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Nonlinear evolution equations widely describe phenomena in various fields of science, such as plasma, nuclear physics, chemical
reactions, optics, shallow water waves, fluid dynamics, signal processing, and image processing. In the present work, the derivation and
analysis of Lie symmetries are presented for the time-fractional Benjamin–Bona–Mahony equation (FBBM)with the Riemann–Liouville
derivatives. +e time FBBM equation is reduced to a nonlinear fractional ordinary differential equation (NLFODE) using its Lie
symmetries. +ese symmetries are derivations using the prolongation theorem. Applying the subequation method, we then use the
integrating factor property to solve the NLFODE to obtain a few travelling wave solutions to the time FBBM.

1. Introduction

Partial differential equations running into the thinking of
most of the researchers as it represented the importance in
several topics of scientific fields as mechanics, optical fibers,
medical sciences (as breast cancer), biological science, tur-
bulent bursts, and oceans waves [1–11].

+e differential model has a broad application in many
phenomena as in [12–14]. Recently, nonlinear fractional
differential equations (NLFDEs) show significantly in en-
gineering and applications of other sciences, for example,
electrochemistry, physics, electromagnetics, and signal
data processing [15–22].

Getting exact solutions for these forms of equations
became an important issue; then, most researchers try to
achieve this target. +e most effective method for
obtaining exact solutions for NLFPDEs is the Lie sym-
metry reduction method. +ere are many papers for using
Lie’s method to obtain explicit solutions for NLFPDEs
[23–26].

In our paper, we drive the symmetry vectors for the time
FBBM equation and present new closed-form solutions for

it. +e FBBM equation has many forms [27–30], and we
choose to work on the following form:

D
α
t ψ � − ψx − ψψx + ψxxt, (1)

where ψxxt is the dissipative term.
+e manuscript is prearranged as follows. In Section 2, Lie’s

group method for FPDEs is exposed. In Section 3, we apply the
Lie group reductionmethod to obtain Lie point symmetry for the
time FBBM equation (1). At the end of Section 4, we use these
similarity variables to get the reduced equation. In Section 4, we
use two methods for solving the resulting ordinary differential
equation, the first method is the subequation method and the
second method is the integrating factors method to get new
solutions that have the properties and form the travelling wave
form for the FBBME. In the end, conclusions are written in
Section 5.

2. Notations and Introductory

2.1. FractionalRiemann–LiouvilleDerivative. In this section,
we show some definitions for RL fractional derivative [31],
which can be considered as follows:
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D
α
t f �

dnf(t)

dtn
, if n � α, n ∈ N,

dn

dtn
I

n− α
f(t), if 0≤ n − 1< α< n, n ∈ N,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

I
n− α

f(t) �
1
Γ(n − α)

􏽚
t

0
(t − s)f(s)ds, n> 0,

(3)

where Dα
t is the total differentiation of integer number of

orders α, (α> 0), the Gamma function is Γ(n − α), and
Inf(t) is the (RL) fractional integral of an order of n.

Definition 1. +e partial derivative of order α for Rie-
mann–Liouville definition is presented by

z
α
t �

znf

ztn
, n � α,

zn

ztn

1
Γ(n − α)

􏽚
t

0
(t − s)

n− α− 1
f(s, x)ds, 0≤ n − 1< α< n.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

2.2. Notations for Lie Symmetry Reduction Method for the
Time FPDEs. In this section, we show in detail the main
notations and definitions that will be used for obtaining the
symmetries of NLFPDEs.

Here, we will consider timing NLFPDEs of the form
[31–33]

z
α
t ψ � F t, x,ψ,ψx,ψxx( 􏼁, (0< α≤ 1). (5)

