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Abstract

In this thesis, we study topics related to harmonic functions, where we are interested in the maximum

number of solutions of a harmonic polynomial equation and how it is related to gravitational lensing. In

Chapter 2, we study the conditions that we should have on the real or complex coefficients of a polynomial

p to get the maximum number of distinct solutions for the equation p(z) − z̄2 = 0, where deg p = 2. In

Chapter 3, we discuss the lens equation when the lens is an ellipse, a limaçon, or a Neumann Oval. Also,

we give a counterexample to a conjecture by C. Bénéteau and N. Hudson in [2]. We also discuss estimates

related to the maximum number of solutions for the lens equation for the Neumann Oval.
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Chapter 1

Introduction

In this thesis, we are interested in studying the maximum number of zeros of a harmonic polynomial and

applications such as gravitational lensing. We begin by defining harmonic polynomials and discussing

known results about their zeros. We then turn to a discussion of rational functions and gravitational lensing.

In Chapter 2, we will consider a simple case when the polynomials involved have degree 2 and will examine

conditions on the coefficients that lead to maximal numbers of solutions. In Chapter 3, we examine numbers

of images obtained for different gravitational lenses.

1.1 Harmonic polynomials

The fundamental theorem of algebra (FTA) states that every complex polynomial of degree n has precisely

n complex roots counting multiplicities. This theorem has been looked at from analytical, topological, and

algebraic points of view, see [7, 23, 12, 32]. In 1992, T. Sheil-Small wanted to examine what happens in

the context of harmonic polynomials, specifically in regards to an upper bound on the number of zeros.

A complex function h in z and z̄ is considered to be harmonic if it satisfies the Laplace equation, i.e,

hxx + hyy = 0 where z = x + iy and z̄ = x − iy, where the first and second partial derivatives of h are

continuous. Note that, by considering the change of variables z = x + iy and z̄ = x − iy, where x and y

are real variables, we can write any complex harmonic polynomial as follows

h(z) := p(z)− q(z), (1.1)

where p and q are analytic polynomials.

Having terms in z̄ and z in a harmonic polynomial will play a big role in the maximum number of

solution of h(z) = 0. In fact, it is even possible to have an infinite number of solutions. Consider the

following example.
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Example 1. Let h(z) = zn − z̄n. Writing z = reiθ, where 0 ≤ θ < 2π, h(z) = 0 means that rneinθ −

rne−inθ = 0, which implies that rne2inθ = rn, thus rn
(
e2inθ − 1

)
= 0. This occurs when θ =

(
k
n

)
π for

any k ∈ Z. Thus we obtain n equally spaced lines through the origin, which gives rise to an infinite number

of solutions.

Sheil-Small and his student Wilmshurst extended the FTA to harmonic polynomials and showed that

h(z) = p(z)− q(z) has n2 zeros at most if n, the degree p, is strictly greater than the degree of q. In 1994,

Wilmshurst’s [45] findings included a more general sufficient condition for h to have a finite number of

zeros and settled this conjecture by using Bézout’s theorem from algebraic geometry:

Theorem 1. Bézout’s Theorem [39]

Let P (x, y) = u(x, y) + iv(x, y) (with u and v real ) be a complex-valued real analytic polynomial, where

u has degree m and v has degree n, and suppose that u and v are relatively prime (i.e, contain no nontrivial

common factors). Then P has at most mn zeros in C.

In other words, Wilmshurst rewrote the complex equations by using real variables, which produced a

system of real equations. He then counted the number of intersections of those curves, which is at most n2.

Wilmshurst [46] continued on in 1998 to prove that h will have at most n2 zeros when deg p = n and deg

q = m = n− 1. He conjectured , when 1 ≤ m < n− 1, h(z) = p(z)− q(z) = 0 gives 3n− 2 +m(m− 1)

zeros of h at maximum.

In particular, if m = 1 the conjecture of Wilmshurst states that p(z) − z̄, where p is an (analytic)

polynomial of degree n > 1, has 3n − 2 zeros at most. This conjecture was studied by many people, such

as Bshouty, Crofoot, Lizzaik, Sarason, and others who worked on this problem and other questions related

to harmonic mappings (see, e.g., [5, 35]). The tool of complex dynamics was used in 2001 by D. Khavinson

and G. Świa̧tek [22] to show that Wilmshurst’s conjecture is true for f(z) = p(z) − z̄. In other words,

Khavinson and Świa̧tek proved that the equation z̄ − p(z) = 0, where p is an analytic polynomial of degree

n > 1, has at most 3n− 2 complex zeros. They noticed that if z is a fixed point of p(z) = z, then it is also

a fixed point of Q(z) = p(p(z)), and Q(z) is an analytic polynomial of degree n2. Because of this, they

were able to apply some facts from complex dynamics, together with the argument principle for harmonic

functions, to estimate the number of fixed points of Q(z) which led them to the maximum number of zeros

of z̄ − p(z). Additionally, they proved the sharpness for n = 2 by using quadratic polynomials.

2



L. Geyer’s findings in 2008 [15] show that the mentioned bound is sharp for all n by using the work of

Sarason and Crofoot [35] regarding the existence of certain extremal polynomials p.

In 2016, D.Khavinson, S.Y. Lee and A.Saez [20] got a sharper version of Wilmshurst’s theorem, when

the harmonic polynomial h(z) = p(z)− q(z) has real coefficients. They showed that the equation h(z) = 0

has at most n2 − n solutions that satisfy (Rez)(Imz) 6= 0. They also showed that, for all n > m, there

exists a harmonic polynomial h(z) = pn(z)− qm(z) with at least 3n− 2 or m2 +m+ n roots.

Other researchers took a probabilistic approach to answering questions about numbers of roots of (1.1).

That is, how many roots does equation (1.1) have on average? In 2009, Li and Wei [44] considered the

probabilistic distribution of zeros of random harmonic polynomials. They were able to produce an equation

for the expected number of zeros of (1.1). The authors showed that if the degree p equals the degree q = n,

then the expected number of zeros is asymptotically π
4n

3/2 as n → ∞. Furthermore they showed that if

m =deg q and n =deg p, then when m = αn + o(n) with 0 ≤ α < 1 and n goes to infinity, the expected

number of zeros is asymptotically n.

On the other hand, others were trying to prove or disprove Wilmshurst’s Conjecture for m > 1. In 2013,

by using algebraic geometry, Lee, Lerario, and Lundberg [24] proved that there exist analytic polynomials

p and q of degree n and m respectively where n ≥ 4 and m = n − 3 such that the number of zeros of

p(z)− q(z) exceeds

n2 − 4n+ 4

⌊
n− 2

π
arctan

√
n2 − 2n

n

⌋
+ 2,

which produces an unlimited number of counterexamples to Wilmshurst’s Conjecture.

In 2014, Hauenstein, Lerario, Lundberg, and Mehta [17] used an experimental, certified-counting ap-

proach, in order to generalize those counterexamples. In addition, the authors of [17] conjecture that there

exist polynomials p and q such that (1.1) has n2/2−n+ 12 zeros, where degree p = n and degree q = n/2.

In 2016, Lerario and Lundberg proved and sharpened the numerical results obtained in [29]. Most re-

cently, A. Thomack [42] showed, again using probabilistic techniques, that if the degree of the anti-analytic

polynomial q(z) is fixed, then the expected number of zeros is asymptotically equal to n as n → ∞. This

is to be compared with the following observation using the argument principle that if the degree p equals

n > 1, then the number of zeros of the equation p(z) = z̄ is at least n.

This does not close the open problem posed in the 2011 survey [21] regarding a sharp upper bound on the

number of zeros of the harmonic polynomial h(z) = p(z)− q(z).

3



Open Problem. If p and q are analytic polynomials of degree n and m respectively where n > 3 and

1 < m < n− 1, how many zeros at most will the equation p(z)− q(z) = 0 have?

1.2 Rational Harmonic Polynomials and Gravitational Lensing

In 2006, D. Khavinson and G. Neumann [19] studied what happens if you replace the polynomial p by a

rational function r(z). That is, how many solutions does the equation

r(z)− z̄ = 0

have, with r(z) = p(z)/q(z), where p and q are relatively prime, analytic polynomials such that n =

deg r = max (deg p, deg q) > 1. Moreover, by using the same technique that Khavinson and Świa̧tek used

in [22], they were able to prove that the upper bound on the number of zeros of r(z)− z̄ = 0 cannot exceed

5n − 5. In fact, this problem is connected to a problem in mathematical physics known as gravitational

lensing, making the problem interesting and valuable to a much wider audience. At the same time, S. H.

Rhie, who is an astrophysicist, proved that this upper bound is sharp for every n > 1 by using a simple

geometric construction.

Gravitational lensing is a phenomenon that describes how the lens plane (L), which consists of objects

such as galaxies, can affect the number of images an observer sees from a source plane. Assume the lens

plane and the source plane are parallel, and the observer’s line of vision is perpendicular to these planes, as

the following picture illustrates (Figure [1]).

Figure 1. Gravitational lensing, the lens and source plane.
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The light is deflected due to the gravitational force of the lens, and thus the observer will see multiple

images of the same light source. Astrophysicists have been studying the equation which connect the position

of a light source and the mass distribution of a gravitational lens (such as, a galaxy) to the number of images

that can be observed from the source. This equation is called the lens equation (see Figure [2] ).

Suppose the lens plane is taken to contain n point masses. Let w denote the source position, z the position

of the lensed image, and zj the position of the point mass j, where all w, z, zj ∈ C. Let mj be the mass of

the jth point mass, then the lens equation is given by:

w = z + γz̄ − sign(σ)
n∑
j=1

mj

z̄ − zj
,

where γ is a real constant representing the normalized shear, and σ 6= 0 is a real constant representing the

optical depth. Therefore the number of roots of this rational equation involving z and z̄ is the same as the

number of images of the lens equation.

Figure 2. Four separate images of a single quasar located behind a galaxy, with an additional image too dim

to see. [2]

5



It is also possible to consider multiple lens planes such as in [31]. In addition, the authors of [19] discuss

replacing the point mass distribution by a continuous mass distribution, (see, e.g, [27] and [41]). The lens

equation becomes:

w = z −
∫
Ω

dµ(ζ)

z̄ − ζ̄
− γz̄, (1.2)

where Ω is the lens. This generalization led to the study the number of roots of the lens equation for

continuous densities that have different shapes, see [1, 4, 11, 2].

The phenomenon of gravitational lensing was examined since the work of Einstein, as a consequence of

his theory of general relativity and was verified experimentally by Arthur Eddington in 1919. Since then,

the theory of gravitational lensing has been widely studied in the astrophysics community by people such

as Witt, Mao, Peters, Rhie, and Burke. Part of their work was estimating the maximal number of solutions

of the lens equation, among other subjects. For further details on the historical aspects of the lens equation

including estimates made much earlier by astrophysicists on the maximal number of solutions, see [11, 21].

A good approximation for modeling galaxies is to pick either a uniform distribution or a collection of

points masses.

Figure 3. Light from a blue galaxy distorted by a red galaxy.[2]
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Figure 4. An elliptical galaxy which is lensing light from two different background galaxies.[2]

The “Einstein Ring” solutions pictured in Figure [3] and [4] can be obtained from either the discrete or

continuous distribution of masses. For the discrete case, when n = 1, setting w = γ = z̄1 = 0, we obtain

as the solutions a circle with radius
√
σ.m1. The continuous case is more involved; for the details, we refer

to [11].

Recently, the authors of [37] have studied the number of pre-images of f(z) = η for given but arbitrary

η ∈ C for more general harmonic mappings f .

Note that the maximal number of solutions to the equation r(z) − z̄ = 0 for a rational function r(z) are

known. However, it is still an open problem to find the maximal numbers of solution to r(z) = z̄m for

m > 1.

7



Chapter 2

Harmonic Polynomials of Degree 2

In Chapter 1, we discussed known results regarding the maximum number of zeros for a harmonic polyno-

mial h(z) = p(z) − q(z) where p and q are analytic polynomials of degree n and m respectively. We saw

that results are known for n = m or n = m−1, and also for any n with m = 1. In the case that n = m, it is

possible to have an infinite number of solutions, but if the number of solutions is finite, there can be at most

n2. Similarly, if n = m− 1, the maximum number of solutions is n2. These follow from Bézout’s theorem.

It would be interesting to understand which coefficients of p and q give rise to this maximum number of

coefficients.

In this chapter, we will study that question in the simplest possible case that n = m = 2, and we

will see that already in this situation, the answer is complicated. Notice that we considered only the case

that p(z) = z̄2 here, where p is an analytic polynomial of degree 2. If we have a more general equation

p(z) = q(z), where p and q are analytic polynomials of degree 2, by completing the square for q and

using a change of variables, we can reduce it to the case p(z) = z̄2. In other words, we assume that

p(z) = az2 + bz + c and q(z) = dz2 + ez + f , where a, b, c, d, f, e ∈ C, a 6= 0 and d 6= 0, we can rewrite

q(z) as q(z) = d(z + m)2 + 4fd−e2
4d , where m = e

2d . Using the change of variables u = z + m gives

q(u−m) = du2+ 4fd−e2
4d . By subtracting the constant 4fd−e2

4d , dividing by d, and rewriting p̃(u) = p(u−m),

we get an equation of the form p̃(u) = ū2, as desired.

We will present two theorems which examine the conditions on the coefficients of p(z) − z̄2 that gives

rise to four distinct solutions. We begin by considering the case that p has real coefficients.

Notice that if a = ±1 and b = c = 0 then az2 + bz + c = z̄2 has an infinite number of solutions. So we

will only examine the case when the equation has a finite number of solutions.

8



Theorem 2. The equation az2 + bz + c = z̄2 where a 6= 0 and a, b, c ∈ R has 4 solutions if and only if one

of the following conditions is satisfied:

• a > 1, c > 0, and 2
√
c(a− 1) < |b| < 2

√
c

a+3 (a+ 1);

• −3 < a < 1, a 6= −1, c > 0, and |b| > 2
√

c
a+3 |a+ 1| ;

• −3 < a < 1, a 6= −1, c < 0, and |b| > 2
√
c(a− 1);

• a < −3, c < 0 and 2
√
c(a− 1) < |b| < 2

√
c

a+3 |a+ 1| .

