dt)
P (T ≥ t|x) = f(t|x)

S(tx) , (5.2)

where f(t|x) is the conditional density of the survival function and S(t|x) is the complement of

the cumulative conditional density, F (t|x).

5.3.2 Time to Event Regression: Accelerated Failure Time (AFT) model

Among the most common modeling frameworks to characterize the association between the event

time and the covariates are the cox proportional hazards (CPH) model [119] and the accelerated

failure time (AFT) [120]. Contrary to CPH which models the conditional hazard function h(t|x)

through a semi-parametric approach, AFT adopts a parametric approach to model the survival

time. Since the focus of current study is on survival time modeling, we briefly describe here the

preliminaries pertaining to the AFT model.

The AFT model assumes that the explanatory variables have a multiplicative effect with respect

to the survival time of the individual where the survival function is expressed as:

S(t|β,x) = S0(exp(xTβ) t), (5.3)

where S0(t) is the baseline survival function and x are the covariates. If xTβ > 0, then exp(xTβ) t >

t and the covariates have an accelerative effect on the effective passage of time for the subject. In

this case, exp(xTβ) t is termed the accelerator factor.

Under the AFT model, survival time T is expressed in logarithmic scale and characterized by a

log-linear regression model:

log(Ti) = xTi β + σεi, i = 1, . . . , n (5.4)

where log(Ti) is the logarithm of survival time, x is the p-vector of covariates, β ∈ Rp is the vector

of regression coefficients indicating the degree of influence of covariates on the response, σ is a scale

parameter and ε is the independently and identically distributed (iid) random error, assumed to

follow a particular distribution.
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The distribution of time-to-event T is determined by the distribution of error term ε. For instance,

if the log-linear error distribution is normal, then T follows a log-normal distribution, whereas a

logistic distribution for ε corresponds to a log-logistic distribution for T .

5.4 Sparse Bayesian Survival Regression

5.4.1 Bayesian AFT model formulation

While there exists a considerable body of literature on parametric time-to-event regression, re-

search on AFT models under the Bayesian paradigm remains limited. Considering AFT models

under Weibull distributional assumptions here we present a sparse Bayesian framework for the case

p >> n , where p represents the number of covariates and n, the number of observations.

Consider the following AFT model:

Y = log(T ) = xTβ + σε. (5.5)

Suppose the ε in AFT model defined in (5.5) follows an extreme value distribution, more specif-

ically a Gumbel distribution, G(0, 1). Then T follows a Weibull distribution, W (α, γ) where α is

the scale parameter and γ is the shape parameter.

Gumbel distribution has probability density function (pdf) of the form:

fε(u) = exp[(u)] exp[− exp(u)] (5.6)

And cumulative distribution function(cdf):

Fε(u) = 1− exp[− exp(u)]. (5.7)

Likelihood of the observed survival times can then be formulated as follows:

L(β, σ; yi) =
n∏
i=1

[fY (yi)]δi [SY (yi)]1−δi

=
n∏
i=1

{
1
σ

exp
(
yi − xTβ

σ

)
exp

[
− exp

(
yi − xTβ

σ

)]}{
exp

[
− exp

(
yi − xTβ

σ

)]}
,

(5.8)
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where f and S represent density and survival function for the error distribution, respectively. The

censoring indicator for subject i is represented by, δi.

5.4.2 Prior Specification

A priori expectations of model parameter behavior can be encoded via a prior distribution on

β. The aim of establishing a subset of coefficients to be exactly zero a priori may be realized

through a shrinkage prior. Marginal prior distribution for regression coefficients, p(β) is specified

by imposing the sparsity assumption to provide shrinkage to the small effects while allowing strong

effects to remain large under the Bayesian posterior. Inspired by the previous work in literature on

Bayesian lasso regression [121,122], we define the prior based on the Laplace (double exponential)

distribution for which the conditional density has the following form:

p(βj |b2) = 1
2b exp

(−|βj |
b

)
, (5.9)

where b is a scale parameter.

