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Abstract

This dissertation presents high-performance transmission lines, antennas, and phased ar-

rays with novel packaging techniques by harnessing design flexibilities of additive manufacturing

(AM). AM enables realizing multilayered RF electronics with complex geometrical structures that

are not practical using conventional fabrication methods. Design flexibilities offered by AM as cus-

tomized dielectric shapes/thicknesses, dielectric properties, metallization on conformal surfaces,

and structural packaging are harnessed for multilayered RF applications. Although several works

demonstrated the viability of AM for antenna realizations, its capability for addressing the needs

of wideband, high radiation efficiency antenna systems packaged with active RF circuit compo-

nents remains relatively unexplored. The first major contribution of this dissertation is the 3D

printed wideband high-efficiency dual-polarized stacked patch antenna with embedded Monolithic

Microwave Integrated Circuit (MMIC) switch. Specifically, dual-polarized antenna bandwidth is

enhanced to cover the entire Ku-band by resorting to stacked patch layers, customizing substrate

thicknesses, and infill ratios. Switch integration to select polarization is performed with 3D vertical

transitions to achieve high return loss and small packaging. To retain a high radiation efficiency and

enable future antenna array applications, a detailed investigation is also carried out to maximize the

performance ofmicrostrip feed lines by adjusting the substrate thickness, infill ratios, and deposition

directions. The presented Ku-band antenna consists of five conductive and eight dielectric layers

realized with a single AM platform and offers state-of-the-art performance. Specifically, to the best

of our knowledge, the dissertation demonstrates the lowest attenuation in the literature for a fully

printed microstrip line with 0.25 dB/cm measured insertion loss at 18 GHz. The antenna operates

with more than 80% radiation efficiency and 45% impedance bandwidth. The antenna retains a

vii



low cross-polarization ratio of 20 dB due to 3D feed line transitions and symmetric location of the

embedded switch with respect to the antenna feed points.

Wideband aperture-patch antenna using DDM can be extended to phased array antennas

installed on small or conformal platforms, which requires low back radiation and structurally

integrated electronics compared to traditional bulky packaging. The second major contribution of

this dissertation the demonstration of an X-band phased array antenna element with an embedded

cavity and a MMIC phase shifter. Printing direction should be from base to the antenna to allow

for printing on planar/conformal platforms. The cavity is embedded under the coupling aperture to

increase the front-to-back ratio. A MMIC phase shifter in QFN package is fully embedded inside

the substrate for packaging within a small unit cell. For characterization, the embedded microstrip

feed line is transitioned to exposed CPW using selective FDM technique. The antenna exhibits

81% radiation efficiency (excluding IC loss) and 23% impedance matching bandwidth without

the phase shifter. Embedded cavity over the coupling aperture of the patch antenna increases the

front-to-back ratio to >20 dB. Return loss of the antenna with phase shifter is more than 10 dB

within the operating bandwidth for different phase shifter states. The phased array antenna element

is suitable for half-wavelength spacing. The design is implemented to a 2×2 sub-array with the

addition of layers and shift registers to perform the signal, control, and bias line routing.

Microdispensed transmission lines (TLs) are known to show high conductor losses at

microwave frequencies due to the low conductivity of silver inks and pastes, non-uniform cross-

sections, and high surface roughness. Recently, laser micromachining has been introduced as a

technique to improve the conductivity of coplanar waveguide (CPW). By laser micromachining

the slots of the CPW, smoother, and highly conductive signal trace and ground plane edges have

been obtained and shown to enhance effective conductivity. So far, this enhancement has only been

shown with CPW. Since conductor loss depends on the TL type and geometry, the effect of laser

micromachining on other TL types should be investigated. The third major contribution of this

dissertation is the demonstration of laser micromachining for microstrip and grounded coplanar

waveguide (GCPW) for the first time, and improvement of their conductivities within the 1 GHz –

viii



30 GHz frequency range. Specifically, laser micromachining is shown to decrease insertion loss at

30 GHz by 0.18 dB/cm and 0.29 dB/cm for the microstrip and GCPW, respectively, when the TLs

are over a 254 micrometer thick substrate 3.6 dielectric constant. Effective conductivity of laser

micromachined microstrip line and GCPW are extracted as 5 MS/m and 12.5 MS/m at 30 GHz,

respectively. It is shown that GCPW benefits from laser micromachining the most due to higher

current concentration at the signal trace edges. Narrower lines are also shown to improve the most

with laser micromachining.

ix



Chapter 1: Introduction

Additive manufacturing (AM) is the fabrication process of building an object layer by

layer from a CAD file. With the development of high precision, multimaterial machines, AM

provides many advantages and design flexibilities for RF and antenna engineers [1]. For instance,

complex geometries that are not practical with traditional fabrication techniques can be fabricated

easily using AM. To use traditional fabrication techniques, a complex structure should be split

into many parts, drilled or laser-machined, and assembled with screws. AM provides one-piece

(monolithic) realization and increases accuracy for high frequency devices. AM techniques such

as stereolithography (SLA) can be used to achieve lightweight antennas. For multilayer/multi-

material structures, AM offers design flexibilities in terms of custom layer thicknesses, custom

shapes such as inclined surfaces and custom material properties. Laminates from the vendors are

only available in limited thicknesses and dielectric properties. However, any layer thickness can be

realized with AM. The dielectric constant and loss tangent can be lowered by selecting a low infill

ratio, which also results in a lightweight structure. Besides, traditional fabrication methods such

as photolithography require many fabrication steps and platforms. Monolithic fabrication with

AM simplifies the fabrication process and cost. AM can also be used to fabricate over conformal

platforms, while it is not possible with conventional fabrication techniques.

The following section explains and compares various additive manufacturing techniques

used for realizing antennas and antenna arrays. A literature review of antennas using additive

manufacturing is discussed in Section 1.2. Section 1.3 details the motivation and research focus of

this dissertation. The contributions of this dissertation are listed in Section 1.4.
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1.1 Additive Manufacturing Techniques

The best suitable technique for the fabrication of an antenna can be decided based onmaterial

selection, shape, and precision requirements. SLA, binder jetting, selective laser sintering (SLS)

and selective laser melting (SLM) are the best techniques for realizing antennas with complex

geometries, while inkjet printing, aerosol jet printing, fused deposition modeling (FDM) and

micro-dispensing are suitable for multilayer antennas.

SLA builds the structure layer by layer with a photochemical process, forming polymers

from photopolymer resin with UV laser. SLA is an inexpensive high precision technique and can

be used to realize arbitrary shapes. It also provides smooth surface finish, which is important for

high frequency antennas. However, it requires additional fabrication steps such as copper coating

for metallization. In addition, SLA is not suitable for multilayer antennas. It is not possible to

integrate with other AM techniques on a single platform as the structure is built inside a vat filled

with photopolymer resin. Binder jetting uses binders to selectively bind the powder to build the

structure. The powder can be metal, polymer, or ceramic for binder jetting. Selective laser sintering

(SLS) and selective laser melting (SLM) are other AM techniques using powder. SLS and SLM use

laser to sinter/melt the powder together. Material of SLS is polymer powder, while metal powder

is used for SLM. Binder jetting, SLS and SLM can be used to achieve high precision and complex

geometries. However, it results in a rough surface finish and generally requires post-processing such

as electroplating to achieve smooth surfaces. These techniques are also not suitable for integration

with other AM techniques and multilayer structures for the same reasons mentioned for SLA.

