
University of South Florida University of South Florida

Digital Commons @ University of South Florida Digital Commons @ University of South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

6-18-2021

A Method for Compact Representation of Heterogenous and A Method for Compact Representation of Heterogenous and

Multivariate Time Series for Robust Classification and Multivariate Time Series for Robust Classification and

Visualization Visualization

Alla Abdella
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Engineering Commons

Scholar Commons Citation Scholar Commons Citation
Abdella, Alla, "A Method for Compact Representation of Heterogenous and Multivariate Time Series for
Robust Classification and Visualization" (2021). USF Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/9644

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9644&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=digitalcommons.usf.edu%2Fetd%2F9644&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

A Method for Compact Representation of Heterogenous and Multivariate

Time Series for Robust Classification and Visualization

by

Alla Abdella

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Ismail Uysal, Ph.D.
Nasir Ghani, Ph.D.

Yasin Yilmaz, Ph.D.
Alessio Gaspar, Ph.D.

Mohammed Elmusrati, Ph.D.

Date of Approval:
June 17, 2021

Keywords: Sequence Modeling, Sense2Vec, Class2Vec, Data Compression

Copyright © 2021, Alla Abdella

Dedication

To my Parents and Brothers, for everything they have done for me.

To my Friends, for supporting me and believing in me always.

To my Teachers, for all the knowledge that helped me reach this level.

Acknowledgments

The past few years at University of South Florida (USF) have been unforgettable, invaluable

and among the best exciting moments in my life. While at USF I not only learned how to do

fundamental research, but also had the opportunity to meet with many talented and innovative

people in many different fields. It would not have been possible to complete this journey without

the help and support of so many people I feel deeply indebted to.

First and foremost, my greatest thanks to my Ph.D. advisor, Dr. Ismail Uysal for his unlim-

ited guidance and support of my personal and professional growth during my graduate studies. He

is one of the best professors I have ever met and I realize every day how privileged I am to work

with him. When I first joined Dr. Uysal’s group, it was a transitional period from wireless commu-

nications into machine and deep learning, and Dr. Uysal accepted me without hesitation. He was

super patient with me and taught me how to be systematic, rigorous and professional. He always

has an insightful, high-level view of the field, with an uncommon detail oriented approach who

understands the nature of the problems very well. More importantly, Dr. Uysal is an extremely

kind, caring and supportive advisor and I could not have asked for more. He is like an older brother

of mine (if he doesn’t mind me saying so) and I can talk with him about everything. He has done

everything he could, as an educator, and a mentor, to help me become a better researcher. I believe

Dr. Uysal provided me with the support and guidance that will benefit my future academic career.

I would also like to extend my thanks and appreciation to Prof. Nasir Ghani, Prof. Yasin

Yilmaz, Prof. Mohammed Elmusrati and Prof. Alessio Gaspar for serving on my dissertation

committee and their attention, guidance, and invaluable feedback during my candidacy exam and

through this final step of completing my Ph.D. I have also been very fortunate to be taught by Dr.

Yilmaz the Advanced Data Analytic class where I learned so much from him. I also would like

to thank Dr. Elmusrati who is an extremely caring, enthusiastic and knowledgeable person and I

always feel my passion ignited after talking to him or reading his online posts. I look forward to

working with Dr. Yilmaz and Dr. Elmusrati in the future. I am likewise grateful to Dr. Ghani as he

has always been supportive of me and believed in me since early in my graduate studies. I am also

grateful for Dr. Gaspar for his time serving in my committee and his feedback on my work which

I had to incorporate to the best extent possible. Last but not least, I cherished the opportunity to

work with Prof. Jeffrey Brecht from the University of Florida as part of my graduate studies.

I thank my mentor Dr. Adnan Massood who I continue to learn from and be inspired by

every day. His trust and help has sharpen my skills in the data science field in handling large scale

projects. It has been an honor and a wonderful experience working with him during my work at

UST company.

I would also like to thank all other collaborators from both academia and industry whom

I didn’t all list here: without their generous sharing of resources, our work would not have been

possible. I am very grateful for the support I received during my work at USF. It must be noted

that parts of my research was funded by the United States Department of Agriculture (USDA) and

the Florida Department of Agriculture and Consumer Services (FDACS). Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the author and do not

necessarily reflect the views, policies, or endorsements, either expressed or implied, of USDA,

and FDACS. I would like to thank our collaborators for their support of the project including

WishFarms for allowing us to conduct the shipping tests and coordinating all the logistics and

DeltaTrak for donating the real-time loggers used to collect the data in the study.

Finally, and most importantly, I appreciate my family. They have always been a source of

strength and my inspiration. I would like to thank my mother, Reem Zain for her unconditional

love, care, and support during my entire life. I love her so much and I would not have made it this

far without her. I also would like to dedicate this work to honor my older brother ISMAIL who

passed away with a dream of seeing me a doctor. Today our dream comes true my beloved brother!

I would like to thank my brothers Sensoussi, Farge, Mohammed, Abdella, Edriss and little sister

Hamedia for their unconditional support, and love. They are the reason for me to be here. For me,

they are always the source of strength and inspiration. My mother and family made me who I am

today and I never know how to pay them back. I hope that they are at least a little proud of me for

what I have become today.

Lastly, I would like to thank my wife Doaa for her love and support. We got married on

2017, I was doing my Master’s when I first met Doaa and we have been experiencing almost every-

thing together since then: from my graduate studies to applying to jobs, to raising our wonderful

children Omar and Zaid with her unconditional support and feedback on my work. She is not only

my partner, my wife, my best friend, but also the person I admire, for her modesty, intelligence,

concentration and hard work. Without her, I would not have reach to this stage. I thank Doaa for

everything she has done for me.

Table of Contents

List of Tables . v

List of Figures . vii

Abstract . viii

Chapter 1: Introduction . 1
1.1 History of Artificial Intelligence . 1
1.2 Perceptron . 5
1.3 Neural Networks . 6
1.4 Feedforward Pass . 7
1.5 Backward Pass (Backpropagation) . 9
1.6 Hyperparameters . 10
1.7 Machine Learning Approaches . 10

1.7.1 Supervised Learning . 13
1.7.2 Unsupervised Learning . 14
1.7.3 History of Autoencoders . 14
1.7.4 Deep Autoencoder Architecture . 15

1.8 Sequence Models: Review . 16
1.9 Deep Learning Frameworks . 20
1.10 Computer Vision Benchmark Datasets . 20

Chapter 2: An Overview of Time Series Approaches: Background 21
2.1 Note to Reader . 21
2.2 Motivation . 21
2.3 Value of the Data . 22
2.4 Specifications . 23
2.5 Data Collection Process . 24

2.5.1 General Description of the Dataset 24
2.5.2 Temperature Sensors . 25
2.5.3 Data Collection Setup . 26
2.5.4 Cold-chain Background . 26

2.6 Cold Chain Temperature Profiles as Multivariate Time Series 29
2.7 Statistical Description and Visualization of the Dataset 35
2.8 Time Series Performance Metrics . 35

Chapter 3: Time Series Analysis . 38
3.1 Note to Reader . 38

i

3.2 Motivation . 38
3.3 Data Analysis . 38

3.3.1 Differences and Similarities Based on Pearson’s Correlation 39
3.3.2 Dynamic Time Warping (DTW) Distance Analysis 41
3.3.3 Frequency Domain Analysis of the Temperature Profiles 44
3.3.4 Autocorrelations of Individual Sensor Profiles 45

3.4 Discussion . 50
3.4.1 Applied Methods for Detecting Abnormality 50
3.4.2 Sensors’ Variability Control . 52

Chapter 4: Sense2Vec: Time Series Representation . 53
4.1 Note to Reader . 53
4.2 Introduction . 53
4.3 Contribution . 55
4.4 Related Work . 55
4.5 Sense2Vec Algorithms . 57

4.5.1 Problem Formulation . 57
4.6 End to End Example . 64

4.6.1 Experimental Results . 68
4.7 Analysis . 85

4.7.1 The Effects of Noise . 85
4.7.2 The Effect of Different Distance Metrics 88

Chapter 5: Class2Vec: Time Series Representation and Classification 93
5.1 Note to Reader . 93
5.2 Summary . 93
5.3 Introduction . 94
5.4 Contributions . 96
5.5 Related Work . 97
5.6 Time Series Classification . 98

5.6.1 Time Series Definitions . 98
5.6.2 Problem Statement . 99

5.7 Data and Experimental Design . 103
5.7.1 Methodology . 103
5.7.2 Results and Discussion . 108

Chapter 6: Open Research Topics . 111
6.1 Future Research . 111
6.2 Future Research Directions . 111
6.3 Possible Sensor and Data Applications . 113
6.4 Potential Data Analytics Applications . 113

6.4.1 Time Series Clustering . 113
6.4.2 Time Series Representation Learning 114
6.4.3 Time Series Dimensionality Reduction 114

ii

Chapter 7: Concluding Remarks . 115

References . 119

Appendix A: Copyright Permissions . 138

About the Author .End Page

iii

List of Tables

Table 1.1: Network structure hyperparameters and their descriptions 11

Table 1.2: Network training hyperparameters and their descriptions 12

Table 1.3: Datasets specifications. 20

Table 1.4: Deep learning frameworks. 20

Table 2.1: Time intervals for the temperature measurements for all sensor recordings 31

Table 2.2: All sensors across all shipments summary statistics 32

Table 2.3: Variables descriptions. 33

Table 2.4: Time sampling rate and the time duration for all shipments used in this study. . . 34

Table 2.5: Timestamp counts of temperature sensor profiles (raw data count). 34

Table 3.1: Autocorrelation coefficients for the sensors in shipment 1 for different lags. . . . 47

Table 3.2: Autocorrelation coefficients for the sensors in shipment 2 for different lags. . . . 47

Table 3.3: Autocorrelation coefficients for the sensors in shipment 3 for different lags. . . . 48

Table 3.4: Autocorrelation coefficients for the sensors in shipment 4 for different lags. . . . 48

Table 3.5: Autocorrelation coefficients for the sensors in shipment 5 for different lags. . . . 49

Table 3.6: Autocorrelation coefficients for the sensors in shipment 6 for different lags. . . . 49

Table 5.1: Best performing accuracy split by domain type. 106

Table 5.2: Best performing accuracy split by number of classes. 106

Table 5.3: Average accuracy of CW-MAC and UW-MAC (baseline) over 70 problems. . . . 107

iv

List of Figures

Figure 1.1: The relationship between Artificial Intelligence (AI), Machine learning (ML) . . 2

Figure 1.2: Breakthroughs of machine learning in history. 3

Figure 1.3: Machine learning life-cycle according to CRISPDM methodology. 5

Figure 1.4: Basic model of the perceptron . 6

Figure 1.5: Simple Neural Network . 8

Figure 1.6: Deep Neural Network . 9

Figure 1.7: Clustering Based Autoencoder Architecture [1]. 15

Figure 1.8: Historic depiction of deep learning breakthrough models. 18

Figure 2.1: The shipping routes that were monitored in this study 25

Figure 2.2: DeltaTrak’s Reusable Real−Time−Logger (RTL) Mini devices 26

Figure 2.3: Temperature profiles of multivariate time series data 28

Figure 2.4: Full temperature profiles for three different sensors 30

Figure 3.1: Multivariate time series “full profile” Pearson’s correlations. 40

Figure 3.2: Dynamic Time Warping (DTW) analysis of the “full temperature profiles” . . . 42

Figure 3.3: Fast Fourier Transform (FFT) and inverse (IFFT) temperature reconstructions . 45

Figure 3.4: Autocorrelation coefficients for all sensors in shipments 1 through 6 46

Figure 4.1: Cold-chain time-series based machine learning pipeline 55

Figure 4.2: CW-MAC representation for the first group of five time-series profiles 66

v

Figure 4.3: Pearson’s correlation coefficients heat-map. 67

Figure 4.4: CW-MAC representations for the 2, 3, 4, and 5 group of Front-top 69

Figure 4.5: CW-MAC representation for Front-Top . 70

Figure 4.6: Shipment 1 time-series representation using CW-MAC. 71

Figure 4.7: Shipment 2 time-series representation using CW-MAC. 71

Figure 4.8: Shipment 3 time-series representation using CW-MAC. 72

Figure 4.9: Shipment 4 time-series representation using CW-MAC. 72

Figure 4.10: Shipment 5 time-series representation using CW-MAC. 73

Figure 4.11: Front-Top representation using CW-MAC. 73

Figure 4.12: Front-Middle representation using CW-MAC. 74

Figure 4.13: Middle-Top representation using CW-MAC. 74

Figure 4.14: Middle-Middle representation using CW-MAC. 75

Figure 4.15: Middle-Bottom representation using CW-MAC. 75

Figure 4.16: Rear-Top representation using CW-MAC. 76

Figure 4.17: Rear-Middle representation using CW-MAC. 76

Figure 4.18: Rear-Bottom representation using CW-MAC. 77

Figure 4.19: Front-Top representation using DTW-MAC. 77

Figure 4.20: Front-Middle representation using DTW-MAC. 78

Figure 4.21: Middle-Top representation using DTW-MAC. 78

Figure 4.22: Middle-Middle representation using DTW-MAC. 79

Figure 4.23: Middle-Bottom representation using DTW-MAC. 79

Figure 4.24: Rear-Top representation using DTW-MAC. 80

Figure 4.25: Rear-Middle representation using DTW-MAC. 80

vi

Figure 4.26: Rear-Bottom representation using DTW-MAC. 81

Figure 4.27: Front-Top representation using UW-MAC. 81

Figure 4.28: Front-Middle representation using UW-MAC. 82

Figure 4.29: Middle-Top representation using UW-MAC. 82

Figure 4.30: Middle-Middle representation using UW-MAC. 83

Figure 4.31: Middle-Bottom representation using UW-MAC. 83

Figure 4.32: Rear-Top representation using UW-MAC. 84

Figure 4.33: Rear-Middle representation using UW-MAC. 84

Figure 4.34: Rear-Bottom representation using UW-MAC. 85

Figure 4.35: The distributions of all representations . 86

Figure 4.36: Shipment 4 time-series representation using CW-MAC 88

Figure 4.38: Shipment 4 time-series representation using UW-MAC 88

Figure 4.37: Shipment 4 time-series representation using DTW-MAC 89

Figure 4.39: Shipment 1: comparing different time-series representations 90

Figure 4.40: Shipment 2: comparing different time-series representations 91

Figure 4.41: Shipment 3: comparing different time-series representations 91

Figure 4.42: Shipment 4: comparing different time-series representations 92

Figure 4.43: Shipment 5: comparing different time-series representations 92

Figure 5.1: Time-series classification pipeline based on CW-MAC representation. 100

Figure 5.2: Summary information for the 70 datasets from the UCR repository 104

Figure 5.3: CW-MAC representations for Plane training dataset. 109

vii

Abstract

Processing multivariate sensory time-series with variable lengths is a challenging problem

across different application domains due to the naturally complex, high-dimensional, and often

non-stationary nature of the data. There are many practical examples of this in the industry par-

ticularly for the applications of sensor networks in monitoring production or distribution of goods

around the globe. This thesis tackles the specific problem of time-series data representation in

how we can better summarize and visualize multi-variate time series data coming from numerous

sources in a sensor network distributed across a wide range of application scenarios. On one hand,

we think the analysis and processing of multivariate and heterogeneous time-series data is impor-

tant for predictive tasks like regression and classification. On the other hand, if we build novel

systems and methods for data summarization and visualization, they would be crucial components

in gathering actionable and robust insight while ensuring accurate analytics down the information

chain. This thesis consists of two main parts in its contributions:

• In the first part, we aim to cover the statistical and temporal analysis of a novel multivariate

time-series data for food engineering, and present our effort in proposing a new approach

(Sense2Vec) for processing variable-length sensory time-series data that leverages various

similarity metrics while being robust to noise and outliers. We believe that the proposed

representation holds a great promise for future time-series visualization technologies.

• In the second part of this thesis, we introduce a supervised Class2Vec algorithm as an ap-

plication of Sense2Vec where each class is represented by a single blueprint profile learned

from the training dataset. Class2Vec uses dynamic time warping distances between differ-

ent observations and the class blueprints to create a novel classification framework with an

viii

unprecedented compression of the time series training data. We evaluate this framework

thoroughly on 70 different datasets hosted on the UCR Archive.

Our results clearly demonstrate that while Sense2Vec provides a novel and compressed form

of data representation for time series data on multi sensor applications, Class2Vec incorpo-

rates meaningful data knowledge in generating blueprint class labels when compared to a

baseline algorithm for a domain-agnostic approach.

ix

Chapter 1: Introduction

1.1 History of Artificial Intelligence

The pursuit of artificial intelligence led to a surge of interest in imitating the human brain

and how it learns, leading to the dawn of “machine learning”. Machine Learning (ML) is defined

by Arthur Samuel (IBM) in 1959 as “A subset of AI that often uses statistical techniques to give

machines the ability to "learn" from data without being explicitly programmed to do so.” ML can

be summarized as follows:

MachineLearning = Representation+Ob jective+Optimization (1.1)

While initially infeasible due to hardware and data constraints, recent advancements in

Graphics Processing Units (GPUs) and the proliferation of data have brought machine learning

algorithms like neural networks to the forefront of attention. Traditional machine learning requires

domain knowledge within the field to which it is being applied, in order to inform which features

should be selected for use in the learning algorithm. However, further exploration into automating

this feature-learning process led to the advancement of "deep learning".Deep learning (DL) is a

type of machine learning that performs this automated feature engineering - deep neural networks

(DNNs) are used to learn abstract representations and discover hidden structures from the data.

The learning is governed by tuning parameters using the backpropagation approach [2]. The re-

lationship between DL, machine learning, neural networks and artificial intelligence is shown in

Figure 1.1. DL is flourishing in the new era of automated-learning machines that deal with mas-

sive amounts of data. DL has a wide application area, from identifying landscape features like

mountains, lakes and buildings from satellite imagery to image processing, segmentation, object

1

tracking and detection in computer vision to enhancing the user experience in online marketing.

Machine learning applications in the computer vision domain were the main motivation for con-

structing DL algorithms. Applications such as transcribing speech into text, finding outliers in

massive data and clustering similar news articles, products, documents and music all make use of

DL. The main advantage of DL as opposed to its ancestors is the feature-learning process. The

latter used tedious, hard-coded instructions to solve a specific problem and, as a result, suffered the

curse of dimensionality [3]. As solving problems that require a large amount of data is inevitable

in today’s world, the birth of the former was a necessity.

Figure 1.1 The relationship between Artificial Intelligence (AI), Machine learning (ML), Neural
Networks (NN), and Deep Learning (DL) as shown by [4].

In 1989, [5] incorporated automatic feature learning into a convolutional operation-based

neural network trained by a constrained backpropagation algorithm. The machine learning com-

munity believes this is the first convolutional neural network to recognize handwritten digits from

US mail. His work was motivated by the weight-sharing technique presented by Hinton in 1986

that reduces the number of learned parameters significantly. Also, in contrast to previous attempts

in the literature, the author used a hyperbolic tangent function in the hidden nodes to achieve high

convergence. The network was task-specific, however, and highly constrained. Geoffry Hinton

introduced an unsupervised, undirected stochastic model called the Boltzmann Machine, which

2

Figure 1.2 Breakthroughs of machine learning in history.

was the first DL model to search for an energy function that maps the input space into another hid-

den space. Hinton’s work modeled the intractable joint probability distribution between the visible

and hidden units and then inferred the underlying hidden structure of the presented binary data.

He implemented a gradient-based algorithm to solve the problem of different encoder structures.

However, Hinton did not apply the algorithm to a variety of complex problems, and did not show

how well it generalizes to unseen data points. The proposed Boltzmann network was also slow

to train, which discouraged the machine learning community from exploring it further. As a re-

sult, the Boltzmann Machine, or the restricted version of it, are not commonly used as deep neural

networks, as they are slow to train using backpropagation.

DL involves architectures that are constructed by stacking multiple layers sequentially

within an artificial neural network. It is based on computing a non-linear function that maps the in-

put space into an output space, in order to improve the network to be unresponsive to translational

3

variance and improve selectivity. In the case of image detection, the motivation behind having

deep layers is to allow the network to be meticulous in distinguishing similar images of differ-

ent objects and robust towards illumination variability, pose variability, occlusion and surrounding

objects. While hand-crafted features have been used for many years, it requires a high level of ex-

pertise and knowledge in the problem domain. However, researchers during the 1970s and 1980s

independently discovered the idea of simply training an artificial neural network using backprop-

agation with stochastic gradient descent to learn the network’s weights and biases. The use of the

chain rule of derivatives allows for computing the gradients of the objective function with respect

to the network parameters [3]. Historically, the computer vision community was not confident that

neural networks were a feasible approach to learn and extract the useful features in classification

and recognition applications, as it was commonly thought that gradient descent would become

stuck in local minima and the weights would not be updated towards the direction of the global

minimum. However, in the 1990s, [6] published the first convolutional neural network named

ConvNets that classified the MNIST dataset and was trained by backpropagation. LeCun’s paper

showed that ConvNets was more efficient in training and generalized to never-before-seen data

with a small number of parameters. With the unprecedented practical success of ConvNets over

the artificial dense neural network, it has since gotten more and more attention from the computer

vision community. The most successful marriage between the computer vision and machine learn-

ing communities happened in 2012, when [7] applied a deep convolutional network to ImageNet, a

set of millions of images from 1000 different categories, and won the ImageNet competition with

better accuracy than all other existing approaches which more readily relies on conventional fea-

ture engineering [3]. While the revolution in computer-vision-based neural networks began with

parallel computing, innovations like data augmentation, dropout for regularization [7], combining

of different network architectures for image captions, the ReLU non-linear function [8], ADAM

optimization [9] and open-source libraries like Tensorflow, Keras and Pytorch all continue to con-

tribute to the success of DL in computer vision applications. The main breakthroughs throughout

the history of machine learning and DL are summarized by Figure 1.2, and Figure 1.8.

4

Figure 1.3 Machine learning life-cycle according to CRISPDM methodology.

The ML life-cycle is shown by 1.3. It is inspired by cross-industry standard process for data

mining (CRISPDM) methodology [10] which considers six phases: 1. Understanding the project

objectives and requirements; 2. Data collection, description, quality checks for outliers and missing

values analysis, data exploration and final preparation; 3. Feature engineering scaling numerical

variables, sampling, correlation and averaging; 4. Machine learning/DL modeling for learning the

mapping of non-parametric functions for regression and classification (find optimum parameters

and hyperparameters for learning). 5. Choosing the right evaluation metric based on the problem

definition and application (ensures that the model properly achieves the project objectives); and

finally 6. Deploying the learned model into production for practical usage.

1.2 Perceptron

The perceptron is the simplest and oldest model of a neuron inside the human brain [11]

which constitutes the bedrock of generic learning models from linear regression to multi-layered

neural networks. It can be defined as a node that receives some input x weighted by parameter w

to output some value y. Given a set of observations X = (x1,x2,,xm), and a set of weights W =

(w1,w2,,wm), the perceptron first calculated a weighted intermediary sum z:

5

z = ∑
i=1

wixi (1.2)

From which the output is computed by an activation function f (.) which may or may not

be linear:

ŷ = f (z) (1.3)

A basic illustrative model of the perceptron is shown by Figure 1.4.

Figure 1.4 Basic model of the perceptron

1.3 Neural Networks

Neural Networks (NNs) build on the idea of the perceptron unit and consist of a stack of

layers with multiple neurons or nodes in them. A simple NN consists of one input layer that re-

ceives information (i.e. features) and passes its output to the next layer (called the hidden layer)

that applies a non-linear function to its weighted input. The output layer receives its input from the

previous hidden layer and provides the final prediction. Figure(a) 1.6 shows a simple neural net-

work architecture. Deep neural networks are constructed by increasing the depth and complexity

6

of the network by adding more layers with more neurons in them to learn more complex functions

to map the inputs to the desired outputs as shown in (Figure(b) 1.6). The true advantage of deep

neural networks is their ability to extract low level and abstract (latent) features from the raw input

data in an automated fashion. As the input data flows from lower hidden layers to upper layers, the

network learns different representations of the data, going from simple to more complex. Formally,

f : x→ y is a function (ReLU [12], Softmax [13], Sigmoid, and Tansh [14], etc.) that maps a set

of input features x, i.e. a set of image pixel values, into some predicted output y, which represents

the network belief on which class this input image belongs to.

1.4 Feedforward Pass

Suppose we have m observations X = (x1,x2,,xm) and each observation xi ⊂ Rd . As-

sume we have L layers in the deep network and each layer li consists of n number of neurons. For

simplicity, we assume all the hidden layers have the same number of nodes. jth node in layer li

receives features xn
l−1 from all the n nodes in layer li−1 weighted by wli−1,li , where wli−1,li is the

weighting matrix between layer li and li−1 to determine the output of node nl
j as follows:

yi, j = f

{
l−i

∑
i=1

wn
li−1,lix

n
l−1

}
(1.4)

yi, j = f

{
l−i

∑
i=1

wn
li−1,lix

n
l−1

}
(1.5)

And each node’s output is passed through a nonlinear activation function f (.) where the

choice of f (.) can vary even within the same network. The most popular nonlinear activation

functions according to [[3], [15]] include:

7

• Rectified Linear Unit (ReLU) Function:

f (y) = max(0,y) (1.6)

• Sigmoid - Logistic Function:

f (y) =
1

1+ e−y (1.7)

• Hyperbolic Tangent Function:

f (y) =
e+y− e−y

e+y + e−y (1.8)

Figure 1.5 Simple Neural Network

8

Figure 1.6 Deep Neural Network

1.5 Backward Pass (Backpropagation)

In the forward pass, the output of each node is computed and passed on to the nodes in

the next layer. The number of nodes, layers and how they are connected defines the network ar-

chitecture. The parameters (also known as weights and biases) define the learning process. Back-

propagation is an algorithm to learn and adjust the parameters of the neural network to optimize

an objective function to minimize error or maximize entropy. Before training, all of the network

parameters are randomly initialized. After the first forward pass through the network, the back-

propagation algorithm computes the error gradients from the output layer back to the input layer

and updates the parameter values of each connection between the nodes of the connected layers.

A brief pseudo description of the algorithm is provided below.

Algorithm I: Backpropagation

Input: loss function ł, learning rate η , activation function σl = f(WT
l hl−i +bl),

predicted output ŷ, target output y

Compute the gradient: δ ← ∂ l(y,ŷ)
∂y

fori← l to 1 do

Calculate the gradients for present layer and backpropagate

to the previous layer until you reach the input layer using the chain rule as follows:

9

∂ l(y, ŷ)
∂Wl

=
∂ l(y, ŷ)

∂hl

∂hl

∂Wl
= δ

∂hl

∂Wl
(1.9)

δ ← ∂ l(y, ŷ)
∂hl

∂hl

∂hl−1
= δ

∂hl

∂hl−1
(1.10)

end

1.6 Hyperparameters

Hyperparameters are determined prior to the optimization of neural network’s internal pa-

rameters (i.e. weights and biases). Hyperparameters generally define the model structure and

topology, improve the overall network performance, optimize the network training time by speed-

ing up the process, etc. Even though hyperparameters are critical to the model performance, there

is no predefined method in how we select them. Hyperparameters can be categorized into two sets:

structural and functional. The former determines the network’s topological specifications such as

the number of hidden layers and the number of neurons in each layer, whereas the latter controls

the training process such as the learning rate, momentum, weight decay, etc.

The table 1.1 lists neural network hyperparameters related to network topology and the

best practices in choosing them based on highly cited literature. And table 1.2 lists neural network

hyperparameters related to the training algorithm and the best practices in choosing them based on

highly cited literature.

1.7 Machine Learning Approaches

Machine learning can be mainly classified into four areas: supervised learning, unsuper-

vised learning, semi-supervised learning and reinforcement learning.

10

Table 1.1 Network structure hyperparameters and their descriptions

Hyperparameter Choice Description
Topology (num-
ber of layers, and
number of units per
layer)

Number of layers determines the depth of the network. The larger
the number of layers, the deeper the neural network. Overfitting is
a common problem in deep multilayered networks. The effect of
overfitting on the learning process can be minimized by adding reg-
ularization techniques. On the other hand, reducing the number of
layers may cause underfitting.

