

Digital Commons @ University of South Florida

Mathematics and Statistics Faculty Publications

Mathematics and Statistics

University of South Florida

2020

A Trace Bound for Integer-diagonal Positive Semidefinite Matrices

Lon Mitchell *University of South Florida*, lonmitchell@usf.edu

Follow this and additional works at: https://digitalcommons.usf.edu/mth_facpub

Scholar Commons Citation

Mitchell, Lon, "A Trace Bound for Integer-diagonal Positive Semidefinite Matrices" (2020). *Mathematics and Statistics Faculty Publications*. 86.

https://digitalcommons.usf.edu/mth_facpub/86

This Article is brought to you for free and open access by the Mathematics and Statistics at Digital Commons @ University of South Florida. It has been accepted for inclusion in Mathematics and Statistics Faculty Publications by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact scholarcommons@usf.edu.

Note Open Access

Lon Mitchell*

A trace bound for integer-diagonal positive semidefinite matrices

https://doi.org/10.1515/spma-2020-0002 Received September 27, 2019; accepted December 2, 2019

Abstract: We prove that an n-by-n complex positive semidefinite matrix of rank r whose graph is connected, whose diagonal entries are integers, and whose non-zero off-diagonal entries have modulus at least one, has trace at least n + r - 1.

Keywords: positive semidefinite matrices, integer-diagonal, trace

MSC: 15B48, 15A15, 05C50

1 Introduction

The graph of an n-by-n Hermitian matrix $M = (m_{ij})$ has vertex set $\{1, 2, ..., n\}$ and edge set $\{ij \mid i < j, m_{ij} \neq 0\}$. As part of their work on the Schur-Siegel-Smyth problem for totally positive algebraic integers, James McKee and Pavlo Yatsyna [3] proved that an n-by-n positive definite matrix S whose entries are integers and whose graph is connected must have trace at least 2n - 1. As a consequence, 2 is the smallest limit point of the absolute trace (which for an n-by-n matrix is the trace divided by n) of such matrices.

The integer entries are important to McKee and Yatsyna's proof: since S is positive definite, it can be factored as $S = B^T B$, and thus viewed as the Gram matrix of the columns x_1, x_2, \ldots, x_n of B. In a minimal-trace connected counterexample, we can assume without loss of generality that x_1 is a unit vector. Then the Gram matrix of $x_1, x_2', x_3, \ldots, x_n$, where $x_2' = x_2 - (x_1^T x_2)x_1$, still has integer entries and eventually provides a contradiction.

Are the integer entries necessary? In this note, we prove a generalization for complex positive semidefinite matrices and show that while the diagonal entries must be integers, the off-diagonal non-zero entries need only have modulus at least 1. A generalization of McKee and Yatsyna's absolute trace result follows as a corollary.

In addition to standard tools and definitions from matrix analysis [2] and graph theory [1], one fact we will use repeatedly is that, because the sum of a positive definite matrix and a positive semidefinite matrix is still positive definite, adding a positive number to a diagonal entry of a positive definite matrix results in another positive definite matrix. Also note that an empty graph on a single vertex is connected.

2 New Results

Lemma 1. An n-by-n complex positive definite matrix whose graph is a tree, whose diagonal entries are integers, and whose non-zero off-diagonal entries have modulus at least one, has trace at least 2n - 1.

^{*}Corresponding Author: Lon Mitchell: Lon Mitchell, University of South Florida St. Petersburg, Florida, USA, E-mail: lon-mitchell@usfsp.edu

³ Open Access. © 2020 Lon Mitchell, published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0

DE GRUYTER

Proof. Proceed by induction on n, noting the result is true for n = 1. Assume that the result is true for all k-by-k matrices where $1 \le k < n$, and let $M = (m_{ij})$ be an n-by-n positive definite matrix whose graph is a tree with vertices labeled v_1, v_2, \ldots, v_n corresponding to the rows of M. Assume for the sake of eventual contradiction that the trace of M, tr M, is less than 2n - 1.

Since the graph G of M is a tree, it has a pendant vertex (a vertex of degree one). Without loss of generality, we can assume vertex v_1 has unique neighbor v_2 . If the diagonal element m_{11} of M is greater than 1, then applying the induction hypothesis to M_{11} , the matrix obtained from M by deleting the first row and column, yields tr $M \ge 2 + \operatorname{tr} M_{11} \ge 2 + 2(n-1) - 1 = 2n-1$, a contradiction. So we may assume $m_{11} = 1$. Since v_1 is pendant,

$$M = \begin{bmatrix} 1 & \overline{\alpha}e_1^* \\ \alpha e_1 & M_{11} \end{bmatrix},$$

where α is a complex number with $|\alpha| \ge 1$ and e_1 is the standard basis vector.

Consider next the Schur complement $M' = M_{11} - |\alpha|^2 e_1 e_1^T$, which is an (n-1)-by-(n-1) positive definite matrix. All off-diagonal elements of M' remain unchanged from the corresponding entries of M, so the graph of M' is a tree. All main-diagonal elements of M' also remain unchanged with the exception of $m'_{11} = m_{22} - |\alpha|^2 \le m_{22} - 1$.

