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Dr. Ivan Rothstein, have also been very helpful during my studies, and I wish to thank everyone. Their ded-

icated support and guidance were invaluable and facilitated the completion of this study. I felt the courage

to continue working remembering that you are on my side. I am indebted to their effort throughout my

researcher journey.

I also thank my university, the University of South Florida and the Florida Education Fund for supporting

me under their scholarship.

The family members have been very supportive in pursuit of this project, and I wish to convey my sin-

cere gratitude to all of them. I particularly appreciate to love, support and gentle care that my lovely wife,

Madeleine Adjiri, conveyed to me even when it became hard to accommodate and balance between aca-

demic life and family life, she came to my aid and her love kept me thriving. She has been supportive

throughout my academic career, and I will always cherish her unending effort and inspiration.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 History of the background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Lax pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1.1 Introduction and concept . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.1.2 Operator form of a Lax pair . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2 Zero curvature representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2.1 Introduction and concept . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 General methods of soliton hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Introduction and concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Chapter 2 Techniques for solving integrable equations . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Inverse scattering method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Example of the KdV solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Conclusion and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Darboux transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Example of solutions of the KdV equation . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Conclusion and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Hirota’s bilinear method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Example of solutions of the KdV equation by Hirota’s method . . . . . . . . . . . . 20
2.3.3 Conclusion and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Riemann-Hilbert problem approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Definition of a Riemann-Hilbert problem . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 The Cauchy integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.4 Solving the RHP problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.5 Example of Riemann-Hilbert problems to inverse scattering . . . . . . . . . . . . . 26
2.4.6 Conclusion and remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

i



Chapter 3 Riemann-Hilbert problems for a nonlocal reverse-time AKNS system of fourth-order . . 28
3.1 Multi-component AKNS hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Six-component AKNS hierarchy of coupled fourth-order integrable equations . . . . . . 31
3.3 Nonlocal reverse-time six-component AKNS system . . . . . . . . . . . . . . . . . . . 35
3.4 Riemann-Hilbert formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Time evolution of scattering data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4 N -Soliton solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Recovery of potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Exact soliton solutions and their dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 One-soliton solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Two-soliton solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Three-soliton solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 Inverse scattering of a nonlocal reverse-time nonlinear Schrödinger-type
equation based on Riemann-Hilbert problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Eight-component AKNS hierarchy of coupled second-order integrable equations . . . . 72
5.2 A specific reduction for a nonlocal reverse-time AKNS system . . . . . . . . . . . . . . 79
5.3 Direct scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Time evolution of scattering data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Inverse scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5.1 Soliton solutions: General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5.2 Recovery of potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.6 Exact one-soliton solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

ii



List of Figures

Figure 1 Representation of the inverse scattering transform. . . . . . . . . . . . . . . . . . . . . . 14
Figure 2 Oriented contour in the complex plane λ-plane from −∞+ 0i to∞+ 0i. . . . . . . . . . 23
Figure 3 Spectral plane of eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 4 One-soliton with increasing amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 5 One-soliton with decreasing amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 6 One-soliton with constant amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 7 Breather one-soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Figure 8 Two travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 9 Two Manakov solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 10 Two solitons emerging into a single soliton . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 11 One soliton unfolding to two solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 12 Two solitons in a standing state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 13 Two breather periodic waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 14 Two solitons collapsing repeatedly over the time . . . . . . . . . . . . . . . . . . . . . . 68
Figure 15 Three travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 16 Three Manakov solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 17 Three solitons emerging into two solitons . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 18 Two solitons unfolding to three solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 19 Three breather solitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 20 Interaction of two Manakov waves with a decreasing standing wave . . . . . . . . . . . . 71
Figure 21 Interaction of two collapsing wave with a decreasing standing wave . . . . . . . . . . . . 71
Figure 22 Spectral plane of eigenvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 23 One-soliton with increasing amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 24 One-soliton with decreasing amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 25 One-soliton with constant amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 26 Breather one-soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

iii



Abstract

We first investigate the solvability of an integrable nonlinear nonlocal reverse-time six-component fourth-

order AKNS system generated from a reduced coupled AKNS hierarchy under a reverse-time reduction.

Riemann-Hilbert problems will be formulated by using the associated matrix spectral problems, and exact

soliton solutions will be derived from the reflectionless case corresponding to an identity jump matrix. Sec-

ondly, we present the inverse scattering transform for solving a class of eight-component AKNS integrable

equations obtained by a specific reduction associated with a block matrix spectral problem. The inverse

scattering transform based on Riemann-Hilbert problems is presented along with a jump matrix taken to be

the identity matrix to derive soliton solutions.

v



Chapter 1

Introduction

1.1 History of the background

Over centuries, local integrable systems of equations have been the main center of research interest by

mathematicians and physicists. We mean by integrable equations partial differential equations (PDEs) that

can be presented through a Lax pair [42]–[43], and that have infinitely many symmetries and conservation

laws. The Korteweg-de Vries (KdV) equation [7, 8, 33, 34], the nonlinear Schrödinger (NLS) equation [6],

Sine-Gordon (SG) equation or Kadomtsev-Petviashvili (KP) equation were some of the best well known

integrable equations even though the list of integrable evolution equations was not exhaustive [49]. In fact,

The KdV equation was discovered by Diederik Korteweg and his student Gustav De Vries in 1895 as a

nonlinear partial differential water wave equation. Its solution is the Scott Russell’s solitary wave observed

on the Edinburgh-Glasgow canal in 1834 [19, 35]. As to the KP equation, it was called a generalization to

two spatial dimensions, x and y, of the one-dimensional KdV equation. It was written by Kadomtsev and

Petviashvili in 1970s [49]. Both, the KdV and KP evolution equations has described weakly nonlinear shal-

low water waves. The nonlinear Schrödinger equation is a nonlinear variation of the Schrödinger equation

found in 1925 by Erwin Schrödinger. It created a great impact in quantum physics.This evolution equation

has described a weakly nonlinear dispersive wave trains in a media. Beyond the mathematics aspect, these

integrable equations have described many physical phenomena such as magnetic fields, plasma physics,

blood flow in arteries, and nonlinear optics [53], etc.

Some models of theses evolution equations are:

The Korteweg-de Vries equation:

pt(x, t)− 6p(x, t)px(x, t) + pxxx(x, t) = 0, (1.1)

1



the nonlinear Schrödinger equation:

ipt(x, t) + pxx(x, t) + 2|p(x, t)|2p(x, t) = 0, (1.2)

and the Kadomtsev-Petviashvili equation: [49, 48]

(pt(x, y, t)− 6p(x, y, t)px(x, y, t) + pxxx(x, y, t))x − 3pyy(x, y, t) = 0. (1.3)

Although those integrable equations were found, explicit soliton solutions were not easily derived. We

mean by a soliton, a type of localized solitary wave which maintains its shape after it collides elastically

with another wave of the same type. During this period, numerical experiments and observational methods

were utilized to find results or solve them. In 1960s, Krustal and Gardner found the inverse scattering

transform (IST) to solve exactly those integrable nonlinear evolution equations (the KdV, the NLS, the sine-

Gordon and the KP), and derived explicitly soliton solutions. This was a great method that has permitted to

solve many integrable equations by then. This finding method was analogous to the method of the Fourier

transform for linear partial differential equations (PDEs). The main point of the study and the work over

those integrable equations was local.

In the recent years, Mark Ablowitz and Ziad Musslimani discovered that some nonlinear local integrable

systems could be reduced under parity-time (PT) symmetric reductions to nonlocal integrable equations

[1]–[3]. That is to say, it is invariant under the joint transformation: x → −x, t → −t, and i → −i. This

means that the solution of the particles at the location x and −x could be coupled in the space by a suitable

reduction of the AKNS. This notion was extended to the time symmetry t → −t, and to the space-time

symmetry x→ −x and t→ −t.

Ablowitz and Musslimani found that the system of the coupled nonlinear Schrödinger AKNS equations

[25, 37]: 
ipt(x, t) = pxx(x, t)− 2rp2(x, t),

−irt(x, t) = rxx(x, t)− 2pr2(x, t),

(1.4)

under the PT preserving symmetric reduction r(x, t) = ρp∗(−x, t), for ρ = ±1, gives the nonlocal NLS

equation

ipt(x, t) + pxx(x, t)± 2p2(x, t)p∗(−x, t) = 0. (1.5)

2



Interestingly, this equation (1.5) is invariant under the joint transformation


x→ −x,

t→ −t,

i→ −i.

(1.6)

Also, p(x, t) and p∗(−x,−t) are both solutions of the PT symmetric nonlocal Schrödinger equation (1.5).

The system of the coupled mKdV AKNS equations:


pt(x, t) = −pxxx(x, t) + 6p(x, t)r(x, t)px(x, t),

rt(x, t) = −rxxx(x, t) + 6p(x, t)r(x, t)rx(x, t),

(1.7)

becomes under the PT symmetric reduction r(x, t) = ρp∗(−x,−t), for ρ = ±1, the nonlocal complex

mKdV equation:

pt(x, t) + pxxx(x, t)− 6ρp(x, t)p∗(−x,−t)px(x, t) = 0. (1.8)

The system of the coupled sine-Gordon AKNS equations:


pxt(x, t) = −2s(x, t)p(x, t),

rxt(x, t) = −2s(x, t)r(x, t),

sx(x, t) = −
(
p(x, t)r(x, t)

)
t
,

(1.9)

becomes under the reverse space-time symmetric reduction r(x, t) = −p(−x,−t), the nonlocal sine-

Gordon equation:

pxt(x, t) + 2s(x, t)p(x, t) = 0, for s(−x,−t) = s(x, t). (1.10)

Although those nonlocal evolution equations are integrable, they also posses an infinite number of conserva-

tion laws. Besides the PT of the nonlocal nonlinear Schrödinger (NNLS), Ablowitz and Musslimani derived

the reverse-time and reverse space-time NNLS equations, but they did not solve them. Recently, Jianke

Yang has contributed in helping solve them.

Under the reverse-time symmetric reduction r(x, t) = ρp(x,−t), for ρ = ±1,

3



the system (1.4) gives the nonlocal NLS equation:

ipt(x, t)− pxx(x, t)± 2p2(x, t)p(x,−t) = 0, (1.11)

and under the reverse space-time symmetric reduction r(x, t) = ρp(−x,−t), for ρ = ±1, we obtain the

nonlocal NLS equation

ipt(x, t)− pxx(x, t)± 2p2(x, t)p(−x,−t) = 0. (1.12)

Many researches were done on NNLS [38, 39], and some remarks came up that solutions of nonlocal in-

tegrable equations in finite time could collapse. Such solutions might have singularities at finite time. In

contrast, this kind of behavior of the fundamental solitons do not blowup in finite time [47]. Those nonlocal

evolution equations were solved by the IST, and explicit solutions were found.

Over five years ago, Jianke Yang has done researches on the nonlocal NLS, and he solved them in the reverse-

time, in reverse-space, and in reverse space-time using the inverse scattering based on Riemann-Hilbert

problems [9]–[12]. Many other methods like Darboux transformation [4] and Hirota’s bilinear method [5]

have been used to investigate the solvability of the nonlocal NLS equations.

1.2 Motivation

The main problem is that most investigations in solving integrable local or nonlocal nonlinear evolution

equations are based on the use of the inverse scattering transform, Darboux transformation or Hirota’s bi-

linear method. In addition, investigating the dynamics of nonlocal evolution equations is still an active

exploration. This perspective leads us to focus the dissertation on the solvability of a nonlinear nonlocal

reverse-time six-component higher-order AKNS system, and the inverse scattering for a nonlocal reverse-

time eight-component AKNS system via Riemann-Hilbert problems from different spectral matrices. Lat-

terly, we investigate different dynamical behaviours of exact solutions.

1.3 Overview of the dissertation

We are going to lay out the dissertation as follows: in chapter 2, we exhibit certain methods used to solve

integrable evolution equations, such as the inverse scatting transform, Darboux transformation, Hirota’s bi-

linear method, and Riemann -Hilbert problems. In chapter 3, we present the AKNS hierarchy of multiple

4



components along with a six-component AKNS hierarchy of coupled fourth-order integrable equations. As

to chapter 4, we analyse the Riemann-Hilbert problems associated with the corresponding matrix spectral

problems which are closely related to the inverse scattering method. In chapter 5, we generate soliton so-

lutions from reflectionless problems by taking the identity jump matrix [13]–[16]. In chapter 6, we present

a few examples of soliton solutions and snoop in the dynamics. Also, in chapter 7, we present the inverse

scattering transform of a nonlocal reverse-time nonlinear second-order nonlinear Schrödinger equation, and

present exact one-soliton solution. Finally, the last two chapters will be the concluding remarks and refer-

ences.

1.4 Preliminary

1.4.1 Lax pair

1.4.1.1 Introduction and concept

The Lax pair was introduced by Peter Lax in 1968 [36]. It consists of finding a pair of linear differential

operators L and M such that if they can represent a corresponding evolution equation

K(x, t, p, px, ...) = 0, (1.13)

which is often called integrable.

The Lax operator L is self-adjoint i.e., L is equal to its complex conjugate. Together with the required

differential operator M , they can be expressed in the form:

Lt = [M,L] = (ML− LM), or Lt − [L,M ] = 0. (1.14)

The operator M has sufficiently many freedom including unknown parameters or functions. Both operators

M and L could be scalars or matrix operators.

1.4.1.2 Operator form of a Lax pair

For a given linear operator L that depends upon the function p(x, t),

Lψ(x, t) = λψ(x, t), (1.15)
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is called a spectral problem, where λ = λ(t) is an eigenvalue, and ψ is an eigenfunction .

The idea is to find another operator M such that

ψt(x, t) = Mψ(x, t). (1.16)

Differentiating both sides of (1.15) with respect to t, we get

Ltψ + Lψt = λtψ + λψt. (1.17)

Substituting (1.16) and (1.15) into (1.17) we get

Ltψt + LMψ = λtψ +MLψ, (1.18)

so

(Lt + LM −ML)ψ = λtψ. (1.19)

Therefore (1.19) gives the following operator equation

Lt + [L,M ] = 0, as long as λt = 0. (1.20)

Thus, when each eigenvalue is constant (λt = 0, called an isospectral property), the equation (1.20) is

called a Lax representation. Also, the Lax pairs are tools to generate conserved quantities [17].

Example 1. Let us consider the Lax pair

L =
∂2

∂x2
− p (1.21)

and

M = −4
∂3

∂x3
+ 6p

∂

∂x
+ 3

∂p

∂x
, (1.22)

and

Lψ(x, t) = λψ(x, t) (1.23)

is the Sturm-Liouville problem.
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Hence
∂p

∂t
= Lt = [L,M ] = − ∂3

∂x3
+ 6p

∂p

∂x
(1.24)

exactly gives the KdV equation

pt(x, t)− 6p(x, t)px(x, t) + pxxx(x, t) = 0. (1.25)

1.4.2 Zero curvature representation

1.4.2.1 Introduction and concept

In 1974, Ablowitz, Kaup, Newell and Segur contructed a Lax pair formulation in a matrix form [6]. This

matrix formulation uses only the first-order operation ∂x and ∂t instead of using higher-order Lax operators.

This method was called the AKNS scheme. They introduced the following system:

Ψx = UΨ, (1.26)

Ψt = V Ψ, (1.27)

where U represents the operator L, and V represents the operator M and Ψ represents the eigenvector

function. If L is a 2nd-order operator, then Ψ = (ψ ψx)T and U and V will be each 2 × 2 matrix whose

components are determined by the coefficient of the operators L and M . The compatibility of the equations

(1.26) and (1.27) gives

(Ψx)t = (UΨ)t = (Ψt)x = (V Ψ)x, (1.28)

and then

(Ut − Vx + UV − V U)Ψ = 0. (1.29)

As the Lax pair has a nontrivial solution Ψ with det(Ψ) 6= 0, we obtain

Ut − Vx + [U, V ] = 0, (1.30)

which is equivalent to the Lax equation and called a zero curvature equation.
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Example 2. Let’s consider the following Lax matrices,

U =

 0 1

λ+ p 0

 , V =

 −px −4λ+ 2p

−4λ2 − 2λp+ 2p2 − pxx px

 . (1.31)

By inserting them into (1.30) gives the NLS equation

pt(x, t)− 6p(x, t)px(x, t) + pxxx(x, t) = 0. (1.32)

1.5 General methods of soliton hierarchies

1.5.1 Introduction and concept

We start from the spatial isospectral problem [44],[50]

iψx(x, t) = U(u, λ)ψ(x, t), (1.33)

where ψ is an eigenfunction , U is a matrix belonging to a loop algebra i.e., U is a matrix in a Lie algebra

expandable in a Laurent series of the spectral parameter λ, and u is a column vector of variables x and t.

Let’s suppose that there exists a matrix W such that

W = W (u, λ) =
∞∑
j=0

W0,jλ
−j , (1.34)

where W0,j is a matrix in the associated Lie algebra, presents a solution of the stationary zero curvature

equation

Wx = i[U, V ]. (1.35)

Using the solution W , we define the Lax matrix

V [m] = (λmW )+ +∆m, for m ∈ {0, 1, 2, . . .}, (1.36)

where (λmW )+ will be a matrix in the loop algebra, being a polynomial in λ, and ∆m are the modification

terms. Choosing ∆m → 0 permits to define:
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the temporal spectral problems

iψt(x, t) = V [m](u, λ)ψ(x, t), (1.37)

and also leads to derive a soliton hierarchy from the zero curvature equation obtained by the compatibility

condition (ψ)xt = (ψ)tx

Ut − V [m]
x + i[U, V [m]] = 0. (1.38)

This method is an extension of the AKNS scheme.

Remark 1.5.1. The choice of the special matrix U gives rise to different sorts of hierarchies. Some well

known are the AKNS hierarchy, the Kaup-Newell (KN) hierarchy, the TA hierarchy, etc.

Because those equations are integrable, they possess Hamiltonian structures [15]:

utm = J
δHm
δu

, for m ∈ {0, 1, 2, . . .}, (1.39)

where δHm
δu is the variational derivative of the Hamiltonian with respect to u.

Example 3. (AKNS hierarchy) In sl(2,R), the spatial isospectral problem is given by:

−iψx = U(u, λ)ψ, (1.40)

with

U(u, λ) =

−λ p

r λ

 , (1.41)

where u = (p, r)T , ψ = (ψ1, ψ2)
T , and λ is a spectral parameter.

If we set

W =

a b

c −a

 , (1.42)
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then the stationary zero curvature equation Wx = i[U,W ] gives


ax = i(pc− br),

bx = i(−2αλb+ pd− 2ap),

cx = i(2αλc+ 2ra).

(1.43)

If we expand W in Laurent series, i.e.,

a =

∞∑
j=0

ajλ
−j , b =

∞∑
j=0

bjλ
−j , c =

∞∑
j=0

cjλ
−j , for j ∈ {0, 1, 2, . . .}, (1.44)

then we get from (1.43),


aj+1,x = i(pcj+1 − rbj+1),

bj+1 = −1
2(−ibj,x − 2ajp),

cj+1 = 1
2(icj,x − 2raj).

(1.45)

By taking the initial values

a0 = −1, b0 = 0, c0 = 0, (1.46)

and choosing the constant of integrations to be zero, which is equivalent to the following condition:

Wj |u=0 = 0, j ∈ {1, 2, . . .}, (1.47)

we determine the sequence {aj , bj , cj} for j ∈ {1, 2, . . .} as follows:

b1 = p, c1 = q, a1 = 0, (1.48)

b2 = i
1

2
px, c2 = −i1

2
rx, a2 =

1

2
pr, (1.49)

b3 = −1

4
(pxx + 2p2r), c3 = −1

4
(rxx + 2r2p), a3 = −1

4
i(prx − pxr), (1.50)

b4 = −1

8
i(pxxx + 6ppxr), c4 =

1

8
i(rxxx + 6rppx), a4 = −1

8
(prxx − pxrx + pxxr + 3p2r2). (1.51)
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Thus, by taking the modification terms to be zero, the temporal Lax matrix will be

V [m] = (λmW )2×2, (1.52)

and it will satisfy the zero curvature equation

Utm − V [m]
x + i[U, V [m]] = 0. (1.53)

As a result, we get the AKNS soliton hierarchy as follows

utm =

p
r


tm

= i

−2b[m+1]

2c[m+1]

 , m ∈ {0, 1, 2, ...}. (1.54)

If m = 2, we obtain a system of integrable equations


ipt2 = 1

2pxx − p
2r,

irt2 = −1
2rxx + pr2,

(1.55)

which is the integrable system of the standard nonlinear Schrödinger equations.