We define our shrinkage prior as a Laplacian scale mixture. The hierarchical representation of

our shrinkage prior can be summarized as follows:

βj |τ, λi
iid∼ LP (0, (λiτ)2), j = 1, . . . , p

λi ∼ LogitNormal(µλ, σλ)

µλ = logit(θ)

τ ∼ HalfNormal(σ),

(5.10)

where θ is a probability representing our prior beliefs of a variable being non-zero and λ =

logit−1(λ̃i) such that λ̃i ∼ N(µλ, σ2
λ).

The scale mixture parameter λi acts as an indicator of the inclusion of a variable. Thus, the

values of the logit-normal random variable can be considered as approximation for the variable

inclusion probabilities.

5.4.3 Model fitting and Posterior Inference

Bayes Theorem combines prior probability distribution with the likelihood that is derived based

on the observed data. Inference concerning model parameters can be performed through the pos-

terior distribution.
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P (β, σ; yi) = L(β, σ; yi) p(β)∫
β L(β, σ; yi) p(β) dβ , (5.11)

where m(D) =
∫
β L(β, σ; yi) p(β) dβ is the model evidence which is analytically intractable and

thus require sampling-based approaches such as MCMC to sample from p(β|D) at the inference

phase.

5.5 Application to survival prediction of patients with Glioblastoma

5.5.1 Experimental Set-up

Description of Data: The proposed approach is experimentally evaluated on the multi-modal

Brain Tumor Segmentation Challenge data (BRATS2020) published by the Center for Biomedi-

cal Image Computing and Analytics (CBICA) from University of Pennsylvania [97–99]. The data

set is consisted of clinically acquired multi-modal pre-operative MRI scans of patients diagnosed

with glioma tumors. The 3D MRI scans include 4 modalities; T1-weighted, contrast-enhanced T1-

weighted (T1ce), T2-wieghted and T2 Fluid Attenuated Inversion Recovery (FLAIR) sequences.

Manually segmented tumor sub-region labels by expert radiologists, age, resection status and sur-

vival information are provided for a cohort of 235 patients in the training set (Table 5.1). The

data-set does not contain censored observations. Out of the patients who underwent surgical inter-

vention, 118 had gross total resection (GTR) and 10 had sub-total resection (STR). The extent of

resection status is reported as unknown (NA) for 107 patients.

Table 5.1: Statistical information for the training set in BRATS2020 survival data.

Variables Value
Resection Status (cases)
Gross Total Resection (GTR) 118
Sub-total Rescetion (STR) 10
Missing Information 107

Age (years)
Range 18-87
Mean ± std 61 ± 11.9
Median 61

Overall survival time (GTR cases)
Short-term ( <10 months) 42
Medium-term (between 10 and 15 months) 30
Long-term ( >15 months) 46
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Performance Evaluation: Survival predictive performance is evaluated using mean square er-

ror(MSE). Results for median squared error (median SE) and standard deviation of the squared

error (std SE) will also be presented which can be obtained by computing the median and stan-

dard deviation of the estimator’s squared errors, respectively. Mean squared error of the predicted

survival times is defined by:

MSE = 1
N

N∑
i=1

(ti − t̂i)2, (5.12)

where ti(i = 1, ..., N) is the actual survival times and t̂i(i = 1, ..., N) is the predicted times.

5.5.2 Exploratory Analysis

(a) Kaplan-Meir Survival Estimates

An initial exploratory analysis on the overall survival showed the median OS for the entire

cohort of study is 370 days (approximately 12 months). Neurosurgical options for glioblastoma

include removal of complete tumor area which is referred to as Gross Total Resection (GTR) or

removal of part of the tumor, referred to as Sub-total Resection (STR). We first seek to examine

the association between the extent of tumor resection and survival time. The median duration of

overall survival in the GTR and STR groups are 375 days and 652 days, respectively. Sub-group

analysis by resection-status was performed through the Kaplan-Meir (KM) estimates (Figure 5.1)

where the survival function is represented by:

Ŝ(t) =
∏

j:Tj<t

(
1− dj

rj

)
, (5.13)

where Tj represents distinct event times, dj is the number of events that occurred at Tj , rj is the

number of subjects “at risk”.

In Figure 5.1, the two survival curves appear to overlap, but it can be seen that the probability

of survival is low for the patients who underwent GTR than those who were treated with STR.