Proof

Consider the equation

az2 + bz + c = z̄2 (2.1)

and let z = x+ iy where x, y ∈ R. Substituting into (2.1) gives:

a(x+ iy)2 + b(x+ iy) + c = (x− iy)2

⇔ax2 + 2aixy − ay2 − x2 + 2ixy + y2 + bx+ iby + c = 0

⇔(a− 1)x2 + (1− a)y2 + bx+ c = 0 (2.2)

and 2(a+ 1)xy + by = 0. (2.3)

From (2.3)

y(2(a+ 1)x+ b) = 0⇒ y = 0 or 2(a+ 1)x+ b = 0.

So, we will have two cases.

Case I:

y = 0
(2.2)⇒ (a− 1)x2 + bx+ c = 0.

In order to achieve the maximum number of distinct solutions, we need this quadratic equation to have two

solutions and thus, we have to have the following conditions:

a 6= 1 and b2 − 4(a− 1)c > 0.

In that case,

x =
−b±

√
b2 − 4(a− 1)c

2(a− 1)
.
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Now, if a 6= 1 then b2 − 4c(a− 1) > 0 in the following cases:

1. If b 6= 0, then:

• If a > 1 and c ≤ 0 or if a < 1 and c ≥ 0, then b2 > 4c(a − 1) is always satisfied since

4c(a− 1) ≤ 0.

• If a > 1 and c ≥ 0, then we have to have |b| > 2
√
c(a− 1).

• If a < 1 and c ≤ 0, then we have to have |b| > 2
√
c(a− 1).

2. If b = 0, then:

• If a > 1 and c < 0 or if a < 1 and c > 0, then b2 > 4c(a − 1) is always satisfied since

4c(a− 1) < 0.

So therefore, we see that in Case I (y = 0), we have 2 distinct solutions under any of the following conditions

on the coefficients:

I(i) b 6= 0, a > 1 and c ≤ 0.

I(ii) b 6= 0, a < 1 and c ≥ 0.

I(iii) b = 0, a > 1 and c < 0.

I(iv) b = 0, a < 1 and c > 0.

I(v) b 6= 0, a > 1 and c ≥ 0, and |b| > 2
√
c(a− 1).

I(vi) b 6= 0, a < 1 and c ≤ 0, and |b| > 2
√
c(a− 1).

Case II:

y 6= 0
from(2.3)⇒ 2(a+ 1)x+ b = 0.

If a 6= −1 then

x =
−b

2(a+ 1)
. (2.4)

Substituting (2.4) into (2.2) gives:

(a− 1)
b2

4(a+ 1)2
− (a− 1)y2 + b

(
−b

2(a+ 1)

)
+ c = 0
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⇔ (a− 1)
b2

4(a+ 1)2
− (a− 1)y2 − b2

2(a+ 1)
+ c = 0

⇔ (a− 1)y2 =
(a− 1)

(a+ 1)2

b2

4
− b2

2(a+ 1)
+ c

⇔ y2 =
(a− 1)2

(a+ 1)2(a− 1)2

b2

4
− 2(a+ 1)(a− 1)

(a+ 1)2(a− 1)2

b2

4
+

4(a+ 1)2(a− 1)c

4(a+ 1)2(a− 1)2

⇔ y2 =
−(a2 + 2a− 3)b2 + 4(a− 1)(a+ 1)2c

4(a+ 1)2(a− 1)2

⇔ y2 =
−(a2 + 2a− 3)b2 + 4(a− 1)(a+ 1)2c

4(a2 − 1)2

⇔ y2 =
(a− 1)

[
4c(a+ 1)2 − b2(a+ 3)

]
4(a2 − 1)2

.

In order to achieve the maximum number of distinct solutions we need (a− 1)
[
4c(a+ 1)2 − b2(a+ 3)

]
to be positive, which would lead to

4c(a+ 1)2 > b2(a+ 3) and a > 1,

or

4c(a+ 1)2 < b2(a+ 3), a < 1 and a 6= −1.

In that case,

y = ±1

2

√
(a− 1) [4c(a+ 1)2 − b2(a+ 3)]

a2 − 1
.

If 4c(a+ 1)2 > b2(a+ 3) and a > 1 then we conclude that a+ 3 > 0 since a > 1 which implies c > 0.

Therefore our conditions on a, b and c are as follows:

a > 1, c > 0, and |b| < 2
√
c (a+ 1)√
a+ 3

.

However if 4c(a+ 1)2 < b2(a+ 3), a < 1, and a 6= −1 we need to consider the sign of a+ 3.

(i) If −3 < a < 1 and a 6= −1 then a+ 3 > 0.

• If c < 0 then the inequality 4c(a+ 1)2 < b2(a+ 3) is always satisfied.

• If c ≥ 0 then the following inequality |b| > 2
√

c
a+3 |a+ 1| must be satisfied.

(ii) If a < −3 then a+ 3 < 0, which implies that c must be negative and |b| < 2
√

c
a+3 |a+ 1|.
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So therefore, we see that in Case II (y 6= 0), we have two distinct solutions under any of the following

conditions on the coefficients:

II(i) a > 1, c > 0, and |b| < 2
√
c√

a+3
(a+ 1);

II(ii) −3 < a < 1, a 6= −1, and c < 0.

II(iii) b 6= 0, −3 < a < 1, a 6= −1, c ≥ 0, and |b| > 2
√

c
a+3 |a+ 1| ;

II(iv) a < −3, c < 0 and |b| < 2
√

c
a+3 |a+ 1| .

To get four distinct solutions, we have to satisfy the conditions in Cases I and II.

Note that Conditions I(i), I(iii), and I(iv) are not compatible with any of the conditions II.

Conditions II(i) and I(v) are compatible when a > 1, b 6= 0, c > 0, and 2
√
c(a− 1) < |b| < 2

√
c√

a+3
(a+

1).

Conditions II(ii) and I(vi) are compatible when −3 < a < 1, a 6= −1, b 6= 0, c < 0, and |b| >

2
√
c(a− 1).

Conditions II(iv) and I(vi) are compatible when a < −3, b 6= 0, c < 0 and 2
√
c(a− 1) < |b| <

2
√

c
a+3 |a+ 1| .

Conditions II(iii) and I(ii) are compatible when −3 < a < 1, a 6= −1, b 6= 0, c > 0, and |b| >

2
√

c
a+3 |a+ 1| ;

Therefore, Equation (2.1) will have four distinct solutions if and only if b 6= 0 and one of the following

conditions is satisfied:

• a > 1, c > 0, and 2
√
c(a− 1) < |b| < 2

√
c√

a+3
(a+ 1);

• −3 < a < 1, a 6= −1, c > 0, and |b| > 2
√

c
a+3 |a+ 1| ;

• −3 < a < 1, a 6= −1, c < 0, and |b| > 2
√
c(a− 1);

• a < −3, c < 0 and 2
√
c(a− 1) < |b| < 2

√
c

a+3 |a+ 1| , which is what we wanted to prove. �

Notice that each of these 4 compatibility conditions leading to the maximum number of distinct solutions

can occur, as illustrated by the following 4 figures.
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Figure 5. Four solutions when a > 1, c > 0 and 2
√
c(a− 1) < |b| < 2

√
c√

a+3
(a + 1), located at the

intersection of the dotted curve and solid lines.

Figure 6. Four solutions when −3 < a < 1, |b| > 2
√

c
a+3 |a+ 1|, and c > 0, located at the intersection of

the dotted curve and solid lines.
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Figure 7. Four solutions when −3 < a < 1,|b| > 2
√
c(a− 1), and c < 0, located at the intersection of the

dotted curve and solid lines.

Figure 8. Four solutions when a < −3, c < 0 and 2
√
c(a− 1) < |b| < 2

√
c

a+3 |a+ 1|, located at the

intersection of the dotted curve and solid lines.

Remark. We can notice from the proof that the cases a = 1 and a = −1 are different:

• If a = 1, b 6= 0, and b2 6= 4c, we will have one solution to Equation (2.1), while if a = 1, b 6= 0,

and b2 = 4c, we will have an infinite numbers of solutions. That is because the real curve arising

from Equation (2.2) gives a line parallel to the y-axis and intersects the x-axis at −cb , while the real

curves arising from Equation (2.3) are the x-axis and a line parallel to the y-axis, intersecting x-axis
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at x = −b
4 . If − c

b 6= −
b
4 , i.e., b2 6= 4c, then we obtain one solution, while if b2 = 4c, we obtain an

infinite number of solutions.

• If a = −1 and b 6= 0, we will have two distinct solutions to Equation (2.1) under the condition

b2 > −8c, because Equation (2.2) gives rise to a hyperbola and Equation (2.3) gives rise to the

x-axis, and those intersect in two points under the given condition. Otherwise, these curves do not

intersect. If a = −1 and b = 0, we will obtain an infinite number of solutions.

The following figures illustrate the previous remark.

Figure 9. One solution when a = 1, b 6= 0, and b2 6= 4c, located at the intersection of the dotted curve and

solid lines.
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Figure 10. Infinite number of solution when a = 1, b 6= 0, and b2 = 4c.

Figure 11. Two solutions when a = −1, b 6= 0, and b2 > −8c, located at the intersection of the dotted curve

and solid lines.
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Figure 12. There is no solution when a = −1, b 6= 0, and b2 < −8c.

Figure 13. Infinite number of solutions when a = −1 and b = 0.

As we can see, even the case where p has real coefficients is somewhat complicated. Let us now consider

the case that p has complex coefficients.

Note. If a = ±1 and b = c = 0 then (a + ib)z2 + (c + id)z + e + if = z̄2 has an infinite number of

solutions. So, we will only examine the case when the equation has a finite number of solutions.

Theorem 3. The equation (a+ ib)z2 +(c+ id)z+e+ if = z̄2 where a 6= 0 or b 6= 0 and a, b, c, d, e, f ∈ R

has four distinct solutions if any of the following conditions are satisfied:

• a = 1, b 6= 0, d 6= 0, e = f = c = 0, and |b| < 2.
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• a = 1, b 6= 0, c 6= 0, e = f = d = 0, and |b| < 2.

• a = 1, b 6= 0, f 6= 0, c = e = 0, d 6= 0, d2 > 4bf , and 4d2 + 4fb3 > b2d2.

• a = 1, b 6= 0, f 6= 0, d = e = 0, c 6= 0, c2 + 4bf > 0, and 4c2 − b2c2 > 4fb3.

• a 6= 1, c = d 6= 0 b = e = f = 0, and a ∈ (−∞,−1) ∪ (1
3 ,∞).

• b = e = f = c = 0, d 6= 0, and a ∈ (−3,−1) ∪ (−1, 1).

• b = e = f = d = 0, c 6= 0, and a ∈ (−3,−1) ∪ (−1, 1).

• a 6= ±1, b = e = 0, f 6= 0, c = d 6= 0, c2 > 2(a+1)f , and (a+1)2c2 > −2(c2−f(a−1))(a2−1).

• a > 1, b = f = c = 0, d 6= 0, e < 0 and −4(a− 1)e < d2 < −4(a+1)2e
(a+3) .

• a 6= −1, −3 < a < 1, b = f = c = 0, d 6= 0, e < 0 and d2(a+ 3) > −4(a+ 1)2e.

• a 6= −1, −3 < a < 1, b = f = c = 0, d 6= 0, e > 0 and d2 > −4(a− 1)e.

• a < −3, b = f = c = 0, d 6= 0, e > 0, d2(a+ 3) > −4(a+ 1)2e and d2 > −4(a− 1)e.

• b = f = d = 0, c 6= 0, a > 1, e > 0, c2 − 4(a− 1)e > 0, and c2(a+ 3) < 4(a+ 1)2e.

• b = f = d = 0, c 6= 0, a < 1, a 6= −1, e < 0, c2 − 4(a− 1)e > 0, and c2(a+ 3) > 4(a+ 1)2e.

• b = f = d = 0, c 6= 0, −3 < a < 1, a 6= −1, e > 0, and c2(a+ 3) > 4(a+ 1)2e.

Proof

Consider the equation

(a+ ib)z2 + (c+ id)z + e+ if = z̄2. (2.5)

Letting z = x+ iy and z̄ = x− iy. and substituting into (2.5) gives:

(a+ ib)(x+ iy)2 + (c+ id)(x+ iy) + e+ if = (x− iy)2

⇒ax2 + 2iaxy − ay2 + ibx2 − 2bxy − iby2 + cx+ icy + idx− dy + e+ if = x2 − 2ixy − y2

⇒(a− 1)x2 + (1− a)y2 − 2bxy + cx− dy + e = 0

and bx2 − by2 + (2a+ 2)xy + cy + dx+ f = 0
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⇒(a− 1)(x2 − y2)− 2bxy + cx− dy + e = 0 (2.6)

and b(x2 − y2) + 2(a+ 1)xy + dx+ cy + f = 0. (2.7)

Case I : a = 1.

• If b 6= 0:

– If e = 0 and f = 0:

* If c = 0 and d 6= 0, substituting into (2.6) gives:

− 2bxy − dy = 0

⇒ y(−2bx− d) = 0

⇒ y = 0 or x =
−d
2b
.

Substituting y = 0 into (2.7) gives:

bx2 + dx = 0⇒ x = 0 or x =
−d
b
.

Now substituting x = −d
2b into (2.7), we get:

4b2y2 + 8dy + d2 = 0.

In order to achieve the maximum number of distinct solutions, we need this quadratic

equation to have two solutions and thus, we have to have the following condition:

64d2 − 16b2d2 > 0⇔ 16d2(4− b2) > 0⇔ −2 < b < 2.

In that case,

y =
−8d±

√
64d2 − 16b2d2

8b2
.

So, for this case we will have four solutions if −2 < b < 2 and b 6= 0.
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* If c 6= 0 and d = 0, substituting into (2.6) gives:

− 2bxy + cx = 0

⇒ x(−2by + c) = 0

⇒ y =
c

2b
or x = 0.