The AKNS soliton hierarchy can be written in operator form:

utm =

p
r


tm

= i

−2b[m+1]

2c[m+1]

 = Φm

−2p

2r

 = J
δHm
δu

, m ∈ {0, 1, 2, ...}. (1.56)

Now, if ∂−1 =
∫

, then we derive the hereditary recursion operator

Φ =

−1
2∂ + p∂−1r p∂−1p

−r∂−1r 1
2∂ − r∂

−1p

 , (1.57)

and the Hamiltonian operator reads

J =

0 −2

2 0

 . (1.58)
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Using the trace identity [50] or variational identity [18], we get the Hamiltonian functional given by

Hm =

∫
2am+2

m+ 1
dx. (1.59)

If m = 2, then the Hamiltonian explicitly becomes

H2 =

∫
2a4
3
dx = − 1

12

∫
(3p2r2 + prxx − pxrx + pxxr)dx. (1.60)
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Chapter 2

Techniques for solving integrable equations

2.1 Inverse scattering method

2.1.1 Introduction

The inverse scattering transform (IST) is a method used to solve some non-linear partial differential equa-

tions (PDEs) by reducing nonlinear integrable PDEs to linear PDEs [1, 7, 19, 41]. It consists of recovering

the time evolution of potentials from the time evolution of scattering data. The IST follows three steps and

at each step we have to solve a linear problem:

1. The direct scattering maps the initial potential p(x, 0) to the initial scattering data {s(λ, 0)}.

2. The time evolution of scattering data maps the stationary scattering data {s(λ, 0)} to the time evolution

scattering data {s(λ, t)} in any time.

3. The inverse scattering maps the scattering data {s(λ, t)} to the potential p(x, t) in any time.

Let’s consider the Cauchy problem for a nonlinear evolution equation:


pt = K(p, px, pxx, ...),

p(x, 0) = p0(x).

(2.1)

If the evolution equation can have a Lax pair

Lψ = λψ, (2.2)

ψt = Mψ, (2.3)
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and {s(λ, t)}, the scattering data for p(x, t), are:

the discrete eigenvalues {kn};

the norming coefficients of the eigenfunctions {cn(0)};

the reflection coefficient b(k, 0);

the transmission coefficient a(k, 0);

then the scheme of the inverse scattering problem is as follows:

p(x, 0) −→ {s(λ, 0)} −→ {s(λ, t)} −→ p(x, t), (2.4)

which can be represented as:

p(x, 0) s(λ, 0)

p(x, t) s(λ, t)

Direct Scattering

Time Evolution

Inverse Scattering

Figure 1.: Representation of the inverse scattering transform.

2.1.2 Example of the KdV solution

Let’s consider the KdV equation

pt(x, t)− 6p(x, t)px(x, t) + pxxx(x, t) = 0. (2.5)

The Lax pair reads

L = − ∂2

∂x2
+ p, (2.6)

M = −4
∂3

∂x3
+ 6p

∂

∂x
+ 3

∂p

∂x
+A(t), (2.7)
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and derive from (2.6) and (2.2) the Sturm–Liouville equation

ψxx + (λ− p)ψ = 0. (2.8)

In case of the direct scattering, we need to solve this Strum–Liouville equation

ψxx + (λ− p(x, 0))ψ = 0, (2.9)

in order to derive the scattering data

S = {kn, cn(0), a(k, 0), b(k, 0)}. (2.10)

whereas the time evolution process will derive the time dependent scattering data

S = {kn = constant, cn(t) = c0(t)e
4k3nt, a(k, t) = a(k, 0), b(k, t) = b(k, 0)e8ik

3t}. (2.11)

In order to perform the inverse scattering to recover the potential, the Gelfand–Levitan–Marchenko (GLM)

integral equation found in 1950s below will be used:

K(x, y) + F (x+ y) +

∫ ∞
x

K(x, z)F (y + z)dz = 0, (2.12)

where

F (x, t) =

N∑
n=1

c2n(0)e8k
3
nt−knx +

1

2π

∫ ∞
−∞

b(k; 0)e8ik
3t+ikxdk (2.13)

satisfies the GLM equation (2.12) for K(x, y; t) and allows to recover the KdV equation’s potential

p(x, t) = −2
∂

∂x
K(x, x; t), (2.14)

where

K(x, y; t) =
−2k1c

2(0)e−k1x+8k21t−k1y

2k1 + c2(0)e−2k1x+8k21t
, (2.15)

for N = 1, with the discrete eigenvalue kn = k1, and the reflection coefficient b(k, 0) = 0.
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Based on this case, the potential for one soliton reads

p(x, t) = −2k21sech
2(k1x− 4k31t− xo) (2.16)

with the phase xo = 1
2 ln c2(0)

2k .

2.1.3 Conclusion and remarks

The inverse scattering transformation is very useful in the process of solving integrable nonlinear partial

differential equations, but many issues related the IST remain. It is not easy to characterize nonlinear

PDEs. It is not simple as well to find a necessary, and sufficient condition that guarantees an initial value

problem or the Cauchy problem for the integrable evolution equations that can be solved by inverse scattering

transformation.

Another issue is that, it is not evident to find a corresponding linear ordinary equation for a given nonlinear

integrable partial differential equation.

2.2 Darboux transformation

2.2.1 Introduction

In 1998, Darboux transformations [32] aim to solve the Liouville equation

ψxx + (λ− p(x, 0))ψ = 0 (2.17)

and was extended later to solve many integrable equations that are solvable by the inverse scattering trans-

form such as the KdV, the NLS, the AKNS hierarchy, etc.

Proposition 2.2.1. If ψ(x, λ) and φ(x, t) are solutions of the Strum–Liouville equation

ψxx + (λ− p(x, 0))ψ = 0,

then ψ[1] = ψx + σψ is a solution of the equation

ψxx[1] + (λ− p(x, 0)[1])ψ[1] = 0, (2.18)
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where σ = −(lnφ)x and p(x, 0)[1] = p(x, 0) + 2σx.

The form of ψ[1] and p[1] represent functions of the solutions that define respectively the Darboux transfor-

mation of ψ and p(x, 0).

In other words, (ψ, p(x, 0))→ (ψ[1], p(x, 0)[1]).

2.2.2 Example of solutions of the KdV equation

Let’s consider [51]

pt(x, t)− 6p(x, t)px(x, t) + pxxx(x, t) = 0. (2.19)

The KdV equation has the Lax pair

L = − ∂2

∂x2
+ p, (2.20)

M = −4
∂3

∂x3
+ 3p

∂

∂x
+ 3

∂p

∂x
+A(t). (2.21)

This gives the Strum–Liouville equation

ψxx + (λ− p(x, 0))ψ = 0, (2.22)

or

ψxx = −(λ− p(x, 0))ψ. (2.23)

From the Proposition 2.2.1, we have

ψ[1] = ψx + σψ, (2.24)

where σ = −(lnψ1)x = −ψ
′
1
ψ1

and ψ1 satisfies

ψxx[1] + (λ− p(x, 0)[1])ψ[1] = 0. (2.25)

If we substitute (2.24) in (2.23), we get

ψxx[1] = −((λ− p(x, 0)[1])ψx − σ(−p(x, 0)[1] + λ)ψ. (2.26)
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Differentiating (2.24) twice with respect x, we get

ψxx[1] = ψxxx + σxxψ + 2σxψx + σψxx. (2.27)

Now differentiate (2.23) we get

ψxxx = −(λ− p(x, 0))ψx + px(x, 0)ψ. (2.28)

Using (2.23) and (2.27) in (2.26) gives

ψxx[1] = −(λ− p(x, 0)− 2σx)ψx + (px(x, 0) + σxx + σp(x, 0)− σλ)ψ. (2.29)

Matching (2.27) and (2.28), we deduce that

p(x, 0)[1] = p(x, 0) + 2σx. (2.30)

If we take p(x, 0) = 0, then the Lax pair becomes

ψxx = −λψ,

ψt = −4ψxxx,

(2.31)

for ψt = −4ψxxx + 6p(x, 0)ψx + 3px(x, 0)ψ.

The solutions of both ODEs are given by

ψ1(x, t) = e
1
2
(k1x−k31t) + e−

1
2
(k1x−k31t) (2.32)

where λ =
k21
4 . Thus using (2.30) with p(x, 0) = 0 and (2.32), we obtain the one-soliton solution of the

KdV equation:

p(x, t)[1] = −k
2
1

2
sech2

(k1
2
x− k31

2
t
)
. (2.33)
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Remark 2.2.2. We can recursively apply the Darboux transformation to get N -soliton solutions. For the

two-soliton solution, the recursive expression gives from (2.24)

ψ[2] = ψx[1] + σψ[1] (2.34)

where σ = −(lnψ2[1])x, ψ[1] = ψx +
ψ
′
1
ψ ψ. Thus the potential for ψ[2] reads

p(x, 0)[2] = p(x, 0)[1] + 2(lnψ2[1])xx. (2.35)

2.2.3 Conclusion and remarks

Even though the Darboux Transformation presents explicit solutions by simple techniques, it does not solve

the initial value problem. The above approach is the basic one. The general Darboux transformation could

be applied with any convenient spectral problem.

2.3 Hirota’s bilinear method

2.3.1 Introduction

In 1971, Hirota noticed that the best dependent variables for constructing soliton solutions are those in

which the solution appears as a finite sum of exponentials. Due to this idea, he found a method to transform

nonlinear evolution equations into a type of bilinear differential equations called Hirota form by introducing

bilinear differential operators [5]. He defined the bilinear operator as follows:

Dm
t D

n
x(f · g) = (

∂

∂t
− ∂

∂t′
)m(

∂

∂x
− ∂

∂x′
)nf(x, t)g(x′, t′)|x′=x,t′=t , (2.36)

where m and n are positive integers, and f and g are two functions [19, 26, 27, 28].

Example 4. If f = eα1 and g = eα2 , where α1 = k1x−ω1t +θ1 and α2 = k2x−ω2t +θ2, for x and t, then

Dm
t D

n
x(eα1 · eα2) = (ω2 − ω1)

m(k1 − k2)neα1+α2 . (2.37)

Thus, if f = g, we get

Dm
t D

n
x(f · f) = Dm

t D
n
x(eα1 · eα1) = 0. (2.38)

19



Also if f = 1, we obtain

DtDx(1 · g) =
∂2g

∂t∂x
. (2.39)

This Hirota’s bilinear derivative has many properties.

If m = 0, then

Dn
x(f · g) = (

∂

∂x
− ∂

∂x′
)nf(x, t)g(x′, t′)|x′=x,t′=t (2.40)

or

Dn
x(f · g) =

n∑
i=0

(−1)n−i.

n
i

(∂if
∂x

)(∂n−ig
∂x

)
, n ∈ {1, 2, 3, ...} (2.41)

Example 5. If n = 2, then

D2
x(f · g) = fxxg − 2fxgx + fgxx. (2.42)

If n is odd, i.e., n = 2m− 1 and f = g, then

D2m−1
x (f · f) = 0, (2.43)

because the Hirota operator is antisymmetric when it is odd.

If n is even, i.e., n = 2m and f = g, then

D2m
x (f · f) =

2m∑
i=0

(−1)2m−i

2m

i

(∂if
∂x

)(∂2m−if
∂x

)
, m ∈ {1, 2, 3, ...}. (2.44)

Example 6. If m = 2, then

D4
x(f · f) = 2(ffxxxx − 4fxfxxx + 3f2xx). (2.45)

2.3.2 Example of solutions of the KdV equation by Hirota’s method

We consider the KdV equation

pt(x, t)− 6p(x, t)px(x, t) + pxxx(x, t) = 0. (2.46)
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Let’s suppose that

p = −2(lnf)xx (2.47)

satisfies the KdV equation (2.46), where f(x, t) is the determinant of the appropriate matrix.

We deduce that if p→ 0, then the KdV in bilinear form is

(DxDt +D4
x)(f · f) = 0. (2.48)

In order to solve this bilinear equation, let’s substitute into (2.48) the pertubed function at the first order of

f = 1 +
∞∑
i=0

εifi(x, t). (2.49)

Therefore the equation (2.48) becomes

(DxDt +D4
x)(1 · 1 + ε1 · f1 + εf1 · 1 + ε2f1 · f1) = 0, (2.50)

and gives

(DxDt+D
4
x)(1 ·1)+ε[(DxDt+D

4
x)(1 ·f1)+(DxDt+D

4
x)(f1 ·1)]+ε2(DxDt+D

4
x)(f1 ·f1) = 0. (2.51)

From (2.39),

(DxDt +D4
x)(1 · 1) = 0, (2.52)

so to get (2.51), we need


(DxDt +D4

x)(1 · f1) + (DxDt +D4
x)(f1 · 1) = 0,

(DxDt +D4
x)(f1 · f1) = 0.

(2.53a)

(2.53b)

From (2.39), (2.53a) reads ( ∂
∂t

+
∂3

∂x3

)
f1 = 0. (2.54)
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From (2.37), if we assume that f1 = ekx−ωt, then (2.53b) holds true. In that case, (2.54) can be rewritten

as

(
∂

∂t
+

∂3

∂x3
)ekx−ωt = 0, (2.55)

which leads to the dispersion relation [29]

ω = k3. (2.56)

Finally, we get the one-soliton solution for the KdV equation, which will be guaranteed by the choice of

f(x, t) = 1 + ekx−k
3t. (2.57)

If we arbitrarily take ε = 1, then

p(x, t) = −2(lnf)xx = −2
(
ln(1 + ekx−k

3t)
)
xx
. (2.58)

Remark 2.3.1. In order to get the 2-soliton solution, one can use the perturbed second order of f

f = 1 + εf1(x, t) + ε2f2(x, t), (2.59)

and for N -solitons

f = 1 +
N∑
i=0

εifi(x, t). (2.60)

2.3.3 Conclusion and remarks

Hirota’s bilinear method has turned out to be very direct and efficient in deriving soliton solutions for in-

tegrable equations, but the existence of more than three-soliton solutions requires constraints. Like the

Darboux transformation, it does not solve the Cauchy problem.

2.4 Riemann-Hilbert problem approach

2.4.1 Introduction

The Riemann-Hilbert problem appears in solving inverse scattering problems, nonlinear integrable systems

and other types of integral equations [52],[9],[16],[10].
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This approach consists of finding a matrix of functions in the complex plane that is analytic, except at a

certain contour of the plane. At that contour, the matrix of functions jumps. There are many contours that

we can define such as a circle, the real line, etc. in the complex plane. In the course of this dissertation, the

contour will be the real line.

2.4.2 Definition of a Riemann-Hilbert problem

Let’s consider the oriented contour (Σ = R). The purpose is to find a function ψ that is analytic off the Σ,

that means

ψ+(z) = lim
z′∈Σ+,z′→z

ψ(z′), and ψ−(z) = lim
z′∈Σ−,z′→z

ψ(z′) (2.61)

Σ

Σ+

Σ−

Figure 2.: Oriented contour in the complex plane λ-plane from −∞+ 0i to∞+ 0i.

are analytic respectively in Σ+ and Σ−, such that

ψ+(t) = ψ−(t)G(t), for t ∈ R, (2.62)

where G is the jump matrix function, and G is smooth, invertible and integrable.

The uniqueness of the solution(ψ+(z), ψ−(z)) of a RH problem requires the normalization

ψ(z)→ I, as z →∞, z ∈ C \Σ. (2.63)

The RP problem is solvable by the pair (Σ,G).
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2.4.3 The Cauchy integral

The Riemann-Hilbert problem can be solved by the Cauchy operator defined as:

Cf : Σ −→ C \Σ (2.64)

such that

(Cf)(z)) =
1

2πi

∫
Σ

f(τ)

τ − z
dτ (2.65)

where f has to be a smooth function.

Definition 2.4.1. (Schwartz space) The Schwartz space denoted S(Rn) is the topological vector space of

functions

f : Rn → C (2.66)

such that

f ∈ C∞(Rn), and xα∂βf(x) −→ 0 as |x| −→ ∞ (2.67)

for n, α and β ∈ Nn0 . It is the space of all functions whose derivatives are rapidly decreasing.

Theorem 2.4.2. (Plemelj) If f(t) ∈ S(R) along Σ, then the Cauchy operator

(Cf)(z) =
1

2πi

∫
Σ

f(τ)

τ − z
dτ (2.68)

is analytic in C \Σ, but not on Σ, and

(Cf)+(t)− (Cf)−(t) = f(t) (2.69)

and

(Cf)+(t)) + (Cf)−(t) =
1

πi

∫
Σ

f(τ)

τ − z
dτ, (2.70)

where (Cf)+(t) is the limit of (Cf)+(z) as z ∈ Σ+ −→ t ∈ R and (Cf)−(t) is the limit of (Cf)−(z) as

z ∈ Σ− −→ t ∈ R.

Therefore we have

(Cf)+(t) =
1

2πi

∫
Σ

f(τ)

τ − z
dτ +

1

2
f(t), (2.71)
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(Cf)−(t) =
1

2πi

∫
Σ

f(τ)

τ − z
dτ − 1

2
f(t). (2.72)

Corollary 2.4.3. If (Cf)(z) ∈ S(R), and

(Cf)+(t)− (Cf)−(t) = f(t) as t ∈ R, (2.73)

then

(Cf)(z) =
1

2πi

∫
Σ

f(t)

t− z
dt (2.74)

is a particular solution of (2.73).

2.4.4 Solving the RHP problem

The factorization of the RHP problem is given by

ψ+(t) = ψ−(t)G(t), for t ∈ R. (2.75)

Subtracting both sides by ψ−(t) gives

ψ+(t)− ψ−(t) = ψ−(t)(G(t)− I), for t ∈ R. (2.76)

Using Plemelj’s theorem, we get

ψ+(t)− I = (Cf)+(t) and ψ−(t)− I = (Cf)−(t). (2.77)

Therefore (2.76) becomes

(Cf)+(t)− (Cf)−(t) = (Cf)−(t)(G(t)− I). (2.78)

Thus, (Cf)(z) ∈ S(R), the solution of the RHP problem is given by

(Cf)(t) =
1

2πi

∫
Σ

(Cf)−(τ)(G(τ)− I))

τ − t
d(τ). (2.79)
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Remark 2.4.4. The existence of the pair of solutions (ψ+(z), ψ−(z)) will depend on the jump function G

and the contour Σ. In our theory, we assumed f ∈ S(R) in order to have a solution from the Plemelj’s

theorem. We wonder what will happen if G is in the L2-space and in any other space .

2.4.5 Example of Riemann-Hilbert problems to inverse scattering

Let’s consider the Cauchy problem for the KdV equation [10],[30]


pt(x, t)− 6p(x, t)px(x, t) + pxxx(x, t) = 0,

p(x, 0) = p0(x).

(2.80)

The construction of the inverse scattering depends on the solution for solving this Sturm–Liouville equation

ψxx + (λ− p(x, 0))ψ = 0. (2.81)

In order to find a solution, the initial condition p(x, 0) has to belong to the Schwartz space (p(x, 0) ∈ S(R)).

Thus, the boundary condition imposes

p(x, 0)→ 0 as x→ ±∞. (2.82)

After a tedious analysis, one derives

φ+(k) = φ−(k)

 1− |r(k)|2 −r(k)e−i(2kx+8k3t)

r(k)ei(2kx+8k3t) 1

 , (2.83)

which is the RH problem in the k-plane.