Assume, equation (2) has a Lie vector X in the form

X � ξ1(x, t, u)
z

zx
+ ξ2(x, t, u)

z

zt
+ η(x, t, u)

z

zu
, (6)

where ξ1, ξ2, and η can be called as the infinitesimals of the
transformations the independent and the dependent
variables (x, t,ψ) , respectively. Let a one-parameter Lie
algebra of infinitesimal transformations be of the fol-
lowing form:

t � t + εξ2(t, x,ψ) + O ε2􏼐 􏼑,

x � x + εξ1(t, x,ψ) + O ε2􏼐 􏼑,

ψ � ψ + εη(t, x,ψ) + O ε2􏼐 􏼑,

zαψ
zt

�
zαψ
ztα

+ εη0α(t, x,ψ) + O ε2􏼐 􏼑,

zψ
zx

�
zψ
zx

+ εηx
(t, x,ψ) + O ε2􏼐 􏼑,

z3ψ
zx2zt

�
z3ψ

zx2zt
+ εηxxt

(t, x,ψ) + O ε2􏼐 􏼑,

(7)

where ε « 1 can be defined as a group parameter, in most
cases we take it equal one. +e explicit expressions of
ηx , ηxx , and ηxxt , which can be called the prolongation of
the infinitesimals and are given by

ηx
� Dx(η) − ψxDx ξ1􏼐 􏼑 − ψtDt ξ2􏼐 􏼑,

ηxx
� Dx ηx

( 􏼁 − ψxtDx ξ1􏼐 􏼑 − ψxxDt ξ2􏼐 􏼑,

ηxxt
� Dx ηxt

􏼐 􏼑 − ψxxxDx ξ1􏼐 􏼑 − ψxxtDx ξ2􏼐 􏼑,

(8)

where Di is the total differentiation operator [34] with re-
spect to the independent variables xi (i� 1, 2, then
x1 � x, x2 � t):

Di �
z

zxi
+ 􏽘

q

α�1
ψα

i

z

zψα + 􏽘

p

j�1
􏽘

q

α�1
ψα

ji

z

zψα
j

+ · · · + 􏽘

p

j1�1
· · · 􏽘

p

jn− 1

􏽘

q

α�1
ψα

j1,...,jn− 1i

z

zψα
1,...,jn− 1i

. (9)

Theorem 1. Equation (1) concedes a one-parameter group of
infinitesimal transformations in equation (2) with the Lie
Vector X if and just if the accompanying infinitesimal con-
ditions hold:

Pr(α,3)
X(Δ)|Δ�0 � 0, (10)

where Δ � Dα
t u − F(t, x, u, ux, uxx, . . . . . .) and Pr is the 3rd

prolongation of the infinitesimal generator X.

Definition 2. Prolonged vector is given by [31]

Pr(n)
X � X + 􏽘

p

i�1
􏽘

q

α�1
ξαi

z

zuα
i

+ · · · + 􏽘

p

j1�1

· · · 􏽘

p

jn�1
􏽘

q

α�1
ξαj1,....,jn

z

zuα
j1 ,....,jn

,

(11)

where q is the numbers of dependent variables, p is the
numbers of independent variables, z/zuα

j1
� z/zuα

x, and PDE
involve derivatives up to order n. Also, the invariance
condition [35] gives

ξ2(t, x, u)|t�0 � 0. (12)

+e αthextended infinitesimal, which deals with frac-
tional derivatives, has the following form [36–38]:
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η0α �
zαη
ztα

+ ηu − αDt ξ2􏼐 􏼑􏼐 􏼑
zαu

ztα
− u

zαηu

ztα
+ μ − 􏽘

∞

n�1

α

n

⎛⎝ ⎞⎠D
n
t ξ1􏼐 􏼑D

α− n
t ux( 􏼁 + 􏽘

∞

n�1

α

n

⎛⎝ ⎞⎠
znηu

ztn
−

α

n + 1
⎛⎝ ⎞⎠D

n+1
t ξ2􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦D

α− n
t (u)⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(13)

where

μ � 􏽘
∞

n�2
􏽘

n

m�2
􏽘

m

k�2
􏽘

k− 1

r�2

α

n

⎛⎝ ⎞⎠
n

m

⎛⎝ ⎞⎠
k

r

⎛⎝ ⎞⎠
1
k!

tn− α

Γ(n + 1 − α)
[− u]

r zm

ztm
u

k− r
􏽨 􏽩

zn− m+k

ztn− mzuk
.

(14)

Remember that
α

n

⎛⎝ ⎞⎠ �
(− 1)n− 1αΓ(n − α)

Γ(n − α)Γ(n + 1)
. (15)

Due to linearization of the infinitesimal η in u and the
presence of zkη/zψk, μ will vanish, where k≥ 2 in equation
(14).

