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Abstract 
 

The field of signal processing has many applications, one of which is in the field of 

biomedical engineering where it has improved the performance of biomedical devices and the 

accuracy of medical diagnosis. One of the areas that have benefited from this field is the diagnosis 

of Parkinson’s disease (PD). This disease is one of the most common neurodegenerative diseases 

of the central nervous system. Nearly one million Americans suffer from PD, and this number goes 

up to over ten million people worldwide. The main symptoms of PD include bradykinesia, rest 

tremor, rigidity, and impaired balance. There are many types of biomedical data that have been 

used in the diagnosis process of PD, however, most of the applied biomedical signals rely on the 

presence of motor symptoms which means in most cases, by the time that the patients are 

diagnosed, they are likely to have lost the majority of the dopaminergic neurons in their brains.  

One of the signals that have been used for the diagnosis of PD is electroencephalography 

(EEG). The neurons in the brain communicate with each other through electrical potentials that 

appear at the synapses. EEG is a noninvasive method that collects the small voltages that appear 

on the scalp caused by large clusters of neurons using multiple electrodes; therefore, EEG 

recordings are multi-channel signals where each channel is corresponding to a specific region of 

the brain. There are two main types of EEG signals, background EEG, and event-related potential 

(ERP). Background EEG is the signal collected during the rest state and contains the regular 

activity of the brain when it is not provoked, whereas ERP is the changes in the background EEG, 

resulting from a specific stimulus. While background EEG signals are better suited for diagnosis 
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purposes, they are highly nonlinear, non-stationary and non-Gaussian signals; hence, to extract 

relevant information from them, advanced methods of signal processing are required. The 

background EEG is a random signal which indicates that regular features such as time locked 

features or peaks of the signal do not carry much information. For random signals, statistics is 

usually the most appropriate method for analysis. 

The word statistic is usually used to refer to first and second order statistics. Higher order 

statistics (HOS) is defined as a more general term that covers higher order of statistical features. 

the field of HOS analysis is usually employed for highly complex signals, where the first and 

second order statistics failed to adequately define the system. Due to the highly random nature of 

background EEG signals, HOS has been employed by many researchers for more detailed analysis. 

In this study, a range of HOS features have been used to improve the diagnosis performance of PD 

patients from healthy control (HC) and classification of stages of PD after a positive diagnosis. A 

detailed analysis of the features was performed to find the best combination for this application 

and a number of new HOS features were developed to improve the performance of the model. 

Concurrently, based on previous research a spectral analysis of the data was performed to 

investigate the effect of PD on brain rhythms where HOS features were extracted from multiple 

rhythms and used separately in the diagnosis process.  

The classification stage was performed by a range of conventional, ensemble and deep 

learning algorithms while employing the leave-one-trial-out (LOTO), leave-one-subject-out 

(LOSO) cross validation (CV) methods. To preserve the balance of the data, a new CV approach, 

leave-two-subjects-out (LOTO) was also employed (one from each class). For diagnosis of PD, a 

comparison between the features extracted from different brain rhythms and different classifiers 

was performed. The result was then compared to several deep learning methods and other state-
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of-the-art approaches. The performance of the PD stage classification was also compared to other 

studies in this field. Together these two methods create a unified hierarchy model to diagnose and 

identify the stages of PD. 
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Chapter 1:  Introduction 

1.1  Background 

Human bodies contain vast quantities of information about our health. By making use of 

different sensors, it is possible to capture parts of this information through raw data. Biomedical 

sensors are able to collect different types of data from various regions of the body such as in 

electrocardiography (ECG), electroencephalography (EEG), magnetoencephalography (MEG), 

etc. The quantity of the captured data along with the complexity of the signals causes physicians 

to rely on a very small portion of information based on very few readings. Biomedical signal 

processing involves computational methods that aim to analyze large quantities of data and extract 

useful information from them which can later be used by physicians. One of the main methods for 

recording data from the human body is EEG. 

EEG is a noninvasive method for monitoring the changes in the electrical potential of the 

brain from the scalp. The neurons in the brain communicate through two types of synapses, 

chemical and electrical. In communication through chemical synapses, charged chemical 

substances known as neurotransmitters flow from the transmitter neuron to the receiver neuron. 

This flow occurs due to the changes in the electrical potential between the sender and receiver. 

There are over 100 different neurotransmitters, however most of the work is done by seven 

neurotransmitters, dopamine, gamma-aminobutyric acid, glutamate, histamine, acetylcholine, 

norepinephrine, and serotonin. EEG uses several electrodes that are placed on the scalp to record 

synaptic potential between the neurons inside the brain. Each of the electrodes, records the signals 

from a different location on the scalp and together they form a multi-channel signal which is the 
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EEG recording. For a normal person the amplitude of this signal is usually around 10-100 µ volts 

and the frequency is between 1-100 Hz. Therefore, according to the Nyquist theorem, the 

frequency used to sample EEG recordings should at least be 200 Hz. There are two types of EEG 

signals based on the reference point for the electrical potential of the electrodes. In monopolar 

EEG, an electrode is placed on the earlobe which acts as the reference, while in bipolar EEG a 

certain channel is selected and acts as the reference for other channels [1]. EEG signals are usually 

contaminated with large quantities of noise and have a relatively low signal to noise ratio (SNR), 

which makes them unusable without several prior preprocessing steps. They are random, highly 

nonlinear, non-Gaussian and non-stationary which makes extracting useful information from them, 

extremely difficult; therefore, usually for analyzing them, advanced signal processing methods are 

employed [2]. 

Waveforms that are associated with certain neural activities and are caused by certain 

behaviors are known as brain rhythms and are usually recognized by their amplitude, shape, 

frequency, and location among other characteristics. The six main brainwaves or “neural 

oscillations” are alpha (8-12 Hz), beta (12-30), gamma (30-100 Hz), delta (0.5-4 Hz), theta (4-8 

Hz) and sigma (12-16 Hz). Each brainwave is associated with certain activities for instance alpha 

rhythm is usually associated with the state of wakeful relaxation usually with closed eyes, while 

beta rhythm is associated with busy or active concentration and is seen to be related to the motor 

cortex area of the brain [3, 4].  

The EEG signals that are collected during rest state (usually with eyes closed) and show 

the natural state of the brain are known as background EEG signals. In the presence of an external 

stimuli, certain changes are added to the background signal; these changes can be extracted as a 

separate signal, known as event related potential (ERP) signal. The ERP signals are the reaction 
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of the brain to a certain stimulus and are temporally in sync with and related to the event. When 

stimulus is manually (usually in a lab) performed, the collected ERP is known as evoked potential 

(EP). ERP signals are used in many fields including the development of brain computer interface 

(BCI) systems while background EEG signals are mostly used for medical purposes such as 

diagnosis of neurological disorders [5-7]. 

1.2  Applications of Electroencephalography 

The human brain does not act as a fully deterministic system since it is able to create new 

things. It is also not a complete stochastic system because of its ability to learn and to repeat exact 

sequences of thoughts and actions. The answer to this paradox is the nonlinear nature and 

deterministic chaos of the human brain [8]. This is one of the reasons that analyzing brain signals 

have proven to be extremely difficult. Researchers have used EEG analysis in many different areas. 

In medicine, it has a variety of applications from detecting brain injuries and illnesses, level of 

pain, depth of anesthesia measurements to amnesia and memory loss. However, medicine is not 

the only field that EEG is useful for and another area that has benefited is the field of Robotics. 

The EEG based brain controlled mobile robots can be used to improve the living conditions of 

many disabled people [9]. Researchers in academia and companies have already used these 

methods to build EEG controlled wheelchairs and prosthetics. There are also headbands that 

collect EEG data, translate them to simple commands and let people move predetermined objects 

with their mind similar to the way it is done in science fiction movies; even some companies in 

the gaming industry are studying EEG signals in order to make brain controlled virtual reality (VR) 

games in the future. Due to the variety of applications, EEG signals have been widely investigated 

by many researchers over the years.  
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1.2.1  Event Related Potentials 

ERPs are the foundation of BCI systems as the method of evoking potentials determines 

the paradigm of the resulting BCI, which is the main application of ERP signals. These action 

potentials are minuscule voltages resulting from thought or stimulation of the human brain. These 

are the features used in BCI systems categorized by time of occurrence post stimulus, amplitude, 

or being otherwise transformed for extraction. Current methods seek to solve the issue of low SNR 

through filtering of noise and transformation methods. 

The original device used to create a BCI system was a simple electrode made of conductive 

pins attached to a plate inserted directly into the gray brain matter. The invasive nature of this 

method known as electrocorticography (ECoG) or intracranial electroencephalography (iEEG) 

meant that the method was a last resort for patients with “locked-in” syndrome. A more recent 

development in invasive BCI technology is the combination of stents and electrodes coined 

stentrodes allowing for minimally invasive surgery placing a stent in the brain to collect signals 

[10]. Due to ethics concerns, using ERP from EEG signals is a much better option. As a result, 

BCI systems developed with this noninvasive method achieved similar accuracies despite the 

much lower SNRs 

ERPs are commonly induced for BCI systems via external visual stimuli or internal motor 

imagination stimuli. Since control of a computer is the main application for BCI, visual stimuli are 

the simplest for eliciting ERP. The first ever noninvasive BCI using ERP was called the P300 

speller and published by Farwell and Donchin [11]. Later on, Li et al. [12-14] improved the newly 

developed BCI systems by developing a new single trial P300 extraction method. This method 

uses a matrix of flashing symbols to evoke an ERP that appears at 300 milliseconds after visual 

cue. An example of this speller setup can be seen in Figure 1.1. The other type of visual stimuli 
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BCI is known as steady state visually evoked potentials (SSVEP). The method uses light-emitting 

diodes (LED) flashing at a constant low frequency which produces a corresponding result in the 

visual cortex. Based on the length and frequency of the signal, the desired command can be 

initiated [15]. 

 
 

Figure 1.1 Typical P300 speller matrix. 
 
 
Internal stimuli-based ERPs are the source of two categories of BCI known as motor 

imagery (MI) and reflexive semantic conditioning (RSC). Motor imagery BCI correlates imagined 

limb movements with commands by reading signals from the motor cortex. Due to the varying 

nature of brain signals, MI methods always require a training period where the user is cued to 

imagine body movements and the resulting signal can be captured for classifier training. RSC BCI 

use features that result from the meaning of the stimulus. This method requires a training period 

as well, after which the user can simply think of the same meaning to trigger the desired command. 

These BCI systems do not have a set efficiency due to their multi-modular nature in the stages of 

preprocessing, feature extraction, and classification. This variability is readily apparent in papers 

like Doud et al. [16] and Taheri et al. [17]. When researchers focus on the task, there may not be 

enough time to achieve high accuracies as in the former paper an accuracy of 70% was achieved 

while the latter focusing solely on novel classification methods achieved an average of 96%. The 

number of mathematical anomalies in brain signals make current methods out to be crude 
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constructs in a field that is nearly half a century old [6]. As such, until commercially marketable 

systems emerge to set industry standards, research in the field remains somewhat scattered due to 

its magnitude. 

ERP extraction methods from EEG signals have evolved greatly over time. Older methods 

such as the Fourier transform and canonical correlation analysis (CCA) transform continuous data 

sets into discrete chunks to be processed for features like magnitude and phase in Fourier transform 

or matrix coefficients in CCA. Newer advanced methods have been created catering directly to the 

needs of BCI systems rather than just grouping data. These methods coined brain source 

localization (BSL) seek to either find the location of signal sources in the brain or predict the EEG 

signals dependent on the location of the signal sources. The methods known as the inverse and 

forward problems respectively have found great success being used widely in the global BCI 

competition organized by Benjamin Blankertz [18, 19]. The most popular method here known as 

common spatial patterns (CSP) merges traditional blind source separation (BSS) methods with 

BSL to isolate signals while simultaneously assigning their most probable point of origin. The 

method has won many of the subsets in the competition since its first appearance in BCI 

Competition 2003. 

Gauging the efficacy of feature extraction methods as it is only one component of a 

complex system. The classification stage originally started with a simple threshold comparison of 

features. Later methods linearize datasets like Fischer’s linear discriminant analysis (LDA) and 

subsequent derivatives. As the field has grown, machine learning methods have shown more 

potential with some of the more common methods including support vector machine (SVM), K 

nearest neighbor (KNN), and forest ensemble methods. A few problems remain in machine 

learning including that training datasets need to be sufficiently large and increasing the number of 
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classes for a given BCI system lowers the accuracy. This limits the number of commands BCI 

systems have available as each command is considered a class.  

Despite the variety of parameters to measure each stage of the process, the unknowable 

nature of the target signal in a BCI system means that swapping methods in individual stages is 

the only way to judge effectiveness. As a result, the most common parameters for judging BCIs 

are false positive rates, classification accuracy, and information transfer rates. This does not mean 

options such as the number of classes or speed of decision making should not be considered but 

rather that most papers will not include them if they are irrelevant. 

1.2.2  Background Electroencephalography Signals 

As mentioned, background EEG signals show the natural state of the brain. Although there 

are many applications for which background EEG signals have been used, the majority of them 

have been for biomedical purposes.  

Epilepsy is one of the common neurological disorders that affects over 50 million people 

[20] and it is usually marked by the occurrence of seizures. These disorders are caused by sudden 

electrical discharges in the cerebral cortex which disturbs the normal functions of the brain. 

Researchers used to believe that epileptic seizures occur suddenly, only moments before the 

clinical attacks. However, studies of EEG signals of patients showed changes in brain activity up 

to several hours before the attacks. Over the past few years, researchers have focused on using 

EEG signals for predicting and analyzing epileptic seizures. Kiymik et al. [21] compared the 

results of short-time Fourier transform (STFT) and continuous wavelet transform (CWT) to 

evaluate seizure activity in epileptic patients. The STFT method produced better results in 

processing real-time signals because of its low computational complexity and could be useful for 

real-time diagnosis, but STFT has limited frequency resolution. Contrarily, wavelet methods had 
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better performance in the multi-resolution analysis for noise elimination and could be more 

beneficial for clinical interpretation due to their high resolution [1]. However, it must be kept in 

mind that spectral analysis, in general, is more susceptible to noise and artifacts compared to 

temporal statistical measures. Haider et al. [22] have proved that a panel of multiple quantitative 

Electroencephalogram (qEEG) can be used to identify seizures in critically ill adults with 

reasonable sensitivity, significantly reducing the review time compared to standard EEG signal 

interpretation. However, it is still necessary to confirm the suspected seizures with intermittent 

EEG signal assessment. Fu et al. [23] proposed a new spectrum (time-frequency) analysis 

algorithm for identifying seizures from EEG signals. This method uses the Hilbert marginal 

spectrum (HMS) analysis, which is based on Hilbert-Huang transform (HHT). HHT uses the 

empirical mode decomposition (EMD), which decomposes the signal into basic components called 

intrinsic mode functions (IMFs) instead of sinusoids and wavelets. EMD decomposes the signal 

in the time domain and is mostly beneficial in cases of nonlinear and nonstationary signals. 

Ensemble empirical mode decomposition (EEMD) is the enhanced version of EMD; in this method 

some of the problems of the traditional EMD such as mode mixing problem are fixed. Swiderski 

et al. [24] used the Lyapunov exponents (LE) of EEG signal for the identification of epileptic 

seizures. The result showed a noticeable difference between the largest Lyapunov exponents (LLE) 

of normal and epileptic EEG signals. 

One of the most important factors in a successful surgery is the general anesthesia which 

is administrated by a specialist. One of the applications of EEG signals is for measuring the depth 

of anesthesia for patients during surgery. Many researchers have conducted studies on this subject 

such as Zhang et al. [25] and Liang et al. [26] who have used the entropy of background EEG 

signals for determining the depth of anesthesia. 
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EEG signals have also been used for emotion recognition. In their studies, Li et al. [27] 

focused on exploring linear and nonlinear EEG features that could be used for emotion recognition. 

Other studies such as the research conducted by Song et al. [28] focused more on application of 

deep learning for classification of different emotions from background EEG signals. Natarajan et 

al. [34] evaluated some nonlinear parameters such as Hurst exponent (HE), correlation dimension 

(CD). CD, LLE and Approximate entropy (ApEn) of EEG signals for different mental states. 