However, patients with GTR status are associated with longer survival times and clearly have a

better chance of surviving more than three years.

(b) Parametric characterization of survival time

We made comparisons among number of parametric models (over 30) and a model which ap-

propriately characterize data was selected based on the the Akaike Information Criterion (AIC).
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Figure 5.1.: Kaplan-Meier plots of overall survival in all cases by resection status.

AIC selects the relative quality of parametric model based on the maximum log likelihood and

the principle of parsimony. Mathematically, AIC = −2LL + 2k where k is the number of model

paramaters and LL is the maximum log-likelihood. Taking the AIC score into consideration we

chose the Gamma distribution, denoted by Γ(α, β), as an appropriate distribution to characterize

overall survival times of patients with Glioblastoma. Goodness-of-fit was evaluated through the

Kolmogorov-Smirnov test which yielded a p-value of 0.3549 indicating a good fit. The gamma

distribution is parameterized by the shape parameter α and an inverse of a scale parameter (θ),

denoted by β = 1/θ, which is often referred to as the rate parameter.The maximum likelihood

estimates for the shape parameter (α) is 1.53 and scale parameter (θ = 1/β) is 289.89. Density

and survival plots are displayed in (Figure 5.2). Survival function is non-increasing and allows to

obtain the probability that a patient will survive past time t .

Let T be a random variable denoting the the survival time which is approximated by a Gamma

distribution. Then for y ∈ R+, the fitted distribution has the following form:

Gamma(t|α, β) = β(βt)α−1e−βt

Γ(α) , (5.14)

where α ∈ R+ and β ∈ R+.

Thus, the pdf of survival times for patients with Gliobalstoma can be represented by,

f(t) = 0.0034(0.0034t)1.53−1e−0.0034t

Γ(1.53) , (5.15)
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where α is the shape parameter. The scale parameter is denoted by 1/β which indicates the mean

time between events.

Similarly, the survival function can be chracterized by:

S(t) = 1− Iα(βt)

S(t) = 1− I1.53(0.0034t),
(5.16)

where Iα is called the incomplete gamma function with the following form:

Iα(t) =
∫ t

0
βα−1e−t dt/Γ(α). (5.17)

The survival function does not have a closed-form expression. The hazard function can be

obtained by computing f(t)/S(t). Since the shape parameter α = 1.53 > 1, the gamma hazard

increases monotonically starting from 0 to a maximum value of β.

Figure 5.2.: Fitted (a) probability density and (b) survival functions with Gamma distribution for the entire cohort
of patients with Glioblastoma BRATS2020 data set. Survival function represents the likelihood of survival after t
days of GTR.

5.5.3 Radiomics analysis for survival time prediction

In the BRATS2020 challenge data, the ground truth values for validation set is not provided.

Model performance metrics can be obtained by submitting the results to the online portal provided

by CBICA Image Processing Portal [123] where the results are evaluated only on patients whose

resection status is GTR. Therefore, we set out to study overall survival of patients with resection

status GTR. The goal is to predict the number of survival days of patients on a validation cohort

of 29 after Gross Total Resection (GTR) of malignant tumor.
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Process Overview: Survival Prediction in clinical neuroimaging involves identification of tumor

margins to estimate patient survival statistics, therefore the first step in radiomics is tumor seg-

mentation. While segmentation can be performed via a variety of methods ranging from manual

labeling to deep-learning methods, in this study we utilize the ground truth annotations provided

in the data set for training, and for validation we used the segmentation maps we obtained us-

ing our own model. Next, radiomics features were extracted from clinical images which serve as

quantitative imaging bio-markers. Then feature selection methods were applied to select the most

relevant set of features. It is followed by rigorous statistical analysis to predict the survival of GBM

patients. A graphical illustration of the radiomics workflow is provided in Figure 5.3. Details of

each step of the radiomics workflow is summarized below.