For multilayer structures, inkjet and aerosol jet printing can be utilized. Both techniques

are multimaterial and use dielectric and metallic inks (such as silver nanoparticle inks - also known

as SNP). Although, dielectric inks have significantly higher losses compared to thermoplastic

polymers used by FDM. Layer thickness with these techniques are typically less than 10 µm. Thick

substrates require many passes and curing/drying in between certain number of passes, therefore

not practical. Host substrates such as liquid crystal polymer (LCP) or printed substrates with FDM

are used for thick dielectric substrates. These techniques provide small feature size and they are
2



suitable for high frequency applications. FDM is the process of extruding heated thermoplastic

filament through a nozzle to build the object layer by layer. It is a very inexpensive method

compared to other AM techniques. It allows realizing thin to thick layers. Dielectric properties

of the printed substrates can be modified by simply changing the infill ratio of the layers. This

technique is also suitable for integration with other AM techniques. However, the surface profile

is rough and wavy/bumpy due to under/over extrusion of filaments, and feature size is limited by

the nozzle diameter. Microdispensing can be used to realize dielectric and metallic patterns on a

surface. Material selection is not as limited as inkjet/aerosol jet printing as inks or pastes with high

viscosity can also be printed with this technique. Micro-dispensing can be easily integrated with

other AM techniques such as FDM. However, precision mostly depends on the nozzle diameter.

Conductivity at higher frequencies can also be a problem as the printed lines have tapered edges.

Direct digital manufacturing (DDM) is an additive manufacturing (AM, three-dimensional

(3D) printing) technique that builds an object layer-by-layer based on 3D geometry model. The

object is realized from a CAD file and does not require significant human interaction or special tools

such as masks. The whole process is performed on a single platform in one process. Therefore,

there is not additional post-processing on another platform, which increases the fabrication time

and complexity. It can combine multiple AM techniques such as FDM for dielectric layers and

micro-dispensing for metallization to realize multilayer structures. In addition, micro-machining

methods such as laser or micro-milling can be integrated for high precision and high frequency

techniques. Laser micro-machining can provide higher conductivity by printing wider lines then

cutting the edges [2]. This turns the low-density tapered edges to very dense high conductivity

sharp edges where the current is concentrated at high frequencies. It can also be used to achieve

small less than 100 µm gaps. DDM offers design flexibilities for multilayer devices such as custom

thicknesses, shapes, and material properties. In addition to these, it can be used for packaging

or embedding of MMIC/ICs and integrated with pick and place machines for a fully automated

process.
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1.2 Additively Manufactured Antennas

Additively manufactured antennas can be divided into two main categories, which are

antennas with complex geometries (or 3-D antennas) and multilayer antennas. 3-D antennas are

mostly made of a single material. They are either directly manufactured from metal or fabricated

as polymer then plated for metallization. Multilayer antennas are formed of dielectric and metal

layers. DDM or hybrid methods can be used to realize these antennas. Hybrid methods are a

combination of AM and traditional fabrication techniques. Traditional methods are mostly utilized

for metallization to achieve higher conductivity than AM provides.

1.2.1 Antennas with Complex Geometries

3-D antennas with complex geometries can provide better antenna performance such as

wider bandwidth or narrower bandwidth. However, these shapes are complex, costly, and not

practical with conventional fabrication methods. Recently, it has been shown that they can be easily

and cost-effectively fabricated with AM, which opens new design flexibilities for 3-D antennas.

References [3,4] demonstrate 3-D fractal antennas realizedwithAM.BeforeAM, these antennas are

not practical with traditional methods, therefore, most of the work in literature lacks experimental

verification of these antennas and are limited to design and simulation. [3] proposes a 3-D Sierpinski

fractal monopole antenna. While fractal antenna provides wider bandwidth, it is also significantly

lighter than non-fractal antenna since it uses only 25%volumeof the non-fractal design. The antenna

was fabricated using metal binder jetting since it provides higher precision and more mechanical

strength compared to other AM techniques such as SLA. After the binder jetting process, the

antenna was electroplated with copper to reduce the surface roughness. Reference [4] presents a

comparison of different AM techniques for the realization of a 3-D Hilbert fractal antenna. SLA,

SLS, and binder jetting were compared in terms of mechanical and electromagnetic properties.

SLA and plating provided the best surface finish, therefore conductivity. SLS results in better

conductivity compared to binder jetting, while both techniques are limited to frequencies below 30

GHz.
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1.2.2 Multilayer Antennas

Multilayer antennas can be examined in two categories, which are antennas using hybrid

techniques and antennas using DDM. Hybrid techniques are commonly utilized to achieve high

conductivity. One approach is to use additional fabrication techniques for metallization. [5] demon-

strates a 7.5 GHz patch antenna, which combines FDM for the antenna substrate and ultrasonically

embedded metal mesh wire for metallization. By using embedding copper meshes inside the

printed substrate, [5] achieves 5.5 dBi realized gain and 84% radiation efficiency without using

high temperature that can deform the printed thermoplastic filaments. [6] proposes a 6.4 GHz

tunable patch antenna using SLA for antenna substrate and damascene process for metallization.

First, the antenna substrate with trenches is built with SLA. Metallization is achieved by sputtering

titanium, copper, and removal of the unwanted metallization with sanding. While this technique

allows embedding chips inside the structure and customization, it adds many post-processing steps

and fabrication platforms which could cause fabrication errors due to misalignment. The inabil-

ity of forming metallization on nonplanar or conformal surfaces is another disadvantage of using

post-processing techniques. Another hybrid technique is to use a host substrate that can withstand

high curing/drying temperatures of conductive pastes and inks. [7] uses inkjet printing to realize

a 24.5 GHz Yagi-Uda antenna. SU-8 is used for the dielectric layer of the microstrip-to-slotline

transition. Each dielectric layer has 5 µm thickness and after each pass the ink should be UV-cured.

Building a thick substrate with this process would take a significant amount of time and SU-8 has

a loss tangent of 0.04. Therefore, an LCP laminate from Rogers Corp. is used as a host substrate.

For conductor layers, sintering is performed in addition to drying. As a result, 3 and 5 director

Yagi-Uda antennas have 6 and 8 dBi maximum realized gain, respectively.

Other than using post-processing for metallization or utilizing host substrates, DDM can be

used to realize multilayer antennas. [8] shows the 6 GHz half-wave dipole antenna volumetrically

embedded into the dielectric structure. It uses FDM of ABS for dielectric layers and micro-

dispensing of CB028 for metallization. The GCPW balun feed of the antenna is printed on an

inclined surface. This design reduces the proximity of the feed network to the ground plane, which
5



reduces surface wave losses and results in a compact size. Reference [9] demonstrates a 2.6 GHz

half-wavelength dipole antenna on artificial magnetic conducting (AMC). The substrates have low

infill ratios, which reduces the dielectric constant. The antenna is realized by FDM of PC for

dielectrics and micro-dispensing of silver ink for metallization. [10] also shows a 2.4 GHz inkjet

printed patch antenna using a low infill substrate. 15% higher radiation efficiency was achieved by

using a low infill antenna substrate.

1.2.3 Antenna Arrays

Additive manufacturing can be used to realize antenna arrays. [11] demonstrates a circu-

larly polarized Ku-band 8×8 corporate-fed waveguide antenna arrays by metal and plastic AM.

Mechanical and electrical properties of CNCmilling, direct metal laser sintering (DMLS) and SLA

are compared. DMLS provides high accuracy at the joints with monolithic fabrication which may

be significant for high frequency applications. [12] also shows an antenna array using DMLS. The

X-band horn antenna and patch antenna arrays are perforated to reduce the weight of the structure

without significantly affecting the antenna performance.