Dropout probability A popular regularization technique implemented per layer in a neural
network [16]. It is used to prevent overfitting that results from learn-
ing the statistical noise in the training set. The basic idea is to prevent
the co-adaptive behavior between neurons by randomly dropping a
set of them during the training to improve novel test performance.
However, dropout introduces another hyperparameter: the probabil-
ity of dropping out neurons and their connections. It has been re-
ported that common values for p ∈ (0.5,0.8).

Parameter initializa-
tion

Carefully initializing the network parameters (i.e. weights and bi-
ases) prevents slow convergence which is also affected by the acti-
vation function used. The variance of the randomly initialized pa-
rameters can be adjusted by different schemes (Xavier [17], layer
sequential uniform variance [18], random [7], [19] initialization to
train deep rectifier networks, etc). Two main problems can be en-
countered by poorly initializing the deep neural network. Exploding
gradient results in model instability and divergence as the error gradi-
ents accumulate during backpropagation. On the contrary, vanishing
gradient causes the neurons in the early layers to converge slowly as
the error gradient quickly fades as it approaches the input layer. For
instance, in image detection, the earlier neurons are responsible for
learning some low-level features (i.e edges, lines, etc) and if they are
not properly trained because of gradient vanishing, it might lead to
poor network performance.

Activation functions The most popular nonlinear functions are: Sigmoid, Hyperbolic tan-
gent, rectified linear unit (ReLU) [8], and exponential linear unit
(ELU) [20]. In contrast to ReLUs, ELUs have negative values that
helps center the mean around zero, which enables faster learning.
Developing activation functions for deep neural networks is still an
active area of research.

11

Table 1.2 Network training hyperparameters and their descriptions

Hyperparameter Choice Description
Learning rate The learning rate is mostly determined empirically. One of the re-

cent common approaches proposed in the literature is to decrease or
increase the learning rate during training based on the oscillations or
plateau of the weight vector, respectively. A well-established second
derivative method was introduced by [21] to improve the conver-
gence by not relying on one global learning rate for all the weights
but to choose different rates for different weights where "the lower
layers should have larger learning rates than the higher ones".

Momentum Momentum [22] helps speed up the learning during training for faster
convergence. Momentum can be seen as a way of smoothing the high
curvature surfaces using the momentum term µ , which is a value
∈ (0,1) and an additional hyperparameter. A typical value for µ is
between 0.5 and 0.9. In stochastic gradient descent with momentum,
it computes the weighted averages of the gradients which is then used
as a multiplier for the learning rate to update the weights and biases
of the neural network.

Mini-batch size A thorough analysis on the subset of benchmark datasets was re-
cently conducted by [23] which showed that the best test perfor-
mance is always achieved with a batch size of 32 where the entire
dataset is divided into mini-batches of 32 training examples.

Number of epochs Epoch is the number of times the entire dataset is fed forward and
backward to the network during the training. As optimizing the cost
function using gradient descent is an iterative process, it is a com-
mon practice in the literature to pass the entire dataset multiple times
to the network while training. As is the case with many hyperpa-
rameters, there is no right answer on how to choose the number of
epochs for a specific dataset. However, observing the evaluation loss
on a validation set and how it changes with respect to the number of
epochs is a common practice (called early stopping). The training is
stopped when the evaluation accuracy decreases for a certain number
of consecutive iterations.

12

1.7.1 Supervised Learning

Supervised learning has been implemented extensively in many machine learning domains,

such as engineering, biology, health sciences, marketing and military applications. In supervised

learning, the task is to learn distinguished features from the input observations aided by the true la-

bels of those observations. Predicting temperature values as in regression models or classifying an

image into one of a number of possible categories are the most common applications of supervised

learning. More formally, the learning of simple and complex patterns is refined by searching for

the best input-to-output mapping function from the hypothesis space in which an objective func-

tion can be optimized. As the learning is defined by the parameters that are tuned during training,

those unknown model parameters are simultaneously adjusted via backpropagation to minimize

the loss function, i.e. their values are optimal. Thus, labeled data is needed for any supervised

algorithm to perform a narrow or general task. To illustrate, consider a classification task using

the convolutional neural network proposed by [6]. Our goal is to build a model that can classify

the Fashion-MNIST [24] data set with high accuracy. Fashion-MNIST is a labeled fashion data

set consisting of ten different classes that has been recently used to test the accuracy of algorithms

instead of MNIST since its intrinsic structure is more challenging. First, the data is split into

two non-overlapping sets: the training set and the testing set. During the training stage, a series

of consecutive and distinguished batches of observations (constructed as a tuple of instance and

target pairs) are fed into the CNN, which uses a softmax output layer to produce a vector of ten

posterior probabilities reflecting the network belief about each observation of the data. Our goal

is to increase the output probability for the desired class, and this can be achieved by minimizing

the error between the ground truth and the predicted output value. As we feed more batches into

the CNN during each epoch, the learned parameters, namely the kernel or filter weights, will ap-

proach their optimal values since they will be constantly adjusted in the opposite direction of the

gradient. These real-valued and shared weights are convolved with a small sliding window from

the previous input layers to form the next feature maps. The amount that each weight is adjusted

is controlled by stochastic gradient descent (SGD). SGD works as a guide for the weights to move

13

in the direction where the average error is decreased and the objective function is optimized. Fi-

nally, the performance of the supervised model is measured by feeding it the unlabeled testing set.

This testing procedure validates how well the CNN generalizes to classifying new data. We also

test whether our network overfits by memorizing the training data or generalizes by learning those

patterns and providing a sensible answer for never-before-seen data.

1.7.2 Unsupervised Learning

Supervised learning can be seen as a teacher-based approach, an approach that has played

and continues to play an indispensable role in the long history of human development [25]. How-

ever, much of our intelligence is attained without a teacher [26]. Unsupervised learning models,

thus, are trained with unlabeled data and governed by hard and soft clustering. Clustering is an

exclusively intrinsic exploratory algorithm [27] that has been used extensively in a variety of appli-

cations, ranging from analyzing large datasets to discovering pairwise similarity between features

within the same group to uncover some hidden shared characteristics between high-dimensional

variables. The goal of clustering is to divide the data into different clusters based on some sim-

ilarity measure (e.g. Euclidean, Cosine, Jaccard distances, etc.) where the distance of elements

belonging to different clusters (i.e. inter-cluster distance) is maximized, and the distance of ele-

ments belonging to the same cluster (i.e. intra-cluster distance) is minimized [28]. However, the

quality of clustering results depends on the algorithm, the distance function and the application.

Recently, with the advance of DL, autoencoders and specifically deep autoencoders have gained

significant traction in analysis and clustering of large scale datasets.

1.7.3 History of Autoencoders

The autoencoder network was first proposed by [29] as a linear method to compress the

input feature space into a lower-dimensional space. Bourlard concluded that linear approaches like

singular value decomposition could be used to learn the optimal parameters of a neural network in-

stead of training it via the backpropagation algorithm, which suffers from local minima. However,

14

Bourlard’s claim was demolished by [30], who fine-tuned the autoencoder network’s parameters to

reduce the reconstruction loss using gradient descent. The adaptive model of the multi-layer neu-

ral network was constructed to reduce the high-dimensional data into lower-dimensional compact

codes. The original data points were then reconstructed using these codes as an input to a decoder

network. The authors showed that the autoencoder’s representation of input features is better than

that of a linear-based approach such as principal component analysis. They tested their model by

inputting two datasets into the encoder network: MNIST (a dataset of images of handwritten digits)

and Reuter (documents of newswire stories). They measured the distance of similarity between the

compressed codes using the cosine of the angle and analyzed how varying the similarity measure

could affect the reconstruction error.

Figure 1.7 Clustering Based Autoencoder Architecture [1].

1.7.4 Deep Autoencoder Architecture

The goal is to generate a code (i.e. latent variable) using a non-linear complex function (i.e.

encoder) that can be fed into another neural network (i.e. decoder) to re-generate the input data. In

terms of space, the encoder network projects input feature vectors that span the high-dimensional

feature space into a low-dimensional latent space spanned by the learned latent vectors. Then,

15

those latent samples are fed into the decoder network to reconstruct the original data. (Figure 1.7)

shows the basic architecture of a deep autoencoder. The encoder is constructed by a set of feed-

forward layers parameterized by φ that compute a code vector from an input data, for example, an

image. The bottleneck in the center of the network represents the compressed representation of the

input features that lie on a non-linear manifold. The decoder is defined by a set of reverse layers

parameterized by θ that compute a reconstruction of the input data, i.e. the image, from the code

vector Z. In the training stage, the network finds the optimal weight matrices and bias vectors that

minimize the mean square error between the input image and the reconstructed one by using:

J = ||xi−gθ (fφ (xi))||2 (1.11)

Many useful analyses can be conducted over the latent space. For instance, we could

apply clustering on the latent code Z since it lies in low-dimensional space and thus increase the

performance. Also, we can reduce the dimensionality of the data to help with visualization in order

to gain some insight about its intrinsic structure. A popular example is using a latent space with

size 2 or 3 to visualize the cluster differences in a 2D or 3D space respectively.

1.8 Sequence Models: Review

Over a half-century, statistical parametric methods provided the state-of-the-art perfor-

mance for time-series modeling and prediction across different applications and fields [31]. [32]

classify parametric methods into two main groups based on their mathematical complexity: expo-

nential smoothing models [33], and Auto Regressive Integrated Moving Average(ARIMA) [34],

[35]. In parametric “linear” methods, the future value can be predicted by a linear function of the

past observations. Moving Average (MA) is one of the simplest parametric models and it is de-

fined as an arithmetic mean of the previous time-series values with equally assigned weights over

a specific time interval [36], [35]. Another variation of MA named Simple Exponential Smoothing

16

was developed by [37] where time-series values that are closer to the predicted value in time are

multiplied by larger weights. However, this approach fails to capture the upward and downward

trends and generates either understated or exaggerated predictions. Holt’s Exponential Smooth-

ing [33] overcomes this problem by introducing another hyperparameter to the Simple Exponential

Smoothing model. However, the added hyperparameter for modeling the trend increases the search

space to statistically learn future values. ARIMA models [38], [39] have been proposed to over-

come the drawbacks of Autoregressive Moving Average (ARMA) models. ARMA models [40] are

suitable for univariate stationary time-series modeling [35]. However, in many practical applica-

tions, time-series exhibit non-stationary behavior. Thus, ARIMA added the integration procedure

to generalize ARMA to adapt to non-stationarity. In addition, power transformations are used

on time-series upward and downward trends to make the series stationary. Another well-known

parametric method is Seasonal ARIMA, also know as SARIMA. It was proposed by [36] as a suc-

cessful variation of ARIMA to count for the seasonal periods and effects in the time-series. The

aforementioned methods model only univariate time- series applications, thus, Vector Autoregres-

sion (VAR) was introduced as a linear framework to provide a systematic way to capture “rich

dynamics” in multivariate time-series [41]. Parametric methods are simple and generally assume

a known prior over the distribution of the time-series data. The advancement of machine learning

brought sophisticated non-parametric methods for time-series modeling and prediction [42], [43].

Non-parametric methods predict the future observations as nonlinear functions of past ones

without prior assumptions on the data distribution. Most recently, a successful combination of

parametric and non-parametric methods enabled hybrid models to improve the prediction per-

formance on a variety of time-series applications [44], [32]. Using machine learning methods

to model time-series and predict future behavior can be formulated by dividing the dataset into

two sets: training set, for model estimation, and testing set, for model performance evaluation.

In supervised machine learning, the time-series is transferred into a dataframe with a sequence

of observation and target values, where the target is the future value for each sequence of con-

secutive observations. The main assumption is that the time-series samples are independent and

17

Figure 1.8 Historic depiction of deep learning breakthrough models.

identically distributed. However, time-series observations carry temporal information where each

point in the time-series may impact the next which weakens this assumption. Among these algo-

rithms that use this approach are Artificial Neural Network (ANN) [11], [29], [21] and SVM [45].

Neural Networks (NNs) consist of a stack of layers with multiple neurons or nodes in them. A

simple NN consists of one input layer that receives information (i.e. features) and passes its out-

put into the next hidden layer that applies a non-linear function on its weighted input. Rectified

Linear Unit (ReLU), Sigmoid - Logistic, and Hyperbolic Tangent Function are well-known non-

linear activation functions [46], [3], [15]. ANNs have attracted many researchers in the domain

of time-series modeling and forecasting and were successfully applied into various time-series ap-

plications [47], [48]. Convolutional Neural Networks [6] have successfully being implemented

across many domains including face recognition [49], image classification [50], and more recent

time-series forecasting and classifications [51], [52], [53], [54], [55], [56]. Recurrent Neural Net-

works (RNNs) [2], [57] [58] and Long Short-Term Memory (LSTM) [59] and gated recurrent [60],

encoder-decoder structures [61] [62], encoder-decoder based attention [63], transformers [64], and

most recently variations of Bidirectional Transformers for Language Understanding (BERT) has

been concretely confirmed to be the state of the art on eleven natural language processing applica-

tions [65].

LSTM is a novel variation of RNN to address the long-term dependency and the vanish-

ing gradient problems [66], [67], [68] and exploding gradient [69]. LSTM has been applied in

many univariate [70], [71], [72] and multivariate time-series applications [73], [74], [75] as a non-

18

parametric method. However, LSTM constructs its hidden states by integrating the past time steps.

Bidirectional Long Short-Term Memory networks (Bi-LSTMs) [76] were proposed to integrate

information from both past and future time steps by means of two hidden states. In all the above

mentioned algorithms, one of the biggest challenges on how to properly represent time-series for

learning tasks especially when time-series profiles are of variable length. RNN has proven to be

a successful deep neural network architecture in mapping fixed source sequences into target se-

quences when the alignment is defined ahead of time [62]. A simple encoder-decoder approach

to learning representations of sequences was developed by [61] for statistical machine transla-

tion. The RNN encoder encodes the input sequence into a fixed representation vector known as

the encodings and use the decoder to map back the learned vector representation into the target

sequence. [77] introduces a novel differentiable attention method to allow the recurrent neural to

focus on different parts of the input space acts as a selective criteria of important information from

different hidden states of the network. A variation of this idea was applied to neural machine trans-

lation by allowing the network to implement soft-search attention on different words of the input

sentence that are relevant to to human intuition in performing language translation [63]. One-step

forecasting models predict only the next time step of the time series. Recurrent neural networks

has been used in predicting one-step-ahead by [77].And multi-step predictions can be implemented

by sequence-to-sequence (seq2seq) models directly [62] [61]. Given an input variable length se-

quence, seq2seq can predict another sequence of future values for a fixed and variable range of

horizons [78]. DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks [79]

probabilistic forecasts, based on training an auto-regressive recurrent network model on a large

number of related time series.

While DeepAR only learns a univariate distribution, [80] combined RNN based-models

with copulas to model multivariate probability distributions.

19

1.9 Deep Learning Frameworks

Below you can find some of the popular frameworks used in contemporary machine learn-

ing and the benchmark datasets on which researchers can compare their algorithms.

Table 1.3 Datasets specifications.

Name Year Organization Source
Theano 2007 Uni Monteral http://deeplearning.net/software/theano/
Caffe 2014 UC-Berkeley http://caffe.berkeleyvision.org/
TensorFlow 2015 Google https://www.tensorflow.org/
Keras 2015 FancoisChollet https://keras.io/
MXNET 2015 Amazon https://mxnet.apache.org/
PyTorch 2016 FaceBook http://pytorch.org/
Caffe2 2017 FaceBook https://caffe2.ai/

1.10 Computer Vision Benchmark Datasets

Table 1.4 Deep learning frameworks.

Name Size(Pixels) Number
of classes

Source

CIFAR-10 (32,32,3) 10 https://www.cs.toronto.edu/ kriz/cifar.html
CIFAR-100 (32,32,3) 100 https://www.cs.toronto.edu/ kriz/cifar.html
MNIST (28,28,1) 10 http://yann.lecun.com/exdb/mnist
Fashion-MNIST (28,28,1) 10 http://arxiv.org/abs/1708.07747
ImageNet (224,224,3) 1000 http://www.image-net.org/
SVHN (32,32,3) 10 http://ufldl.stanford.edu/housenumbers/
NORB 3D images 5 http://www.cs.nyu.edu/ylclab/data/norb/
MIT-67 scenes 67 http://web.mit.edu/torralba/www/indoor.html
Pascal-VOC-07 20 objects 20 http://host.robots.ox.ac.uk/pascal/VOC/
Face recognition 20 objects 20 http://vis-www.cs.umass.edu/lfw/
Google-Images 9 million 600 https://github.com/openimages/dataset
Face-recognition 20 objects 20 http://vis-www.cs.umass.edu/lfw/

20

Chapter 2: An Overview of Time Series Approaches: Background

2.1 Note to Reader

Portions of this chapter have been previously published in our paper at the Journal of Food

Engineering and have been reproduced with the permission from Journal of Food Engineering.

2.2 Motivation

Handling multivariate time-series data with variable lengths is one of the most elusive and

challenges in machine learning applications for cold-chain. Pre-processing multivariate time-series

with variable lengths has been studied for a wide range of applications including representation

learning [[81], [82]], time-series prediction [[83], [71], [84]], clustering [[85], [86], [87]], clas-

sification [[88], [74], [89]], and anomaly detection [[90], [91], [92]], sequence modeling and ma-

chine translation [[93], [61]]. The challenges of time-series pre-processing with variable lengths

were addressed by [94], and [95] for clustering analysis and by [96] for wireless sensor reduction

using a theoretical framework. Our own research group has studied how artificial neural networks

(ANN) can be applied to learn the mapping between sensors’ locations in the cold-chain using

time-series data [[97], [98], [99]]. However, these experiments were conducted on simulated tem-

perature data, and do not adequately represent the real-world’s complex non-linear environment

being presented in this chapter. We believe this dataset can ultimately provide the food transporta-

tion and applied machine learning research communities with valuable data to inspire modeling

innovations and IoT sensor applications for time series analysis.

21

2.3 Value of the Data

• With a combined decades worth of research in perishable post-harvest logistics, the authors

believe that there is still a lot of unknowns when it comes to what actually happens in the

cargo hold throughout the shipment. Another reason why this data is novel and important is

that unlike many other studies which involved a singular entity, it is the result of a significant

collaboration between all the stakeholders in the cold chain from growers to distributors to

retailers to academics.

• Better understand the temperature profile of a standard cold-chain from harvest to store and

how the temperature is distributed inside a perishable produce container during shipments of

different durations.

• We hope that this data will motivate the food transportation research community to delve

into developing more sophisticated regression and classification algorithms for univariate

and multivariate time series, better clustering methods, learning representations with di-

mensionality reduction, and a better mathematical and statistical understanding of what is

happening in cargo hold.

• The analysis and processing of temperature time-series data for predictive tasks represent

a significant challenge especially when profiles may have variable lengths, high variability,

and abnormalities as is common in many cold chain applications. The dataset will enable

researchers from a wide array of fields and backgrounds to apply analytical tools such as

machine learning and physical models in testing and comparing the performance of their

predictive or diagnostic algorithms on the cold-chain.

• Develop temporal algorithms for solving regression, classification and clustering tasks on

time series and deploy advanced data analytics to predict the future behaviour of the data

profiles during transportation from harvest to the DC, or to identify if a sensor profile satisfied

a specific quality control criteria for a retailer;

22

• Educational purposes which include analysis of univariate or multivariate time series data

using statistical methods for regression, deep learning for time series classification, learning

representation and location-based prediction; 1

2.4 Specifications

• Subject: Agricultural Sciences

• Specific subject area: Food engineering and time series

• Type of data: Tabular data - CSV files

• Data format: Mixed (raw and preprocessed)

• How data were acquired: Figure 2.1 shows a US Map that highlights the shipping routes that

were monitored to acquire the data. Two of the shipments originated from Plant City, Florida

with final destinations in Florida and Georgia. Four shipments originated from Salinas,

California with final destinations in Maryland, Pennsylvania, Virginia, South Carolina, North

Carolina, Georgia and Texas.

• Instruments: DeltaTrak’s Reusable Real−Time−Logger (RTL) Mini devices are used to log

both temperature and location data in real time. The RTLs have a wide operational tempera-

ture range of −30◦C to 95.55◦C with a temperature accuracy of +/−1◦C. More information

about the hardware used in this study can be found in the appendix.

Data was extracted via the cloud application which can establish secure communications

with the GSM loggers. Python [101] was employed to perform subsequent data analysis.

• Parameters for data collection: The strawberry cold chain beginning at the field, the straw-

berries are harvested and placed into plastic clam shells packed into cardboard flats with 8

clamshells (each weighing one pound) per flat, which are subsequently stacked together to

build pallets containing between 18−20 layers with 6 flats per layer. Once the pallets are

1Possible sensor and data applications, and several future research trajectories are summarized in [100].

23

built in the field on the back of a flatbed trailer, they are driven to the nearest processing

facility to be precooled down to transportation and storage temperatures (0◦C).

• Data source location

Institution: University of South Florida and University of Florida

Country:US

States for collected samples/data: Florida, Georgia, Maryland, Pennsylvania, Virginia, South

Carolina, North Carolina, Texas, California.

• Primary data sources: WishFarms.

• Data accessibility:

Direct URL to data: https://data.mendeley.com/datasets/nxttkftnzk/draft?a=7d8b1fed-c1c3-

4aa3-8cf3-5b385d221237Dataset link

2.5 Data Collection Process

2.5.1 General Description of the Dataset

The objective of the data collection process was to obtain the wide range of temperature

profiles to which the strawberry shipments around the United States are subjected from the time of

the harvest to the arrival at the distribution center. In total there were six shipments which cover

both short and long−distance transportation scenarios. Two of the shipments originated from the

strawberry capital of the East Coast, Plant City, Florida with final destinations both in Florida and

in Georgia. Four shipments originated from Salinas, California, the most productive agricultural

region in California sometimes referred to as the world’s agriculture technology capital with final

destinations in a wide range of states including Maryland, Pennsylvania, Virginia, South Carolina,

North Carolina, Georgia and Texas. The process for data collection has been uniform throughout

each experimental trial. Figure 2.1 highlights the aforementioned states.

24

Figure 2.1 The shipping routes that were monitored in this study: Two of the shipments originated
from Plant City, Florida (orange star) with final destinations both in Florida and in Georgia. Three
shipments originated from Salinas, California (yellow star) with final destinations in a wide range
of states including Maryland, Pennsylvania, Virginia, South Carolina, North Carolina, Georgia
and Texas.

2.5.2 Temperature Sensors

We used DeltaTrak’s Reusable Real−Time−Logger (RTL) Mini devices as shown in Fig-

ure 2.2 to log both temperature and location data in real time. The data is transmitted in real time

via GSM cellular networks which eliminate the need to collect the loggers at the end of the ship-

ment to be able to have access to the recorded data. The loggers have a wide temperature range

of −30◦C to 95.55◦C with a temperature accuracy of +/−1◦C in the range of interest for this ex-

periment. Unlike previous studies in this area, this device also eliminates the need for any prior

infrastructure setup to be able to automatically collect the data (such as readers for radio frequency

identification (RFID) transponders). More information about the hardware used in this study can

be found in the appendix.

25

Figure 2.2 DeltaTrak’s Reusable Real−Time−Logger (RTL) Mini devices to log both
temperature and location data in real time.

2.5.3 Data Collection Setup

The loggers were instrumented inside the pallets of strawberries right at the point and time

of harvest during the pallet buildup stage. A total of three loggers were placed in a single pallet

distributed equally along the vertical axis. Specifically one logger was placed closer to the bottom

of the pallet (3rd layer from the bottom), another was placed closer to the middle layer of the pallet

and a third was placed closer to the top layer of the pallet (3rd layer from the top) between the

fruits. A total of three instrumented pallets were sent out with each of the six shipments. Similar

to the placement of loggers within the pallet, the instrumented pallets inside the container were

distributed equally along the horizontal axis. Specifically, one instrumented pallet was placed at

the front of the container (i.e., close to the front of the truck), another was placed near the middle

of the container and a third was placed at the back of the container (i.e., close to the loading end),

each named accordingly (front, middle, rear) in the dataset. Hence, there were 9 loggers in total

for each instrumented shipment labeled with respect to the loggers’ location in the pallet and the

pallets’ location in the container (front−top, front−middle, front−bottom, ..., rear−bottom).

2.5.4 Cold-chain Background

Traditionally, in the strawberry cold chain beginning at the field, the strawberries are har-

vested and placed into plastic clam shells (the packaging the consumers are most familiar with)

26

packed into cardboard flats with 8 clamshells (each weighing one pound) per flat, which are sub-

sequently stacked together to build pallets containing between 18−20 layers with 6 flats per layer.

Once the pallets are built in the field on the back of a flatbed trailer, they are driven to the nearest

processing facility to be precooled down to transportation and storage temperatures (0◦C). This

represents the most critical period in the proper temperature management regimen of strawberries

due to the fact that even a single hour delay in precooling could result in days of shelf life loss

which are not readily observable until the product is placed on the grocery display for sale. After

the precooling is completed, the pallets are either i) shipped directly to the distribution centers

(DC) with pending purchase orders from the retailers connected to the DCs or ii) stored at the pro-

cessing facility if the instantaneous supply from the fields is greater than the accumulated demand

from the DCs [[102]]. While the ideal transportation and storage temperatures are identical (0◦C),

more variations in the profiles are observed for transported pallets due to the fact that the loading

doors open and close during the loading/unloading stages. It is difficult to pinpoint the exact time

the pallet is received at the DC due to the fact that the storage temperatures at DC track the trans-

portation temperatures closely – however the temperature variations are significant enough during

the DC−to−store stage to be observable on the recorded temperatures. However, it is important

to note that since the GPS locations come from cellular towers and that no specific guidance have

been provided to the store employees in handling and disposal of the loggers received with the in-

coming strawberry pallets, the point of divergence in the temperature profiles of the loggers (which

likely indicate when each pallet is sent to a different store) in each individual shipment also repre-

sents the last reliable data point in the profiling of field−to−precooling−to−DC chain of events.

In other words, if this data is to be used for statistical studies of field−precooling−transport tem-

peratures, one can disregard the time−temperature points following the easily identifiable point of

divergence of logger profiles within the same shipment as shown in Figure 2.4. It is important to

note that this uncertainty led us to exclude these divergent profile subsections in both the visual-

ization and the calculation of the preliminary statistics and box plots of the data below. However,

the entirety of the data is still provided in the original dataset for those researchers who would like

27

to delve deeper into the unique temperature characteristics of these “product potentially at (or on

its way to) the store” time intervals.

0 50 100 150 200 250
Timesteps

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

Shipment 1

FT
FM
MT
MM
RT
RM
RB

0 10 20 30 40 50 60 70
Timesteps

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

Shipment 2
FT
FM
FB
MT
MM
MB
RT
RM
RB

0 100 200 300 400 500 600
Timesteps

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

Shipment 3
FT
FM
FB
MT
MM
MB
RT
RM
RB

FT FM MT MM RT RM RB
Locations of the sensors

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

FT FM FB MT MM MB RT RM RB
Locations of the sensors

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

FT FM FB MT MM MB RT RM RB
Locations of the sensors

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

0 100 200 300 400
Timesteps

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

Shipment 4
FT
FM
FB
MT
MM
MB
RT
RM
RB

0 100 200 300 400 500
Timesteps

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

Shipment 5
FT
FM
FB
MT
MM
MB
RT
RM
RB

0 50 100 150 200 250 300
Timesteps

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

Shipment 6
FT
FM
FB
MT
MM
MB
RT
RM
RB

FT FM FB MT MM MB RT RM RB
Locations of the sensors

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

FT FM FB MT MM MB RT RM RB
Locations of the sensors

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

FT FM FB MT MM MB RT RM RB
Locations of the sensors

0

1

2

3

4

5

Te
m

pe
ra

tu
re

 in
 C

Figure 2.3 Temperature profiles of multivariate time series data and its distribution from
precooling to the end of transportation.