Substituting x = 0 into (2.7) gives:

−by2 + cy = 0⇒ y = 0 or y =
c

b
.

Now substituting y = c
2b into (2.7), we get:

4b2x2 + 8cx+ c2 = 0.

In order to achieve the maximum number of solutions, we need this quadratic equation to

have two solutions and thus, we have to have the following condition:

64c2 − 16b2c2 > 0⇔ 16c2(4− b2) > 0⇔ −2 < b < 2.

In that case,

x =
−8c±

√
64c2 − 16b2c2

8b2
.

So, for this case we will have four solutions if −2 < b < 2 and b 6= 0.
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– If e = 0 and f 6= 0:

* If c = 0 and d 6= 0, substituting into (2.6) gives:

− 2bxy − dy = 0

⇒ y(−2bx− d) = 0

⇒ y = 0 or x =
−d
2b
.

Substituting y = 0 into (2.7) gives:

bx2 + dx+ f = 0.

In order to have two solutions, we have to have the following condition:

d2 − 4bf > 0.

In that case,

x =
−d±

√
d2 − 4bf

2b
.

Now substituting x = −d
2b into (2.7), we get:

4b2y2 + 8dy − 4fb+ d2 = 0.

In order to have two solutions, we have to have the following condition:

64d2 + 16(4fb3 − b2d2) > 0⇔ 4d2 + 4fb3 > b2d2.

In that case,

y =
−8d±

√
64d2 + 16(4fb3 − b2d2)

8b2
.

So, for this case we will have four solutions if d2 > 4bf and 4d2 + 4fb3 > b2d2.

* If c 6= 0 and d = 0, substituting into (2.6) gives:

− 2bxy + cx = 0

⇒ x(−2by + c) = 0

⇒ y =
c

2b
or x = 0.
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Substituting x = 0 into (2.7) gives:

−by2 + cy + f = 0.

In order to have two solutions, we have to have the following condition:

c2 + 4bf > 0.

In that case,

y =
c±

√
c2 + 4bf

2b
.

Now substituting y = c
2b into (2.7), we get:

4b2x2 + 8cx+ 4fb+ c2 = 0.

In order to have two solutions, we have to have the following condition:

64c2 − 16(4fb3 + b2c2) > 0⇔ 4c2 − b2c2 > 4fb3.

In that case,

x =
−8c±

√
64c2 − 16(4fb3 + b2c2)

8b2
.

So, for this case we will have four solutions if c2 + 4bf > 0 and 4c2 − b2c2 > 4fb3.

Case II : a 6= 1.

• If b = 0:

– If e = 0 and f = 0:

* If c = d 6= 0, substituting into (2.6) gives:

(a− 1)(x2 − y2) + c(x− y) = 0

⇒(x− y) [(a− 1)(x+ y) + c] = 0

⇒x = y or y =
−c
a− 1

− x.

By substituting x = y into (2.7) we get:

2(a+ 1)x2 + 2cx = 0.
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In order to have two solutions, we have to have a 6= −1.

In that case,

x = 0 or x =
−c
a+ 1

.

When x = 0, we get y = 0.

When x = −c
a+1 , we get y = −c

a+1 .

Now substituting y = −c
a−1 − x into (2.7), we get:

2(a2 − 1)x2 + 2(a+ 1)cx− c2 = 0.

In order to have two solutions, we have to have a 6= ±1 and 4(a+1)2c2+8c2(a2−1) > 0.

In that case,

x =
−2(a+ 1)c±

√
4(a+ 1)2c2 + 8c2(a2 − 1)

4(a2 − 1)
.

Now, if a 6= ±1 then 4(a+ 1)2c2 + 8c2(a2 − 1) > 0 in the following cases:

4(a+ 1)2c2 + 8c2(a2 − 1) > 0⇔ 4(a+ 1)2c2 > −8c2
(
a2 − 1

)
⇔(a+ 1)2 > −2

(
a2 − 1

)
⇔ a2 + 2a+ 1 > −2a2 + 2

⇔3a2 + 2a− 1 > 0⇔ (a+ 1)

(
a− 1

3

)
> 0

⇔a > −1 and a >
1

3
or a < −1 and <

1

3

⇔a > 1

3
or a < −1.

So, we will have four solutions if a ∈ (−∞,−1) ∪ (1
3 ,∞) ∀c, d ∈ R − {0} where

c = d.

* If c = 0 and d 6= 0, substituting into (2.7) gives:

2(a+ 1)xy + dx = 0.

In order to have two solutions, we have to have a 6= −1.

In that case,

x = 0 or y =
−d

2(a+ 1)
.

By substituting x = 0 into (2.6) we get:

− (a− 1)y2 − dy = 0

⇒ y = 0 or y =
−d
a− 1

.
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Now substituting y = −d
2(a+1) into (2.6), we get:

(a− 1)x2 + T = 0 where T =
d2(a+ 3)

4(a+ 1)2

⇒ x2 =
T

1− a
since a 6= 1.

In order to achieve the maximum number of solutions, we need a 6= ±1 and
d2(a+3)

4(a+1)2(1−a)
> 0.

In that case,

x = ±
√
−4(a− 1)T

2(a− 1)
.

Now, if a 6= ±1 then d2(a+3)
4(a+1)2(1−a)

> 0 in the following case:

d2(a+ 3)

4(a+ 1)2(1− a)
> 0

⇔a+ 3 > 0 and 1− a > 0 or a+ 3 < 0 and 1− a < 0

⇔a > −3 and 1 > a or a < −3 and 1 < a

⇔a ∈ (−3,−1) ∪ (−1, 1) since a 6= 1.

So, we will have four solutions if a ∈ (−3,−1) ∪ (−1, 1) ∀d ∈ R− {0} .

* If c 6= 0 and d = 0, substituting into (2.7) gives:

2(a+ 1)xy + cy = 0.

In order to have two solutions, we have to have a 6= −1.

In that case,

y = 0 or x =
−c

2(a+ 1)
.

By substituting y = 0 into (2.6) we get:

(a− 1)x2 + cx = 0

⇒x = 0 or x =
−c
a− 1

.
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Now substituting x = −c
2(a+1) into (2.6), we get:

(a− 1)y2 +G = 0 where G =
c2(a+ 3)

4(a+ 1)2

⇒ y2 =
G

1− a
since a 6= 1.

In order to achieve the maximum number of solutions, we need a 6= ±1 and
c2(a+3)

4(a+1)2(1−a)
> 0.

In that case,

y = ±
√
−4(a− 1)G

2(a− 1)
.

Now, if a 6= ±1 then c2(a+3)
4(a+1)2(1−a)

> 0 in the following case:

c2(a+ 3)

4(a+ 1)2(1− a)
> 0

⇔a+ 3 > 0 and 1− a > 0 or a+ 3 < 0 and 1− a < 0

⇔a > −3 and 1 > a or a < −3 and 1 < a

⇔a ∈ (−3,−1) ∪ (−1, 1) since a 6= 1.

So, we will have four solutions if a ∈ (−3,−1) ∪ (−1, 1) ∀c ∈ R− {0} .

– If e = 0 and f 6= 0:

* If c = d 6= 0, substituting into (2.6) gives:

(a− 1)(x2 − y2) + c(x− y) = 0

⇒(x− y) [(a− 1)(x+ y) + c] = 0

⇒x = y or y =
−c
a− 1

− x.

By substituting x = y into (2.7) we get:

2(a+ 1)x2 + 2cx+ f = 0.

In order to obtain two solutions, we have to have a 6= −1 and 4c2 − 8(a+ 1)f > 0.

In that case,

x =
−2c±

√
4c2 − 8(a+ 1)f

4(a+ 1)
.
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Now substituting y = −c
a−1 − x into (2.7), we get:

2(a2 − 1)x2 + 2(a+ 1)cx− c2 + f(a− 1) = 0.

In order to achieve the maximum number of solutions, we need this quadratic equation to

have two solutions and thus, we have to have a 6= ±1 and (a + 1)2c2 + 2(c2 − f(a −

1))(a2 − 1) > 0. In that case,

x =
−2(a+ 1)c±

√
4(a+ 1)2c2 + 4(c2 − f(a− 1))(2(a2 − 1))

4(a2 − 1)
.

So, we will have four solutions if c2 > 2(a+1)f and (a+1)2c2 +2(c2−f(a−1))(a2−

1) > 0.

– If e 6= 0 and f = 0:

* If c = 0 and d 6= 0, substituting into (2.7) gives:

2(a+ 1)xy + dx = 0.

In order to have two solutions, we have to have a 6= −1.

In that case,

x = 0 or y =
−d

2(a+ 1)
.

By substituting x = 0 into (2.6) we get:

(a− 1)y2 + dy − e = 0.

In order to have two solutions, we have to have a 6= 1 and d2 + 4(a− 1)e > 0.

In that case,

y =
−d±

√
d2 + 4(a− 1)e

2(a− 1)
.

Now, if a 6= 1 then d2 + 4(a− 1)e > 0 in the following cases.

Condition I gives the following:

· a > 1 and e > 0.

· a < 1 and e < 0.

· a > 1 and e < 0 and d2 + 4(a− 1)e > 0.
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· a < 1 and e > 0 and d2 + 4(a− 1)e > 0.

Now, substituting y = −d
2(a+1) into (2.6), we get:

(a− 1)x2 − d2(a− 1)

4(a+ 1)2
+

d2

2(a+ 1)
+ e = 0

x2 − d2

4(a+ 1)2
+

d2

2(a+ 1)(a− 1)
+

e

a− 1
= 0

⇒ x2 =
d2(a− 1)

4(a+ 1)2(a− 1)
− 2(a+ 1)d2

4(a+ 1)2(a− 1)
− 4(a+ 1)2e

4(a+ 1)2(a− 1)

⇒ x2 =
d2(a− 1− 2a− 2)− 4(a+ 1)2e

4(a+ 1)2(a− 1)

⇒ x2 =
−d2(a+ 3)− 4(a+ 1)2e

4(a+ 1)2(a− 1)
.

In order to achieve the maximum number of solutions, we need a 6= ±1 and
−d2(a+3)−4(a+1)2e

4(a+1)2(a−1)
> 0, which would lead to

d2(a+ 3) + 4(a+ 1)2e > 0, 1− a > 0 and a 6= −1,

or

d2(a+ 3) + 4(a+ 1)2e < 0 and 1− a < 0.

In that case,

x = ± 1

2(a+ 1)

√
−d2(a+ 3)− 4(a+ 1)2e

a− 1
.

If a 6= ±1, d2(a+ 3) + 4(a+ 1)2e < 0, and a > 1 then e > 0 is such that d2(a+ 3) +

4(a+ 1)2e < 0.

If a 6= ±1, d2(a+ 3) + 4(a+ 1)2e > 0, and a < 1 then we have two cases:

· If−3 < a < 1 where a 6= −1 then e > 0 or e < 0 is such that d2(a+3)+4(a+1)2e >

0.

· If a < −3 then e > 0 is such that d2(a+ 3) + 4(a+ 1)2e > 0.

So, Condition II gives the following:

· a > 1, e < 0 and d2(a+ 3) + 4(a+ 1)2e < 0.

· a 6= −1, −3 < a < 1, e < 0 and d2(a+ 3) > −4(a+ 1)2e.

· a 6= −1, −3 < a < 1 and e > 0.

· a < −3, e > 0 and d2(a+ 3) > −4(a+ 1)2e.
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By combining the first and second conditions to get four solutions we have to have one of

the following:

· a > 1, e < 0 and −4(a− 1)e < d2 < −4(a+1)2e
(a+3) .

· a 6= −1, −3 < a < 1, e < 0 and d2(a+ 3) > −4(a+ 1)2e.

· a 6= −1, −3 < a < 1, e > 0 and d2 > −4(a− 1)e.

· a < −3, e > 0, d2(a+ 3) > −4(a+ 1)2e and d2 > −4(a− 1)e.

* If c 6= 0 and d = 0, substituting into (2.7) gives:

2(a+ 1)xy + cy = 0.

In order to have two solutions, we have to have a 6= −1.

In that case,

y = 0 or x =
−c

2(a+ 1)
.

By substituting y = 0 into (2.6) we get:

(a− 1)x2 + cx+ e = 0.

In order to have two solutions, we have to have a 6= −1 and c2 − 4(a− 1)e > 0. In that

case,

x =
−c±

√
c2 − 4(a− 1)e

2(a− 1)
.

Now, if a 6= 1 then c2 − 4(a− 1)e > 0 in the following cases.

Condition I gives the following:

· a > 1 and e < 0.

· a < 1 , e > 0 and a 6= −1.

· a > 1 , e > 0 and c2 − 4(a− 1)e > 0.

· a < 1 , e < 0 , a 6= −1 and c2 − 4(a− 1)e > 0.
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Now substituting x = −c
2(a+1) into (2.6), we get:

− (a− 1)y2 +
c2(a− 1)

4(a+ 1)2
− c2

2(a+ 1)
+ e = 0

⇒(a− 1)y2 =
c2(a− 1)

4(a+ 1)2
− c2

2(a+ 1)
+ e

⇒ y2 =
c2(a− 1)

4(a+ 1)2(a− 1)
− c2

2(a+ 1)(a− 1)
+

e

(a− 1)

⇒ y2 =
c2(a− 1)− 2(a+ 1)c2 + 4(a+ 1)2e

4(a+ 1)2(a− 1)

⇒ y2 =
(a− 1− 2a− 2)c2 + 4(a+ 1)2e

4(a+ 1)2(a− 1)

⇒ y2 =
−(a+ 3)c2 + 4(a+ 1)2e

4(a+ 1)2(a− 1)
.

In order to achieve the maximum number of solutions, we need a 6= ±1 and
−(a+3)c2+4(a+1)2e

4(a+1)2(a−1)
> 0, which would lead to

−(a+ 3)c2 + 4(a+ 1)2e > 0 and a− 1 > 0,

or

−(a+ 3)c2 + 4(a+ 1)2e < 0, a− 1 < 0, and a 6= −1.