φ± are eigenfunctions and r is the reflection coefficient. The contour is the real line R, and the jump function

is the scattering matrix

G(k) =

 1− |r(k)|2 −r(k)e−i(2kx+8k3t)

r(k)ei(2kx+8k3t) 1

 , as k ∈ R. (2.84)
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φ is analytic in C \ R, and the normalization condition is

φ→ I as k → ±∞. (2.85)

As the direct scattering show a bijection from the initial potential to the scattering data, so the reflection

coefficient r(k) ∈ S(R).

Now, if φ is the solution of the RH problem (2.83), and the expansion of φ is defined as

φ(k;x, t) = I +
φ1(x, t)

k
+O(

1

k2
) as k →∞, (2.86)

then the potential solution of the KdV can be recovered as follows:

p(x, t) = 2i(φ1(x, t))12. (2.87)

2.4.6 Conclusion and remarks

The Riemann-Hilbert problem technique is very powerful in applications of solving integrable nonlinear

evolution equations. It is present in the inverse scattering transform, and even in the Fokas method. In both

entities, It solves the Cauchy problem with some constraints.
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Chapter 3

Riemann-Hilbert problems for a nonlocal reverse-time AKNS system of fourth-order

3.1 Multi-component AKNS hierarchies

We begin with the following spatial spectral problem of (n+ 1)-order:

−iψx = U(u, λ)ψ, (3.1)

and

U =

α1λ p

r α2λIn

 , (3.2)

where u = (p, rT )T , p = (p1, p2, ..., pn), r = (r1, r2, ..., rn)T ,ψ = (ψ1, ψ2, ..., ψn)T , α1 and α2 are real, λ

is a spectral parameter, u is 2n–dimensional potential, and In is n× n identity matrix [13]. Our purpose is

to derive temporal Lax matrices, and the associated multi-component integrable systems.

Let’s solve the stationary zero curvature equation

Wx = i[U,W ], (3.3)

corresponding to (3.2). If we take

W =

a b

c d

 , (3.4)

where a is a scalar, bt and c are n-dimensional columns, d is an n× n matrix, and α = α1 − α2, then using

the zero curvature equation, we get
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

ax = i(pc− br),

bx = i(αλb+ pd− ap),

cx = i(−αλc+ ra− dr),

dx = i(rb− cp).

(3.5)

By expanding W in Laurent series form

W =

∞∑
j=0

W0,jλ
−j with W0,j =

a[j] b[j]

c[j] d[j]

 , (3.6)

where b[j] = (b
[j]
1 , b

[j], . . . , b
[j]
n ), c[j] = (c

[j]
1 , c

[j]
2 , . . . , c

[j]
n )T , d[j] = (d

[j]
il )n×n, and

a =
∞∑
j=0

a[j]λ−j , b =
∞∑
j=0

b[j]λ−j , c =
∞∑
j=0

c[j]λ−j , (3.7)

the system (3.5) will generate these recursion relations:



b[0] = 0,

c[0] = 0,

a
[0]
x = 0,

d
[0]
x = 0,

b[j+1] = 1
α(−ib[j]x − pd[j] + a[j]p),

c[j+1] = 1
α(−ic[j]x + ra[j] − d[j]r),

a
[j]
x = i(pc[j] − b[j]r),

d
[j]
x = i(rb[j] − c[j]p), for j ≥ 1.

(3.8)

Now, let

a[0] = β1, and d[0] = β2In, (3.9)
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where β1, β2 are real values. If we take zero to be the constant of integration of a[j]x and d[j]x , this requires

Wj |u=0 = 0, j ≥ 1, (3.10)

then using (3.8) and (3.9), we will have the following results:

b
[1]
j =

β

α
pj , c

[1]
j =

β

α
rj , a[1] = 0, d

[1]
jl = 0; (3.11)

b
[2]
j = −i β

α2
pj,x, c

[2]
j = i

β

α2
rj,x, a[2] = − β

α2
pr, d

[2]
jl =

β

α2
plrj ; (3.12)

b
[3]
j = − β

α3
(pj,xx + 2prpj), c

[3]
j = − β

α3
(qj,xx + 2prrj), (3.13)

a[3] = −i β
α3

(prx − pxr), d
[3]
jl = −i β

α3
(pl,xrj − plrj,x); (3.14)

b
[4]
j = i

β

α4
(pj,xxx + 3prpj,x + 3pxrpj), (3.15)

c
[4]
j = −i β

α4
(rj,xxx + 3prrj,x + 3prxrj), (3.16)

a[4] =
β

α4
(3(pr)2 + prxx − pxrx + pxxr), (3.17)

d
[4]
jl = − β

α4
(3plprrj + pl,xxrj − pl,xrj,x + plrj,xx); (3.18)

where β = β1 − β2, and j ∈ {1, 2, ...}, l ≤ n.

Hence, by taking the modification terms to be zero, the Lax temporal Lax matrices will be

V [m] = (λmW )(n+1)×(n+1), (3.19)

and will satisfy the zero curvature equation

Utm − V [m]
x + i[U, V [m]] = 0. (3.20)

As a result, we get the multi-component AKNS hierarchies of integrable equations:

utm =

pT
r


tm

= i

αb[m+1]T

−αc[m+1]

 , for m ∈ {0, 1, 2, ...}. (3.21)

Remark 3.1.1. If m is odd, then the multi-component AKNS soliton hierarchy presents a modified KdV-

30



type integrable equation, whereas if m is even, then the multi-component AKNS soliton presents an NLS-

type integrable equation.

Obviously, when n = 1 and m = 2, we get the classical AKNS NLS equations given by the system of

the coupled NLS equations

pt(x, t) = − β

α2
i(pxx(x, t) + +2p(x, t)r(x, t)p(x, t)), (3.22)

rt(x, t) =
β

α2
i(rxx(x, t) + 2r(x, t)p(x, t)r(x, t)). (3.23)

Whereas, when n = 1 and m = 3, we get the classical AKNS mKdV equations given by the system of the

coupled mKdV equations

pt(x, t) = − β

α2
(pxxx(x, t) + 3p(x, t)r(x, t)px(x, t) + 3px(x, t)r(x, t)p(x, t)), (3.24)

rt(x, t) = − β

α2
(rxxx(x, t) + 3r(x, t)p(x, t)rx(x, t) + 3rx(x, t)p(x, t)r(x, t)). (3.25)

3.2 Six-component AKNS hierarchy of coupled fourth-order integrable equations

Let us consider the pair of spatial and temporal spectral problems for the six-component AKNS system:

ψx = iUψ, (3.26)

ψt = iV [4]ψ, (3.27)

where ψ is the eigenfunction. The spectral matrix is given by

U(u, λ) =



α1λ p1 p2 p3

r1 α2λ 0 0

r2 0 α2λ 0

r3 0 0 α2λ


, (3.28)

where λ is a spectral parameter, α1, α2 are real constants, p = (p1, p2, p3) and r = (r1, r2, r3)
T are vector

functions of (x, t), and u = (p, rT )T is a vector of six potentials.
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The Lax matrix operator V [4] is given by

V [4] =



a[0]λ4 + a[2]λ2

+a[3]λ+ a[4]

b
[1]
1 λ

3 + b
[2]
1 λ

2

+b
[3]
1 λ+ b

[4]
1

b
[1]
2 λ

3 + b
[2]
2 λ

2

+b
[3]
2 λ+ b

[4]
2

b
[1]
3 λ

3 + b
[2]
3 λ

2

+b
[3]
3 λ+ b

[4]
3

c
[1]
1 λ

3 + c
[2]
1 λ

2

+c
[3]
1 λ+ c

[4]
1

d
[0]
11λ

4 + d
[2]
11λ

2

+d
[3]
11λ+ d

[4]
11

d
[2]
12λ

2 + d
[3]
12λ

+d
[4]
12

d
[2]
13λ

2 + d
[3]
13λ

+d
[4]
13

c
[1]
2 λ

3 + c
[2]
2 λ

2

+c
[3]
2 λ+ c

[4]
2

d
[2]
21λ

2 + d
[3]
21λ

+d
[4]
21

d
[0]
22λ

4 + d
[2]
22λ

2

+d
[3]
22λ+ d

[4]
22

d
[2]
23λ

2 + d
[3]
23λ

+d
[4]
23

c
[1]
3 λ

3 + c
[2]
3 λ

2

+c
[3]
3 λ+ c

[4]
3

d
[2]
31λ

2 + d
[3]
31λ

+d
[4]
31

d
[2]
32λ

2 + d
[3]
32λ

+d
[4]
32

d
[0]
33λ

4 + d
[2]
33λ

2

+d
[3]
33λ+ d

[4]
33



, (3.29)

where all the involved functions are defined as follows:

a[0] = β1,

a[1] = 0,

a[2] = − β
α2

3∑
i=1

piri,

a[3] = −i β
α3

3∑
i=1

(piri,x − pi,xri),

a[4] = β
α4

[
3(

3∑
i=1

piri)
2 +

3∑
i=1

(piri,xx − pi,xri,x + pi,xxri)

]
,

a[5] = i β
α5

[
6(

3∑
i=1

piri)−
3∑
i=1

(piri,x − pi,xri) +
3∑
i=1

(piri,xxx − pi,xxxri + pi,xxri,x − pi,xri,xx)

]
,
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

b
[0]
k = 0,

b
[1]
k = β

αrk,

b
[2]
k = −i β

α2 pk,x,

b
[3]
k = − β

α3

[
pk,xx + 2(

3∑
i=1

piri)pk

]
,

b
[4]
k = i β

α4

[
pk,xxx + 3(

3∑
i=1

piri)pk,x + 3(
3∑
i=1

pi,xri)pk

]
,

b
[5]
k = β

α5

[
pk,xxxx + 4(

3∑
i=1

piri)pk,xx + (6
3∑
i=1

pi,xri + 2
3∑
i=1

piri,x)pk,x

+(4
3∑
i=1

pi,xxri + 2
3∑
i=1

pi,xri,x + 2
3∑
i=1

piri,xx + 6(
3∑
i=1

piri)
2)pk

]
,



c
[0]
k = 0,

c
[1]
k = β

αpk,

c
[2]
k = i β

α2 rk,x,

c
[3]
k = − β

α3

[
rk,xx + 2(

3∑
i=1

piri)rk

]
,

c
[4]
k = −i β

α4

[
rk,xxx + 3(

3∑
i=1

piri)rk,x + 3(
3∑
i=1

pi,xri)rk

]
,

c
[5]
k = β

α5

[
rk,xxxx + 4(

3∑
i=1

piri)rk,xx + (6
3∑
i=1

piri,x + 2
3∑
i=1

pi,xri)rk,x

+(4
3∑
i=1

piri,xx + 2
3∑
i=1

pi,xri,x + 2
3∑
i=1

pi,xxri + 6(
3∑
i=1

piri)
2)rk

]
,
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and 

d
[0]
kj = β2I3,

d
[1]
kj = 0,

d
[2]
kj = β

α2 pjrk,

d
[3]
kj = −i β

α3 (pj,xrk − pjrk,x),

d
[4]
kj = − β

α4

[
3pj(

3∑
i=1

piri)rk + pj,xxrk − pj,xrk,x + pjrk,xx

]
,

d
[5]
kj = β

α5

[
2pj(

3∑
i=1

pi,xri − piri,x)rk + 4pj,x(
3∑
i=1

piri)rk − pj(
3∑
i=1

piri)rk,x

+pj,xxxrk − pjrk,xxx + pj,xrk,xx − pj,xxrk,x
]
.

We always assume that a[i] are scalars, b[i] = (b
[i]
1 , b

[i]
2 , b

[i]
3 ), c[i] = (c

[i]
1 , c

[i]
2 , c

[i]
3 )T , and d[i] = (d

[i]
kl)3×3, for

i ∈ {1, 2, 3, 4, 5}.

The compatibility condition ψxt = ψtx will lead to the zero curvature equation:

Ut − V [4]
x + i[U, V [4]] = 0, (3.30)

which gives the six-component system of soliton equations

ut =

pT
r


t

= i

αb[5]T
−αc[5]

 , (3.31)

where b[5] and c[5] are defined earlier. Thus, we deduce the coupled AKNS system of fourth-order equations:



pk,t = i β
α4 [pk,xxxx + 4(

3∑
i=1

piri)pk,xx + (6
3∑
i=1

pi,xri + 2
3∑
i=1

piri,x)pk,x

+(4
3∑
i=1

pi,xxri + 2
3∑
i=1

pi,xri,x + 2
3∑
i=1

piri,xx + 6(
3∑
i=1

piri)
2)pk],

rk,t = −i β
α4 [rk,xxxx + 4(

3∑
i=1

piri)rk,xx + (6
3∑
i=1

piri,x + 2
3∑
i=1

pi,xri)rk,x

+(4
3∑
i=1

piri,xx + 2
3∑
i=1

pi,xri,x + 2
3∑
i=1

pi,xxri + 6(
3∑
i=1

piri)
2)rk],

(3.32)

where k ∈ {1, 2, 3}.
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3.3 Nonlocal reverse-time six-component AKNS system

Let us consider a class of specific nonlocal reverse-time reductions for the spectral matrix

UT (x,−t,−λ) = −CU(x, t, λ)C−1, (3.33)

where C =

1 0

0 Σ

 and Σ is a constant invertible symmetric 3× 3 matrix, i.e., ΣT = Σ and detΣ 6= 0.

As U(x, t, λ) = λΛ+ P (x, t), for P =

0 p

r 0

 and Λ = diag(α1, α2I3), then we have

P T (x,−t) = −CP (x, t)C−1. (3.34)

From the above (3.34), we get

pT (x,−t) = −Σr(x, t), i.e., r(x, t) = −Σ−1pT (x,−t). (3.35)

As V [4](x, t, λ) = λ4Ω +Q(x, t, λ) and from (3.34), we prove that

V [4]T (x,−t,−λ) = CV [4](x, t, λ)C−1 and QT (x,−t,−λ) = CQ(x, t, λ)C−1, (3.36)

where Ω = diag(β1, β2I3).

Importantly, the two Lax pair matrices UT (x,−t,−λ) and V [4]T (x,−t,−λ) satisfy an equivalent zero

curvature equation.

Proof: The zero curvature equation:

Ut − V [m]
x + i[U, V [m]] = 0 (3.37)
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so

C(Ut(x, t, λ)− V [m]
x (x, t, λ) + i[U(x.t, λ), V [m](x, t, λ)])C−1 = 0, (3.38)

C(Ut(x.t, λ))C−1 − C(V [m]
x (x.t, λ))C−1 + iC[U(x.t, λ), V [m](x.t, λ)]C−1 = 0, (3.39)

C(Ut(x.t, λ))C−1 − C(V [m]
x (x.t, λ))C−1 (3.40)

+ i
(
CU(x.t, λ)V [m](x.t, λ)C−1 − CV [m](x.t, λ).U(x.t, λ).C−1

)
= 0, (3.41)

(CU(x.t, λ)C−1)t − (CV [m](x.t, λ)C−1)x (3.42)

+ i
(
CU(x.t, λ)C−1CV [m](x.t, λ)C−1 − CV [m](x.t, λ)C−1CU(x.t, λ)C−1

)
= 0,

UT (x,−t,−λ)− V [4]T (x,−t,−λ) (3.43)

+ i(UT (x,−t,−λ)V [4]T (x,−t,−λ)− UT (x,−t,−λ)V [4]T (x,−t,−λ)) = 0, (3.44)

UT (x,−t,−λ)− V [4]T (x,−t,−λ) + i[UT (x,−t,−λ)V [4]T (x,−t,−λ)] = 0, (3.45)

which is the zero curvature equation of the Lax pair UT (x,−t,−λ) and V [4]T (x,−t,−λ).

From this specific nonlocal reduction, the coupled six-component fourth-order AKNS equations can be re-

duced to the nonlocal reverse-time six-component fourth-order equations.

As Σ is invertible and symmetric so diagonalizable, then we can take Σ = diag(ρ−11 , ρ−12 , ρ−13 ), for

ρ1, ρ2, ρ3 non-zero real. Thus Σ−1 = diag(ρ1, ρ2, ρ3) leads (3.35) to

ri(x, t) = −ρipi(x,−t) for i ∈ {1, 2, 3}. (3.46)

Therefore the coupled equations (3.32) reduce to the nonlocal reverse-time fourth-order equation
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pk,t(x, t) = i
β

α4

[
pk,xxxx(x, t)− 4

( 3∑
i=1

ρipi(x, t)pi(x,−t)
)
pk,xx(x, t) (3.47)

−
(

6
3∑
i=1

ρipi,x(x, t)pi(x,−t) + 2
3∑
i=1

ρipi(x, t)pi,x(x,−t)
)
pk,x(x, t)

−
(

4

3∑
i=1

ρipi,xx(x, t)pi(x,−t) + 2

3∑
i=1

ρipi,x(x, t)pi,x(x,−t)

+ 2
3∑
i=1

ρipi(x, t)pi,xx(x,−t)− 6(
3∑
i=1

ρipi(x, t)pi(x,−t))2
)
pk(x, t)

]

for k ∈ {1, 2, 3}.

We should notice that if Σ is negative definite, i.e., each ρi < 0 for i ∈ {1, 2, 3}, then we obtain the

focusing nonlocal reverse-time six-component fourth-order equation due to the fact that the dispersive term

and nonlinear terms attract [40]. If ρi’s are not all the same sign for i ∈ {1, 2, 3}, we obtain combined

focussing and defocussing cases.

3.4 Riemann-Hilbert formulation

The Lax pair of the six-component fourth-order AKNS equations can be written:

ψx = iUψ = i(λΛ+ P )ψ, (3.48)

ψt = iV [4]ψ = i(λ4Ω +Q)ψ, (3.49)

where Ω = diag(β1, β2, β2, β2), Λ = diag(α1, α2, α2, α2), and

P =



0 p1 p2 p3

r1 0 0 0

r2 0 0 0

r3 0 0 0


, (3.50)
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Q =



a[2]λ2 + a[3]λ

+a[4]

b
[1]
1 λ

3 + b
[2]
1 λ

2

+b
[3]
1 λ+ b

[4]
1

b
[1]
2 λ

3 + b
[2]
2 λ

2

+b
[3]
2 λ+ b

[4]
2

b
[1]
3 λ

3 + b
[2]
3 λ

2

+b
[3]
3 λ+ b

[4]
3

c
[1]
1 λ

3 + c
[2]
1 λ

2

+c
[3]
1 λ+ c

[4]
1

d
[2]
11λ

2 + d
[3]
11λ

+d
[4]
11

d
[2]
12λ

2 + d
[3]
12λ

+d
[4]
12

d
[2]
13λ

2 + d
[3]
13λ

+d
[4]
13

c
[1]
2 λ

3 + c
[2]
2 λ

2

+c
[3]
2 λ+ c

[4]
2

d
[2]
21λ

2 + d
[3]
21λ

+d
[4]
21

d
[2]
22λ

2 + d
[3]
22λ

+d
[4]
22

d
[2]
23λ

2 + d
[3]
23λ

+d
[4]
23

c
[1]
3 λ

3 + c
[2]
3 λ

2

+c
[3]
3 λ+ c

[4]
3

d
[2]
31λ

2 + d
[3]
31λ

+d
[4]
31

d
[2]
32λ

2 + d
[3]
32λ

+d
[4]
32

d
[2]
33λ

2 + d
[3]
33λ

+d
[4]
33



. (3.51)

Our purpose is to find soliton solutions from an initial condition (p(x, 0), rT (x, 0))T to

(p(x, t), rT (x, t))T at any time t. We assume that any pi and ri decay exponentially, i.e., pi → 0 and ri → 0

as x, t → ±∞ for i ∈ {1, 2, 3}. Therefore from the spectral problems (3.48) and (3.49), ψ will behave

asymptotically ψ(x, t) ; eiλΛx+iλ
4Ωt. We can then expect the solution for the spectral problems to be:

ψ(x, t) = φ(x, t)eiλΛx+iλ
4Ωt. (3.52)

For the Jost solution [9, 19], we require that

φ(x, t)→ I4, as x, t→ ±∞, (3.53)

where I4 is the 4 × 4 identity matrix. Substituting (3.52) into the Lax pair, (3.48) and (3.49), will result in

the equivalent expression of the spectral problems

φx = iλ[Λ, φ] + iPφ, (3.54)

φt = iλ4[Ω,φ] + iQφ. (3.55)
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Now, we are going to work with the spatial spectral problem (3.54), assuming that the time is t = 0 for

the direct scattering process.