Afterward, they applied the analysis of variance (ANOVA) test on the result and achieved 

excellent 'p' values in all cases. They found that the alpha wave becomes stronger under the 

influence of music and reflexology; where at the same time they noticed a decrease in CD, LLE, 

and H1-5 features. 

Another application of EEG signal is for patients who suffer from neurodegenerative 

diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington disease (HD), 

and such. These signals can be used in the diagnosis process, for measuring the progression of the 

disease or monitoring symptoms and other aspects of the patients’ lives such as their sleep, 

emotions, etc. The purpose of this research was to develop new methods of EEG analysis that 

would improve the diagnosis and stage classification of neurodegenerative disease patients. Aside 

from the applications mentioned in this section, EEG signals have many other applications in the 

medical field, health monitoring, recreational, and military. 

1.3  Motivations and Research Objectives 

The primary objective of this project is to apply the higher order statistics (HOS) analysis 

on EEG signals to diagnose and identify the stages of neurodegenerative diseases. To achieve this 

objective, the focus of this research was on PD, however approaches based on other biomedical 

signals, EEG analysis of different neurodegenerative diseases can be very similar since from the 
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neurological point of view they are very similar and in fact are mistaken for one another constantly. 

The contribution of this study is to create a hierarchy model based on newly developed HOS 

features of EEG signals to offer an objective aid in the diagnosis process of neurodegenerative 

diseases with the focus on PD. In this hierarchy model first PD vs healthy control (HC) participants 

are classified and once the positive results were achieved it moves on to the second step, to identify 

the stages of PD by classifying the PD patients as early or late stages. Analysis of brain signals is 

the only approach that does not rely on symptoms since it monitors the source of the disease and 

hence it has the potential of diagnosing the disease at early stages. 

Over the past decades, there have been many studies conducted on using gait [29, 30], 

tremor [31, 32], speech [33, 34], etc. signals to diagnose PD patients. The main issue of some of 

these approaches is that they are dependent on the manifestation of symptoms. This can be a major 

problem since not everyone develops the same symptoms (and at the same rate) and also because 

by the time that the motor symptoms occur, most of the dopamine-producing (dopaminergic) 

neurons are already dead [35]. 

Recently, there has been an increasing number of studies that have focused on the diagnosis 

of PD using EEG signals. Using biomedical signals that are collected from the brain allows 

researchers to inspect the source of the disease and creates possibilities where the diagnosis occurs 

before the development of the symptoms. However, since EEG recordings are random multi-

channel signals, they require advanced signal processing methods in order to use them for 

classification purposes. One method for analyzing EEG recordings is through HOS analysis. HOS 

is the generalization of second order statistics for higher orders and includes higher order features 

that are defined in temporal, spectral, and cepstral domains among others.  
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As it was previously mentioned, EEG signals are highly non-Gaussian random signals, 

meaning the probability distribution function (PDF) of this random signal does not resemble a 

Gaussian process. The similarity of a distribution with the Gaussian process can be quantified and 

the resulting parameter is known as the measure of non-Gaussianity. The first measure of non-

Gaussianity is kurtosis which is the 4th order standardized moment. In general, HOS analysis is 

one of the best approaches for analyzing non-Gaussian signals. At the same time, during our 

preliminary studies, it was noticed that the non-Gaussianity of the EEG signals for PD patients is 

higher compared to HC. The death of neurons caused by neurodegenerative diseases reduces the 

connectivity of the brain, which in turn increases the non-Gaussianity of the EEG signals. 

Therefore, HOS analysis of EEG signals was chosen as the main approach in this study.  

The first impact of this project is on PD patients. As it was mentioned 10 million people 

suffer from PD worldwide and the number of people affected by the disease will undoubtedly 

increase in the future. The diagnosis of different stages of PD can help physicians create better and 

more effective treatment plans for their patients; it might even affect the process of finding a cure. 

The second impact of the project will be felt by other neurodegenerative disease patients; all 

neurodegenerative diseases cause loss of neurons and usually the only difference between them is 

the type of neurons that they affect. Therefore, this project has the ability to be expanded to other 

neurodegenerative diseases. The new features that were discovered through the course of this 

research (not to mention our other findings) will undoubtedly be useful in diagnosis of other similar 

diseases (perhaps indirectly). Finally, the HOS features that were discovered and used for 

classification of PD are still mathematical features similar to others such as entropy. There are 

many other random signals that contain a high amount of noise similar to EEG; therefore, it is a 
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high possibility that the discovered features have applications in other areas of biomedical signal 

processing and statistical analysis in general. 

1.4  Contributions 

A new automated model was developed based higher order features of the alpha frequency 

band of EEG signals that uses ensemble learning for classification of neurodegenerative diseases 

including PD patients. 

• A new hierarchy model was developed for diagnosis and identification of the stages of 

neurodegenerative diseases. To test this model two PD datasets were employed. 

• Fifteen new HOS features known as CH1-CH5, RBH1-RBH5 and CBH1-CBH5 were 

developed specifically for classification of EEG signals of neurodegenerative disease 

patients. 

• Compared the efficacy of the developed features and selected the most suitable ones 

for this application. 

• An exhaustive study on other features used for classification of PD including, HOS and 

nonlinear features was conducted and the best combination was selected and 

implemented. Created a feature pool with the selected features from the state-of-the-art 

studies and the developed HOS features. 

• Employed and compared multiple classification algorithms to find the most suitable for 

this application. 

• Employed conventional classification methods and ensemble learning approaches for 

classification of the created feature pool and compared their performances. 
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• Implemented multiple deep and shallow neural network architecture including 

convolutional neural networks (CNN) and residual neural networks (ResNet) and 

compared their results with the proposed approach. 

• Decomposed the EEG signals into frequency bands and calculated the selected features 

for each band along with the whole signal. Compared the classification performance of 

HOS features for alpha and beta bands of EEG signals. 

• Compared the performance of the proposed ideas including the model, HOS features, 

combined feature pool, frequency band and classification approach with state-of-the-

art methods. 

1.5  Dissertation Organization 

Chapter 2 is dedicated to basic information about neurodegenerative diseases where it starts 

with a brief background followed by information about PD such as prevalence, symptoms and 

diagnosis. After the subsection on PD, the diagnosis process using EEG signals is explained 

followed by a brief discussion on the state-of-the-art methods related to classification of 

neurodegenerative diseases using EEG signals. 

The focus of Chapter 3 is on the mathematical aspect of HOS, where first some background 

including algorithms and features are discussed. The conventional and parametric estimation 

methods for bispectrum are presented followed by a brief explanation of quadratic phase coupling 

(QPC). In the last subsection, the applications of HOS analysis in EEG signal processing are 

discussed. 

In Chapter 4, HOS analysis of EEG signals for diagnosis of PD is discussed, where after a 

brief background, the proposed framework, the datasets used in this study followed by the 

preprocessing steps and the proposed features are discussed.  
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In Chapter 5, the extracted features along with the performance of the proposed approach 

is presented and compared to current state-of-the-art methods. 

In Chapter 6, the supervised classification of EEG signals of PD vs HC using both shallow 

and deep CNN and ResNet are included and their performances are compared with each other and 

with the HOS based approach. 

In Chapter 7, a summary of this research is presented. Then possible improvements and 

future directions for expanding this research by using the developed features for other applications 

are described. 

 

 

 

 

 



15 

 

 
 
 
 
 

Chapter 2:  Review of Diagnosis of Neurodegenerative Diseases Using 

Electroencephalography1 

2.1  Neurodegenerative Diseases 

Any structural, biochemical, or electrical oddities that occur in the nervous system 

including the brain, spinal cord, and nerves (peripheral nervous system) is considered to be a 

neurological disorder. Currently, there are more than 600 neurological disorders that affect around 

50 million Americans annually [36]. Neurodegenerative diseases are one of the most important 

subcategories of neurological disorders. This type of disease occurs when over time, (certain) 

neurons of the brain (or nerve cells of the peripheral nervous system) become dysfunctional and 

die. The death of neurons disrupts the regular activities of the brain and can severely affect 

patient’s day to day lives or in some cases be fatal. Among different neurodegenerative diseases, 

one of the most common ones is PD. Some of the other common neurodegenerative diseases are 

AD, HD, amyotrophic lateral sclerosis (ALS), motor neuron disease (MND), prion disease, 

spinocerebellar ataxia (SCA), and spinal muscular atrophy (SMA). 

2.1.1  Parkinson’s Disease 

In 2010 the number of PD patients in the US was estimated by the Parkinson’s Foundation 

Prevalence Project to be around 680,000 patients. In 2020, the estimated number went up by over 

36% to 930,000. This number is estimated to increase by over 33% to 1,238,000 people by 2030. 

According to this study, the number of PD cases increase by age and it is more common in men 

 

1 This chapter was published in [6]. Permission is included in Appendix A. 
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compared to women [37]. Worldwide, the estimated number of people afflicted by PD exceeds 10 

million people [38].  

The main symptoms of PD are rest tremor, bradykinesia, muscle rigidity, speech alteration, 

and postural instability. Resting Tremor is the repeating, oscillating, involuntary muscle movement 

that can cause shaking and tremor of a body part (usually the limbs) and it occurs in almost 75% 

of PD patients [39]. Bradykinesia is the slowing of voluntary movements and is caused by the 

decline of the brain’s ability to articulate and execute instructions [38].  

Muscle rigidity is caused by the increased resistance in the voluntary movements of the 

limbs which goes beyond the old age or arthritis. Speech alteration is another one of the PD 

symptoms which affects around 50-90% of PD patients, and can occur in different forms including 

having low voice or monotone pitch among others [40]. Loss of balance usually occurs during 

later stages of PD when the patients will experience difficulties with keeping their balance while 

standing or walking. Aside from the main ones, there are many other symptoms that are associated 

with PD such as small handwriting, insomnia, constipation, masked face, stooping, dizziness 

among others. Figure 2.1 shows the progression of some of the major symptoms of PD from early 

to late-stage. 

 
 

Figure 2.1 Usual course of symptom development in PD patients from early to late-stage. 
 
 
The main cause for the occurrence of PD is not yet discovered, and although the effects of 

genetics in PD is widely accepted, the genome-wide screens have not been able to find any specific 
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genetic abnormality; aside form genetics, multiple studies have suggested that the development of 

PD is also affected by environmental factors [41]. Although the underlying causes of PD are not 

yet discovered, the symptoms of PD are caused by high deficit of dopamine and the presence of 

Lewy bodies in mesencephalon.  

 
 

Figure 2.2 The effect of PD on SN area and its location in the brain. 
 
 
The dopamine deficit occurs when large number dopaminergic neurons die. This type of 

neurons is mostly concentrated in the substantia nigra (SN) area where they can be seen as black 

spots. Figure 2.2 shows the location of SN in the brain along with the comparison of SN for normal 

people vs PD patients. The dark areas that represent the dopaminergic neuron are much smaller 

for PD patients (depending on the severity of the disease). It can also be seen that the SN area is 

located deep within the midbrain and cannot be physically accessed, making the diagnosis process 

even more complicated [42]. In fact, this process is so difficult that in some cased the definitive 

diagnosis occurs after the death of the patient, when there is physical access to the SN area during 

the autopsy. 
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Figure 2.3 Flow of dopamine between the presynaptic and postsynaptic neurons 
for normal vs PD. 

 
 
The decrease in the flow of dopamine causes the brain signals to not be delivered 

successfully. Figure 2.3 shows the flow of dopamine (neurotransmitter) between the presynaptic 

and postsynaptic neurons of a normal person vs a PD patient. The diagnosis of PD at the early 

stages plays a significant role in developing the treatment plan and ensuring the quality of life for 

the patients. Therefore, developing a novel method for diagnosis of the PD in the early stages 

cannot be overstated. As of now, there are no specific test that can give a definite diagnosis of PD, 

therefore neurologist usually keep the patients under observation and consider the results of 

multiple test such as dopamine transporter scan (DaTscan) before making a decision on the 

diagnosis. After a positive initial diagnosis, doctors use subjective clinical evaluation methods 

such as Parkinson’s disease rating scale (UPDRS) [43] to measure the progression of the disease. 

Another such method is Hoehn and Yahr (H&Y) [44] that measures the severity of the disease and 

categorizes the patients into five different stages based on their symptoms. 
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As it was mentioned, researchers have used different biomedical signals such as speech, 

gait, tremor, etc. for classification of neurodegenerative diseases such as PD to provide an 

objective approach to the diagnosis process. Over the past few years, EEG signals have been 

extensively used for diagnosis purposes. However, it must be noted that the final diagnosis will 

still be performed by the neurologists and these methods, similar to other tests, aid doctors in the 

diagnosis process. In the following section, the diagnosis process using EEG signals, including the 

required signal processing steps are discussed. 

2.2  Diagnosis Process Using Electroencephalography Signals 

To perform diagnosis through EEG signals, there are several steps that must be followed, 

Figure 2.4 shows the steps that are needed for this process. This graph shows the general process 

of classification of EEG signals for diagnosis purposes. There are 7 steps included in this graph, 

however this number can be different based on the application or the type of the study. Some 

researchers add feature ranking as a separate step while some keep segmentation as a part of 

preprocessing. 

There are several sources of artifacts that affect EEG signals and must be addressed. As it 

can be seen in Figure 2.4, in the second step, after data collection is artifact removal. The most 

important artifacts to be removed are eye movement and blinking artifact or electrooculography 

(EOG), muscular movement or electromyogram (EMG) and power line interference. There are 

many approaches for removing artifacts, some of the most important of which are ICA, wavelet-

ICA, wavelet decomposition, CCA, EMD, principal component analysis (PCA), CSP and adaptive 

filtering, among others [2]. Some of these methods are BSS methods that can also be used for 

artifact removal by separating the sources where artifacts themselves are considered a separate 

source.  
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Figure 2.4 A block diagram of disease diagnosis using EEG signals collected from patients. 
 
 
At each point in time, there are several main sources of electrical potential inside the brain 

which are observed through the electrodes that are placed on the scalp. The signal collected through 

each electrode is the observation signal from that location on the scalp and is a combination of all 

the sources for that point in time. For a certain electrode, the sources that are closer usually have 

a stronger influence while the sources that are further away affect it less. Due to this phenomenon, 

there is usually some correlation between different EEG channels. There are several approaches 

to reducing the correlation between the channels, such as BSS, brain source separation and BSL. 

Currently, one of the most popular methods for reducing the correlation between the channels is 

independent component analysis (ICA) which estimates the sources by assuming minimum 

Gaussianity for the sources. ICA uses the fourth order moment, kurtosis as the measure of non-

Gaussianity. Figure 2.5 shows a 3D graph of a 15-channel EEG signal for a duration of 20 seconds. 

As it can be seen in this figure, the 15 channels are highly correlated; therefore, methods such as 

ICA are needed before this data is usable. This step of the process is marked as BSS in Figure 2.4; 
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however, many researchers consider both artifact removal and BSS as one step known as 

preprocessing.  

Different methods of analysis that are usually used for other types of signals may not be 

suitable for non-stationary signals. Therefore, after artifact removal and BSS steps, the signal must 

be segmented to create the datapoints due to the non-stationary nature of EEG signals. Based on 

the frequency range of EEG signals and the low sampling frequencies, the duration of 2 s has been 

accepted as the benchmark segment size. The usual EEG devices have sampling frequencies of 

128, 250 and 500 Hz which results in segments of 256, 500 and 1000 samples, respectively. 

Whereas some have used fixed-size segments based on the average stationarity of EEG signals, 

others have used more advanced methods such as spectral error measurement (SEM), generalized 

likelihood ratio (GLR), and nonlinear energy operator (NLEO) which automatically find the size 

of the semi-stationary segments [45]. 

 
 

Figure 2.5 The 3D graph of a 15-channel sample EEG signal. 
 
 
After segmenting the data, appropriate features must be extracted from each segment of 

the signal. Due to the random nature of EEG signals, statistical features have been shown to have 
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better performance compared to others. There are several ways to categorize the features, first by 

the linearity where the features are categorized as linear and nonlinear. Next by the domain they 

are calculated from such as temporal, spectral, wavelet, cepstral, etc. Another method to categorize 

the features is based on their order where there are second order statistical features, third order 

statistical features and so on. Usually features of the second order and lower are known as lower 

order features while third order and higher are known as higher order features. After extracting the 

features, some researchers use feature selection methods including feature ranking, manual 

selection and exhaustive search among others to reduce the number of features which in turn will 

reduce the dimension of the feature space and mitigate the curse of dimensionality.  