Since m'_{11} may not be an integer, let M'' be the matrix obtained from M' by replacing m'_{11} with $m''_{11} = m_{22} - 1$. Since $m''_{11} \ge m'_{11}$, M'' is also positive definite. Further, its graph is a tree, its diagonal entries are integers, and its non-zero off-diagonal entries have modulus at least one. Finally, tr M'' = tr M - 2 < 2n - 3, a contradiction of the induction hypothesis. Thus tr $M \ge 2n - 1$.

Theorem 1. An n-by-n complex positive definite matrix whose graph is connected, whose diagonal entries are integers, and whose non-zero off-diagonal entries have modulus at least one, has trace at least 2n - 1.

Proof. Proceed by induction on n, noting the result is true for n = 1. Assume that the result is true for all k-by-k matrices where $1 \le k \le n - 1$, and let M be an n-by-n positive definite matrix whose diagonal entries are integers, whose graph is connected, and whose non-zero off-diagonal entries have modulus at least one.

Assume for the sake of eventual contradiction that tr M < 2n - 1. By adding to a diagonal entry if needed, we can assume that we have a matrix M with the above-mentioned properties and with tr M = 2n - 2.

Let *G* be the graph of *M* and let m_v be the diagonal entry of *M* corresponding to vertex v in *G*. For each vertex v of *G*, let c(v) be the number of connected components of $G \setminus v$.

Suppose first that there is a vertex v of G such that $m_v > c(v)$. Consider M(v), the matrix obtained from M by removing the row and column corresponding to v. Applying the induction hypothesis to the principal submatrices $M_1, M_2, \ldots, M_{c(v)}$ of M(v) corresponding to the connected components $C_1, C_2, \ldots, C_{c(v)}$ of $G \setminus v$, we find that

$$\operatorname{tr} M = m_{v} + \operatorname{tr} M(v) = m_{v} + \sum_{i=1}^{c(v)} \operatorname{tr} M_{i}$$

$$\geq m_{v} + \sum_{i=1}^{c(v)} (2|C_{i}| - 1) = m_{v} - c(v) + 2(n-1) \geq 2n - 1.$$

Thus we must have that $m_v \le c(v)$ for each vertex v.

Let *T* be a spanning tree of *G*. Since *T* is a tree on *n* vertices, it has n-1 edges, and so

$$\sum_{v \in G} d_T(v) = 2(n-1)$$

where $d_T(v)$ is the degree of the vertex v in T. Since $d_T(v) \ge c(v) \ge m_v$ for each v but

$$\sum_{v\in G} d_T(v) = 2(n-1) = \operatorname{tr} M = \sum_{v\in G} m_v,$$

we must have $d_T(v) = c(v) = m_v$ for each v.

16 — Lon Mitchell DE GRUYTER

For any vertex v of G, because $d_T(v) = c(v)$, there is a bijective correspondence between the neighbors of v in T and the connected components of $G \setminus v$. Thus, if vertices v_i and v_j are not adjacent in T, then they belong to different connected components of $G \setminus w$ for any vertex w on a path between them in T, and so are not adjacent in G either. So, in fact, G = T, and Lemma 1 requires tr $M \ge 2n - 1$, contradicting our earlier assumption. Thus tr $M \ge 2n - 1$.

Corollary 1. The smallest limit point of the set of absolute traces of matrices satisfying the conditions of Theorem 1 is 2.

Remark. The matrices $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1.0 & 0.5 \\ 0.5 & 1.0 \end{bmatrix}$, and $\begin{bmatrix} 1.1 & 1.0 \\ 1.0 & 1.1 \end{bmatrix}$ show that none of the conditions of Theorem 1 can be removed.

Theorem 2. An n-by-n complex positive semidefinite matrix of rank r whose graph is connected, whose diagonal entries are integers, and whose non-zero off-diagonal entries have modulus at least one, has trace at least n + r - 1.

Proof. Proceed by induction on the nullity. The nullity zero case is Theorem 1. Assume the result is true for all nullities less than some k > 0. Let M be an n-by-n complex positive semidefinite matrix of nullity k = n - r whose graph is connected, whose diagonal entries are integers, and whose non-zero off-diagonal entries have modulus at least one.

Consider M as the Gram matrix of linearly dependent vectors x_1, x_2, \ldots, x_n in \mathbb{C}^n . Let l be such that x_l is in the span of the other vectors, and let y be a unit vector in \mathbb{C}^n orthogonal to each x_i . Then the Gram matrix M' of $x_1, x_2, \ldots, x_{l-1}, x_l + y, x_{l+1}, \ldots, x_n$ is equal to M except for an increase of 1 in the m_{ll} main-diagonal element, so its graph is connected, its diagonal entries are integers, and the non-zero off-diagonal entries have modulus at least one. The nullity of M' is k-1, so by the induction hypothesis and by construction, tr M = tr M' - 1 \geq (n + (r+1) - 1) - 1 = n + r - 1.

Corollary 2. An n-by-n complex positive semidefinite matrix of rank r whose graph has s connected components, whose diagonal entries are integers, and whose non-zero off-diagonal entries have modulus at least one, has trace at least n + r - s.

Acknowledgement: Publication of this article was funded by the University of South Florida St. Petersburg's Open Access Publication Fund.

References

- [1] Reinhard Diestel, Graph theory, 5th ed., Graduate Texts in Mathematics, 173, Springer, Berlin, 2018.
- [2] Roger A. Horn, Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.
- [3] James McKee, Pavlo Yatsyna, A trace bound for positive definite connected integer symmetric matrices, Linear Algebra Appl., 444, 227–230, 2014.