Multi-modal MRI scans

Image Segmentation
and Feature
Extraction

First Order Fetaures textural features

shape  features

Exploratory
Analysis

Kaplan-Meier Survival Curves

Survival Analysis

Parametric Characterization

Sparse Bayesian LearningModel Specification Survival Prediction

Correlation Analysis

Neural Network

Random Forest

Gradient Boosting

Bayesian AFT

Model
coefficients

Figure 5.3.: Overview of radiomics workflow for Survival Prediction. Ground truth segmentation masks are used to
extract radiomics features from the tumor regions. Extracted features are based on intensity, textural and shape.
Then an exploratory analysis is conduced followed by the statsitical analysis for survival prediction.
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5.5.3.1 Quantitative Feature Extraction

Having performed discrete wavelet transform (DWT) on each MRI modality (T1, T1CE, T2 and

FLAIR), the 4 modalities were fused using fusion rules (by taking the average). The process is

displayed in Figure 5.4. Then using the fused image and the 3 regions of interest in the segmented

scan (whole tumor, tumor core and enhanced tumor), the radiomics features were extracted us-

ing Pyradiomics [124] which is an open-source python package for radiomics feature extraction.

Description of extracted features are included in Appendix A.

Extracted radiomics features include 2D and 3D shape-based features (10 features and 16 fea-

tures, respectively), first order statistics (19 features), gray level co-occurence matrix features (24

features), gray level run length matrix (16 features), gray level size zone matrix (16 features),

neighbouring gray tone difference matrix (5 features), gray Level dependence matrix (14 features).

4 MRI Modalities: T1,T2,
T1CE, FLAIR

Fused Image

Feature Extraction
using DWT Image Fusion

Fusion Rules

Figure 5.4.: An example of a fused image of 4 modalities in Glioblastoma BRATS2020 data set.

5.5.3.2 Statistical Analysis and model building

(a) AFT Model Selection:

Feature correlations are depicted in the cluster map in Figure 5.5. It is clearly visible that most

variables have high-correlations among them. In order to select a suitable probability distribution

for the AFT model, we first filtered the highly correlated variables, with threshold set to 0.95 where

the number of features were reduced to 91 from 331. Note that for the Bayesian AFT model and

the other methods we made comparisons with, we considered the full feature space.

Widely adopted probability distributions under the parametric AFT model are the Log-Normal,

Log-logistic andWeibull distributions. Through some transformation of survival function a straight-

line plot against log time can be generated which allows us to determine a suitable distribution for

survival times. Survival function transformations are summarized in Table 5.2. In order to identify
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Figure 5.5.: The cluster-map map provides a clear visual representation of feature correlations. The dendogram
displays the clustering among features based on correlation. The color scale ranging from -1 to +1 indicates correlation
coefficient.

the underlying distribution that best characterize the survival model, transformed survival functions

were plotted against the log of survival time (Figure 5.6). Visual inspection of the transformed

empirical survival curves indicates that the Weibull distribution is a good fit compared with the

other considered distributions. This was further confirmed by the AIC score for which Weibull

distribution had the lowest value. Therefore, we continue the analysis with the Weibull distribution.

Table 5.2: Survival Function Transformations

Distribution Survival Function Linear Transformation

Log-normal (µ, σ) S(1) = 1− φ
(
ln(t)−µ

σ

)
φ−1[1− S(t)] = 1

σ ln(t)− µ
σ

Log-logistic (θ, k) S(t) = {1 + exp(θ)tk}−1 ln S(t)
1−S(t) = −θ − k ln(t)

Weibull (α, k) S(t) = exp{−(αt)k} ln{−ln(S(t))} = kln(α) + kln(t)

(b) Model Training:

Patient age is the only non-imaging clinical feature in the data set. Linear regression on the age

of the patient has proven to be effective in prior literature. We therefore set a linear regression

model for the log-transformed survival days with patient age as the only predictor as the baseline

model. Additionally, we trained Random Forests and Neural Networks to compare the performance
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Figure 5.6.: Plots of transformed survival functions for (a) Log-Normal distribution, (b) Log-logistic Distribution and
(c) Weibull distribution. Weibull distribution indicates a better fit compared with other distributions.

of the Bayesian AFT model. Random Forest regressor was trained with number of trees set to 1000

and mean squared error as split criterion. Two-layer Neural Network is trained for 400 epochs.

The importance of the Bayesian approach is evident in the Figure 5.7 where a Bayesian linear

regression model with only age of the patient age as the predictor is fitted. We can see a range of

regression lines as sampled by the Bayesian model. Under limited data, uncertainty is high, which

is represented by the variability of the regression lines, implying the importance of uncertainty

quantification.