Lemma 1. Ee function ψ � θ(x, t) can be defined as an
invariant solution of (2) if and only if

(i)ψ � θ(x, t) is an invariant surface of equation (2)
(ii)ξ2(x, t, θ)θt + ξ1(x, t, θ)θx � η(x, t, θ)

3. Lie Symmetry and Reduction of
FBBM Equation

In this partition, the Lie symmetry reduction method was
applied to find the similarity variables for a one-dimensional
time (FBBM) equation. Suppose that (1) is an invariant
under (2); we have that

ψα
t + ψψx + ψx − ψxxt � 0. (16)

+us, ψ(x, t) satisfies equation (1). Applying the third
prolongation to (1), we have the accompanying deciding
condition, which is given as

η0α + ψxη +(ψ + 1)ηx
− ηxxt

� 0. (17)

Substituting (7) and (8) into (16) and equaling coeffi-
cients in derivatives for x and power of u to zero, the system
of equations is obtained:

α

n
􏼠 􏼡z

n
t ηψ −

α

n + 1
􏼠 􏼡D

n+1
t ξ2􏼐 􏼑 � 0, n � 1, 2, 3 . . . .,

ξ2ψ � ξ2x � ξ1ψ � ξ1t � ηψψ � 0,

(1 − α)ξ2t + 2ξ1x � 0,

ψηx − ηxxt + z
α
t η − ψz

α
t ηψ + ηx � 0,

2ξ1xt − ηtψ � 0.

(18)

By solving the obtained equations in (18), we get the
following infinitesimal:

ξ1 � c1 +(α − 1)c2x,

ξ2 � 2c2t,

η � − (α + 1)c2(ψ + 1),

(19)

where c1 and c2 are constants. By the previous infinitesimal,
equation (1) has two vector fields in the form

X1 �
z

zx
, (20a)

X2 � (α − 1)x
z

zx
+ 2t

z

zt
− (α + 1)(ψ + 1)

z

zψ
. (20b)

Case 1. For the infinitesimal generator in (20a), we have a
characteristic equation in the following form:

dx

1
�

dt

0
�

dψ
0

. (21)

By solving the previous equation, we get the variables t

and ψ. Putting ψ � f(t) into (1), we obtain the following
fractional ODE:

D
α
t f(t) � 0. (22)

By solving the above equation, we obtain

ψ � a1t
α− 1

, (23)

where a1 is constant of integration.

Case 2. For X2 in equation (20b), the similarity variables for
the infinitesimal generator X2 can be obtained from the
equation:

dx

(α − 1)x
�
dt

2t
� −

dψ
(α + 1)(ψ + 1)

. (24)

+e previous equation is called the characteristic
equation; by solving it, we have the similarity variable as a
result in the form:

ξ � xt
− ((α− 1)/2)

. (25)

+e group invariant solution

ψ(x, t) � t
− ((α+1)/2)

f(ξ) − 1 � g(ξ) − 1, (26)

where f(ξ) is a new arbitrary function of ξ and
g(ξ) � t− ((α+1)/2) f(ξ).By using equation (26), equation (1)
is transformed into FODE.

Theorem 3. Ee transformation in (25) and (26), which is
obtained from the similarity group method, reduces equation
(1) to NLFODE as below:

Complexity 3



P
(1/2)−(3α/2),α
2/α− 1 f􏼐 􏼑(ξ) −

t(α+1)/2

Γ(1 − α)
+

− 3
2
α +

1
2

􏼒 􏼓fξξ −
1
2
α −

1
2

􏼒 􏼓fξξξ � 0.

(27)

Using the operator EK fractional differential operator
[32, 34],

P
ξ2 ,α
β f􏼒 􏼓(ξ) � 􏽙

n− 1

j�0
ξ2 + j −

1
β

d

dξ
􏼠 􏼡 K

ξ2+α,n− α
β f􏼒 􏼓(ξ), (28)

n �
[α] + 1, α≠N,

α, α ∈ N,
􏼨 (29)

where

K
ξ2 ,α
β f􏼒 􏼓(ξ) �

1
Γ(α)

􏽚
∞

1
(ψ − 1)

α− 1ψ− ξ2+α( )f ξψ1/β
􏼐 􏼑dψ, α> 0,

f(ξ), α � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(30)

Proof. Let n − 1< α≤ 1, n � 1, 2, 3, 4, . . . Depending on the
Riemann–Liouville (RL) derivatives, definitions, and simi-
larity variables in (25) and (26), we obtain

D
α
t g(ξ) �

zn

ztn

1
Γ(n − α)

􏽚
t

0
(t − s)

n− α− 1
s

− ((α+1)/2)
f xs

((1− α)/2)
􏼐 􏼑ds􏼢 􏼣.