28

2.6 Cold Chain Temperature Profiles as Multivariate Time Series

A time series Xt of size n can be defined as a collection of data points measured sequen-

tially over equally spaced time intervals. i.e., Xt = (x1,x2, ...,xn), where xt ∈ R is an observation

at time t. Time series signals can be classified with respect to their generative process into two

main groups: deterministic, if there is a mathematical function f mapping the time series values

to y; and stochastic if a random error occurs within the time series signal in addition to the mathe-

matical function f . Generally a time series Xt is generated from an underlying stochastic process

via a probability rule that governs the joint distribution of the random variables that generate that

process [[34], [35]]. A time series can be univeriate if its observation is recorded over a single

variable, and multivariate otherwise. time series can also be classified as continuous or discrete

based on the interval of measurement. Specifically, a time series can be considered continuous if its

observations are measured continuously over a specific time interval, whereas discrete time series

would contain observations at equally and discretely spaced time intervals such as minutes, hours

and days [[31], [32]]. time series are represented by graphs where the observations are plotted

against the times of such observations. In total, this dataset includes 54 time series (with 9 sensor

profiles for each of the 6 shipments) with a varying number of observations due to the length of

the shipment and the sensor start/stop times. Figure 2.3 displays each sensor profile separately for

each of the 6 shipments where top−left subfigure is the first and bottom−right subfigure is the last

shipment. Please observe that these figures display real−world, noisy and complex multivariate

time series as signature representatives of each shipment. Table 3.1 provides the time sampling

rate, number of samples per day and the time duration for all shipments used in this study. The

calculations including harvest, precooling, and transportation periods. We also demonstrate sim-

ple statistical distributions for each time series in Figure 2.3 ,where each subfigure represents the

box−plots for the nine sensors in each shipment with second−row first subfigure and last−row last

subfigure represent the first and last shipments respectively. The black dots in each figure represent

the outliers for that particular distribution.

29

0 500 1000 1500 2000 2500 3000
Timesteps

30

40

50

60

70

80

90

100

Te
m

pe
ra

tu
re

 in
 F

Harvest Precooling Food Transportation Food Distribution

0 200 400 600 800 1000 1200
Timesteps

30

40

50

60

70

80

90

Te
m

pe
ra

tu
re

 in
 F

H P T D

0 200 400 600 800
Timesteps

30

35

40

45

50

55

60

65

Te
m

pe
ra

tu
re

 in
 F

Figure 2.4 Full temperature profiles for three different sensors from three different shipments
from harvest (field temperatures) to precooling to transportation to retail store display. The colors
for harvest, precooling, transportation, and distribution are cyan, magenta, green, and blue,
respectively.

30

Table 2.1 Time intervals for the temperature measurements for all sensor recordings used in the
data collection.

Shipment Name Variable/Sensor Name Starting Time of Recording Ending Time of Recording
Front-Top 3/12/19 12:30 PM 4/2/19 12:24 PM
Front-Middle 3/12/19 12:28 PM 3/22/19 10:19 AM
Front-Bottom NA NA
Middle-Top 3/12/19 12:30 PM 3/25/19 11:50 PM

Shipment 1 Middle-Middle 3/12/19 12:26 PM 3/22/19 9:27 AM
Middle-Bottom NA NA
Rear-Top 3/12/19 12:26 PM 4/3/19 8:42 AM
Rear-Middle 3/12/19 12:29 PM 3/22/19 2:01 AM
Rear-Bottom 3/12/19 12:29 PM 3/21/19 8:04 AM
Front-Top 4/4/19 3:04 AM 4/4/19 10:10 PM
Front-Middle 4/4/19 3:03 AM 4/22/19 7:06 AM
Front-Bottom 4/4/19 3:07 AM 4/20/19 6:08 PM
Middle-Top 4/4/19 3:07 AM 4/14/19 3:12 PM

Shipment 2 Middle-Middle 4/4/19 3:04 AM 4/4/19 10:07 PM
Middle-Bottom 4/4/19 3:04 AM 4/22/19 9:42 AM
Rear-Top 4/4/19 3:03 AM 4/11/19 7:03 PM
Rear-Middle 4/4/19 3:07 AM 4/10/19 10:49 AM
Rear-Bottom 4/4/19 3:07 AM 4/12/19 6:59 AM
Front-Top 7/9/19 9:09 AM 7/17/19 6:00 PM
Front-Middle 7/9/19 8:58 AM 7/16/19 3:45 PM
Front-Bottom 7/9/19 8:59 AM 7/20/19 4:08 PM
Middle-Top 7/9/19 8:56 AM 7/24/19 6:03 AM

Shipment 3 Middle-Middle 7/9/19 8:57 AM 7/24/19 9:04 AM
Middle-Bottom 7/9/19 8:58 AM 7/15/19 6:56 PM
Rear-Top 7/9/19 8:58 AM 7/22/19 3:09 AM
Rear-Middle 7/9/19 8:57 AM 7/24/19 9:19 AM
Rear-Bottom 7/9/19 8:57 AM 7/18/19 3:09 AM
Front-Top 7/9/19 9:08 AM 7/24/19 9:15 AM
Front-Middle 7/9/19 8:56 AM 7/24/19 8:59 AM
Front-Bottom 7/9/19 8:57 AM 7/16/19 2:10 PM
Middle-Top 7/9/19 9:10 AM 7/15/19 3:53 PM

Shipment 4 Middle-Middle 7/9/19 9:11 AM 7/19/19 5:10 AM
Middle-Bottom 7/9/19 9:12 AM 7/16/19 9:23 AM
Rear-Top 7/9/19 9:12 AM 7/24/19 9:19 AM
Rear-Middle 7/9/19 9:13 AM 7/19/19 5:00 AM
Rear-Bottom 7/9/19 9:13 AM 7/16/19 2:34 PM
Front-Top 7/10/19 10:24 AM 7/17/19 5:19 PM
Front-Middle 7/10/19 10:24 AM 7/24/19 3:10 PM
Front-Bottom 7/10/19 10:24 AM 7/20/19 1:47 PM
Middle-Top 7/10/19 10:19 AM 7/18/19 11:01 AM

Shipment 5 Middle-Middle 7/10/19 10:32 AM 7/19/19 7:07 AM
Middle-Bottom 7/10/19 10:41 AM 7/18/19 11:35 AM
Rear-Top 7/10/19 10:22 AM 7/18/19 4:31 PM
Rear-Middle 7/10/19 10:33 AM 7/18/19 5:21 PM
Rear-Bottom 7/10/19 10:22 AM 7/24/19 2:06 PM
Front-Top 7/10/19 10:22 AM 7/26/19 5:03 AM
Front-Middle 7/10/19 10:18 AM 7/25/19 10:19 AM
Front-Bottom 7/10/19 10:39 AM 7/10/19 8:32 PM
Middle-Top 7/10/19 10:25 AM 7/18/19 9:51 AM

Shipment 6 Middle-Middle 7/10/19 10:25 AM 7/15/19 6:29 AM
Middle-Bottom 7/10/19 10:25 AM 7/16/19 11:06 AM
Rear-Top 7/10/19 10:26 AM 7/17/19 7:58 PM
Rear-Middle 7/10/19 10:27 AM 7/17/19 5:55 PM
Rear-Bottom 7/10/19 10:27 AM 7/23/19 4:43 AM

31

Table 2.2 All sensors across all shipments summary statistics – integer and numeric variables.

Sensor Name Ship No Timestamps Mean STD Min 25% 50% 75% Max
Ship 1 250 2.40 0.39 0.89 2.11 2.39 2.72 3.28
Ship 2 72 1.51 0.48 0.61 1.22 1.39 1.89 2.61

Front Top Ship 3 615 3.43 0.67 0.61 2.78 3.61 3.89 4.72
Ship 4 521 2.13 0.36 0.39 1.89 2.22 2.50 2.61
Ship 5 521 2.13 0.36 0.39 1.89 2.22 2.50 2.61
Ship 6 321 1.75 0.35 0.28 1.50 1.78 2.11 2.22
Ship 1 250 3.07 0.25 1.39 3.00 3.00 3.22 3.50
Ship 2 72 1.35 0.30 0.50 1.22 1.28 1.53 1.78

Front Middle Ship 3 615 2.56 0.83 -0.39 2.00 2.78 3.28 3.72
Ship 4 521 1.47 0.47 -0.11 1.22 1.72 1.89 2.00
Ship 5 521 1.47 0.47 -0.11 1.22 1.72 1.89 2.00
Ship 6 321 2.58 0.37 0.78 2.22 2.72 2.78 3.39
Ship 1 N/A N/A N/A N/A N/A N/A N/A N/A
Ship 2 72 1.35 0.19 0.72 1.22 1.39 1.50 1.72

Front Bottom Ship 3 615 2.99 0.70 0.39 2.61 3.22 3.50 3.72
Ship 4 521 1.87 0.33 0.00 1.72 2.00 2.11 2.28
Ship 5 521 1.87 0.33 0.00 1.72 2.00 2.11 2.28
Ship 6 28 0.93 0.26 0.28 0.72 1.00 1.11 1.22
Ship 1 250 2.79 0.37 -0.22 2.78 2.89 2.89 3.22
Ship 2 72 1.43 0.26 0.89 1.28 1.39 1.61 1.89

Middle Top Ship 3 615 2.13 0.60 -0.39 1.61 2.39 2.72 3.89
Ship 4 521 1.40 0.23 0.39 1.28 1.28 1.50 2.00
Ship 5 521 1.40 0.23 0.39 1.28 1.28 1.50 2.00
Ship 6 321 3.74 1.31 0.22 2.72 4.00 4.89 5.61
Ship 1 250 3.51 0.36 1.28 3.39 3.72 3.72 3.78
Ship 2 72 1.46 0.20 0.89 1.39 1.50 1.61 1.78

Middle Middle Ship 3 615 1.72 0.93 -0.89 1.11 1.72 2.61 3.28
Ship 4 521 1.57 0.20 -0.11 1.50 1.61 1.72 1.89
Ship 5 521 1.57 0.20 -0.11 1.50 1.61 1.72 1.89
Ship 6 321 2.50 0.86 0.22 1.72 2.50 3.28 3.89
Ship 1 N/A N/A N/A N/A N/A N/A N/A N/A
Ship 2 72 1.29 0.25 0.50 1.11 1.28 1.50 1.72

Middle Bottom Ship 3 615 1.13 0.50 -0.89 0.89 1.22 1.61 1.78
Ship 4 521 1.45 0.12 0.28 1.39 1.39 1.50 1.78
Ship 5 521 1.45 0.12 0.28 1.39 1.39 1.50 1.78
Ship 6 321 1.97 0.78 -0.22 1.39 2.11 2.72 3.11
Ship 1 250 2.65 0.30 0.28 2.61 2.78 2.78 3.00
Ship 2 72 1.48 0.25 0.39 1.39 1.50 1.61 1.78

Rear Top Ship 3 615 3.34 0.69 0.28 2.83 3.50 3.89 4.72
Ship 4 521 3.88 0.51 0.72 3.50 4.22 4.28 4.28
Ship 5 521 3.88 0.51 0.72 3.50 4.22 4.28 4.28
Ship 6 321 2.39 0.22 0.39 2.28 2.50 2.50 2.89
Ship 1 250 2.77 0.31 1.22 2.72 2.89 3.00 3.00
Ship 2 72 1.93 0.21 1.00 1.78 2.00 2.11 2.22

Rear Middle Ship 3 615 2.79 0.91 0.11 2.11 2.78 3.61 4.28
Ship 4 521 3.05 0.31 1.28 2.78 3.11 3.28 3.61
Ship 5 521 3.05 0.31 1.28 2.78 3.11 3.28 3.61
Ship 6 321 2.34 0.54 0.61 1.89 2.50 2.72 4.39
Ship 1 250 2.54 0.18 1.28 2.42 2.61 2.61 2.72
Ship 2 72 1.98 0.23 1.39 1.78 2.00 2.22 2.39

Rear Bottom Ship 3 615 2.71 0.60 -0.22 2.39 2.78 3.22 3.39
Ship 4 521 2.37 0.13 0.89 2.28 2.39 2.50 2.61
Ship 5 521 2.37 0.13 0.89 2.28 2.39 2.50 2.61
Ship 6 321 2.09 0.23 0.72 1.89 2.22 2.28 2.50

32

Table 2.3 Variables descriptions.

Variable Type Description Source of Data
Front Top Numeric Sensor placed at the front pallet

in the shipping container instru-
mented closer to the top layer
of the pallet (3rd layer from the
top) between the fruits.

Shipments 1 through 6

Front Middle Numeric Sensor placed at the front pal-
let in the shipping container in-
strumented closer to the middle
layer of the pallet between the
fruits.

Shipments 1 through 6

Front Bottom Numeric Sensor placed at the front pal-
let in the shipping container in-
strumented closer to the bottom
of the pallet (3rd layer from the
bottom) between the fruits.

Shipments 2 through 6

Middle Top Numeric Sensor placed at the middle pal-
let in the shipping container
instrumented closer to the top
layer of the pallet (3rd layer
from the top) between the fruits.

Shipments 1 through 6

Middle Middle Numeric Sensor placed at the middle pal-
let in the shipping container in-
strumented closer to the middle
layer of the pallet between the
fruits

Shipments 1 through 6

Middle Bottom Numeric Sensor placed at the middle pal-
let in the shipping container in-
strumented closer to the bottom
of the pallet (3rd layer from the
bottom) between the fruits.

Shipments 2 through 6

Rear Top Numeric Sensor placed at the rear pallet
in the shipping container instru-
mented closer to the top layer
of the pallet (3rd layer from the
top) between the fruits.

Shipments 1 through 6

Rear Middle Numeric Sensor placed at the rear pal-
let in the shipping container in-
strumented closer to the middle
layer of the pallet between the
fruits.

Shipments 1 through 6

Rear Bottom Numeric Sensor placed at the rear pal-
let in the shipping container in-
strumented closer to the bottom
of the pallet (3rd layer from the
bottom) between the fruits.

Shipments 1 through 6

33

Table 2.4 Time sampling rate and the time duration for all shipments used in this study.

Shipments Approximate Sam-
pling Rate (in Min-
utes)

Number of Sam-
ples (per Day)

Total Duration

Shipment 1 5 264 6 days, 9 hours and 28 minutes
Shipment 2 10 127 2 days, 1 hour and 9 minutes.
Shipment 3 10 132 6 days, 9 hours and 25 minutes
Shipment 4 10 132 5 days, 12 hours and 5 minutes
Shipment 5 10 130 6 days, 14 hours and 53 minutes
Shipment 6 10 132 4 days, 4 hours and 35 minutes

Table 2.5 Timestamp counts of temperature sensor profiles (raw data count).

Sensors/Count Ship1 Ship2 Ship3 Ship4 Ship5 Ship6
Front-Top 3208 100 1094 2019 925 1995
Front-Middle 2663 2054 952 2027 1882 2054
Front-Bottom N/A 2054 1490 922 1276 54
Middle-Top 3599 1320 1952 811 1036 1003
Middle-Middle 1300 100 1960 1316 1145 605
Middle-Bottom N/A 2054 844 916 1012 781
Rear-Top 2964 1008 1666 2049 1041 995
Rear-Middle 1230 827 1999 1287 1047 974
Rear-Bottom 1118 1105 1173 930 1885 1721

34

2.7 Statistical Description and Visualization of the Dataset

Table 2.2 show the number of observations for each sensor in each shipment for the period

we are interested in (from precooling to the end of transportation), and Tables 2.2 through 2.5

represent simple numerical characteristics and statistics of the dataset. Table 2.5 shows the total

number of observations for each sensor in each shipment in its raw shape. Please note that two

sensors in the first shipment malfunctioned and did not report any data to the cell towers. Please

also note that one sensor did not fully report its data on the last shipment. As a result, a researcher

looking for a full representation of harvest−to−DC profiles for different locations and shipment are

encouraged to use the remaining 51 profiles in their analysis.Table Table 2.2 provides a complete

statistical description fro each sensor profile.

2.8 Time Series Performance Metrics

To evaluate the similarity between two time series xi
t and yi

t , different metrics have been

proposed in the literature. To name few:

• The Mean Forecast Error (MFE): On average, it measure how predicted values deviate from

the real value.

MFE(xt ,yt) =
1
Ns

Ns

∑
i=1
|xi

t− yi
t | (2.1)

• The Mean Absolute Percentage Error (MAPE): MAPE is a percentage representation of

mean absolute error.

MAPE(xt ,yt) =
1
Ns

Ns

∑
i=1

|xi
t− yi

t |
xi

t
(2.2)

• The Mean Squared Error (MSE):

MSE, also known as the L2-norm, is a well-known performance metric due to its clear

physical interpretation and the fact that it can be easily computed by taking the average

35

of the squared differences between time series xt and yt is defined by:

MSE(xt ,yt) =
1
Ns

Ns

∑
i=1

(xi
t− yi

t)
2 (2.3)

• The Root Mean Squared Error (RMSE):RMSE is nothing but the square root of MSE.

RMSE(xt ,yt) =

√√√√ 1
Ns

Ns

∑
i=1

(xi
t− yi

t)
2 (2.4)

• The Sum of Squared Error (SSE): On total, it measures the squared deviation of predicted

values from real values.

SSE(xt ,yt) =
Ns

∑
i=1

(xi
t− yi

t)
2 (2.5)

• The Normalized Mean Squared Error (NMSE): It uses the variance of the test set to normal-

ize the MSE.

NMSE(xt ,yt) =
1

Ns ∗σ2

Ns

∑
i=1

(xi
t− yi

t)
2 (2.6)

• The Mean Absolute Error (MAE): On average, how the absolute predicted values deviate

from the absolute real values.

MAPE(xt ,yt) =
1
Ns

Ns

∑
i=1

(xi
t− yi

t) (2.7)

36

For the aforementioned equations, we refer to the observation i at time step t in time series x

with xi
t .

• Bayesian Criterion Information (BIC) [103]: BIC is best for explanation as it is allows con-

sistent estimation of the underlying data generating process.

BIC(M) = 2logL(M)+ p(M)∗ log(n) (2.8)

n: number of observations.

• Akaike information criterion (AIC) [104]: Maximizing the likelihood function for each in-

dividual model, and choose the model for which AIC the smallest.

AIC(M) = 2logL(M)+2∗ p(M) (2.9)

p: dimension of the model.

37

Chapter 3: Time Series Analysis

3.1 Note to Reader

Portions of this chapter have been previously published in our paper at the Journal of Food

Engineering and have been reproduced with the permission from Journal of Food Engineering.

3.2 Motivation

In this chapter, we present our effort in conducting a comprehensive statistical and temporal

analysis to analyze the dynamic factors for the temporal heterogeneity, complexity, similarity, and

discrepancy on a novel location aware multivariate time series dataset that was introduced in the

previous chapter. The dataset represents the temperature variations across 6 different shipments

with 9 sensors in each shipment monitoring and recording sensory data at 15−minute intervals

across multiple days. Each container had three instrumented pallets where each pallet had a tem-

perature sensor placed near the top, middle and the bottom of the pallet for a total of nine sensors

in each shipment. The goal of this paper is to provide the descriptive statistics of the novel dataset

with some time series visualization, and time-series statistical and temporal analysis.

3.3 Data Analysis

Our analysis is conducted to answer four main research questions:

1. How can one measure the similarities and discrepancies among the different multivariate

time-series temperature profiles?

2. How can one measure the reading consistency between the temperature profiles both within

the same container and across different containers?

38

3. How is the original temperature profile represented in the frequency domain and how is its

reconstruction affected by the level of compression?

4. How can one measure the modeling complexity for forecasting using the autocorrelation of

each sensor and its lagged profiles?

5. Based on the collected multivariate time-series, what are the possible applications for data

analysis, food engineering and time-series?

These questions are answered below in their respective subsubsections following the same

numbering scheme.

3.3.1 Differences and Similarities Based on Pearson’s Correlation

To answer the first question, we use heatmaps of Pearson product−moment correlation

coefficients to measure the similarities and discrepancies among shipments. Pearson’s correlation

coefficient can be written according to [105] as:

σm =
∑

n
i=1(xi−µx)(yi−µy)√

∑
nx
i=1(xi−µx)2

√
∑

ny
i=1(yi−µy)2

(3.1)

where µx and µy are the average means of the time-series signals at length nx and ny ,respectively.

. Both can be written as:

µx =
1
nx

nx

∑
i=1

(xi); µy =
1
ny

ny

∑
i=1

(yi) (3.2)

When analyzing shipments instrumented with multiple environmental sensors placed in

different locations it is important to look at the similarities and differences between different sensor

locations inside the same container. Pearson’s correlation coefficient provides a robust way to

summarily visualize the temporal similarities which may exist. For example, a high correlation

coefficient between two different locations may indicate that a single sensor could be sufficient to

39

represent both temperature recordings whereas low correlation coefficients across the board may

indicate significant differences in temperature distributions inside the container.

FT FM MT MM RT RM RB
Names of the sensors

FT
FM

M
T

M
M

RT
RM

RB
Na

m
es

 o
f t

he
 se

ns
or

s

1 0.85 0.19 -0.11 0.22 -0.12 0.64

0.85 1 0.55 0.17 0.58 0.16 0.7

0.19 0.55 1 0.81 0.97 0.82 0.51

-0.11 0.17 0.81 1 0.81 0.97 0.51

0.22 0.58 0.97 0.81 1 0.8 0.57

-0.12 0.16 0.82 0.97 0.8 1 0.48

0.64 0.7 0.51 0.51 0.57 0.48 1

Shipment1 Pearson's correlation coefficients

FT FM FB MT MM MB RT RM RB
Names of the sensors

FT
FM

FB
M

T
M

M
M

B
RT

RM
RB

Na
m

es
 o

f t
he

 se
ns

or
s

1 0.5 0.59 0.81 0.56 0.58 0.59 0.48 0.6

0.5 1 0.75 0.53 0.87 0.95 0.25 0.7 0.87

0.59 0.75 1 0.69 0.87 0.84 0.67 0.84 0.8

0.81 0.53 0.69 1 0.65 0.61 0.54 0.5 0.67

0.56 0.87 0.87 0.65 1 0.95 0.45 0.71 0.89

0.58 0.95 0.84 0.61 0.95 1 0.37 0.73 0.91

0.59 0.25 0.67 0.54 0.45 0.37 1 0.68 0.38

0.48 0.7 0.84 0.5 0.71 0.73 0.68 1 0.75

0.6 0.87 0.8 0.67 0.89 0.91 0.38 0.75 1

Shipment2 Pearson's correlation coefficients

FT FM FB MT MM MB RT RM RB
Names of the sensors

FT
FM

FB
M

T
M

M
M

B
RT

RM
RB

Na
m

es
 o

f t
he

 se
ns

or
s

1 0.57 0.46 0.92 0.66 0.7 0.43 0.5 0.59

0.57 1 0.95 0.46 0.94 0.91 0.95 0.95 0.97

0.46 0.95 1 0.36 0.88 0.89 0.98 0.91 0.96

0.92 0.46 0.36 1 0.61 0.67 0.31 0.42 0.52

0.66 0.94 0.88 0.61 1 0.94 0.87 0.95 0.95

0.7 0.91 0.89 0.67 0.94 1 0.86 0.89 0.95

0.43 0.95 0.98 0.31 0.87 0.86 1 0.93 0.95

0.5 0.95 0.91 0.42 0.95 0.89 0.93 1 0.95

0.59 0.97 0.96 0.52 0.95 0.95 0.95 0.95 1

Shipment3 Pearson's correlation coefficients

FT FM FB MT MM MB RT RM RB
Names of the sensors

FT
FM

FB
M

T
M

M
M

B
RT

RM
RB

Na
m

es
 o

f t
he

 se
ns

or
s

1 0.6 0.7 -0.12 0.17 -0.021 0.48 0.67 0.19

0.6 1 0.97 0.43 0.79 0.71 0.84 0.93 0.88

0.7 0.97 1 0.28 0.72 0.61 0.85 0.96 0.79

-0.12 0.43 0.28 1 0.7 0.73 0.39 0.26 0.59

0.17 0.79 0.72 0.7 1 0.93 0.71 0.69 0.83

-0.021 0.71 0.61 0.73 0.93 1 0.68 0.61 0.85

0.48 0.84 0.85 0.39 0.71 0.68 1 0.87 0.8

0.67 0.93 0.96 0.26 0.69 0.61 0.87 1 0.76

0.19 0.88 0.79 0.59 0.83 0.85 0.8 0.76 1

Shipment4 Pearson's correlation coefficients

FT FM FB MT MM MB RT RM RB
Names of the sensors

FT
FM

FB
M

T
M

M
M

B
RT

RM
RB

Na
m

es
 o

f t
he

 se
ns

or
s

1 0.98 0.97 -0.5 0.18 -0.16 0.94 0.96 0.31

0.98 1 0.97 -0.58 0.08 -0.24 0.96 0.91 0.19

0.97 0.97 1 -0.49 0.19 -0.11 0.95 0.91 0.31

-0.5 -0.58 -0.49 1 0.69 0.83 -0.56 -0.39 0.53

0.18 0.08 0.19 0.69 1 0.86 0.039 0.27 0.84

-0.16 -0.24 -0.11 0.83 0.86 1 -0.23-0.034 0.75

0.94 0.96 0.95 -0.56 0.039 -0.23 1 0.84 0.17

0.96 0.91 0.91 -0.39 0.27 -0.034 0.84 1 0.47

0.31 0.19 0.31 0.53 0.84 0.75 0.17 0.47 1

Shipment5 Pearson's correlation coefficients

FT FM FB MT MM MB RT RM RB
Names of the sensors

FT
FM

FB
M

T
M

M
M

B
RT

RM
RB

Na
m

es
 o

f t
he

 se
ns

or
s

1 0.96 0.97 0.97 0.97 0.97 0.55 0.96 0.92

0.96 1 0.98 0.95 0.94 0.94 0.64 0.94 0.93

0.97 0.98 1 0.99 0.94 0.98 0.98 0.99 0.96

0.97 0.95 0.99 1 0.99 1 0.45 0.98 0.91

0.97 0.94 0.94 0.99 1 0.99 0.41 0.97 0.87

0.97 0.94 0.98 1 0.99 1 0.44 0.98 0.91

0.55 0.64 0.98 0.45 0.41 0.44 1 0.48 0.67

0.96 0.94 0.99 0.98 0.97 0.98 0.48 1 0.91

0.92 0.93 0.96 0.91 0.87 0.91 0.67 0.91 1

Shipment6 Pearson's correlation coefficients

0.0

0.2

0.4

0.6

0.8

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3.1 Multivariate time series “full profile” Pearson’s correlations.

Figure 3.1 shows six heatmaps of Pearson’s correlation coefficients between the multivari-

ate time-series profiles for each of the six shipments equipped with nine sensors each labeled by

two letters where the first letter represents the instrumented pallet location inside the container

and the second represents the sensor position inside that pallet. For example, FT (Front−Top)

represents the location of the top sensor inside the front pallet. The heatmaps reveal the hetero-

geneity and complexity of the collected multivariate time-series by demonstrating clear difference

in the gradient variations across different sensors both within the same shipment and among dif-

ferent shipments as well. The gradient levels are driven by the strength of the correlations between

the temperature sensors profiles. The profiles include a full representation of the cold chain from

measuring harvest temperatures to the precooling process, and the subsequent transportation and

40

distribution ending at the retail stores. Based on the inherent randomness of each of these pro-

cesses, the temperature levels can change significantly to create an overall underlying process that

is both stochastic and nonstationary with moments changing over time . One can observe that the

shipments 2,3, and 6 have more consistent readings of strawberry temperatures among different

sensors that are reflected by stronger correlations in comparison to shipments 1,4, and 5. Shipment

6 has the highest positive correlations values while shipment 5 has the lowest. This information

can be helpful in location−based predictions for wireless sensor networks and data analytics appli-

cations, where physical sensors can be removed, and their readings predicted using other sensors.

However, a careful examination is needed in identifying the best candidates for such forecasting

applications. For example, the heatmap for shipment 6 shows that the FT and RB sensors have

a strong correlation coefficient of 0.92 which suggests a high probability of successful prediction

of one location’s temperature profile from the other’s, however the same locations have a correla-

tion coefficient of only 0.31 for shipment 5 which indicates the complexity and inconsistency of

time-series forecasting and predictive analytics in such a scenario.

3.3.2 Dynamic Time Warping (DTW) Distance Analysis

To answer the second question, we have conducted an extensive analysis on the time-series

temperature profiles using dynamic time warping (DTW) distances according to [106] as a mea-

sure of comparing one time-series profile to another. DTW warps the time axis of one (or both)

temperature profile sequences to achieve a better alignment.