When the features are extracted and the feature pool is created, machine learning methods 

can be used for classification of datapoints. In the classification phase, while the random cross 

validation (CV) is a popular method, for diagnosis applications it is more appropriate to use 

methods such as leave-one-trial-out CV (LOTO-CV), leave-one-subject-out CV (LOSO-CV) or 

similar approaches to avoid having datapoints belonging to one subject appearing in both the 

training and validation steps. This approach allows for a more balanced validation set while at the 

same time the patients are tested against multiple HC participants. Traditional classifiers such as 

SVM, KNN, decision tree (DT), naive Bayes (NB), LDA, etc. have been historically used for 

classification of the extracted features. Recently, deep learning methods have also been used for 

classification of EEG signals. In the next section, some of the current studies and state-of-the-art 

methods in diagnosis of PD are discussed. 

2.3  State-of-the-Art in Diagnosis of Parkinson’s Disease Using Electroencephalography 

Researchers have been studying the effects of PD on the brain for several decades. Many 

of these studies have used EEG recordings to monitor the changes brought by PD. In 2011, Schlede 
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et al. found a significant correlation between the grand total EEG (GTE) score and the deteriorating 

of cognitive ability in late-stage PD patients [46]. In the same year, Swann used EEG recordings 

and ERP signals to calculate the stop signal reaction time (SSRT) of PD patients versus HC [47]. 

At the same time, Klassen et al. used Quantitative EEG recordings as a predictive biomarker for 

the progress of dementia in late-stage PD patients [48]. In 2014, Yuvaraj et al. used power and 

frequency of EEG recordings during the state of emotion to differentiate between PD patients and 

HC. They used 14-channel EEG recordings of 20 PD patients and 30 HC [49].  

In 2017, Liu et al. [50] used the discrete wavelet transform (DWT) with sample entropy 

(SampEn) as their feature and tried to diagnose PD patients from EEG signals by using a three-

way decision model. In their study, they used 10-channel EEG from 42 PD patients and 42 HC. In 

recent years, there have been some focus on the applications of deep learning in EEG analysis 

[51]. In 2018, Oh et al. [52] used a deep learning algorithm to classify 20 PD patients and 20 HC. 

They created a 13-layer CNN for classification. Their algorithm achieved an accuracy of 88.25 % 

and a specificity of 91.77 %. In 2014, Obukhov et al. calculated the hemispheric asymmetry in 

time-frequency characteristics of the central EEG electrodes, appearance of rhythms in the 

frequency range of 4-6 Hz and the disruption of dominant rhythm for HC and PD patients and used 

them as their features for detection of early stages of the disease [53]. As it was mentioned one of 

the main issues in diagnosis of PD is the inability to access SN part of the brain. Recently several 

researchers have attempted to simulate the electrical potential at the basal ganglia using different 

channels of real EEG data of PD patients [54]. In their studies, they employed the BESA toolbox 

and the location of basal ganglia to simulate the electrical activity at the SN location. After the 

simulation they used the total power of alpha and beta rhythms for classification of different stages 

of the disease. This study has taken place while practicing dopamine inducing activities to increase 
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the accuracy of the classification. Unlike their approach, the approach employed in this study used 

the rest state data of patients which has a much lower dopamine level. Having a lower level of 

dopamine will make the classification more difficult; however, it is much easier to attain rest state 

data. This study made use of much more advanced features instead of focusing on localization of 

channels.  

Another method that has been widely utilized in EEG signal processing is HOS analysis. 

Based on previous studies, HOS features have been especially effective in classification of PD and 

possibly other neurodegenerative diseases. In this research, a hierarchy approach is employed for 

diagnosis and classification of stages of PD from EEG signals. 

 Previous studies in this area tend to focus on classification approaches and neglect to do 

an in dept analysis of the HOS features. Therefore, the focus of this work is to gather relevant 

statistical features for this application and combining the findings of previous studies and 

developing new HOS features based on the characteristics of the signal to improve the 

performance. In Chapter 3 some of the mathematical definitions and concepts of HOS analysis are 

discussed. These concepts are necessary to gain a good understanding of the new features that were 

developed and used in Chapter 4. 

2.4  Summary 

Neurodegenerative disease is one of the main branches of neurological disorders and PD 

is one of the most common on such diseases. Although diagnosis is mostly performed by 

neurologists, biomedical signal processing can act as an important aid in this process. Signal such 

as speech, gait, and EEG have been widely used to improve the accuracy of the diagnosis.  

In this chapter, the process of using EEG signals as diagnostics tools was explained and 

some of the state-of-the-art in this field were investigated.  The next chapter will explain some 
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fundamental knowledge on the field of HOS analysis which will be necessary to understand 

mathematical aspects and the purpose of this work in later chapters. 
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Chapter 3:  Higher Order Statistics2 

3.1  Background 

The second order frequency spectrum is the Fourier transform of the second order 

autocorrelation function; it also goes by the name of the power spectrum and is extensively used 

in signal processing. Spectra of the higher orders are described in terms of HOS such as moments 

and cumulants of a signal. For instance, the third and fourth order standardized moments are 

skewness (S), and kurtosis (K) while the third and fourth order spectra are the Fourier transforms 

of the third and fourth order autocorrelation functions and are named bispectrum (B) and 

trispectrum (T), respectively. Spectra of the higher orders defined as the Fourier transform of the 

higher order autocorrelation and while features such as entropy are derived from the spectrum (and 

therefore can be called a HOS feature) others such as cumulants and moments are defined in time 

domain. 

Bispectrum is widely used in the biomedical field especially EEG signal processing even 

now in methods such as Bispectral Index (BIS). BIS is a monitoring method used to supplement 

Guedel’s classification for determining the depth of anesthesia and monitoring the level of 

consciousness. A detailed description of HOS applications in EEG analysis is presented in the next 

section. The property of bispectrum preserves the phase information and it is highly beneficial, 

both for signal reconstruction and for analyzing the nonlinear quadratic relations created by the 

coupling phenomenon amid different frequencies of the signal. The second, third and fourth order 

 

2 This chapter was published in [6]. Permission is included in Appendix A. 
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spectra which are the Fourier transforms of the matching autocorrelations (for periodic signals) are 

given in equations (1) - (3), respectively.  

 
 

Figure 3.1 The region of non-redundancy. 
 
 

𝑃𝑃𝑃𝑃2𝑥𝑥�(𝑓𝑓) = 𝑋𝑋(𝑓𝑓)𝑋𝑋∗(𝑓𝑓) (1) 

𝑃𝑃𝑃𝑃3𝑥𝑥�(𝑓𝑓1, 𝑓𝑓2) = 𝐵𝐵(𝑓𝑓1,𝑓𝑓2) = 𝑋𝑋(𝑓𝑓1)𝑋𝑋(𝑓𝑓2)𝑋𝑋∗(𝑓𝑓1 + 𝑓𝑓2) (2) 

𝑃𝑃𝑃𝑃4𝑥𝑥�(𝑓𝑓1, 𝑓𝑓2,𝑓𝑓3) = 𝑇𝑇(𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3) = 𝑋𝑋(𝑓𝑓1)𝑋𝑋(𝑓𝑓2)𝑋𝑋(𝑓𝑓3)𝑋𝑋∗(𝑓𝑓1 + 𝑓𝑓2 + 𝑓𝑓3) (3) 

In these equations X is the Fourier transform of signal, x and is defined in the frequency 

domain rather than in the time domain, therefore, the variable also changes from n to f and X* is 

the complex conjugate of X. Here, equations (1), (2), and (3) present the 2nd, 3rd and 4th order 

spectra which are the power spectrum, bispectrum and trispectrum. Bispectrum is defined in the 

bi-frequency domain; therefore, it is a function of two frequencies. Similarly, trispectrum is 

defined in tri-frequency and is a function of three frequencies. The bicoherence and tricoherence 

which are the normalized versions of bispectrum and trispectrum are given in equations (4) and 

(5) [55]. 

𝐵𝐵𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟(𝑓𝑓1,𝑓𝑓2) = 𝐸𝐸[𝑋𝑋(𝑓𝑓1)𝑋𝑋(𝑓𝑓2)𝑋𝑋∗(𝑓𝑓1+𝑓𝑓2)]
�𝑃𝑃(𝑓𝑓1)𝑃𝑃(𝑓𝑓2)𝑃𝑃(𝑓𝑓1+𝑓𝑓2)

 (4) 

𝑇𝑇𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟(𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3) = 𝐸𝐸[𝑋𝑋(𝑓𝑓1)𝑋𝑋(𝑓𝑓2)𝑋𝑋(𝑓𝑓3)𝑋𝑋∗(𝑓𝑓1+𝑓𝑓2+𝑓𝑓3)]
�𝑃𝑃(𝑓𝑓1)𝑃𝑃(𝑓𝑓2)𝑃𝑃(𝑓𝑓3)𝑃𝑃(𝑓𝑓1+𝑓𝑓2+𝑓𝑓3)

 (5) 
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To classify different EEG signals, characteristics that can act as features are required; 

characteristics such as mean of magnitude and the phase entropy. The equations of these features 

are given in equations (6), (7), and (8). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑓𝑓 𝑚𝑚𝑀𝑀𝑚𝑚𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀: 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 = 1
𝐿𝐿
∑ |𝐵𝐵(𝑓𝑓1, 𝑓𝑓2)| 𝛺𝛺  (6) 

𝑃𝑃ℎ𝑀𝑀𝑎𝑎𝑀𝑀 𝑀𝑀𝑀𝑀𝑚𝑚𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒:𝑃𝑃𝑎𝑎 = ∑ 𝑒𝑒(𝜓𝜓𝑛𝑛) 𝑙𝑙𝑜𝑜𝑚𝑚 𝑒𝑒(𝜓𝜓𝑛𝑛)  𝑛𝑛  (7) 

𝑒𝑒(𝜓𝜓𝑛𝑛) = 1
𝐿𝐿
∑ 𝑙𝑙(𝜑𝜑(𝐵𝐵(𝑓𝑓1, 𝑓𝑓2) ∈ 𝜓𝜓𝑛𝑛)𝛺𝛺  𝑓𝑓𝑜𝑜𝑒𝑒 − 𝜋𝜋 + 2𝜋𝜋𝑛𝑛

𝑁𝑁
≤ 𝜓𝜓𝑛𝑛 ≤ −𝜋𝜋 + 2𝜋𝜋(𝑛𝑛+1)

𝑁𝑁
 and 𝑀𝑀 =

0,1, … ,𝑁𝑁 − 17 (8) 

Where Ω indicates the region of f1 and f2 in Figure 3.1, 𝜑𝜑 is the phase and l(.) is the 

indicator function which gives “1” when the value of phase is within the range that is specified by 

𝜓𝜓𝑛𝑛in (9) and “0” otherwise. The reason for using this region is that this section, which is a quarter 

of the bispectrum (both magnitude and phase), holds the actual data and the rest are redundancies. 

This region of non-redundancy can be seen in Figure 3.1.  

Shannon entropy is used to measure the bispectrum phase entropy in equation (7). Mean 

magnitude in equation (6) can be used to differentiate between data with similar second order 

spectrum but it is susceptible to amplitude changes. This problem can be solved by normalization. 

For random systems the entropy is high and as they become more periodic and predictable the 

entropy decreases; until it gets to zero for a complete harmonic, periodic and predictable process.  

Besides bispectrum phase entropy there are three other entropies which are imperative. 

Normalized bispectral entropy (BE1), normalized bispectral squared entropy (BE2) and normalized 

bispectral cubic entropy (BE3) given in equations (9), (11), and (13), respectively. They are defined 

as entropies of normalized bicoherence and square normalized bicoherence given in equations 

(10), (12), and (14) [56]. 

𝐵𝐵𝐵𝐵1 = −∑ 𝑃𝑃𝑛𝑛 𝑙𝑙𝑜𝑜𝑚𝑚𝑃𝑃𝑛𝑛  𝑛𝑛  (9) 
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𝑃𝑃𝑛𝑛 = |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|
∑ |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|𝛺𝛺

 (10) 

𝐵𝐵𝐵𝐵2 = −∑ 𝑃𝑃𝑖𝑖 𝑙𝑙𝑜𝑜𝑚𝑚𝑃𝑃𝑖𝑖  𝑖𝑖  (11) 

𝑃𝑃𝑖𝑖 = |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|2

∑ |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|2𝛺𝛺
 (12) 

𝐵𝐵𝐵𝐵3 = −∑ 𝑃𝑃𝑗𝑗 𝑙𝑙𝑜𝑜𝑚𝑚𝑃𝑃𝑗𝑗  𝑗𝑗  (13) 

𝑃𝑃𝑗𝑗 = |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|3

∑ |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|3𝛺𝛺
 (14) 

The phase of bispectrum does not change with a time-shift, the way Fourier phase does 

[57]. Equation (15) defines the bispectral invariant, Pa, which is the phase of the integrated 

bispectrum along the radial line with the slope equal to ‘n’.  

𝑃𝑃𝑎𝑎(𝑀𝑀) = 𝑀𝑀𝑒𝑒𝑎𝑎𝑚𝑚𝑀𝑀𝑀𝑀 �𝐼𝐼𝑖𝑖(𝑛𝑛)
𝐼𝐼𝑟𝑟(𝑛𝑛)

� (15) 

𝐼𝐼𝑟𝑟(𝑀𝑀) = 𝑅𝑅𝑀𝑀 (∫ 𝐵𝐵(𝑓𝑓1, 𝑀𝑀𝑓𝑓1)𝑚𝑚𝑓𝑓1
1

1+𝑛𝑛
𝑓𝑓1=0+

) (16) 

𝐼𝐼𝑖𝑖(𝑀𝑀) = 𝐼𝐼𝑚𝑚 (∫ 𝐵𝐵(𝑓𝑓1, 𝑀𝑀𝑓𝑓1)𝑚𝑚𝑓𝑓1
1

1+𝑛𝑛
𝑓𝑓1=0+

) (17) 

The Ii and Ir used in equation (15) are defined in equations (16) and (17). As it was 

mentioned, HOS analysis achieves better results for signals with low SNR. The higher orders of a 

perfect Gaussian signal are zero; therefore, some higher order features can be used to measure the 

non-Gaussianity of the signal and to extract the independent non-Gaussian source signals from the 

mixture. This characteristic of HOS features can be used for detection and classification of non-

Gaussian signals.  

In 1982, Hinich developed an algorithm to test for Gaussianity and linearity of stationary 

time series. The basic notion was that if the third-order cumulant of a process is zero, then its 

Fourier transform or the bispectrum would also have to be zero, and therefore the bicoherence is 

zero. If the bicoherence is nonzero, the process is non-Gaussian and if it is a nonzero constant, the 
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process is linear, and non-Gaussian [58]. This test employs the mean of bicoherence power which 

is given in equation (18) as a reference [59]. 

𝑃𝑃𝑠𝑠 = ∑|𝐵𝐵𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟(𝑓𝑓1, 𝑓𝑓2)|2 (18) 

3.2  Bispectrum Estimation 

The estimation of power spectral density is one of the essential tools of signal processing. 

Similar methods can be used to estimate the bispectrum of the signal as well. Estimation methods 

for bispectrum are usually divided into two separate classes, conventional (or “Fourier type”) 

methods, and parametric methods; each of these classes includes various methods.  

3.2.1  Conventional Bispectrum Estimation 

Conventional methods include direct and indirect method [57]. Direct estimation tries to 

calculate the approximation of the definition of bispectrum given by equations (19) and (20) which 

are another form of equation (2). 

𝑋𝑋(𝑓𝑓) = ∫ 𝑀𝑀𝑖𝑖2𝜋𝜋𝑓𝑓𝜋𝜋𝑚𝑚𝑑𝑑(𝑓𝑓)∞
−∞  (19) 

𝐵𝐵{𝑚𝑚𝑑𝑑(𝑓𝑓1)𝑚𝑚𝑑𝑑(𝑓𝑓2)𝑚𝑚𝑑𝑑∗(𝑓𝑓1 + 𝑓𝑓2)} = 𝐵𝐵(𝑓𝑓)𝑚𝑚𝑓𝑓1𝑚𝑚𝑓𝑓2 (20) 

However, the indirect estimation methods try to calculate the approximation of the 

bispectrum based on equation (21). 