Theorem 3.4.1. (Liouville) Let A(x) be a square matrix of dimension n with complex or real entries, and

Y is a matrix-valued solution on an interval I. If

Yx = A(x)Y, (3.56)

then

(detY )x = trA · det(Y ). (3.57)

Therefore by Liouville’s formula, as tr(iP ) = 0 and tr(iQ) = 0, so det(φ) is a constant, and using the

boundary condition (3.53), we get

det(φ) = 1. (3.58)

To construct Riemann-Hilbert problems and their solutions in the reflectionless case, we are going to use the

adjoint scattering equations of the spectral problems ψx = iUψ and ψt = iV [4]ψ. Their adjoints are

ψ̃x = −iψ̃U, (3.59)

ψ̃t = −iψ̃V [4], (3.60)

and the equivalent spectral adjoint equations read

φ̃x = −iλ[φ̃, Λ]− iφ̃P, (3.61)

φ̃t = −iλ4[φ̃, Ω]− iφ̃Q. (3.62)

As φ−1x = −φ−1φxφ−1, we have from (3.54),

φ−1x = −iλ[φ−1, Λ]− iφ−1P. (3.63)

Therefore, we deduce that (φ±)−1 satisfies the adjoint equation (3.61). Similarly, we can show that (φ±)−1

satisfies (3.62) as well.
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Now, if the eigenfunction φ(x, t, λ) is a solution of the spectral problem (3.54), then Cφ−1(x, t, λ) is a

solution of the spectral adjoint problem (3.61) with the same eigenvalue because φ−1x = −φ−1φxφ−1.

Also φT (x,−t,−λ)C is a solution of the spectral adjoint problem (3.61). As both solutions have the same

boundary condition as x→ ±∞ which guarantees the uniqueness of the solution, so

φT (x,−t,−λ)C = Cφ−1(x, t, λ) or φT (x,−t,−λ) = Cφ−1(x, t, λ)C−1. (3.64)

This tells us that if λ is an eigenvalue of the spectral problems, then −λ is also an eigenvalue.

For the rest of the problem, we assume that α < 0 and β < 0 and Y ± tell us at which end of the x-axis the

boundary conditions are set. We know that

φ± → I4 when x→ ±∞. (3.65)

We can then write

ψ± = φ±eiλΛx. (3.66)

As ψ+ and ψ− are two solutions of the spectral spatial differential equation of first-order (3.48), they are

then linearly dependent, and so they are related by a scattering matrix S(λ). As a result,

ψ− = ψ+S(λ), (3.67)

using (3.66), we have

φ− = φ+eiλΛxS(λ)e−iλΛx, for λ ∈ R, (3.68)

where

S(λ) = (sij)4×4 =



s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44


. (3.69)

Because det(φ±) = 1, one has

det(S(λ)) = 1. (3.70)
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From (3.64) and (3.68), we have this involution relation

ST (−λ) = CS−1(λ)C−1. (3.71)

Proof: As

φ−(x, t, λ) = φ+(x, t, λ)eiλΛxS(λ)e−iλΛx, λ ∈ R, (3.72)

φ−(x,−t,−λ) = φ+(x,−t,−λ)e−iλΛxS(−λ)eiλΛx, (3.73)

(φ−(x,−t,−λ))T = eiλΛxST (−λ)e−iλΛx(φ+(x,−t,−λ))T , (3.74)

also (3.72) gives

(φ−(x, t, λ))−1 = eiλΛxS−1(λ)e−iλΛx(φ+(x, t, λ))−1, (3.75)

C(φ−(x, t, λ))−1C−1 = CeiλΛxS−1(λ)e−iλΛx(φ+(x, t, λ))−1C−1, (3.76)

C(φ−(x, t, λ))−1C−1 = eiλΛxCS−1(λ)C−1Ce−iλΛx(φ+(x, t, λ))−1C−1, (3.77)

C(φ−(x, t, λ))−1C−1 = eiλΛxCS−1(λ)C−1e−iλΛxC(φ+(x, t, λ))−1C−1. (3.78)

From (3.64), we have (φ−(x,−t,−λ))T = C(φ−(x, t, λ))−1C−1 and also (φ+(x,−t,−λ))T =

(φ+(x, t, λ))−1C−1. As a result, if (3.74) and (3.78) match, we deduce then

ST (−λ) = CS−1(λ)C−1. (3.79)

From (3.79), we deduce that

ŝ11(λ) = s11(−λ), (3.80)

where the inverse scattering data matrix S−1 = (ŝij)4×4 for i, j ∈ {1, 2, 3, 4}.

We can see that the recovery of the potentials will depend on the information of the scattering data from the

scattering matrix S(λ). As φ± → I4 when x → ±∞, we need to analyse the analyticity of the Jost matrix

φ± in order to formulate the Riemann-Hilbert problems.
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One can write the solution φ± in a uniquely manner by the Volterra integral equations using (3.48):

φ−(x, λ) = I4 + i

x∫
−∞

eiλΛ(x−y)P (y)φ−(y, λ)eiλΛ(y−x)dy, (3.81)

φ+(x, λ) = I4 − i
+∞∫
x

eiλΛ(x−y)P (y)φ+(y, λ)eiλΛ(y−x)dy. (3.82)

Proof: We have from (3.48)

ψx = iUψ = i(λΛ+ P )ψ, (3.83)

The homogeneous solutions are given by

ψ(x, λ) = eiλΛxC, C is a constant matrix. (3.84)

For the general general solution, we could take

ψ(x, λ) = eiλΛxC(x). (3.85)

Differentiating both sides of (3.85), and substituting into (3.83), we get

C
′
(x) = e−iλΛx(iP )eiλΛxC(x), (3.86)

∫ x

−∞
C
′
(y)dy =

∫ x

−∞
e−iλΛy(iP )eiλΛyC(y)dy, (3.87)

C(x) = I +

∫ x

−∞
e−iλΛy(iP )eiλΛyC(y)dy, (3.88)

∫ ∞
x

C
′
(y)dy =

∫ x

−∞
e−iλΛy(iP )eiλΛyC(y)dy, (3.89)

C(x) = I −
∫ x

−∞
e−iλΛy(iP )eiλΛyC(y)dy. (3.90)

From (3.66) and (3.85), we have

ψ±(x, λ) = φ±(x, λ)eiλΛx = eiλΛxC±(x). (3.91)
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Thus

C±(x) = e−iλΛxφ±(x, λ)eiλΛx, (3.92)

and so (3.88) becomes

e−iλΛxφ−(x, λ)eiλΛx = I +

∫ x

−∞
e−iλΛy(iP )eiλΛye−iλΛyφ−(x, λ)eiλΛydy. (3.93)

As a result, we obtain the Volterra integrable equations

φ−(x, λ) = I +

∫ x

−∞
e−iλΛ(x−y)(iP )φ−(x, λ)eiλΛ(y−x)dy, (3.94)

φ+(x, λ) = I −
∫ ∞
x

e−iλΛ(x−y)(iP )φ+(x, λ)eiλΛ(y−x)dy. (3.95)

If the matrix φ− is

φ− =



φ−11 φ−12 φ−13 φ−14

φ−21 φ−22 φ−23 φ−24

φ−31 φ−32 φ−33 φ−34

φ−41 φ−42 φ−43 φ−44


, (3.96)

then the components of the first column of φ− are

φ−11 = 1 + i

∫ x

−∞
(p1(y)φ−21(y, λ) + p2(y)φ−31(y, λ) + p3(y)φ−41(y, λ))dy, (3.97)

φ−21 = i

∫ x

−∞
r1(y)φ−11(y, λ)e−iλα(x−y)dy, (3.98)

φ−31 = i

∫ x

−∞
r2(y)φ−11(y, λ)e−iλα(x−y)dy, (3.99)

φ−41 = i

∫ x

−∞
r3(y)φ−11(y, λ)e−iλα(x−y)dy. (3.100)

43



Similarly, the components of the second column of φ− are

φ−12 = i

∫ x

−∞

(
p1(y)φ−22(y, λ) + p2(y)φ−32(y, λ) + p3(y)φ−42(y, λ)

)
eiλα(x−y)dy, (3.101)

φ−22 = 1 + i

∫ x

−∞
r1(y)φ−12(y, λ)dy, (3.102)

φ−32 = i

∫ x

−∞
r2(y)φ−12(y, λ)dy, (3.103)

φ−42 = i

∫ x

−∞
r3(y)φ−12(y, λ)dy, (3.104)

and the components of the third column of φ− are

φ−13 = i

∫ x

−∞

(
p1(y)φ−23(y, λ) + p2(y)φ−33(y, λ) + p3(y)φ−43(y, λ)

)
eiλα(x−y)dy, (3.105)

φ−23 = i

∫ x

−∞
r1(y)φ−13(y, λ)dy, (3.106)

φ−33 = 1 + i

∫ x

−∞
r2(y)φ−13(y, λ)dy, (3.107)

φ−43 = i

∫ x

−∞
r3(y)φ−13(y, λ)dy, (3.108)

and finally the components of the fourth column of φ− are

φ−14 = i

∫ x

−∞

(
p1(y)φ−24(y, λ) + p2(y)φ−34(y, λ) + p3(y)φ−44(y, λ)

)
eiλα(x−y)dy, (3.109)

φ−24 = i

∫ x

−∞
r1(y)φ−14(y, λ)dy, (3.110)

φ−34 = i

∫ x

−∞
r2(y)φ−14(y, λ)dy, (3.111)

φ−44 = 1 + i

∫ x

−∞
r3(y)φ−14(y, λ)dy. (3.112)

We can see that as α = α1−α2 < 0, if Im(λ) > 0, thenRe(e−iλα(x−y)) decays exponentially when y < x,

and so each integral of the first column of φ− converges. As a result, the components of the first column

of φ−, i.e., φ−11, φ
−
21, φ

−
31, φ

−
41 are analytic in the upper half complex plane for λ ∈ C+, and continuous

for λ ∈ C+ ∪ R. But, if Im(λ) < 0, Re(eiλα(x−y)) also decays, then the components of the last three

columns of φ− converge, and thus they are analytic in the lower half plane for λ ∈ C− and continuous for

λ ∈ C− ∪ R.
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In the same way for y > x, the components of the last three columns of φ+ are analytic in the upper half

plane for λ ∈ C+ and continuous for λ ∈ C+∪R, and the components of the first column of φ+ are analytic

in the lower half plane for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Now let us construct the Riemann-Hilbert problems. Note that

ψ± = φ±eiλΛx, so φ± = ψ±e−iλΛx. (3.113)

Let φ±j be the jth column of φ± for j ∈ {1, 2, 3, 4}, and so the first Jost matrix solution can be taken as

P (+)(x, λ) = (φ−1 , φ
+
2 , φ

+
3 , φ

+
4 ) = φ−H1 + φ+H2, (3.114)

where φ−1 = (φ−11, φ
−
21, φ

−
31, φ

−
41)

T , φ+2 = (φ+12, φ
+
22, φ

+
32, φ

+
42)

T , φ+3 = (φ+13, φ
+
23, φ

+
33, φ

+
43)

T , φ+4 =

(φ+14, φ
+
24, φ

+
34, φ

+
44)

T and H1 = diag(1, 0, 0, 0) and H2 = diag(0, 1, 1, 1).

P (+) is then analytic for λ ∈ C+ and continuous for λ ∈ C+ ∪ R.

To construct the analytic counterpart of P (+) ∈ C+, it is going to be simpler to use the equivalent spectral

adjoint equation (3.63). Because φ̃± = (φ±)−1 and ψ± = φ±eiλΛx, we have

(φ±)−1 = eiλΛx(ψ±)−1. (3.115)

Now, let φ̃±j be the jth row of φ̃± for j ∈ {1, 2, 3, 4}. In the same way we proved for P (+) above, we can

get

P (−)(x, λ) =

(
φ̃−1 , φ̃

+
2 , φ̃

+
3 , φ̃

+
4

)T
= H1(φ

−)−1 +H2(φ
+)−1. (3.116)

P (−) is analytic for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Also we have

P (−)(x, λ)→ I4 as λ ∈ C− ∪ R→∞. (3.117)

From (3.114), (3.116) and (3.113) along with φT (x,−t,−λ) = Cφ−1(x, t, λ)C−1, we have the nonlocal

involution property

(P (+))T (x,−t,−λ) = CP (−)(x, t, λ)C−1. (3.118)
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Proof: Equation (3.114) gives

P (+)(x, t, λ) = φ−(x, t, λ)H1 + φ+(x, t, λ)H2, (3.119)

P (+)(x,−t,−λ) = φ−(x,−t,−λ)H1 + φ+(x,−t,−λ)H2, (3.120)

(P (+))T (x,−t,−λ) = H1(φ
−)T (x,−t,−λ) +H2(φ

+)T (x,−t,−λ). (3.121)

As (3.116) gives

P (−)(x, t, λ) = H1(φ
−)−1(x, t, λ) +H2(φ

+)−1(x, t, λ), (3.122)

CP (−)(x, t, λ)C−1 = H1C(φ−)−1(x, t, λ)C−1 + CH2(φ
+)−1(x, t, λ)C−1. (3.123)

But (3.64) gives

φT (x,−t,−λ) = Cφ−1(x, t, λ)C−1. (3.124)

Therefore, matching (3.121) and (3.123), we deduce

(P (+))T (x,−t,−λ) = CP (−)(x, t, λ)C−1. (3.125)

Through what have been done above, we have been able to construct the matrix of eigenfunctions P (+) and

P (−) that are analytic in C+ and C− respectively, and continuous in C+ ∪ R and C− ∪ R respectively.

From (3.121) and (3.116), we have

P (−)(x, λ)P (+)(x, λ) = eiλΛx(H1 +H2S)(H1 + S−1H2)e
−iλΛx, for λ ∈ R, (3.126)

where the inverse scattering data matrix S−1 = (ŝij)4×4 for i, j ∈ {1, 2, 3, 4}.

Using (3.68) in (3.114), we have

P (+)(x, λ) = φ+(eiλΛxSe−iλΛxH1 +H2), (3.127)
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and as φ+(x, λ)→ I4 when x→ +∞, then

lim
x→+∞

P (+) =



s11(λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, for λ ∈ C+ ∪ R. (3.128)

In the same way, we have

lim
x→−∞

P (−) =



ŝ11(λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, for λ ∈ C− ∪ R. (3.129)

Thus if we choose

G(+)(x, λ) = P (+)(x, λ)



s−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (3.130)

and

(G(−))−1(x, λ) =



ŝ−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


P (−)(x, λ), (3.131)

then on the real line, the two generalized matrices generate the matrix Riemann-Hilbert problems for the

six-component AKNS system of fourth-order given by

G(+)(x, λ) = G(−)(x, λ)G0(x, λ), for λ ∈ R, (3.132)
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where the jump matrix G0(x, λ) can be cast as

G0(x, λ) = eiλΛx



ŝ−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(H1 +H2S)(H1 + S−1H2)



s−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


e−iλΛx,

(3.133)

which can be explicitly written as

G0(x, λ) =



s−111 ŝ
−1
11 ŝ12ŝ

−1
11 e

iλx(α1−α2) ŝ13ŝ
−1
11 e

iλx(α1−α2) ŝ14ŝ
−1
11 e

iλx(α1−α2)

s21s
−1
11 e
−iλx(α1−α2) 1 0 0

s31s
−1
11 e
−iλx(α1−α2) 0 1 0

s41s
−1
11 e
−iλx(α1−α2) 0 0 1


,

(3.134)

with its canonical normalization conditions being given by:

G(+)(x, λ)→ I4 as λ ∈ C+ ∪ R→∞, (3.135)

G(−)(x, λ)→ I4 as λ ∈ C− ∪ R→∞. (3.136)

From (3.118) along with (3.80) and (3.130), we obtain

(G(+))T (x,−t,−λ) = C(G(−))−1(x, t, λ)C−1. (3.137)

Proof: From (3.130), we have

G(+)(x, t, λ) = P (+)(x, t, λ)



s−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, (3.138)
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(G(+))T (x,−t,−λ) =



s−111 (−λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(P (+))T (x,−t,−λ), (3.139)

using (3.118) and (P (+))T (x,−t,−λ) = C(P (−))(x, t, λ)C−1, we get

(G(+))T (x,−t,−λ) =



s−111 (−λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


C(P (−))(x, t, λ)C−1. (3.140)

As (3.131) is

(G(−))−1(x, λ) =



ŝ−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


P (−)(x, λ), (3.141)

we have

C(G(−))−1(x, λ)C−1 =



ŝ−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


CP (−)(x, λ)C−1. (3.142)

But (3.80) is

ŝ11(λ) = s11(−λ), (3.143)

so

ŝ−111 (λ) = s−111 (−λ). (3.144)

Therefore, matching (3.140) and (3.142) we have the proof of

(G(+))T (x,−t,−λ) = C(G(−))−1(x, t, λ)C−1. (3.145)
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Also, from (3.133) and (3.80), we have this involution property

GT0 (x,−t,−λ) = CG0(x, t, λ)C−1. (3.146)

Proof: As (3.133) is

G0(x, λ) = eiλΛx



ŝ−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(H1 +H2S(λ))(H1 + S−1(λ)H2)



s−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


e−iλΛx,

(3.147)

so

CG0(x, λ)C−1 = eiλΛx



ŝ−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


M



s−111 (λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


e−iλΛx, (3.148)

GT0 (x,−t,−λ) = eiλΛx



s−111 (−λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


N



ŝ−111 (−λ) 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


e−iλΛx, (3.149)

where

M = (H1 +H2CS(λ)C−1)(H1 + CS−1(λ)C−1H2), (3.150)

N = (H1 +H2(S
−1)T (−t,−λ))(H1 + ST (−t,−λ)H2). (3.151)

As ST (−λ) = CS−1(λ)C−1 and ŝ−111 (λ) = s−111 (−λ), matching (3.148) and (3.149), we get the proof of

GT0 (x,−t,−λ) = CG0(x, t, λ)C−1. (3.152)
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3.5 Time evolution of scattering data

The process of the inverse scattering transform requires the time evolution of the scattering data. Differen-

tiating equation (3.68) with respect to time t and applying (3.55) gives

St = iλ4[Ω,S]. (3.153)

Proof: Using (3.68), we have

φ− = φ+eiλΛxS(λ)e−iλΛx, for λ ∈ R, (3.154)

so

φ−t = φ+t e
iλΛxS(λ)e−iλΛx + φ+eiλΛxSt(λ)e−iλΛx. (3.155)

Using (3.55): φt = iλ4[Ω,φ] + iQφ, we get

iλ4[Ω,φ−] + iQφ− = (iλ4[Ω,φ+] + iQφ+)eiλΛxS(λ)e−iλΛx + φ+eiλΛxSt(λ)e−iλΛx

= iλ4Ωφ+eiλΛxS(λ)e−iλΛx − iλ4φ+ΩeiλΛxS(λ)e−iλΛx (3.156)

+ iQφ+eiλΛxS(λ)e−iλΛx + φ+eiλΛxSt(λ)e−iλΛx,

but also

iλ4[Ω,φ−] + iQφ− = iλ4[Ω,φ+(eiλΛxS(λ)e−iλΛx)] + iQφ+(eiλΛxS(λ)e−iλΛx)

= iλ4Ωφ+(eiλΛxS(λ)e−iλΛx)− iλ4φ+(eiλΛxS(λ)e−iλΛx)Ω (3.157)

+ iQφ+(eiλΛxS(λ)e−iλΛx).