Investigation of additively manufactured phased array antennas is relatively unexplored.

There are only two phased arrays using AM in the literature. [13] demonstrates a polymer-based

Ku-band 4-element steerable waveguide antenna array. Polyjet printing, FDM and electroplating

are utilized for the array fabrication. [13] demonstrates the unit-cell of the first multilayer phased

array antenna using DDM, which has seven metal layers and seven substrate layers. FDM of ABS

is used for dielectric layers, while micro-dispensing of CB028 is used for metallization. While

the phased array antenna demonstrates the capabilities of AM, it operates at lower microwave

frequencies.

1.3 Motivation and Research Focus

The goal of this dissertation is to realize antennas and phased arrays with structural elec-

tronics. Multilayer antennas and phased antenna arrays using DDM are mostly demonstrated at
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lower microwave frequencies (below X-band). High frequency antenna fabrication requires high

precision in terms of dimensions and alignment. At or above X-band, the additively manufactured

multilayer antennas in literature are using hybrid fabrication (partially printed). In addition, the

antennas are not packaged with control electronics. Integration of electronics at higher microwave

frequencies remains to be a challenge due to smaller unit cell sizes. The efficiency of the multilayer

antennas and transmission lines should also be investigated and improved for higher frequencies

due to high conductive and dielectric losses compared to standard PCB fabrication. Effective RF

conductivity of conductive pastes is lower at higher microwave frequencies due to trapezoidal cross

sections and surface roughness.

To address these needs in the literature, this dissertation demonstrates X/Ku-bandmultilayer

wideband antennas and cavity-backed phased antenna array unit cells with embedded activeMMICs

by harnessing design flexibilities offered by DDM. In order to minimize feed network losses and

increase radiation efficiency, losses of planar transmission lines are minimized using additive

manufacturing and micromachining techniques.

1.4 Contributions

Previously, a Ku-band aperture-coupled single patch antenna with low-infill antenna sub-

strate [14] is presented. In [15], this antenna is extended to a dual-polarized stacked patch antenna

with polarization switch. However, this design is not suitable for 2D array applications since unit

cell size is larger than half wavelength at the center frequency. In addition, the bandwidth of the

antenna does not cover the entire Ku-band. Chapter 2 demonstrates a Ku-band dual-polarized

patch antenna with embedded MMIC switch using DDM. The antenna bandwidth covers the entire

Ku-band while providing high cross-polarization levels and isolation. MMIC switch is embedded

within the feed substrate and connected to feed lines through 3D interconnects. 3D interconnect

approach provides high return loss and smaller packaging. In order to minimize feed network

losses, microstrip line substrate designs are optimized by adjusting infill ratio and substrate thick-

ness. In addition, antenna feed design allows selecting optimum FDM directions for each feed line
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to minimize surface roughness losses. The presented Ku-band antenna consists of 13 alternating

dielectric and conductive layers realized with a single DDM platform and offers state-of-the-art

performance.

To allow platform installations and reduce back-lobe radiation of the aperture-coupled

patch antenna, we demonstrated an X-band cavity-backed wideband aperture-patch antenna with

and without the phase shifter using DDM. The antenna element is designed for phased array

applications. Therefore, an MMIC phase shifter is fully embedded into the substrate for half-

wavelength spacing. The phased array unit cell design, fabrication and experimental verification

are discussed in Chapter 3.

Higher frequency planar phased array antennas using additive manufacturing remain unex-

plored. A 2×2 sub-array with embedded control ICs is designed in Chapter 4. The phased array

unit cell in Chapter 3 is used in the array design. Shift registers are added to reduce a large number

of control and bias lines.

Conductor losses are significant additively manufactured printed transmission lines. Refer-

ence [2] uses lasermicromachining on the edges of the coplanar waveguides to increase conductivity

silver pastes at higher microwave frequencies. However, the effect of laser micromachining sig-

nificantly depends on line geometry due to skin and edge effects. In Chapter 5, the effect of laser

micromachining on microstrip lines and grounded coplanar waveguides is investigated for the first

time. Effective conductivity and line attenuations are characterized up to 30 GHz.

Chapter 6 summarizes the accomplishments of this dissertation. Based on the investigations

and observations in the dissertation, future work on the RF devices using additive manufacturing

is also discussed.
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Chapter 2: 3D Printed Wideband Multilayered Dual-Polarized Stacked Patch Antenna with

Integrated MMIC Switch

2.1 Introduction

Additive manufacturing has been established as a fabrication technique for several end-use

products and provides low-cost, lightweight, conformal solutions [1]. Compared to conventional

fabrication methods, AM/DDM does not require many fabrication steps and introduces capabilities

that are suitable to pursue innovative design solutions [16]. For RF applications, DDM enables

multilayered RF electronics with customized material properties, thicknesses, shapes, metallization

patterns and structural packaging.1 The moderate dielectric losses (∼ tan δ = 0.0075) and con-

ductivities (∼ 106 S/m) of materials employed in the DDM processes have motivated researches

to pursue antenna and transmission line designs operating at frequencies ranging from low GHz to

mm-wave bands. Recent literature has investigated DDM of antennas and demonstrated that fully

printed multilayered antennas with high radiation efficiencies are achievable. These demonstra-

tions are at frequencies below X-band. For example, reference [13] demonstrates the first known

additively manufactured multilayer phased antenna array at 2.45 GHz by utilizing in-situ finite fila-

ment fabrication (FDM) of acrylonitrile butadiene styrene (ABS) filaments and microdispensing of

CB028 silver conductive paste (aka DDM process), where microdispensing refers to high precision

deposition of liquid materials. By using DDM and similar material combinations, reference [8]

presents a 6 GHz half-wave dipole antenna volumetrically embedded into a dielectric structure.

In [9], a multilayer low profile 2.6 GHz antenna utilizing FDM of polycarbonate (PC) and mi-

crodispensing of silver ink is presented. Reference [18] demonstrates the effect of infill percentage

1This chapter was published in IEEE Open Journal of Antennas and Propagation [17]. IEEE is not the copyright
holder of this material. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International (CC BY-NC-ND 4.0) license.
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change on permittivity and loss tangent of ABS fabricated with FDM. References [10, 19] also

investigate low infill dielectrics for antenna substrates. On the other hand, antenna demonstrations

with DDM operating at or above X-band are not reported. In these bands, antenna demonstrations

of additive manufacturing are so-far limited to structures that are partially printed. This is achieved

by using an additional fabrication step (such as copper cladding, spraying, etc.) for metallization

over a dielectric part that is realized with the additive manufacturing technique. For instance, ref-

erences [20, 21] present Ku and Ka-band horn antennas using stereolithography (SLA) of plastics

and copper cladding. SLA is not suitable for multilayer antennas as material types are limited to

liquid polymers and resin, cannot be used for metals. Selective laser sintering (SLS) provides wider

material selection including metals. Reference [22] presents multilayer TLs and MIM capacitors

with SLS; however, each layer requires coating/spraying the surface with dielectric/conductive inks

and removing the unsintered material. Reference [7] employes a liquid crystalline polymer (LCP)

laminate as the host substrate for dielectric and metallic ink layers. While some of the fabrication

methods (SLA and metal coating, SLS) are not suitable for multilayer antennas such as microstrip

antennas and embedded applications, others (inkjet printing, aerosol jet printing) commonly require

a support material as they are not practical for thick substrates.