Figure 5.7.: Bayesian linear regression model with only age of the patient as a predictor. While OlS yields a single
estimate of the model parameters, with Bayesian regression we can obtain a sample of credible regression lines which
are demonstrated in green. In the regions with less data there is high uncertainty.

Graphical Model: The graphical model indicating the hierarchical representation of the Bayesian

AFT model is given in Figure 5.8. It demonstrates the inter-dependence between the variables.
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The nodes represent the variables, and the edges indicate the conditional dependence given other

variables.

Figure 5.8.: Graphical model depicting the conditional dependencies.

5.5.4 Experimental Results

Convergence diagnostics: Exact Bayesian Inference is not analytically tractable hence approxi-

mate inference based on Markov chain Monte Carlo (MCMC) is applied. We used the No-U-Turn

Sampler(NUTS) [125] MCMC algorithm, which is an extension of the Hamiltonian Monte Carlo

(HMC). Provided below in Figure 5.9 are the trace plots comprising of a set of sampled parameters

over all chains conditioned on the observed data and priors. And Gelman’s Rubin score is close to

1 confirming convergence.

Bayesian Variable Selection: Identifying the relevant features is a key aim of the analysis. Vari-

able selection can be attained via the marginal posterior inclusion probabilities. In Table 5.3, we

present summary statistics of five potential factors identified through inclusion probabilities.

In Table 5.3, variable inclusion probability, mean, standard deviation(sd) and the Highest Den-

sity Interval (HDI) is provided. Among the most influential variables are patient age, proportion

of tumor core (TC) to whole tumor (WT), enhancing tumor (ET) length and Gray Level Size

Zone (GLSZM) features. GLSZM quantifies gray level zones in the MRI scan. High Density Inter-

val(HDI) incorporates the most credible values and can be treated as the posterior distribution’s
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Figure 5.9.: Trace plots for parameters indicating convergence.

summary credible interval. Values within HDI has a greater probability density than the those that

are outside the interval.
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Table 5.3: Bayesian variable selection and their summary statistics. Variable inclusion probability,
mean, standard deviation(sd) and their Highest Density Interval (HDI) is provided.

Variable Inclusion probability mean sd hdi_3% hdi_97%

Age 0.9298 -1.615 0.533 -2.645 -0.637

Proportion_TC_WT 0.6431 -0.444 0.600 -1.772 0.247

Original GLSZM Gray Level Variance WT 0.5841 -0.341 0.597 -1.645 0.427

Original GLSZM Gray Level Variance ET 0.5818 -0.342 0.602 -1.664 0.411

Length_ET 0.5723 -0.310 0.549 -1.477 0.428

Original GLSZM Gray Level Variance TC 0.5679 -0.299 0.547 -1.474 0.349

Table 5.4: Glioblastoma survival prediction performance evaluation on BRATS2020 data set

Training Set
MSE Median SE Std SE

Baseline (Linear Regression on age only) 9.55e4 2.54e4 1.82e5
Two-layer Neural Network 9.31e4 2.83e4 1.76e5
Random Forest 1.66e4 5.75e3 3.13e4
Gradient Boosting 6.15e2 2.49e2 9.87e2
Bayesian AFT Model 2.88e4 1.57e4 5.42e4

Validation Set
MSE Median SE Std SE

Baseline (Linear Regression on age only) 8.90e4 3.31e4 1.21e5
Two-layer Neural Network 9.74e4 4.24e4 1.28e5
Random Forest 8.28e4 4.03e4 1.08e5
Gradient Boosting 8.62e4 2.74e4 1.13e5
Bayesian AFT Model 7.97e4 5.30e4 1.19e5

In Table 5.4, we have provided a comparison of survival prediction performance of Bayesian AFT

model and other methods. It can be seen that while there is a considerable improvement on the

predictive performance over the baseline, due to the absence of other relevant clinical information

the predictive ability of the survival prediction performance is not high. Thus,the results suggest

that radiomc features are potent in predicting survival time, but both imaging and other relevant

clinical features need to be incorporated to gain a higher performance. While performance of the