To align two sequences, DTW constructs an nx× ny matrix where the (ith, jth) element of

the matrix contains the distance d(xi,y j) between the two temperature points xi and y j (Typically

the Euclidean distance is used, so d(xi,y j) =
√

∑(xi− y j)2). Each matrix element (i, j) corre-

sponds to the alignment between the temperature points xi and y j. DTW warping path is subject to

three constraints according to [105]: boundary conditions, continuity and monotonicity; to mini-

mize the overall warping cost, it can be written as following:

41

DTW (x,y) = min

√

∑
L
l=1(zi)

L

 (3.3)

where L, the number of elements in the warping path, is used to compensate for the fact that

warping paths may have different lengths. In order to find the minimum path, the warping path Z is

contiguous: Z = z1,z2, . . . ,zL and max(nx,ny)6 L < (nx+ny-1). DTW use dynamic programming

to compute the cumulative distance ζ (i, j) from d(i, j) “current position” in the matrix and the

minimum of the cumulative distances of the adjacent elements:

ζ (i, j) = d(xi,y j)+min{ζ (i−1, j−1)+ζ (i−1, j)+ζ (i, j−1)} (3.4)

2 0 2 4 6
Differences in C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Dynamic Time Warping Distance Distributions for Ship1

Ship(1-1)
Ship(1-2)
Ship(1-3)
Ship(1-4)
Ship(1-5)
Ship(1-6)

0 2 4 6 8
Differences in C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
ns

ity

Dynamic Time Warping Distance Distributions for Ship2

Ship(2-1)
Ship(2-2)
Ship(2-3)
Ship(2-4)
Ship(2-5)
Ship(2-6)

2 0 2 4 6 8
Differences in C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

Dynamic Time Warping Distance Distributions for Ship3

Ship(3-1)
Ship(3-2)
Ship(3-3)
Ship(3-4)
Ship(3-5)
Ship(3-6)

2 0 2 4 6 8
Differences in C

0.0

0.1

0.2

0.3

0.4

0.5

0.6

De
ns

ity

Dynamic Time Warping Distance Distributions for Ship4

Ship(4-1)
Ship(4-2)
Ship(4-3)
Ship(4-4)
Ship(4-5)
Ship(4-6)

2 0 2 4 6 8
Differences in C

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Dynamic Time Warping Distance Distributions for Ship5

Ship(5-1)
Ship(5-2)
Ship(5-3)
Ship(5-4)
Ship(5-5)
Ship(5-6)

2 0 2 4 6
Differences in C

0.0

0.1

0.2

0.3

0.4

0.5

De
ns

ity

Dynamic Time Warping Distance Distributions for Ship6

Ship(6-1)
Ship(6-2)
Ship(6-3)
Ship(6-4)
Ship(6-5)
Ship(6-6)

Figure 3.2 Dynamic Time Warping (DTW) analysis of the “full temperature profiles” from the
multivariate time series across all shipment pairs.

42

To demonstrate the true complexity and heterogeneity of the temporal dynamics for the

sensor recordings, Figure 3.2 displays the dynamic time warping (DTW) distances between dif-

ferent sensor measurements among all the shipments for a total of 36 distributions. In total we

have computed 2916 DTW distances (36 x 81) which correspond to 36 pair combinations among

the six shipments (6 x 6) and 81 pair combinations among the nine sensors in each shipment (9

x 9). Every distribution in Figure 3.2 represents a shipment level DTW distance values of 81

distance−pairs between each sensor location and the remaining eight sensors’ locations inside the

container/shipment. The individual distributions are divided into two parts as the 6 homogenous

distributions (i.e. within the same shipment for different sensor locations), and the 30 which rep-

resent the DTW distance−pairs across different shipments. Thus, it would be impractical to show

all the 2916 values including the zeros, and instead we show the distributions to indicate how

close or far some sensors are in terms of their temperature readings. Narrow distributions indicate

similar behaviours and reading consistency whereas wider distributions are indicative of different

behaviors and reading inconsistency. Narrower distributions indicate stronger temporal alignments

or more similarities between sensors and represent a good illustration of the reading consistency

of strawberry temperatures among different sensors inside the shipping containers. Conversely,

wider distributions indicate higher levels of misalignment in terms of the profile behavior. We

believe that the differences in DTW distance distributions, such as the means, standard deviations,

and the skewness directions can jointly be interpreted as challenging indicators for the temporal

heterogeneity, complexity, similarity, and discrepancy of the collected multivariate time-series.

These distance−based distributions can be helpful in location−based predictions for wireless sen-

sor networks and data analytics applications as the selection, identification, and grouping of the

best candidates are necessary preprocessing steps for increasing the accuracy of time-series fore-

casting, clustering, and classification applications. Besides, the distributions of DTW distances

can be used as strong and weak evidences of similarity and discrepancy for time-series analysis.

For example, the DTW distance distribution between the shipments 5 and 2 are wider compared to

the one computed for shipments 4 and 2, which indicates a strong evidence of temporal similarity

43

between shipments 4 and 2 and vice versa for shipments 5 and 2. Finally, this analysis can further

help in aggregating similar shipments to help reduce the redundancy of selecting similar time-

series profiles for representation which would ultimately reduce the time and memory complexity

of the time-series analysis as well.

3.3.3 Frequency Domain Analysis of the Temperature Profiles

To answer the third question, we use Fast Fourier Transform (FFT) and its inverse IFFT

to determine FFT coefficients and energy concentration in the frequency domain. A Fast Fourier

transform (FFT) was introduced by [107] as a numerical computing algorithm to transform time

or space domain signal or sequence to frequency domain representation. This representation is a

spectrum of frequencies’ coefficients that can be used to reconstruct the original signal by applying

the Inverse Fast Fourier Transform (IFFT). Discrete Fourier Transform (DFT) is discrete and can

be computed according to [[107], [108]]by:

F{x[m]}=
N−1

∑
k=0

x[k]e
−2πikm

N (3.5)

where m = 0,1, ...,N−1, N is the sequence length or number of time-series observations, k/N is

the frequency. w = e
−2πi

N , and wNn+K
N = wk

N .

The computed values F{x[m]} are complex, as they computed by the sum of complex

exponential.

Analyzing the frequency domain spectrum of the multivariate time-series data is important

for database query especially if the input sequence needs to be matched to one of many time-series

sequences in the database [109]. Fast Fourier Transform (FFT) is a fast computing version of Dis-

crete Fourier Transform (DFT) to decompose the time-series into multiple frequency components.

Each frequency response is represented by one coefficient of DFT. The time-series profiles in the

Figure 3.3 represents the original Middle−Middle sensor profile from shipment 5 and its recon-

struction using different frequency coefficients. We observe for the time-series profiles, one can

reconstruct the original profile from the frequency domain with a minimum number of coefficients

44

0 100 200 300 400 500
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Te
m

pe
ra

tu
re

 in
 C

First fourier component

Orginal Signal
Reconstructed Signal

0 100 200 300 400 500
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Te
m

pe
ra

tu
re

 in
 C

First 10 fourier components

Orginal Signal
Reconstructed Signal

0 100 200 300 400 500
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Te
m

pe
ra

tu
re

 in
 C

First 20 fourier components

Orginal Signal
Reconstructed Signal

0 100 200 300 400 500
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Te
m

pe
ra

tu
re

 in
 C

First 30 fourier components

Orginal Signal
Reconstructed Signal

0 100 200 300 400 500
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Te

m
pe

ra
tu

re
 in

 C

First 50 fourier components

Orginal Signal
Reconstructed Signal

0 100 200 300 400 500
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Te
m

pe
ra

tu
re

 in
 C

All fourier components

Orginal Signal
Reconstructed Signal

Figure 3.3 Fast Fourier Transform (FFT) and inverse (IFFT) temperature profile reconstructions
for Middle−Middle sensor from shipment 5.

as shown by Figure 3.3 as the energy is concentrated around zero for the magnitude of the complex

coefficients. Besides, this is an indication that storing and retrieving a large number of shipment

profiles for time-series analysis is possible using a few coefficients of the FFT, thus decreasing the

time−complexity of searching. However, there is an application trade-off between a fast querying

process at the expense of losing some reconstruction resolutions of the original profile.

3.3.4 Autocorrelations of Individual Sensor Profiles

To answer the fourth question, we calculate the autocorrelation coefficients for each sensor

across the six shipments and provide the results in figure 3.4 which plots these coefficients for

time lags between 0 and 20. The subfigures for each shipment clearly illustrates the difficulty

of the multivariate time-series data in forecasting applications specifically for the food supply

chain. For instance, shipments 2 and 3 demonstrate different autocorrelation coefficients for each

sensor (decaying or increasing in magnitude and changing in direction) as the number of lags

45

increases. The lags of the autocorrelation function and the partial autocorrelation function help

determine the order of p and q in the ARIMA model where p is the autoregressive model order

and q is the moving average model order. All of the analysis that we have conducted on this

novel and temporally rich data has highlighted the main challenges of working with temperature

profiles along the cold chain in terms of modeling, statistical analysis and IoT sensor data analytics

specifically for food engineering. As a result, we will dedicate the next subsection to discuss the

possible applications this work can inspire.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time Lags

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

s o
f S

hi
pm

en
t 1

Shipment 1

FT
FM
FB
MT
MM
MB
RT
RM
RB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time Lags

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

s o
f S

hi
pm

en
t 2

Shipment 2

FT
FM
FB
MT
MM
MB
RT
RM
RB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time Lags

0.90

0.92

0.94

0.96

0.98

1.00

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

s o
f S

hi
pm

en
t 3

Shipment 3

FT
FM
FB
MT
MM
MB
RT
RM
RB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time Lags

0.6

0.7

0.8

0.9

1.0

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

s o
f S

hi
pm

en
t 4

Shipment 4

FT
FM
FB
MT
MM
MB
RT
RM
RB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time Lags

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

s o
f S

hi
pm

en
t 5

Shipment 5

FT
FM
FB
MT
MM
MB
RT
RM
RB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Time Lags

0.2

0.4

0.6

0.8

1.0

Au
to

co
rre

la
tio

n
co

ef
fic

ie
nt

s o
f S

hi
pm

en
t 6

Shipment 6

FT
FM
FB
MT
MM
MB
RT
RM
RB

Figure 3.4 Autocorrelation coefficients for all sensors in shipments 1 through 6 for different lags.

46

Table 3.1 Autocorrelation coefficients for the sensors in shipment 1 for different lags.

Lags FT FM FB MT MM MB RT RM RB
t−1 0.966 0.982 N/A 0.977 0.999 N/A 0.949 0.987 0.978
t−2 0.949 0.96 N/A 0.952 0.998 N/A 0.917 0.977 0.957
t−3 0.938 0.926 N/A 0.929 0.997 N/A 0.895 0.968 0.929
t−4 0.932 0.892 N/A 0.903 0.996 N/A 0.887 0.96 0.9
t−5 0.924 0.847 N/A 0.875 0.996 N/A 0.855 0.955 0.881
t−6 0.912 0.806 N/A 0.838 0.995 N/A 0.824 0.95 0.867
t−7 0.907 0.764 N/A 0.797 0.995 N/A 0.801 0.942 0.856
t−8 0.905 0.725 N/A 0.749 0.994 N/A 0.77 0.939 0.849
t−9 0.893 0.683 N/A 0.709 0.993 N/A 0.739 0.939 0.841
t−10 0.885 0.647 N/A 0.667 0.992 N/A 0.695 0.932 0.837
t−11 0.878 0.605 N/A 0.626 0.991 N/A 0.682 0.927 0.831
t−12 0.883 0.574 N/A 0.6 0.99 N/A 0.642 0.92 0.824
t−13 0.878 0.535 N/A 0.563 0.989 N/A 0.598 0.915 0.818
t−14 0.87 0.509 N/A 0.545 0.987 N/A 0.574 0.909 0.811
t−15 0.87 0.477 N/A 0.525 0.986 N/A 0.554 0.903 0.804
t−16 0.868 0.459 N/A 0.525 0.984 N/A 0.538 0.897 0.802
t−17 0.868 0.437 N/A 0.511 0.983 N/A 0.505 0.892 0.796
t−18 0.866 0.415 N/A 0.517 0.982 N/A 0.46 0.886 0.791
t−19 0.868 0.399 N/A 0.524 0.98 N/A 0.436 0.878 0.786
t−20 0.876 0.383 N/A 0.53 0.979 N/A 0.431 0.869 0.778

Table 3.2 Autocorrelation coefficients for the sensors in shipment 2 for different lags.

Lags FT FM FB MT MM MB RT RM RB
t−1 0.955 0.88 0.865 0.903 0.834 0.849 0.898 0.861 0.914
t−2 0.909 0.759 0.712 0.798 0.647 0.68 0.704 0.674 0.796
t−3 0.859 0.665 0.601 0.721 0.553 0.6 0.557 0.548 0.711
t−4 0.818 0.601 0.516 0.628 0.495 0.564 0.424 0.455 0.618
t−5 0.769 0.495 0.414 0.516 0.363 0.447 0.37 0.354 0.479
t−6 0.717 0.366 0.246 0.405 0.209 0.273 0.293 0.159 0.325
t−7 0.643 0.235 0.083 0.273 0.029 0.099 0.165 0.009 0.179
t−8 0.587 0.1 −0.03 0.167 −0.132 −0.032 0.059 −0.013 0.067
t−9 0.545 −0.012 −0.129 0.093 −0.258 −0.156 0.025 0.027 −0.016
t−10 0.514 −0.095 −0.21 0.033 −0.329 −0.236 0.072 0.007 −0.116
t−11 0.469 −0.127 −0.33 −0.043 −0.417 −0.299 0.239 −0.092 −0.201
t−12 0.431 −0.19 −0.428 −0.11 −0.49 −0.364 0.321 −0.194 −0.276
t−13 0.403 −0.251 −0.485 −0.158 −0.512 −0.415 0.343 −0.238 −0.32
t−14 0.385 −0.288 −0.527 −0.197 −0.492 −0.434 0.352 −0.275 −0.359
t−15 0.353 −0.299 −0.524 −0.204 −0.47 −0.43 0.365 −0.374 −0.391
t−16 0.31 −0.286 −0.56 −0.191 −0.427 −0.39 0.378 −0.493 −0.424
t−17 0.262 −0.272 −0.529 −0.172 −0.355 −0.354 0.346 −0.525 −0.437
t−18 0.196 −0.241 −0.465 −0.12 −0.268 −0.297 0.288 −0.525 −0.434
t−19 0.165 −0.231 −0.412 −0.053 −0.206 −0.266 0.196 −0.498 −0.419
t−20 0.093 −0.22 −0.366 −0.02 −0.152 −0.215 0.106 −0.488 −0.418

47

Table 3.3 Autocorrelation coefficients for the sensors in shipment 3 for different lags.

Lags FT FM FB MT MM MB RT RM RB
t−1 0.996 0.996 0.997 0.99 0.998 0.993 0.996 0.999 0.996
t−2 0.993 0.992 0.996 0.982 0.996 0.988 0.993 0.998 0.994
t−3 0.99 0.989 0.995 0.975 0.995 0.982 0.99 0.997 0.992
t−4 0.987 0.985 0.994 0.966 0.993 0.978 0.988 0.995 0.989
t−5 0.984 0.982 0.993 0.957 0.992 0.974 0.985 0.994 0.987
t−6 0.98 0.979 0.992 0.949 0.991 0.972 0.982 0.993 0.985
t−7 0.976 0.977 0.991 0.941 0.99 0.971 0.98 0.992 0.983
t−8 0.972 0.975 0.99 0.935 0.988 0.972 0.977 0.991 0.981
t−9 0.969 0.973 0.989 0.931 0.987 0.971 0.974 0.989 0.978
t−10 0.965 0.97 0.988 0.927 0.985 0.969 0.971 0.988 0.976
t−11 0.962 0.967 0.987 0.925 0.983 0.966 0.968 0.986 0.973
t−12 0.958 0.964 0.986 0.922 0.982 0.964 0.965 0.984 0.971
t−13 0.955 0.961 0.985 0.92 0.98 0.959 0.962 0.982 0.967
t−14 0.951 0.958 0.984 0.918 0.978 0.955 0.958 0.979 0.963
t−15 0.947 0.955 0.983 0.917 0.976 0.952 0.953 0.977 0.96
t−16 0.942 0.952 0.982 0.915 0.974 0.95 0.948 0.974 0.956
t−17 0.938 0.949 0.981 0.912 0.971 0.948 0.943 0.971 0.953
t−18 0.933 0.946 0.979 0.909 0.969 0.947 0.938 0.968 0.949
t−19 0.928 0.944 0.977 0.905 0.967 0.945 0.933 0.965 0.946
t−20 0.923 0.941 0.976 0.9 0.965 0.945 0.928 0.962 0.942

Table 3.4 Autocorrelation coefficients for the sensors in shipment 4 for different lags.

Lags FT FM FB MT MM MB RT RM RB
t−1 0.992 0.997 0.998 0.96 0.978 0.976 0.994 0.983 0.997
t−2 0.988 0.995 0.996 0.938 0.967 0.965 0.989 0.973 0.996
t−3 0.984 0.993 0.994 0.914 0.956 0.959 0.985 0.969 0.996
t−4 0.981 0.991 0.992 0.893 0.94 0.952 0.98 0.966 0.995
t−5 0.978 0.989 0.989 0.867 0.926 0.946 0.974 0.959 0.994
t−6 0.975 0.987 0.987 0.845 0.916 0.941 0.969 0.954 0.994
t−7 0.971 0.985 0.984 0.828 0.909 0.937 0.966 0.947 0.994
t−8 0.965 0.981 0.981 0.809 0.901 0.935 0.961 0.941 0.993
t−9 0.961 0.978 0.977 0.789 0.895 0.929 0.957 0.937 0.993
t−10 0.955 0.974 0.973 0.77 0.885 0.921 0.952 0.931 0.992
t−11 0.949 0.97 0.969 0.752 0.875 0.911 0.948 0.926 0.991
t−12 0.943 0.966 0.966 0.729 0.867 0.905 0.944 0.922 0.991
t−13 0.936 0.961 0.962 0.702 0.854 0.895 0.938 0.919 0.99
t−14 0.928 0.956 0.957 0.675 0.84 0.888 0.933 0.912 0.989
t−15 0.919 0.951 0.952 0.648 0.833 0.885 0.928 0.906 0.988
t−16 0.911 0.946 0.947 0.627 0.821 0.879 0.924 0.9 0.987
t−17 0.902 0.941 0.94 0.603 0.811 0.875 0.919 0.894 0.986
t−18 0.892 0.935 0.934 0.588 0.799 0.87 0.915 0.888 0.985
t−19 0.882 0.93 0.927 0.589 0.787 0.865 0.911 0.881 0.984
t−20 0.873 0.924 0.92 0.593 0.772 0.861 0.908 0.877 0.983

48

Table 3.5 Autocorrelation coefficients for the sensors in shipment 5 for different lags.

Lags FT FM FB MT MM MB RT RM RB
t−1 0.996 0.996 0.991 0.974 0.917 0.958 0.998 0.993 0.949
t−2 0.993 0.995 0.987 0.96 0.877 0.937 0.997 0.988 0.901
t−3 0.991 0.994 0.985 0.95 0.865 0.919 0.996 0.982 0.846
t−4 0.99 0.993 0.985 0.938 0.851 0.905 0.995 0.977 0.794
t−5 0.988 0.992 0.983 0.925 0.841 0.901 0.994 0.973 0.731
t−6 0.987 0.991 0.981 0.906 0.839 0.893 0.993 0.97 0.676
t−7 0.986 0.99 0.98 0.895 0.833 0.887 0.993 0.967 0.66
t−8 0.985 0.99 0.978 0.882 0.804 0.882 0.992 0.965 0.659
t−9 0.985 0.989 0.976 0.866 0.765 0.871 0.992 0.963 0.65
t−10 0.984 0.988 0.975 0.858 0.746 0.857 0.991 0.963 0.648
t−11 0.983 0.987 0.974 0.855 0.735 0.834 0.991 0.961 0.643
t−12 0.981 0.986 0.974 0.851 0.735 0.808 0.99 0.959 0.647
t−13 0.978 0.985 0.973 0.83 0.703 0.793 0.99 0.956 0.672
t−14 0.977 0.984 0.972 0.816 0.699 0.772 0.989 0.952 0.662
t−15 0.975 0.983 0.971 0.802 0.694 0.763 0.988 0.949 0.619
t−16 0.975 0.982 0.968 0.791 0.684 0.754 0.988 0.947 0.559
t−17 0.974 0.982 0.967 0.777 0.667 0.743 0.987 0.944 0.515
t−18 0.974 0.981 0.966 0.762 0.655 0.73 0.985 0.942 0.481
t−19 0.973 0.98 0.966 0.748 0.632 0.72 0.985 0.939 0.443
t−20 0.972 0.979 0.966 0.737 0.616 0.708 0.983 0.937 0.408

Table 3.6 Autocorrelation coefficients for the sensors in shipment 6 for different lags.

Lags FT FM FB MT MM MB RT RM RB
t−1 0.991 0.989 0.968 0.999 0.996 0.997 0.951 0.985 0.983
t−2 0.988 0.98 0.956 0.998 0.992 0.993 0.915 0.98 0.978
t−3 0.986 0.969 0.955 0.997 0.989 0.99 0.871 0.975 0.971
t−4 0.984 0.96 0.931 0.996 0.985 0.988 0.83 0.971 0.967
t−5 0.983 0.953 0.936 0.994 0.98 0.984 0.79 0.966 0.965
t−6 0.981 0.944 0.929 0.992 0.975 0.981 0.756 0.962 0.962
t−7 0.976 0.937 0.926 0.99 0.97 0.977 0.704 0.959 0.956
t−8 0.974 0.932 0.956 0.988 0.964 0.973 0.663 0.956 0.953
t−9 0.972 0.926 0.885 0.986 0.957 0.967 0.59 0.952 0.947
t−10 0.971 0.923 0.858 0.983 0.95 0.963 0.533 0.951 0.944
t−11 0.968 0.915 0.855 0.98 0.944 0.958 0.491 0.95 0.939
t−12 0.966 0.909 0.825 0.978 0.936 0.952 0.443 0.95 0.935
t−13 0.964 0.901 0.853 0.974 0.928 0.945 0.397 0.949 0.932
t−14 0.963 0.892 0.758 0.971 0.922 0.939 0.347 0.95 0.927
t−15 0.961 0.886 0.793 0.968 0.915 0.931 0.297 0.949 0.925
t−16 0.96 0.879 0.88 0.964 0.906 0.923 0.245 0.95 0.924
t−17 0.958 0.876 0.805 0.961 0.898 0.914 0.211 0.947 0.922
t−18 0.957 0.873 0.768 0.957 0.89 0.905 0.181 0.945 0.919
t−19 0.954 0.87 0.825 0.953 0.883 0.896 0.146 0.944 0.916
t−20 0.955 0.869 0.791 0.949 0.875 0.885 0.103 0.942 0.916

49

3.4 Discussion

One potential application which could be of interest to quality control personnel throughout

the cold chain is to quickly and effectively detect any anomalies in the form of temperature abuses

or breaks along the cold chain. In this particular instance, we had not observed any anomalies

across any of the six shipments, however in case one wants to implement a general framework to

detect such anomalies in a similar time series dataset the following discussion will introduce some

of the methods widely accepted in the literature.

3.4.1 Applied Methods for Detecting Abnormality

Anomaly detection is defined by [110] as “the identification of the data that do not conform

to the pattern as expected”. FFT, and Pearson product-moment correlation coefficients with the

help of running the Dickey-Fuller test [[111]] were used by [112] to first classify the time series

into three distinct classes: (1) stationary, (2) periodic and (3) non-stationary and non-periodic to

guide the selection of different thresholds for detecting the abnormal behaviours. For instance, if

the time series is stationary, a local and a global mean from small and large windows are com-

puted (where the mean difference is given by mean = |MeanLocal−MeanGlobal|/MeanGlobal

which is used as a threshold for identifying anomalies. With the help of FFT and the Pearson

correlation coefficient, a time series can be classified into periodic or not, based on exceeding a

certain correlation threshold. The authors use the standard deviations of two consecutive sliding

time windows RStd = |Stdcurrent−Std previous|/Std previous, to detect an anomaly. Finally, the

authors used deep learning approaches for sequence modeling using Gated Recurrent Units [[60]]

to detect anomalies by fitting the prediction errors into a normal distribution, and by mapping them

into a cumulative distribution function (CDF), where the model detect an anomaly if the CDF

value exceeds a threshold. On the other hand, a DTW-based anomaly detector was used to detect

cyber-attacks known as Distributed Denial of Service (DDoS), worm propagation, and port scan-

ning attacks on the internet traffic network [113]. In this work, the authors use DTW to compute

the non-linear alignment of the time series between control traffic packets and data traffic packets

50

to identify the dissimilar behavior between the two without the past familiarity of the network at-

tacks. Similar to other approaches, a predefined hyperparameter is computed and then used as a

threshold to find the outliers that fall outside the range of values defined by median absolute de-

viation (MAD), MAD = median|xi - median(xi)|, where, xi denotes individual observations in the

given data. The authors consider any distance value more than three scaled MAD away from the

median as an outlier. A more advanced unsupervised architecture was proposed in [114] that uses

a variational autoencoder (VAE) with re-encoder and latent constraint network, named as VELC.

VELC can find a compressed representation of the time-series data through a long-short-term-

memory (LSTM) probabilistic encoder and learn the latent variables that generate the input data.

The error reconstruction error is optimized both in the original space and the learned latent space

to accurately model the normal time series. Subsequently, from the latent space distribution, the

input time series is reconstructed through an LSTM probabilistic decoder. The authors achieved

state-of-the-art performance in distinguishing normal and abnormal samples over ten datasets com-

paring 4 different models. Recently, a survey has been published by [115] on anomaly detection

in univariate time-series to compare statistical approaches like autoregressive model (AR), moving

average (MA), autoregressive moving integrated average model (ARIMA), and simple exponential

smoothing (SES) with other machine learning algorithms like k-means clustering – subsequence

time-series clustering (STSC), isolation forest, and extreme gradient boosting (XGBoost, XGB)

and deep learning models like multiple layer perceptron (MLP), convolutional neural networks

(CNN), LSTM, and autoencoders. Statistical methods assume the data is stationary, and mostly

quantifies the anomaly score as the difference between the prediction and ground truth, i.e. the

error. On the other hand, machine learning methods do not assume any prior knowledge on the un-

derlying process of the data and can detect outliers either in a supervised or unsupervised manner

based on whether the labels are used in the training phase to optimize the objective functions. For

example, STSC applies a window approach to convert the time series into a set of sub-sequences

and then apply k-means clustering to find the optimum number of clusters. An anomaly will

be flagged if the error between the clusters centroids and each subsequence exceeds the predefined

51

threshold. Similar to machine learning approaches, deep learning neural networks learn more com-

plex functions from the input time series and find the optimum parameter through backpropagation

with gradient descent to minimize the cost function or error. The error is compared to a threshold

to check for anomalies. Surprisingly, even as deep learning has gained immense popularity over

the recent years, the published results conclude that the statistical models actually achieved the best

results in detecting both point and collective anomalies while having trouble dealing with contex-

tual anomalies. This finding highlights the main advantages of deep learning in understanding the

context over a long period and across different variables and also learn good representations from

the input data. On a dataset like the one introduced in this paper, a statistical approach is more

likely to yield better results due to both the size of the data and some of the statistical similarities

we observed among shipments and sensor locations.

3.4.2 Sensors’ Variability Control

In this particular study, we introduce to the food engineering and time-series research com-

munities a novel multivariate sensory time-series dataset collected as a result of significant collab-

oration between stakeholders from growers to distributors to retailers to academics. We instrument

and monitor each shipment individually and on site such that the variability among them is rather

controlled (almost the exact same places in the container for instance). Hence, some of the observa-

tions regarding “highly correlated” locations could be made in this article which would otherwise

be inappropriate for an uncontrolled shipment. However, it is worth noting that in a much larger pi-

lot with less control over the shipments, there will also be a lot more data coming from the sensors

to help with the inherent variability issue.

52

Chapter 4: Sense2Vec: Time Series Representation

4.1 Note to Reader

Portions of this chapter have been previously published in our paper at IEEE Sensors Jour-

nal and have been reproduced with the permission from IEEE.

4.2 Introduction

The analysis and processing of multivariate and heterogeneous time-series data for pre-

dictive tasks represent a significant challenge especially when profiles may have variable lengths.