Matching (3.156) and (3.157), we deduce that

iλ4φ+ΩeiλΛxS(λ)e−iλΛx = iλ4φ+(eiλΛxS(λ)e−iλΛx)Ω + φ+eiλΛxSt(λ)e−iλΛx. (3.158)
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Because multiplications of diagonal matrices permute, we get

φ+eiλx(iλS(λ)Ω) = φ+eiλΛx(iλΩS(λ) + St(λ)), (3.159)

St(λ) = iλ4ΩS(λ)− iλ4S(λ)Ω. (3.160)

Hence,

St(λ) = iλ4[Ω,S(λ)], (3.161)

which is

St =



0 iβλ4s12 iβλ4s13 iβλ4s14

−iβλ4s21 0 0 0

−iβλ4s31 0 0 0

−iβλ4s41 0 0 0


. (3.162)

As a result, we have 

s12(t, λ) = s12(0, λ)eiβλ
4t,

s13(t, λ) = s13(0, λ)eiβλ
4t,

s14(t, λ) = s14(0, λ)eiβλ
4t,

s21(t, λ) = s21(0, λ)e−iβλ
4t,

s31(t, λ) = s31(0, λ)e−iβλ
4t,

s41(t, λ) = s41(0, λ)e−iβλ
4t,

(3.163)

and s11, s22, s23, s24, s32, s33, s34, s42, s43, s44 are constants.
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Chapter 4

N -Soliton solutions

4.1 General case

In this section, we are going to compute explicitly the one-soliton and two-soliton solutions from the N -

soliton solution based on the Riemann-Hilbert problems. In fact the Riemann-Hilbert problems generate a

unique solution in the regular case, i.e. the det(G(±)) 6= 0 when G(±) → I4 as λ→∞. However, there are

possible contingencies that det(G(±)) could be zero for some discrete λ ∈ C± when non-regular. In that

case, it is opportune to transform the non-regular case to a regular in order to guarantee a solution.

From (3.114) and (3.116) with (3.68), as det(φ±) = 1, we prove that

det(P (+)(x, λ)) = s11(λ), (4.1)

and

det(P (−)(x, λ)) = ŝ11(λ). (4.2)

Because det(S(λ)) = 1, so S−1(λ) =

(
cof(S(λ))

)T
, thus

ŝ11 =

∣∣∣∣∣∣∣∣∣∣
s22 s23 s24

s32 s33 s34

s42 s43 s44

∣∣∣∣∣∣∣∣∣∣
. (4.3)

In order to get soliton solutions, the solutions of det(P (±)(x, λ)) = 0 are assumed to be simple. Let’s

suppose that s11(λ) has simple zeros λk ∈ C+ for k ∈ {1, 2, ..., N} and ŝ11(λ) has simple zeros λ̂k ∈ C−

for k ∈ {1, 2, ..., N}, which are the poles of the transmission coefficients [19].

From (3.80), we know that ŝ11(λ) = s11(−λ). Hence we have the involution relation

λ̂ = −λ. (4.4)
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Each Ker(P (+)(x, λk)) contains a unique column vector vk, and also Ker(P (−)(x, λ̂k)) contains a unique

row vector v̂k for k ∈ {1, 2, ..., N} such that:

P (+)(x, λk)vk = 0 for k ∈ {1, 2, ..., N}, (4.5)

and

v̂kP
(−)(x, λ̂k) = 0 for k ∈ {1, 2, ..., N}. (4.6)

The Riemann-Hilbert problems can be solved explicitly when G0 = I4. This will force the reflection

coefficients s21 = s31 = s41 = 0 and ŝ12 = ŝ13 = ŝ14 = 0.

In that case, we can present the solutions to special Riemann-Hilbert problems as follows: [9, 16, 20]

G(+)(x, λ) = I4 −
N∑

k,j=1

vk(M
−1)kj v̂j

λ− λ̂j
, (4.7)

and

(G(−))−1(x, λ) = I4 +
N∑

k,j=1

vk(M
−1)kj v̂j

λ− λk
, (4.8)

where M = (mkj)N×N is a matrix defined as follows [20]

mkj =


v̂kvj

λj−λ̂k
if λj 6= λ̂k

0 if λj = λ̂k

, k, j ∈ {1, 2, ..., N}. (4.9)

The scattering vectors vk and v̂k are functions of (x, t), but λk and λ̂k are constants, and so differentiating

both sides of P (+)(x, λk)vk = 0 with respect to x and knowing that P (+) satisfies the spectral spatial

equivalent equation (3.54) along with (4.5) gives

P (+)(x, λk)

(
dvk
dx
− iλkΛvk

)
= 0 for k, j ∈ {1, 2, ..., N}, (4.10)

and also differentiating it with respect to t and using the temporal equation (3.55) along with (4.5) gives

P (+)(x, λk)

(
dvk
dt
− iλ4kΩvk

)
= 0 for k, j ∈ {1, 2, ..., N}. (4.11)
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In the same way by using (4.6) and the adjoint spectral equations (3.61) and (3.62), one can prove that

(
dv̂k
dx

+ iλ̂kv̂kΛ

)
P (−)(x, λ̂k) = 0, (4.12)

and (
dv̂k
dt

+ iλ̂4kv̂kΩ

)
P (−)(x, λ̂k) = 0. (4.13)

As vk is a single vector in the kernel of P (+), so dvk
dx − iλkΛvk and dvk

dt − iλ
4
kΩvk are scalar multiples of vk.

This permits one to obtain

vk(x, t) = eiλkΛx+iλ
4
kΩtwk for k ∈ {1, 2, ..., N}. (4.14)

In the same way, we will have for P (−),

v̂k(x, t) = ŵke
−iλ̂kΛx−iλ̂4kΩt for k ∈ {1, 2, ..., N}, (4.15)

where the column vector wk and the row vector ŵk are constants.

Now from (4.5) and using (3.118), we get

vTk (x,−t,−λk)(P (+))T (x,−t,−λk) = vTk (x,−t,−λk)CP (−)(x, t, λk)C
−1 = 0 for k ∈ {1, 2, ..., N}.

(4.16)

Because vTk (x,−t,−λk)CP (−)(x, t, λk) could be zero and using (4.6) leads to

vTk (x,−t,−λk)CP (−)(x, t, λk) = v̂k(x, t, λ̂k)P
(−)(x, t, λ̂k) = v̂k(x, t,−λ̂k)P (−)(x, t,−λ̂k) = 0.

(4.17)

As λ̂k = −λk from (4.4), then we can take

v̂k(x, t,−λ̂k) = vTk (x,−t,−λk)C for k ∈ {1, 2, ..., N}. (4.18)
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These involution relations give

vk(x, t) = eiλkΛx+iλ
4
kΩtwk for k ∈ {1, 2, ..., N}, (4.19)

v̂k(x, t) = wTk e
−iλ̂kΛx−iλ̂4kΩtC for k ∈ {1, 2, ..., N}. (4.20)

4.2 Recovery of potentials

The jump matrix being G = I4 allows to recover the potential P from the generalized matrix Jost eigen-

functions. Because P (+) is analytic, we can expand G(+) as λ→∞ in this form at order 2,

G(+)(x, λ) = I4 +
1

λ
G

(+)
1 (x) +O(

1

λ2
) when λ→∞. (4.21)

Because G(+) satisfies the spectral problem, substituting it into (3.54) and matching the coefficients of the

same powers of 1
λ , at order O(1), we get

P = −[Λ,G
(+)
1 ]. (4.22)

If

G
(+)
1 =



(G
(+)
1 )11 (G

(+)
1 )12 (G

(+)
1 )13 (G

(+)
1 )14

(G
(+)
1 )21 (G

(+)
1 )22 (G

(+)
1 )23 (G

(+)
1 )24

(G
(+)
1 )31 (G

(+)
1 )32 (G

(+)
1 )33 (G

(+)
1 )34

(G
(+)
1 )41 (G

()
1 )42 (G

(+)
1 )43 (G

(+)
1 )44


, (4.23)

then

P = −[Λ,G
(+)
1 ] =



0 −α(G
(+)
1 )12 −α(G

(+)
1 )13 −α(G

(+)
1 )14

α(G
(+)
1 )21 0 0 0

α(G
(+)
1 )31 0 0 0

α(G
(+)
1 )41 0 0 0


. (4.24)

As a result, we can now recover the potentials pi and ri for i ∈ {1, 2, 3} as follows

p1 = −α(G
(+)
1 )12, r1 = α(G

(+)
1 )21,

p2 = −α(G
(+)
1 )13, r2 = α(G

(+)
1 )31, (4.25)

p3 = −α(G
(+)
1 )14, r3 = α(G

(+)
1 )41.
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Also, from (4.21), we have

G
(+)
1 = λ lim

λ→∞
(G(+)(x, λ)− I4), (4.26)

and so from (4.7) we deduce that

G
(+)
1 = −

N∑
k,j=1

vk(M
−1)k,j v̂j . (4.27)

From (3.34) and (4.22), we easily prove the nonlocal involution property

(G
(+)
1 )T (x,−t) = CG

(+)
1 (x, t)C−1. (4.28)

Proof: From (4.22), we get

P (x, t) = −[Λ,G
(+)
1 (x, t)], (4.29)

P (x,−t) = −(ΛG
(+)
1 (x,−t)−G(+)

1 (x,−t)Λ), (4.30)

P T (x,−t) = −((G
(+)
1 )T (x,−t)Λ− Λ(G

(+)
1 )T (x,−t)), (4.31)

P T (x,−t) = [Λ, (G
(+)
1 )T (x,−t)]. (4.32)

Using (3.34) and (4.29), we get

P T (x,−t) = −CP (x, t)C−1, (4.33)

P T (x,−t) = C[Λ,G
(+)
1 (x, t)]C−1, (4.34)

P T (x,−t) = [Λ,CG
(+)
1 (x, t)C−1]. (4.35)

We deduce from (5.32) and (5.35) that

(G
(+)
1 )T (x,−t) = CG

(+)
1 (x, t)C−1. (4.36)

Hence, we has this nonlocal involution property

(G(+))T (x,−t,−λ) = C(G(−))−1(x,−t, λ)C−1. (4.37)
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Proof: We have from (4.7),

G(+)(x, t, λ) = I4 −
N∑

k,j=1

vk(x, t, λk)(M
−1)kj(x, t)v̂j(x, t, λ̂j)

λ− λ̂j
, (4.38)

G(+)(x,−t,−λ) = I4 −
N∑

k,j=1

vk(x,−t, λk)(M−1)kj(x,−t)v̂j(x,−t, λ̂j)
−λ− λ̂j

, (4.39)

(G(+))T (x,−t,−λ) = I4 −
N∑

k,j=1

v̂Tj (x,−t, λ̂j)(M−1)Tkj(x,−t)vTk (x,−t, λk)
−λ − λ̂j

. (4.40)

We have first from (4.18),

v̂k(x, t,−λ̂k) = vTk (x,−t,−λk)C for k ∈ {1, 2, ..., N}, (4.41)

v̂k(x,−t, λ̂k) = vTk (x, t,−λk)C, (4.42)

as λ̂k = −λk,

v̂k(x,−t, λ̂k) = vTk (x, t, λ̂k)C, (4.43)

v̂Tk (x,−t, λ̂k) = Cvk(x, t, λk). (4.44)

Secondly, using (4.9) and (4.43) and (4.44), we obtain

(M−1)Tkj(x,−t) = (MT )−1kj (x,−t)

=
[( v̂k(x,−t, λ̂k)vj(x,−t, λj)

λj − λ̂k

)T ]−1
=
(vTj (x,−t, λj)v̂Tk (x,−t, λ̂k)

λj − λ̂k

)−1
=
(vTj (x,−t, λj)CC−1v̂Tk (x,−t, λ̂k)

λj − λ̂k

)−1
=
( v̂j(x, t, λ̂j)vk(x, t, λk)

λk − λ̂j

)−1
= (M−1)Tjk(x, t).

(4.45)

Finally, from (4.40),

(G(+))T (x,−t,−λ) = I4 −
N∑

k,j=1

v̂Tj (x,−t, λ̂j)(M−1)Tkj(x,−t)vTk (x,−t, λk)
−λ − λ̂j

, (4.46)

58



and substituting (4.44) and (4.45), into (4.46), and using the fact that λ̂j = −λj , we obtain

(G(+))T (x,−t,−λ) = I4 −
N∑

k,j=1

Cvj(x, t, λj)(M
−1)jk(x, t)v̂k(x, t, λk)C

−1

−λ+ λj
, (4.47)

(G(+))T (x,−t,−λ) = C
(
I4 +

N∑
k,j=1

vj(x, t, λj)(M
−1)jk(x, t)v̂k(x, t, λk)C

−1

λ− λj

)
C−1. (4.48)

Interchanging k and j into (4.48), we get

(G(+))T (x,−t,−λ) = C
(
I4 +

N∑
k,j=1

vk(x, t, λk)(M
−1)kj(x, t)v̂j(x, t, λj)C

−1

λ− λk

)
C−1. (4.49)

As a result,

(G(+))T (x,−t,−λ) = C(G(−))−1C−1. (4.50)

Using the above equations along with (4.20) and (4.19) will generate the N -soliton solution to the nonlocal

reverse-time six-component AKNS system of fourth-order as follows:

pi = α
N∑

k,j=1

vk1(M
−1)kj v̂j,i+1 for i ∈ {1, 2, 3}, (4.51)

where vk = (vk1, vk2, vk3, ..., vkn+1)
T , v̂k = (v̂k1, v̂k2, v̂k3, ..., v̂kn+1).

4.3 Exact soliton solutions and their dynamics

4.3.1 One-soliton solution

A general explicit solution for a single-soliton in the reverse-time case when N = 1, w1 =

(w11, w12, w13, w14)
T , λ1 ∈ C is arbitrary, and λ̂1 = −λ1 is given by

p1(x, t) =
2ρ2ρ3λ1(α1 − α2)w11w12e

iλ1(α1+α2)x+iλ41(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x
, (4.52)

p2(x, t) =
2ρ1ρ3λ1(α1 − α2)w11w13e

iλ1(α1+α2)x+iλ41(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x
, (4.53)

p3(x, t) =
2ρ1ρ2λ1(α1 − α2)w11w14e

iλ1(α1+α2)x+iλ41(β1−β2)t

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x
. (4.54)
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We can get the amplitude of p1:

|p1(x, t)| = 2e−Im(λ41(β1−β2)t+λ1(α1+α2)x)

×

∣∣∣∣∣ λ1ρ2ρ3(α1 − α2)w11w12

ρ1ρ2ρ3w2
11e

2iλ1α1x + (ρ2ρ3w2
12 + ρ1ρ3w2

13 + ρ1ρ2w2
14)e

2iλ1α2x

∣∣∣∣∣.
(4.55)

About the dynamics of the one-soliton, we can see from p1 that there is no speed, i.e. the soliton is not

a travelling wave. By choosing any arbitrary constant x = x0, β1 − β2 < 0 and λ1 /∈ iR in |p1(x, t)|

we see that the soliton’s amplitude grows exponentially if Im(λ41) > 0, while it decays exponentially if

Im(λ41) < 0, but when Im(λ41) = 0 the amplitude is constant over the time. If we choose x = x0 and

λ1 ∈ iR we have a constant amplitude for the soliton, indeed.

In this reverse-time case, any one-soliton does not collapse, either it strictly increases, decreases or stays

constant.

From the spectral plane, let λ1 = ξ + iη = reiθ, where r > 0 and 0 < θ < 2π then:

if



θ ∈ (0, π4 ) ∪ (π2 ,
3π
4 ) ∪ (π, 5π4 ) ∪ (3π2 ,

7π
4 ), then the amplitude of the soliton is increasing,

θ ∈ (π4 ,
π
2 ) ∪ (3π4 , π) ∪ (5π4 ,

3π
2 ) ∪ (7π4 , 2π), the amplitude of the soliton is decreasing,

θ ∈ {π4 ,
π
2 ,

3π
4 ,

5π
4 ,

3π
2 ,

7π
4 }, the amplitude of the soliton is constant,

θ ∈ {0, π, 2π}, we obtain one breather with constant amplitude.
(4.56)

This illustration is shown by the figure below.
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Figure 3.: Spectral plane of eigenvalues.

Let us graph the one-soliton solution. When λ1 does not lie on the real axis (η = 0), the imaginary

axis (ξ = 0) or the bisectors (η = ±ξ) , the amplitude of the potential grows or decays exponentially, if

Im(λ41) > 0 or Im(λ41) < 0 respectively. Two examples are illustrated in Figure 4 and Figure 5, where we

have growing and decaying amplitudes.

When Im(λ41) = 0 the amplitude does not change. In that case, λ1 lies on the imaginary axis, the

bisectors or the real axis. If λ1 lies on the imaginary axis or on the bisectors, then we have a fundamental

soliton (figure 6), whereas if λ1 ∈ R, then we have a periodic one-soliton with period π
λ1(α1−α2)

which is a

breather (figure 7).

Figure 4.: Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton in the focusing case
with parameter values ρ1 = −1, ρ2 = −2, ρ3 = −1, λ1 = −0.01 + i, α1 = −1, α2 = 1, β1 = −1, β2 = 1,
w1 = (1, i, 2 + i, 1)T . The 2D plot is for time values, t=0, 2 and 4.
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Figure 5.: Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton with parameter values
ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 0.01 + i, α1 = −1, α2 = 1, β1 = −1, β2 = 1, w1 = (1, i, 2 + i, 1)T . The
2D plot is for time values, t=0, 2 and 4.

Figure 6.: Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton with parameter values
ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 2i, α1 = −1, α2 = 1, β1 = −1, β2 = 1, w1 = (1, i, 2 + i, 1)T . The 2D plot
is for any time value.

Figure 7.: Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton with parameter values
ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 0.5, α1 = −1, α2 = 1, β1 = −1, β2 = 1, ρ = 1, w1 = (1, i, 2 + i, 1)T . The
2D plot is for any time value.
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4.3.2 Two-soliton solution

A general explicit two-soliton solution in the reverse-time case when N = 2, w1 = (w11, w12, w13, w14)
T ,

w2 = (w21, w22, w23, w24)
T , (λ1, λ2) ∈ C2 are arbitrary, and λ̂1 = −λ1, λ̂2 = −λ2, is given if λ1 6= −λ2

by

p1(x, t) = 2ρ2ρ3(λ1 + λ2)(α1 − α2)
A(x, t)

B(x, t)
, (4.57)

p2(x, t) = 2ρ1ρ3(λ1 + λ2)(α1 − α2)
C(x, t)

B(x, t)
, (4.58)

p3(x, t) = 2ρ1ρ2(λ1 + λ2)(α1 − α2)
D(x, t)

B(x, t)
, (4.59)

where

A(x, t) = ei[λ
4
2(β1−β2)t+λ2(α1+α2)x]·

[(
w22M(λ1 + λ2)− 2w12Kλ1

)
w21λ2e

2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w2
11w21w22λ2e

2α1λ1x

]
+ei[λ

4
1(β1−β2)t+λ1(α1+α2)x]·

[(
w12N(λ1 + λ2)− 2w22Kλ2

)
w11λ1e

2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w12w
2
21λ1e

2α1λ2x

]
,

B(x, t) = −4ρ1ρ2ρ3λ1λ2w11w21Ke
i(λ1+λ2)(α1+α2)x ·

[
ei(λ

4
1−λ42)(β1−β2)t + e−i(λ

4
1−λ42)(β1−β2)t

]
+ ρ1ρ2ρ3w

2
21M(λ1 + λ2)

2ei2(α1λ2+α2λ1)x + ρ1ρ2ρ3w
2
11N(λ1 + λ2)

2ei2(α1λ1+α2λ2)x

+ ρ21ρ
2
2ρ

2
3w

2
11w

2
21(λ1 − λ2)2ei2α1(λ1+λ2)x +

[
(λ21 + λ22)MN + (2MN − 4K2)λ1λ2

]
ei2α2(λ1+λ2)x,

C(x, t) = ei[λ
4
2(β1−β2)t+λ2(α1+α2)x]·

[(
w23M(λ1 + λ2)− 2w13Kλ1

)
w21λ2e

2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w2
11w21w23λ2e

2α1λ1x

]
+ei[λ

4
1(β1−β2)t+λ1(α1+α2)x]·

[(
w13N(λ1 + λ2)− 2w23Kλ2

)
w11λ1e

2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w13w
2
21λ1e

2α1λ2x

]
,
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D(x, t) = ei[λ
4
2(β1−β2)t+λ2(α1+α2)x]·

[(
w24M(λ1 + λ2)− 2w14Kλ1

)
w21λ2e

2α2λ1x

− ρ1ρ2ρ3(λ1 − λ2)w2
11w21w24λ2e

2α1λ1x

]
+ei[λ

4
1(β1−β2)t+λ1(α1+α2)x]·

[(
w14N(λ1 + λ2)− 2w24Kλ2

)
w11λ1e

2α2λ2x

+ ρ1ρ2ρ3(λ1 − λ2)w11w14w
2
21λ1e

2α1λ2x

]
,

and M = ρ2ρ3w
2
12 + ρ1ρ3w

2
13 + ρ1ρ2w

2
14, N = ρ2ρ3w

2
22 + ρ1ρ3w

2
23 + ρ1ρ2w

2
24 and K = ρ2ρ3w12w22 +

ρ1ρ3w13w23 + ρ1ρ2w14w24. About the dynamics of two-soliton solutions, a lot of phenomena could occur.