𝐵𝐵(𝑓𝑓1, 𝑓𝑓2) = ∑ ∑ 𝑅𝑅(𝑀𝑀1,𝑀𝑀2)𝑀𝑀−2𝜋𝜋𝑖𝑖(𝑓𝑓1𝑛𝑛1+𝑓𝑓2𝑛𝑛2)∞
𝑛𝑛2=−∞

∞
𝑛𝑛1=−∞  (21) 

These two estimates are different, however if they are calculated without using a window, 

practically they become identical. It has been shown that the conventional estimates are 

asymptotically unbiased and consistent. These methods usually have high variances, which means 

they require a large number of records to achieve smooth bispectral estimates. The bispectrum of 

our test EEG signal estimated by the direct method is illustrated in Figure 3.2.  
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The top plot in Figure 3.2 shows the magnitude of the estimated bispectrum, whereas the 

bottom plot shows the phase, and together they represent the third order spectra or bispectrum of 

the sample EEG signal. Since this method of estimation is based on the definition of bispectrum 

(the Fourier transform), it results in a more refined and smoother contour compared to parametric 

methods. 

 
 

Figure 3.2 Magnitude and phase of the bispectrum of the sample EEG, estimated by the direct 
method. 

 
 
Conventional methods have the advantages of ease of implementation and good estimate 

with very long data records; however, the abilities of the conventional methods are limited due to 

the “uncertainty principle” of the Fourier transform. 

3.2.2  Parametric Bispectrum Estimation  

Aside from the conventional methods, all other methods fall under the parametric estimator 

category. Therefore, the term parametric estimator covers a broad range of methods. Techniques 

such as the maximum-likelihood method of Capon and its modifications, cross-entropy methods 

(CE), and methods based on autoregressive-moving average (ARMA) models. Harmonic 

decomposition methods such as Pisarenko harmonic decomposition (PHD), Prony analysis, 
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multiple signal classification (MUSIC), singular value decomposition (SVD), etc. are also a part 

of parametric methods; however parametric methods are usually referred to the ones based AR, 

moving average (MA) and ARMA models [57, 60].  

  
 

Figure 3.3 Estimated bispectrum using parametric, ARMA model. 
 
 
The parametric estimation of the bispectrum of the sample signal using ARMA method is 

presented in Figure 3.3. Both these methods estimate the bispectrum, using the same data and since 

the ARMA method is iterative, it usually generates a number of small components compared to 

conventional methods. The outline of the contour of the direct method is fitted inside the magnitude 

to make it easier to spot the differences between Figures 3.2 and 3.3. 

3.3  Quadratic Phase Coupling 

In some cases when investigating a system, some interactions between the harmonics of 

the signal occur that are usually due to, the quadratic nonlinearity of the system. These interactions 

cause some changes in certain frequencies and phases of the output signal. Since the power 

spectrum loses the phase information, it is unable to detect these incidents. However, bispectrum 

is not phase-blind which means it can detect and quantify this phenomenon [57].  
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A simple example of this is given in [61], it states that if we have signal x as in equation 

(22), what would the phase be if x passes through a nonlinear system. This example considers a 

simple nonlinear system such as in equation (23). In this system, h(t) (which is the output) will 

include the pairs of harmonics given in equation (24). 

𝑥𝑥(𝑚𝑚) = 𝐴𝐴1 𝑎𝑎𝑜𝑜𝑎𝑎(2𝜋𝜋𝑓𝑓1𝑚𝑚 + 𝜑𝜑1) +𝐴𝐴2 𝑎𝑎𝑜𝑜𝑎𝑎(2𝜋𝜋𝑓𝑓2𝑚𝑚 + 𝜑𝜑2)  (22) 

ℎ(𝑚𝑚) = 𝑀𝑀𝑥𝑥2(𝑚𝑚) (23) 

(2𝑓𝑓1, 2𝜑𝜑1), (2𝑓𝑓2, 2𝜑𝜑2), (𝑓𝑓1+𝑓𝑓2 ,𝜑𝜑1 + 𝜑𝜑2), (𝑓𝑓1−𝑓𝑓2,𝜑𝜑1 − 𝜑𝜑2) (24) 

The nonlinearity of the system causes an increase in the number of harmonics and therefore 

frequencies; this phenomenon is known as QPC [61]. Thus, the existence of QPC in a signal is a 

strong indication that the system is nonlinear. 

As it was mentioned before, there are two main approaches to calculating the bispectrum, 

conventional and parametric methods. Overall, the conventional methods are more suited in regard 

with QPC and parametric approaches usually achieve higher resolution [61]. 

3.4  Higher Order Statistics in Electroencephalography Signal Processing 

In the past, many studies such as [62] have used second order statistics and spectra for EEG 

signal analysis. However, after years of investigation researchers found out that due to the lack of 

phase information in second order statistics and the low SNR and high nonlinearity of EEG signals, 

HOS can achieve better analytical results. After that, the application of the HOS has become 

especially popular in the analysis of biological signals because of the ubiquity of inherently 

nonlinear characteristics of biological systems [63]. 

Third order statistics features are the most common HOS features for EEG analysis 

followed by fourth order statistics features. As it was mentioned in the previous section, these 

features usually include moments, cumulants, spectra, and different entropies. These features can 



34 

 

either be used to classify different types of EEG signals or to gain a better understanding of the 

normal and background EEG signal. 

One of the applications of HOS in classifications of EEG is to detect epileptic seizures in 

patients. This application has been a popular subject of study among researchers in the past ten 

years [64-68]. Chua et al. [64] studied the properties of epileptic seizures in EEG signal using 

HOS. They used bicoherence patterns, entropies and other HOS features to analyze the EEG 

signals of both healthy subjects and epileptic patients. After feature extraction, they performed an 

ANOVA test where the features gave excellent p-values. 

Zhou et al. [69] proposed a new feature extraction method based on HOS features to 

classify left/right-hand motor imagery from EEG signals. Motor imagery is a dynamic state where 

an individual mentally simulates the movement of a body part without the overt movement. They 

also employed LDA, SVM, and artificial neural network (ANN) for classification and achieved 

better results than 2003 winner on the same BCI dataset. 

Hosseini et al. [70] used HOS analysis features along with SVM to classify emotional stress 

states in the two main areas of the valance-arousal space. Their analysis of the data showed that 

the radial basis function (RBF) kernel performs better than the others. In the same year, 

Ghandeharion et al. [71] devised an automatic ocular artifact suppression algorithm using WT 

coefficients and kurtosis to detect the artifact components of ICA. Concurrently, Acharya et al. 

[72] extracted HOS features from bispectrum and bicoherence during different stages of sleep 

(awake, rapid eye movement (REM), and four stages of sleep). Afterward, they fed these features 

to a Gaussian mixture model (GMM) in the classification step for automatic identification. 

Javidi et al. [73] used kurtosis to develop a blind source extraction (BSE) algorithm to 

extract both circular and noncircular complex signals. BSE is a subcategory of BSS where instead 
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of dividing the signal into different sources, BSE attempts to find a specific component with certain 

characteristics. To achieve it, Javidi used HOS of latent sources, the deflation approach and 

sequential extraction based on the degree of kurtosis. They used this algorithm to remove EOG 

and EMG artifacts from EEG signals in real time. 

Du et al. [68] tried to classify the epilepsy EEG signals based on higher order moments 

with another feature called the weighted center of bispectrum (WCB). In total they used 15 HOS 

features in their experiment and applied the PCA method to reduce the redundancies between the 

features. They employed eight machine-learning algorithms for classification, including multilayer 

perceptron artificial neural network (MLP-ANN), RBF network, random forest (RaF), rotation 

forest (RoF), logistic regression (LR), model trees (MT), simple logistic regression (SLR), and 

bagging (BA). They were able to achieve high accuracy, in some cases more than 98 %. The 

equations for WCB and absolute weighted center of bispectrum (aWCB) are given in equations 

(25) and (26). 

𝑊𝑊𝑊𝑊𝐵𝐵𝑥𝑥 = ∑ 𝑓𝑓1𝐵𝐵(𝑓𝑓1,𝑓𝑓2)Ω
∑ 𝐵𝐵(𝑓𝑓1,𝑓𝑓2)Ω

  ,𝑊𝑊𝑊𝑊𝐵𝐵𝑦𝑦 = ∑ 𝑓𝑓2𝐵𝐵(𝑓𝑓1,𝑓𝑓2)Ω
∑ 𝐵𝐵(𝑓𝑓1,𝑓𝑓2)Ω

 (25) 

𝑀𝑀𝑊𝑊𝑊𝑊𝐵𝐵𝑥𝑥 = ∑ 𝑓𝑓1|𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|Ω
∑ |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|Ω

 , 𝑀𝑀𝑊𝑊𝑊𝑊𝐵𝐵𝑦𝑦 = ∑ 𝑓𝑓2|𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|Ω
∑ |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|Ω

 (26) 

The moment related feature that they used were the sum of logarithmic amplitudes of the 

bispectrum (H1), the sum of logarithmic amplitudes of diagonal elements in the bispectrum (H2), 

the first-order spectral moment of amplitudes of diagonal elements in the bispectrum (H3), the 

second-order moment of amplitude of diagonal elements in the bispectrum (H4), and the first-order 

spectral moment of amplitudes of the principal domain in the bispectrum (H5) [68]. The equations 

of these features are given in equations (27) – (31), respectively. 

𝐻𝐻1 = ∑ log(|𝐵𝐵(𝑓𝑓1, 𝑓𝑓2)|)Ω  (27) 

𝐻𝐻2 = ∑ log(|𝐵𝐵(𝑓𝑓𝑘𝑘 , 𝑓𝑓𝑘𝑘)|)Ω  (28) 
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𝐻𝐻3 = ∑ 𝑘𝑘 log(|𝐵𝐵(𝑓𝑓𝑘𝑘 ,𝑓𝑓𝑘𝑘)|)  𝑁𝑁
𝑘𝑘=1  (29) 

𝐻𝐻4 = ∑ (𝑘𝑘 − 𝐻𝐻3)2 log(|𝐵𝐵(𝑓𝑓𝑘𝑘 ,𝑓𝑓𝑘𝑘)|)  𝑁𝑁
𝑘𝑘=1  (30) 

𝐻𝐻5 = ∑ �𝑚𝑚2 + 𝑗𝑗2 log��𝐵𝐵�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗���Ω  (31) 

Lay-Ekuakille et al. [74] used HOS features along with decimated signal diagonalization 

(DSD), which can process exponentially damped signals to classify epilepsy patients. Shafiul 

Alam et al. [75] also tried using HOS features to develop a seizure detection method. They used 

different moments and cumulants as features extracted from the EEG signal in the EMD domain. 

EMD is particularly well suited for analyzing nonstationary and nonlinear signals such as an EEG 

and combined it with an ANN for classification. Yuvaraj et al. [76] compared the power spectrum 

and HOS features to categorize EEG emotional states in PD patients. They used KNN and SVM 

algorithms for classification. The result showed higher accuracy when HOS features were used. 

Mahajan et al. [77] used modified multiscale Sample entropy, kurtosis, Wavelet decomposition, 

and ICA to develop a fast unsupervised and fully automatic algorithm for EOG artifact 

identification and removal, from EEG signal. Wang et al. [78] compared the Gaussianity of the 

EEG signal from a number of AD patients and healthy people by using kurtosis as the measure of 

non-Gaussianity. They found the average kurtosis of the EEG signals from the AD patients was to 

be much higher than that of healthy people indicating an abnormal dynamic within the AD 

patients’ EEG pattern. 

In 2014, Yuvaraj et al. [79] published a paper where they used EEG recordings of 20 PD 

patients and 20 HC during six basic emotions of happiness, sadness, fear, anger, surprise, and 

disgust to classify the emotional state of PD patients and HC. In their study, they employed three 

HOS features, mean of bispectral magnitude, BE1 and BE2 and used a SVM for classification. 

Continuing their previous work, in 2016 Yuvaraj et al. [80] used HOS features of EEG signals to 
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develop a novel Parkinson’s disease diagnosis index (PDDI) for automated detection of PD. After 

analyzing thirteen different HOS features, they ranked them by their F value and used the first 

three highly rated features (H1, EB1, and H2) to develop the PDDI. The mathematical equation they 

developed by trial-and-error is given in equation (32). 

𝑃𝑃𝑃𝑃𝑃𝑃𝐼𝐼 = �(3.5∗𝐸𝐸𝐵𝐵1)+{0.5∗(𝐻𝐻1/𝐻𝐻2)}�
10

 (32) 

They employed nine different classifiers, DT, KNN, Fuzzy K nearest neighbor (FKNN), 

NB, probabilistic neural network (PNN) and SVM using three kernel functions, RBF and 

polynomial kernel functions order 2 and 3 (poly 2 and poly 3). They achieved similar results to 

Hosseini et al. in [70], and again, the SVM classifier using RBF kernel function (SVM-RBF) had 

the best performance and achieved the highest mean accuracy of 99.62 %, sensitivity of 100 % 

and specificity of 99.25 % while using higher order features [80]. Later in 2018 Oh et al. [81] 

published another paper using the same dataset for the same application; however, this time they 

employed 13-layer CNN for classification. They achieved the mean accuracy of 88.25 %, 

sensitivity of 84.71 % and specificity of 91.77 %. It can be seen that SVM-RBF combined with 

higher order features had a much better performance. Bairy et al. [82] used HOS features such as 

variance, kurtosis, normalized kurtosis, skewness, and normalized skewness along with linear 

predictive coding (LPC) and receiver operating characteristic algorithms to develop a computer-

aided diagnosis (CAD) system to help the diagnosis of depression in patients. 

Following his previous work in [70], Hosseini tried a hybrid approach for the recognition 

of different stages of epilepsy. He used HOS features along with a genetic algorithm (GA) and 

least square support vector machine (LS-SVM) with Gaussian and polynomial RBF kernels to 

recognize different epilepsy states. By comparing this algorithm and one without the GA, he has 

demonstrated that the existence of GA will improve the accuracy of the results [83]. During the 
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same time, Ikeda et al. [84] published a paper in which they used kurtosis along with exact low-

resolution brain electromagnetic tomography (eLORETA) for Source estimation of epileptic 

activity in EEG signals. The eLORETA technique is a three-dimensional representation that shows 

the electrical activity of the brain. They compared this model with that of equivalent current dipole 

(ECD) and synthetic aperture magnetometry (SAM) and reported that eLORETA kurtosis analysis 

of epilepsy patients’ EEG data might aid in the localization of spike activity sources. 

As mentioned here, many studies that have been conducted on EEG analysis have used 

HOS features either directly or indirectly, and although HOS is not a new development, it is still 

a popular choice for those who study the field of EEG analysis. 

3.5  Summary 

The field of HOS analysis has been widely used in signal processing and have been 

especially beneficial for signals with random nature such as EEG signals. The generalized form of 

statistics is capable of analyzing more complex signals and provide information that would 

otherwise be inaccessible through second order statistics. 

In this chapter, the mathematical aspect of HOS analysis along with different methods for 

estimation of bispectrum was explored. Then explanation of QPC and finally some applications of 

HOS analysis in EEG signal processing applications were provided. The next chapter will focus 

on applications of HOS analysis specifically for the diagnosis of neurodegenerative diseases and 

the proposed approach along with the newly developed HOS features will be introduced. 
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Chapter 4:  Higher Order Statistical Analysis Framework for Classification 

of Parkinson’s Disease3 

4.1  Background 

In the previous chapters it was shown that HOS analysis has many applications in EEG 

signal processing. Based on the previous studies on this subject, these applications are divided into 

3 main categories [6]. Based on the focus of a study, HOS analysis might be applied in one or more 

of these categories. 

Table 4.1 Summaries of studies conducted on category 1 arranged based on the artifacts and their 
sources. 