Time-series analysis is ranked as the tenth most challenging problem in data mining due to its

“unique properties” [116]. The manifestation of this practical challenge can be seen in different

industries, particularly for the applications of sensor networks in monitoring production and distri-

bution of goods around the globe. A comprehensive study was highlighted by [117] which shows

that food production, distribution and consumption are the main factors that contribute to 60% of

the overall food waste levels. In [97], the author(s) reported that 50% of harvested strawberries

are wasted due to inadequate temperature monitoring and control. Hence, delivering high quality

food along the supply chain is critical to both suppliers and consumers. The specific use case we

provide in this initial application is the temperature monitoring of the perishable supply chain due

to the universally accepted observation that temperature is the most critical environmental factor

to consider along the cold chain. High temperatures lead to significant decay in shelf life, and low

temperatures may lead to damaging the quality of delicate food. Monitoring and controlling the

refrigeration of food along the cold-chain (transportation, storage, and distribution of perishable

food items) are critical to reducing the amount of food waste. However, the cost of installation

53

of the monitoring devices such as wireless sensor networks (WSNs) and radio frequency identi-

fication (RFID) systems limits monitoring resolution generally to one per container [117], [97].

Thus, limiting the number of sensors requires careful analysis of the network through multivariate

time-series analysis of the temperature profiles. This requires a new approach in how the col-

lected time-series data is represented to the learning algorithm especially when recording times

are not uniform. Over a half-century, statistical parametric methods provided the state-of-the-art

performance for time-series analysis, modeling and prediction across different applications and

fields [31]. To name a few, Auto-Regressive Moving Average (ARMA) [118], Auto-Regressive In-

tegrated Moving Average(ARIMA) [35], Seasonal ARIMA [36], exponential smoothing [33] and

Vector Autoregression (VAR) [41] models, are parametric methods and generally assume a known

prior over the distribution of the time-series data which make them inadequate for many practical

applications. The advancement of machine learning brought sophisticated non-parametric meth-

ods for time-series modeling and prediction [42], [43]. For instance, Artificial Neural Networks

(ANNs) [11], [29] have attracted many researchers in the domain of time-series modeling and

forecasting and were successfully applied to various time-series applications [47], [119]. Convo-

lutional Neural Networks (CNNs) [6] have successfully been implemented across many domains

including time-series forecasting [51], [52], and classification [53], [56]. Recurrent Neural Net-

works (RNNs) [2], [57], construct their hidden states “output” by autoregression of present on past

values. Long short-term memory (LSTM) [59] and Gated Recurrent Unit (GRU) [60], are two

advanced variations of RNN to address the long-term dependency and the vanishing and exploding

gradient problems [66], [120]. LSTM has been applied for univariate [70], and multivariate time-

series applications [73], [75], where Bidirectional LSTM (Bi-LSTMs) [76] can integrate informa-

tion from both past and future time steps by means of two hidden states. Encoder-decoder struc-

tures [61], [62], encoder-decoder based attention [93], autoregressive recurrent networks [121],

and LSTNet [122] use a combination of CNNs and RNNs. Most recently, transformers [64],

and one of its variations, Bidirectional Transformers for Language Understanding (BERT) [123]

were confirmed to be the state of the art on eleven natural language processing applications and

54

Figure 4.1 Cold-chain time-series based machine learning pipeline. The images show the real
environment for data collection in this work.

XLNet [124], by leveraging the best of both autoregressive (AR) language modeling and autoen-

coding (AE). While the advances in both topology and parametric optimization methods for these

advanced learning algorithms led to the improvements in performance, the specific way in which

the time-series data is represented is a critical component of algorithm design.

4.3 Contribution

As the main contributions of this work, we propose three learning vector representation

algorithms to combine multiple related time-series datasets of variable lengths using Pearson’s

correlation coefficient (CW-MAC), Dynamic Time Warping (DTW-MAC), and moving averages

(UW-MAC) to generate a candidate time-series to be used in subsequent time-series applications

such as regression, classification, and clustering.

4.4 Related Work

Handling multivariate time-series with variable lengths is a challenge and requires care-

ful preprocessing. Preprocessing multivariate time-series with variable lengths has been studied

for representation learning [125], [82], time-series prediction [83], [71], [84] clustering [85], [86],

[87], classification [88], [74], [89], and anomaly detection [92], [91], [90], sequence modeling and

machine translation [93], [61]. The challenges of preprocessing time-series with variable lengths

55

were addressed by [95], and [94] for clustering analysis. Zero padding method was used which is

an invalid approach for time-series like temperature where the value 0 may represent an important

value such as 0◦C for the food transportation work discussed here. Another method is cropping,

where all the time-series signals that has sequences longer than the shortest one are clipped. This

approach leads to missing a lot of information especially for multivariate time-series with large

variable lengths. The author(s) of [87] conclude that cropping may lead to underfitting, and use

one large concatenation of the remaining values for each time step. In this work we propose a

brand-new approach to better summarize and visualize multi-variate time series data coming from

numerous sources in a sensor network to gather actionable and robust insight while maintaining

accurate information for further analysis, prediction and classification of data. Time-series for

wireless sensor reduction using a theoretical framework was studied by [96]. Also, artificial neural

networks (ANN) has been applied to learn the mapping between sensors’ locations in the appli-

cation of cold-chain using time-series data [97], [98], [99]. However, all the experiments were

conducted on simulated temperature data, which does not adequately represent the real-world’s

complex non-linear multivariate time-series data with variable lengths used in this paper. In a

prediction scenario, it is important to consider different environments with highly dynamic and

complex operations. Precooling is an excellent example where the airflow in the tunnel, load-

ing temperature heterogeneity, forklift movements, air velocity, and relative humidity create a very

complex modeling environment. As a result, this requires a new approach to provide the following:

• A reliable and robust representation of the time-series data where noise and other outliers

are removed with a weighted averaging operation.

• A scalable solution where one can analyze time-series data with any length in duration in-

cluding any number of variables.

• A compact yet memory effective representation by compressing potentially very high-volume

data into small vectorial representations.

56

4.5 Sense2Vec Algorithms

4.5.1 Problem Formulation

Assume we have a collection of multivariate time-series sensor data denoted by X j
i where

subscript i indicates the sensor ID (i.e., location) and superscript j indicates the shipment number

for that sensor (i.e., first, second, etc.). For instance, in our specific scenario where 9 sensors were

placed in five different shipments, X3
1 means the temperature vector collected for the third shipment

from the first sensor location. Please note that none of the temperature vectors need to be of the

same size and the proposed algorithm is specifically designed to account for such a condition.

Assuming m sensor locations and k shipments. First, we perform ascending ordering on the

time-series signals Xi, for i = 1,2,3, . . . ,m, with superscripts 1 and k for the shortest and longest

signals in time respectively: X [1]
i ; X [2]

i ; X [3]
i ; . . . ; X [k]

i . For the application described in this paper,

each shipment has nine sensors XFT , XFM ,XFB, XMT , XMM, XMB, XRT , XRM, XRB. The subscripts

stand for front-top, front-middle, front-bottom, middle-top, middle-middle, middle-bottom, rear-

top, rear-middle and rear-bottom respectively where the first word describes the location of the

sensor-instrumented pallet in the container (front, middle or rear) and the second word describes

the location of the sensor in the pallet itself (top, middle or bottom).

Next, we compute k temporal Pearson’s Correlation matrices starting by clipping the length

of all k− 1 signals to have the same length as the shortest signal. Then, we compute k× k cross-

correlation matrix where σi j represents the Pearson’s correlation coefficient between time-series i

and time-series j.

Later, we clip all signals to have the same size as the shortest signal in the group and

calculate the k× k Pearson’s correlation matrix. Next we clip all signals to have the same size as

the second shortest signal in the group and calculate the (k− 1)× (k− 1) correlation matrix. We

continue this process until we are left with the longest signal in the group to generate a total of

k correlation matrices each generated from different clusters of clipped signals as shown below

where σi j represents the Pearson’s correlation coefficient between signals i and j:

57

σ11 σ12 · · · σ1k

σ21 σ22
.

σ31
. σ3k

... σk−1k−1 σk−1k

σk1 · · · σkk−1 σkk

;

σ11 · · · σ1k−1

σ21
.

...

σk−11 · · · σk−1

;

σ11 · · · σ1k−2

...
...

σk−21 · · · σk−2

 ; · · ·
[

1

]

Pearson’s product-moment correlation coefficients can be written according to [105] as:

σxy =
∑

n[0]
i=1(xi− x̄i)(yi− ȳi)√

∑
n[0]
i=1(xi− x̄i)2

√
∑

n[0]
i=1(yi− ȳi)2

(4.1)

where n[0] is the length of the shortest signal in the group for the first correlation matrix which

includes all k signals. It is calculated similarly for the subsequent correlation matrices with k−1

signals where x̄i is the average means of the ordered time-series signals of length n[0].

x̄i =
1

n[0]

n[0]

∑
i=1

(xi) (4.2)

The main motivation of selecting Pearson’s product-moment correlation coefficients when

analyzing the time-series profiles in each group is to look at the similarities and differences between

different sensor locations inside different shipments or shipping-containers. Pearson’s correlation

coefficient provides a robust way to summarily visualize the temporal similarities which may ex-

ist. For example, a high correlation coefficient between two different locations may indicate that

a single sensor could be sufficient to represent both temperature recordings whereas low correla-

tion coefficients across the board may indicate significant differences in temperature distributions

58

inside the container. Next, for each Pearson’s correlation matrix, we compute normalized weight

coefficients for each signal as follows:

W [p]
i =

∑
k
j=1 σ(p+1) j−1

(∑k
i=1(∑

k
j=1 σi j−1))

(4.3)

where p = 1,2, . . . k represents the normalized weight coefficients for the first, second, . . . m time-

series signals, respectively.

It is important to note that the sum of normalized weight coefficients for each matrix is

intuitively equal to one: ∑
k
p=1(W

[p]
i) = 1.

Finally, the normalized weight coefficients are used to construct a correlation based repre-

sentative signal for that sensor location by capturing the underlying distributions for each group

while preserving the temporal nature of signals.

The first group of time-series signal can be combined as following:

X̂ [1]
group1 =W [1]

k .X [1][0:n[0]]
i +W [2]

k .X [2][0:n[0]]
i + · · ·W [k]

k .X [k][0:n[0]]
i (4.4)

X̂ [2]
group2 =W [2]

k−1.X
[2][n[0]:n[1]]
i +W [3]

k−1.X
[3][n[0]:n[1]]
i + · · ·W [k]

k−1.X
[k][n[0]:n[1]]
i (4.5)

X̂ [3]
group3 =W [3]

k−2.X
[3][n[2]:n[3]]
i +W [4]

k−2.X
[4][n[2]:n[3]]
i + · · ·W [k]

k−2.X
[k][n[2]:n[3]]
i (4.6)

... =
...

X̂ [k]
groupk =W [k]

1 .X [k]n[k−1:k]

i (4.7)

Recall that W [k]
1 = 1. and X [k]n[k−1:k]

i is the remaining records of the longest time-series

signal.

59

The final compound signal for the first group can be obtained by concatenate vertically

all the X̂ [i]
group j to form one time-series signal that is the best representative to all the individual

time-series signals.

X̂ [Representative]
i = [X̂ [1]

group1, X̂
[2]
group2, X̂

[3]
group3, . . . , X̂

[k]
groupk] (4.8)

Notice that X̂ [Representative]
i will have the same length as the longest time-series signal among

the group that we want to represent by one candidate signal.

Please note that this problem formulation is based upon the temporal correlations of each

temperature vector to identify which ones have more influence in generating the representative

temperature profile. Hence, we call this the correlation-weighted moving average coefficient algo-

rithms or CW-MAC.

The second variation of the algorithm is called dynamic time warping (DTW) moving

average coefficient (DTW-MAC) and can be achieved by computing the normalized weights for

each group using the DTW distances according to [106] as a measure of comparing one time-series

profile to another. DTW has been successfully implemented across different application domains

[[126], [127]]. The authors of [128] stated that “after an exhaustive literature search of more

than 800 papers, we are not aware of any distance measure that has been shown to outperform

DTW by a statistically significant amount.” DTW measures similarity between two time-series

sequences of temporal and phase misalignments and with different lengths and allows sequences

to be expanded or compressed along the time axis [129]. Mainly, DTW warps the time axis of

one (or both) temperature profile sequences to achieve a better alignment. To align two sequences,

DTW constructs an nx×ny matrix where the (ith, jth) element of the matrix contains the distance

d(xi,y j) between the two temperature points xi and y j (typically the Euclidean distance is used, so

d(xi,y j) =
√

∑(xi− y j)2). Each matrix element (i, j) corresponds to the alignment between the

temperature points xi and y j. DTW warping path is subject to three constraints according to [105]:

boundary conditions, continuity and monotonicity; to minimize the overall warping cost, it can be

written as follows:

60

Algorithm I: Correlation Weighted - Moving Average Coefficient (CW-MAC)

Input: Ωinput = { X n[0]
i , X n[1]

i , ..., X n[k]
i }

Output: A compound time-series signal that represents all the variable-length input signals.

foreach sensor i in allsensors do

foreach shipment j in allshipments do
Select same location time-series across different shipments j:

Order set Ωinput in ascending order

Apply clipping to all vectors to achieve the same size as the shortest one X n[0]
i

end

Compute k Pearson’s Correlation coefficients to form a temporal matrices where:

σxy =
∑

n[0]
i=1(xi−x̄k)(yi−ȳk)√

∑
n[0]
i=1(xi−x̄k)2

√
∑

n[0]
i=1(yi−ȳk)2

Compute a normalized weight coefficients for each row of different coefficients in the matrix

by :

W
[p]

i =
∑

k
j=1 σ(p+1) j−1

(∑k
i=1(∑

k
j=1(σi j−1)−m

while W
[p]

i 6= W[k]
1 = 1 do

Compute {W [k−1]
m−1 ,W

[k−2]
m−2 ...,1}

Combine the input signals in each group using the weight as:

X̂
[1]

group1 = W
[1]

k .X
[1][0:n[0]]

i +W
[2]

k .X
[2][0:n[0]]

i + · · ·W [k]
k .X

[k][0:n[0]]
i

X̂
[2]

group2 = W
[2]

k−1.X
[2][n[0]:n[1]]

i +W
[3]

k−1.X
[3][n[0]:n[1]]

i + · · ·W [k]
k−1.X

[k][n[0]:n[1]]
i

X̂
[3]

group3 = W
[3]

k−2.X
[3][n[2]:n[3]]

i +W
[4]

k−2.X
[4][n[2]:n[3]]

i + · · ·W [k]
k−2.X

[k][n[2]:n[3]]
i

... =
...

X̂
[k]

groupk = W
[k]

1 .X
[k]n[k−1:k]

i

Finally form one time-series signal by concatenate the X̂
[js]

group1 .

X̂
[Representative]

i = [X̂
[1]

group1,X̂
[2]

group2, . . . ,X̂
[k]

groupk]

end

end

61

DTW (x,y) = min

√

∑
L
l=1(zi)

L

 (4.9)

where L is used to compensate for the fact that warping paths may have different lengths.

In order to find the minimum path, the warping path Z is contiguous: Z = z1,z2, . . . ,zL and

max(nx,ny) 6 L < (nx +ny-1). DTW uses dynamic programming to compute the cumulative dis-

tance ζ (i, j) from d(i, j) “current position" in the matrix and the minimum of the cumulative

distances of the adjacent elements:

ζ (i, j) = d(xi,y j)+min{ζ (i−1, j−1)+ζ (i−1, j)+ . . .

ζ (i, j−1)(4.10)

Here, we compute ζ (i, j) for each pair of profiles in each group, then we normalize it and

use it as the new normalize weights W [p]
i in equations 4.4 to 4.7.

The main motivation of comparing the CW-MAC representations with the DTW-MAC rep-

resentations is to quantify the reading consistency among related time-series profiles in general and

more specifically for each group. Hence, small DTWs indicate stronger temporal alignments or

more similarities between sensors and represent a good illustration of the reading consistency of

strawberry temperatures among different sensors inside the shipping containers. Conversely, large

DTWs indicate higher levels of misalignment in terms of the profile behavior. We believe that the

differences in DTW distance distributions computed due the experimentation phase, such as the

means, standard deviations, and the skewness directions can jointly be interpreted as challenging

indicators for the temporal heterogeneity, complexity, similarity, and discrepancy of the collected

multivariate time-series. These distance−based distributions can be helpful in location−based pre-

dictions for wireless sensor networks and data analytics applications as the selection, identification,

and grouping of the best candidates are necessary preprocessing steps for increasing the accuracy

of time-series forecasting, clustering, and classification applications.

62

Algorithm II: Dynamic Time Warping Moving Average Coefficient (DTW-MAC)

Input: Ωinput = { Xn[0]
i , Xn[1]

i , ..., Xn[k]
i }

Output: A compound time-series signal that represents all the variable-length input signals.

Repeat the first steps similar to the CW-MAC: ordering, and clipping.

Compute k Dynamic time warping coefficients to form a nonlinear alignment matrices of dis-

tances:

Initial: dis = list[];DTW = dict{}

foreach sensor i in group k do
DTW[(i, -1)] = float(’infinite’)

DTW[(-1, i)] = float(’infinite’)

DTW[(-1, -1)] = 0

end

foreach sensor i in n[0] do

foreach sensor j in n[0] do
{if i is equal to j, then (dist = 0)}

dist = (sensori[i]− sensori[j]) ... dis.append(dist)

DTW [(i, j)] = dist + min{DTW [(i−1, j)],DTW [(i, j−1)],DTW [(i−1, j−1)]}

d =
√
(DTW [n[0]−1],n[0]−1])

end

end

Compute a normalized weight coefficients for each row of different coefficients in the matrix by:

W [p]
i = 1(

∑
k
j=1 d(p+1) j−1

(∑k
i=1(∑

k
j=1(di j−1)−m

)

while W [p]
i 6= W[k]

1 = 1 do

Compute {W [k−1]
m−1 ,W [k−2]

m−2 ...,1}

Combine input signals in each group using weights as similar to equations 4,5,6 and 7:

Compute:
[
X̂ [1]

group1, X̂
[2]
group2, X̂

[3]
group3, X̂

[k]
groupk

]
Finally form one time-series signal by concatenate the X̂ [js]

group1 .

X̂ [Representative]
i = [X̂ [1]

group1, X̂
[2]
group2, . . .]

end

63

A different and more trivial variation of the algorithm can be achieved by setting each

correlation based weight to be the same (unit value) where we assume each shipment has the

same impact on the representative profile. This variation of the proposed algorithm is called unity-

weighted moving average coefficient algorithm or UW-MAC and will be included as a baseline

comparison in the analysis to follow.

Finally, these representation methods can further help in aggregating similar shipments to

help reduce the redundancy of selecting similar time-series profiles for representation which would

ultimately reduce the time and memory complexity of the time-series analysis as well.

4.6 End to End Example

To assist the reader in understanding how exactly the proposed method work, in this exam-

ple, we show how the computation of the algorithm is performed to obtain the final representation

(combined vector) of the input related time-series profiles.

- Input Dataset = [ship1,ship2,ship3,ship4,ship5], with lengths equal to

[72,615,387,521,321], respectively. Each time vector is obtained by taking the portion of the

sensor recording from the end of the precooling to the arrival at DC.

- Order the shipments/datasets in ascending order with respect to time length.

- Ordered-Input = [ship1,ship5,ship3,ship4,ship2] and their corresponding lengths are

ordered as following: [72,321,387,521,615].

Create groups of sensors related to one another in a specific way such as the position inside

the container or being in the same shipment. In this example, we use position. For example, for

the Front-Top sensor set:

FrontTopsensorset = concatenate([Shipment1[FrontTop],Shipment2[FrontTop],

Shipment3[FrontTop],Shipment4[FrontTop],Shipment5[FrontTop]).

The profiles are shown in Figure 4.2.

64

Algorithm III: Unity Weighted Moving Average Coefficient (UW-MAC)

Input: Ωinput = { X n[0]
i , X n[1]

i , ..., X n[k]
i }

Output: A compound time-series signal that represents all the variable-length input signals.

foreach sensor i in allsensors do

foreach shipment j in allshipments do
Select same location time-series across different shipments j:

Order set Ωinput in ascending order

Apply clipping to all vectors to achieve the same size as the shortest one X n[0]
i

end

Compute Moving Average (MA) on the first group of k clipped signals to form a combined

averaged time-series with length is equal to: n[0]

Compute:

X̂
[0]

group1= 1
k * (X n[0]

1 +X n[0]
2 + · · ·X n[0]

k)

X̂
[1]

group2= 1
k−1 * (X n[1]

2 +X n[1]
3 + · · ·X n[1]

k−1)

X̂
[2]

group3= 1
k−2 * (X n[2]

3 +X n[2]
4 + · · ·X n[2]

k−2)
... =

...

X̂
[k]

group1 = X
[k]n[k−1:k]

i

Finally form one time-series signal by concatenate the X̂
[js]

group1 .

X̂
[ToTAL]

set1 = [X̂
[0]

group1,X̂
[1]

group1, . . . ,X̂
[k]

group1]

end

65

0 10 20 30 40 50 60 70
Time

33

34

35

36

37

38

Te
m

pe
ra

tu
re

 in
 F

Front-Top Representation

Front_Top_S1
Front_Top_S2
Front_Top_S3
Front_Top_S4
Front_Top_S5
Group 1 Representation

Figure 4.2 CW-MAC representation for the first group of five time-series profiles clipped to a
fixed length equal to the shortest signal’s length in the group n[0] =72.

Apply clipping to all Front-Top vectors in the set to achieve the same size as the shortest

one Xn[0]
i where in this example n[0] = 72.

Compute k Pearson’s Correlation coefficients to form a temporal matrix where k is the

number of equal-length time-series profiles in each group.

σxy =
∑

n[0]
i=1(xi− x̄i)(yi− ȳi)√

∑
n[0]
i=1(xi− x̄i)2

√
∑

n[0]
i=1(yi− ȳi)2

(4.11)

where x̄i =
1

n[0] ∑
n[0]
i=1(xi)

We have here a 5×5 symmetric matrix as shown below, where the diagonals are equal to

one. σ12 represents the Pearson’s correlation coefficient between the Front-Top time-series profile

from the first shipment in the ordered list of shipments and the second ones; in this case the corre-

lation coefficient between shipment 1 and shipment 5. The results of the first Pearson’s correlation

is shown in Figure 4.3. The heatmap in Figure 4.3 reveal the heterogeneity and complexity of

the collected multivariate time-series by demonstrating clear differences in the gradient variations

across different sensors among different shipments. The gradient levels are driven by the strength

66

Fr
on

t_
To

p_
S1

Fr
on

t_
To

p_
S2

Fr
on

t_
To

p_
S3

Fr
on

t_
To

p_
S4

Fr
on

t_
To

p_
S5

Front_Top_S1

Front_Top_S2

Front_Top_S3

Front_Top_S4

Front_Top_S5

1.00 0.36 -0.29 0.47 0.33

0.36 1.00 0.12 0.95 0.96

-0.29 0.12 1.00 0.22 0.29

0.47 0.95 0.22 1.00 0.96

0.33 0.96 0.29 0.96 1.00
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.3 Pearson’s correlation coefficients heat-map.

of the correlations between the temperature sensors profiles. Also, one can observe that group 1

correlations vary from small negative numbers “weak correlation" to large numbers “strong cor-

relation" to reflect the level of reading consistency of strawberry temperatures among different

shipments and location-related sensors.

Compute normalized weight coefficients for each row in the matrix corrFront−Topgroup1 by:

W1 = σ12 +σ13 +σ14 +σ15

W2 = σ21 +σ23 +σ24 +σ25

W3 = σ31 +σ32 +σ34 +σ35

W4 = σ41 +σ42 +σ43 +σ45

67

W5 = σ51 +σ52 +σ53 +σ54

Wtotal =W1 +W2 +W3 +W4 +W5

W [1]
k=5 =

W1
Wtotal

;W [2]
k=5 =

W2
Wtotal

;W [3]
k=5 =

W3
Wtotal

;W [4]
k=5 =

W4
Wtotal

;W [5]
k=5 =

W5
Wtotal

where W [1]
k=5 is the normalized weight for the shortest profile in the first group, and W [5]

k=5 is

the normalized weight for the first 72 timestamps of the longest profile of Front-Top sensor.

Create the first group-specific representation by the weighted sum of the time-series pro-

files using W [i]
k as following:

ˆFT [1]
group1

=W [1]
k .FT [ship1][0:n[0]]

1 +W [2]
k .FT [ship2][0:n[0]]

1 +W [3]
k .FT [ship3][0:n[0]]

1 +

W [4]
k .FT [ship4][0:n[0]]

1 +W [5]
k .FT [ship5][0:n[0]]

1

where k = 5, n[0] =72, and ˆFT is an abbreviation for Front-Top with [.̂] to indicate group

specific profiles. The resulted group-specific representation is shown by Figure 4.2.

The same procedure is repeated by removing shipment 1 from the ordered list and taking

the next 73:321 samples for the remaining 4 vectors to generate a new 4×4 correlation matrix and

following the same procedure. The result of the remaining group-specific representations is shown

by Figure 4.4.

Finally, the overall combined representation for the Front-Top sensor is shown in Figure

4.5, which can now be used in location−based predictions for wireless sensor networks and data

analytics applications, where physical sensors can be removed, and their readings predicted using

other sensors.

4.6.1 Experimental Results

We present the results of our algorithms across two different applications:

• Network level: in this scenario, we obtain one representation vector per shipment. This rep-

resentation serves as a compact high-level visualization of the overall sensor profiles mea-

suring the different cold-chain stages/applications. Figures 4.6 to 4.10 shows the one-vector

68

0 50 100 150 200 250
Time

35

36

37

38

39

40
Te

m
pe

ra
tu

re
 in

 F

Front_Top_S2
Front_Top_S3
Front_Top_S4
Front_Top_S5
Group 2 Representation

0 10 20 30 40 50 60
Time

35.0

35.5

36.0

36.5

37.0

37.5

38.0

38.5

Te
m

pe
ra

tu
re

 in
 F

Front_Top_S2
Front_Top_S3
Front_Top_S4
Group 3 Representation

400 420 440 460 480 500 520
Time

36.0

36.5

37.0

37.5

38.0

38.5

39.0

Te
m

pe
ra

tu
re

 in
 F

Front_Top_S2
Front_Top_S4
Group 4 Representation

520 540 560 580 600
Time

35.0

35.5

36.0

36.5

37.0

37.5

Te
m

pe
ra

tu
re

 in
 F

Front_Top_S2
Group 5 Representation

Figure 4.4 CW-MAC representations for the second, third, forth, and fifth group of Front-top
time-series profiles that are differently clipped to a fixed length equal to the shortest signal’s
length in each one of the groups.

representation of the entire network of different sensors inside each shipping container. The

red-line in each figure represents how CW-MAC algorithms encode all the profiles into one

compact representation that reduces the dimensionality significantly from 9 time-series pro-

files and provide a better way of visualizing the overall sensor readings.

• Network of networks level: in this scenario, we attempt a harder problem than the network

level. Unlike the previous case, in the network of networks scenario, sensors across differ-

ent shipments are combined with different lengths, which is one of the main motivations in

proposing these algorithms. We obtain one representation vector per sensor location. For

example, finding a compact representation of the same sensor location across different ship-

ments and environments which provides greater flexibility when different points of view are

needed to analyze a situation. Figures 4.11 through 4.18 show how the CW-MAC algorithm

finds one-vector representation of all the different profiles for the same-locations and across

different shipments. In this case, one vector representation for all five shipments, not only

69

0 100 200 300 400 500 600
Time

33

34

35

36

37

38

Te
m

pe
ra

tu
re

 in
 F

Group1 Representation
Group2 Representation
Group3 Representation
Group3 Representation
Group5 Representation

Figure 4.5 CW-MAC representation for Front-Top, the colors show group specific representations.

reduces the dimensionality but provide a better understanding of what happened to the tem-

perature profiles, what was expected, and how. The results for DTW-MAC and UW-MAC

are shown in Figures 4.19 through 4.26, Figures 4.27 through 4.34, respectively.

We start with the objective that we want to combine multiple time-series signals that are

similar in behavior, but has different lengths due to all the variability in the monitored environment.