Two solitons can travel in the same direction [46] or in opposite directions. In the present nonlocal case,

either the two solitons move (repeatedly or not) in opposite directions or one moves while the other stays

stationary or both are stationary.

Now, since λ1 6= −λ2, let λ1 = ξ + iη and λ2 = ξ′ + iη′. If λ1 = ±a± ib, λ2 = ±a± ib where a 6= b and

a 6= 0, b 6= 0 that means both λ1 and λ2 are symmetric with respect to the real axis or the imaginary axis,

then the two solitons will be collapsing repeatedly or non-collapsing while moving in opposite directions.

Each keeping the same amplitude before and after interaction (see Figure 8), or both keep their amplitude

before interaction, but the amplitude changes after the collision to a new constant amplitude (as illustrated

in Figure 9), depending on the choice of w1,w2.

Figure 8.: Spectral plane along with 3D plot and 2D plots of |p1| of the two travelling waves in the focussing
case with parameter values ρ1 = −1, ρ2 = −2, ρ3 = −3, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i, α1 = −2,
α2 = 1, β1 = −2, β2 = 1, w1 = (1− 0.5i, 1 + 3i,−i, 1 + i)T and w2 = (−1 + 2i, 1− 1.5i, i, 1− i)T . The
2D plot is for time values t = −0.8, 0, 0.8.
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Figure 9.: Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton with parameter values
ρ1 = −1, ρ2 = 1, ρ3 = −1, λ1 = −0.4 + 0.8i, λ2 = 0.4 + 0.8i, α1 = −2, α2 = 1, β1 = −2, β2 = 1,
w1 = (1, 1 − i,−0.1 + i, 1 + i)T and w2 = (−1 + 2i, 1 − 0.1i, 3 + i, 0)T . The 2D plot is for time values
t = −4, 0, 6.

We may have the case of two soliton waves moving in opposite directions, and after interaction they get

embedded into a single wave (figure 10). Also, we can have the case where one soliton unfolds to two

soliton waves [21] (figure 11). The choice of those eigenvalues may be helpful in explaining some physical

phenomena [22].

Figure 10.: Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton with parameter values
ρ1 = −1, ρ2 = −1, ρ3 = −1, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i, α1 = −2, α2 = 1, β1 = −2, β2 = 1,
w1 = (1, 0,−0.1+ i, 1+ i)T and w2 = (−1, 1−2i, 3+ i, 0)T . The 2D plot is for time values t = −2, 0, 1.5.

Figure 11.: Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton with parameter values
ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 1 + 1.5i, λ2 = −1 + 1.5i, α1 = −2, α2 = 1, β1 = −2, β2 = 1,
w1 = (1, 0,−2− i, 1− i)T and w2 = (−1, 1− 2i, 3− i, 0)T . The 2D plot is for time values t = −0.6, 0, 1.
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Remark 4.3.1. We notice that figures (9), (10) and (11) resemble the collision of two Manakov solitons

[9, 23].

If b = a, we have λ1 = ±a± ia, λ2 = ±a± ia, still λ1, λ2 are symmetric with respect to the real axis or

imaginary axis and they lie on the bisectors, then the two solitons will be stationary and will have constant

amplitudes. For the other choices of λ1, λ2, if both lie anywhere on the real axis, imaginary axis or the

bisectors where both are not real, that means



λ1 = ±a+ ia, λ2 = ±b+ ib, i.e., both lie on the same bisector or each on different bisector,

λ1 = ±a+ ia, λ2 = ib, i.e., one lies on a bisector and the other one on the imaginary axis,

λ1 = ±a+ ia, λ2 = b, i.e., one lies on a bisector and the other one on the real axis,

λ1 = ia, λ2 = ib, i.e., both lie on the imaginary axis,

λ1 = a, λ2 = ib, i.e., one on the real axis while the other lies on the imaginary axis,

then the two solitons could be non-collapsing or collapsing repeatedly and/or periodically creating a standing

state wave (as shown in Figure 12). Whereas if both λ1, λ2 are real, i.e., λ1 = a, λ2 = b, we have two

breather periodic waves with period 2π
(λ41−λ42)(β1−β2)

in a standing state (see Figure 13).

Figure 12.: Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton with parameter
values ρ1 = −1, ρ2 = 1, ρ3 = −1, λ1 = 2i, λ2 = −0.6 + 0.6i, α1 = −2, α2 = 1, β1 = −2, β2 = 1,
w1 = (1, 0,−0.1+i, 1+i)T andw2 = (−1, 1−2i, 3+i, 0)T . The 2D plot is for time values t = −10, 0, 20.
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Figure 13.: Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton with parameter
values ρ1 = −1, ρ2 = −1, ρ3 = −1, λ1 = 1, λ2 = 2, α1 = −2, α2 = 1, β1 = −2, β2 = 1,
w1 = (1, 0, 2 + i, 1− i)T and w2 = (−1, 1− 2i,−i, 0)T . The 2D plot is for time values t = 0.8.

Remark 4.3.2. If λ1 6= −λ2 and λ1, λ2 are symmetric about the real axis, the imaginary axis or the bisectors

or also if each lies anywhere on the real axis, the imaginary axis or the bisectors, then Im(λ41 + λ42) = 0.

Remark 4.3.3. If Im(λ41 + λ42) = 0, and |λ1|4 = |λ2|4 then λ1, λ2 are symmetric about the real axis, the

imaginary axis or the bisectors.

If Im(λ41) = 0 and Im(λ42) = 0, then this means that each of λ1 and λ2 lies on one of the real axis, the

imaginary axis or the bisectors.

Remark 4.3.4. If λ1, λ2 are symmetric about the bisectors, then the dynamics of the two solitons is different

from when the two eigenvalues are symmetric about the η-axis (or ξ-axis).

We can notice that any λ1 and λ2 satisfying any condition mentioned previously will satisfy Im(λ41 +

λ42) = 0 as well. If λ1 and λ2 are symmetric with respect to the bisectors, i.e., λ1 = a+ bi, λ2 = b+ ai or

λ1 = a + bi, λ2 = −b − ai, then they still satisfy Im(λ41 + λ42) = 0, but the dynamics of the two solitons

will be different from what was discussed previously.

Now, if λ1 and λ2 do not satisfy any of the above conditions, then the two solitons move in opposite

directions and could collapse repeatedly, where they will be decreasing or increasing over the time (see

Figure 14).
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Figure 14.: Spectral plane along with 3D plot and 2D plots of |p1| of the two-soliton with parameter values
ρ1 = −1, ρ2 = −1, ρ3 = −1, λ1 = 0.1 + i, λ2 = −0.3 + 0.5i, α1 = −2, α2 = 1, β1 = −2, β2 = 1,
w1 = (1 + i, 1− 3i, 2 + i, 1− i)T and w2 = (−1 + i, 1 + 3i, 2− i, 1 + i)T . The 2D plot is for time values
t = −2, 0, 2, 3, 5, 7.

4.3.3 Three-soliton solution

The 3-soliton solution is given, for which N = 3, w1 = (w11, w12, w13, w14)
T , w2 =

(w21, w22, w23, w24)
T , w3 = (w31, w32, w33, w34)

T , (λ1, λ2, λ3) ∈ C3, and λ̂1 = −λ1, λ̂2 = −λ2,

λ̂3 = −λ3, by

p1 = α

3∑
k,j=1

vk1(M
−1)kj v̂j,2, (4.60)

p2 = α
3∑

k,j=1

vk1(M
−1)kj v̂j,3, (4.61)

p3 = α
3∑

k,j=1

vk1(M
−1)kj v̂j,4. (4.62)

For the 3-solitons, if λi = −λj for i 6= j, i, j ∈ {1, 2, 3}, then we have the 1-soliton dynamics. Also, if two

of {λ1, λ2, λ3} are equal, then we have the dynamics of the 2-solitons.

Let λ1 = ξ + iη, λ2 = ξ′ + iη′ and λ3 = ξ′′ + iη′′. If two of the eigenvalues are symmetric about the real

axis, the imaginary axis and the other eigenvalue lie on the real axis, the imaginary axis or on the bisectors

then we have two solitons collapsing repeatedly or non-collapsing moving in opposite directions, while the

third one stays stationary. Either each keeps the same amplitude before and after interaction (see Figure 15),

or they keep their amplitudes before interaction, but their amplitudes change at the collision moment to new

constant amplitudes (illustration in Figure 16), depending on the choice of w1,w2.
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Figure 15.: Spectral plane along with 3D plot and 2D plots of |p1| for two travelling waves and a constant-
amplitude stationary wave with parameter values ρ1 = 1, ρ2 = 1, ρ3 = 1 λ1 = 1.2+0.5i, λ2 = −1.2+0.5i,
λ3 = 2i, α1 = −2, α2 = 1, β1 = −2, β2 = 1, w1 = (−1.5 + 2i, 2− 3i, i, 1− i)T and w2 = (3 + 2i,−1 +
3i,−i, 1 + i)T , w3 = (1, 1, 2, 1)T . The 2D plot is for time values, t=-0.5,0,0.5.

Figure 16.: Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton with parameter
values ρ1 = −0.5, ρ2 = −0.5, ρ3 = −0.5, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i, λ3 = 0.8i, α1 = −2, α2 = 1,
β1 = −2, β2 = 1, w1 = (1, i, 3 + i, 1− i)T , w2 = (−1, 1− 3i,−i, 0)T , w3 = (2 + i, 1 + 2i, 1, 2i)T . The
2D plot is for time values, t=-2,0,2.5.

We can also have two other different cases of interaction. The first case is where the 3-soliton after

interaction are embedded into 2-soliton (figure 17). The second case happens when the two solitons after in-

teraction unfold to 3-soliton (figure 18). As said before, those phenomena may be relevant to some nonlinear

problems in applied physics.

Figure 17.: Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton with parameter
values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i, λ3 = 0.75 + 0.75i, α1 = −2, α2 = 1,
β1 = −2, β2 = 1, w1 = (1, 0, 2 + i, 1− i)T , w2 = (−1, 1− 2i,−i, 0)T , w3 = (2 + i, 1 + 2i, 1, 2i)T . The
2D plot is for time values, t=-2.5,0,2.
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Figure 18.: Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton with parameter
values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = −1 + 0.5i, λ2 = 1 + 0.5i, λ3 = 0.75 + 0.75i, α1 = −2, α2 = 1,
β1 = −2, β2 = 1, w1 = (1, 0, 2 + i, 1− i)T , w2 = (−1, 1− 2i,−i, 0)T , w3 = (2 + i, 1 + 2i, 1, 2i)T . The
2D plot is for time values, t=-2,0,2.5.

If λ1, λ2, λ3 are all real, then we have breather solitons as shown in figure 19. Otherwise, if λ1, λ2, λ3

are not all real lying on the real axis, the imaginary axis or the bisectors, we will have 3 solitons collapsing

repeatedly in a standing state.

If two of the λ1, λ2, λ3 are symmetric (but not real) about the η-axis (or ξ-axis) and the third one lies

off of the real axis, the imaginary axis, and the bisectors, then we can have three solitons interacting, with

2 solitons moving in opposite directions with constant amplitudes. After collision, their amplitudes change,

but still stay constant, while the third soliton is stationary and its amplitude is either increasing or decreasing

as shown in figure 20.

If λ1, λ2, λ3 all lie off the real axis, the imaginary axis, and the bisectors, or one of them is real or two

of them are real, then we have two solitons that could repeatedly collapse or non-collapse decreasingly or

increasingly in their motion while the third one stays stationary, as in Figure 21.

Figure 19.: Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton with parameter
values ρ1 = 1, ρ2 = 1, ρ3 = 1, λ1 = 1, λ2 = −2, λ3 = 0.5, α1 = −2, α2 = 1, β1 = −2, β2 = 1,
w1 = (1, 0, 2 + i, 1− i)T , w2 = (−1, 1− 2i,−i, 0)T , w3 = (1 + i, 1 + 2i, 0, 2i)T . The 2D plot is for time
values, t=0.5.
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Figure 20.: Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton with parameter
values ρ1 = 2, ρ2 = 2, ρ3 = 2, λ1 = 1 + 0.5i, λ2 = −1 + 0.5i, λ3 = 0.04 + i, α1 = −2, α2 = 1, β1 = −2,
β2 = 1, w1 = (1− 2i, 1 + 3i,−i, 1 + i)T , w2 = (−1 + 2i, 1− 3i, i, 1− i)T , w3 = (1 + i, 1 + 2i, 0, 2i)T .
The 2D plot is for time values, t=-2.5,0,2.

Figure 21.: Spectral plane along with 3D plot and 2D plots of |p1| of the three-soliton with parameter
values ρ1 = −1, ρ2 = −1, ρ3 = −1, λ1 = 0.1 + i, λ2 = −0.3 + 0.5i, λ3 = −0.2 + 0.7i, α1 = −2, α2 = 1,
β1 = −2, β2 = 1, w1 = (2, 2i, 2 + i, 1− i)T , w2 = (−1, 1− 2i,−i, 0)T , w3 = (−1 + i,−1 + 2i, 0,−2i)T .
The 2D plot is for time values, t=-10,0,10.
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Chapter 5

Inverse scattering of a nonlocal reverse-time nonlinear Schrödinger-type

equation based on Riemann-Hilbert problems

5.1 Eight-component AKNS hierarchy of coupled second-order integrable equations

We start from the spatial spectral problem of fourth-order

−iψx = U(u, λ)ψ, (5.1)

where

U(u, λ) =



α1λ 0

0 α1λ

p1 p2

p3 p4

r1 r2

r3 r4

α2λ 0

0 α2λ


, (5.2)

and u = (p, rT )T , p = (p1, p2, p3, p4), r = (r1, r2, r3, r4)
T , where the pi, ri are potentials and α1, α2 are

real, and λ is a spectral parameter, and ψ = (ψ1, ψ2, ψ3, ψ4)
T . We need to find the temporal Lax matrix and

the associated multi-component integrable system.

Let’s solve the stationary zero curvature equation (3.3), where

W =



a11 a12

a21 a22

b1 b2

b3 b4

c1 c2

c3 c4

d11 d12

d21 d22


. (5.3)

72



Solving it, we obtain



a11,x = i(−b1r1 − b2r3 + c1p1 + c3p2),

a12,x = i(−b1r2 − b2r4 + c2p1 + c4p2),

a21,x = i(−b3r1 − b4r3 + c1p3 + c3p4),

a22,x = i(−b3r2 − b4r4 + c2p3 + c4p4),

(5.4)



b1,x = i(λαb1 − a11p1 − a12p3 + d11p1 + d21p2),

b2,x = i(λαb2 − a11p2 − a12p4 + d12p1 + d22p2),

b3,x = i(λαb3 − a21p1 − a22p3 + d11p3 + d21p4),

b4,x = i(λαb4 − a21p2 − a22p4 + d12p3 + d22p4),

(5.5)



c1,x = i(−λαc1 + a11r1 + a21r2 − d11r1 − d12r3),
c2,x = i(−λαc2 + a12r1 + a22r2 − d11r2 − d12r4),
c3,x = i(−λαc3 + a11r3 + a21r4 − d21r1 − d22r3),
c4,x = i(−λαc4 + a12r3 + a22r4 − d21r2 − d22r4),

(5.6)



d11,x = i(b1r1 + b3r2 − c1p1 − c2p3),
d12,x = i(b2r1 + b4r2 − c1p2 − c2p4),
d21,x = i(b1r3 + b3r4 − c3p1 − c4p3),
d22,x = i(b2r3 + b4r4 − c3p2 − c4p4).

(5.7)

By expanding W in Laurent series form,

W =
∞∑
j=0

Wmλ
−m with Wm =



a
[m]
11 a

[m]
12

a
[m]
21 a

[m]
22

b
[m]
1 b

[m]
2

b
[m]
3 b

[m]
4

c
[m]
1 c

[m]
2

c
[m]
3 c

[m]
4

d
[m]
11 d

[m]
12

d
[m]
21 d

[m]
22


, (5.8)
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the system (5.4)− (5.7) is equivalent to the recursion relations:



b
[0]
1 = b

[0]
2 = b

[0]
3 = b

[0]
4 = 0,

c
[0]
1 = c

[0]
2 = c

[0]
3 = c

[0]
4 = 0,

a
[0]
11,x = a

[0]
12,x = a

[0]
21,x = a

[0]
22,x = 0,

d
[0]
11,x = d

[0]
12,x = d

[0]
21,x = d

[0]
22,x = 0,

(5.9)



b
[m+1]
1 = 1

α(−ib[m]
1,x + a

[m]
11 p1 + a

[m]
12 p3 − d

[m]
11 p1 − d

[m]
21 p2),

b
[m+1]
2 = 1

α(−ib[m]
2,x + a

[m]
11 p2 + a

[m]
12 p4 − d

[m]
12 p1 − d

[m]
22 p2),

b
[m+1]
3 = 1

α(−ib[m]
3,x + a

[m]
21 p1 + a

[m]
22 p3 − d

[m]
11 p3 − d

[m]
21 p4),

b
[m+1]
4 = 1

α(−ib[m]
4,x + a

[m]
21 p2 + a

[m]
22 p4 − d

[m]
12 p3 − d

[m]
22 p4),

(5.10)



c
[m+1]
1 = 1

α(ic
[m]
1,x + a

[m]
11 r1 + a

[m]
21 r2 − d

[m]
11 r1 − d

[m]
12 r3),

c
[m+1]
2 = 1

α(ic
[m]
2,x + a

[m]
12 r1 + a

[m]
22 r2 − d

[m]
11 r2 − d

[m]
12 r4),

c
[m+1]
3 = 1

α(ic
[m]
3,x + a

[m]
11 r3 + a

[m]
21 r4 − d

[m]
21 r1 − d

[m]
22 r3),

c
[m+1]
4 = 1

α(ic
[m]
4,x + a

[m]
12 r3 + a

[m]
22 r4 − d

[m]
21 r2 − d

[m]
22 r4),

(5.11)



a
[m]
11,x = i(−b[m]

1 r1 − b[m]
2 r3 + c

[m]
1 p1 + c

[m]
3 p2),

a
[m]
12,x = i(−b[m]

1 r2 − b[m]
2 r4 + c

[m]
2 p1 + c

[m]
4 p2),

a
[m]
21,x = i(−b[m]

3 r1 − b[m]
4 r3 + c

[m]
1 p3 + c

[m]
3 p4),

a
[m]
22,x = i(−b[m]

3 r2 − b[m]
4 r4 + c

[m]
2 p3 + c

[m]
4 p4), for m ∈ {1, 2, 3},

(5.12)
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

d
[m]
11,x = i(b

[m]
1 r1 + b

[m]
3 r2 − c[m]

1 p1 − c[m]
2 p3),

d
[m]
12,x = i(b

[m]
2 r1 + b

[m]
4 r2 − c[m]

1 p2 − c[m]
2 p4),

d
[m]
21,x = i(b

[m]
1 r3 + b

[m]
3 r4 − c[m]

3 p1 − c[m]
4 p3),

d
[m]
22,x = i(b

[m]
2 r3 + b

[m]
4 r4 − c[m]

3 p2 − c[m]
4 p4), for m ∈ {1, 2, 3}.