In that case,

y = ± 1

2(a+ 1)

√
−c2(a+ 3) + 4(a+ 1)2e

a− 1
.

If a 6= ±1,−(a+ 3)c2 + 4(a+ 1)2e > 0, and a > 1 then e > 0 such that −(a+ 3)c2 +

4(a+ 1)2e > 0.

If a 6= ±1,−(a+ 3)c2 + 4(a+ 1)2e < 0, and a < 1 then we have two cases:

· If −3 < a < 1 where a 6= −1 thena + 3 > 0 which implies e > 0 such that

(a+ 3)c2 > 4(a+ 1)2e or e < 0.

· If a < −3 then e < 0 such that (a+ 3)c2 > 4(a+ 1)2e.

So, Condition II gives the following:

· a > 1 , e > 0 and c2(a+ 3) < 4(a+ 1)2e.

· −3 < a < 1, e > 0 , a 6= −1 and c2(a+ 3) > 4(a+ 1)2e.

· a < 1, e < 0, a 6= −1 and c2(a+ 3) > 4(a+ 1)2e.

29



By combining the first and second conditions to get four solutions we should have one of

the following:

· a > 1 and e > 0 and c2 − 4(a− 1)e > 0 and c2(a+ 3) < 4(a+ 1)2e.

· −3 < a < 1 and e > 0 and a 6= −1 and c2(a+ 3) > 4(a+ 1)2e.

· a < 1 and e < 0 and a 6= −1 and c2 − 4(a− 1)e > 0 and c2(a+ 3) > 4(a+ 1)2e,

which is what we wanted to prove. �

Remark. • We will have infinite number of solutions under the following conditions:

– a = −1, b = f = c = d = 0 and e ∈ R, since substituting into (2.6) and (2.7) gives a

hyperbola x2 − y2 = e
2 , which means we will have an infinite number of solutions.

– a 6= 1, b 6= 0,and e = f = c = d = 0, since substituting into (2.6) and (2.7) gives (x2 −

y2)(b2 + 2a2 − 2) = 0 which implies that if b2 + 2a2 = 2 we will have an infinite number of

solutions.

• For a = 1 and b = 0, we get at most one or two solutions under some conditions on the coefficients.

For more details, see Appendix A.

• When we studied the remaining cases we could not state nice conditions on the coefficients in order

to achieve the maximum number of solutions. But we know that we will have either a hyperbola

and a rational functions or two hyperbolas which will give us maximum four intersections, so, in

that case we will have at most four solutions. For more details, see Appendix A.

Notice that even if the degree p is equal two, it is complicated to determine which conditions on the

coefficients of p give rise to the maximum number of solutions. Given this fact, it is natural to pose the

following.

Open Problem. If p has degree n and if the equation p(z) = z̄n has a finite number of solutions, which

conditions on the coefficients of p give rise to the maximum number of distinct solutions?
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Chapter 3

Uniform Mass Density lenses and Number of Images

In Chapter 1, we discussed the relationship between rational harmonic functions and the numbers of images

for the lens equation

w = z −
∫
Ω

dµ(ζ)

z̄ − ζ̄
− γz̄, (3.1)

where w denote the source position, z the position of the lensed image, γ is a real constant representing the

normalized shear, and Ω is the lens, modeled by a domain in C. Many authors have investigated the number

of zeros of the lens equation for continuous densities. For more details see [1, 4, 3, 11, 2].

In this chapter, we will see how many images we can get for different kinds of lenses, i.e. for different Ω’s.

In the first two sections, we will present in detail the techniques that have been utilized to get the number of

solutions for the lens equation when the shape of the lens is an ellipse or a limaçon [11, 2]. In particular, we

disprove a conjecture of Bénéteau and Hudson in [2]. In the third section, we will use the same technique to

study the maximum number of solutions for the lens equation for a Neumann Oval, and we will examine a

special case of a modified Neumann Oval that achieves the maximum number of solutions.

3.1 Ellipse with uniform mass density

In 2009, D. Fassnacht, C. R. Keeton and D. Khavinson [11] investigated the number of solutions to the

lens equation for an ellipse shaped lens with uniform mass density. In this section, we will explain their

technique and results.

3.1.1 The Lens Equation

An ellipse lens which is given by Ω := {z = x + iy|x2
a2

+ y2

b2
< 1} has area abπ, where a > b > 0 are

fixed. Let Γ := ∂Ω be the ellipse. The lens equation for an ellipse-shaped lens Ω with uniform mass density
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dµ(ζ) = 1
πdA(ζ), is:

w̄ = z̄ − 1

π

∫
Ω

dA

z − ζ
− γz, (3.2)

where dA := dA(ζ) = dζ dζ̄
2i is area measure, and the integral in the lens equation (3.2) involves a normal-

izing factor 1
π , in order to have area of ellipse equal to 1 in the case that ab = 1.

In order to solve the lens equation (3.2), the authors of [11] rewrite the integral as a line integral by using

the complex form of Green’s Theorem, which we state as follows.

Theorem 4. Complex Form of Green’s Theorem (GT) [40]

Let F (z, z̄) be continuous and have continuous partial derivatives in a region R and on its boundary C,

where z = x+ iy, z̄ = x− iy are complex conjugate coordinates. Then Green’s theorem can be written in

the complex form ∮
C
F (z, z̄)dz = 2i

∫∫
R

∂F

∂z̄
dA,

where dA represents the element of area dxdy, and C is oriented in the positive direction.

To calculate the integral in the lens equation (3.2), we need to distinguish between z inside or outside

the domain Ω, so we will have the image inside the galaxy which called a dim image, or outside the galaxy

which called a bright image.

For z /∈ Ω,

− 1

π

∫
Ω

dA

z − ζ
= − 1

2πi

2i

∫
Ω

1

z − ζ
dA


Letting F (ζ, ζ̄) = ζ̄

z−ζ which is well-defined ∀ζ ∈ Ω and C1. So, by using Green Theorem on Ω where
∂F
∂ζ̄

= 1
z−ζ we have:

− 1

π

∫
Ω

dA

z − ζ
= − 1

2πi

∫
∂Ω

ζ̄

z − ζ
dζ

=
1

2πi

∫
∂Ω

ζ̄ dζ

ζ − z
. (3.3)

For z ∈ Ω,

By applying Green Theorem again in Ω−D(z, ε) and then take a limit when ε→ 0, we get that:

− 1

π

∫
Ω

dA

z − ζ
= −z̄ +

1

2πi

∫
∂Ω

ζ̄ dζ

ζ − z
. (3.4)
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3.1.2 The Schwarz Function

As we notice, in equations (3.3) and (3.4), we have the same Cauchy integral

1

2πi

∫
Γ

ζ̄ dζ

ζ − z
.

In order to work with this Cauchy integral, we will replace ζ̄ by a function equal to ζ̄ on Γ but analytic in

a neighborhood of Γ. This function is called the Schwarz function. More specifically, assume that Γ is an

analytic arc which can be defined in the complex plane by the function f
(
z+z̄

2 , z−z̄2i

)
≡ F (z, z̄) = 0, where

F (z, z̄) is analytic function and 5f = ∂F
∂z̄ 6= 0 on Γ. Then, there exists a unique function S(z), called the

Schwarz function of Γ, such that S(z) = z̄ on Γ and is analytic in a neighborhood of Γ. For more details,

see [13, 38].

The Schwarz function S(ζ) for the ellipse can be calculated as follows (see, e.g., [11]):

x2

a2
+
y2

b2
= 1

b2x2 + a2y2 = a2b2

b2
(
ζ + ζ̄

2

)2

+ a2

(
ζ − ζ̄

2i

)2

= a2b2

b2

4
(ζ + ζ̄)2 − a2

4
(ζ − ζ̄)2 = a2b2

b2
(
ζ2 + 2ζζ̄ + ζ̄2

)
− a2

(
ζ2 − 2ζζ̄ + ζ̄2

)
= 4a2b2(

b2 − a2
)
ζ2 + 2

(
b2 + a2

)
ζζ̄ +

(
b2 − a2

)
ζ̄2 = 4a2b2

c2ζ̄2 − 2
(
b2 + a2

)
ζ ζ̄ + c2ζ2 + 4a2b2 = 0, where c2 = a2 − b2.

As we see this equation is a second degree equation in ζ̄, so the authors of [11] used the quadratic formula

in order to find ζ̄:

ζ̄ =
a2 + b2

c2
ζ ± 2ab

c2

(√
ζ2 − c2

)
,

where they chose the branch cut inside the ellipse between −c and c. Moreover, we need to choose the sign
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in front of the square root that gives the correct value for ζ̄ when ζ ∈ Γ. For example, when ζ = a, we get

a2 + b2

c2
a− 2ab

c2

√
a2 − c2 =

a3 + ab2

a2 − b2
− 2ab

√
a2 − a2 + b2

a2 − b2

=
a3 + ab2 − 2ab2

a2 − b2

=
a3 − ab2

a2 − b2
=
a
(
a2 − b2

)
a2 − b2

= a = ζ̄.

Therefore, we choose the negative sign, and obtain the Schwarz function of the ellipse:

ζ̄ =
a2 + b2

c2
ζ − 2ab

c2

(√
ζ2 − c2

)
=
a2 + b2 − 2ab

c2
ζ − 2ab

c2

(√
ζ2 − c2 − ζ

)
= ψ1(ζ) + ψ2(ζ),

where ψ1(ζ) = a2+b2−2ab
c2

ζ and ψ2(ζ) = −2ab
c2

(√
ζ2 − c2 − ζ

)
. Note that ψ1 is analytic in Ω while ψ2 is

analytic in C− Ω and ψ2(∞) = 0.

3.1.3 Solving the Lens Equation and Counting Solutions

As we discussed in Section 3.1.1, the authors of [11] used Green’s Theorem to evaluate the integral in the

lens equation (3.2), which then becomes the following line integral :∫
Γ

ζ̄ dζ

ζ − z
.

This line integral can be rewritten in the following form by using the Schwarz function from Section 3.1.2

as ∫
∂Ω

ψ1(ζ) + ψ2(ζ) dζ

ζ − z
.

Now, for z ∈ C − Ω we have ψ1(ζ)
ζ−z is analytic inside Ω, thus, by using Cauchy’s Theorem, we get that

1
2πi

∫
∂Ω

ψ1(ζ)
ζ−z dζ = 0. On the other hand, ψ2(ζ) is analytic outside Ω, thus, by using the Cauchy Integral
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Formula, we get 1
2πi

∫
∂Ω

ψ2(ζ)
ζ−z dζ = ψ2(z). So, from (3.2) and (3.3) for z /∈ Ω the lens equation becomes:

w̄ = z̄ +
2ab

c2

(
−
√
z2 − c2 + z

)
− γz

z̄ −
(
γ − 2ab

c2

)
z − w̄ =

2ab

c2

√
z2 − c2. (3.5)

By squaring both sides, the authors of [11] got a complex quadratic equation. In addition, by replacing z

by x+ iy and z̄ by x− iy where x and y are in R and w̄ by s− im where s and m are constants in R, they

obtain a system of two real equations of degree 2, and therefore, by Bézout’s Theorem, there are at most 4

images outside the ellipse.

In like manner, for z ∈ Ω, we have ψ1(ζ) is analytic inside Ω, thus,by using the Cauchy Integral Formula,

we get 1
2πi

∫
∂Ω

ψ1(ζ)
ζ−z dζ = ψ1(z). On the other hand, we have ψ2(ζ)

ζ−z is analytic outside Ω and ψ2(∞) = 0,

thus, by using Cauchy’s Theorem, 1
2πi

∫
∂Ω

ψ2(ζ)
ζ−z dζ = 0. So, from (3.2) and (3.4) for z ∈ Ω the lens equation

becomes:

w̄ = z

(
a2 + b2 − 2ab

c2
− γ
)
, (3.6)

which is a linear equation in one parameter, thus, they got one solution. Therefore, the authors of [11]

obtained the following theorem:

Theorem 5. [11] An elliptic lens Ω (say, a galaxy) with a uniform mass density may produce at most four

“bright” lensing images of a point light source outside Ω and one (“dim”) image inside Ω, i.e., at most 5

lensing images altogether.

Remark. As we notice from the lens equation (3.5) and (3.6), having the shearing term will not affect the

number of solutions.

Let us now turn to a similar discussion with a different shape.

3.2 Limaçon with uniform mass density

In 2018, C. Bénéteau and N. Hudson were interested in the number of solutions of the lens equation if the

lens is a limaçon shape [2]. In this section, we will explain their technique and the results they got.

3.2.1 The Lens Equation

A limaçon lens (see Figure [14]), given by Ω :=
{
z = reiθ ∈ C | r < a+ b cos θ

}
has area π

(
a2 + b2

2

)
,

where a, b ∈ R are fixed. Let Γ := ∂Ω be the limaçon. The lens equation for an limaçon-shaped lens Ω
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with uniform mass density dµ(ζ) = 2
3πdA(ζ), is:

w̄ = z̄ − 2

3π

∫
Ω

dA

z − ζ
− γz. (3.7)

Figure 14. Graph of three different limaçons

where dA := dA(ζ) = dζ dζ̄
2i is area measure, and the integral involves a normalizing factor of 2

3π in order

to have the area of the limaçon equal to 1, for
(
a2 + b2

2

)
= 3

2 . In order to solve the lens equation (3.7),

the authors of [2] rewrote the integral as a line integral by using the complex form of Green’s Theorem (see

Theorem 4). For z /∈ Ω, as before,

− 2

3π

∫
Ω

dA

z − ζ
= −2

3

 1

2πi

∫∫
Ω

dζ dζ̄

z − ζ

 =
2

3

 1

2πi

∫
∂Ω

ζ̄ dζ

ζ − z

 .
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For z ∈ Ω,

− 2

3π

∫
Ω

dA

z − ζ
= −2

3

 1

2πi

∫∫
Ω

dζ dζ̄

z − ζ

 = −2

3
z̄ +

2

3

 1

2πi

∫
∂Ω

ζ̄ dζ

ζ − z

 .