Can we find a good candidate signal that can summarize the temperature in the cold-chain process

for all sensors profiles and at the same time reveal the location of the sensors? One can see that

sensors facing the ceiling of the container will be more exposed to sun radiations compared to the

middle and the bottom and thus, their representations should somehow have a higher temperature

increase due to the transportation phase across different shipments. This vectorial representation

of different/related time-series profiles can be interpreted as a latent representation of the overall

"sensor behavior" in the network through the cold-chain cycle. The combined vectors serve as an

encoded representation of the original time series recordings. We think of CW-MAC, DTW-MAC,

70

0 10 20 30 40 50 60 70
Time

32.5

33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5
Te

m
pe

ra
tu

re
 in

 F

Front_Top
Front_Middle
Front_Bottom
Middle_Top
Middle_Middle
Middle_Bottom
Rear_Top
Rear_Middle
Rear_Bottom
Shipment 1 Representation

Figure 4.6 Shipment 1 time-series representation using CW-MAC.

0 100 200 300 400 500 600
Time

30

32

34

36

38

40

Te
m

pe
ra

tu
re

 in
 F

Front_Top
Front_Middle
Front_Bottom
Middle_Top
Middle_Middle
Middle_Bottom
Rear_Top
Rear_Middle
Rear_Bottom
Shipment 2 Representation

Figure 4.7 Shipment 2 time-series representation using CW-MAC.

71

50 100 150 200 250 300 350 400
Time

30

32

34

36

38

40
Te

m
pe

ra
tu

re
 in

 F
Front_Top
Front_Middle
Front_Bottom
Middle_Top
Middle_Middle
Middle_Bottom
Rear_Top
Rear_Middle
Rear_Bottom
Shipment 3 Representation

Figure 4.8 Shipment 3 time-series representation using CW-MAC.

0 100 200 300 400 500
Time

32

33

34

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 in
 F

Front_Top
Front_Middle
Front_Bottom
Middle_Top
Middle_Middle
Middle_Bottom
Rear_Top
Rear_Middle
Rear_Bottom
Shipment 4 Representation

Figure 4.9 Shipment 4 time-series representation using CW-MAC.

72

0 50 100 150 200 250 300
Time

32

34

36

38

40

42

Te
m

pe
ra

tu
re

 in
 F

Front_Top
Front_Middle
Front_Bottom
Middle_Top
Middle_Middle
Middle_Bottom
Rear_Top
Rear_Middle
Rear_Bottom
Shipment 5 Representation

Figure 4.10 Shipment 5 time-series representation using CW-MAC.

0 100 200 300 400 500 600
t

33

34

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 in
 F

FT - Shipment1
FT - Shipment2
FT - Shipment3
FT - Shipment4
FT - Shipment5
Front Top Representation

Figure 4.11 Front-Top representation using CW-MAC.

73

0 100 200 300 400 500 600
t

30

32

34

36

38

Te
m

pe
ra

tu
re

 in
 F

FM - Shipment1
FM - Shipment2
FM - Shipment3
FM - Shipment4
FM - Shipment5
Front Middle Representation

Figure 4.12 Front-Middle representation using CW-MAC.

0 100 200 300 400 500 600
t

32

34

36

38

40

42

Te
m

pe
ra

tu
re

 in
 F

MT - Shipment1
MT - Shipment2
MT - Shipment3
MT - Shipment4
MT - Shipment5
Middle Top Representation

Figure 4.13 Middle-Top representation using CW-MAC.

74

0 100 200 300 400 500 600
t

30

32

34

36

38

Te
m

pe
ra

tu
re

 in
 F

MM - Shipment1
MM - Shipment2
MM - Shipment3
MM - Shipment4
MM - Shipment5
Middle Middle Representation

Figure 4.14 Middle-Middle representation using CW-MAC.

0 100 200 300 400 500 600
t

31

32

33

34

35

36

37

Te
m

pe
ra

tu
re

 in
 F

MB - Shipment1
MB - Shipment2
MB - Shipment3
MB - Shipment4
MB - Shipment5
Middle Bottom Representation

Figure 4.15 Middle-Bottom representation using CW-MAC.

75

0 100 200 300 400 500 600
t

32

34

36

38

40

Te
m

pe
ra

tu
re

 in
 F

RT - Shipment1
RT - Shipment2
RT - Shipment3
RT - Shipment4
RT - Shipment5
Rear Top Representation

Figure 4.16 Rear-Top representation using CW-MAC.

0 100 200 300 400 500 600
t

32

34

36

38

40

Te
m

pe
ra

tu
re

 in
 F

RM - Shipment1
RM - Shipment2
RM - Shipment3
RM - Shipment4
RM - Shipment5
Rear Middle Representation

Figure 4.17 Rear-Middle representation using CW-MAC.

76

0 100 200 300 400 500 600
t

32

33

34

35

36

37

38

Te
m

pe
ra

tu
re

 in
 F

RB - Shipment1
RB - Shipment2
RB - Shipment3
RB - Shipment4
RB - Shipment5
Rear Bottom Representation

Figure 4.18 Rear-Bottom representation using CW-MAC.

0 100 200 300 400 500 600
t

33

34

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 in
 F

FT - Shipment1
FT - Shipment2
FT - Shipment3
FT - Shipment4
FT - Shipment5
Front Top Representation

Figure 4.19 Front-Top representation using DTW-MAC.

77

0 100 200 300 400 500 600
t

30

32

34

36

38

Te
m

pe
ra

tu
re

 in
 F

FM - Shipment1
FM - Shipment2
FM - Shipment3
FM - Shipment4
FM - Shipment5
Front Middle Representation

Figure 4.20 Front-Middle representation using DTW-MAC.

0 100 200 300 400 500 600
t

32

34

36

38

40

42

Te
m

pe
ra

tu
re

 in
 F

MT - Shipment1
MT - Shipment2
MT - Shipment3
MT - Shipment4
MT - Shipment5
Middle Top Representation

Figure 4.21 Middle-Top representation using DTW-MAC.

78

0 100 200 300 400 500 600
t

30

32

34

36

38

Te
m

pe
ra

tu
re

 in
 F

MM - Shipment1
MM - Shipment2
MM - Shipment3
MM - Shipment4
MM - Shipment5
Middle Middle Representation

Figure 4.22 Middle-Middle representation using DTW-MAC.

0 100 200 300 400 500 600
t

31

32

33

34

35

36

37

Te
m

pe
ra

tu
re

 in
 F

MB - Shipment1
MB - Shipment2
MB - Shipment3
MB - Shipment4
MB - Shipment5
Middle Bottom Representation

Figure 4.23 Middle-Bottom representation using DTW-MAC.

79

0 100 200 300 400 500 600
t

32

34

36

38

40

Te
m

pe
ra

tu
re

 in
 F

RT - Shipment1
RT - Shipment2
RT - Shipment3
RT - Shipment4
RT - Shipment5
Rear Top Representation

Figure 4.24 Rear-Top representation using DTW-MAC.

0 100 200 300 400 500 600
t

32

34

36

38

40

Te
m

pe
ra

tu
re

 in
 F

RM - Shipment1
RM - Shipment2
RM - Shipment3
RM - Shipment4
RM - Shipment5
Rear Middle Representation

Figure 4.25 Rear-Middle representation using DTW-MAC.

80

0 100 200 300 400 500 600
t

32

33

34

35

36

37

38

Te
m

pe
ra

tu
re

 in
 F

RB - Shipment1
RB - Shipment2
RB - Shipment3
RB - Shipment4
RB - Shipment5
Rear Bottom Representation

Figure 4.26 Rear-Bottom representation using DTW-MAC.

0 100 200 300 400 500 600
t

33

34

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 in
 F

FT - Shipment1
FT - Shipment2
FT - Shipment3
FT - Shipment4
FT - Shipment5
Front Top Baseline

Figure 4.27 Front-Top representation using UW-MAC.

81

0 100 200 300 400 500 600
t

30

32

34

36

38

Te
m

pe
ra

tu
re

 in
 F

FM - Shipment1
FM - Shipment2
FM - Shipment3
FM - Shipment4
FM - Shipment5
Front Middle Baseline

Figure 4.28 Front-Middle representation using UW-MAC.

0 100 200 300 400 500 600
t

32

34

36

38

40

42

Te
m

pe
ra

tu
re

 in
 F

MT - Shipment1
MT - Shipment2
MT - Shipment3
MT - Shipment4
MT - Shipment5
Middle Top Baseline

Figure 4.29 Middle-Top representation using UW-MAC.

82

0 100 200 300 400 500 600
t

30

32

34

36

38

Te
m

pe
ra

tu
re

 in
 F

MM - Shipment1
MM - Shipment2
MM - Shipment3
MM - Shipment4
MM - Shipment5
Middle Middle Baseline

Figure 4.30 Middle-Middle representation using UW-MAC.

0 100 200 300 400 500 600
t

31

32

33

34

35

36

37

Te
m

pe
ra

tu
re

 in
 F

MB - Shipment1
MB - Shipment2
MB - Shipment3
MB - Shipment4
MB - Shipment5
Middle Bottom Baseline

Figure 4.31 Middle-Bottom representation using UW-MAC.

83

0 100 200 300 400 500 600
t

32

34

36

38

40

Te
m

pe
ra

tu
re

 in
 F

RT - Shipment1
RT - Shipment2
RT - Shipment3
RT - Shipment4
RT - Shipment5
Rear Top Baseline

Figure 4.32 Rear-Top representation using UW-MAC.

0 100 200 300 400 500 600
t

32

34

36

38

40

Te
m

pe
ra

tu
re

 in
 F

RM - Shipment1
RM - Shipment2
RM - Shipment3
RM - Shipment4
RM - Shipment5
Rear Middle Baseline

Figure 4.33 Rear-Middle representation using UW-MAC.

84

0 100 200 300 400 500 600
t

32

33

34

35

36

37

38

Te
m

pe
ra

tu
re

 in
 F

RB - Shipment1
RB - Shipment2
RB - Shipment3
RB - Shipment4
RB - Shipment5
Rear Bottom Baseline

Figure 4.34 Rear-Bottom representation using UW-MAC.

and UW-MAC as functions “Sense2Vec” that takes sensors different sensor profiles and map them

into a fixed-length time-series vector representative of all the profiles that are fed into the function.

We believe that the differences in representations distributions, such as the means, the standard

deviations, and the skewness directions give us more information about the temporal heterogeneity,

complexity, similarity, and discrepancy of the collected multivariate time-series without inspecting

the sensors’ readings individually. Figure 4.35 shows the distributions of all sensors’ vectorial

representations for all the proposed algorithms.

4.7 Analysis

4.7.1 The Effects of Noise

To test the robustness of our algorithms against noise, an artificial noise has been added to

one of the sensor profiles (i.e., the Front-Top sensor) across all shipments (1 through 5). The noise

was sampled as a sequence of uncorrelated samples with zero mean and unit variance. Given that

the multivariate time-series profiles have different lengths, we created different noise vectors with

different lengths equal to the original sensor time-series, and separately added it to each sensor as

85

28 30 32 34 36 38 40
Temperature F

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

CW-MAC Representations' Distributions
FT-CW-MAC
FM-CW-MAC
MT-CW-MAC
MM-CW-MAC
MB-CW-MAC
RT-CW-MAC
RM-CW-MAC
RB-CW-MAC

30 32 34 36 38 40
Temperature F

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

DTW-MAC Representations' Distributions
FT-DTW-MAC
FM-DTW-MAC
MT-DTW-MAC
MM-DTW-MAC
MB-DTW-MAC
RT-DTW-MAC
RM-DTW-MAC
RB-DTW-MAC

30 32 34 36 38 40 42
Temperature in F

0.0

0.2

0.4

0.6

0.8

De
ns

ity

UW-MAC Representations' Distributions

FT-Baseline
FM-Baseline
MT-Baseline
MM-Baseline
MB-Baseline
RT-Baseline
RM-Baseline
RB-Baseline

Figure 4.35 The distributions of all representations for CW-MAC, DTW-MAC, and UW-MAC.

86

we ran the algorithm five times on each Front-Top location across the five shipments. This process

is shown by the equations below:

Xship1n[0]

f ront−top = Xship1n[0]

f ront−top +0.3∗WNn[0] (4.12)

Xship2n[1]

f ront−top = Xship2n[1]

f ront−top +0.3∗WNn[1] (4.13)

Xship3n[2]

f ront−top = Xship3n[2]

f ront−top +0.3∗WNn[2] (4.14)

Xship4n[3]

f ront−top = Xship4n[3]

f ront−top +0.3∗WNn[3] (4.15)

Xship5n[4]

f ront−top = Xship5n[4]

f ront−top +0.3∗WNn[4] (4.16)

where n[0] is the length of the shortest Front-Top profile among all the different shipments.

Equations above are generalized and they can be applied to any location, even though we

randomly chose the Front-Top location to demonstrate the algorithms’ robustness against noise.

The results confirm that all three proposed algorithms, CW-MAC, DTW-MAC, and UW-MAC,

are robust to noise as the noise power is distributed temporarily across the time-series profiles by

the clipping, weighted averaging, and moving operations. Figure 4.36 through 4.38 below show

the CW-MAC, DTW-MAC, and UW-MAC representations, respectively. It can been seen clearly

from the figures that these representations are similar to the one that was obtained from the profiles

without the additional noise.

87

0 100 200 300 400 500
Time

32

33

34

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 in
 F

Front_Middle
Front_Bottom
Middle_Top
Middle_Middle
Middle_Bottom
Rear_Top
Rear_Middle
Rear_Bottom
Front_Top+Noise
Shipment 4 Representation

Figure 4.36 Shipment 4 time-series representation using CW-MAC after adding the noise to the
Front−Top location.

0 100 200 300 400 500
Time

32

33

34

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 in
 F

Front_Middle
Front_Bottom
Middle_Top
Middle_Middle
Middle_Bottom
Rear_Top
Rear_Middle
Rear_Bottom
Front_Top+Noise
Shipment 5 Representation

Figure 4.38 Shipment 4 time-series representation using UW-MAC after adding the noise to the
Front−Top location.

4.7.2 The Effect of Different Distance Metrics

In the aforementioned subsections, we rely on similarity measures like the Pearson cor-

relation coefficient, and dynamic time warping. However, the algorithm can accommodate other

distance metrics to compare different sets of representations. Figure 4.39 through Figure 4.43 be-

88

0 100 200 300 400 500
Time

32

33

34

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 in
 F

Front_Middle
Front_Bottom
Middle_Top
Middle_Middle
Middle_Bottom
Rear_Top
Rear_Middle
Rear_Bottom
Front_Top+Noise
Shipment 4 Representation

Figure 4.37 Shipment 4 time-series representation using DTW-MAC after adding the noise to the
Front−Top location.

low demonstrate the results for shipments 1 through 5. It is clear that the algorithm still outputs a

set of representations that are very similar regardless of the distance measure used. The distance

between two sensors varies based on the distance selection, but since the values are subsequently

normalized between zero and one as part of the algorithm, we find a minor change in the final

representations. These results highlight the flexibility of our algorithm as we construct a sequence

of steps to allow adopting more similarity measures or different weighing mechanisms, which can

be computed based on the various distance measures. We use the following similarity measures to

be compared with the DTW-MAC based-distance algorithm: the Euclidean distance dEuclidean , the

mean absolute error (MAE), the Canberra distance dCanberra [130], the Jeffreys and Matusita dis-

tance dJe f f reys−Matusita [131] where a lower value indicates that two time-series profiles are more

similar. We also consider the cosine coefficients CosSimilarity, which provides a higher value when

the temperature readings from two sensors are more similar. The mathematical definitions of these

measures are shown below:

dEuclidean =
n[j]

∑
i=1

√
(X j

i −Y j
i)

2; (4.17)

89

0 10 20 30 40 50 60 70
Time

33.75

34.00

34.25

34.50

34.75

35.00

35.25

Te
m

pe
ra

tu
re

 in
 F

Shipment 1 Different Distance-based Representations

DTW-MAC
Jeffrey_Matusita-MAC
Eclidean-MAC
Canberra-MAC
COS-Similarity-MAC
MAE-MAC

Figure 4.39 Shipment 1: comparing different time-series representations based different distances.

MAE =
n[j]

∑
i=1

X j
i −Y j

i ; (4.18)

dCanberra =
n[j]

∑
i=1

X j
i −Y j

i

X j
i +Y j

i

; (4.19)

dJe f f reys−Matusita =

√√√√n[j]

∑
i=1

(

√
X j

i −
√

Y j
i)

2; (4.20)

CosSimilarity =
∑

n[j]
i=1 X j

i Y j
i√

∑
n[j]
i=1(X

j
i)

2
√

∑
n[j]
i=1(Y

j
i)

2
; (4.21)

X j
i , and Y j

i denote the multivariate time-series data from two different sensors either in

the same shipment or across different shipments. Thus, subscript i indicates the sensor ID (i.e.,

location) and superscript j indicates the shipment number for that sensor (i.e., first, second, etc.)

90

0 100 200 300 400 500 600
Time

32

33

34

35

36

37

38

Te
m

pe
ra

tu
re

 in
 F

Shipment 2 Different Distance-based Representations
DTW-MAC
Jeffrey_Matusita-MAC
Eclidean-MAC
Canberra-MAC
COS-Similarity-MAC
MAE-MAC

Figure 4.40 Shipment 2: comparing different time-series representations based different distances.

0 50 100 150 200 250 300 350 400
Time

32

33

34

35

36

Te
m

pe
ra

tu
re

 in
 F

Shipment 3 Different Distance-based Representations
DTW-MAC
Jeffrey_Matusita-MAC
Eclidean-MAC
Canberra-MAC
COS-Similarity-MAC
MAE-MAC

Figure 4.41 Shipment 3: comparing different time-series representations based different distances.

91

0 100 200 300 400 500
Time

32.5

33.0

33.5

34.0

34.5

35.0

35.5

36.0

36.5

Te
m

pe
ra

tu
re

 in
 F

Shipment 4 Different Distance-based Representations
DTW-MAC
Jeffrey_Matusita-MAC
Eclidean-MAC
Canberra-MAC
COS-Similarity-MAC
MAE-MAC

Figure 4.42 Shipment 4: comparing different time-series representations based different distances.

0 50 100 150 200 250 300
Time

33

34

35

36

37

38

Te
m

pe
ra

tu
re

 in
 F

Shipment 5 Different Distance-based Representations
DTW-MAC
Jeffrey_Matusita-MAC
Eclidean-MAC
Canberra-MAC
COS-Similarity-MAC
MAE-MAC

Figure 4.43 Shipment 5: comparing different time-series representations based different distances.

92

Chapter 5: Class2Vec: Time Series Representation and Classification

5.1 Note to Reader

Portions of this chapter have been previously submitted in our paper at IEEE Transactions

on Knowledge and Data Engineering and have been reproduced with the permission from IEEE.

5.2 Summary

In this chapter, we introduce a novel representation method for better visualization and

similarity detection in time series classification. Supervised Class2Vec is an application of the

CW-MAC algorithm where each class is represented by a single blueprint profile learned from the

training dataset. CW-MAC is used to transform multiple observations of univariate or multivariate

time series of equal or different lengths into a compact feature-rich representation via clipping,

statistical aggregation and concatenation. The Class2Vec algorithm uses dynamic time warping

distances between different observations and the class blueprints to create a novel classification

framework with an unprecedented compression of the time series training data. We evaluate this

framework thoroughly on 70 different datasets including 11 different domains and multiple class

distributions, hosted on the UCR Archive as the largest publicly available benchmark repository

for time series analysis. Our results show that CW-MAC based Class2Vec outperforms the baseline

algorithm with an overall average improvement of 1.53% in accuracy. Finally, the proposed model

yields exceptional space savings due to the compression of the training space from N number of

observations to K number of classes where N >> K for any practical time-series dataset.

93

5.3 Introduction

Time series data appears in a wide range of data mining domains and applications ranging

from finance (e.g. stock market) [132] to healthcare (e.g. electronic health record (EHR) system

) [133] to anomaly detection [134] to audio [135], text [136], speech and human activity recogni-

tion [137]. While the analysis of time series ranked as one of the most challenging problems in

data mining [116], time series visualization has not been studied enough in the literature [138].

The challenge comes from the fact that it is infeasible to find useful information and insight by

displaying all the time series data on the screen due to length and size. Data visualization and sum-

marizing techniques are very crucial for better understanding the data during the analysis phase

of building a time series classifier for many applications. Recently, time series representation

algorithms have been proposed for visualization. For example, CW-MAC [139] can efficiently

summarize and visualize uni-multivariate time series. Although, the majority of previous works

is limited to time series classification (TSC) problems where each time series has the same length

[[126], [140]], CW-MAC algorithm has specifically developed to handle both equal and different

lengths. Data mining and knowledge discovery across different problem types can be facilitated

with the help of large time series repositories with additional information such as class labels [141].

UCR/UEA archive [141] was proposed as the largest time series repository to overcome the use

of synthetic datasets by the researchers to test their algorithms. UCR/UEA archive has led to the

advancement of hundreds of TSC algorithms [140], and increased the quality and the consistency

of the evaluation of TSC applications including: Motion, sensor readings, images, spectrographs,

ECG, electrical devices, and simulated. One of the most popular and traditional TSC classifiers

is the Nearest Neighbor (NN) classifier with Dynamic Time Warping (DTW) distance. The au-

thors of [128] stated that “after an exhaustive literature search of more than 800 papers, we are not

aware of any distance measure that has been shown to outperform DTW by a statistically signifi-

cant amount.” Compared to many other distance measures, feature representations, and specialized

machine/ deep learning algorithms proposed for TSC, the DTW combined with 1-NN is remark-

94

ably not easy to beat [[126], [140], [142], [143], [144]]. However, without dynamic programming

techniques, the DTW-1NN can be computationally expensive [126].

Time series classification methods are generally categorized into two main categories: dis-

tance and feature-based methods [126]. Under distance-based methods, a distance-based similarity

(e.g. . Euclidean distance (ED), and DTW [145],etc) is found between two pairs of time series in

the training set to determine if they belong to the same class. For feature-based methods, a statisti-

cal or symbolic [126] feature representation is computed and fed into a machine learning classifier

that learns from the training data using the feature-based representation. In this work, we combine

the two methods by first computing a feature-based statistical representation using a weighted sum

of temporal Pearson’s coefficient matrices for each class observation in the training set and then

applying a distance-based similarity measure using DTW on the testing set to classify unseen time

series. The CW-MAC representations satisfy the requirements for a good representation model

as stated by [146], where the authors highlight four requirements for developing representation

models for both accurate and fast similarity detection in time series:

1. The mapping of the time series must be warping-aware which allow using dynamic time

warping for similarity detection.

2. The model should maintain low complexity in reducing the high dimensionality of time

series data.

3. The new representation should capture the local features of the series by preserving as much

information as possible from the original time series, known as the sensitivity to features.

4. The representation model should be sensitive to input parameters, such as the number of

coefficients or symbols. Thus, it is desirable to build parameter-free representation models

and dimensionality reduction methods.

The rest of this paper is structured as follows. In subsection 2, we highlight the main contri-

butions of our paper. In subsection 3, we provide the related work from time series representation

95

and classification. In subsection 4, we provide the problem statement for the supervised Class2Vec

algorithm we have implemented. In subsection 5 we describe the data, and the experimentation. In

subsections 6, 7 and 8 we present and analyse the results. In subsection 9 we look in detail at the

average performance of the proposed algorithm across different problems, datasets, and parame-

ters. In subsection 10, we provide a detailed case study on different length time series. The paper

is concluded in subsection 11 where we summarise our findings and discuss the future direction.

5.4 Contributions

The main hypotheses is that the average accuracy of CW-MAC based classifier outperforms

the baseline across a wide range of datasets with different problem types, number of classes, length

of time series, and training/testing set sizes.

• The contributions of this paper is the validation of the four requirements for developing

robust representation models by [146] as follows:

– The resulted representations are time series on which DTW can be applied for query

processing and classification.

– The resulted representations combine multiple time-series sequences that are similar

in behavior, i.e belongs to the same class, but has equal or different lengths into good

candidate sequences that can summarize the characteristic of the time series and reduce

the size of the data set.

– The novel application of the Pearson’s correlation coefficient is to provide a robust way

to summarily visualize the temporal similarities between time series sequences in each

class.

– Supervised CW-MAC does not require optimization to find the normalized weights.

• Class2Vec method generates feature-rich and extremely compact representations while pre-

serving the underlying temporal dependency both within the time series and across different

time series for each class label in the training dataset.

96

5.5 Related Work

Time2Vec introduced in [147] is a vector representation that leverages the Fourier sine

series with appropriate frequencies to replace the time axis with Time2Vec. The authors show

that Time2Vec can be effective for datasets with long sequences and time horizons, however,

Time2Vec with LSTM complicates the optimization and the authors kept this issue as future work.

Pearson’s correlation coefficient (CW-MAC), Dynamic Time Warping (DTW-MAC), and moving

average (UW-MAC) based are compressive representation algorithms that combine multiple re-

lated time-series datasets of variable lengths, as first proposed in [139] by leveraging various sim-

ilarity metrics between different time series temperature profiles. CW-MAC is tested on a novel

food transportation dataset [148] that were collected from 6 Continental states in US which con-

sists of temperature recordings from wireless sensor networks implemented on different shipments

of perishable commodities across the United States. Similarity/distance measures are generally

used in retrieving the right time series for comparison with another one when searching large

databases [149]. DTW distance measure [106] has been used in speed processing applications

for its time warping advantages. DTW distance can be computed by finding the best alignment

“warping path” between two time series despite their lengths and phase mis-matches which is an

advantage over the well-known Euclidean distance metric [126]. DTW constructs a contiguous,

and monotonic n-by-m matrix from which the best alignment path is computed. The best warping

path is the one that minimizes the total cost of aligning the points of time series A with the points of

time series B in the constructed matrix. The minimum cost alignment is computed using a dynamic

programming algorithm. [143] and [150] have evaluated eight different distance measures on 38

data sets to study many alternatives to DTW like Edit distance with Real Penalty (ERP) [151],

Longest Common Subsequence (LCSS) [152], and other measures to demonstrate they provide a

negligible difference over the DTW measure performance. An extensive time series classification

review by [140] has defined the criteria of four conditions in evaluating the time series classification

algorithms’ performance based on impact, data, code availability and feasibility. The review shows

that three prominent algorithms are chosen based on the aforementioned criteria that can be com-

97

parable to DTW. Weighted DTW (WDTW) was proposed by [153] as modified version of DTW by

including a new multiplicative weight to penalize the distance between points in the warping path.

Another useful metric Time Warp Edit Distance (TWED) was introduced by [154] as an elastic

metric and it is slightly different from Dynamic Time Warping (with no stiffness), and Euclidean

distance with infinite stiffness by adding a control parameter elasticity along the time axis. An-

other metric for time series, called MSM (move-split-merge) was proposed by [149], where three

consecutive operations named move with changing values, a split with elements being duplicated,

and merge that combines two consecutive elements into one are applied to transform the original

time series. The minimum distance is found based on the cheapest cost of operations among all

combinations of the three blocks to transform the time series. The aforementioned methods have

been used extensively for TSC as traditional models. With the advance of deep learning [11] in

computer vision [6], speech recognition [155] natural language processing (NLP) [156]. Recurrent

Neural Networks (RNNs) [2], Long short-term memory (LSTM) [59] and Gated Recurrent Unit

(GRU) [60] gained popularity in learning a hierarchical level of representations and discrimina-

tive features from raw time series [157]. However, a comprehensive review by [158] shows that

poor random initialization of the DNNs’ weights and biases can significantly degrade the perfor-

mance of DNNs. Also, the authors show that while the DNNs outperform the NN-DTW for TSC,

their performance are not significantly different than COTE (Collective Of Transformation-based

Ensembles) [159] and HIVE-COTE (extended COTE with a Hierarchical Vote system) [160].

5.6 Time Series Classification

5.6.1 Time Series Definitions

A time series Xt of size n can be defined as a collection of data points measured sequen-

tially over equally spaced time intervals. i.e., Xt = (x1,x2, ...,xn), where xt ∈ R is an observation

at time t. A time series can be univeriate if its observation is recorded over a single variable, and

multivariate otherwise. Time series can also be classified as continuous or discrete based on the

interval of measurement. Specifically, a time series can be considered continuous if its observa-

98

tions are measured continuously over a specific time interval, whereas discrete time series would

contain observations at equally and discretely spaced time intervals such as minutes, hours and

days [[31], [32]]. Time series are represented by graphs where the observations are plotted against

the times of such observations. A dataset D = [(X1,Y1); (X2,Y2); . . . ; (XN ,YN)]. (XN ,YN) is a

collection of pairs (Xi ,Yi) where Xi could be a univariate or multivariate time series, and Yi is

the corresponding label.