The major goal of this chapter is to utilize design flexibilities of DDM for realizing a fully

printed dual-polarized antenna with radiation efficiency and return loss performances exceeding

80% and 10 dB, respectively, across the Ku-band (12-18 GHz). The antenna should operate with

excellent polarization purity and more than 25 dB isolation between feed ports. In addition, the an-

tenna must be suitable to be employed as a unit cell within a half-wavelength spaced phased antenna

array. Based on the literature review outlined above, meeting these performance metrics implies a

significant advancement over the recently reported antennas realized with additive manufacturing.

To address the wide bandwidth and dual-polarization needs, an aperture stacked patch antenna fed

with microstrip lines is selected for the design. As shown in [14], for antennas operating at lower

frequency bands, the antenna substrates are formed from low-infill ratio ABS and their thicknesses

are customized to maximize radiation efficiency and bandwidth. However, in contrast to existing
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literature, this dissertation also investigates the geometry of the microstrip feed lines for the first

to time to further maximize the radiation efficiency and minimize losses in potential phased array

implementations. This is achieved through a detailed investigation of substrate thickness, infill

ratio, and infill direction. As such, this dissertation achieves the lowest attenuation (0.25 dB/cm)

at 18 GHz with respect to the microstrip lines reported in recent works. Polarization purity is

achieved by resorting to the well-known dual-offset feed line excitation through crossed apertures.

For improved polarization purity and isolation, the dual-offset microstrip feed lines belonging to

the different polarization excitations are located on separate sides of the ground plane. The MMIC

switch package (PQFN) is embedded within the structure to make connections with these feed lines

using a ramped 3D interconnect approach. Thanks to its shorter line lengths, this interconnect

approach is shown for the first time to support a higher return loss (30 dB vs 20 dB) and loss

performance over a traditional via based interconnect. The packaging approach also enables the

antenna to be utilized within a half-wavelength spaced array. Additional dielectric/conductor layers

can be added to the antenna structure to include a MMIC phase shifter package as well, however,

the extension to an operational beam-steering phased array is beyond the scope of this article. The

fabricated antenna consists of a total of thirteen dielectric and conductive layers. As desired, a 45%

|S11|<-10 dB impedance bandwidth is achieved across the entire Ku band (12-18 GHz) with >80%

radiation efficiency. The dissertation is organized as follows: Section 2.2 presents the investigation

of substrate thickness, infill ratio and infill direction to minimize the loss of the microstrip feed lines

utilized in the antenna structure. Section 2.3 details the antenna design and 3D printed interconnect

performance utilized for MMIC polarization switch inclusion. Experimental verification of the

antenna integrated with the MMIC switch is presented in Section 2.4. Suitability of the antenna

element in terms of size and feed line losses for phased array development is demonstrated in

Section 2.3. Concluding remarks are provided in Section 2.5.
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2.2 Microstrip Line Characterization for Minimizing Feed Line Losses

2.2.1 Substrate Stack-up

Figure 2.1 shows the substrate stack-up of themicrostrip lines that are utilized for the antenna

feed. ABS, a well-known thermoplastic polymer, is utilized as the dielectric material. The substrate

is built up by melting the ABS filament and depositing layer by layer on the printer platform. The

goal is to investigate if flexibilities available through the slicing software (i.e. independent control

on infill ratio, layer thickness, and printing direction of each layer) can be optimized to minimize the

insertion loss (IL) of the microstrip lines. Among these design flexibilities, infill ratio has already

been a heavily investigated design parameter for enhancing antenna performance or achieving

control over transmission and reflection properties [23, 24]. Infill ratio refers to the thermoplastic

content inside the volume. Naturally, low infill ratio substrates exhibit lower dielectric constants

and loss tangents due to the higher air content within the volume. Therefore, minimization of

microstrip line loss can be achieved through the utilization of low infill ratio substrates. However,

as the following sectionwill demonstrate, it is also equally important to consider the line geometry in

terms of overall substrate thickness and printing direction to achieve the best possible performance

– factors that have not been demonstrated to date to our knowledge. Based on this reasoning, we

investigate microstrip lines constructed fromABSwith infill ratio down to 25%. In printing studies,

we could not go below 25% infill ratio while maintaining a good print quality in terms of surface

roughness and uniformity. It is also important to note that microdispensing conductive paste over

low infill ratio materials is impossible due to paste leakage into the structure. Hence, substrate

layers with infill ratios of 100% are necessary under the conductors. In the printing process, it is

possible to make trade-offs between the nozzle size of the printing tip and overall printing time.

However, thicker layers that can be printed with large nozzle sizes tend to exhibit larger surface

roughness. It is already known from other transmission line geometries such as strip lines that

losses due to conductors increase significantly with surface roughness at higher frequencies [25].

Due to these reasons, 100% infill ratio layers that are directly under the microstrip conductor are
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Figure 2.1: Substrate stack-up of the DDM microstrip line.

printed using the minimum available thickness of 15 µm. The total thickness of the 100% infill

ratio substrate under the microstrip conductor is taken as 75 µm (i.e. 5 × 15 µm) since no significant

improvement in surface roughness is observed beyond this thickness. In this substrate stack-up, the

overall thickness of the 25% infill ratio substrate does not seem to affect the surface roughness of

the 100% infill substrate that is directly under the microstrip line conductor. This allows forming

the 25% infill ratio substrate in thicker layers to achieve faster printing speed. For the substrate

stack-up, the majority of the 25% infill ratio substrate is therefore formed with printing of 50 µm

thick ABS layers. The ground plane is microdispensed over a 50 µm thick 100% ABS substrate.

Microdispensing refers to deposition of liquid materials with high control over the volume less

than 100 picolitres by adjusting printing speed, pressure, and valve opening. Microdispensing of

CB028, a silver nanoparticle paste from DuPont, is the technique used in this dissertation to form

the conductive traces.
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2.2.2 Design

Thermoplastic materials have lower loss tangent compared to dielectric inks such as SU-8

(εr=2.85 and tanδ=0.04) [26]. However, losses are still higher than standard materials such as

hydrocarbon or PTFE ceramic composites and this increased loss challenging for high frequency

DDMdevices. For high frequency antenna arrays, feed network losses degrade the RF performance,

and heating caused by these losses restricts the power handling capabilities. These are the main

motivators for investigating the design flexibilities of the DDM process as a whole, not only infill

ratio as in [10, 19], but also in geometry and printing directions.

The dielectric properties of the ABS can vary with supplier, color, and frequency [18].

Therefore, before proceeding with microstrip line designs, ABS filament available in our lab has

been characterized for dielectric constant and loss tangent values by printing 0.4 × 3 × 6 cm3 sheets

and using a Damaskos 125HC thin sheet tester. Figure 2.2 depicts the measurements within the

4.3 GHz to 17 GHz band. Since frequency dependendency of dielectric constant and loss tangent

is not significant by being less than 0.1% over this band. Figure 2.2 presents the averaged values

of the material properties. ABS with 25% infill ratio exhibits a dielectric constant and loss tangent

of 1.28 and 0.0027, respectively. As expected, it exhibits the lowest loss tangent justifying the

choice of this infill ratio ABS for forming the majority of the microstrip line substrate. On the other

hand, ABS with 100% infill ratio exhibits dielectric constant and loss tangent of 2.39 and 0.0075,

respectively.