3.2.2 The Schwarz Function

As before, let us calculate the Schwarz function of the limaçon so that ζ̄ = S(ζ) on Γ, where S is analytic

in a neighborhood of Γ. Since r = a+ b cos(θ) and r2 = ζζ̄, we can rewrite the equation of the limaçon as

ζζ̄ − b

2
(ζ + ζ̄) = a(ζζ̄)

1
2

(ζζ̄)2 +
b2

4

(
ζ2 + ζ̄2 + 2ζζ̄

)
− b

(
ζ2ζ̄ + ζζ̄2

)
= a2ζζ̄

ζ̄2

(
ζ − b

2

)2

− ζ̄ζ
(
b

(
ζ − b

2

)
+ a2

)
+
b2

4
ζ2 = 0.

Since this equation is quadratic in ζ̄, we can apply the quadratic formula to obtain:

ζ̄ =
1

2
(
ζ − b

2

)2 ζ (b(ζ − b

2

)
+ a2

)

± 1

2
(
ζ − b

2

)2
√
ζ2

(
b

(
ζ − b

2

)
+ a2

)2

− 4

(
ζ − b

2

)2 b2

4
ζ2

=
ζ

2
(
ζ − b

2

)2
[
b

(
ζ − b

2

)
+ a2 ± a

√
2b

(
ζ +

a2 − b2
2b

)]
,

as long as we suitably define the square root. In order to simplify the above expression, we define A :=

a2−b2
2b .

The authors of [2] chose the branch cut along the ray (−∞,−A] with a > b > 0. Moreover, we need to

choose the sign in front of the square root that gives the correct value for ζ̄ when ζ ∈ Γ. For example, when

ζ = ia, we get

ia

2
(
ia− b

2

)2 [iab− b2

2
+ a2 + a

√
i2ab+ a2 − b2

]
=

ia

2
(
ia− b

2

)2 [iab− b2

2
+ a2 + a(a+ ib)

]
=

ia

2
(
ia− b

2

)2 [iab− b2

2
+ 2a2 + iab

]

=
−2ia

(
ia− b

2

)2
2
(
ia− b

2

)2 = −ia = ζ̄.
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Therefore, we choose the positive sign for the equation of the Schwarz function.

ζ̄ =
ζ

2
(
ζ − b

2

)2
[
b

(
ζ − b

2

)
+ a2 + a

√
2b

(
ζ +

a2 − b2
2b

)]

= ψ1(ζ) + ψ2(ζ),

where ψ1(ζ) = ζ

2(ζ− b
2)

2

[
b
(
ζ − b

2

)
+ a2

]
and ψ2(ζ) =

a ζ

√
2b
(
ζ+a2−b2

2b

)
2(ζ− b

2)
2 . Note that ψ1 is analytic in

C− { b2} and ψ2 is analytic in Ω− { b2}, where b
2 lies inside Ω.

3.2.3 Solving the Lens Equation and Counting Solutions

As before, to solve the lens equation, we need to calculate the following integral∫
∂Ω

ζ̄ dζ

ζ − z
,

which can be rewritten in the following form by using the Schwarz function as:∫
∂Ω

ψ1(ζ) + ψ2(ζ) dζ

ζ − z
.

Define f(ζ) := ψ1(ζ)+ψ2(ζ)
ζ−z . Thus, for z /∈ Ω we will use the Residue Theorem at { b2} since f(ζ) is analytic

in Ω− { b2}. We get

1

2πi

∫
∂Ω

f(ζ)dζ = Res
(
f(ζ);

b

2

)

= g1

(
b

2

)
,

where

f(ζ) =
ζ

2(ζ − z)
(
ζ − b

2

)2
[
b

(
ζ − b

2

)
+ a2 + a

√
2b

(
ζ +

a2 − b2
2b

)]

f(ζ) =
g(ζ)(
ζ − b

2

)2 ⇒ g(ζ) =
ζ

2(ζ − z)

[
b

(
ζ − b

2

)
+ a2 + a

(
2bζ + a2 − b2

)1/2]
.

g1(ζ) := g′(ζ) =
2(ζ − z)− 2ζ

4(ζ − z)2

[
b

(
ζ − b

2

)
+ a2 + a

(
2bζ + a2 − b2

)1/2]
+

ζ

2(ζ − z)

[
b+

a

2

(
2b+ a2 − b2

)− 1
2 · 2b

]
g1

(
b

2

)
=
−2za2 +

(
b
2 − z

)
b2

2
(
b
2 − z

)2 .
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Therefore,

1

2πi

∫
∂Ω

f(ζ)dζ =
−2za2 +

(
b
2 − z

)
b2

2
(
b
2 − z

)2 .

On the other hand, for z ∈ Ω we will use the Residue Theorem at
{
b
2 , z
}

since f(ζ) is analytic in Ω−
{
b
2 , z
}

,

and so:

1

2πi

∫
∂Ω

f(ζ)dζ = Res
(
f(ζ),

b

2

)
+ Res (f(ζ), z)

= g1

(
b

2

)
+ h(z).

where

f(ζ) =
ζ

2(ζ − z)
(
ζ − b

2

)2
[
b

(
ζ − b

2

)
+ a2 + a

√
2b

(
ζ +

a2 − b2
2b

)]

f(ζ) =
h(ζ)

ζ − z
⇒ h(ζ) =

ζ

2
(
ζ − b

2

)2 [b(ζ − b

2

)
+ a2 + a

(
2bζ + a2 − b2

) 1
2

]
h(z) =

z

2
(
z − b

2

)2 [b(z − b

2

)
+ a2 + a

(
2bz + a2 − b2

) 1
2

]
h(z) =

z

2
(
z − b

2

)2 [−b( b2 − z
)

+ a2 + a
√

2b(z +A)

]
.

So:

1

2πi

∫
∂Ω

f(ζ)dζ =
−2za2 +

(
b
2 − z

)
b2

2
(
b
2 − z

)2 +
z

2
(
z − b

2

)2 [−b( b2 − z
)

+ a2 + a
√

2b(z +A)

]

=
b(b/2− z)(b− z)− a2z + az

√
2b(z +A)

2(z − b/2)2
.

Thus, the authors of [2] proved the following theorem:

Theorem 6. [2] Suppose Ω := {z = reiθ ∈ C | r < a + b cos(θ)} is the interior of a limaçon with

constants chosen so that a > b > 0, with constant mass density dµ(ζ) = 2
3πdA(ζ). Then for z /∈ Ω, the

lens equation is:

w̄ = z̄ +
2

3

[
−2a2z + b2(b/2− z)

2(b/2− z)2

]
− γz, (3.8)

while for z ∈ Ω, the lens equation is:

w̄ = z̄ +
2

3

[
b(b/2− z)(b− z)− a2z + az

√
2b(z +A)

2(z − b/2)2

]
− γz. (3.9)
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In order to solve the lens equation (3.8), they replace z by x + iy and z̄ by x − iy where x and y are in

R. Also, by assuming that w̄ = s − im where s and m are real constants, they got a system of two real

equations of degree 3, and therefore, there are at most 9 solutions to the lens equation (3.8) by Bézout’s

Theorem. Notice that, the Khavinson and Neumann theorem [19] for rational functions produces 5n − 5

images so, for n = 3 is 10 solutions, which is not improvement in this case. In like manner, if the shearing

term vanishes, we get n = 2, and thus there are 5 solutions by the Khavinson-Neumann theorem, while

Bézout’s theorem still gives 9 solutions.

On the other hand, for the lens equation (3.9) they could not utilize the Khavinson-Neumann theorem since

Equation (3.9) is not a rational function because it has a square root. By rewriting the complex variables in

terms of real variables and using some algebraic manipulation, they could rewrite Equation (3.9) as a system

of two real equations. In addition, they mentioned that the shearing term does not impact the degree of real

part, which is 4, while it affects the degree of the imaginary part, which is 3 if there is no shearing term

(γ = 0) and 4 otherwise. Therefore, they obtain the following theorem.

Theorem 7. [2] Suppose Ω :=
{
z = reiθ ∈ C | r < a+ b cos θ

}
is the interior of a limaçon with constants

chosen so that a > b > 0, with constant mass density dµ(ζ) = 2
3πdA(ζ). Then there are at most 9 solutions

to the lens equation (3.8) if the shearing term γ 6= 0, and at most 5 solutions if γ = 0, while there are at

most 16 solutions to the lens equation (3.9) if the shearing term γ 6= 0, and at most 12 solutions if γ = 0.
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The authors of [2] mentioned that the expected number of solutions of the lens equation (3.9) is most

likely over estimated. Moreover, based on numerical experiments, they conjectured that there is at most 1

solution to the lens equation (3.8) and at most 4 solutions to the lens equation (3.9).

After reviewing the system of real equations which is produced by Equation (3.8) and redrawing them

with the different values of a and b, we produced a counter example to the previous conjecture as you will

see in Figures [15] and [16].

Figure 15. Zeros of lens equation which is a limaçon shaped lens for r = 8.3+7.1 cos(θ) and source position

w = 4.8− 0.1i with shearing term γ 6= 0. There are 6 images, located at the intersection of the dotted and

solid curves that lie outside of the limaçon.
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Figure 16. Zeros of lens equation which is a limaçon shaped lens for r = 9.2+8.9 cos(θ) and source position

w = 4.5 + 0.1i with shearing term γ = 0. There are 4 images, located at the intersection of the dotted and

solid curves that lie outside of the limaçon.

From Figures [15] and [16] we can see that we will have 6 images which lie outside of the limaçon when

γ 6= 0, while we will have 4 images which lie outside of the limaçon when γ = 0 which contradicts the

conjecture of the authors of [2].

Also, the authors in [2] assumed that γ = 0 for z /∈ Ω and they got one solution. If we choose γ 6= 0, we

can get more solutions, as in Figure [17].
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Figure 17. Zeros of lens equation which is a limaçon shaped lens for r = 11+5.5 cos(θ) and source position

w = 5 + 15i with shearing term γ 6= 0. There are 3 images, located at the intersection of the dotted and

solid curves that lie outside of the limaçon.

In addition, for the lens equation (3.9),there are 4 solutions when γ 6= 0 and 2 solutions when γ = 0. See

Figures [18] and [19].
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Figure 18. Zeros of lens equation which is a limaçon shaped lens for r = 4.9+3.5 cos(θ) and source position

w = 1 + i with shearing term γ 6= 0. There are 4 images, located at the intersection of the dotted and solid

curves that lie inside of the limaçon.
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Figure 19. Zeros of lens equation which is a limaçon shaped lens for r = 5.4 + 3.8 cos(θ) and source

position w = −1.2 − 3.2i with shearing term γ = 0. There are 2 images, located at the intersection of the

dotted and solid curves that lie inside of the limaçon.

As a result of the previous discussion we have the following conjecture:

Conjecture 1. Suppose Ω :=
{
z = reiθ ∈ C | r < a+ b cos θ

}
is the interior of a limaçon with constants

chosen so that a > b > 0, with constant mass density dµ(ζ) = 2
3πdA(ζ). Then there are at most 6 solutions

(outside) to the lens equation (3.8) when γ 6= 0 and 4 solutions (outside) when γ = 0. Moreover, there is at

most 4 solutions (inside) to the lens equation (3.9) when γ 6= 0 and 2 solutions (inside) when γ = 0.
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3.3 Neumann Oval with uniform mass density

Now, let us look at a different shape called Neumann Oval to see how many images we will get. In this

section we will use the same technique that have been used for the limaçon shape.

3.3.1 The Lens Equation

A Neumann Oval (see Figure [20]) is a shape whose polar equation given by r2 = a2 + 4b2 cos2(θ), where

a , b ∈ R. Note that, the area of Neumann Oval is 2π(a2 + 2b2). Let Ω := {z = reiθ ∈ C |r2 <

a2 + 4b2 cos2(θ) }, where a and b are fixed. Let Γ = ∂Ω be the Neumann Oval. The lens equation for a

Neumann Oval-shaped lens with uniform mass density dµ(ζ) = 1
3πdA(ζ), is:

w̄ = z̄ − 1

3π

∫
Ω

dA

z − ζ
− γz. (3.10)

Figure 20. Neumann Oval shapes.

where dA := dA(ζ) = dζ dζ̄
2i is area measure, and the integral in the lens equation (3.10) involve a

normalizing factor 1
3π in order to have area of Neumann Oval equal 1 when (a2 + 2b2) = 3

2 . To be able to

calculate the integral in the lens equation (3.10) we will use the complex form of Green’s Theorem as we
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explained before in Section 3.1.1 in order to convert that integral to a line integral. For z /∈ Ω,

− 1

3π

∫
Ω

dA

z − ζ
= −1

3

 1

2πi

∫∫
Ω

dζ dζ̄

z − ζ

 =
1

3

 1

2πi

∫
∂Ω

ζ̄ dζ

ζ − z

 .

For z ∈ Ω,

− 1

3π

∫
Ω

dA

z − ζ
= −1

3

 1

2πi

∫∫
Ω

dζ dζ̄

z − ζ

 = −1

3
z̄ +

1

3

 1

2πi

∫
∂Ω

ζ̄ dζ

ζ − z

 .

We can notice that the above equations are different from what we have in the ellipse and limaçon shapes

by the normalizing factor 1
3 .

3.3.2 The Schwarz Function

Let us now revisit the Schwarz function of the Neumann Oval (see, e.g., [13]). By knowing that r2 =

a2 + 4b2 cos2(θ) and r2 = ζζ̄, we can rewrite the equation of the Neumann Oval as

(
ζζ̄
)2

= a2
(
ζζ̄
)

+ b2(ζ + ζ̄)2

ζ2ζ̄2 − b2
(
ζ + ζ̄

)2 − a2ζζ̄ = 0

ζ2ζ̄2 − b2
(
ζ2 + 2ζζ̄ + ζ̄2

)
− a2ζζ̄ = 0(

ζ2 − b2
)
ζ̄2 − ζ(a2 + 2b2)ζ̄ − b2ζ2 = 0.