The standard definition of the TSC task is to learn the mapping function between the input

time series data space and the probability distribution over the output class values (i.e the labels).

5.6.2 Problem Statement

We categorize supervised Class2Vec as a Whole Series classifier, which is defined as com-

paring two time series by using a distance measure to find the discriminatory features [140]. We

define time series classification as the problem of building a classifier to map a collection of la-

belled training time series into its true labels. In this work, we focus our attention to problems

where each time series may or may not have the same lengths.

Given an input dataset (X ,Y), X consists of different classes of time series signals,

and class i has m sequences with equal or different lengths, hence the ordered lengths are L =

(n[0],n[q], ...,n[k]), where where n[0] is the length of the shortest sequence in class i. Class i from

the input data X can be written as Xi = { X n[0]
0 , X n[1]

1 , ..., X n[k]
m }; X n[k]

m = (x0,x1,x2,x3, ...,xk),

where superscript indicates the length of each time series in a class i, and subscripts stands for

the class number. X n[k]
m ∈ R1×k, and yi are the class i labels, yi ∈ Rm×1. Please note that none

of the time series sequences need to be of the same length as CW-MAC was designed to ac-

count for such a condition. The first step for supervised CW-MAC is to condition on the class

label yi. Given a training set (Xi ,Yi) associated with class i, assuming m sequences within the

class, first, we perform ascending ordering on the time-series signals Xi, for i = 1,2,3, . . . ,m, with

superscripts 1 and m for the shortest and longest sequence respectively: (X
[1]

i ,y1); (X
[2]

i ,y2);

(X
[3]

i ,y3); . . . ; (X [m]
i ,ym). Then, a moving clipping mechanism is used to create uniform sets

99

Figure 5.1 Time-series classification pipeline based on CW-MAC representation.

100

of disjoint sequences across multiple groups to calculate a normalized similarity metric. We com-

pute m temporal Pearson’s Correlation matrices starting by clipping the length of all m− 1 sig-

nals to have the same length as the shortest signal. Then, we compute k× k cross-correlation

matrix where σi j represents the Pearson’s correlation coefficient between time-series i and time-

series j. Pearson’s product-moment correlation coefficients can be written according to [105] as:

σxy =
∑

n[0]
i=1(xi−x̄i)(yi−ȳi)√

∑
n[0]
i=1(xi−x̄i)2

√
∑

n[0]
i=1(yi−ȳi)2

, where x̄i is the average means of the ordered time-series signals of

length n[0], and n[0] is the length of the shortest sequence in the group for the first correlation matrix

which includes all m signals. Next, for each Pearson’s correlation matrix, we compute normalized

weight coefficients for each signal as follows:

W
[p]

i =
∑

m
j=1 σ(p+1) j−1

(∑m
i=1(∑

m
j=1 σi j−1))

(5.1)

where p = 1,2, . . . m represents the normalized weight coefficients for the first, second, . . . mth

time-series signals, respectively. Then, a weighted fusion and concatenation to create a represen-

tative vector for each group in class is performed as follows:

X̂classi =

X
[1][0:n[0]]

i X
[2][0:n[0]]

i · · · X
[m][0:n[0]]

i

0 X
[2][n[0]:n[1]]

i · · · X
[m][n[0]:n[1]]

i
...

... · · · ...

0 0 · · · X
[m]n[m−1:m]

i

(5.2)

W =

W
[1]

m W
[2]

m · · · W
[m]

m

0 W
[2]

m−1 · · · W
[m]

m−1
...

... · · · ...

0 0 · · · W
[m]

1

(5.3)

101

Xigroups =

X̂
[1]

group1/yi

X̂
[2]

group2/yi
...

X̂
[m]

groupm/yi

(5.4)

where that W
[m]

1 = 1. and X
[m]n[m−1:m]

i is the remaining records of the longest sequence.

Xgroups = W◦X̂classi (5.5)

The final compound signal for the first group can be obtained by concatenating vertically all

the X̂
[i]

group j/yi
to form the one time-series signal that is the best representation for all the individual

time-series signals.

X̂
[Representative]

i = [X̂
[1]

group1/yi
,X̂

[2]
group2/yi

, . . . ,X̂
[m]

groupm/yi
]

(5.6)

The number of representations in X̂ [Representative] is equal to the number of classes in the

dataset. Finally, we test the quality of the representations on the test set. We apply query processing

where the input representation for class i needs to be matched to a large number of time-series

sequences in the test set. To retrieve the class i from the test set using the proposed representations,

we apply DTW as a measure of comparing the time-series sequences in the test set to the class

representations. DTW warps the time axis of one (or both) sequences to achieve a better alignment.

To align two sequences, DTW constructs an nxi×nx j matrix where the (ith, jth) element of

the matrix contains the distance d(Xi,X j) between the two time series. Xi, and X j (typically the

Euclidean distance is used, so d(xi,y j) =
√

∑(Xi−X j)2). DTW warping path is subject to three

102

constraints according to [105]: boundary conditions, continuity and monotonicity; to minimize the

overall warping cost as follows:

DTW (x,y) = min

√

∑
L
l=1(zi)

L

 (5.7)

where L is used to compensate for the fact that warping paths may have different lengths. In order

to find the minimum path, the warping path Z is contiguous: Z = z1,z2, . . . ,zL and max(nxi,nx j)6

L < (nxi + nx j-1). DTW uses dynamic programming to compute the cumulative distance ζ (i, j)

from d(i, j) “current position” in the matrix and the minimum of the cumulative distances of the

adjacent elements:

ζ (i, j) = d(Xi,X j)+min{ζ (i−1, j−1)+ζ (i−1, j)+

ζ (i, j−1)(5.8)

5.7 Data and Experimental Design

5.7.1 Methodology

We evaluate our developed framework thoroughly on the largest publicly available bench-

mark for time series analysis: UCR archive time series datasets [141] have been widely established

as a standard for evaluating time series classification algorithms. The time series in the archive are

already z-normalized to have a zero mean and unity standard deviation. These datasets cover a

wide spectrum of different problems, applications, number of classes, length of time series, as

well as sizes of training and testing sets. Figure 5.2 (a) presents the distributions of problem

types/domains, (b) classes, (c) time series lengths, and training and testing set frequencies on 70

datasets from the UCR repository. Many of these datasets were created at different places, and

laboratories, and hence the archive is large and diverse. We used the default training and testing

set splits provided by UCR. Readers can find the detailed description of the 70 datasets on (http://

timeseriesclassification.com). The selected collection is varied in terms of data characteristics: the

103

Figure 5.2 Summary information for the 70 datasets from the UCR repository used in the study.

104

lengths of the time series ranges from 15 (SmoothSubspace) to 1500 timestamps (SemgHandGen-

derCh2); train set sizes vary from 16 to 8926 observations; test set sizes vary from 20 to 2850

observations, and the number of classes is between 2 and 10. The bar graphs in Figure 5.2 show

more detailed histograms. There are a large number of datasets with small and median training set

sizes (twenty-six have 50 or fewer training examples, dozen have less than 100, and twenty-three

between 100 and 500, and ten have greater than 500 observations). Image and sensor classification

problems are the majority of data domains. Figure 5.2 gives the summary of domain distributions.

We implemented DTW using the simple dynamic programming algorithm. Since our focus was

not on computation performance, we did not use any faster tricks or algorithms to speed up the

timing. We applied window-based constraints (Sakoe-Chiba band [161] in our experimentation)

on the warping path so that the distance the path is allowed to drift is not deviated far from the

constructed matrix diagonal. According to [162], the window size w can non-intuitively improve

the classification accuracy of same/different length time series and prevent pathological warping,

“where a relatively small subsection of one sequence maps to a much larger subsection of another”.

It should be noted that when the w is equal to zero then the best warping path is the diagonal of the

DTW constructed matrix, and in that case DTW with w = 0 becomes the Euclidean distance. We

used different window-sizes w based on experimentation and simple grid search to find the best w

for DTW computations for each dataset. The parameter values we search for the window size w

are shown in Table 3.5. We run the same conditions and seed on each problem for both CW-MAC

and baseline classifiers. We use the same training and testing sets as were provided in the archive,

however, for a few datasets that have a large number of observations and longer lengths, we choose

a smaller subset of observations as computing the DTW on the entire testing set is computationally

very expensive.

105

Table 5.1 Best performing accuracy split by domain type.

Domain Type CW-MAC Accuracy Baseline Accuracy
Device 0.513 0.416
ECG 0.767 0.789
EPG 1.000 1.000
Image 0.658 0.657
Motion 0.658 0.661
Power 0.900 0.911
Sensor 0.764 0.726
Simulated 0.702 0.705
Spectro 0.728 0.728
Spectrum 0.527 0.545
Traffic 0.789 0.780
Total Average 0.701 0.689

Table 5.2 Best performing accuracy split by number of classes.

Number of Classes CW-MAC Accuracy Baseline Accuracy
2 0.706 0.687
3 0.711 0.710
4 0.708 0.698
5 0.656 0.656
6 0.648 0.661
7 0.675 0.629
8 0.744 0.745
10 0.675 0.655
Total Average 0.701 0.689

106

Table 5.3 Average accuracy of CW-MAC and UW-MAC (baseline) over 70 problems.

No Problem
Type

Dataset Train Test Length Class W CW-MAC Baseline

1 Image ArrowHead 36 175 251 3 2 0.611 0.623
2 Spectro Beef 30 30 470 5 4 0.533 0.533
3 Image BeetleFly 20 20 512 2 8 0.700 0.750
4 Image BirdChicken 20 20 512 2 64 0.650 0.550
5 Simulated BME 30 150 128 3 16 0.640 0.640
6 Sensor Car 60 60 577 4 32 0.633 0.617
7 Simulated CBF 30 900 128 3 2 0.754 0.774
8 Traffic Chinatown 20 343 24 2 2 0.904 0.904
9 Spectro Coffee 28 28 286 2 64 0.929 0.929
10 Device Computers 250 250 720 2 2 0.648 0.496
11 Image DiatomSizeRed 16 306 345 4 32 0.722 0.801
12 Image DistalPhalanxOAG 400 139 80 3 2 0.705 0.705
13 Image DistalPhalanxOC 600 276 80 2 2 0.685 0.674
14 Image DistalPhalanxTW 400 139 80 6 2 0.561 0.576
15 Sensor DodgerLoopGame 20 138 288 2 128 0.616 0.551
16 Sensor DodgerLoopW 20 138 288 2 128 0.957 0.957
17 Sensor Earthquakes 322 139 512 2 32 0.748 0.252
18 ECG ECG200 100 100 96 2 8 0.780 0.790
19 ECG ECGFiveDays 23 861 136 2 2 0.754 0.787
20 Device ElectricDevices 8926 1550 96 7 32 0.426 0.227
21 Image FaceFour 24 88 350 4 32 0.727 0.648
22 Image Fish 175 175 463 7 8 0.629 0.617
23 Sensor FreezerRegular 150 2850 301 2 32 0.760 0.759
24 Sensor FreezerSmall 28 2850 301 2 32 0.746 0.746
25 Motion GunPoint 50 150 150 2 2 0.733 0.733
26 Motion GunPointAgeSpan 135 316 150 2 2 0.646 0.576
27 Motion GunPointMVF 135 316 150 2 2 0.617 0.617
28 Motion GunPointOVY 136 315 150 2 2 0.889 0.886
29 Spectro Ham 109 105 431 2 2 0.771 0.771
30 Image Herring 64 64 512 2 8 0.563 0.563
31 EPG InsectEPGRT 62 249 601 3 2 1.000 1.000
32 EPG InsectEPGST 17 249 601 3 2 1.000 1.000
33 Sensor ItalyPowerDemand 67 1029 24 2 4 0.899 0.826
34 Sensor Lightning2 60 61 637 2 64 0.607 0.738
35 Sensor Lightning7 70 73 319 7 16 0.685 0.699
36 Simulated Mallat 55 320 1024 8 32 0.959 0.959
37 Spectro Meat 60 60 448 3 2 0.867 0.867
38 Traffic MelbourneP 1194 2439 24 10 0 0.675 0.655
39 Image MiddlePOAG 400 154 80 3 2 0.571 0.571
40 Image MiddlePOC 600 291 80 2 16 0.564 0.570

107

Table 5.3 (Continued)

No Problem
Type

Dataset Train Test Length Class W CW-MAC Baseline

41 Image MiddlePTW 399 154 80 6 2 0.487 0.494
42 Image MixedSR 500 250 1024 5 64 0.716 0.712
43 Image MixedSS 100 250 1024 5 64 0.720 0.724
44 Sensor MoteStrain 20 1252 84 2 8 0.862 0.841
45 Spectro OliveOil 30 30 570 4 2 0.867 0.867
46 Image PhalangesOC 1800 858 80 2 2 0.629 0.632
47 Sensor Plane 105 105 144 7 2 0.962 0.971
48 Power PowerCons 180 180 144 2 2 0.900 0.911
49 Image ProximalPOAG 400 205 80 3 2 0.771 0.771
50 Image ProximalPOC 600 291 80 2 4 0.639 0.639
51 Image ProximalPTW 400 205 80 6 2 0.620 0.620
52 Device RefrigerationD 375 375 720 3 2 0.419 0.320
53 Spectrum SemgHandG-Ch2 300 600 1500 2 32 0.527 0.545
54 Simulated ShapeletSim 20 180 500 2 16 0.533 0.506
55 Device SmallKitchenA 375 375 720 3 2 0.560 0.621
56 Simulated SmoothSubspace 150 150 15 3 2 0.833 0.820
57 Sensor SonyAIBORS1 20 601 70 2 8 0.867 0.879
58 Sensor SonyAIBORS2 27 953 65 2 4 0.769 0.767
59 Spectro Strawberry 613 370 235 2 32 0.576 0.573
60 Image Symbols 25 995 398 6 16 0.885 0.899
61 Simulated SyntheticControl 300 300 60 6 8 0.687 0.720
62 Motion ToeSegmentation1 40 228 277 2 2 0.474 0.583
63 Motion ToeSegmentation2 36 130 343 2 128 0.631 0.654
64 Sensor Trace 100 100 275 4 2 0.590 0.560
65 Simulated UMD 36 144 150 3 16 0.507 0.514
66 Motion UWaveGestureLAll 896 320 945 8 32 0.844 0.828
67 Motion UWaveGestureLX 896 320 315 8 32 0.609 0.625
68 Motion UWaveGestureLY 896 320 315 8 32 0.563 0.566
69 Spectro Wine 57 54 234 2 2 0.556 0.556
70 Motion WormsTwoClass 181 77 900 2 2 0.571 0.545

5.7.2 Results and Discussion

We present the results of all the datasets in Table ??. Both CW-MAC-based classifiers

and UW-MAC (i.e. baseline) perform well on a total of 52 out of 70 datasets with classifica-

tion accuracy greater than 60%. Within the 52 datasets, CW-MAC has an accuracy greater than

70%, 80% and 90% on 13, 9 and 6 datasets, respectively with 100% on 2 datasets. This result

108

Figure 5.3 CW-MAC representations for Plane training dataset.

verifes the effectiveness of the CW-MAC algorithm in different problem domains. They also indi-

cate that the CW-MAC algorithm captures the dynamics and statistics of the underlying processes.

CW-MAC-based classifier mainly considers finding representations from a relatively simple com-

bination of the time series within the same class based on their statistical significance quantified by

the weighted Pearson’s correlation coefficients. CW-MAC and UW-MAC-based classifiers do not

perform well on 18 datasets with accuracies between 60% and 42% for CW-MAC, and between

60% and 32% for UW-MAC. The overall average accuracy difference between the CW-MAC-

based classifier and the baseline for the domains: device, image, sensor, spectro, and Ttaffic is

2.93%, which highlights the average improvement of utilizing the CW-MAC time series represen-

tations with normalized Pearson’s weights over the averaging baseline with unity weights. On the

other hand, the baseline achieves a higher accuracy of 2.18% for ECG, and 0.28% for spectrum

problem types, and average difference of 1.15% for the following problem types: ECG, Motion,

Power, Simulated, and Spectrum. For datasets with 2, and 4 classes and type Sensors, 6 datasets

(ItalyPowerDemand, MoteStrain, Earthquakes, Car, DodgerLoopGame, Trace) have a combined

number of 3307 time series and an average length of 293 timestamps. The CW-MAC has signif-

icant improvements over the baseline on six datasets: Earthquakes, ElectricDevices, Computers,

109

BirdChicken, RefrigerationDevices, and FaceFour. Earthquakes dataset has the second-longest se-

ries, and by itself, CW-MAC has an overall improvement of approximately 50% in accuracy over

the baseline. A possible reason is that UW-MAC can not learn properly the underlying structures

and unique patterns of the time series for each class especially if the time series have unequal

lengths. Besides, it has limited capacities in learning complicated characteristics by naive aver-

aging. In our experiments, UW-MAC tends to generate simple representations,resulting in low

accuracies results for datasets ElectricDevices, and RefrigerationDevices. For Device problem

type, the average overall improvement of CW-MAC over the baseline is 38.80% on Computers,

RefrigerationDevices, and ElectricDevices with 2,3, and 7 classes respectively. An average 1.9%

improvement is observed on image type datasets: FaceFour, MixedShapesRegularTrain, Distal-

PhalanxOutlineCorrect, BirdChicken, and Fish. The maximum and the minimum improvement in

the accuracies by CW-MAC-based classifier over the baseline is 4.68%, and 0.1% for datasets with

7 and 3 classes, respectively. The overall average difference between the two classifiers for the

following: 2,3,4,7, and 10 classes is 1.91%, whereas the overall average difference between the

two classifiers for the following 6 and 8 classes is insignificant. By summarizing these results, we

can see that CW-MAC-based classifier is competitive in solving the time series classification tasks

across different domains. Since only one representation per class is found from the training set and

these representations are utilized in the testing time. We are able to achieve unprecedented gains

in data compression and complexity for general time series classification. Besides, CW-MAC is

able to improve the performance by leveraging the powerful normalized Pearson’s weights ca-

pability. Our proposed classifier can combine both the benefits of data compression and feature

representations, and hence it is expected to perform best when the representations are concatenated

with the training set. Finally, graphical results from Figure 5.3 show that the algorithm facilitates

discovering similarities across different classes to find proper representations while reducing the

time-series dimensionality for back-end applications like classification.

110

Chapter 6: Open Research Topics

6.1 Future Research

The contribution of this research is not just an algorithm that works well on time series

classification and outperforms the baseline, but an end-to-end pipeline that can also be easily com-

bined with other machine learning-based algorithms, and representations methods when used as

features to further improve the classification performance. Our method can be easily extended to

be used in combination with other distance-based methods by simply finding distance-based rep-

resentations [139] including the Euclidean distance [145], the mean absolute error, the Canberra

distance [130], the Jeffreys and Matusita distance [131], and Cosine similarity. Then these repre-

sentations could be added as additional features to the machine learning classifiers to improve their

performance. This work considers classifying 70 datasets across 11 domains, and these domains

are unique by some particular patterns of time series from which domain-specific features could

be extracted or learned such that it could help the classification. For example, Electrocardiogram

(ECG) time series representations could help in capturing the rising and falling patterns of heart-

beats which could potentially help in classifying normal heartbeats from abnormal ones. Using the

representations for time series clustering or for searching time series databases in the frequency

domain is another possibility of future work. Finally, getting more insights into the circumstances

under which CW-MAC-based classifier outperforms other machine learning classifiers and under

which factors it lags, will also be promising future work.

6.2 Future Research Directions

The contributions of this research can be used to advance knowledge in the time-series

representation learning domain on several future research trajectories as summarized below:

111

• Deep learning: Building an intelligent layer on top of CW-MAC, DTW-MAC, and UW-MAC

to estimate the optimum number of required sensors that can provide reliable temperature

monitoring inside a shipping container (or any multi-sensory monitoring application). An-

other variation of this research venue is to build multiple CW-MAC, DTW-MAC, and UW-

MAC layers and create a shared point of information among them via a smart network to se-

lect the locations of the sensors that provide the best mapping of location−based prediction.

For this purpose, multiple methods can be used including deep learning sequence networks

such as recurrent neural networks (RNNs), long-short-term memory networks (LSTMs), at-

tention networks, transformers, and the state-of-the-art sequence to sequence models.

• Cost of sensor implementation: By reducing the number of sensors required for complete

cold-chain cycle monitoring, the implementation costs can be reduced significantly espe-

cially for large retailers in the specific case of a food transportation application.

• Food quality prediction: Build novel algorithms based on CW-MAC, DTW-MAC, and UW-

MAC layers to predict food quality and shelf-life using the representative time-series profile

for the whole shipment.

• Time-space: In this work, we only looked at the time dimension whereas an interesting area

of research is to include the space dimension, and model both time and space dimension

within the time-space-series modeling framework.

• Classification: Utilize the learned representations to run different classifiers to identify if two

sensors come from the same shipment or if a sensor profile satisfied a binary quality control

criteria for a retailer.

• Clustering: Use different clustering algorithms to cluster the sensors’ temperature profiles in

the dataset based on similarities in their readings, distribution, hidden/latent factors, distance,

and locations.

112

6.3 Possible Sensor and Data Applications

• Dimensionality reduction: Researchers can employ standard dimensionality reduction algo-

rithms like the principal component analysis (PCA) or even deep learning approaches like

the autoencoders or variational autoencoders to learn low-dimensional features in the latent

space of the representative temporal data vector to improve subsequent tasks of regression,

classification, and clustering.

• Environmental disasters: The location-based prediction can be extended into other applica-

tions and fields. For instance, measuring the flood levels in hard to reach places in North

Africa and many other places in the world, and predicting their height and direction require

installing stream-gauges that are costly in terms of operation and monitoring. Thus, using

our approach to predict the hard to reach locations using known accessible locations within

the region vicinity can reduce the cost of implementation and save a lot of human lives,

animals, and properties.

• Healthcare: Healthcare is another great potential application area where each patient’s diag-

nostics data naturally constitute a multi-variate time-series dataset spanning a wide range of

time intervals. In this instance, when one needs to analyze the trends at a certain healthcare

facility or geographical area, this data can be processed using our proposed method which

can simultaneously improve the visualization while preserving the individual privacy of the

patient due to the aggregated cumulative representative form.

6.4 Potential Data Analytics Applications

6.4.1 Time Series Clustering

• The sensors in the dataset can be clustered within the same shipments into different groups

based on similar behavior, distribution, hidden/latent factors, distance, and locations.

113

• Different portions of the time series can also be clustered into different groups to identify

the significant events and periods in the cold−chain cycle. For instance, the time series

temperature portion of the pre−cooling process across different shipments could be grouped

as having a distinctly different temperature profile compared to the rest of the transportation.

6.4.2 Time Series Representation Learning

• The multivariate time series dataset is challenging, nonlinear, and nonstationary with vari-

able lengths. Thus, proper learning representation could help in combining different length

sensor profiles into a single representative candidate without the additional padding or clip-

ping mechanisms which can introduce noise.

• Another area of interest is in developing learning representation algorithms to learn complex

salient features with deep neural networks for time series sequence modeling to increase

prediction accuracy.

6.4.3 Time Series Dimensionality Reduction

• Compare frequency domain−based distance measures with DTW and study the effect of

Fast Fourier Transform coefficient on reconstructing the original signal.

114

Chapter 7: Concluding Remarks

In this dissertation, we provide the reader with a thorough overview of time-series data

representation in terms of both its foundations (PART I) and its applications (PART II), with novel

contributions to the development of this field from data collection to processing to developing new

algorithms for better visualization and classification.

Chapter 1 laid out a thorough history of machine learning, which dates back to the 1950s.

At the time, researchers already recognized its importance as a proper way of learning for comput-

ers without explicit instructions. However, it was not until the 2006s, with recent advancements in

Graphics Processing Units (GPUs) and the proliferation of data that have brought machine learn-

ing algorithms like neural networks to the forefront of attention. Since 2010, the field has been

completely reshaped with the advancement of deep learning to learn abstract representations and

automate the feature-learning process. The consecutive occurrence of both collecting better and

more data and building more effective models thanks to increases in computational power have

significantly contributed to the field.

In Chapter 2, we introduce our first contribution to science in the form of a novel location-

aware time-temperature dataset for perishable transportation across the continental United States

with an IoT wireless network implementation. We provided a comprehensive overview of the data

and its descriptive statistics with some preliminary time series visualization. Another reason why

this data is novel and important is that, unlike many other studies which involved a singular entity,

it is the result of a significant collaboration between all the stakeholders in the cold chain from

growers to distributors to retailers to academics, which can play an important role for researchers

and educators in food engineering, cold-chain, machine learning, and data mining, as well as in

other disciplines related to food and transportation.

115

In Chapter 3, we conducted a comprehensive statistical and temporal analysis to analyze the

dynamic factors for temporal heterogeneity, complexity, similarity, and discrepancy on the novel

location-aware multivariate time series dataset introduced in the previous chapter. The dataset rep-

resents the temperature variations across 6 different shipments with 9 sensors in each shipment

monitoring and recording sensory data at 15-minute intervals across multiple days. Through care-

ful hand-analysis and experiments, we concluded that there is still a lot of unknowns when it comes

to what happens in the cargo hold throughout the shipment. The dataset is challenging, and it will

motivate the food transportation research community to delve into developing more sophisticated

regression and classification algorithms for univariate and multivariate time series, better cluster-

ing methods, and learning representations with dimensionality reduction. The dataset also provides

novel location-aware data with significant predictive potentials to deploy cost-effective intelligent

food temperature monitoring systems with high-resolution recording on the minimal number of

sensors throughout the entirety of the cold chain.

In Chapter 4, we introduced three algorithms: Correlation Weighted - Moving Average

Coefficient (CW-MAC), Dynamic Time Warping Moving Average Coefficient (DTW-MAC), and

Unity Weighted Moving Average Time Coefficient (UW-MAC) to generate fixed-length repre-

sentation from a collection of real-world multivariate time-series datasets with different lengths.

CW-MAC, DTW-MAC, and UW-MAC use a layering approach with internal steps called: moving

clipping, Pearson’s weighting, DTW’s weighting, and mathematical concatenations to be com-

puted for each group of multivariate time-series, which is related to the same entity. The proposed

algorithmic framework serves as a novel method for better visualization and analytics of multi-

variate heterogeneous time-series data and helps in reducing the size of the datasets, especially for

large scale data. Preliminary results indicate that the proposed algorithms capture the dynamics

and statistics of the underlying processes. We also show that CW-MAC, DTW-MAC, and UW-

MAC are all robust to noise as the noise power is distributed temporarily across the time-series

profiles due to the mechanisms of the proposed algorithm. Furthermore, we implemented different

distances and compared their representations and found that the final representations are still very

116

close in both shape and dynamics. All of the analysis that we have conducted on this novel and

temporally rich data introduced in Chapter 2 has highlighted the main challenges of working with

temperature profiles along the cold chain in terms of modeling, statistical analysis, and IoT sensor

data analytics specifically for sensor analytics and food engineering.

In PART II, we answered the following research questions: What are the main require-

ments to generate good representations from time-series data? What knowledge is embedded in

these representations? If we can generate high-quality representations for better visualization of

time-series from numerous sources, can it enable useful follow-up applications like time series

classification?

In Chapter 5, we introduced the classification framework which enables the novel CW-

MAC and DTW-MAC representations to be used for time series classification and tested it across

70 datasets and 11 different domain applications. We first presented the problem statement of tak-

ing the representation from the historical trajectories of the time series observations to solving the

classification task as our selected application. The CW-MAC-based classifier uses representations

with priors about the series. Then, we aggregate the average accuracies on two different levels: do-

main/problem types and classes. A major novelty of this work lies in utilizing the representations

not only for visualizations, but also for time series classification. A CW-MAC-based classifier is

more capable of learning distinct features using statistical aggregation than simple averaging. We

constructed comprehensive experiments for verifying the effectiveness and robustness of the pro-

posed representations with DTW as end-to-end classifiers. Interestingly, besides the conventional

performance comparisons, we have also found that the proposed representation is able to very ef-

fectively reduce the search space by an unprecedented compression of the training data from n

examples to c, where c is equal to the number of classes. Finally, our classifier does not introduce

any additional computational complexity in the training time, but during testing, the computational

efficiency needs to be improved over the use of standard DTW, which is left as an extension of this

work. Hence, the next section is dedicated to discussing the possible applications this dissertation

can inspire.