Following the characterization of the ABS material properties, we proceed with the design

of the microstrip line geometry. As stated, unlike conventional fabrication methods, DDM allows

controlling substrate thickness on demand. This opens the possibility of utilizing the best substrate

thickness for lowest microstrip line losses. In general, conductor loss decreases with increasing

substrate thickness while radiation loss increases. To investigate this, insertion losses of 10 mm

long 50 Ω microstrip lines for different substrate thicknesses and infill ratios are simulated using

Ansys HFSS. To achieve 50 Ω characteristic impedance for the microstrip line over the substrate

stack-up, line width is parametrically swept to achieve a return loss value exceeding 30 dB. In these
14



simulations, conductivity of CB028 silver paste is taken as 1.65 MS/m [14]. Figure 2.3 shows the

attenuation of these microstrip lines per unit length at 18 GHz – the highest frequency of interest

for the antenna designs presented in the following sections. As expected, microstrip lines realized

with 25% infill ratio ABS performs the best while at very thin and thick substrates attenuation

becomes almost equal with the lines realized over 50% infill ratio substrates due to the dominance

of conductive and radiation losses, respectively. It should be noted that microstrip lines are wider on

low infill ratio substrates in order to maintain identical 50 Ω characteristic impedance. Microstrip

line loss with the 25% infill ratio substrate remains relatively flat within the range of 300 to 400 µm

substrate thicknesses, demonstrating the importance of utilizing the best thickness for minimizing

losses. To reduce radiation losses that may occur at line discontinuities, we selected the substrate

thickness as 300 µm to implement the microstrip feed lines in the presented antenna realizations.

Specifically, the lowest simulated loss at 18 GHz is 0.25 dB/cm and offers 0.11 dB/cm improvement

over the best achievable performance with the 100% infill substrate design.Replacing the CB028

conductivity with copper’s conductivity of 58 MS/m in the simulation model shows that the loss at

18 GHz comes down to 0.08 dB/cm from 0.25 dB/cm. Due to this reason, increasing conductivity

of 3D printed pastes/inks continues to be an active research area [2, 27].

Another factor that affects the microstrip line attenuation at high frequency is the alignment

between the microdispensed microstrip line and infill direction of the top layer (the direction of

the 100% infill ratio ABS filaments deposited to form the top layer that is directly under the

signal line as depicted in Figure 2.1). The edge roughness of the microstrip line due to this

misalignment may introduce additional conductive losses. Reference [28] has demonstrated that

surface roughness dependent on the infill direction varies the ohmic losses of microstrip lines at

microwave frequencies up to 5 GHz. As frequency increases, it is expected that the current on the

microstrip line will be more concentrated in the line edges and therefore the effect of edge roughness

will be even more pronounced. Our work in [14, 15] demonstrates this issue through microstrip

line characterizations, however, microstrip lines were realized from 100% infill ratio substrates

without substrate thickness vs. attenuation considerations. This dissertation demonstrates this
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Figure 2.2: Measured dielectric constant and loss tangent for ABS exhibiting different infill ratios.

effect experimentally with microstrip lines that utilize the 25% infill ratio substrate and optimized

substrate thicknesses. Specifically, parallel and perpendicular ABS deposition directions with

respect to the microstrip line direction are characterized as shown in Figure 2.4. Based on these

characterizations, the antenna design (discussed in Section 5.3) utilizes controlled infill directions

within its structure to realize the best possible radiation efficiency performance by keeping feed

line losses at minimal.

2.2.3 Fabrication

High frequency device fabrication requires further precision as the effect of surface rough-

ness and dimensional variations are more pronounced than at lower frequencies. The surface of

substrates fabricated by FDM have waviness due to under-extrusion of the filaments, and this to-

pographical variation degrades the effective RF conductivity of traces deposited on top of them.

Reference [29] states that fine-tuning of the extrusion multiplier can achieve smooth surfaces while

avoiding over extrusion. 0.97 is found to be the best extrusion multiplier in terms of minimizing

surface roughness with the Slic3r as slicing software. By incorporating alternating layer thicknesses
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Figure 2.4: Microscope image of the printed microstrip line.
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and fine-tuning the extrusion multiplier, 3 µm peak-to-valley height is achieved within reasonable

printing time. All presented devices are printed using an nScrypt 3Dn-Tabletop system including

both FDM for dielectric materials and micro-dispensing for metallization. Dimensional variations

due to microdispensing are minimized by decreasing single pass line width and printing speed. For

instance, sharper corners are achieved with slower speeds. For a certain line width, air pressure

and printing speed are adjusted. Specifically, 100 µm wide single pass lines are microdispensed

with 3 psi air pressure at 5 mm/s.

Multilayer structures necessitate good adhesion between silver paste and thermoplastic

layers. First, a slurry of ABS and acetone is applied to the surface of the 90°C heated printer bed

to improve adhesion to the bed. This eliminates the edge warping of ABS for thick structures.

The slurry is also applied on the CB028 layers prior to ABS deposition to improve adhesion.

CB028 layers are dried at 90°C bed temperature for an hour before ABS deposition. A high nozzle

temperature (240°C) for melting the filament is also used for good adhesion.

2.2.4 Characterization

Microstrip lines are formed with 10 mm total length with parallel (0°) and perpendicular

(90°) FDM orientation choices with respect to the line elongation. Figure 2.4 shows the microscope

images of the printed microstrip line and reference planes. Figure 2.5 shows the microscope images

of tilted microstrip lines belonging to parallel and perpendicular FDM orientations. A Keysight

N5227A PNA Microwave Network Analyzer and Cascade Microtech probe station are used for

taking S-parameter measurements up to 20 GHz. The line excitations are performed with 650

µm pitch ground-signal-ground (GSG) probes. Probe effects are removed from the measurements

by utilizing thru-reflect-line (TRL) calibration kits that are designed and printed on the identical

substrate stack-up. Figure 2.6 depicts the |S21| performance of the microstrip line samples. It clearly

shows that FDM orientation with respect to the line length is an important factor for minimizing the

attenuation even though the line geometry in terms of substrate thickness and infill ratio is designed

to attain the best performance. Specifically, at the highest end of the Ku-band (i.e. 18 GHz), the
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Figure 2.5: Close-up microscope image of the tilted microstrip line.

loss of the microstrip line increases by 0.08 dB/cm. An RF circuit simulator can be employed to

show that such increase in attenuation implies a 60% decrease in the effective RF conductivity.

On the other hand, parallel FDM direction with respect to the microstrip line provides the lowest

attenuation. Curve fitting as shown in Figure 2.6 demonstrates that the measured |S21| performance

corresponds to that of a microstrip line exhibiting an effective conductivity of 1.75 MS/m at Ku-

band. It is important to note that all characterized microstrip lines exhibit |S11|<-25 dB, implying

a good impedance match with 50 Ω as they are designed.

Table 2.1 compares the attenuation of the fully printed microstrip lines reported in this

dissertation with data reported in the literature. Microstrip lines fabricated by inkjet and aerosol jet

printing of dielectric and silver inks have been characterized in [30, 31] with losses around 2.8-6

dB/cm at 20 GHz. These jet printed microstrip lines demonstrate significantly higher attenuation

due to high loss tangent of the dielectric inks utilized in the printing process. References [32,

33] demonstrate loss improvements with suspended microstrip line geometries that employ air

substrates. Although [32] demonstrates a slightly lower attenuation than the microstrip lines

reported in this work, the suspended line approach requires more than one printing platform and is
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less practical for implementing multilayered antennas, arrays, and feed networks. Microstrip lines

realized over 100% infill ratio ABS have been reported to perform with 0.19 dB/cm and 0.52 dB/cm

attenuation at 3 and 18 GHz, respectively [13,14]. The microstrip line losses reported in this work

is 0.07 dB/cm and 0.25 dB/cm at 3 and 18 GHz, respectively. At 18 GHz, this is a 0.27 dB/cm

reduction in loss and constitutes the minimum attenuation reported in the literature for microstrip

lines that are fully printed using a single manufacturing platform.