 
Artifact type Source Reference Artifact Removal Method 

EOG artifact Eye movement [71, 73, 
85] 

ICA, wavelet, kurtosis, wavelet-ICA, 
automatic artifact suppression 

EMG Artifact Activity of the muscles 
near the electrodes [85, 86] Wavelet-ICA, ICA 

EKG artifacts Heart beat [87] CWT-ICA 
Eye Blink 
Artifact Blinking of the eye [77] Modified multiscale sample entropy, 

kurtosis, wavelet-ICA 

Noise Device, power line, 
environment, etc. [73, 78] Kurtosis-based BSE 

 
The first category of applications of HOS in EEG analysis mostly involves identification 

and removal of artifacts or noise (preprocessing stage) [71, 73, 77, 78, 85, 87]. Some examples of 

such studies are shown in Table 4.1, along with the artifacts in question and their sources. These 

sources are explained in detail in [88] along with related studies. It must be noted that while BSS 

methods such as ICA and wavelet analysis are used for reducing correlation between components 

 

3 This chapter was published in [125]. Permission is included in Appendix A. 
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of EEG, they can also be used for identifying and removing artifact and noise sources. The use of 

higher order features was shown to increase the accuracy rates in detecting EEG artifacts.  

Table 4.2 Summaries of studies conducted on category 2 that contain methods using HOS 
features. 

 
Method Reference HOS Features Application 
Kurtosis Based Adaptive 
Gradient Descent [73] K Blind source extraction 

JADE [86] K Blind source separation 
Fast-ICA [89] K Blind source separation 

Blind Deconvolution [90] S, K, 5th and 6th 
moments Deconvolution 

Jarque–Bera test [91] S, K Goodness of fit test 
D'Agostino's K-squared 
test [92] K Goodness of fit test 

Nonminimum Phase 
Detection [93] B System detection 

Infomax [94] K Artificial neural network, blind 
source separation 

 
In the second category, the HOS features are used to develop algorithms that can also be 

used in EEG analysis as well [63, 84] (and may also be beneficial to other fields). Since the features 

of the higher order are unaffected by Gaussian noise, they were used to develop general signal 

processing methods such as joint approximation diagonalization of eigen-matrices (JADE) and 

fast-ICA [86, 95-98] for BSS or kurtosis-based BSE [73] which have also proved useful in EEG 

analysis. Table 4.2 contains some of these methods along with their main applications. These 

methods are mostly used in the BSS and feature selection stages. Many of the methods mentioned 

in this table use kurtosis, which means that non-Gaussianity is used frequently for developing 

algorithms. This is not surprising considering non-Gaussianity plays an important role in 

determining the independency of signals.  

The third category is where HOS features are directly used for classification problems and 

has been widely studied by researchers. In this section, different studies on classification of 
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different motor functions [69], emotional stress states [70], sleep stages [72], emotional states of 

PD patients [76] and diagnosis of PD [80], epilepsy [67, 68, 83, 84], and depression [82] are 

included. In Table 4.3, a summary of the previous studies conducted in this category along with 

features and classifiers that were used in each one is presented.  

Table 4.3 Summaries of studies conducted on category 3 of Higher Order Statistics applications 
in EEG analysis. 

 
Subject Reference HOS Features Classifiers 
Emotional 
stress states [70] B, Bnorm, Pa SVM-RFB 

Motor function [69] H1, H2, H3, H4 LDA, SVM, NN 

Sleep stages [72] Mave, EB1, EB2, WCBx, 
WCBy, H1, H2, H3 GMM 

Emotional 
states of PD 
patients 

[76] Mave, EB1, EB2 KNN, SVM-RBF 

Diagnosis of PD [80] 
B, Bnorm, Mave, Pe, EB1, EB2, 
WCBx, WCBy, aWCBx, 
aWCBy, H1, H2, H3, H4, H5 

DT, FKNN, KNN, NB, 
PNN, SVM-poly 2, SVM-
poly 3, SVM-RBF 

Diagnosis of 
depression [82] K, Knorm, S, Snorm LPC 

Diagnosis of 
epilepsy 
 

[67] B, Bnorm, Mave, Pe, EB1, EB2, 
EB3, , H1, H2, H3, H4, H5 

DT, PNN, KNN, NB, 
PNN, SVM-poly 1, SVM-
RBF 

[68] 
B, Bnorm, Mave, Pe, EB1, EB2, 
WCBx, WCBy, aWCBx, 
aWCBy, H1, H2, H3, H4, H5 

MLP-ANN, BA, RaF, 
RoF, RBF-network, LR, 
MT, SLR 

[83] B, B2, Bnorm, Bnorm
2 LS-SVM 

 
In this study, all categories of HOS applications (mentioned above) were investigated 

where HOS based methods have been used in the BSS, artifact removal, and feature extraction 

steps. However, the focus of the study was on the third category where HOS features have been 

directly used for classification purposes. 

4.2  Proposed Framework 

The proposed idea of this research is to perform a hierarchy classification of PD using 

newly developed HOS features to improve the classification performance. In this study, two 
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datasets were used, one for classification of PD vs HC and the other for classification of stages of 

PD. To perform this task, a total of 35 features were extracted, described in the previous section, 

for each data point of our datasets; some of these features were existing higher-order features, 

some lower-order features and some of them I have developed and are used here for the first time. 

Then, these extracted features were used to perform classification on both datasets; first for the PD 

vs HC and then for the stages of PD.  

 
 

Figure 4.1 Proposed hierarchy approach for diagnosis of PD and classification of the stages. 
 
 
The process of this model can be seen in Figure 4.1. In this model, the first phase describes 

previous studies that classify PD from healthy and the second phase describes this study, which 

aims to classify the stages of PD after obtaining positive result from the initial phase. Since the 

data points have labels, supervised classification algorithms were used. For this study, several 

conventional machine learning methods such as SVM, KNN and DT along with ensemble learning 



43 

 

methods were used to perform the classification. In this chapter, the methods employed in the 

model such as the data acquisition, preprocessing, feature extraction, and classification methods 

are discussed. Chapter five will include the resulted features and the classification performance 

along with the comparison with state-of-the-art methods. 

Another area of this research work is dedicated to finding the most relevant frequency band 

for diagnosis of PD and extracting HOS features only from that band. The idea is that by finding 

the most relevant part of the signal and removing the unrelated parts, it could be possible to 

improve the classification performance and accuracy of the diagnosis. Several studies have pointed 

to the fact that certain changes occur in the alpha and beta rhythms in PD patients [99, 100], and 

the total power of alpha and beta rhythms collected from EEG signals have already been used for 

diagnosis of PD [54, 101, 102]. Alpha rhythm is associated with a state of relaxation usually when 

the eyes are closed. Beta rhythm is associated with a state of alertness, usually when the eyes are 

open. Therefore, in this study, besides using the whole signal, the HOS features were also extracted 

from alpha and beta frequency bands and compared their results for classification of PD vs HC. 

4.3  Data Acquisition 

Data acquisition is an important part of any experiment, and that is especially true for 

biomedical applications. As discussed, in this study two datasets were used which overall contain 

EEG data from 96 participants. Both datasets were collected after informed consent was given by 

the participants and all procedures s were in accordance with the ethical standards. 

The first dataset that was used in this study (dataset #1) is a part of a bigger open-source 

dataset of 28 PD patients and 28 HC participants. This dataset was originally a part of a study 

conducted by Cavanagh et al. [103], where they used this dataset for investigating the effects of 

PD on ERP components; however, in this study, only the rest state portion of their dataset was 
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used. The study conducted by Cavanagh et al. [103] was approved by the Institutional Review 

Board at the University of New Mexico and all participants were paid by the hour and gave written 

informed consents. The EEG signals were recorded using a 64 channel Brain Vision system (CPz 

reference, AFz Ground) where the signal of each electrode was sampled at 500 Hz. Table 4.4 

shows some basic information about the device that was used for recording the EEG signals. In 

the portion of the data that was used in this study, all PD patients are OFF-medication. To record 

the OFF-medication EEG signals, the patients go through a 15-hour overnight withdrawal from 

their prescription medication. The dataset contains 18 male and 10 female PD patients and each 

PD patient has an HC match of the same gender and is relatively close in age. The average years 

since diagnosis for all PD patients is 5.53 yrs. The average UPDRS motor score of the PD 

participants is 23.78 with the lowest being 10 and the highest being 41.  

Table 4.4 General information on the collected EEG signals in dataset #1. 

Emotiv EPOC headset 
Number of channels 64 (including one EOG channel) 
Reference electrodes CPz reference, AFz Ground 
Connectivity Wired 
Electrode type Ag/Agcl 

Channel names 
VEOG, Fp1-Fp2, AFz, AF3-AF4, AF7-AF8, Fz, F1-F8, FCz, 
FC1-FC6, FT7-FT10, Cz, C1-C6, T7-T8, CP1-CP6, TP7-
TP10, Pz, P1-P8, POz, PO3-PO4, PO7-PO8, Oz, O1-O2 

Sampling rate 500 Hz (samples per second) 
 
The second dataset that has been used in this study (dataset #2) was originally collected at 

the Hospital University Kebangsaan Malaysia (HUKM) medical center in Kuala Lumpur, 

Malaysia and contains EEG signals of 20 PD patients and 20 HC between the ages of 45 and 65 

[79]. Based on the H&Y scale the PD patients are divided into, 2 stage one, 11 stage two and 7 

stage three. Since there are only 2 stage one patients, for stage classification the third stage was 

considered as late-stage and the first two stages are combined to create the early-stage. This EEG 
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dataset was collected using a “Emotiv EPOC headset” and includes rest state EEG signals. The 

EEG signals were collected at 128 Hz sampling rate and each contain 14 channels. All PD patients 

and HCs reported to be right-handed and were also tested by Edinburgh handedness inventory 

(EHI). The PD patients were optimally medicated (ON state) during the testing session. Table 4.5 

shows some basic information about the collected signals. 

Table 4.5 General information on the collected EEG signals in dataset #2. 

Emotiv EPOC headset 
Number of channels 14 plus 
Reference electrodes CMS/DRL references, P3/P4 locations 
Connectivity Proprietary Wireless, 2.4 Hz band 
Electrode type Ag/Agcl 
Channel names AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 
Sampling rate 128 Hz (samples per second) 

 
4.4  Preprocessing and Artifact Removal 

The EEG signals were recorded while the participants were restfully seated in a quiet room 

with their eyes closed to reach a relaxed state of mind. They were told to avoid any movement 

(including eye movement) as much as possible. In case any participant blinked by accident, the 

eye blinking artifacts were removed by removing the samples with amplitudes of more than 80 

μV. The signals were then filtered using a 6th order Butterworth bandpass filter (with cutoff 

frequencies of 1 and 49 Hz) to remove the high and low frequency noise; then the AAR 1.3 

extension from EEGLAB was used to remove EMG and EOG artifacts. EMG is the artifact caused 

by muscle activity near the electrode and EOG is the artifact caused by blinking or movement of 

the eyes [104]. In the next phase of preprocessing, fast-ICA algorithm, an ICA technique was 

employed, with EEGLAB v2019.1 to extract the components from the channels. ICA is a BSS 

method that attempts to separate the independent components of the observation signals based on 

the assumption that the sources are independent and non-Gaussian. For each moment in time, there 
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are several sources of electrical potential inside the brain associated with different regions. The 

EEG electrodes measure the electrical potential on the surface of the scalp; however, the measured 

signal is a mixture of signals generated by the sources. Therefore, there is usually some correlation 

between different channels. To get an estimate of the original sources, BSS methods are required. 

In EEG signal analysis, ICA has been used by researchers as the main BSS method. After the BSS 

step each signal is moved from the channels to component domain and is divided into 1000 and 

2000 sample segments. Each of the segments or datapoints will go through feature extraction and 

will then be used for classification. 

 
 

Figure 4.2 The process of PD diagnosis for the all-band vs alpha band vs beta band. 
 
 
As it was mentioned in classification of PD vs HC, the alpha and beta bands were extracted 

and used to perform the classification. To do so, the signals were filtered using an 8-12 Hz 

bandpass infinite impulse response (IIR) filter to extract the alpha band and a 13-30 Hz bandpass 

IIR filter to extract the beta band. Each band then goes through the same preprocessing feature 

extraction and classification steps. This process is demonstrated in Figure 4.2. 

4.5  Feature Extraction  

To improve the accuracy of the model, 15 new higher order features were developed and 

combined with 14 existing higher order and 6 lower order features for classification of the stages 

of PD. In this section, each of these features will be explained along with reasons for their selection. 
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After calculating these features, they were normalized before being used for classification. 

Therefore, all the values in Tables 2 – 6 are averages of the normalized features. 

4.5.1  Lower Order Statistical Features 

There are many first and second order statistical features that have been used for EEG 

analysis. In this study, six of them were chosen based on previous studies, where each one was 

used directly in classification of EEG signals either for diagnosis of PD patients or other purposes. 

The first two features are the total power of alpha and beta rhythms. The powers of these rhythms 

have been previously used for both classification of PD [102] and classification of stages of PD 

[54]. Four nonlinear lower order features (LLE, HE, ApEn, and CD) that have been extensively 

used in EEG analysis were also used. 

LLE is a nonlinear feature that expresses the convergence of the signal in phase space. This 

is one of the most useful quantification methods for chaotic dynamics of a system and is able to 

successfully detect patterns in EEG signals. The LLE feature of EEG has been extensively used in 

BCI systems [105, 106] and analysis of neurological disorders [107, 108]. 

HE is a nonlinear feature that measures and quantifies the correlation of different points of 

a signal in the time domain [109]. This parameter can be used to investigate the presence and 

degree of long-distance dependency of the signal. HE has been widely used for the classification 

of EEG signals in different applications [110, 111]. 

ApEn is a nonlinear feature that is obtained from the Kolmogorov entropy and quantifies 

the level of complexity of a signal in the time domain. This feature has been widely used in 

different areas of biomedical signal processing; it has been especially useful in EEG signal analysis 

[112, 113] since it is mostly suited for signals with low SNR [114]. 



48 

 

CD is a feature that measures the complexity of a system by ascertaining the dimensionality 

of the signal’s state space. This feature has been used in the classification of EEG signals for 

different applications such as prediction of treatment response for repetitive transcranial magnetic 

stimulation (rTMS) [115], diagnosis of autism [116], etc. 

4.5.2  Higher Order Statistical Features 

As it was mentioned in the previous sections, an overall of 29 higher order features were 

used in this study; out of all these higher order features, 23 were extracted from bispectrum and 

the other 6 are higher order standardized moments. The higher order moments are considered as 

pre-existing features however they have not been previously used in this field. From the 23 features 

that were extracted from bispectrum, 8 are existing features that have been used for EEG analysis 

of PD patients [117]. By investigating the higher order moments of different stages of PD, a sudden 

increase was noticed occurring in the average of the third stage in standardized moments.  

The next set of features that was selected for this study were the bispectral entropies. The 

BE1, BE2, and BEP features were selected. Each of these entropies was calculated from the 

bispectrum and are considered as third order features. 

𝐵𝐵𝐵𝐵1 = −  ∑ 𝑃𝑃1 𝑙𝑙𝑜𝑜𝑚𝑚𝑃𝑃1𝑁𝑁−1
𝑛𝑛=0  𝑤𝑤ℎ𝑀𝑀𝑒𝑒𝑀𝑀 𝑃𝑃1 = |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|

∑ |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|𝛺𝛺
  (33) 

𝐵𝐵𝐵𝐵2 = −  ∑ 𝑃𝑃2 𝑙𝑙𝑜𝑜𝑚𝑚𝑃𝑃2𝑁𝑁−1
𝑛𝑛=0 𝑤𝑤ℎ𝑀𝑀𝑒𝑒𝑀𝑀𝑃𝑃2 = |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|2

∑ |𝐵𝐵(𝑓𝑓1,𝑓𝑓2)|2𝛺𝛺
 (34) 

In equations (33) and (34), B is the bispectrum of the frequencies f1 and f2, Ω is the region 

of non-redundancy of bispectrum [6], and N is the total number of points in Ω. 