AFT model is comparable to the other machine learning methods, we emphasize that advantage of

the Bayesian approach is not improving accuracy, but its ability to yield model parameter estimates

concurrently with variable selection and estimations of uncertainty.
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5.6 Contributions and Concluding Remarks

We presented a Bayesian AFT variable selection approach to address high-dimensional problem

when modeling time-to-event data where the sparsity is induced by a hierarchical prior derived by

exploiting the Bayesian Lasso shrinkage prior. Mixture models are particularly useful when devel-

oping sparsity inducing priors. Effective parameterization is essential when designing hierarchical

prior models. While a strong regularization result in prior dominating, poor regularization may

lead to over-fitting. The Bayesian approach allows additional advantages over the classical methods

such as uncertainty, but performance is in par with the common machine learning algorithms in

terms of predictive power.

Our contributions can be summarized as follows:

• Modeling contribution: We present a sparse regression-based Bayesian accelerated failure time

model where the sparsity is induced across predictors through a shrinkage prior.

• Experimental contribution: We identify relevant imaging-based prognostic factors that influ-

ence survival of patients with Gliobalstoma. We demonstrate that inclusion of radiomic-based

features enhance the predictive performance.

The type of model should be determined by the research objectives; if the goal is prediction,

methods based on machine learning could be a better alternative. Except for the patient age the

other clinical information such as medications or demographics (gender, race) were not available to

be incorporated in the survival prediction model. Due to the absence of important factors relevant

to the prediction task, survival task based on imaging data alone is very challenging, however,

inclusion of radiomic-features in survival prediction showed a considerable improvement over the

baseline.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

Statistical Learning is based on a solid theoretical framework and mathematical principles. Deep

learning on the hand, has emerged as a more pragmatic mechanism in the development of intelli-

gent systems in real-world. Combining theory-driven statistical procedures and data-driven deep

learning methods, in this study we addressed some of the key challenges encountered when handling

real data. More specifically, class imbalance and confidence calibration when modeling rare events,

estimating uncertainty when constructing models in safety-critical applications and modeling high

dimensional data in time-to-event modeling. Here we provide concluding remarks and summarize

open leads for future research.

Class Imbalance Learning and confidence calibration: Class imbalance presents one of the biggest

difficulties in many real-world applications and devising algorithms that are adept at dealing with

class imbalance is imperative. To this end, we proposed a cost-sensitive based approach which

also leads to improved calibration. Differing from the methods centered around sampling-based

approaches the proposed methods make maximum use of available data, considers the difficulty

levels of individual samples and can be applied to any network without requiring any architectural

modifications. It was theoretically justified and empirically validated on different application areas

of cyber-security and healthcare to show the generalizability across domains. Future work will focus

on applying the presented approach to a broader range of data sets with varying degrees of class

imbalance, and performance comparisons under multiple criteria. In addition, studies on noisy and

outlier samples in the minority group might prove an interesting area for further research. With

regard to confidence calibration, factors affecting neural network miscalibration may constitute an

interesting issue for future research to explore.

Segmentation and Uncertainty Estimation: The transition from scientific research to clinical

practice depends on the trustworthiness of computer-aided diagnosis systems and raises profound

questions about reliability, uncertainty, and robustness. For example, how to detect when the com-
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putational algorithms get it wrong? Can we predict when the machine learning model fails, and how

to make the algorithm robust to changes in real-world conditions and clinical data? These research

questions are of central interest in safety-critical medical applications where accuracy is integral.

Here we presented a stochastic variational inference-based approach for uncertainty estimation with

the aim to identify the instances the algorithm is uncertain about. Performance evaluations on bio-

medical image segmentation data proved validity for the proposed approach. In the context of

segmentation, there are several interesting research questions that needs further investigation. For

instance, Deep network-based methods are prone to overfitting and hence evaluating the level of

accuracy on new clinical data in the absence of ground truth is crucial in automated diagnosis.