(31)

Let v � t/s and ds � − (t/v2)dv. +us, (31) becomes

D
α
t g(ξ) �

zn

ztn
t
n− ((3α+1)/2) 1

Γ(n − α)
􏽚
∞

1
(v − 1)

n− α− 1
􏼢

· v
− (n+((− 3α+1)/2))

f ξv
(α− 1/2)

􏼐 􏼑dv􏽩.

(32)

Substitute the EK fractional operator in (30) into (32), we
have

D
α
t g(ξ) �

zn

ztn
t
n− ((3α+1)/2)

K
(1− α)/2,n− α
(2/α− 1) f􏼐 􏼑(ξ)􏽨 􏽩. (33)

For simplicity, let ξ � xt− ((α− 1)/2) and ϕ ∈ (0,∞); we
acquire.

t (z/zt)ϕ(ξ) � tx(− ((α − 1)/2))t− ((α− 1)/2)− 1 ϕ′(ξ) � −

((α − 1)/2)ξ(z/zξ)ϕ(ξ). Hence, equation (33) will be re-
written as

zn

ztn
t
n− ((3α+1)/2)

K
(1− α)/2,n− α
2/(α− 1) f􏼐 􏼑(ξ)􏽨 􏽩

�
zn− 1

ztn− 1
z

zt
t
n− ((3α+1)/2)

K
(1− α)/2,n− α
2/(α− 1) f􏼐 􏼑(ξ)􏽨 􏽩􏼢 􏼣

�
zn− 1

ztn− 1 t
n− ((3α+1)/2)− 1

n −
3α + 1

2
􏼒 􏼓 −

(α − 1)

2
ξ

z

zξ
􏼠 􏼡􏼢

· K
(1− α)/2,n− α
2/(α− 1) f􏼐 􏼑(ξ)􏽩.

(34)

Repeating n − 1 times, we have
zn

ztn
t
n− ((3α+1)/2)

K
(1− α)/2,n− α
2/(α− 1) f􏼐 􏼑(ξ)􏽨 􏽩

�
zn− 1

ztn− 1
z

zt
t
n− ((3α+1)/2)

K
(1− α)/2,n− α
2/(α− 1) f􏼐 􏼑(ξ)􏽨 􏽩􏼢 􏼣

�
zn− 1

ztn− 1 t
n− ((3α+1)/2)− 1

n −
3α + 1

2
􏼒 􏼓 −

(α − 1)

2
ξ

z

zξ
􏼠 􏼡􏼢

K
(1− α)/2,n− α
2/(α− 1) f􏼐 􏼑(ξ)􏽩

⋮

� t
− ((3α+1)/2)

􏽙

n− 1

j�0
j −

3α − 1
2

􏼒 􏼓 −
(α − 1)

2
ξ

z

zξ
􏼠 􏼡􏼢

K
(1− α)/2,n− α
2/(α− 1) f􏼐 􏼑(ξ)􏽩.

(35)

Using the definition of EK fractional differential oper-
ator in (28) to rewrite (35), we obtain

D
α
t g(ξ) � t

− (3α+1)/2
P

(−(3α+1))/2,α
2/(α− 1) f􏼐 􏼑(ξ). (36)

□

Remark 1. +e fractional derivative must achieve the line-
arization property [37, 39]:

D
α
t (h(t) + k(t)) � D

α
t (h(t)) + D

α
t (k(t)), (37)

D
α
t t

c
�
Γ(c + 1)tc− α

Γ(c − α + 1)
, c> α − 1. (38)

Using the invariant group solution in (26), (37), and
(38), we obtain

D
α
t ψ(x, t) � D

α
t g(ξ) − D

α
t (1). (39)

Hence,

D
α
t ψ(x, t) � t

− (3α+1)/2
P

(−(3α+1))/2,α
(2/α− 1) f􏼐 􏼑(ξ) −

t− α

Γ(1 − α)
.