𝐵𝐵𝐵𝐵𝑃𝑃 =  ∑ 𝑒𝑒(𝜓𝜓𝑛𝑛) 𝑙𝑙𝑜𝑜𝑚𝑚 𝑒𝑒(𝜓𝜓𝑛𝑛)𝑁𝑁−1
𝑛𝑛=0 𝑤𝑤ℎ𝑀𝑀𝑒𝑒𝑀𝑀 𝑒𝑒(𝜓𝜓𝑛𝑛) = 1

𝑁𝑁
∑ 𝑙𝑙(𝜑𝜑(𝐵𝐵(𝑓𝑓1,𝑓𝑓2) ∈ 𝜓𝜓𝑛𝑛)𝛺𝛺 ) (35) 

In equation (35), φ is the phase, l(.) is a function where its value is 1 when the phase falls 

within 𝜓𝜓𝑛𝑛(and 0 otherwise), and 𝜓𝜓𝑛𝑛 is described as in equation (36). 
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𝜓𝜓𝑛𝑛 = [−𝜋𝜋 + 2𝜋𝜋𝑛𝑛
𝑁𝑁

 ,−𝜋𝜋 + 2𝜋𝜋(𝑛𝑛+1)
𝑁𝑁

]  (36) 

The next set of features  used in this study were the sum of the log of bispectrum amplitudes 

(H1), the trace of the log of bispectrum amplitudes (H2), the first-order moment of the diagonal 

elements of bispectrum amplitudes (H3), the second-order central moment of the diagonal elements 

of bispectrum amplitudes (H4), and the first-order moment of the log of bispectrum amplitudes in 

the principal domain (H5) [68]. The bispectral entropies and H1-H5 features have been previously 

used by researchers for PD classification and other areas of EEG analysis [117].  

𝐻𝐻1 = ∑ log��𝐵𝐵�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗���Ω     (37) 

𝐻𝐻2 = ∑ log(|𝐵𝐵(𝑓𝑓𝑛𝑛 ,𝑓𝑓𝑛𝑛)|)Ω     (38) 

𝐻𝐻3 = ∑ 𝑀𝑀. log(|𝐵𝐵(𝑓𝑓𝑛𝑛 ,𝑓𝑓𝑛𝑛)|)Ω     (39) 

𝐻𝐻4 = ∑ (𝑀𝑀 − 𝐻𝐻3)2 log(|𝐵𝐵(𝑓𝑓𝑛𝑛 ,𝑓𝑓𝑛𝑛)|)Ω     (40) 

𝐻𝐻5 = ∑ �𝑚𝑚2 + 𝑗𝑗2 log��𝐵𝐵�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗���Ω    (41) 

Similar to equation (33), in equations (37) – (41), B is the bispectrum and Ω is the region 

of non-redundancy. Together the H1-H5 features, three BE features and six 𝜇𝜇" features are the pre-

existing higher order features that were selected for this study. As it was mentioned before, the 

first two set of features (H and BE) have been previously used in EEG analysis for PD 

classification, however the use of 𝜇𝜇" is a novel approach. 

4.5.3  Proposed New Higher Order Statistical Features 

Up until this point all the features that were mentioned already exist and have either been 

used in PD classification or in other areas of EEG analysis. In this section, 15 new HOS features 

that were developed will be described and used for PD stage classification. In practice, each of 

these features improves the final accuracy. These features can be divided into three sets of five, all 

sets were inspired from the H1-H5 features. 
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The first set is essentially the same as the H1-H5 features, with the only difference being 

that they are calculated from the complex bispectrum where H1-H5 features are calculated from 

the amplitude of bispectrum. In the new features the phase of the bispectrum can also affect the 

values. If the bispectrum of each point is considered in the exponential form of equation (42), then 

equations (37) - (41) are calculated based on the log of A for each point. However, by calculating 

the log of bispectrum instead of the log of bispectrum amplitude equation (43) can be achieved. 

𝐵𝐵(𝑓𝑓1, 𝑓𝑓2) = 𝐴𝐴𝑖𝑖,𝑗𝑗𝑀𝑀𝑖𝑖.𝜑𝜑𝑖𝑖,𝑗𝑗  (42) 

log𝐵𝐵�𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑗𝑗� = log�𝐴𝐴𝑖𝑖,𝑗𝑗𝑀𝑀𝑖𝑖.𝜑𝜑𝑖𝑖,𝑗𝑗� = log�𝐴𝐴𝑖𝑖,𝑗𝑗� + log�𝑀𝑀𝑖𝑖.𝜑𝜑𝑖𝑖,𝑗𝑗� = log�𝐴𝐴𝑖𝑖,𝑗𝑗� + i.𝜑𝜑𝑖𝑖,𝑗𝑗 (43) 

In (42) and (43), 𝐴𝐴𝑖𝑖,𝑗𝑗 is the amplitude and 𝜑𝜑𝑖𝑖,𝑗𝑗 is the phase of B for fi and fj, and result of 

equation (43) is a complex number. The magnitude of log bispectrum of equation (44) can be 

calculated based on equation (43). By replacing the log of bispectrum amplitudes in equation (44), 

equations (37) – (41) can be rewritten to get equations (45) – (49). I named these features complex 

H (CH) features. 

�log𝐵𝐵�𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑗𝑗�� = �log�𝐴𝐴𝑖𝑖,𝑗𝑗� + i.𝜑𝜑𝑖𝑖,𝑗𝑗� = ��log�𝐴𝐴𝑖𝑖,𝑗𝑗��
2
− �𝜑𝜑𝑖𝑖,𝑗𝑗�

2
 (44) 

𝑊𝑊𝐻𝐻1 = ∑ ��log�𝐴𝐴𝑖𝑖,𝑗𝑗��
2
− �𝜑𝜑𝑖𝑖,𝑗𝑗�

2
Ω     (45) 

𝑊𝑊𝐻𝐻2 = ∑ ��log�𝐴𝐴𝑛𝑛,𝑛𝑛��
2
− �𝜑𝜑𝑛𝑛,𝑛𝑛�

2
Ω     (46) 

𝑊𝑊𝐻𝐻3 = ∑ 𝑀𝑀.��log�𝐴𝐴𝑛𝑛,𝑛𝑛��
2
− �𝜑𝜑𝑛𝑛,𝑛𝑛�

2
Ω     (47) 

𝑊𝑊𝐻𝐻4 = ∑ (𝑀𝑀 − 𝐻𝐻3)2��log�𝐴𝐴𝑛𝑛,𝑛𝑛��
2
− �𝜑𝜑𝑛𝑛,𝑛𝑛�

2
Ω     (48) 

𝑊𝑊𝐻𝐻5 = ∑ �𝑚𝑚2 + 𝑗𝑗2.��log�𝐴𝐴𝑖𝑖,𝑗𝑗��
2
− �𝜑𝜑𝑖𝑖,𝑗𝑗�

2
Ω = �(𝑚𝑚2 + 𝑗𝑗2). ��log�𝐴𝐴𝑛𝑛,𝑛𝑛��

2
− �𝜑𝜑𝑛𝑛,𝑛𝑛�

2
�  (49) 
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As discussed, the H1-H5 and CH1-CH5 features are calculated from the two functions of the 

log of bispectrum amplitudes and the amplitude of the log bispectrum. The new features are 

calculated based on the 2D inverse Fourier transforms of these functions. By applying the inverse 

Fourier transform, the function domains are changed from log bispectrum to bicepstrum. Applying 

the 2D inverse Fourier transform to the log of bispectrum amplitudes (the function of H1-H5 

features) forms the real bicepstrum of the signal and by using it, features similar to H can be 

calculated. These features which I have named real bicepstral H (RBH) features can be calculated 

using equations (50) – (54). 

𝑅𝑅𝐵𝐵𝐻𝐻1 = ∑ ℱ−1�log��𝐵𝐵�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗����Ω   (50) 

𝑅𝑅𝐵𝐵𝐻𝐻2 = ∑ ℱ−1(log(|𝐵𝐵(𝑓𝑓𝑛𝑛 ,𝑓𝑓𝑛𝑛)|))Ω     (51) 

𝑅𝑅𝐵𝐵𝐻𝐻3 = ∑ 𝑀𝑀.ℱ−1(log(|𝐵𝐵(𝑓𝑓𝑛𝑛 ,𝑓𝑓𝑛𝑛)|))Ω     (52) 

𝑅𝑅𝐵𝐵𝐻𝐻4 = ∑ (𝑀𝑀 − 𝐻𝐻3)2 ℱ−1(log(|𝐵𝐵(𝑓𝑓𝑛𝑛 ,𝑓𝑓𝑛𝑛)|))Ω     (53) 

𝑅𝑅𝐵𝐵𝐻𝐻5 = ∑ �𝑚𝑚2 + 𝑗𝑗2 ℱ−1�log��𝐵𝐵�𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑗𝑗����Ω    (54) 

Similar to RBH1-RBH5 features, complex bicepstral H (CBH) features were computed 

using the CH1-CH5 features; by using equation (44), these features can be obtained through 

equations (55) – (59). 

𝑊𝑊𝐵𝐵𝐻𝐻1 = ∑ ℱ−1 ��log�𝐵𝐵�𝑓𝑓𝑖𝑖 ,𝑓𝑓𝑗𝑗����Ω   (55) 

𝑊𝑊𝐵𝐵𝐻𝐻2 = ∑ ℱ−1��log�𝐵𝐵(𝑓𝑓𝑛𝑛 , 𝑓𝑓𝑛𝑛)���Ω     (56) 

𝑊𝑊𝐵𝐵𝐻𝐻3 = ∑ 𝑀𝑀.ℱ−1��log�𝐵𝐵(𝑓𝑓𝑛𝑛 , 𝑓𝑓𝑛𝑛)���Ω     (57) 

𝑊𝑊𝐵𝐵𝐻𝐻4 = ∑ (𝑀𝑀 − 𝐻𝐻3)2 ℱ−1��log�𝐵𝐵(𝑓𝑓𝑛𝑛 ,𝑓𝑓𝑛𝑛)���Ω     (58) 

𝑊𝑊𝐵𝐵𝐻𝐻5 = ∑ �𝑚𝑚2 + 𝑗𝑗2 ℱ−1 ��log�𝐵𝐵�𝑓𝑓𝑖𝑖 , 𝑓𝑓𝑗𝑗����Ω   (59) 
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The H1-H5 features are defined based on the real bispectrum, however these features were 

recalculated based on the real and complex bicepstrum to create new features. By using the 

principles of HOS, it was possible to create more comprehensive feature sets. The diagonal slice 

of bispectrum has already been used in several areas of signal processing, however this is the first 

time HOS features are defined in cepstral (complex or real) domain.  

4.6  Summary 

The HOS analysis of EEG signals has been used for many different applications such as 

denoising and artifact removal, developing methods such as ICA and finally classification and 

more specifically, diagnosis of diseases.  

In this chapter, the proposed framework for diagnosis of PD vs HC and then stages of PD 

from HOS analysis of EEG signals were explained. The two datasets that were used in this study 

were introduced as well. To achieve the goals of this study, a number of previously developed 

statistical features including higher order were extracted from the datasets. Besides these features, 

15 new features were also introduced that were specifically designed to improve the performance 

of the proposed model. In the next chapter, a number of classifiers were employed to compare the 

performance of the proposed method with that of the state-of-the-art methods in EEG classification 

of PD. 
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Chapter 5:  Diagnosis of Parkinson’s Disease and Classification of Stages 

Using the Proposed Approach  

5.1  Diagnosis of Parkinson’s Disease from Healthy Control 

By performing an exhaustive search, the features were ranked and 22 features out of the 

total 35 that were extracted were chosen for classification of PD from HC. It was observed that for 

this application the CH and CBH features do not have a noticeable contribution to the classification 

performance. Here, all the features that were used for classification are listed. 

1. Lower Order Features (LLE, HE, ApEn, CD) 

2. Bispectral Features (H1-H5) 

3. Bicepstral Features (RBH1-RBH5) 

4. Bispectral Entropies (BE1, BE2, BEp) 

5. Higher Order Moments (μ3-μ7) 

The details on each of these features were discussed in Chapters 3 and 4. For this part of 

the experiment, a total of 4 lower order and 18 higher order features were used. Table 5.1 shows 

the average of all the features that were extracted from the EEG signals for each class (PD and 

HC). Due to previous studies’ positive conclusions on the effects of PD on brain rhythms, in this 

study the HOS features of alpha and beta frequency bands were also computed. The average of the 

extracted features for the alpha band is presented in Table 5.2 and for the beta band in Table 5.3. 

In this section, 5 ensemble classifiers were used to perform the classification. The reason 

for this study to focus on ensemble learning is due to the results of the previous experiment where 
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it became evident that ensemble classifiers have better performance than a single base learner; this 

fact is also supported by many other previously published works [118]. 

Table 5.1 The average of the feature extracted from the EEG signals for each class. 

Features HC PD 
CD 7.0726E+05 6.6531E+05 
ApEn 2.7191E+03 2.5472E+03 
LLE 8.8651E+04 8.3069E+04 
HE 3.7263E-01 5.0374E-01 
H1 3.0196E+06 2.8484E+06 
H2 2.3446E+01 2.3849E+01 
H3 1.1327E+01 1.0713E+01 
H4 1.3635E+03 1.2752E+03 
H5 5.1717E-01 4.5143E-01 
RBH1 3.0278E+06 2.8526E+06 
RBH2 2.4085E+02 2.3514E+02 
RBH3 -1.7472E+10 -2.2215E+10 
RBH4 1.6644E+01 7.9868E+00 
RBH5 1.9559E+00 1.9555E+00 
BE1 1.5567E+00 1.5134E+00 
BE2 -8.0891E+01 -7.7823E+01 
BEP 7.0219E-01 7.6176E-01 
μ3 5.1809E-03 -7.2330E-04 
μ4 3.6470E+00 4.1244E+00 
μ5 3.2122E-01 -1.3928E+00 
μ6 4.4180E+01 1.0940E+02 
μ7 8.1807E+01 -8.8468E+02 

 
Ensemble learning is a general term used to describe methods that fuse the result of 

multiple machine learning models (mostly supervised) to improve the overall prediction 

performance. In many machine learning applications, ensemble methods are viewed as state-of-

the-art methods. In most cases, these methods improve the performance of the model by using 

multiple training sessions and integrating their resulting predictions [119]. The base learner can be 

any machine learning model such as DT, LDA, KNN, etc. In the ensemble approach, the errors of 

a single model are most likely to be compensated by others, improving the performance of this 
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model compared to a single base learner. Over the past few years, researchers have increasingly 

utilized ensemble learning methods for different applications; the research in this field has resulted 

in new techniques that have exceptionally high performance compared to other methods. Ensemble 

methods are able to improve performance due to three main reasons, overfitting avoidance, 

computational advantage, and representation [119].  

Table 5.2 The average of the feature extracted from the alpha band for each class. 

Features HC PD 
CD 7.8011E+05 7.3852E+05 
ApEn 3.0890E+03 2.9260E+03 
LLE 9.9353E+04 9.4097E+04 
HE 1.1706E+00 1.1729E+00 
H1 3.5096E+06 3.3289E+06 
H2 4.2473E+01 4.1843E+01 
H3 1.3911E+01 1.3345E+01 
H4 1.5527E+03 1.4812E+03 
H5 6.7332E-01 6.5171E-01 
RBH1 3.5248E+06 3.3625E+06 
RBH2 1.5020E+02 1.5034E+02 
RBH3 -1.7688E+13 -8.9717E+12 
RBH4 2.8931E+01 6.7276E+01 
RBH5 1.8107E+00 1.8134E+00 
BE1 4.0435E-01 4.0472E-01 
BE2 1.6706E+02 1.6708E+02 
BEP 1.9711E+00 1.9632E+00 
μ3 -4.9668E-04 4.7778E-05 
μ4 4.7610E+00 4.7557E+00 
μ5 -4.2279E-03 6.0883E-04 
μ6 3.2728E+01 3.2672E+01 
μ7 -4.1204E-02 9.1805E-03 

 
Another advantage of this model is the use of parallel computing. Figure 5.1 presents the 

block diagram of ensemble learning and how these methods combine the results of multiple 

classifiers. Since the base classifiers in this figure operate separately from each other, they can 

work in parallel; therefore, the time that ensemble classification requires to be trained is not much 
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higher than a single classifier. Bagging, AdaBoost, RUSboost, and random subspace are some of 

the most applied ensemble methods. 

Table 5.3 The average of the feature extracted from the beta band for each class. 