(5.13)

Now by fixing the following initial values:


a
[0]
11 = β1, a

[0]
12 = 0, a

[0]
21 = 0, a

[0]
22 = β1,

d
[0]
11 = β2, d

[0]
12 = 0, d

[0]
21 = 0, d

[0]
22 = β2,

(5.14)

where β1, β2 are real arbitrary constants, and taking the constant of integration in (5.12) and (5.13) to be

zero, it requires that

Wm|u=0 = 0, m ∈ {1, 2, 3}. (5.15)

Upon using (5.9)–(5.13), this allows to generate



b
[1]
1 = β

αp1, b
[1]
2 = β

αp2, b
[1]
3 = β

αp3, b
[1]
4 = β

αp4,

c
[1]
1 = β

αr1, c
[1]
2 = β

αr2, c
[1]
3 = β

αr3, c
[1]
4 = β

αr4,

a
[1]
11 = 0, a

[1]
12 = 0, a

[1]
21 = 0, a

[1]
22 = 0,

d
[1]
11 = 0, d

[1]
12 = 0, d

[1]
21 = 0, d

[1]
22 = 0,

(5.16)



b
[2]
1 = −i β

α2 p1,x, b
[2]
2 = −i β

α2 p2,x, b
[2]
3 = −i β

α2 p3,x, b
[2]
4 = −i β

α2 p4,x,

c
[2]
1 = i β

α2 r1,x, c
[2]
2 = i β

α2 r2,x, c
[2]
3 = i β

α2 r3,x, c
[2]
4 = i β

α2 r4,x,

a
[2]
11 = − β

α2 (p1r1 + p2r3), a
[2]
12 = − β

α2 (p1r2 + p2r4),

a
[2]
21 = − β

α2 (p3r1 + p4r3), a
[2]
22 = − β

α2 (p3r2 + p4r4),

d
[2]
11 = β

α2 (p1r1 + p3r2), d
[2]
12 = β

α2 (p2r1 + p4r2),

d
[2]
21 = β

α2 (p1r3 + p3r4), d
[2]
22 = β

α2 (p4r4 + p2r3),

(5.17)
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

b
[3]
1 = − β

α3 p1,xx + 2(p21r1 + p1p2r3 + p1p3r2 + p2p3r4),

b
[3]
2 = − β

α3 p2,xx + 2(p22r3 + p1p2r1 + p2p4r4 + p1p4r2),

b
[3]
3 = − β

α3 p3,xx + 2(p23r2 + p1p3r1 + p3p4r4 + p1p4r3),

b
[3]
4 = − β

α3 p4,xx + 2(p24r4 + p2p4r3 + p3p4r2 + p2p3r1),

c
[3]
1 = − β

α3 r1,xx + 2(r21p1 + r1r2p3 + r1r3p2 + r2r3p4),

c
[3]
2 = − β

α3 r2,xx + 2(r22p3 + r1r2p2 + r1r4p2 + r2r4p4),

c
[3]
3 = − β

α3 r3,xx + 2(r23p2 + r1r3p1 + r3r4p4 + r1r4p3),

c
[3]
4 = − β

α3 r4,xx + 2(r24p4 + r2r3p1 + r2r4p3 + r3r4p2),

(5.18)



a
[3]
11 = −i β

α3 (p1r1,x − p1,xr1 + p2r3,x − p2,xr3),

a
[3]
12 = −i β

α3 (p1r2,x − p1,xr2 + p2r4,x − p2,xr4),

a
[3]
21 = −i β

α3 (p3r1,x − p3,xr1 + p4r3,x − p4,xr3),

a
[3]
22 = −i β

α3 (p3r2,x − p3,xr2 + p4r4,x − p4,xr4),

(5.19)



d
[3]
11 = −i β

α3 (r1p1,x − r1,xp1 + r2p3,x − r2,xp3),

d
[3]
12 = −i β

α3 (r1p2,x − r1,xp2 + r2p4,x − r2,xp4),

d
[3]
21 = −i β

α3 (r3p1,x − r3,xp1 + r4p3,x − r4,xp3),

d
[3]
22 = −i β

α3 (r3p2,x − r3,xp2 + r4p4,x − r4,xp4),

(5.20)

where β = β1 − β2 and α = α1 − α2.

By taking the modification term to be zero, the Lax matrix will be

V [2] = (λ2W )4×4, (5.21)
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and will satisfy the zero curvature equation

Ut − V [2]
x + i[U, V [2]] = 0. (5.22)

As a result, we get the multicomponent AKNS hierarchies of integrable equations:

ut =

pT
r


t

= i

αb[3]T
−αc[3]

 , (5.23)

where b[3] = (b
[3]
1 , b

[3]
2 , b

[3]
3 , b

[3]
4 ) and c[3] = (c

[3]
1 , c

[3]
2 , c

[3]
3 , c

[3]
4 )T . Thus, we derive the nonlinear system in the

corresponding soliton hierarchy:

p1,t = −i β
α2

[
p1,xx + 2(p21r1 + p1p2r3 + p1p3r2 + p2p3r4)

]
, (5.24)

p2,t = −i β
α2

[
p2,xx + 2(p22r3 + p1p2r1 + p2p4r4 + p1p4r2)

]
, (5.25)

p3,t = −i β
α2

[
p3,xx + 2(p23r2 + p1p3r1 + p3p4r4 + p1p4r3)

]
, (5.26)

p4,t = −i β
α2

[
p4,xx + 2(p24r4 + p2p4r3 + p3p4r2 + p2p3r1)

]
, (5.27)

r1,t = i
β

α2

[
r1,xx + 2(r21p1 + r1r2p3 + r1r3p2 + r2r3p4)

]
, (5.28)

r2,t = i
β

α2

[
r2,xx + 2(r22p3 + r1r2p2 + r1r4p2 + r2r4p4)

]
, (5.29)

r3,t = i
β

α2

[
r3,xx + 2(r23p2 + r1r3p1 + r3r4p4 + r1r4p3)

]
, (5.30)

r4,t = i
β

α2

[
r4,xx + 2(r24p4 + r2r3p1 + r2r4p3 + r3r4p2)

]
. (5.31)

Now one can get the Lax pair of the eight-component AKNS equations of nonlinear Schrödinger type as

follows:

ψx = iUψ = i(λΛ+ P )ψ, (5.32)

ψt = iV [2]ψ = i(λ2Ω +Q)ψ, (5.33)
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where Λ = diag(α1, α1, α2, α2), Ω = diag(β1, β1, β2, β2), and

P =



0 0

0 0

p1 p2

p3 p4

r1 r2

r3 r4

0 0

0 0


, (5.34)

Q =



a
[1]
11λ+ a

[2]
11

a
[0]
12λ

2 + a
[1]
12λ

+a
[2]
12

b
[0]
1 λ

2 + b
[1]
1 λ

+b
[2]
1

b
[0]
2 λ

2 + b
[1]
2 λ

+b
[2]
2

a
[0]
21λ

2 + a
[1]
21λ

+a
[2]
21

a
[1]
22λ+ a

[2]
22

b
[0]
3 λ

2 + b
[1]
3 λ

+b
[2]
3

b
[0]
4 λ

2 + b
[1]
4 λ

+b
[2]
4

c
[0]
1 λ

2 + c
[1]
1 λ

+c
[2]
1

c
[0]
2 λ

2 + c
[1]
2 λ

+c
[2]
2

d
[1]
11λ+ d

[2]
11

d
[0]
12λ

2 + d
[1]
12λ

+d
[2]
12

c
[0]
3 λ

2 + c
[1]
3 λ

+c
[2]
3

c
[0]
4 λ

2 + c
[1]
4 λ

+c
[2]
4

d
[0]
21λ

2 + d
[1]
21λ

+d
[2]
21

d
[1]
22λ+ d

[2]
22



, (5.35)

V [2] =



a
[0]
11λ

2 + a
[1]
11λ

+a
[2]
11

a
[0]
12λ

2 + a
[1]
12λ

+a
[2]
12

b
[0]
1 λ

2 + b
[1]
1 λ

+b
[2]
1

b
[0]
2 λ

2 + b
[1]
2 λ

+b
[2]
2

a
[0]
21λ

2 + a
[1]
21λ

+a
[2]
21

a
[0]
22λ

2 + a
[1]
22λ

+a
[2]
22

b
[0]
3 λ

2 + b
[1]
3 λ

+b
[2]
3

b
[0]
4 λ

2 + b
[1]
4 λ

+b
[2]
4

c
[0]
1 λ

2 + c
[1]
1 λ

+c
[2]
1

c
[0]
2 λ

2 + c
[1]
2 λ

+c
[2]
2

d
[0]
11λ

2 + d
[1]
11λ

+d
[2]
11

d
[0]
12λ

2 + d
[1]
12λ

+d
[2]
12

c
[0]
3 λ

2 + c
[1]
3 λ

+c
[2]
3

c
[0]
4 λ

2 + c
[1]
4 λ

+c
[2]
4

d
[0]
21λ

2 + d
[1]
21λ

+d
[2]
21

d
[0]
22λ

2 + d
[1]
22λ

+d
[2]
22



. (5.36)
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5.2 A specific reduction for a nonlocal reverse-time AKNS system

Consider a class of specific nonlocal reverse-time reductions for the spatial spectral matrix

UT (x,−t,−λ) = −CU(x, t, λ)C−1, (5.37)

where C =

Σ1 0

0 Σ2

, where Σ1, Σ2 are constant invertible symmetric 2 × 2 matrices, i.e., ΣT
i = Σi

and detΣi 6= 0 for i ∈ {1, 2}.

From (5.37), one gets

P T (x,−t) = −CP (x, t)C−1. (5.38)

Thus from (5.38), we deduce

r(x, t) = −Σ−12 pT (x,−t)Σ1, (5.39)

where p, r are vector potentials.

Also one can prove that QT (x,−t,−λ) = CQ(x,−t, λ)C−1 and

V [2]T (x,−t,−λ) = CV [2](x, t, λ)C−1. Remarkably the two non-local Lax pair matrices UT (x,−t,−λ)

and V [2](x,−t,−λ) satisfy an equivalent zero curvature equation.

AsΣ1 andΣ2 are invertible and symmetric, so they are diagonalizable, then we can takeΣ1 = diag(ρ1, ρ2),

Σ2 = diag(ρ−13 , ρ−14 ), for ρ1, ρ2, ρ3, ρ4 non-zero real. Thus this leads to

r1(x, t, λ) = −ρ1ρ3p1(x,−t,−λ), (5.40)

r2(x, t, λ) = −ρ2ρ3p3(x,−t,−λ), (5.41)

r3(x, t, λ) = −ρ1ρ4p2(x,−t,−λ), (5.42)

r4(x, t, λ) = −ρ2ρ4p4(x,−t,−λ). (5.43)

From this specific reduction, we can reduce these integrable equations (5.24)–(5.31) to a nonlocal reverse-

time nonlinear Schrödinger type equations.
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p1,t(x, t) = −i β
α2

[
p1,xx(x, t)− 2ρ1ρ3p

2
1(x, t)p1(x,−t)− 2ρ1ρ4p1(x, t)p2(x, t)p2(x,−t)

− 2ρ2ρ3p1(x, t)p3(x, t)p3(x,−t)− 2ρ2ρ4p2(x, t)p3(x, t)p4(x,−t)
]
, (5.44)

p2,t(x, t) = −i β
α2

[
p2,xx(x, t)− 2ρ1ρ4p

2
2(x, t)p2(x,−t)− 2ρ1ρ3p2(x, t)p(x, t)p1(x,−t)

− 2ρ2ρ4p2(x, t)p4(x, t)p4(x,−t)− 2ρ2ρ3p1(x, t)p4(x, t)p3(x,−t)
]
, (5.45)

p3,t(x, t) = −i β
α2

[
p3,xx(x, t)− 2ρ2ρ3p

2
3(x, t)p3(x,−t)− 2ρ1ρ3p3(x, t)p1(x, t)p1(x,−t)

− 2ρ2ρ4p3(x, t)p4(x, t)p4(x,−t)− 2ρ1ρ4p1(x, t)p4(x, t)p2(x,−t)
]
, (5.46)

p4,t(x, t) = −i β
α2

[
p4,xx(x, t)− 2ρ2ρ4p

2
4(x, t)p4(x,−t)− 2ρ1ρ4p4(x, t)p2(x, t)p2(x,−t)

− 2ρ2ρ3p4(x, t)p3(x, t)p3(x,−t)− 2ρ1ρ3p2(x, t)p3(x, t)p1(x,−t)
]
. (5.47)

Remark 5.2.1. p(−x, t) and p∗(x,−t) are both solutions of the PT symmetric nonlocal Schrödinger type

equations (5.44)–(5.47).

Remark 5.2.2. If Σ1, Σ2 are both positive definite such that ρ1, ρ2 > 0, ρ3, ρ4 < 0 or ρ1, ρ2 < 0, ρ3, ρ4 >

0, then we have a focussing nonlocal reverse-time eight-component NLS equations. On the other hand, if

ρ1, ρ2, ρ3, ρ4 > 0 or ρ1, ρ2, ρ3, ρ4 < 0, then we obtained the defocussing case. Otherwise, we could have a

combined focussing and defocussing case.

5.3 Direct scattering

Our objective is to find soliton solutions from an initial condition (p(x, 0), rT (x, 0))T to (p(x, t), rT (x, t))T

at any time t [31]. We assume that any pi and ri decay exponentially, i.e., pi → 0 and ri → 0 as x, t→ ±∞

for i ∈ {1, 2, 3}. With an infinite number of bound states, this requires [41, 44]

∞∫
−∞

∞∫
−∞

|x|m|t|n
( 4∑
i=1

(|pi|+ |qi|)
)
dxdt <∞, m, n ≥ 0. (5.48)

Therefore from the spectral problems (5.32), (5.33), we derive asymptotically ψ(x, t) ; eiλΛx+iλ
2Ωt.
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We can then expect the solution for the spectral problems to be:

ψ(x, t) = φ(x, t)eiλΛx+iλ
2Ωt. (5.49)

For the Jost solution, we require that

φ(x, t)→ I4, as x, t→ ±∞, (5.50)

where I4 is the 4 × 4 identity matrix. Substituting (5.49) into the Lax pair, (5.32) and (5.33), will result in

the equivalent expression of the spectral problems

φx = iλ[Λ, φ] + iPφ, (5.51)

φt = iλ2[Ω,φ] + iQφ. (5.52)

Now, we are going to work with the spatial spectral problem (5.51), assuming that the time is t = 0 for the

direct scattering process.

From Liouville’s theorem (3.4.1), as tr(iP ) = 0 and tr(iQ) = 0, so (det(φ))x = 0, thus det(φ) is a

constant, and using the boundary condition (5.50), we get

det(φ) = 1. (5.53)

To construct the Riemann–Hilbert problems and their solutions in the reflectionless case, we are going to

use the adjoint scattering equations of the spectral problems (5.32) and (5.33).

Therefore it follows that the adjoints are

ψ̃x = −iψ̃U, (5.54)

ψ̃t = −iψ̃V [2], (5.55)

and the equivalent spectral adjoint equations read
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φ̃x = −iλ[φ̃, Λ]− iφ̃P, (5.56)

φ̃t = −iλ2[φ̃, Ω]− iφ̃Q. (5.57)

As φ−1x = −φ−1φxφ−1, we have from (5.51),

φ−1x = −iλ[φ−1, Λ]− iφ−1P. (5.58)

Therefore, we deduce that (φ±)−1 satisfies both adjoint equations (5.56) and (5.57).

Now, if the eigenfunction φ(x, t, λ) is a solution of the spectral problem (3.54), then Cφ−1(x, t, λ) is a

solution of the spectral adjoint problem (5.56) with the same eigenvalue because φ−1x = −φ−1φxφ−1.

Also φT (x,−t,−λ)C is a solution of the spectral adjoint problem (5.56). As both solutions have the same

boundary condition as x→ ±∞ which guarantees the uniqueness of the solution, so

φT (x,−t,−λ) = Cφ−1(x, t, λ)C−1. (5.59)

This tells us that if λ is an eigenvalue of the spectral problems, then −λ is also an eigenvalue.

We suppose for the rest of the problem that, α < 0 and β < 0 and as before Y ± denotes which end of the

x-axis the boundary conditions are set. Knowing that

φ± → I4 when x→ ±∞, (5.60)

we can then write

ψ± = φ±eiλΛx. (5.61)

As ψ+ and ψ− are two solutions of the spectral spatial differential equation of first-order (5.32) and hence

they are linearly dependent, and so they are related by a scattering matrix S(λ). As a result,

ψ− = ψ+S(λ), (5.62)
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using (5.61) and we have

φ− = φ+eiλΛxS(λ)e−iλΛx, for λ ∈ R, (5.63)

where

S(λ) = (sij)4×4 =



s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

s41 s42 s43 s44


. (5.64)

Because det(φ±) = 1, one has

det(S(λ)) = 1. (5.65)

From (5.59) and (5.63), we have this involution relation

ST (−λ) = CS−1(λ)C−1. (5.66)

From (5.66), we deduce that

s11(−λ) = ŝ11(λ), s22(−λ) = ŝ22(λ), (5.67)

s21(−λ) = ρ1ρ
−1
2 ŝ12(λ), s12(−λ) = ρ2ρ

−1
1 ŝ21(λ), (5.68)

where the inverse scattering data matrix S−1 = (ŝij)4×4 for i, j ∈ {1, 2, 3, 4}.

We can see that the recovery of the potentials will depend on the information of the scattering data from the

scattering matrix S(λ). As φ± → I4 when x → ±∞, we need to analyse the analyticity of the Jost matrix

φ± in order to formulate the Riemann-Hilbert problems.

One can write the solution φ± in a uniquely manner by the Volterra integral equations using (5.32):

φ−(x, λ) = I4 + i

x∫
−∞

eiλΛ(x−y)P (y)φ−(y, λ)eiλΛ(y−x)dy, (5.69)

φ+(x, λ) = I4 − i
+∞∫
x

eiλΛ(x−y)P (y)φ+(y, λ)eiλΛ(y−x)dy. (5.70)
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By assumption α = α1 − α2 < 0. So, if Im(λ) > 0, then Re(e−iλα(x−y)) decays exponentially when

y < x, and so each integral of the first column and second column of φ− converges, so they are analytic in

the upper-half plane, i.e. where λ ∈ C+ and continuous for λ ∈ C+ ∪ R.

If Im(λ) < 0, Re(eiλα(x−y)) also decays, then the components of the third and fourth columns of φ−

converge, and thus they are analytic in the lower-half plane for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Similarly, for y > x, the components of the third and fourth columns of φ+ are analytic in the upper-half

plane for λ ∈ C+ and continuous for λ ∈ C+ ∪ R, and the components of the first and second columns of

φ+ are analytic in the lower-half plane for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Now let us construct the Riemann-Hilbert problems. Note that

φ± = ψ±e−iλΛx. (5.71)

Let φ±j be the jth column of φ± for j ∈ {1, 2, 3, 4}, and so the first Jost matrix solution can be taken as

P (+)(x, λ) = (φ−1 , φ
−
2 , φ

+
3 , φ

+
4 ) = φ−H1 + φ+H2, (5.72)

where H1 = diag(1, 1, 0, 0) and H2 = diag(0, 0, 1, 1).