(40)

+us, (1) can be reduced to

P
(1/2)− (3α/2),α
2/(α− 1) f􏼐 􏼑(ξ) −

t(α+1)/2

Γ(1 − α)
+

− 3
2
α +

1
2

􏼒 􏼓fξξ

−
1
2
α −

1
2

􏼒 􏼓ξfξξξ � 0,

(41)

and the theorem is totally proofed.

4. Explicit Solutions for FBBM Equation

4.1. Clarifications for the Subequation Method. +e sub-
equation method [39] is presented in this section. Consider
the NLFPDE in the form

4 Complexity



P ψ,ψt,ψx, D
α
t ψ, D

α
xψ, . . . ,( 􏼁, (0< α≤ 1), (42)

where ψ is a dependent variable, P is a series of ψ and its
fractional derivatives, and Dα

t ψ andDα
xψ are the Rie-

mann–Liouville (RL) derivatives of ψ w.r.t t andx. Here, we
present the principles for the subequation technique. By
using the d’Alembert transformation,

ψ(x, t) � ψ(ζ), ζ � x + ct, (43)

where c is constant that will be determined later, and we can
rewrite (41) as NLFODE:

P ψ, cψ′,ψ″, c
α
D

α
ζ ψ, D

α
ζ ψ, . . . ,􏼐 􏼑, (0< α≤ 1). (44)

According to the subequation procedure, assume that
the wave solution will be written in the following form:

ψ(ζ) � a0 + 􏽘
n

i− 1
aiϕ(ζ)

i
, (45)

where ai, ( i � 1, . . . , n) are constants, which will be deter-
mined later, n belongs to integers numbers, which are de-
termined by equaling the highest order derivatives and
nonlinear terms in (44) together, and the functionϕ(ζ)

achieves the Riccati equation of fractional order

D
α
ζ ϕ(ζ) � σ + ϕ(ζ)

2
, (46)

where σ is a constant. Some trigonometric solutions of the
fractional Riccati equation (46) are

ϕ(ζ) �

−
���
− σ

√
tan hα(

���
− σ

√
ζ), σ < 0,

−
���
− σ

√
cot hα(

���
− σ

√
ζ), σ < 0,

��
σ

√
tanα(

��
σ

√
ζ), σ > 0,

−
��
σ

√
cotα(

��
σ

√
ζ), σ > 0,

− Γ(1 + α)

ζα + w
, w � constant, σ � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(47)

By substituting forms (45) into (44) and setting the
coefficients of ϕ(ζ) to be zero, we obtain an algebraic system
in ai, ( i � 1, . . . , n)and c. By solving the determinate system,
we obtain the constants ai, ( i � 1, . . . , n) and c. Substituting
these constants and the solutions of (47) into (45), we obtain
the closed form solutions of (42).

4.2. Applying the Subequation Method to the Time FBBM
Equation. We now implement a subequation method to (1).
We will use the transformation

ψ(x, t) � ψ(ζ), ζ � x + ct, (48)

where c is a constant, and this will transform (1) into an
NLFODE:

c
α
D

α
ζ ψ � − ψζ − ψψζ + Cψζζζ . (49)

We now assume that (49) has the solution in the form

ψ(ζ) � a0 + 􏽘

n

i− 1
aiϕ(ζ)

i
, (50)

where ai (i� 1, ..., n) are constants, which will be determined,
and ϕ(ζ) achieves equation (46).

Balancing the highest order derivative terms with
nonlinear terms in equation (49), we obtain n� 2. Hence,

ψ(ζ) � a0 + a1ϕ(ζ) + a2ϕ(ζ)
2
. (51)

We then substitute (51) along with (46) into (49), then
collect the coefficients of ϕ(ζ), and set them to equal zero. A
set of algebraic equations are obtained in knowns c,
a0, a1, and a2. Solving these algebraic equations with the
help of the software program (Maple), we get the following
values.

+us, from (47), we obtain five forms of explicit trav-
elling wave solutions of (1), namely,

c �
1
12

σ,

σ � σ,

a0 � − c
α

− 1 +
2
3
σ2,

a1 � 0,

a2 � σ.