Features HC PD 
CD 7.9892E+05 7.5922E+05 
ApEn 2.9608E+03 2.8063E+03 
LLE 9.6700E+04 9.1701E+04 
HE 2.0979E+00 2.1060E+00 
H1 3.5159E+06 3.3441E+06 
H2 4.1779E+01 4.1222E+01 
H3 1.3322E+01 1.2751E+01 
H4 1.4906E+03 1.4206E+03 
H5 7.0062E-01 6.7743E-01 
RBH1 3.5307E+06 3.3669E+06 
RBH2 1.9099E+02 1.9085E+02 
RBH3 -1.3535E+13 -6.8312E+12 
RBH4 2.1055E+01 4.4771E+01 
RBH5 1.7158E+00 1.7223E+00 
BE1 2.5238E-01 2.5959E-01 
BE2 2.0193E+02 2.0251E+02 
BEP 1.9719E+00 1.9717E+00 
μ3 7.5935E-04 -1.4909E-04 
μ4 1.6895E+01 1.6701E+01 
μ5 1.5098E-01 -8.6415E-03 
μ6 4.4575E+02 4.3905E+02 
μ7 5.7329E+00 9.8680E-02 

 
Another important factor in most biomedical classification is for the train and test sets to 

be completely separate; therefore, for segmented data (such as in our study), there should be no 

overlap between the training and testing groups. In this work for each method of classification, the 

training was performed 28 times with datapoints from 27 pairs of participants (PD and HC) and 

the datapoints from the remaining pair were used as test. By using this method, a modified CV 

approach was developed, where there was no overlap between the participants in the training and 

testing groups; similar to LOSO-CV but for two (one PD and one HC).  
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Figure 5.1 The diagram describing classification with ensemble learning. 
 
 
As mentioned earlier, the features from alpha and beta bands were extracted as well in this 

study. Then each set of features was used separately for classification and their results were 

compared. For each of the five methods, the average testing performance of the leave-two-

subjects-out CV (LTSO-CV) scheme is presented in Table 5.4. It can be seen that the highest 

performance was achieved by Bagged DT for the alpha band. Therefore, the overall testing 

accuracy of this classifier for each pair of the test group is presented in Table 5.5. 

Table 5.4 The average diagnosis performance of all ensemble classifiers. 

Ensemble 
Classifier 

All Bands (%) Alpha Band (%) Beta Band (%) 

Sen Spe Sen Spe Sen Spe 

AdaBoost DT 69.82 73.39 98.75 98.39 98.75 97.85 

Bagged DT 65.17 76.25 99.10 99.28 98.21 98.57 

RUSBoosted 58.75 63.03 95.35 93.92 73.21 97.32 

Subspace KNN 48.39 56.07 96.42 86.60 86.25 78.92 

Subspace 
discriminant 68.92 71.96 74.10 64.28 63.75 69.64 

 

5.2  Classification of Early-Stage vs Late-Stage 

In this section, a total of 35 features were extracted for each data point of the second dataset 

that was previously described and were used to classify the early (combined 1st and 2nd stages) 



58 

 

and late (3rd stage) stages of PD. All of the aforementioned features contributed to the 

classification performance improvement which is why unlike for the diagnosis of PD (the first part 

of the hierarchy model) all of the features were used in this section. The classification of stages of 

PD using HOS analysis is the second part of the hierarchy model described in Figure 4.1. 

Table 5.5 The accuracy of diagnosis using bagged trees ensemble for all three sets 

Test Group 
PD_ID/HC_ID 

All Bands 
(%) 

Alpha Band 
(%) 

Beta Band 
(%) 

801/894 92.5 97.5 100 
802/908 57.5 100 100 
803/8010 77.5 100 100 
804/906 100 97.5 100 
805/903 100 100 97.5 
806/8060 90 100 95 
807/893 40 100 95 
808/909 95 100 97.5 
809/911 50 95 97.5 
810/895 87.5 100 97.5 
811/913 80 100 100 
813/900 52.5 100 97.5 
814/896 92.5 97.5 97.5 
815/899 50 100 100 
816/914 52.5 100 97.5 
817/910 70 100 97.5 
818/890 60 100 97.5 
819/891 50 100 100 
820/912 52.5 100 100 
821/905 97.5 100 97.5 
822/904 27.5 100 100 
823/892 70 100 97.5 
824/902 62.5 100 100 
825/901 60 100 97.5 
826/898 50 100 100 
827/897 80 97.5 100 
828/8070 97.5 92.5 100 
829/907 85 100 95 
Average 70.71 99.19 98.39 
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In the overall model, the first step is to perform the classification of PD from HC and once 

a positive diagnosis is made, then the next step is to identify the stages of the disease by classifying 

the early vs late stages. Table 5.6 shows the averages of the normalized lower features that were 

discussed in this subsection for each stage of the disease  

Table 5.6 Average of the normalized lower order features for each stage of PD. 

Features HC Early-Stage Late-Stage 
CD 3.72E-01 4.09E-01 3.27E-01 
ApEn 4.60E-01 4.45E-01 5.99E-01 
LLE 5.72E-01 5.57E-01 6.77E-01 
HE 1.22E-01 2.25E-01 5.13E-02 
Pα 3.69E-03 3.35E-03 4.73E-03 
Pβ 2.75E-03 2.01E-03 2.15E-03 

 
The increase in the higher order moments of the third stage is not unanimous between all 

patients therefore these features cannot be used to classify late-stage of PD on their own. The 

standardized moments up to 20th order were computed, however, after the 7th order the accuracy 

did not improve any further, which is why only the 3rd order up to 7th order were chosen in this 

study. The averages of the higher order standardized moments, the bispectral entropies and the H1-

H5 features are given in Table 5.7 for each class.  

In Table 5.8, the averages of the proposed features for each stage are provided; as it can be 

seen there are three sets, each with 5 features. The mathematical description of these features can 

be found in the previous chapter. 

After feature extraction, since the data points are labeled, again supervised classification 

algorithms were used. In this section, several methods such as SVM, KNN and DT were chosen 

to perform the classification; aside from the conventional methods, ensemble classifiers such as 

boosted trees, RUS boosted trees and subspace KNN were also employed. All of these classifiers 
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were applied using the classification learner app in Matlab. For both sections, a 10-fold CV 

approach was used for all classification algorithms. 

Table 5.7 The average of the normalized 3rd - 7th order standardized moments for each stage of 
PD. 

 
Features HC Early-Stage Late-Stage 
𝛍𝛍"𝟑𝟑 -4.25E-04 6.09E-03 -4.27E-03 
𝛍𝛍"𝟒𝟒 1.73E-02 1.59E-02 1.58E-02 
𝛍𝛍"𝟓𝟓 7.47E-04 -6.29E-05 2.43E-05 
𝛍𝛍"𝟔𝟔 1.13E-03 3.79E-04 3.09E-04 
𝛍𝛍"𝟕𝟕 7.15E-04 -3.95E-05 1.03E-05 
BEP 9.64E-01 9.64E-01 9.68E-01 
BE1 -2.62E+00 -2.46E-03 -3.96E+01 
BE2 9.24E-01 9.23E-01 9.32E-01 
H1 2.65E-01 3.07E-01 2.33E-01 
H2 2.45E-01 2.86E-01 2.13E-01 
H3 2.45E-01 2.86E-01 2.13E-01 
H4 2.97E-01 3.20E-01 2.58E-01 
H5 2.66E-01 3.08E-01 2.34E-01 

 
When using SVM several different kernels were employed and it was observed that 

quadratic kernel provided the best performance. The kernel scale for this classifier was set on 

automatic. Next, different KNN approaches were used and the weighted KNN method was found 

to have the best performance; for this classifier, the distance metric was set to Minkowski, distance 

weight was set to squared inverse, the standardized data was set to true, and 10 number of 

neighbors were considered. For the DT classifier the maximum number of splits was set to 18 and 

the split criterion to Gini’s diversity index.  

As mentioned earlier, several ensemble classifiers were used besides conventional 

classifiers. Ensembles use a set of different learning algorithms and combine the results using 

weighted or unweighted voting to obtain higher predictive performance. These methods are usually 

more accurate than individual constituent classifiers [120, 121].  
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Table 5.8 Average of the normalized proposed features (Complex H 1-5, Real Bicepstrum H 1-5 
and Complex Bicepstrum H 1-5) for each stage of PD. 

 
Features HC Early-Stage Late-Stage 
CH1 2.91E-01 3.29E-01 2.64E-01 
CH2 2.80E-01 3.17E-01 2.53E-01 
CH3 2.81E-01 3.17E-01 2.53E-01 
CH4 2.48E-01 2.86E-01 2.20E-01 
CH5 2.91E-01 3.29E-01 2.65E-01 
RBH1 5.13E-01 5.38E-01 4.91E-01 
RBH2 3.15E-01 3.55E-01 2.80E-01 
RBH3 4.45E-01 4.66E-01 4.21E-01 
RBH4 9.42E-02 1.24E-01 6.88E-02 
RBH5 5.00E-01 5.17E-01 4.84E-01 
CBH1 4.72E-01 5.06E-01 4.64E-01 
CBH2 3.29E-01 3.68E-01 3.02E-01 
CBH3 4.23E-01 4.48E-01 4.01E-01 
CBH4 1.04E-01 1.33E-01 8.17E-02 
CBH5 4.58E-01 4.88E-01 4.57E-01 

 
The first ensemble classifier that was selected for this task was the boosted trees. For this 

classifier the ensemble method was set to AdaBoost, learner type to DT, maximum number of 

splits to 100 and number of learners to 100. The next ensemble classifier that was employed is the 

RUSBoosted trees where the ensemble method was set to RUSBoosted, learner type to DT, 

maximum number of splits to 200, and number of learners to 200. The final ensemble classifier 

that was used in this section is the subspace KNN. For this classifier the ensemble method was set 

to subspace, learner type to KNN, number of learners to 100 and the subspace dimension to 18.  

Table 5.9 Performance of the classifiers including the AUC and the overall accuracy. 

Classifier AUC Accuracy (%) 
DT 0.82 77 
SVM 0.83 74 
KNN 0.82 67 
Ensemble Boosted Trees 0.87 82 
Ensemble Subspace KNN 0.81 67 
Ensemble RUSBoosted Trees 0.90 87 
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The overall performance of all the classifiers used in this section, including area under the 

curve (AUC) and overall accuracy, can be seen in Table 5.9. By comparing the performance of the 

methods, it can be clearly seen that ensemble classifiers had better overall performance. 

5.3  Comparison with State-of-the-Art Methods 

In the previous section, first PD was classified from HC using five ensemble methods and 

then the stages of PD were classified using six classifiers, three of which were ensemble methods. 

Ensemble classifiers achieved better overall performance which is why these methods have been 

the focus of this study. For PD vs HC, the bagged trees ensemble had the highest performance 

while for stages of PD RUSBoosted trees achieved the highest accuracy. RUSBoost is a hybrid 

sampling/boosting algorithm that aims to achieve higher performance for datasets with the class 

imbalance problem [122]. As it can be seen the second dataset that was used in this study is 

unbalanced, which is why RUSBoosted tree ensemble classifier was able to achieve the highest 

accuracy. For the diagnosis of PD by using PCA, certain redundancies within the feature pool were 

noticed which were removed by using feature ranking and selection. In the classification of stages, 

all 35 features contributed to the performance. All classifications were performed using the LOTO-

CV, LOSO-CV and LTSO-CV methods. The performances shown in Tables 5.4 and 5.5 were 

achieved through LTSO-CV method, while for Table 5.9 LOTO-CV method was used. Using the 

LOSO-CV approach for RUSBoosted trees (classifier with the highest accuracy) an average of 

0.89 for AUC and 86.4% accuracy (at 20% false positive) was achieved, proving that our approach 

is independent of the dataset. The combination of the binary classifications of PD vs HC and early 

vs late stages as described in Figure 4.1, create a fully automated model for diagnosis and 

identification of the stages of PD. 
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Table 5.10 Summary of previous studies conducted on automated diagnosis of PD and classification of its stages. 

Target Authors Features Classifiers Accuracy 
(%) Task 

PD Diagnosis 

Han et al. 
[123] (2013) 

α, β, δ and θ band powers and 
wavelet packet entropies (WPE) - - Investigating 

abnormalities in early PD. 
Yuvaraj et al. 
[80] (2016) 

Bave, H1-H5, BE1-BE2, BEp, aWx, 
aWy 

DT, KNN, NB, 
SVM 99.62 Developing an index for 

classification of PD 

Vanegas et 
al. [124] 
(2018) 

FFT of visual ERP 
Logistic 
regression, DT, 
Extra tree 

99.81 

Classification of PD using 
spectrum of the steady 
state visual evoked 
potential 

Oh et al. [52] 
(2018) - 13-layer CNN 88.25 Deep learning approach to 

classification of PD 

Koch et al. 
[125] (2019) 

FFT coeff, Autocorrelation coeff, 
Occipital peak frequency,Total 
beta power, Total peak frequency 

RF 91 
Automated vs hand 
crafted features for 
classification of PD 

Stage-1  
(This work) 

Features extracted from alpha freq. 
band: 𝜇𝜇3−7, H1-H5, BH1-BH5, BE1-
BE2, BEp, CD, ApEn, LLE, HE 

Ensemble DT, 
Ensemble KNN, 
Ensemble LDA 

99.19 

Extracting HOS features 
from alpha and beta freq. 
bands for classification of 
PD 

PD Stage 
Classification 

Aldea et al. 
[101] (2016) CD, LLE, HE of α, β, δ, θ, γ bands - - 

Evaluating differences 
between HC, PD and 
epileptic subjects with 
nonlinear features 

Naghsh et al. 
[16] (2019) Total power of α, β bands SVM, Kmeans 95 BSL for classification of 

stages of PD 

Stage-2  
(This work) 

H1-H5, CH1-CH5, BH1-BH5, 
CBH1-CBH5, BE1-BE2, BEp, Total 
power of α, β bands, 𝜇𝜇3−7, CD, 
ApEn, LLE, HE 

DT, SVM, 
KNN, Ensemble 
DT, Ensemble 
KNN 

87 
Classification of stages of 
PD using new HOS 
features 
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In Table 5.10, some of the main studies in the classification of PD were compared with the 

proposed method; it must be noted that the studies mentioned in this table do not use the same 

datasets, and many of the ones with high accuracy have used ERP based datasets. While some 

researchers such as Oh et al. [52] have attempted to use deep learning approaches for classification 

of PD, most researchers have employed traditional machine learning methods. Generally, deep 

learning methods require a large training dataset to achieve good performance while many 

biomedical datasets (including EEG) tend to be on the smaller side; combining that with the fact 

that EEG signals are random in nature, makes deep learning unsuitable for classification of EEG 

signals. In our previous study [126] it was noticed that conventional machine learning classifiers 

were outperformed by ensemble methods for EEG classification; this was also supported by many 

other studies in EEG processing [127, 128]; therefore, ensemble learning is currently the best 

approach for EEG classification which is why for this study the focus was mostly on ensemble 

learning for the classification step. 

5.4  Discussion 

In this study, a hierarchy approach was used as described in Figure 4.1. The first stage of 

this study is similar to the work of Yuvaraj et al. [80] where the focus is on classification of PD vs 

HC. The proposed method of using HOS features of alpha rhythm achieved very high accuracy for 

this stage. The second stage of this research is focused on classifying early-stage vs late-stage PD 

and together they create the complete model. 

This approach creates a more specialized classification and allows us to use features based 

on the occurrence of each specific symptom. The binary hierarchy classification is able to achieve 

higher accuracy than is possible through conventional methods. For the first stage, the features 

were collected from the alpha rhythm achieved the highest accuracy which was not true for the 
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second stage. In this work, nonlinear and statistical features from both the time and frequency 

domains were used. The temporal statistical features (such as the higher standardized moments, 

HE, etc.) carry useful information about the nonstationary and non-Gaussian characteristics of the 

signal while the features defined in the frequency domain (such as frequency band powers, higher-

order entropies and etc.) hold information about the energy (distribution) of the frequency bands 

of the signal. Using both the temporal and spectral features (in the case of higher-order features, 

bifrequency) has allowed us to achieve higher accuracy than would be possible with using features 

from only one domain.  