2.3 Dual-polarized Stacked Patch Antenna

Having established the microstrip line geometry for the antenna feed network, we pro-

ceed with the design of the dual-polarized stacked patch antenna to meet the goals indicated

in the introduction section i.e. impedance matching bandwidth across entire Ku-band, compact

footprint enabling extension into antenna arrays, dual-polarization and polarization selection capa-

bility. Achieving a good cross-polarization level and meeting the compact footprint requirement

while employing a cost effective commercial-off-the-shelf SPDT PQFN switch package (MACOM
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Table 2.1: Attenuation of transmission lines using additive manufacturing.

Reference Loss (dB/cm) Fabrication
Technique

Properties

[13] 0.19 at 3 GHz DDM Microstrip, ABS, CB028
[31] 6 at 20 GHz Inkjet Microstrip, SU-8, Silver ink
[30] 2.8 at 20 GHz Aerosol jet Stripline, Polyimide, Silver ink
[32] 0.09 at 5 GHz SLA, micro-

dispensing
Suspended microstrip, SLA resin, CB028

[33] 0.17 at 4 GHz Polyjet Microstrip, VeroWhitePlus, Ti/Cu
[14] 0.55 at 18GHz DDM Microstrip, ABS, CB028

This work 0.17 at 10
GHz; 0.25 at
18 GHz

DDM Microstrip, ABS, CB028

MASW-008322 DC-20 GHz SPDT) necessitates embedding the switch within the antenna struc-

ture. Structural embedding of active and control components is generally costly and challenging

with multilayered PCB technology. On the other hand, DDMmay provide a cost effective approach

to realize such embedded RF electronics. The design of the presented antenna with the embedded

polarization selection switch is carried out in two major steps to be able to focus on individual

performance aspects: 1) Substrate stack-up and antenna design to maximize antenna performance

without considering the switch packaging (Section 3.1 and 3.2); 2) Switch packaging (Section 3.3).

Experimental verification is provided in Section 3.4.

2.3.1 Substrate Stack-up

Figure 2.7 shows the substrate stack-up of the antenna. Dashed arrows show the direction

of FDM. Figure 2.8 shows the two dimensional view of the feed layout. All dimensions are in

millimeters. Switch integration is shown in Figure 2.11. To achieve a low level of cross-polarization

(<-15 dB), dual offset feed lines are utilized over the crossed coupling apertures. Placement of the

feed lines on different sides of the coupling aperture further minimizes the feed line asymmetry

within the vicinity of the coupling apertures. Our recent work in [14] already demonstrated an

aperture coupled single patch antenna, which can provide 25% impedance matching bandwidth

within the Ku-band when implemented with low infill ratio ABS substrate. An attempt was made to
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provide dual polarization capability to this earlier antenna by resorting to a square patch geometry.

However, inclusion of the crossed coupling apertures and square patch geometry caused a bandwidth

reduction that could not be alleviated by adjusting the antenna substrate thickness. Consequently,

the antenna was redesigned with the substrate stack-up shown in Figure 2.7 to exhibit a stacked

patch geometry to provide further bandwidth enhancement. The feed substrate thicknesses are

selected as 0.3 mm based on the microstrip line loss studies presented in previous section. Antenna

manufacturing is performed from top to bottom starting with the printing of a 200 µm-thick 100%

ABS layer and microdispensing of the upper square patch. 25% infill ratio ABS substrates with

varying thicknesses are utilized as the antenna substrates. The microstrip feed line at the bottom of

the stack-up i.e. first feed line in Figure 2.7 remains exposed to facilitate the attachment of an edge

connector for experiments. First feed line is on the same layer of RF signal input to the SPDT switch.

Its substrate stack-up is based on section 5.2.1 since it may be used to implement long RF feed lines

in a full antenna array implementation. The second feed line is embedded within the structure.

Due to the layer printing sequence, the substrate of second line is printed after microdispensing

of the line conductor. This minimizes the loss by reducing the substrate material under the line.

Therefore, a triangular prism-shaped void (200 µm wide and 225 µm deep) is created under the

100 Ω lines. The line widths of 2nd feed line are designed within the full substrate stack-up by

performing two-port S-parameter analysis of 10 mm long lines and minimizing the return losses.

The antenna has 8 dielectric and 5 conductor layers.

2.3.2 Antenna Design

First, a single-polarized center-fed aperture coupled single square patch antenna is designed

to operate at 15GHz similar to the antenna presented in [14]. The dimension of this antenna element

is 6 x 6 mm2 and agrees with half guided wavelength (λg/2) size expectation on a 25% infill ABS

substrate. Antenna substrate thickness of this design is relatively thick at 2 mm (i.e. ∼ λ0/10,

λ0 denotes the free space wavelength at 15 GHz) and it does not meet the impedance bandwidth

criteria. Consequently, substrate stack-up was expanded to be like in Figure 2.7 to accommodate
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Figure 2.7: Substrate stack-up under the antenna.
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Figure 2.8: 2D view of the antenna feed layout.
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a second square patch element. The second patch element and its substrate are initially taken to

be identical with the first patch. In this step, the antenna is still single-polarized but substrate for

second feed layer is introduced into the design without accommodating a feed line. For this stacked

aperture-patch geometry and initial dimensions, the design approach reported in [34] is followed

to achieve the desired performance goals. Specifically, mutual coupling between the two patches

and mutual coupling between the aperture and first patch generate two S11 loci in the Smith Chart.

Patch sizes relative to each other and the substrate thickness of the second patch affect the coupling

between the patches and can be used to control the size of the higher frequency locus. Aperture

size and the thickness of the first patch affect the location of the low frequency locus. Studying

these parameters along with the feed line stub length results in 45% |S21|<-10 dB bandwidth to

cover the Ku-band (12-18 GHz). After the completion of the design for single-polarized case,

the antenna geometry is modified to incorporate dual offset feed lines and a crossed slot aperture

to provide dual-polarization capability. Dual-offset feed lines are selected for their low level of

cross-polarization performance [35, 36]. Second feed substrate is also slightly modified to include

air groove under the 100 Ω lines to minimize their ohmic losses. The distance between the 100 Ω

lines are adjusted with parametric sweeps to achieve desired coupling between the slot and lower

patch (i.e. low frequency locus size). The stub lengths of the feed lines are parametrically adjusted

to move the impedance loci to the center of the Smith Chart. To improve the impedance matching

performance of the second feed line, the length of the first patch along the second feed line is also

slightly increased.

Figure 2.9 presents the simulated |S11|, |S22|, and |S21| performance of the antenna with

feed lines extended to the switch. It is observed that, for both polarizations, the antenna operates

with more than 45% |S11|<-10 dB bandwidth around 15 GHz center frequency. The bandwidth of

the antenna covers the entire Ku-band. The isolation between the polarization feed lines is larger

than 28 dB. Figure 2.10 presents the simulated broadside-realized gain as a function of frequency

for both polarizations. Realized gain attains a peak value of 8.6 dBi and 8.4 dBi at 15 GHz.
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Figure 2.9: Simulated reflection coefficients of polarization 1 and 2 and |S21| (dB).
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Realized gain is larger than 6.8 dBi across the impedance matching bandwidth. Simulated radiation

efficiency is 87% and 81% at 15 GHz.