As we see this equation is a second degree equation in ζ̄, so we will utilize the quadratic formula in order

to find ζ̄:

ζ̄ =
(a2 + 2b2)ζ ± ζ

√
a4 + 4a2b2 + 4b2ζ2

2(ζ2 − b2)
,

where we choose an appropriate branch cut. In our case, we will have branch points at ζ =

±ia
√

1
4

(
a
b

)2
+ 1, so we will choose the branch cut outside the Neumann Oval.

In other words ζ = ±ia
√

1
4

(
a
b

)2
+ 1, which lies on the imaginary axis.

Letting θ = π
2 ⇒ r2 = a2 if a>0

=⇒ r = a, so since
√

1
4

(
a
b

)2
+ 1 > 1 and a > 0 then a

√
1
4

(
a
b

)
+ 1 > a.

Moreover, we need to choose the sign in front of the square root that gives the correct value for ζ̄ when
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ζ ∈ Γ. For example, when ζ = ia, we have

ia
(
a2 + 2b2

)
+ ia
√
a4 + 4a2b2 − 4a2b2

2 (−a2 − b2)
=
ia
(
a2 + 2b2

)
+ iaa2

−2 (a2 + b2)

= −ia
(
2a2 + 2b2

)
2 (a2 + b2)

= −ia = ζ̄.

Therefore, we choose the positive sign for the equation of the Schwarz function, and get

S(ζ) = ψ1(ζ) + ψ2(ζ),

where ψ1(ζ) = (a2+2b2)ζ
2(ζ2−b2)

and ψ2(ζ) =
ζ
√
a4+4a2b2+4b2ζ2

2(ζ2−b2)
. In addition, ψ1 is analytic in C − {±b} while

ψ2 is analytic in Ω− {±b}. Note that the points ±2b are on Γ, therefore the points ±b are inside Ω. (Since

r2 = a2 + 4b2 cos2(θ) if a = 0 and θ = 0 then r2 = 4b2 ⇒ r = ±2b⇒ ±b ∈ Ω.)

3.3.3 Solving the Lens Equation and Counting Solutions

As we discussed earlier in Section 3.3.1, to evaluate the integral in (3.10), we rewrite it as a line integral

using Green’s Theorem and use the Schwarz function we calculated, and need to investigate the following

integral:

∫
∂Ω

ψ1(ζ) + ψ2(ζ) dζ

ζ − z
.

Define f(ζ) := ψ1(ζ)+ψ2(ζ)
ζ−z . Thus, for z /∈ Ω we will use the Residue Theorem at {±b} since f(ζ) is

analytic in Ω− {±b}. We get

1

2πi

∫
∂Ω

f(ζ)dζ = Res (f(ζ), b) + Res (f(ζ),−b)

= g1(b) + g2(−b),

where

f(ζ) =
ζ

2(ζ − z)(ζ + b)(ζ − b)

[
a2 + 2b2 +

√
a4 + 4a2b2 + 4b2ζ2

]
.
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so

g1(ζ) =
ζ

2(ζ − z)(ζ + b)

[
a2 + 2b2 +

√
a4 + 4a2b2 + 4b2ζ2

]
g1(b) =

b

2(b− 2)(2b)

[
a2 + 2b2 +

√
(a2 + 2b2)2

]
=

1

4(b− z)
[
2a2 + 4b2

]
=
a2 + 2b2

2(b− z)

g2(ζ) =
ζ

2(ζ − z)(ζ − b)

[
a2 + 2b2 +

√
a4 + 4a2b2 + 4b2ζ2

]
g2(−b) =

−b
2(−b− z)(−2b)

[
a2 + 2b2 +

√
(a2 + 2b2)2

]
=

1

−4(b+ z)

[
2a2 + 4b2

]
=

a2 + 2b2

−2(b+ z)
.

Therefore

1

2πi

∫
∂Ω

f(ζ)dζ =

(
a2 + 2b2

)
(−2(b+ z)) + 2(b− z)

(
a2 + 2b2

)
−4(b− z)(b+ z)

=
−2b

(
a2 + 2b2

)
− 2z

(
a2 + 2b2

)
+ 2b

(
a2 + 2b2

)
− 2z

(
a2 + 2b2

)
4(z − b)(z + b)

=
−4z

(
a2 + 2b2

)
4(z − b)(z + b)

=
−2z

(
a2 + 2b2

)
2(z2 − b2)

=
z(a2 + 2b2)

b2 − z2
.

In like manner, for z ∈ Ω we will use the Residue Theorem at {±b, z} since f(ζ) is analytic in Ω−{±b, z},

we will have:

1

2πi

∫
∂Ω

f(ζ)dζ = Res (f(ζ), b) + Res (f(ζ),−b) + Res (f(ζ), z)

= g1(b) + g2(−b) + g3(z),

where

g3(ζ) =
ζ

2(ζ2 − b2)

[
a2 + 2b2 +

√
a4 + 4a2b2 + 4b2ζ2

]
g3(z) =

z

2(z2 − b2)

[
a2 + 2b2 +

√
a4 + 4a2b2 + 4b2z2

]
.
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Therefore

1

2πi

∫
∂Ω

f(ζ)dζ =
z(a2 + 2b2) + z

√
a4 + 4a2b2 + 4b2z2 − 2z(a2 + 2b2)

2(z2 − b2)

=
−z(a2 + 2b2) + z

√
a4 + 4a2b2 + 4b2z2

2(z2 − b2)
.

We therefore get the following theorem.

Theorem 8. Suppose Ω := {z = reiθ ∈ C |r2 < a2 + 4b2 cos2(θ)} is the interior of a Neumann Oval

shape with constant mass density dµ(ζ) = 1
3πdA(ζ). Then for z /∈ Ω, the lens equation is

w̄ = z̄ − 1

3

[
z(a2 + 2b2)

z2 − b2

]
− γz, (3.11)

while for z ∈ Ω, the lens equation is

w̄ =
2

3
z̄ − 1

3

[
z(a2 + 2b2)− z

√
a4 + 4a2b2 + 4b2z2

2(z2 − b2)

]
− γz. (3.12)

Following the same technique that was used for the Neumann Oval, we rewrite (3.11) as a system of

two real equations of degree 3, and therefore, by Bézout’s Theorem, there are at most 9 images outside the

Neumann Oval, while the Khavinson and Neumann theorem for rational functions produce 5n−5 for n = 3

is 10 solutions, which is not improvement in this case. In like manner, if the shearing term vanishes we get

n = 2, and thus the Khavinson-Neumann theorem gives 5 solutions, while Bézout’s theorem still gives 9.
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Figure 21. Zeros of lens equation which is a Neumann Oval shaped lens for r2 = (−36.9)2 +4(98)2 cos2(θ)

and source position w = 0.2 − 239.1i with shearing term γ 6= 0. There are 5 images, located at the

intersection of the dotted and solid curves that lie outside of the Neumann Oval.

On the other hand, for the lens equation (3.12) the theorem of the Khavinson-Neumann no longer holds

since Equation (3.12) is not a rational function. By using real variables to express the complex variables

and using some algebraic operations of squaring both sides and canceling common factors of 4(z2− b2), we

rewrite equation (3.12) as a system of two real equations. Moreover, we notice that the shearing term does

not impact the degree of the real part, which is 4, while it affect the degree of the imaginary part, which is 3

if there is no shearing term (γ = 0) and 4 otherwise. Therefore, we obtain the following theorem:
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Theorem 9. Suppose Ω := {z = reiθ ∈ C |r2 < a2 + 4b2 cos2(θ)} is the interior of a Neumann Oval with

constant mass density dµ(ζ) = 1
3πdA(ζ). Then there are at most 9 solutions to the lens equation (3.11) if

the shearing term γ 6= 0, and at most 5 solutions if γ = 0, while there are at most 16 solutions to the lens

equation (3.12) if the shearing term γ 6= 0, and at most 12 solutions if γ = 0.

Figure 22. Zeros of lens equation which is a Neumann Oval shaped lens for r2 = (−36.9)2 +4(98)2 cos2(θ)

and source position w = 0.2−213.1iwith shearing term γ = 0. There is 1 image, located at the intersection

of the dotted and solid curves that lie outside of the Neumann Oval.
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It is clear that the expected number of solutions of the lens equation (3.12) is over estimated because the

original equation has a radical term. Moreover, numerical experiments show that we have 5 images outside

when the shearing term is there, and 1 image outside when the shearing term vanishes, while we have 4

solution inside when the shearing term is present and 2 solutions inside when the shearing term vanishes.

Figure 23. Zeros of lens equation which is a Neumann Oval shaped lens for r2 = (3.5)2 + 4(4)2 cos2(θ)

and source position w = 4.1 + 2i with shearing term γ 6= 0. There are 4 images, located at the intersection

of the dotted and solid curves that lie inside of the Neumann Oval.
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Figure 24. Zeros of lens equation which is a Neumann Oval shaped lens for r2 = (3.5)2 + 4(4)2 cos2(θ)

and source position w = 4.1 + 2i with shearing term γ = 0. There are 2 images, located at the intersection

of the dotted and solid curves that lie inside of the Neumann Oval.

As a result of the previous discussion we have the following conjecture.

Conjecture 2. Suppose Ω := {z = reiθ ∈ C |r2 < a2 + 4b2 cos2(θ)} is the interior of a Neumann Oval,

with constant mass density dµ(ζ) = 1
3πdA(ζ). Then there are at most 5 solutions (outside) to the lens

equation (3.11) when γ 6= 0 and 1 solution (outside) when γ = 0. Also, there is at most 4 solutions (inside)

to the lens equation (3.12) when γ 6= 0 and 2 solutions (inside) when γ = 0.
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3.3.4 Modifying the normalizing factor in a special case of the Neumann Oval

Consider the curve with equation

r2 = c2 cos2(θ) + sin2(θ).

Letting sin2(θ) = 1− cos2(θ), we get

r2 = (c2 − 1) cos2(θ) + 1. (3.13)

When |c| > 1, this reduces to a special case of a Neumann Oval. In other words, by assuming that a2 = 1

and 4b2 = c2 − 1, we get (3.13).

Although we were not able to find the extreme case for the Neumann Oval, notice that if we modify the

normalizing factor to be 2
π instead of 1

3π , the same calculation lead to the lens equation

w̄ = z̄ − 2

π

∫
Ω

dA

z − ζ
− γz, (3.14)

and corresponding Schwarz function

ζ̄ =
(c2 + 1)ζ + 2 ζ

√
(c2 − 1)ζ2 + c2

4ζ2 − c2 + 1
.

As we discussed earlier, having z inside or outside Ω leads to the following theorem in the case of a

modified normalizing factor.

Theorem 10. Suppose Ω := {z = reiθ ∈ C |r2 < c2 cos2(θ) + sin2(θ) } is the interior of a Neumann

Oval where |c| > 1 with constant mass density dµ(ζ) = 1
πdA(ζ). Then for z /∈ Ω, the lens equation is

w̄ = z̄ + 2

[
2z(c2 + 1)

c2 − 4z2 − 1

]
− γz, (3.15)

while for z ∈ Ω

w̄ = −z̄ +
2z
(

2
√

(c2 − 1)z2 + c2 − c2 − 1
)

4z2 + 1− c2
− γz. (3.16)

By the same reasoning, this leads to a maximum number of 9 solutions if z /∈ Ω, γ 6= 0 and 5 solutions

if z /∈ Ω, γ = 0. Also, we get from the lens equation (3.16), that the maximum number of solutions is 16

if z ∈ Ω, γ 6= 0 and 12 if z ∈ Ω, γ = 0. In this case, we were able to find an example of the extreme case

which proves the sharpness for the number of solutions for the Neumann Oval with modified normalizing

factor when z /∈ Ω, see Figures [25] and [26].

While, for z ∈ Ω by numerical experiments we were able to get 4 solutions inside the modified Neumann

Oval, which may not be sharp in this case, (see Figures [27] and [28]) .
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Figure 25. Zeros of lens equation which is a Neumann Oval shaped lens with a modified normalizing factor

for r2 = ((96.5)2 − 1) cos2 θ + 1 and source position w = 0.2 − 20i with a shearing term of γ = 0.455.

There are 9 images, located at the intersection of the dotted and solid curves that lie outside of the Neumann

Oval.

Theorem 11. Suppose Ω := {z = reiθ ∈ C |r2 < (c2−1) cos2(θ)+1 is the interior of a modified Neumann

Oval where |c| > 1 with constant mass density dµ(ζ) = 2
πdA(ζ) Then there are at most 9 solutions to the

lens equation (3.15) if the shearing term γ 6= 0, and at most 5 solutions if γ = 0, while there are at most 16

solutions to the lens equation (3.16) if the shearing term γ 6= 0, and at most 12 solutions if γ = 0.

As we discussed earlier in Section 3.3.3 about the over estimate number of solutions we have the following

conjecture

Conjecture 3. Suppose Ω := {z = reiθ ∈ C |r2 < (c2 − 1) cos2(θ) + 1} is the interior of a Neumann

Oval, with constant mass density dµ(ζ) = 2
πdA(ζ). Then there is at most 8 solutions (inside) to the lens

equation (3.16) when γ 6= 0 and 4 solutions (inside) when γ = 0.

Note. Note that if 0 < |c| < 1, then we get a shape looks like a Neumann Oval in different axis. Similar

calculations lead to the same theorems. By numerical experiments, the number of images for 0 < |c| < 1

was less than the case |c| > 1.
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Figure 26. Zeros of lens equation which is a Neumann Oval shaped lens with a modified normalizing factor

for r2 = ((96.5)2 − 1) cos2 θ+ 1 and source position w = 0.2− 20i with shearing term γ = 0. There are 5

images, located at the intersection of the dotted and solid curves that lie outside of the Neumann Oval.

Remark. We investigated several other shapes to try the maximum number of images that we can get, such

as Rose curves, Archimedian Spirals, and Cassini Ovals but it was not easy to use the Schwarz function

along the boundary of these shapes and calculate the associated Cauchy integral. Further studies are needed

for these shapes.

Remark. It would be interesting to study, as we did in Chapter 2, what conditions on the coefficients of the

equations considered in this chapter (e.g., the ellipse, the limaçon, and the Neumann Oval) give rise to the

maximum number of solutions.