Methods are required to identify when the system fails and to evaluate the actual performance

after implementation when a reference segmentation by an expert is inaccessible. Future efforts

should further explore this issue before clinical adoption of automated systems. Moreover, the

ultimate goal in computer-aided medical screening is to surpass human-level performance. Cancer

histopathology reads in biomedical imaging requires expert knowledge, and it may subject to anno-

tation bias while leading to a lack of agreement among human experts and therefore identifying the

exact ground truth segmentation could be challenging. Synthesis of ground truth via adversarial

learning appears to be a promising research direction in this context.

Survival analysis and high dimensionality: Due to the absence of important factors relevant to the

prediction task, survival task based on imaging data alone is very challenging, however, inclusion of

radiomic-features in survival prediction showed a considerable improvement over the baseline. We

believe that integration of other important clinical information with imaging data will dramatically

enhance the performance. Future research could explore the applicability of the methods developed

here across other domains of time-to-event modeling. Future research should further experiment

with other shrinkage priors that induces sparsity.
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APPENDIX A

DESCRIPTION OF RADIOMIC FEATURES

Table A.1: Description of Radiomic Features Extracted from Pyradiomics

Feature Category Name of the features

First Order Statistics
Energy, Total Energy, Entropy, Minimum, 10th percentile, 90th percentile, Maximum, Mean, Median,
Interquartile Range, Range, Mean Absolute Deviation, Robust Mean Absolute Deviation, Root Mean
Squared, Standard Deviation, Skewness, Kurtosis, Variance, Uniformity

Shape-based

Mesh volume, Voxel Volume, Surface Area, Surface Area to Volume Ratio, Sphericity, Compactness 1,
Compactness 2, Spherical Disproportion, Maximum 3D diameter, Maximum 2D diameter (slice),
Maximum 2D diameter (columns), Maximum 2D diameter (row), Major Axis Length, Minor Axis Length,
Least Axis Length, Elongation, Flatness

Gray Level Cooccurence
Matrix (GLCM)

Autocorrelation, Joint Average, Cluster Prominence, Cluster shade, Cluster Tendency, Contrast, Correlation,
Difference Average, Difference Entropy, Difference Variance, Joint Energy, Joint Entropy, Informational
Measure of Correlation, Inverse Difference Moment, Maximal Correlation Coefficient, Inverse Difference
Moment Normalized, Inverse Difference, Inverse Difference Normalized, Inverse Variance, Maximum
Probability, Sum Average, Sum Entropy, Sum of Squares

Gray Level Run Length
Matrix(GLRLM)

Short Run Emphasis, Long Run Emphasis, Gray Level Non-Uniformity, Gray Level Non-Uniformity
Normalized, Run Length Non-Uniformity, Run Length Non-Uniformity Normalized, Run Percentage,
Gray Level Variance, Run Variance, Run Entropy, Low Gray Level Run Emphasis, High Gray Level
Run Emphasis, Short Run Low Gray Level Emphasis, Short Run High Gray Level Emphasis,
Long Run Low Gray Level Emphasis, Long Run High Gray Level Emphasis

Gray Level Size Zone
Matrix (GLSZM)

Small Area Emphasis, Large Area Emphasis, Gray Level Non-Uniformity, Gray Level Non-Uniformity
Normalized, Size Zone Non-Uniformity, Size Zone Non-Uniformity Normalized, Zone Percentage,
Gray Level Variance, Zone Variance, Zone Entropy, Low Gray Level Zone Emphasis, High Gray Level
Zone Emphasis, Small Area Low Gray Level Emphasis, Small Area High Gray Level Emphasis,
Large Area Low Gray Level Emphasis, Large Area High Gray Level Emphasis

Gray Level Dependent
Matrix (GLDM)

Small Dependence Emphasis, Large Dependence Emphasis, Gray Level Non-Uniformity, Gray Level
Non-Uniformity Normalized, Dependence Non-Uniformity, Dependence Non-Uniformity Normalized,
Gray Level Variance, Dependence Variance, Dependence Entropy, Dependence Percentage, Low Gray Level
Emphasis, High Gray Level Emphasis, Small Dependence Low Gray Level Emphasis, Small Dependence
High Gray Level Emphasis, Large Dependence Low Gray Level Emphasis, Large Dependence High Gray
Level Emphasis

Neighbouring Gray Tone
Difference Matrix (NGTDM) Coarseness, Contrast, Busyness, Complexity, Strength
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