2.3.3 Switch Integration

A MACOM MASW-008322 DC-20 GHz SPDT switch in PQFN package (4 mm × 4 mm)

is used to select the polarization due to its high isolation performance. According to the datasheet,

the switch has more than 40 dB isolation up to 20 GHz, and this is higher than the isolation between

antenna feed lines. Figure 2.11 shows the substrate stack-up around the switch from 3D and 2D

perspectives. The PQFN switch package directly lands on the ground plane for minimizing the

length of the cross-layer electrical connections for the feed lines. This eliminates the need for vias

that would run from the bottom of the PQFN package to the ground plane. The PQFN switch

package is also placed close to the antenna element to obtain a total footprint of 9 mm x 9.5 mm.

The RF and control pads of the package are isolated from the ground plane by introducing 0.125

mm gap between the conductive traces. The RF lines are taken to the feed layers #1 and #2 through

a ramped transition as illustrated in Figure 2.12. All dimensions in Figure 2.12 are in millimeters.

The geometry of the ramped transitions is parametrically adjusted to achieve a high return loss

levels. Since feed line #1 and #2 are different (embedded within the stack-up vs. exposed), the

transition geometries are slightly different from each other. The transition geometry for the input

RF signal line is identical with Feed line #1 since both microstrip lines are on the same layer of

the substrate stack-up. As shown in Figure 2.13, the return loss is greater than 40 dB for exposed

transition and greater than 33 dB for the embedded microstrip line transition. Insertion losses of

the transitions are less than 0.12 dB. The transition geometry for the input RF signal line is identical

with Feed line #1 since both microstrip lines are on the same layer of the substrate stack-up.

As stated, the overall footprint size including the SPDT switch makes the antenna element

suitable for 2-D array applications. Although a complete phased array manufacturing is beyond the

scope of this article, in Figure 2.14 we present a potential layout/model for a 4 x 4 phased array that

can harness the designed antenna element. In this model, the antenna elements are excited with
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Figure 2.13: Simulated S-parameters of the interconnects.

lumped ports placed at the switch outputs. In a practical realization, the signal routing for the array

can be carried out in a separate layer by transitioning the RFIN signal line from each switch. The

design of the RF signal routing should be carried out according to the guidelines (i.e., line width,

layer thickness, FDM direction, FDM infill ratio) described in Section 2 of this dissertation for feed

loss minimization. Figure 2.15 depicts the simulated impedance matching of antenna elements #1,

#2 and #3. As seen, all elements are well matching. Simulated mutual coupling among the antenna

elements is below 12.4 dB, while the highest coupling occurs between second feed line of antenna

elements #2 and #3. Simulated broadside realized gain of the array is 16.5 dBi for polarization 1

and 15.6 dBi for polarization 2, implying 83% and 76% radiation efficiency. Realized broadside

gain is expected to be almost identical between the x and y-polarizations due to the customization

of printing directions and line geometries to minimize the feed losses. The half power beam width

(HPBW) of the array for polarization 1 is 22.4°in the E-plane and 24.7°in the H- plane. The HPBW

of the array for polarization 2 is 22.1°in the E-plane and 24.8°in the H-plane.
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2.3.4 Experimental Verification

Figure 2.16 shows the fabricated antenna with SMA connector, socket, and switch. All

dimensions shown are in millimeters. Since the switch is not fully embedded within the structure

like in [37], a small droplet of cyanoacrylate glue is used at the corners of the switch package to

prevent it from moving. Likewise, the SMA connector and socket packages are mounted to the

edge of the substrate using glue instead of screws. Electrical connection from switch pads, SMA

connector pin, SMA connector ground, and socket pins to the microdispensed pads/lines are made

with H20E (a conductive silver epoxy from EPO-TEK). The assembly is kept in oven at 80°C for 3

hours to cure the H20E. Return loss of the antenna is measured from 10 to 18 GHz using a Keysight

E5063A network analyzer. Figure 2.17 shows the comparison of measured reflection coefficient

of the dual-polarized patch antenna for different switch states. The antenna return loss is greater

than 10 dB between 10.8 GHz-18 GHz for polarization 1, and 11.1 GHz-18 GHz for polarization

2; whereas, predicted bandwidth is 45% around 15 GHz. The bandwidth of the antenna element

covers the entire Ku-band as expected. There is a good agreement between the simulated and

measured results considering that simulated |S11| and |S22| in Figure 2.9 do not include the effect

of the switch, connector launch and connector.

Figure 2.18 presents the simulated and measured realized gain versus frequency and vali-

dates the wideband performance. For realized gain simulations, RFIN and feed line are connected

with a mitered bend for each polarization. Switch loss as a function of frequency obtained from

manufacturer is subtracted from the simulated realized gain along with 0.4 dB connector loss.

When mounted in a 50 Ω transmission line system, the switch exhibits 1̃ dB insertion loss at 10

GHz with excellent impedance matching and isolation characteristics (see data sheet for typical

frequency dependent characteristics). Simulated realized gain is 6.8 dBi for polarization 1 and 6.4

dBi for polarization 2 at 15 GHz. There is a good agreement between the realized gain results for

both polarizations being within 0.7 dB of each other.

Figure 2.19, Figure 2.20, Figure 2.21, Figure 2.22 show the simulated and measured

normalized radiation patterns of the antenna element at 15 GHz. Front-to-back radiation ratio for
30
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Figure 2.17: Measured reflection coefficient (dB) of the dual-polarized antenna for both
polarizations.
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Figure 2.18: Measured reflection coefficient (dB) of the dual-polarized antenna for both
polarizations.

polarization 1 is 18.7 dB for the E-plane and 16.3 dB for the H-plane. For polarization 2, front-to-

back ratios of the E-plane and the H-plane are 15.6 dB and 14.9 dB, respectively. Aperture radiation

contributes to this front-to-back ratio. However, as demonstrated in reference [37], substrate stack-

up can be further expanded by using DDM capabilities to incorporate an embedded cavity for

minimizing the back radiation. Cross-polarization gain is lower than the co-polarization gain by

18.7-18.9 dB for the E-plane and 20.2-23.3 dB for the H-plane. Due to the agreement between the

simulation andmeasurement data in radiation patterns and peak realized gains, radiation efficiencies

for polarization 1 and 2 can be estimated to be close to the simulated 87% and 81% values.

Table 2.2 provides a comparison between the antenna presented in this dissertation and

additivelymanufactured antennas available in literature. References [6,19,33] demonstrate a hybrid

manufacturing approach to realize patch antennas. This approach employs additive manufacturing

for antenna substrates, and a damascene process or copper tape for metallization, which require

multiple platforms. Reference [10] demonstrates a high radiation efficiency fully inkjet-printed

patch antenna utilizing a low infill antenna substrate. However, this work is realized at lower

32



-150

-120

-90

-60

-30
0

30

60

90

120

150
180

-30

-20

-10

0

dB

Figure 2.19: Simulated and measured polarization 1 E-plane co-polarization and
cross-polarization normalized radiation patterns of antenna.
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Figure 2.20: Simulated and measured polarization 1 H-plane co-polarization and
cross-polarization normalized radiation patterns of antenna.
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Figure 2.21: Simulated and measured polarization 2 E-plane co-polarization and
cross-polarization normalized radiation patterns of antenna.
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Figure 2.22: Simulated and measured polarization 2 H-plane co-polarization and
cross-polarization normalized radiation patterns of antenna.
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Table 2.2: Comparison of antennas using additive manufacturing.

Ref. Freq.
BW

Realized
Gain
Rad.
Eff.