Remark. It would be interesting to understand the impact of the normalizing factor on the maximum number

of images one can obtain for a particular lens equation.
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Figure 27. Zeros of lens equation which is a Neumann Oval shaped lens with a modified normalizing factor

for r2 = ((43.6)2 − 1) cos2 θ + 1 and source position w = −0.6 − .2i with a shearing term of γ = 2.4.

There are 9 images, located at the intersection of the dotted and solid curves that lie inside of the Neumann

Oval.
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Figure 28. Zeros of lens equation which is a Neumann Oval shaped lens with a modified normalizing factor

for r2 = ((43.6)2 − 1) cos2 θ + 1 and source position w = 3.2− 1.6i with shearing term γ = 0. There are

5 images, located at the intersection of the dotted and solid curves that lie inside of the Neumann Oval.
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Appendix A

Maximum of solutions of p(z) = z̄2 in the case of complex coefficients.

In this Appendix, we will discuss the maximum number of solutions of the equation (a+ ib)z2 +(c+ id)z+

e+ if = z̄2 where a 6= 0 or b 6= 0 and a, b, c, d, e, f ∈ R, for the cases when we were not able to get precise

conditions on the coefficients.

Case I : a = 1.

• If b = 0:

– If e = 0 and f = 0:

* If c = d = 0, substituting into (2.6) gives:

xy = 0⇒ x = 0 or y = 0

if x = 0
sub into2.7⇒ y = 0

if y = 0
subinto2.7⇒ x = 0

In this case we will have one solution which is the origin.

* If c = d 6= 0, substituting into (2.6) gives:

x = y

By substituting x = y into (2.7) we get:

4x2 + 2cx = 0⇒ x = 0 or x =
−c
2

When x = 0, we get y = 0.

When x = −c
2 , we get y = −c

2 .

In this case we will have two solutions.
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* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:

y =
c

d
x

Now substituting y = c
dx into (2.7), we get:

4c

d
x2 +

d2 + c2

d
x = 0

⇒x = 0 or x = −d
2 + c2

4c

In this case we will have two solutions.

* If c = 0 and d 6= 0, substituting into (2.6) gives:

y = 0

Substituting y = 0 into (2.7) gives:

x = 0

So, for this case we will have one solution which is the origin.

* If c 6= 0 and d = 0, substituting into (2.6) gives:

x = 0

Substituting x = 0 into (2.7) gives:

y = 0

So, for this case we will have one solution which is the origin.

– If e = 0 and f 6= 0:

* If c = d = 0, substituting into (2.6) gives:

4xy + f = 0⇒ y =
−f
4x

which is a rational function with vertical asymptote x = 0 and horizontal asymptote

y = 0. So, we will have infinite number of solutions.
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* If c = d 6= 0, substituting into (2.6) gives:

x = y

By substituting x = y into (2.7) we get:

4x2 + 2cx+ f = 0⇒ x =
−c±

√
4c2 − 16f

8

In this case we will have two solutions if 4c2 − 16f > 0.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:

y =
c

d
x

Substituting y = c
dx into (2.7) gives:

4cx2 + (d2 + c2)x+ fd = 0

⇒x =
−(d2 + c2)±

√
(d2 + c2)2 − 16cfd

8c

In this case we will have two solutions if (d2 + c2)2 > 16cfd.

* If c = 0 and d 6= 0, substituting into (2.6) gives:

y = 0

Substituting y = 0 into (2.7) gives:

dx = −f ⇒ x =
−f
d

So, for this case we will have one solution which is (−fd , 0).

* If c 6= 0 and d = 0, substituting into (2.6) gives:

x = 0

Substituting x = 0 into (2.7) gives:

cy = −f ⇒ y =
−f
c

So, for this case we will have one solution which is (0, −fc ).
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– If e 6= 0 and f = 0:

* If c = d 6= 0, substituting into (2.6) gives:

y = x+
e

c

By substituting y = x+ e
c into (2.7) we get:

4cx2 + (4e+ 2c2)x+ ec = 0

⇒x =
−(4e+ 2c2)±

√
(4e+ 2c2)2 − 16c2e

8c

In this case we will have two solutions if (4e + 2c2)2 − 16c2e > 0 ⇒ 16e2 + 4c4 > 0

which is true ∀c, d, e ∈ R− {0}.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:

y =
c

d
x+

e

d

Substituting y = c
dx+ e

d into (2.7) gives:

4cx2 + (4e+ d2 + c2)x+ ec = 0

⇒x =
−(4e+ d2 + c2)±

√
(4e+ d2 + c2)2 − 16c2e

8c

In this case we will have two solutions if (4e+ d2 + c2)2 > 16c2e.

* If c = 0 and d 6= 0, substituting into (2.6) gives:

dy = e⇒ y =
e

d

Substituting y = e
d into (2.7) gives:

4e+ d2

d
x = 0⇒ x = 0

So, for this case we will have one solution which is (0, ed).
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* If c 6= 0 and d = 0, substituting into (2.6) gives:

cx = −e⇒ x =
−e
c

Substituting x = −e
c into (2.7) gives:

−4e+ c2

c
y = 0⇒ y = 0

So, for this case we will have one solution which is (−ec , 0).

– If e 6= 0 and f 6= 0

* If c = d 6= 0, substituting into (2.6) gives:

y = x+
e

c

By substituting y = x+ e
c into (2.7) we get:

4cx2 + (4e+ 2c2)x+ ec+ fc = 0

⇒x =
−(4e+ 2c2)±

√
(4e+ 2c2)2 − 16c2(e+ f)

8c

In this case we will have two solutions if 4e2 + c4 > 4c2f .

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:

y =
c

d
x+

e

d

Substituting y = c
dx+ e

d into (2.7) gives:

4cx2 + (4e+ d2 + c2)x+ ec+ fd = 0

⇒x =
−(4e+ d2 + c2)±

√
(4e+ d2 + c2)2 − 16c(ec+ fd)

8c

In this case we will have two solutions if (4e+ d2 + c2)2 > 16c(ec+ fd).

* If c = 0 and d 6= 0, substituting into (2.6) gives:

y =
e

d
.
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Substituting y = e
d into (2.7) gives:

4ex+ d2x+ fd = 0⇒ x =
−fd

4e+ d2

So, for this case we will have one solution which is ( −fd
4e+d2

, ed) where 4e+ d2 6= 0.

* If c 6= 0 and d = 0, substituting into (2.6) gives:

x =
−e
c
.

Substituting x = −e
c into (2.7) gives:

−4ey + c2y + cf = 0⇒ y =
−cf
c2 − 4e

So, for this case we will have one solution which is (−ec ,
−cf
c2−4e

) where c2 − 4e 6= 0.

• If b 6= 0:

– If e = 0 and f = 0:

* If c = d = 0, substituting into (2.6) gives:

xy = 0⇒ x = 0 or y = 0

if x = 0
sub into2.7⇒ y = 0

if y = 0
subinto2.7⇒ x = 0

In this case we will have one solution which is the origin.

* If c = d 6= 0, substituting into (2.6) gives:

y =
cx

2bx+ c

which is a rational function with vertical asymptote x = −c
2b and horizontal asymptote

y = c
2b .

From (2.7) we get: (
x−

(
−c
2b

))2

−
(
y − c

2b

)2
+

4

b
xy = 0
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which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:

y =
cx

2bx+ d

which is a rational function with vertical asymptote x = −d
2b and horizontal asymptote

y = c
2b .

From (2.7) we get: (
x−

(−d
2b

))2
G

−
(
y − c

2b

)2
G

+
4

bG
xy = 1

G =
d2 − c2

4b2

which is hyperbola function. In this case the maximum number of solutions we can get is

four.

.

– If e = 0 and f 6= 0

* If c = d = 0, substituting into (2.6) gives:

−2bxy = 0⇒ x = 0 or y = 0

if x = 0
sub into(2.7)⇒ y = ±

√
f

b

In this case we have two solutions if we satisfy one of the following conditions

· f > 0 and b > 0.

· f < 0 and b < 0.

if y = 0
sub into(2.7)⇒ x = ±

√
−f
b

In this case we have two solutions if we satisfy one of the following conditions

· f < 0 and b > 0.

· f > 0 and b < 0.

Since we can not combine the above conditions we will have maximum two solutions.
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* If c = d 6= 0, substituting into (2.6) gives:

y =
cx

2bx+ c

which is a rational function with vertical asymptote x = −c
2b and horizontal asymptote

y = c
2b .

From (2.7) we get: (
y − c

2b

)2
f

−
(
x−

(−c
2b

))2
f

− 4

bf
xy = 1

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:

y =
cx

2bx+ d

which is a rational function with vertical asymptote x = −d
2b and horizontal asymptote

y = c
2b .

From (2.7) we get: (
x−

(−d
2b

))2
Q

−
(
y − c

2b

)2
Q

− 4

M −N − f
xy = 1

Q =
M −N − f

b

M =
d2

4b

N =
c2

4b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

– If e 6= 0 and f = 0:

* If c = d = 0, substituting into (2.6) gives:

y =
e

2bx
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which is a rational function with vertical asymptote x = 0 and horizontal asymptote

y = 0.

From (2.7) we get:

y2

T
− x2

T
= 1

T =
2e

b2

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c = d 6= 0, substituting into (2.6) gives:

y =
cx− e
2bx+ c

.

which is a rational function with vertical asymptote x = −c
2b and horizontal asymptote

y = c
2b .

From (2.7) we get: (
x−

(
−c
2b

))2

−
(
y − c

2b

)2
+

4

b
xy = 0.

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:

y =
cx− e
2bx+ d

.

which is a rational function with vertical asymptote x = −d
2b and horizontal asymptote

y = c
2b .

From (2.7) we get: (
x−

(−d
2b

))2
G

−
(
y − c

2b

)2
G

+
4

bG
xy = 1

G =
d2 − c2

4b2
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which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c = 0 and d 6= 0, substituting into (2.6) gives:

y =
e

2bx+ d

which is a rational function with vertical asymptote x = −d
2b and horizontal asymptote

y = 0.

From (2.7) we get: (
x−

(−d
2b

))2
L

− y2

L
+

4

bL
xy = 1

L =
d2

4b2
.

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c 6= 0 and d = 0, substituting into (2.6) gives:

x =
−e

c− 2by

which is a rational function with vertical asymptote x = 0 and horizontal asymptote

y = c
2b .

From (2.7) we get: (
y − c

2b

)2
T

− x2

T
− 4

bT
xy = 1

T =
c2

4b2

which is hyperbola function. In this case the maximum number of solutions we can get is

four.

– If e 6= 0 and f 6= 0:

* If c = d = 0, substituting into (2.6) gives:

y =
e

2bx
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which is a rational function with vertical asymptote x = 0 and horizontal asymptote

y = 0.

From (2.7) we get:
y2

f
− x2

f
− 4

bf
xy = 1

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c = d 6= 0, substituting into (2.6) gives:

y =
cx+ e

2bx+ c

which is a rational function with vertical asymptote x = −c
2b and horizontal asymptote

y = c
2b .

From (2.7) we get: (
y − c

2b

)2
f

−
(
x−

(−c
2b

))2
f

− 4

bf
xy = 1

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:

y =
cx+ e

2bx+ d

which is a rational function with vertical asymptote x = −d
2b and horizontal asymptote

y = c
2b .

From (2.7) we get: (
x−

(−d
2b

))2
Q

−
(
y − c

2b

)2
Q

− 4

M −N − f
xy = 1

Q =
M −N − f

b

M =
d2

4b

N =
c2

4b
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which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c = 0 and d 6= 0, substituting into (2.6) gives:

y =
e

2bx+ d

which is a rational function with vertical asymptote x = −d
2b and horizontal asymptote

y = 0.

From (2.7) we get: (
x−

(−d
2b

))2
Q1

− y2

Q1
+

4

M − f
xy = 1

Q1 =
M − f
b

M =
d2

4b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c 6= 0 and d = 0, substituting into (2.6) gives:

y =
cx+ e

2bx

which is a rational function with vertical asymptote x = 0 and horizontal asymptote

y = c
2b .

From (2.7) we get: (
y − c

2b

)2
H

− x2

H
− 4

bH
xy = 1

H =
c2 + 4fb

4b2

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

Case II : a 6= 1.
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• If b = 0:

– If e = 0 and f = 0:

* If c = d = 0, substituting into (2.6) gives:

(a− 1)(x2 − y2) = 0

since a6=1⇒ x2 − y2 = 0

⇒ x2 = y2

⇒ x = y or x = −y

If x = y substitute into (2.7) we get:

2(a+ 1)x2 = 0

⇒a = −1 or x = 0

· If a = −1 then we will have infinite number of solutions.

· If x = 0 then y = 0.

If x = −y substitute into (2.7) we get:

− 2(a+ 1)x2 = 0

⇒a = −1 or x = 0

· If a = −1 then we will have infinite number of solutions.

· If x = 0 then y = 0.

So, if a = −1 we will have infinite number of solutions while if a 6= −1 we will have

one solution which is the origin.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

G
−

(
y −

(
−d

2(a−1)

))2

G
= 1

G =
c2 − d2

4(a− 1)2
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which is hyperbola function.

From (2.7) we get:

y =
−dx

2(a+ 1)x+ c

which is a rational function with vertical asymptote x = −c
2(a+1) and horizontal asymptote

y = −d
2(a+1) . In this case the maximum number of solutions we can get is four where

a 6= −1.

– If e = 0 and f 6= 0

* If c = d = 0, substituting into (2.6) gives:

(a− 1)(x2 − y2) = 0

since a6=1⇒ x2 − y2 = 0

⇒ x2 = y2

⇒ y = x or y = −x.

From (2.7) we get:

2(a+ 1)xy + f = 0⇒ xy =
−f

2(a+ 1)

So, we have to have a 6= −1

· If y = x then x = ±
√

−f
2(a+1) ⇒ f > 0 and a < −1 or f < 0 and a > −1.

· If y = −x then x = ±
√

f
2(a+1) ⇒ f > 0 and a > −1 or f < 0 and a < −1.