117

In Chapter 6, we discussed future work and open questions in this field. The contributions

of this research can be used to advance knowledge in the time-series representation learning do-

main on several future research trajectories in different directions such as deep learning; cost of

sensor implementation; food quality prediction; time-space and time series classification and clus-

tering; time Series representation learning and dimensionality reduction, environmental disasters;

and privacy preservation in healthcare applications.

Ultimately, we hope this dissertation will encourage more researchers to work on the appli-

cations of time series and apply the proposed representations to new and different domains or tasks.

We believe that could lead us towards building better data visualization and analytics techniques

specifically in industry implementations on food engineering, cold-chain analytics and machine

learning and data mining applications in transportation and healthcare.

118

References

[1] Alla Abdella and Ismail Uysal. A statistical comparative study on image reconstruction and

clustering with novel vae cost function. IEEE Access, 8:25626–25637, 2020.

[2] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations

by back-propagating errors. Nature, 323:533–536, 1986.

[3] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[4] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep

neural networks: A tutorial and survey. Proceedings of the IEEE, 105:2295–2329, 2017.

[5] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,

Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip

code recognition. Neural Computation, 1:541–551, 1989.

[6] Y. Le Cun, B. Boser, J. S. Denker, R. E. Howard, W. Habbard, L. D. Jackel, and D. Hen-

derson. Advances in neural information processing systems 2. chapter Handwritten Digit

Recognition with a Back-propagation Network, pages 396–404. Morgan Kaufmann Pub-

lishers Inc., 1990.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. NIPS, 2012.

119

[8] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th International Conference on International Conference

on Machine Learning, ICML’10, pages 807–814, USA, 2010.

[9] Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. Semi-

supervised learning with deep generative models. In Proceedings of the 27th International

Conference on Neural Information Processing Systems - Volume 2, NIPS’14, pages 3581–

3589, Cambridge, MA, USA, 2014. MIT Press.

[10] R. Wirth and J. Hipp. Crisp-dm: towards a standard process modell for data mining. 2000.

[11] F Rosenblatt. The perceptron: a probabilistic model for information storage and organiza-

tion in the brain. Psychological review, 65 6:386–408, 1958.

[12] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activa-

tions in convolutional network, 2015.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[14] B. Karlik and A. Olgac. Performance analysis of various activation functions in generalized

mlp architectures of neural networks. 2011.

[15] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Deep learning for intelli-

gent wireless networks: A comprehensive survey. IEEE COMMUNICATIONS SURVEYS

TUTORIALS, 20:2595–2621, 2018.

[16] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15(1):1929–1958, 2014.

120

[17] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward

neural networks. In AISTATS, volume 9 of JMLR Proceedings, pages 249–256. JMLR.org,

2010.

[18] Dmytro Mishkin and Jiri Matas. All you need is a good init. CoRR, abs/1511.06422, 2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In Proceedings of the 2015

IEEE International Conference on Computer Vision (ICCV), ICCV ’15, pages 1026–1034.

IEEE Computer Society, 2015.

[20] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep

network learning by exponential linear units (elus). CoRR, 2015.

[21] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient back-

prop. In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS

Workshop, pages 9–50. Springer-Verlag, 1998.

[22] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Netw.,

12:145–151, 1999.

[23] Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural net-

works. CoRR, abs/1804.07612, 2018.

[24] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for

bench marking machine learning algorithms. CoRR, abs/1708.07747, 2017.

[25] Rui Xu and D. Wunsch, II. Survey of clustering algorithms. Trans. Neur. Netw., 16:645–678,

2005.

[26] DeLiang Wang. Unsupervised learning: Foundations of neural computation. American

Association for Artificial Intelligence, 2001.

121

[27] Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl Johann Simon-Gabriel, and Bernhard

Schölkopf. From optimal transport to generative modeling: the vegan cookbook. Technical

report, 2017.

[28] QIANG LIU (Member IEEE) GEN ZHANG JIANJING CUI Erxue Min, XIFENG GUO

and JUN Long. A survey of clustering with deep learning: From the perspective of network

architecture. IEEE. Translations, 6:2169–3536, 2018.

[29] H. Bourlard and Y. Kamp. Auto-association by multilayer perceptrons and singular value

decomposition. Biol. Cybern., 59(4-5):291–294, 1988.

[30] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data with neural

networks. Science, 313(5786):504 – 507, 2006.

[31] Jan G. De Gooijer and Rob J. Hyndman. 25 years of time series forecasting. 2006.

[32] Antonio Rafael Sabino Parmezan, Vinícius M. A. de Souza, and Gustavo E. A. P. A. Batista.

Evaluation of statistical and machine learning models for time series prediction: Identifying

the state-of-the-art and the best conditions for the use of each model. Inf. Sci., 484:302–337,

2019.

[33] Everette S. Gardner. Exponential smoothing: The state of the art–part ii. 2006.

[34] John H. Cochrane. Time series for macroeconomics and finance. Graduate School of Busi-

ness, University of Chicago, 1997.

[35] Keith W. Hipel and A. Ian. McLeod. Time series modelling of water resources and environ-

mental systems. Elsevier Amsterdam ; New York, 1994.

[36] George Edward Pelham Box and Gwilym Jenkins. Time Series Analysis, Forecasting and

Control. Holden-Day, Inc., USA, 1990.

[37] James M. Lucas and Michael S. Saccucci. Exponentially weighted moving average control

schemes: Properties and enhancements. 1990.

122

[38] Coundefinedkun Hamzaçebi. Improving artificial neural networks’ performance in seasonal

time series forecasting. Inf. Sci., 178(23):4550–4559, December 2008.

[39] Guoqiang Peter Zhang. Time series forecasting using a hybrid arima and neural network

model. Neurocomputing, 50:159–175, 2003.

[40] E.J. Hannan and H. Edward James. Multiple Time Series. WILEY SERIES in PROBABIL-

ITY and STATISTICS: PROBABILITY and STATISTICS SECTION Series. Wiley, 1970.

[41] James Stock and M.W. Watson. Vector autoregressions. Journal of Economic Perspectives,

15(4):101 – 116, 2001.

[42] N. I. Sapankevych and R. Sankar. Time series prediction using support vector machines: A

survey. IEEE Computational Intelligence Magazine, 4(2):24–38, May 2009.

[43] P. Cortez. Sensitivity analysis for time lag selection to forecast seasonal time series using

neural networks and support vector machines. In The 2010 International Joint Conference

on Neural Networks (IJCNN), pages 1–8, July 2010.

[44] Robert R. Andrawis, Amir F. Atiya, and Hisham El-Shishiny. Forecast combinations of

computational intelligence and linear models for the NN5 time series forecasting competi-

tion. International Journal of Forecasting, 27(3):672–688, July 2011.

[45] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational

Learning Theory, COLT ’92, page 144–152, New York, NY, USA, 1992. Association for

Computing Machinery.

[46] Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.

[47] J. M. Kihoro, Ro Otieno, and Charles Ouma Wafula. Seasonal time series forecasting: A

comparative study of arima and ann models. 2006.

123

[48] John Fulcher. Chapter v application of higher-order neural networks to financial time-series

prediction. 2007.

[49] S. Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face recognition: a convolutional

neural-network approach. Neural Networks, IEEE Transactions on, 8(1):98–113, 1997.

[50] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In Proceedings of the 25th International Conference on

Neural Information Processing Systems - Volume 1, NIPS’12, page 1097–1105, Red Hook,

NY, USA, 2012. Curran Associates Inc.

[51] Anastasia Borovykh, Sander M. Bohte, and Cornelis W. Oosterlee. Conditional time series

forecasting with convolutional neural networks. 2017.

[52] I. Koprinska, D. Wu, and Z. Wang. Convolutional neural networks for energy time series

forecasting. In 2018 International Joint Conference on Neural Networks (IJCNN), pages

1–8, July 2018.

[53] K. Kashiparekh, J. Narwariya, P. Malhotra, L. Vig, and G. Shroff. Convtimenet: A pre-

trained deep convolutional neural network for time series classification. In 2019 Interna-

tional Joint Conference on Neural Networks (IJCNN), pages 1–8, July 2019.

[54] C. Liu, W. Hsaio, and Y. Tu. Time series classification with multivariate convolutional

neural network. IEEE Transactions on Industrial Electronics, 66(6):4788–4797, June 2019.

[55] F. Karim, S. Majumdar, and H. Darabi. Insights into lstm fully convolutional networks for

time series classification. IEEE Access, 7:67718–67725, 2019.

[56] R. Yang, L. Feng, H. Wang, J. Yao, and S. Luo. Parallel recurrent convolutional neu-

ral networks-based music genre classification method for mobile devices. IEEE Access,

8:19629–19637, 2020.

[57] J. Elman. Finding structure in time. Cogn. Sci., 14:179–211, 1990.

124

[58] P. Werbos. Backpropagation through time: What it does and how to do it. 1990.

[59] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,

9(8):1735–1780, November 1997.

[60] Junyoung Chung, Çaglar Gülçehre, KyungHyun Cho, and Yoshua Bengio. Empirical evalu-

ation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555:1–9,

2014.

[61] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

RNN encoder–decoder for statistical machine translation. pages 1724–1734, October 2014.

[62] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks, 2014.

[63] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate, 2014.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[65] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of

deep bidirectional transformers for language understanding, 2018.

[66] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient

descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, March 1994.

[67] Sepp Hochreiter and Yoshua Bengio. Gradient flow in recurrent nets: the difficulty of learn-

ing long-term dependencies. 2001.

[68] Felix A. Gers, Douglas Eck, and Jürgen Schmidhuber. Applying lstm to time series pre-

dictable through time-window approaches. In LECTURE NOTES IN COMPUTER SCI-

ENCE, page 669, 2001.

125

[69] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks, 2012.

[70] S. Siami-Namini, N. Tavakoli, and A. Siami Namin. A comparison of arima and lstm in

forecasting time series. In 2018 17th IEEE International Conference on Machine Learning

and Applications (ICMLA), pages 1394–1401, 2018.

[71] A. Essien and C. Giannetti. A deep learning framework for univariate time series prediction

using convolutional lstm stacked autoencoders. In 2019 IEEE International Symposium on

INnovations in Intelligent SysTems and Applications (INISTA), pages 1–6, July 2019.

[72] N. Hossain, S. R. Hossain, and F. S. Azad. Univariate time series prediction of re-

active power using deep learning techniques. In 2019 International Conference on

Robotics,Electrical and Signal Processing Techniques (ICREST), pages 186–191, Jan 2019.

[73] Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David A Sontag, and Yan Liu. Re-

current neural networks for multivariate time series with missing values. In Scientific Re-

ports, 2016.

[74] Fazle Karim, Somshubra Majumdar, Houshang Darabi, and Samuel Harford. Multivariate

lstm-fcns for time series classification. Neural networks : the official journal of the Interna-

tional Neural Network Society, 116:237–245, 2018.

[75] King Ma and Henry Leung. A novel lstm approach for asynchronous multivariate time

series prediction. pages 1–7, 07 2019.

[76] Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional lstm networks

for improved phoneme classification and recognition. pages 799–804, 01 2005.

[77] Alex Graves. Generating sequences with recurrent neural networks, 2013.

126

[78] Konstantinos Benidis, Syama Sundar Rangapuram, Valentin Flunkert, Bernie Wang,

Danielle Maddix, Caner Turkmen, Jan Gasthaus, Michael Bohlke-Schneider, David Salinas,

Lorenzo Stella, Laurent Callot, and Tim Januschowski. Neural forecasting: Introduction and

literature overview, 2020.

[79] David Salinas, Valentin Flunkert, and Jan Gasthaus. Deepar: Probabilistic forecasting with

autoregressive recurrent networks, 2017.

[80] Jean-François Toubeau, Jeremie Bottieau, François Vallee, and Zacharie De Greve. Deep

learning-based multivariate probabilistic forecasting for short-term scheduling in power

markets. IEEE Transactions on Power Systems, 34:1203–1215, 03 2019.

[81] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-

term temporal patterns with deep neural networks, 2017.

[82] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable rep-

resentation learning for multivariate time series. In H. Wallach, H. Larochelle, A. Beygelz-

imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems 32, pages 4650–4661. Curran Associates, Inc., 2019.

[83] Yunzhe Tao, Lin Ma, Weizhong Zhang, Jian Liu, Wei Liu, and Qiang Du. Hierarchical

attention-based recurrent highway networks for time series prediction. pages 1–10, 2018.

[84] Tryambak Gangopadhyay, Sin Yong Tan, Zhanhong Jiang, Rui Meng, and Soumik Sarkar.

Spatiotemporal attention for multivariate time series prediction and interpretation. pages

1–17, 2020.

[85] Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong Cui,

Michael Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang. Dilated recurrent

neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems 30,

pages 77–87. Curran Associates, Inc., 2017.

127

[86] Filippo Maria Bianchi, Lorenzo Livi, Karl Øyvind Mikalsen, Michael Kampffmeyer, and

Robert Jenssen. Learning representations of multivariate time series with missing data.

Pattern Recognition, 96:106973, 2019.

[87] D. J. Trosten, A. S. Strauman, M. Kampffmeyer, and R. Jenssen. Recurrent deep divergence-

based clustering for simultaneous feature learning and clustering of variable length time

series. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), pages 3257–3261, May 2019.

[88] Zhiguang Wang, Wei Song, Lu Liu, Fan Zhang, Junxiao Xue, Yangdong Ye, Ming Fan,

and Mingliang Xu. Representation learning with deconvolution for multivariate time series

classification and visualization. pages 1–8, 2016.

[89] Thach Le Nguyen, Severin Gsponer, Iulia Ilie, and Georgiana Ifrim. Interpretable time

series classification using all-subsequence learning and symbolic representations in time

and frequency domains. CoRR, abs/1808.04022, 2018.

[90] J. Pereira and M. Silveira. Learning representations from healthcare time series data for

unsupervised anomaly detection. In 2019 IEEE International Conference on Big Data and

Smart Computing (BigComp), pages 1–7, 2019.

[91] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan:

Multivariate anomaly detection for time series data with generative adversarial networks.

In Igor V. Tetko, Věra Kůrková, Pavel Karpov, and Fabian Theis, editors, Artificial Neural

Networks and Machine Learning – ICANN 2019: Text and Time Series, pages 703–716,

Cham, 2019. Springer International Publishing.

[92] Dominique T. Shipmon, Jason M. Gurevitch, Paolo M. Piselli, and Stephen T. Edwards.

Time series anomaly detection; detection of anomalous drops with limited features and

sparse examples in noisy highly periodic data. pages 1–9, 2017.

128

[93] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

[94] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering

analysis. In Proceedings of the 33rd International Conference on International Conference

on Machine Learning - Volume 48, ICML’16, pages 478–487. JMLR.org, 2016.

[95] Michael Kampffmeyer, Sigurd Lse, Filippo M. Bianchi, Lorenzo Livi, Arnt-Bre Salberg,

and Robert Jenssen. Deep divergence-based approach to clustering. Neural Networks,

113:91 – 101, 2019.

[96] Reiner Jedermann, Luis Ruiz-Garcia, and Walter Lang. Spatial temperature profiling by

semi-passive rfid loggers for perishable food transportation. Computers and Electronics in

Agriculture, 65(2):145 – 154, 2009.

[97] Ricardo Badia-Melis, Ultan Mc Carthy, and Ismail Uysal. Data estimation methods for

predicting temperatures of fruit in refrigerated containers. Biosystems Engineering, 151:261

– 272, 2016.

[98] Samuel Mercier and Ismail Uysal. Neural network models for predicting perishable food

temperatures along the supply chain. Biosystems Engineering, 171:91 – 100, 2018.

[99] Samuel Mercier, Jeffrey K. Brecht, and Ismail Uysal. Commercial forced-air precooling of

strawberries: A temperature distribution and correlation study. Journal of Food Engineering,

242:47 – 54, 2019.

[100] A. Abdella and I. Uysal. Sense2vec: Representation and visualization of multivariate sen-

sory time series data. IEEE Sensors Journal, pages 1–1, 2020.

129

[101] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Centrum voor Wiskunde en

Informatica Amsterdam, The Netherlands, 1995.

[102] Maria Cecilia do Nascimento Nunes, Mike Nicometo, Jean Pierre Emond, Ricardo Badía

Melis, and Ismail Uysal. Improvement in fresh fruit and vegetable logistics quality: berry

logistics field studies. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 372, 2014.

[103] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461–464,

1978.

[104] H. Akaike. A new look at the statistical model identification. IEEE Transactions on Auto-

matic Control, 19(6):716–723, December 1974.

[105] Joseph Lee Rodgers and W. Alan Nicewander. Thirteen ways to look at the correlation

coefficient. The American Statistician, 42(1):59–66, 1988.

[106] Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in time

series. In Proceedings of the 3rd International Conference on Knowledge Discovery and

Data Mining, AAAIWS’94, page 359–370. AAAI Press, 1994.

[107] James Cooley and John Tukey. An algorithm for the machine calculation of complex fourier

series. Mathematics of Computation, 19(90):297–301, 1965.

[108] R.N. Bracewell and R. Bracewell. The Fourier Transform and Its Applications. Electrical

engineering series. McGraw Hill, 2000.

[109] Yi-Leh Wu, Divyakant Agrawal, and Amr El Abbadi. A comparison of dft and dwt based

similarity search in time-series databases. In CIKM ’00, 2000.

[110] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for anomaly detection: A

survey, 2019.

130

[111] D. Dickey and W. Fuller. Distribution of the estimators for autoregressive time series with

a unit root. Journal of the American Statistical Association, 74:427–431, 1979.

[112] Jian-Bin Kao and Jehn-Ruey Jiang. Anomaly detection for univariate time series with statis-

tics and deep learning. 2019 IEEE Eurasia Conference on IOT, Communication and Engi-

neering (ECICE), pages 404–407, 2019.

[113] D. M. Diab, B. AsSadhan, H. Binsalleeh, S. Lambotharan, K. G. Kyriakopoulos, and

I. Ghafir. Anomaly detection using dynamic time warping. In 2019 IEEE International

Conference on Computational Science and Engineering (CSE) and IEEE International Con-

ference on Embedded and Ubiquitous Computing (EUC), pages 193–198, 2019.

[114] Chunkai Zhang, Shaocong Li, Hongye Zhang, and Yingyang Chen. Velc: A new variational

autoencoder based model for time series anomaly detection, 2020.

[115] Mohammad Braei and Sebastian Wagner. Anomaly detection in univariate time-series: A

survey on the state-of-the-art, 2020.

[116] Qiang Yang and Xindong Wu. 10 challenging problems in data mining research. Interna-

tional Journal of Information Technology and Decision Making, 5:597–604, 2006.

[117] Ultan Mc Carthy, Ismail Uysal, Ricardo Badia-Melis, Samuel Mercier, Colm O’Donnell,

and Anastasia Ktenioudaki. Global food security – issues, challenges and technological

solutions. Trends in Food Science Technology, 77:11 – 20, 2018.

[118] E.J. Hannan. Multiple Time Series, volume 38 of Wiley Series in Probability and Statistics.

Wiley, 2009.

[119] J. Fulcher, M. Zhang, and Shuxiang Xu. Application of higher-order neural networks to

financial time-series prediction. Artificial Neural Networks in Finance and Manufacturing,

pages 80–108, 01 2006.

131

[120] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent

neural networks. 28:1310–1318, 2012.

[121] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilis-

tic forecasting with autoregressive recurrent networks. International Journal of Forecasting,

36(3):1181 – 1191, 2020.

[122] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-

term temporal patterns with deep neural networks. In The 41st International ACM SIGIR

Conference on Research Development in Information Retrieval, SIGIR ’18, page 95–104,

New York, NY, USA, 2018. Association for Computing Machinery.

[123] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training

of deep bidirectional transformers for language understanding. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,

Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[124] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and

Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding,

2019.

[125] Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, and Inderjit S. Dhillon. Similarity preserv-

ing representation learning for time series clustering. In Proceedings of the Twenty-Eighth

International Joint Conference on Artificial Intelligence, IJCAI-19, pages 2845–2851. In-

ternational Joint Conferences on Artificial Intelligence Organization, 7 2019.

[126] Rohit J. Kate. Using dynamic time warping distances as features for improved time series

classification. Data Min. Knowl. Discov., 30(2):283–312, March 2016.

132

[127] Hoang Anh Dau, Nurjahan Begum, and Eamonn Keogh. Semi-supervision dramatically

improves time series clustering under dynamic time warping. In Proceedings of the 25th

ACM International on Conference on Information and Knowledge Management, CIKM ’16,

page 999–1008, New York, NY, USA, 2016. Association for Computing Machinery.

[128] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon

Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Searching and mining trillions

of time series subsequences under dynamic time warping. In Proceedings of the 18th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’12,

page 262–270, New York, NY, USA, 2012. Association for Computing Machinery.

[129] Rodica Neamtu, Ramoza Ahsan, Elke A. Rundensteiner, Gábor N. Sárközy, Eamonn J.

Keogh, Hoang Anh Dau, Cuong Nguyen, and Charles Lovering. Generalized dynamic time

warping: Unleashing the warping power hidden in point-wise distances. In 34th IEEE

International Conference on Data Engineering, ICDE 2018, Paris, France, April 16-19,

2018, pages 521–532. IEEE Computer Society, 2018.

[130] G. N. Lance and W. T. Williams. Computer Programs for Hierarchical Polythetic Classifi-

cation (“Similarity Analyses”). The Computer Journal, 9(1):60–64, 05 1966.

[131] L. Bruzzone, F. Roli, and S. B. Serpico. An extension of the jeffreys-matusita distance

to multiclass cases for feature selection. IEEE Transactions on Geoscience and Remote

Sensing, 33(6):1318–1321, 1995.

[132] L. Anghinoni, L. Zhao, Q. Zheng, and J. Zhang. Time series trend detection and forecasting

using complex network topology analysis. In 2018 International Joint Conference on Neural

Networks (IJCNN), pages 1–7, 2018.

[133] Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan.

Multitask learning and benchmarking with clinical time series data. Scientific Data, 6(1),

Jun 2019.

133

[134] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A. Lozano. A review on out-

lier/anomaly detection in time series data, 2020.

[135] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,

P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling

in speech recognition: The shared views of four research groups. IEEE Signal Processing

Magazine, 29(6):82–97, 2012.

[136] Yoon Kim. Convolutional neural networks for sentence classification. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

1746–1751, Doha, Qatar, October 2014. Association for Computational Linguistics.

[137] Andrey Ignatov. Real-time human activity recognition from accelerometer data using con-

volutional neural networks. Applied Soft Computing, 62:915–922, 2018.

[138] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing sax: a novel sym-

bolic representation of time series. Data Mining and Knowledge Discovery, 15(2):107–144,

2007.

[139] A. Abdella and I. Uysal. Sense2vec: Representation and visualization of multivariate sen-

sory time series data. IEEE Sensors Journal, pages 1–1, 2020.

[140] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The

great time series classification bake off: A review and experimental evaluation of recent

algorithmic advances. Data Min. Knowl. Discov., 31(3):606–660, May 2017.

[141] Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdul-

lah Mueen, and Gustavo Batista. The ucr time series classification archive, July 2015.

www.cs.ucr.edu/ eamonn/timeseriesdata/.

134

[142] Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann Ratanama-

hatana. Fast time series classification using numerosity reduction. In Proceedings of the

23rd International Conference on Machine Learning, ICML ’06, page 1033–1040, New

York, NY, USA, 2006. Association for Computing Machinery.

[143] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh.

Querying and mining of time series data: Experimental comparison of representations and

distance measures. Proceedings of the VLDB Endowment, 1(2):1542–1552, August 2008.

Copyright: Copyright 2017 Elsevier B.V., All rights reserved.

[144] Jason Lines and Anthony Bagnall. Time series classification with ensembles of elastic dis-

tance measures. Data Min. Knowl. Discov., 29(3):565–592, May 2015.

[145] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. Fast subsequence matching

in time-series databases. In Proceedings of the 1994 ACM SIGMOD International Confer-

ence on Management of Data, SIGMOD ’94, page 419–429, New York, NY, USA, 1994.

Association for Computing Machinery.

[146] F. Gullo, G. Ponti, A. Tagarelli, and S. Greco. A time series representation model for

accurate and fast similarity detection. Pattern Recognit., 42:2998–3014, 2009.

[147] Seyed Mehran Kazemi, Rishab Goel, Sepehr Eghbali, Janahan Ramanan, Jaspreet Sahota,

Sanjay Thakur, Stella Wu, Cathal Smyth, Pascal Poupart, and Marcus Brubaker. Time2vec:

Learning a vector representation of time, 2019.

[148] Alla Abdella, Jeffrey K. Brecht, and Ismail Uysal. Statistical and temporal analysis of a

novel multivariate time series data for food engineering. Journal of Food Engineering, page

110477, 2021.

[149] Alexandra Stefan, Vassilis Athitsos, and Gautam Das. The move-split-merge metric for time

series. IEEE Trans. on Knowl. and Data Eng., 25(6):1425–1438, June 2013.

135

[150] Xiaoyue Wang, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn Keogh. Ex-

perimental comparison of representation methods and distance measures for time series

data. Data Mining and Knowledge Discovery, 26, 12 2010.

[151] Lei Chen and Raymond Ng. On the marriage of lp-norms and edit distance. In Proceedings

of the Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB

’04, page 792–803. VLDB Endowment, 2004.

[152] Daniel S. Hirschberg. Algorithms for the longest common subsequence problem. J. ACM,

24(4):664–675, October 1977.

[153] Young-Seon Jeong, Myong K. Jeong, and Olufemi A. Omitaomu. Weighted dynamic time

warping for time series classification. Pattern Recogn., 44(9):2231–2240, September 2011.

[154] P.-F. Marteau. Time warp edit distance with stiffness adjustment for time series matching.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2):306–318, Feb 2009.

[155] T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran. Deep convolutional neural

networks for lvcsr. In 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing, pages 8614–8618, 2013.

[156] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents,

2014.

[157] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F.

Schmidt, Jonathan Weber, Geoffrey I. Webb, Lhassane Idoumghar, Pierre-Alain Muller,

and François Petitjean. Inceptiontime: Finding alexnet for time series classification. Data

Mining and Knowledge Discovery, 34(6):1936–1962, Sep 2020.

[158] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-

Alain Muller. Deep learning for time series classification: a review. Data Mining and

Knowledge Discovery, 33(4):917–963, Mar 2019.

136

[159] A. Bagnall, J. Lines, J. Hills, and A. Bostrom. Time-series classification with cote: The

collective of transformation-based ensembles. In 2016 IEEE 32nd International Conference

on Data Engineering (ICDE), pages 1548–1549, Los Alamitos, CA, USA, may 2016. IEEE

Computer Society.

[160] J. Lines, Sarah Taylor, and A. Bagnall. Hive-cote: The hierarchical vote collective of

transformation-based ensembles for time series classification. 2016 IEEE 16th International

Conference on Data Mining (ICDM), pages 1041–1046, 2016.

[161] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word

recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49,

1978.

[162] Chotirat Ann Ratanamahatana and Eamonn Keogh. Everything you know about dynamic

time warping is wrong. In Third Workshop on Mining Temporal and Sequential Data. Cite-

seer, 2004.

137

Appendix A: Copyright Permissions

The permission below is for the use of our published papers contents at IEEE Access (chap-

ter 1) and IEEE Sensors Journal (chapter 4).

138

The permission below is for the use of our papers content at Elsevier Journal of Food

Engineering (chapter 2 and 3).

139

About the Author

Received the B.Sc. degree in Electrical and Electronic Engineering from the University of

Benghazi, Benghazi, Libya in 2011, and the M.S. degree in Electrical Engineering from Florida

Institute of Technology, Melbourne, FL, USA, in 2017. He is currently pursuing a Ph.D. degree

in Electrical Engineering at the University of South Florida (USF), FL, USA. Alla works with

UST company and AETNA Insurance as a data scientist. He also worked on different projects

with the University of Florida, the University of Central Florida, and the COMCAST company.

From 2017, he was a Research Assistant with the USF. His research interest includes deep learning

neural networks, and applications in unsupervised machine learning, time-series representation and

classifications, NLP, and computer vision. Mr. Abdella’s awards and honors include valedictorian

scholarship for M.S. and Ph.D. degrees.

	A Method for Compact Representation of Heterogenous and Multivariate Time Series for Robust Classification and Visualization
	Scholar Commons Citation

	tmp.1673270282.pdf.5mT0M