(52)

+us, from (47), we obtain five forms of explicit trav-
elling wave solutions of (1), namely,

ψ1(x, t) � a0 + σ −
���
− σ

√
tan hα(

���
− σ

√
(x + ct))( 􏼁

2
, σ < 0,

(53)

ψ2(x, t) � a0 + σ −
���
− σ

√
cot hα(

���
− σ

√
(x + ct))( 􏼁

2
, σ < 0,

(54)

ψ3(x, t) � a0 + σ
��
σ

√
tanα(

��
σ

√
(x + ct))( 􏼁

2
, σ > 0, (55)

ψ4(x, t) � a0 + σ −
��
σ

√
cotα(

��
σ

√
(x + ct))( 􏼁

2
, σ > 0, (56)

ψ5(x, t) � a0 + σ
− Γ(1 + α)

(x + ct)α + w
􏼠 􏼡

2

, σ � 0, (57)

where a0 is arbitrary constant. We plot the result in equation
(57) in the three dimensions, contour plot, and density plot,
as shown in Figures 1–3, respectively.

4.3. Applying Simple Transformation. We solve the con-
formable FBBM equation using simple transformation to
change the fraction order in partial derivative to nonsolvable
ODE. For the reduction of (1) to ODE, we use the following
transformation:

Complexity 5



ψ(x, t) � ψ(ζ), whereζ � vx − k
tα

α
, (58)

where v and k are arbitrary constants; we can rewrite (1) as
NLODE:

kv
2ψζζζ � (k − v)ψζ − vψψζ . (59)

+is equation has no implicit solution but possesses two
integrating factors. We apply the integrating factor tech-
nique to obtain an analytical solution for (59).

Equation (59) has two integrating factors (IF) as
follows:

μ1 � ψ(ζ),

μ2 � 1.
(60)

Using these integrating factors by the same steps in [39]
and neglecting the constants of integration, equation (59)
will be reduced to

3kv
2 ψζ􏼐 􏼑

2
� 3(k − v)ψ2

− vψ3
. (61)

By solving this equation, we obtain travelling wave so-
lution for (1):

ψ(ζ) �
1
v

3 − v tan
1
2

�������
− k2 + kv

√
(− ζ + c)

kv
􏼠 􏼡

2
⎛⎝⎛⎝

+ k − v + k tan
1
2

�������
− k2 + kv

√
(− ζ + c)

kv
􏼠 􏼡

2
⎞⎠⎞⎠.

(62)

Figure 3: Density plot of (57) at σ � 10 and α � 0.75.
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Figure 1: 3D plot for (57) with σ � 10 and α � 0.75.
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Figure 2: Contour plot of (57) at σ � 10 and α � 0.75.
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Figure 4: ψ(x, t) at c � 1, v � − 1, k � 1, and α � 0.4, 0.9.
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Replacing ζ � vx − k(tα/α),

ψ(x, t) �
1
v

3 − v tan
1
2

�������
− k2 + kv

√
− vx + k tα/α( ) + c( )

kv
􏼠 􏼡􏼠 􏼡

2
⎛⎝

+ k − v + k tan
1
2

�������
− k2 + kv

√
− vx + k tα/α( ) + c( )

kv
􏼠 􏼡

2
⎞⎠.

(63)

In other manner, equation (59) have two Lie vectors.+e
first one of them reduces it to

frr �
− fr( 􏼁

2

f
−

− k + v + kr

kv2f
, where, f � ψζ , r � ψ. (64)

Equation (64) has closed form solution, but, in the back
substitution step, we are unable to get ψ(x, t) even if we
neglect the values of constants. So, from here, we can say the
integrating factor method for reducing and solve ODEs,
occasionally, more effectiveness than the Lie reduction
method. Result obtained in (63) is plotted in Figure 4 at
different values of α. We observe that, by decreasing the
value of α, the top of the wave has a parabolic shape.

Comparing our result in (63) with results in [5], specially
equation (17), we find that the two solutions are travelling
wave solutions, but the amplitude and direction of flow are
different.

5. Conclusions

In this paper, we show the importance and the effective of
the Lie symmetry reductionmethod on the FBBM equations.
We obtain time FBBM equation’s Lie symmetry generators
and then reduce the equation to FODE using these sym-
metry vectors. +e projected analysis is extremely effective
and dependable for getting similarity solutions for fractional
differential equations. New travelling solutions were derived
for the FBBM equation using the subequation method.
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