From the above cases we can notice that we will have two solutions at maximum.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

G
−

(
y −

(
−d

2(a−1)

))2

G
= 1

G =
c2 − d2

4(a− 1)2

which is hyperbola function.

From (2.7) we get:

y =
−f − dx

2(a+ 1)x+ c
,
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which is a rational function with vertical asymptote x = −c
2(a+1) and horizontal asymptote

y = −d
2(a+1) . In this case the maximum number of solutions we can get is four.

* If c = 0 and d 6= 0, substituting into (2.6) gives:

(
y −

(
−d

2(a−1)

))2

G1
− x2

G1
= 1

G1 =
d2

4(a− 1)2
,

which is hyperbola function.

From (2.7) we get:

y =
−f − dx
2(a+ 1)x

,

which is a rational function with vertical asymptote x = 0 and horizontal asymptote

y = −d
2(a+1) . In this case the maximum number of solutions we can get is four.

* If c 6= 0 and d = 0, substituting into (2.6) gives:

(
x−

(
−c

2(a−1)

))2

G2
− y2

G2
= 1

G2 =
c2

4(a− 1)2

which is hyperbola function.

From (2.7) we get:

y =
−f

2(a+ 1)x+ c
,

which is a rational function with vertical asymptote x = −c
2(a+1) and horizontal asymptote

y = 0. In this case the maximum number of solutions we can get is four.

– If e 6= 0 and f = 0
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* If c = d = 0, substituting into (2.6) gives:

(a− 1)(x2 − y2) = −e
since a6=1⇒ x2 − y2 =

−e
a− 1

⇒ y2

S1
− x2

S1
= 1 where S1 =

e

a− 1
,

which is hyperbola function.

From (2.7) we have:

2(a+ 1)xy = 0

⇒a = −1 or x = 0 or y = 0

· If a = −1 then we will have infinite number of solutions.

· If x = 0 then y2 = e
a−1 ⇒ y = ±

√
e

a−1 ⇒ e > 0 and a > 1 or e < 0 anda < 1.

· If y = 0 then x2 = −e
a−1 ⇒ x = ±

√
e

1−a ⇒ e > 0 and a < 1 or e < 0 and a > 1.

From the above cases we can notice that we will have two solutions at maximum when

a 6= −1. While we will have infinite number of solutions when a = −1.

* If c = d 6= 0, substituting into (2.6) gives:(
y −

(
−c

2(a−1)

))2

G
−

(
x−

(
−c

2(a−1)

))2

G
= 1

G =
e

a− 1

which is hyperbola function.

From (2.7) we get:

y =
−cx

2(a+ 1)x+ c
,

which is a rational function with vertical asymptote x = −c
2(a+1) and horizontal asymptote

y = −c
2(a+1) . In this case the maximum number of solutions we can get is four.
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* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R
−

(
y −

(
−d

2(a−1)

))2

R
= 1

R =
K − L− e
a− 1

K =
c2

4(a− 1)

L =
d2

4(a− 1)

which is hyperbola function.

From (2.7) we get:

y =
−dx

2(a+ 1)x+ c

which is a rational function with vertical asymptote x = −c
2(a+1) and horizontal asymptote

y = −d
2(a+1) . In this case the maximum number of solutions we can get is four.

– If e 6= 0 and f 6= 0

* If c = d = 0, substituting into (2.6) gives:

y2

R3
− x2

R3
= 1

R3 =
e

a− 1

which is hyperbola function.

From (2.7) we get:

y =
−f

2(a+ 1)x
,

which is a rational function with vertical asymptote x = 0 and horizontal asymptote

y = 0. In this case the maximum number of solutions we can get is four.

* If c = d 6= 0, substituting into (2.6) gives:(
y −

(
−c

2(a−1)

))2

R3
−

(
x−

(
−c

2(a−1)

))2

R3
= 1

R3 =
e

a− 1
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which is hyperbola function.

From (2.7) we get:

y =
−f − cx

2(a+ 1)x+ c
,

which is a rational function with vertical asymptote x = −c
2(a+1) and horizontal asymptote

y = −c
2(a+1) . In this case the maximum number of solutions we can get is four.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R
−

(
y −

(
−d

2(a−1)

))2

R
= 1

R =
K − L− e
a− 1

K =
c2

4(a− 1)

L =
d2

4(a− 1)
,

which is hyperbola function.

From (2.7) we get:

y =
−f − dx

2(a+ 1)x+ c

which is a rational function with vertical asymptote x = −c
2(a+1) and horizontal asymptote

y = −d
2(a+1) . In this case the maximum number of solutions we can get is four.

* If c = 0 and d 6= 0, substituting into (2.6) gives:(
y −

(
−d

2(a−1)

))2

R1
− x2

R1
= 1

R1 =
L+ e

a− 1

L =
d2

4(a− 1)
,

which is hyperbola function.

From (2.7) we get:

y =
−f − dx
2(a+ 1)x
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which is a rational function with vertical asymptote x = 0 and horizontal asymptote

y = −d
2(a+1) . In this case the maximum number of solutions we can get is four.

* If c 6= 0 and d = 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R2
− y2

R2
= 1

R2 =
K − e
a− 1

K =
c2

4(a− 1)
,

which is hyperbola function.

From (2.7) we get:

y =
−f

2(a+ 1)x+ c

which is a rational function with vertical asymptote x = −c
2(a+1) and horizontal asymptote

y = 0. In this case the maximum number of solutions we can get is four.

• If b 6= 0:

– If e = 0 and f = 0:

* If c = d = 0, substituting into (2.6) gives:

(a− 1)
(
x2 − y2

)
− 2bxy = 0

⇒xy =
(a− 1)

(
x2 − y2

)
2b

(A.1)

Substituting (A.1) into (2.7) gives:

b
(
x2 − y2

)
+

2(a+ 1)(a− 1)
(
x2 − y2

)
2b

= 0

⇒b2
(
x2 − y2

)
+ 2

(
a2 − 1

) (
x2 − y2

)
= 0

⇒
(
x2 − y2

) (
b2 + 2a2 − 2

)
= 0

⇒x = ±y or b2 + 2a2 = 2.

If x = y ⇒ y2 = 0⇒ y = 0 = x

If x = −y ⇒ y2 = 0⇒ y = 0 = x
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So, we have one solution which is the origin or infinite number of solutions if

b2 + 2a2 = 2.

* If c = d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a− 1)

))2

−
(
y −

(
− c

2(a− 1)

))2

− 2b

(a− 1)
xy = 0,

which is hyperbola function.

Also, from (2.7) we get:(
x−

(
−d
2b

))2

−
(
y − c

2b

)2
+

2(a+ 1)

b
xy = 0,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R
−

(
y −

(
−d

2(a−1)

))2

R
− 2b

K − L
xy = 1

R =
K − L
a− 1

K =
c2

4(a− 1)

L =
d2

4(a− 1)
,

which is hyperbola function.

From (2.7) we get: (
x−

(−d
2b

))2
Q

−
(
y − c

2b

)2
Q

+
2(a+ 1)

M −N
xy = 1

Q =
M −N

b

M =
d2

4b

N =
c2

4b
,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.
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* If c = 0 and d 6= 0, substituting into (2.6) gives:(
y −

(
−d

2(a−1)

))2

R1
− x2

R1
+

2b

L
xy = 1

R1 =
L

a− 1

L =
d2

4(a− 1)
,

which is hyperbola function.

From (2.7) we get: (
x−

(−d
2b

))2
Q1

− y2

Q1
+

2(a+ 1)

M
xy = 1

Q1 =
M

b

M =
d2

4b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c 6= 0 and d = 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R2
− y2

R2
− 2b

K
xy = 1

R2 =
K

a− 1

K =
c2

4(a− 1)
,

which is hyperbola function.

From (2.7) we get: (
y − c

2b

)2
Q2

− x2

Q2
− 2(a+ 1)

N
xy = 1

Q2 =
N

b

N =
c2

4b
,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.
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– If e = 0 and f 6= 0:

* If c = d = 0, substituting into (2.6) gives:

x2 − y2 − 2b

(a− 1)
xy = 0

which is hyperbola function.

From (2.7) we get:

y2

B
− x2

B
− 2(a+ 1)

f
xy = 1

B =
f

b
,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c = d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a− 1)

))2

−
(
y −

(
−c

2(a− 1)

))2

− 2b

(a− 1)
xy = 0

which is hyperbola function.

From (2.7) we get: (
y − c

2b

)2
B

−
(
x−

(−c
2b

))2
B

− 2(a+ 1)

f
xy = 1

B =
f

b
,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R
−

(
y −

(
−d

2(a−1)

))2

R
− 2b

K − L
xy = 1

R =
K − L
a− 1

K =
c2

4(a− 1)

L =
d2

4(a− 1)
,
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which is hyperbola function.

From (2.7) we get:

(
x−

(−d
2b

))2
Q

−
(
y − c

2b

)2
Q

+
2(a+ 1)

M −N − f
xy = 1

Q =
M −N − f

b

M =
d2

4b

N =
c2

4b
,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c = 0 and d 6= 0, substituting into (2.6) gives:

(
y −

(
−d

2(a−1)

))2

R1
− x2

R1
+

2b

L
xy = 1

R1 =
L

a− 1

L =
d2

4(a− 1)

which is hyperbola function.

From (2.7) we get:

(
x−

(−d
2b

))2
Q1

− y2

Q1
+

2(a+ 1)

M − f
xy = 1

Q1 =
M − f
b

M =
d2

4b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.
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* If c 6= 0 and d = 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R2
− y2

R2
− 2b

K
xy = 1

R2 =
K

a− 1

K =
c2

4(a− 1)
,

which is hyperbola function.

From (2.7) we get: (
y − c

2b

)2
Q2

− x2

Q2
− 2(a+ 1)

N + f
xy = 1

Q2 =
N + f

b

N =
c2

4b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

– If e 6= 0 and f = 0:

* If c = d = 0, substituting into (2.6) gives:

x2

T
− y2

T
+

2b

e
xy = 1

T =
e

a− 1

which is hyperbola function.

From (2.7) we get:

x2 − y2 +
2(a+ 1)

b
xy = 0

which is hyperbola function. In this case the maximum number of solutions we can get

is four.
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* If c = d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

T
−

(
y −

(
−c

2(a−1)

))2

T
+

2b

e
xy = 1

T =
e

a− 1
,

which is hyperbola function.

From (2.7) we get:(
x−

(
−c
2b

))2

−
(
y − c

2b

)2
+

2(a+ 1)

b
xy = 0,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R
−

(
y −

(
−d

2(a−1)

))2

R
− 2b

K − L− e
xy = 1

R =
K − L− e
a− 1

K =
c2

4(a− 1)

L =
d2

4(a− 1)

which is hyperbola function.

From (2.7) we get: (
x−

(−d
2b

))2
Q

−
(
y − c

2b

)2
Q

+
2(a+ 1)

M −N
xy = 1

Q =
M −N

b

M =
d2

4b

N =
c2

4b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.
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* If c = 0 and d 6= 0, substituting into (2.6) gives:(
y −

(
−d

2(a−1)

))2

R1
− x2

R1
+

2b

L+ e
xy = 1

R1 =
L+ e

a− 1

L =
d2

4(a− 1)
,

which is hyperbola function. From (2.7) we get:(
x−

(−d
2b

))2
Q1

− y2

Q1
+

2(a+ 1)

M
xy = 1

Q1 =
M

b

M =
d2

4b
,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c 6= 0 and d = 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R2
− y2

R2
− 2b

K − e
xy = 1

R2 =
K − e
a− 1

K =
c2

4(a− 1)

which is hyperbola function.

From (2.7) we get: (
y − c

2b

)2
Q2

− x2

Q2
− 2(a+ 1)

N
xy = 1

Q2 =
N

b

N =
c2

4b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.
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– If e 6= 0 and f 6= 0

* If c = d = 0, substituting into (2.6) gives:

y2

V
− x2

V
+

2b

e
xy = 1

V =
e

a− 1

which is hyperbola function.

From (2.7) we get:

y2

W
− x2

W
− 2(a+ 1)

f
xy = 1

W =
f

b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c = d 6= 0, substituting into (2.6) gives:

(
y −

(
−c

2(a−1)

))2

V
−

(
x−

(
−c

2(a−1)

))2

V
+

2b

e
xy = 1

V =
e

a− 1

which is hyperbola function.

From (2.7) we get:

(
y − c

2b

)2
W

−
(
x−

(−c
2b

))2
W

− 2(a+ 1)

f
xy = 1

W =
f

b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.
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* If 0 6= c 6= d 6= 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R
−

(
y −

(
−d

2(a−1)

))2

R
− 2b

K − L− e
xy = 1

R =
K − L− e
a− 1

K =
c2

4(a− 1)

L =
d2

4(a− 1)

which is hyperbola function.

From (2.7) we get: (
x−

(−d
2b

))2
Q

−
(
y − c

2b

)2
Q

+
2(a+ 1)

M −N − f
xy = 1

Q =
M −N − f

b

M =
d2

4b

N =
c2

4b

which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c = 0 and d 6= 0, substituting into (2.6) gives:(
y −

(
−d

2(a−1)

))2

R1
− x2

R1
+

2b

L+ e
xy = 1

R1 =
L+ e

a− 1

L =
d2

4(a− 1)

which is hyperbola function.

From (2.7) we get: (
x−

(−d
2b

))2
Q1

− y2

Q1
+

2(a+ 1)

M − f
xy = 1

Q1 =
M − f
b

M =
d2

4b
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which is hyperbola function. In this case the maximum number of solutions we can get

is four.

* If c 6= 0 and d = 0, substituting into (2.6) gives:(
x−

(
−c

2(a−1)

))2

R2
− y2

R2
− 2b

K − e
xy = 1

R2 =
K − e
a− 1

K =
c2

4(a− 1)
,

which is hyperbola function.

From (2.7) we get: (
y − c

2b

)2
Q2

− x2

Q2
− 2(a+ 1)

N + f
xy = 1

Q2 =
N + f

b

N =
c2

4b
,

which is hyperbola function. In this case the maximum number of solutions we can get

is four.
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