To achieve the goal of this research, the main focus was on the development of new higher-

order features. The newly developed 15 higher-order features that are based on existing H1–H5 

higher-order features are grouped into three sets. The first set (RBH1–RBH5) was defined in the 

bicepstrum domain instead of the bispectrum. The cepstral domain’s ability to transform temporal 

convolution to addition allows this domain to approach the features from a new angle. The 

bicepstral domain goes even further and expands the signal across two quefrency axes (creating 

the biquefrency domain). The other feature sets (CH1–CH5 and CBH1–CBH5) are very similar to 

H1–H5 and RBH1–RBH5, the only difference being that instead of calculating them from the real 

bispectrum and bicepstrum, they were computed based on the complex values of bispectrum and 

bicepstrum. Therefore, in these features, the phase is also included. The developed features 

improved the accuracy of classification in this study; however, they are statistical features that may 

have applications in other areas as well, therefore more in-depth studies are needed to uncover 

their applications in other areas. 
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5.5  Summary 

In this chapter, the features used for classification of PD vs HC and early stage vs late stage 

of PD including second order, existing higher order, and the newly developed higher order features 

were computed and presented. Concurrently, these features were also extracted from the alpha and 

beta rhythms and were used to perform the diagnosis, and the performance of the different methods 

were compared. While for this part of the research, multiple CV approaches were employed, all 

the accuracies reported in this section were achieved using the LTSO-CV approach. The highest 

performance achieved for each classification was then compared with current state-of-the-art 

methods. 
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Chapter 6:  Supervised Classification of Parkinson’s Disease Using Shallow 

and Deep Neural Networks 

6.1  Background 

6.1.1  Convolutional Neural Network 

Evolutionary computation (EC) is a growing field having been in development since at 

least the 1960’s [129]. As the field has grown, machine learning has emerged as an extremely 

useful subset. Machine learning employs the use of algorithms in series called layers to process 

data. The most basic machine learning method known as feedforward neural networks perform a 

series of calculations to quantify the characteristics of a dataset. This artificial neural network can 

learn and make decisions on its own without human interaction [130]. With the development of 

deep networks, conventional neural networks with only a few layers became known as shallow 

networks. CNNs are a marked improvement on this paradigm being one of the best in 

understanding image content related tasks. CNNs have the ability to utilize spatial correlations 

within data being a multilayered feedforward hierarchical network [131]. Each layer performs 

convolution transformations to output features or averages the data to reduce the size and therefore 

computational requirements [132]. Using these averaging and data manipulation methods deep 

layered CNNs are able to quickly process large datasets like high resolution images. 

While deep networks with as many layers as possible seem to be the trending choice for 

increasing accuracy and performance, they also require sufficiently large datasets. For certain 

applications like medical prognoses these datasets are often difficult to obtain either because they 

require permissions from patients or because they simply do not exist as the population affected is 
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too small. An unexpected problem arises in performance when applying very deep networks to 

shallow problems. As depth increases, network accuracy becomes quickly saturated during 

training. This is indicative that the network has stopped learning and gains no benefit from further 

data in training. This phenomenon known as overfitting causes low accuracies and adding more 

layers to a model that is already deep enough to handle the input data will increase training error 

[133]. Even by copying a shallow network with higher accuracy to the deeper network, accuracy 

will not improve [134]. The idea follows then that neural network sizes must be custom fit for each 

application with no one size fits all solution. 

6.1.2  Residual Neural Network 

In an effort to reduce these difficulties in training, ResNet was proposed by He et al. 2015 

[133]. By stacking layers of residual blocks with shortcuts to skip layers 2 at a time, training was 

incredibly easy. They observed that skipping single or triple layers did not improve performance 

in the same manner, but rather than following the rule of twos was vital to lowering training and 

testing errors. It was so successful that they trained a 1001 layer network which was previously 

near impossible [135]. The original team proposed that residual units hold residual mappings 

aiding in the ability to represent identity mappings, thus decreasing degradation significantly 

[136]. Regardless of the reason, the results allow neural networks to be useful in a wider variety 

of applications. For example, ResNet can be used to predict mental disorders using data pulled 

from EEG signals. A common problem in EEG data capture is obtaining patient consent and 

sufficient patients with the disorder for analysis. Having the ability to train with relatively little 

data, ResNet provides a substantial solution for EEG analysis. Researchers have been able to 

definitively predict patients with epilepsy before symptoms appeared [137] and diagnose 

schizophrenia using small data sets from individual lobes of the patients’ brains [138]. ResNet 
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lowering training requirements has been remarkable in removing limitations for neural network 

application. 

6.2  Preprocessing 

For this phase of our research, dataset #1 described in section 4.3 was used and the same 

preprocessing steps for removing artifacts and the BSS phase were applied to the data. The data 

was then segmented into 1000 sample segments where each segment represents 2 seconds of data. 

Unlike before there is no feature extraction and all channels of the signal are used at the same time. 

Therefore, the inputs of the networks are multi-channel 2D time domain signals with the 

dimensions of 64×1000 where each row represents one ICA component. 

6.3  Classification Performance 

The focus of this work is to compare the performance of the two CNN and ResNet approach 

for the classification of PD vs HC from the EEG signals. To perform this task, different sizes for 

each network were employed to perform the classification. Since the dataset used in this study is 

comparatively small, networks with a lower number of layers achieved better overall performance.  

Table 6.1 The highest overall test accuracy of the 6-layer networks. 

Model Overall Accuracy 
(%) 

6-Layer CNN 92.26 
6-Layer ResNet with 1 
Skip Leyer 
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To investigate the sizes of the network and their effect on performance, 18 was chosen as 

the number of layers for both networks since that is the smallest prebuilt ResNet network. While 

the CNN model achieved some low classification accuracy (<70%), the ResNet would quickly get 

overfitted and was not able to produce any meaningful results. This is why the size of the networks 
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and the number of layers were reduced until the highest performance was achieved using 6-layer 

networks. 

 
 

Figure 6.1 The train and test accuracies of the 6-layer shallow CNN. 
 
 
Figure 6.1 shows the validation accuracy of the 6-layer shallow CNN over 30 epochs and 

Figure 6.2 shows the loss of this network. In both figures, the graphs for the train set and test set 

can be seen. Similarly, Figures 6.3 and 6.4 show the validation accuracy and loss of the train set 

and test set of the ResNet. Table 6.1 shows the overall accuracies of the two networks using the 

LOTO-CV approach. 

 
 

Figure 6.2 The train and test loss of the 6-layer shallow CNN. 
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The ResNets usually require large datasets that are absent in most biomedical applications 

which is why in this study, the shallow CNN approach outperformed the ResNet. Also, the idea 

behind ResNets is built on a large number of layers and it was observed that for smaller networks, 

they fail to provide acceptable results. 

 
 

Figure 6.3 The train and test accuracies of the 6-layer shallow ResNet. 
 
 
It can be seen that in ResNet, the training stops after only two or three epochs where for 

CNN it continues until around 25. This is why the test loss shown in Figure 6.2 continues to 

decrease whereas the loss shown in Figure 6.4 stops decreasing after the 2nd or 3rd epoch. 

 

 
Figure 6.4 The train and test loss of the 6-layer shallow ResNet. 
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Figure 6.5 shows the diagram of the 6-layer CNN model that was used in this section. It 

includes details such as the size of the input data, the number and type of layers, activation 

function, pooling method, etc. This model includes, 4 convolutional layers with one input and 

output fully connected layers (6 in total). 

 
 

Figure 6.5 The proposed one dimensional 6-layer shallow CNN. 
 
 
Overall, it appears that CNN can be used for EEG classification and would be able to 

achieve high performance while ResNet does not seem to be a particularly good match for this 
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type of signal. Obviously, the size of the network and the size of the dataset can have a huge effect 

on the performance, but since the datasets used in biomedical applications are generally small, 

shallow CNN methods seem to be the current best option. 

6.4  Comparison with the Proposed Method 

The results achieved by deep learning models were significantly lower than what was 

achieved using HOS features of alpha rhythm and ensemble learning. While using the LTSO-CV 

method, over 99 % accuracy was achieved. However, the accuracy reduced to 92 % while using 

LOTO-CV, which has much more flexibility. This means that the results are vastly different and 

the deep learning methods used here were not able to compete with the proposed methods. There 

are two main reasons as to why the proposed method outperformed both the CNN and the ResNet 

models. The first reason is due to the random nature of EEG signals. Therefore, networks that try 

to look for patterns within the data do not achieve good results for this type of data which is the 

main reason why the focus was on statistical analysis in this work. The second reason is the size 

of the dataset; deep learning methods require large datasets that usually do not exist in biomedical 

signal processing. To continue this research, one approach could be to focus on reinforcement 

learning which looks for long-term dependencies between the samples and is usually a good option 

for analysis of time domain data. The second approach could be to transform the dataset to a 

different domain before using deep learning methods to avoid the first problem. This issue will be 

discussed further in the future works section of the next chapter.  

6.5  Summary 

Over the past few years, deep learning algorithms including CNN and ResNet have gained 

the attention of many researchers and have been used for many different applications. Previously, 

for the proposed method, the classifiers that were employed were chosen from conventional and 
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ensemble methods. In this research, CNN and ResNet algorithms were used for the classification 

of PD vs HC and their results were compared with the proposed model. It was observed that while 

deep learning methods are able to achieve acceptable results, their accuracy is still considerably 

lower than the proposed method. This goes to show that while deep learning approaches are great 

machine learning tool, they might not be the best fit for every application. 
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Chapter 7:  Conclusion and Future Research 

7.1  Conclusion 

The diagnosis of neurodegenerative diseases has been studied for several decades. The 

methods that have been developed to aid the neurologists in the process are mostly based on the 

changes in biomedical signals caused by the symptoms of the diseases; therefore, they rely on the 

existence of the symptoms which in many cases occur after the initial phases. Using biomedical 

signals collected from the brain and using the source of the disease for classification has the 

potential for very early diagnosis. Among different methods for monitoring brain activity, EEG is 

the most popular due to its noninvasiveness and low cost.  

In this research, a hierarchical approach was taken using the EEG signals of the patients to 

diagnose PD patients from HC and then classification of stages of PD after a positive diagnosis 

was made. To improve the accuracy and the overall performance, a detailed HOS analysis of the 

EEG signals was performed and multiple classification approaches were compared. In the HOS 

analysis phase of this work, prior features used for this application and similar applications were 

analyzed and from them new HOS features were developed.  

In this study, 15 new HOS features were developed to improve the performance of the 

model based on the existing H1-H5 higher order features. The new features are calculated based on 

the complex bispectrum along with real and complex bicepstrum (instead of real bispectrum). The 

CH1-CH5 are calculated similar to H1-H5 but based on the complex bispectrum; therefore, the phase 

is also included in these features. Similarly, the RBH1-RBH5 features were calculated based on the 

real bicepstrum and the CBH1-CBH5 features were calculated based on the complex bicepstrum of 
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the signals. There are very few features that have been defined in the bispectral domain and the 

characteristics of this domain have mostly been left undiscovered. The developed features 

improved the accuracy of classification in this study; however, they are statistical features that may 

have applications in other areas as well, therefore more in-depth studies are needed to uncover 

their applications in other areas. 

The performance of the classifiers confirms the advantages of using HOS features, 

especially the developed bicepstral RBH features in the classification of PD; also, it can be seen 

that they have the highest performance when they are extracted from the alpha rhythm which 

proves our assumption that not all the frequencies of the EEG signals contribute to the 

classification of PD. The other frequency components act as unwanted signals that can reduce the 

classification performance. As it was mentioned, several studies have pointed to the irregularity of 

alpha rhythm in PD patients [99, 100]; in this study, it was shown that those changes can be 

quantified by using HOS features where they can be used for the classification of PD. The existing 

features that were selected for this study have all been previously used for the classification of 

EEG signals either for diagnosis of PD or other diseases. 

It was observed that the performance of the classification using the HOS features from 

alpha rhythm was higher for male subjects compared to females, where the algorithm was able to 

classify all data points accurately for 11 of the 18 male test pairs compared to 2 out of 10 female 

test pairs. According to a study conducted by Barry et al. [139] in the alpha band, the spatial and 

temporal correlation is higher in male subjects compared to female subjects, which explains why 

for the alpha band, the proposed algorithm had a higher performance for male subjects. The results 

achieved from the beta band were different, where the classifiers were able to classify all data 

points accurately for 9 out of 10 female test pairs compared to 13 out of 18 for male test pairs. 
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While the Bagged DT ensemble had the highest performance for the alpha band, AdaBoost DT 

ensemble had the highest performance for all bands and beta band. By comparing the proposed 

method with the current state-of-the-art methods, it was observed that for this application HOS 

analysis of the alpha band yields better results compared to other methods. In the classification of 

the stages of PD, 6 classifiers were employed, 3 of which were ensemble classifiers. The KNN 

both as an individual classifier and the ensemble gave the lowest performance compared to other 

methods. SVM as a single classifier had higher overall performance compared to DT; however, 

the DT ensembles were able to achieve much higher performance. The highest performance was 

achieved by RUSBoosted trees ensemble classifier. RUSBoost is a hybrid sampling/boosting 

algorithm that aims to achieve higher performance for datasets with the class imbalance problem 

[122].  

One important issue regarding the previous studies conducted on applications of HOS 

analysis of EEG signals is that due to mathematical and computational complexity, there is little 

focus on the features themselves and the rationale behind the higher order features are rarely 

investigated individually. In this study, a detailed investigation of each of the features was 

conducted which had been missing in previous works. It should also be noted that HOS analysis 

has several main disadvantages; besides the computational complexity, increasing the order of the 

spectrum will increase the dimension.  This new dimension will help us in finding new features, 

however by adding a dimension to the spectrum the computational burden will increase drastically. 

Therefore, an initial analysis of lower order statistics along with a detailed analysis of each HOS 

feature is crucial for this task. In this research, temporal, spectral, and cepstral statistical analyses 

of different orders, not only higher orders but also the lower orders were performed and each of 

the proposed HOS features was carefully analyzed before being used in the proposed model. This 
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is one of the main reasons why the proposed model was able to achieve very high performance 

compared to other state-of-the-art methods. 

7.2  Future Research 

One of the main issues in many areas of biomedical signal processing is the limited access 

to data which usually results in smaller datasets. There is currently no standardized dataset for 

EEG of neurodegenerative diseases, which means the experiments are conducted on different 

datasets; this, in turn, reduces the efficacy and reliability of comparisons between methods. 

Creating a unified dataset that can be used to compare methods would greatly improve the accuracy 

and credibility of methods developed in this area. 

As it was mentioned, one of the advantages of the proposed method is the ability to be 

expanded to other neurodegenerative diseases. Similar to PD, irregularities have been observed in 

several other neurodegenerative diseases. Thus, investigating similar properties for other 

neurodegenerative diseases allow this model to be expanded to other neurodegenerative diseases. 

7.2.1  Higher Order Statistic in Electroencephalography 

The general interest in HOS analysis has increased over the past 20 years and yet many 

applications of this field are yet to be discovered. As it was mentioned the application of HOS 

analysis in EEG signal processing can be divided into three main categories. In the first category, 

one of the most beneficial algorithms is WICA. This has been used for the removal of various 

artifacts in EEG in different research studies. One of the possible future developments in this 

category could be to gather this information to create a single algorithm for detecting and removing 

all types of EEG artifacts by modifying WICA or similar algorithms. The algorithm can be 

optimized before adding to EEG toolboxes for public use. The second category has the least 

number of studies available in the literature but may have the potential for the most impact in this 
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field. There are not that many algorithms developed using HOS. However, these algorithms have 

been widely used in almost every area of signal processing. One of the possible directions of this 

field in the future could be in developing better measures of non-Gaussianity or more robust 

algorithms for BSS. The rapid advancement of the field of computer science in machine learning 

coupled with the development of more innovative and robust feature selection methods will 

increase the research studies in the third category; this will result in more reliable diagnoses of 

neurological diseases and disorders. 

7.2.2  Other Applications of Higher Order Statistics 

EEG signals are not the only type of biomedical signals that have been affected by HOS 

analysis; electrocardiography, surface electromyogram (sEMG), lung sound, heart sound, bowel 

sounds, somatosensory, different medical imaging, etc. [140]. With the development of more 

capable processing units, new applications for HOS analysis are being discovered. One of the 

recent applications of HOS analysis is in speech signal processing where AlBadawy et al. [141] 

have used bispectral analysis to distinguish AI synthesized speech vs real human speech.  

Furthermore, biomedical signal processing is not the only field that has been affected. HOS 

has applications in many various areas such as lidar, radar, laser, plasma physics, seismic data 

processing, image processing, harmonic retrieval, time-delay estimation, adaptive filtering, array 

processing, blind equalization, etc. [142].  
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