P (+) is then analytic for λ ∈ C+ and continuous for λ ∈ C+ ∪ R.

To construct the analytic counterpart of P (+) ∈ C+, it is going to be simpler to use the equivalent spectral

adjoint equation (5.58). Because φ̃± = (φ±)−1 and ψ± = φ±eiλΛx, we have

(φ±)−1 = eiλΛx(ψ±)−1. (5.73)

Now, let φ̃±j be the jth row of φ̃± for j ∈ {1, 2, 3, 4}. In the same way we proved for P (+) above, we can

get

P (−)(x, λ) =

(
φ̃−1 , φ̃

−
2 , φ̃

+
3 , φ̃

+
4

)T
= H1(φ

−)−1 +H2(φ
+)−1. (5.74)

P (−) is analytic for λ ∈ C− and continuous for λ ∈ C− ∪ R.

Also we have

P (−)(x, λ)→ I4 as λ ∈ C− ∪ R→∞. (5.75)
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From (5.72), (5.74) and (5.71) along with φT (x,−t,−λ) = Cφ−1(x, t, λ)C−1, we have the nonlocal

involution property

(P (+))T (x,−t,−λ) = CP (−)(x, t, λ)C−1. (5.76)

We know that the eigenfunctions P (+) and P (−) that are analytic in C+ and C− and continuous in C+ ∪ R

and C− ∪ R, respectively.

From (5.72) and (5.74), we have

P (−)(x, λ)P (+)(x, λ) = eiλΛx(H1 +H2S)(H1 + S−1H2)e
−iλΛx, for λ ∈ R, (5.77)

where the inverse scattering data matrix S−1 = (ŝij)4×4 for i, j ∈ {1, 2, 3, 4}.

Using (5.63) in (5.72), we have

P (+)(x, λ) = φ+(eiλΛxSe−iλΛxH1 +H2), (5.78)

and as φ+(x, λ)→ I4 when x→ +∞, then

lim
x→+∞

P (+) =



s11(λ) s12(λ)

s21(λ) s22(λ)

0 0

0 0

0 0

0 0

1 0

0 1


for λ ∈ C+ ∪ R. (5.79)

In the same way, we have

lim
x→−∞

P (−) =



ŝ11(λ) ŝ12(λ)

ŝ21(λ) ŝ22(λ)

0 0

0 0

0 0

0 0

1 0

0 1


for λ ∈ C− ∪ R. (5.80)
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Thus if we choose

G(+)(x, λ) = P (+)(x, λ)



s22(λ)
z1(λ)

− s12(λ)
z1(λ)

− s21(λ)
z1(λ)

s11(λ)
z1(λ)

0 0

0 0

0 0

0 0

1 0

0 1


, (5.81)

where z1(λ) = s11(λ)s22(λ)− s12(λ)s21(λ), and

(G(−))−1(x, λ) =



ŝ22(λ)
z2(λ)

− ŝ12(λ)
z2(λ)

− ŝ21(λ)
z2(λ)

ŝ11(λ)
z2(λ)

0 0

0 0

0 0

0 0

1 0

0 1


P (−)(x, λ) (5.82)

where z2(λ) = ŝ11(λ)ŝ22(λ)− ŝ12(λ)ŝ21(λ).

So on the real line, the two generalized matrices generate the matrix Riemann-Hilbert problems for the

eight-component AKNS system of second-order given by

G(+)(x, λ) = G(−)(x, λ)G0(x, λ), for λ ∈ R, (5.83)

where the jump matrix G0(x, λ) can be cast as

G0(x, λ) = eiλΛx



ŝ22(λ)
z2(λ)

− ŝ12(λ)
z2(λ)

− ŝ21(λ)
z2(λ)

ŝ11(λ)
z2(λ)

0 0

0 0

0 0

0 0

1 0

0 1


A



s22(λ)
z1(λ)

− s12(λ)
z1(λ)

− s21(λ)
z1(λ)

s11(λ)
z1(λ)

0 0

0 0

0 0

0 0

1 0

0 1


e−iλΛx, (5.84)

where A = (H1 +H2S)(H1 + S−1H2). Moreover, G0(x, λ) can be explicitly written as
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G0(x, λ) =



s21ŝ12+s22ŝ22
z1(λ)z2(λ)

− s11ŝ12+s12ŝ22
z1(λ)z2(λ)

−eiλαx ŝ12ŝ23−ŝ13ŝ22z2(λ)
−eiλαx ŝ12ŝ24−ŝ14ŝ22z2(λ)

− s21ŝ11+s22ŝ21
z1(λ)z2(λ)

s11ŝ11+s12ŝ21
z1(λ)z2(λ)

eiλαx ŝ11ŝ23−ŝ13ŝ21z2(λ)
eiλαx ŝ11ŝ24−ŝ14ŝ21z2(λ)

−e−iλαx s21s32−s22s31z1(λ)
e−iλαx s11s32−s12s31z1(λ)

1 0

−e−iλαx s21s42−s22s41z1(λ)
e−iλαx s11s42−s12s41z1(λ)

0 1


,

(5.85)

with its canonical normalization conditions given by:

G(+)(x, λ)→ I4 as λ ∈ C+ ∪ R→∞, (5.86)

G(−)(x, λ)→ I4 as λ ∈ C− ∪ R→∞. (5.87)

From (5.76) along with (5.67)–(5.68) and (5.81), we obtain

(G(+))T (x,−t,−λ) = C(G(−))−1(x, t, λ)C−1. (5.88)

5.4 Time evolution of scattering data

The process of the inverse scattering transform requires the time evolution of the scattering data. Differen-

tiating equation (5.63) with respect to time t and applying (5.52) gives

St = iλ2[Ω,S], (5.89)

which implies

St =



0 0 iβλ2s13 iβλ2s14

0 0 iβλ2s23 iβλ4s24

−iβλ2s31 −iβλ2s32 0 0

−iβλ2s41 −iβλ2s42 0 0


. (5.90)

87



As a result, we have



s13(t, λ) = s13(0, λ)eiβλ
2t, s14(t, λ) = s14(0, λ)eiβλ

2t,

s23(t, λ) = s23(0, λ)eiβλ
2t, s24(t, λ) = s24(0, λ)eiβλ

2t,

s31(t, λ) = s31(0, λ)e−iβλ
2t, s32(t, λ) = s32(0, λ)e−iβλ

2t,

s41(t, λ) = s41(0, λ)e−iβλ
2t, s42(t, λ) = s42(0, λ)e−iβλ

2t.

(5.91)

and s11, s12, s21, s22, s33, s34, s43, s44 are constants.

5.5 Inverse scattering

5.5.1 Soliton solutions: General case

In this section, we are going to compute explicitly the one-soliton solution from theN -soliton solution based

on the Riemann-Hilbert problems. In fact the Riemann-Hilbert problems generate a unique solution in the

regular case, i.e., the det(G(±)) 6= 0 when G(±) → I4 as λ→∞.

However, there are possible contingencies that det(G(±)) could be zero for some discrete λ ∈ C± when

non-regular. In that case, it is opportune to transform the non-regular case to a regular in order to guarantee

a solution.

From (5.72) and (5.74) with (5.63), as det(φ±) = 1, we prove that

det(P (+)(x, λ)) = s11(λ)s22(λ)− s12(λ)s21(λ) = z1(λ), (5.92)

and

det(P (−)(x, λ)) = ŝ11(λ)ŝ22(λ)− ŝ12(λ)ŝ21(λ) = z2(λ). (5.93)

To get soliton solutions, the solutions of det(P (±)(x, λ)) = 0 are assumed to be simple. Let’s suppose

that z1(λ) has simple zeros λk ∈ C+ for k ∈ {1, 2, ..., N} and z2(λ) has simple zeros λ̂k ∈ C− for

k ∈ {1, 2, ..., N}, which are the poles of the transmission coefficients.

From (5.92), (5.93) and using (5.67)–(5.68), we have the involution relation

λ̂ = −λ. (5.94)
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Each Ker(P (+)(x, λk)) contains a single column eigenvector vk, and also Ker(P (−)(x, λ̂k)) contains a

single row eigenvector v̂k for k ∈ {1, 2, ..., N} such that:

P (+)(x, λk)vk = 0 for k ∈ {1, 2, ..., N}, (5.95)

and

v̂kP
(−)(x, λ̂k) = 0 for k ∈ {1, 2, ..., N}. (5.96)

The Riemann-Hilbert problems can be solved explicitly when G0 = I4. This will force the following

reflection coefficients

ŝ12ŝ23 − ŝ13ŝ22 = 0, ŝ12ŝ24 − ŝ14ŝ22 = 0, ŝ11ŝ23 − ŝ13ŝ21 = 0, ŝ11ŝ24 − ŝ14ŝ21 = 0,

s21s32 − s22s31 = 0, s11s32 − s12s31 = 0, s21s42 − s22s41 = 0, s11s42 − s12s41 = 0.

In that case, we can present the solutions to special Riemann-Hilbert problems as follows:

G(+)(x, λ) = I4 −
N∑

k,j=1

vk(M
−1)kj v̂j

λ− λ̂j
, (5.97)

and

(G(−))−1(x, λ) = I4 +

N∑
k,j=1

vk(M
−1)kj v̂j

λ− λk
, (5.98)

where M = (mkj)N×N is a matrix defined as follows

mkj =


v̂kvj

λj−λ̂k
if λj 6= λ̂k

0 if λj = λ̂k

, k, j ∈ {1, 2, ..., N}. (5.99)

The scattering vectors vk and v̂k are functions of (x, t), but λk and λ̂k are constants, and so differentiating

both sides of P (+)(x, λk)vk = 0 with respect to x and knowing that P (+) satisfies the spectral spatial

equivalent equation (5.51) along with (5.95) gives

P (+)(x, λk)

(
dvk
dx
− iλkΛvk

)
= 0 for k, j ∈ {1, 2, ..., N}, (5.100)
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and also differentiating it with respect to t and using the temporal equation (5.52) along with (5.95) gives

P (+)(x, λk)

(
dvk
dt
− iλ2kΩvk

)
= 0 for k, j ∈ {1, 2, ..., N}. (5.101)

In the same way by using (5.96) and the adjoint spectral equations (5.56) and (5.57), one can prove that

(
dv̂k
dx

+ iλ̂kv̂kΛ

)
P (−)(x, λ̂k) = 0, (5.102)

and (
dv̂k
dt

+ iλ̂2kv̂kΩ

)
P (−)(x, λ̂k) = 0. (5.103)

As vk is a single vector in the kernel of P (+), so dvk
dx − iλkΛvk and dvk

dt − iλ
2
kΩvk are scalar multiples of vk.

This permits to obtain

vk(x, t) = eiλkΛx+iλ
2
kΩtwk, for k ∈ {1, 2, ..., N}. (5.104)

In the same way, we will have for P (−),

v̂k(x, t) = ŵke
−iλ̂kΛx−iλ̂2kΩt, for k ∈ {1, 2, ..., N} (5.105)

where the column vector wk and the row vector ŵk are constants.

Now from (5.95) and using (5.76) we get

vTk (x,−t,−λk)(P (+))T (x,−t,−λk) = vTk (x,−t,−λk)CP (−)(x, t, λk)C
−1 = 0 for k ∈ {1, 2, ..., N}.

(5.106)

Because vTk (x,−t,−λk)CP (−)(x, t, λk) could be zero and using (5.96) leads to

vTk (x,−t,−λk)CP (−)(x, t, λk) = v̂k(x, t, λ̂k)P
(−)(x, t, λ̂k) = v̂k(x, t,−λ̂k)P (−)(x, t,−λ̂k) = 0.

(5.107)

As λ̂k = −λk from (5.94), then we can take

v̂k(x, t,−λ̂k) = vTk (x,−t,−λk)C for k ∈ {1, 2, ..., N}. (5.108)
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These involution relations will then give

vk(x, t) = eiλkΛx+iλ
2
kΩtwk, for k ∈ {1, 2, ..., N}, (5.109)

v̂k(x, t) = wTk e
−iλ̂kΛx−iλ̂2kΩtC, for k ∈ {1, 2, ..., N}. (5.110)

5.5.2 Recovery of potentials

The jump matrix being G = I4 allows to recover the potential P from the generalized matrix Jost eigen-

functions. Because P (+) is analytic, we can expand G(+) as λ→∞ in this form at order 2,

G(+)(x, λ) = I4 +
1

λ
G

(+)
1 (x) +O(

1

λ2
) when λ→∞. (5.111)

Because G(+) satisfies the spectral problem, substituting it into (5.51) and matching the coefficients of the

same powers of 1
λ , at order O(1), we get

P = −[Λ,G
(+)
1 ]. (5.112)

If

G
(+)
1 =



(G
(+)
1 )11 (G

(+)
1 )12 (G

(+)
1 )13 (G

(+)
1 )14

(G
(+)
1 )21 (G

(+)
1 )22 (G

(+)
1 )23 (G

(+)
1 )24

(G
(+)
1 )31 (G

(+)
1 )32 (G

(+)
1 )33 (G

(+)
1 )34

(G
(+)
1 )41 (G

(+)
1 )42 (G

(+)
1 )43 (G

(+)
1 )44


, (5.113)

then

P = −[Λ,G
(+)
1 ] =



0 0 −α(G
(+)
1 )13 −α(G

(+)
1 )14

0 0 −α(G
(+)
1 )23 −α(G

(+)
1 )24

α(G
(+)
1 )31 α(G

(+)
1 )32 0 0

α(G
(+)
1 )41 α(G

(+)
1 )42 0 0


. (5.114)

As a result, we can now recover the potentials pi and ri for i ∈ {1, 2, 3, 4} as follows
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p1 = −α(G
(+)
1 )13, r1 = α(G

(+)
1 )31,

p2 = −α(G
(+)
1 )14, r2 = α(G

(+)
1 )32, (5.115)

p3 = −α(G
(+)
1 )23, r3 = α(G

(+)
1 )41.

p4 = −α(G
(+)
1 )24, r4 = α(G

(+)
1 )42.

Also, from (5.111), we have

G
(+)
1 = λ lim

λ→∞
(G(+)(x, λ)− I4), (5.116)

and so from (5.97), we deduce that

G
(+)
1 = −

N∑
k,j=1

vk(M
−1)k,j v̂j . (5.117)

From (5.38) and (5.112), we easily prove the nonlocal involution property

(G
(+)
1 )T (x,−t) = CG

(+)
1 (x, t)C−1. (5.118)

Using the above equations along with (5.110) and (5.109) will generate the N -soliton solutions to the non-

local reverse-time eight-component AKNS system of second-order as follows:

p1 = α
N∑

k,j=1

vk1(M
−1)kj v̂j,3, (5.119)

p2 = α

N∑
k,j=1

vk1(M
−1)kj v̂j,4, (5.120)

p3 = α

N∑
k,j=1

vk2(M
−1)kj v̂j,3, (5.121)

p4 = α
N∑

k,j=1

vk2(M
−1)kj v̂j,4, (5.122)

where vk = (vk1, vk2, vk3, vk4)
T , v̂k = (v̂k1, v̂k2, v̂k3, v̂4), k ∈ {1, ..., N}.
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5.6 Exact one-soliton solution

A general explicit solution for a single-soliton in the reverse-time case when N = 1, w1 =

(w11, w12, w13, w14)
T , λ1 ∈ C is arbitrary, and λ̂1 = −λ1 is given by

p1(x, t) =
2αρ4w11w13λ1e

iαλ1x+iβλ21t

ρ3ρ4(ρ1w2
11 + ρ2w2

12)e
i2αλ1x + (ρ4w2

13 + ρ3w2
14)

, (5.123)

p2(x, t) =
2αρ3w11w14λ1e

iαλ1x+iβλ21t

ρ3ρ4(ρ1w2
11 + ρ2w2

12)e
i2αλ1x + (ρ4w2

13 + ρ3w2
14)

, (5.124)

p3(x, t) =
2αρ4w12w13λ1e

iαλ1x+iβλ21t

ρ3ρ4(ρ1w2
11 + ρ2w2

12)e
i2αλ1x + (ρ4w2

13 + ρ3w2
14)

, (5.125)

p4(x, t) =
2αρ3w12w14λ1e

iαλ1x+iβλ21t

ρ3ρ4(ρ1w2
11 + ρ2w2

12)e
i2αλ1x + (ρ4w2

13 + ρ3w2
14)

, (5.126)

where α = α1 − α2 and β = β1 − β2.

The amplitude of p1 is:

|p1(x, t)| = 2Ae−Im(λ21βt+λ1(α1+α2)x), (5.127)

where

A =

∣∣∣∣∣ λ1ρ4(α1 − α2)w11w13

ρ3ρ4(ρ1w2
11 + ρ2w2

12)e
i2αλ1x + (ρ4w2

13 + ρ3w2
14)

∣∣∣∣∣. (5.128)

We can see that the soliton is not a travelling wave. It moves over the time, but not over the space.

If Im(λ21) > 0, its amplitude |p1| grows exponentially, while it decays exponentially when Im(λ21) < 0.

Now when Im(λ21) = 0, the soliton conserves its amplitude over the time.

In the first and the third quadrant of the spectral plane (ξ, η), the amplitude of the one soliton is increasing.

While in the second and the fourth, it is decreasing and constant on the imaginary axis ξ = 0 and a breather

with a constant amplitude on the real axis η = 0, as shown in figure 22.
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Figure 22.: Spectral plane of eigenvalues.

Figure 23.: Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton with parameter
values ρ1 = −1, ρ2 = −1, ρ3 = 1,ρ4 = 1, λ1 = 0.1 + 0.1i, α1 = −1, α2 = 1, β1 = −1, β2 = 1,
w1 = (1 + i, 2, 1, 2 + i)T . The 2D plot is at t = 0, 4, 10.

Figure 24.: Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton with parameter
values ρ1 = −1, ρ2 = −1, ρ3 = 1,ρ4 = 1, λ1 = −0.1 + 0.1i, α1 = −1, α2 = 1, β1 = −1, β2 = 1,
w1 = (1 + i, 2, 1, 2 + i)T . The 2D plot is at t = 30, 60, 100.
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Figure 25.: Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton with parameter
values ρ1 = −1, ρ2 = −1, ρ3 = 1,ρ4 = 1, λ1 = i, α1 = −1, α2 = 1, β1 = −1, β2 = 1, w1 =
(−1 + 3i, 2, 1, 2 + i)T . The 2D plot is at any time value of t.

Figure 26.: Spectral plane along with 3D plot and 2D plots of |p1| of the one-soliton with parameter values
ρ1 = 1, ρ2 = 1, ρ3 = 1,ρ4 = 1, λ1 = 0.5, α1 = −1, α2 = 1, β1 = −1, β2 = 1, w1 = (i, 2, 1, 2 + i)T . The
2D plot is at any time value of t.
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Chapter 6

Conclusion

In this dissertation, by using the Riemann-Hilbert technique, we have obtained the N -soliton solution of

a nonlocal nonlinear six-component fourth-order AKNS system and a nonlocal nonlinear eight-component

second-order AKNS system under a reverse-time reduction, and particularly, the one- and two-soliton so-

lutions have been presented explicitly. What is interesting in this reverse-time case is that the symmetry

involution guarantees a pair of eigenvalues, one being in the upper half complex plane and its symmetric

partner being in the lower half plane. Therefore, the Riemann-Hilbert problem becomes easier to solve than

in the reverse-space or in the reverse-space-time cases [24]. Also, we have noticed that in comparison to clas-

sical solitons which keep their shapes and amplitudes over the time, in the reverse-time case, the amplitude

of the soliton potential changes and sometimes the soliton itself collapses while moving. Such solutions

show that they have singularities at a finite time. Moreover, at least two nonlocal solitons do not always

collide elastically in a nonlinear superposition manner like classical solitons. Besides the Riemann-Hilbert

approach, one could investigate the solvability of those nonlocal integrable equations by Hirota’s bilinear

method or the Darboux transformation.
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