Fab. Techniques Materials & Antenna Type

[33] 4.49 GHz
4.5%

7.25 dBi
NA

Polyjet + Damascene VeroWhitePlus, Ti/Cu Patch

[6] 6.4 GHz
5%

5.48 dBi
NA

SLA + Damascene Resin, Ti/Cu Patch

[10] 2.4 GHz
8%

8 dBi
81%

Inkjet UV-Cured Polymer, Silver ink, Patch

[19] 2.33 GHz
6%

-3.8 dBi
18%

FDM NinjaFlex, Copper Tape, Patch

[5] 3.58 GHz
7%

4 dBi
NA

FDM + wire-mesh
embedding

Polycarbonate, Copper, Patch

[38] 7.5 GHz
15%

5.5 dBi
84%

FDM + wire-mesh
embedding

ABS, Copper, Patch

[9] 2.6 GHz
8%

NA DDM PC, Silver ink, Dipole over HIS

[13] 2.45 GHz
48%

-2.5 dBi
NA

DDM ABS, CB028, Dipole

This
work

15 GHz
45%

6.3 dBi
81-87%

DDM ABS, CB028, Stacked Patch, Dual Pol,
Packaged IC

microwave frequencies, where dielectric and conductor losses are not significant. References [5,38]

present 3D-printed patch antennas with high radiation efficiency. However, metallization using

ultrasonic wire-embedding requires additional platforms, and thus is not practical for multilayer

structures and chip integration. References [9, 13] demonstrate fully-printed dipole antennas on

single platform using DDM. However, these antennas operate at lower microwave frequencies.

2.4 Concluding Remarks

A fully printed multilayer Ku-band aperture-patch antenna is presented. The antenna is

fabricated with FDM of ABS and microdispensing of CB028. Custom substrate compositions are

utilized to improve the bandwidth, gain and efficiency performance of the antenna. A dual-polarized

stacked patch antenna is designed and experimentally characterized to exhibit 6.3 dBi realized gain

at 15 GHz, >80% radiation efficiency, and operating with 45% |S11| <-10 dB bandwidth. Moreover,
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the antenna is integrated with a SPDT switch to provide electronic polarization control. Microstrip

lines with different geometry and material arrangements are also investigated to minimize line

losses. Specifically, fully printed microstrip lines with 0.25 dB/cm measured insertion loss at

18 GHz are demonstrated. The line loss is better than those reported to date in literature. The

presented studies shows that the fully printed Ku-band antennas and antenna arrays packaged with

control RF electronics (such as switches and phase shifters) is feasible and promising to perform

with high radiation efficiency and antenna performance by harnessing the design flexibilities of

additive manufacturing.
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Chapter 3: Phased Array Antenna Element with Embedded Cavity and MMIC Using Direct

Digital Manufacturing

3.1 Introduction

DDM allows implementing compact, cost-effective, light-weight RF systems consisting of

multiples of alternating dielectric and conductive layers.2 DDM’s design flexibilities in material

choices, layer thicknesses, and material shapes can be harnessed to enhance the RF performance to

the level of those implemented with traditional manufacturing. Typically, antennas manufactured

withAM techniques such as stereolithography selective laser sintering are not suitable formultilayer

structures. Inkjet and aerosol jet printing can be used for multilayer RF device fabrication with high

precision. However, these techniques have limited material selection and high dielectric losses,

and they cannot be integrated with other AM techniques [7]. In contrast to these AM techniques,

DDM has moderate dielectric losses, achieves thicker parts, and it does not require a host substrate.

In reference [14] and Chapter 2, we harnessed the design flexibilities of DDM to realize Ku-band

antennas with wide bandwidth and high radiation efficiency. However, these antennas are not

suitable for printing on planar/conformal platforms since they are printed from antenna to feed

line. These anteannas also exhibit high back radiation due to radiating aperture. In order to reduce

back-lobe radiation, a cavity is embedded and printing direction is reversed. This chapter presents

the fabricated cavity backed antenna operating with 23.8% |S11| <-10 dB and 7.2 dBi realized gain.

The front-to-back ratio of the antenna is greater than 20 dB. Recent work [39] has demonstrated

that DDM process can be utilized to integrate monolithic microwave integrated circuit (MMIC)

2This chapter was published in 2019 IEEE International Symposium on Antennas and Propagation and USNC-
URSI Radio Science Meeting [37]. Permission is included in Appendix A. This work is funded by the Air Force
Research Laboratory contract FA8650-18-C-1721. DISTRIBUTION STATEMENT A. Approved for public release:
distribution is unlimited. Approval ID: 88ABW-2019-0332
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components with low interconnect losses. This chapter presents the latest progress in this area by

structurally integrating an MMIC package towards the realization of multilayer wideband phased

array antenna element at X-band. The antenna utilizes four metallization and five dielectric layers

with various infill ratios to operate with 23% impedance matching bandwidth and 81% radiation

efficiency. Packaged MMIC phase shifter is embedded inside the structure through selective FDM

and interconnected to the signal and control lines through microdispensing.

3.2 Wideband Cavity-backed Patch Antenna

3.2.1 Substrate Stack-up

Figure 3.1 shows the substrate stack-up of the cavity-backed antenna. The printing is

performed from bottom layer to top layer in order to enable future applications over platforms.

Printing starts with FDM of support layer consisting of 0.25 mm-thick 100% infill ABS. The

dielectric constant of ABS is 2.4, and loss tangent is 0.006. Parametric studies are conducted

to determine the smallest cavity height that does not affect the impedance matching. The cavity

bottom, which is extended by 1 mm from the footprint of the sidewalls, is formed on the support

substrate by microdispensing Novacentrix HPS-FG57B silver ink. The 1.5 mm long sidewalls

of the cavity is realized inside two solid ABS layers with thickness of 1.25 mm and 0.25 mm.

The 0.25 mm ABS layer acts as the microstrip feed line substrate. The sidewalls are formed as

HPS-FG57B filled vias with 1.5 mm periodicity and 0.4 mm radius. The 50 Ω microstrip feed

line is converted into a coplanar waveguide (CPW, 0.1 mm gap and 2 mm center conductor) at

the edge of the substrate to facilitate an interface with the RF connector. After microdispensing

feed line, antenna fabrication continues with FDM of 0.25 mm thick ABS layer that forms the

microstrip feed line substrate. This substrate layer is slightly retracted around the edges by selective

FDM of ABS to expose the CPW transition. Microdispensing of silver paste is performed over this

substrate to form the ground plane hosting the coupling aperture. Microstrip line and CPW ground

are connected through the walls of retracted feed substrate. Following the micro-dispensing of the

ground plane, FDM of a 3 mm thick 50% infill ABS layer (εr = 1.6, tanδ = 0.003) is performed to
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Figure 3.1: Substrate stack-up of the cavity-backed antenna.

realize the antenna substrate. The lower infill ratio and thickness of this substrate provides wide

impedance bandwidth (∼ 20%) and high radiation efficiency (>80%). FDM of a 0.2 mm thick

solid ABS layer is performed over the low infill ratio substrate to enable micro-dispensing of the

patch antenna without leakage issues. The lateral size of the antenna substrates are 15 × 15 mm2

suitable for realizing traditional half-wavelength spacing. The bottom solid ABS substrates exhibit

a lateral size of 25 × 25 mm2. This enables to place the RF connector away from the antenna in

stand-alone radiation characterizations. It is important to note that during the printing process, ABS

surfaces are milled prior to micro-dispensing to minimize loss associated with surface roughness.

Milling is an already incorporated functionality available within the nScrypt 3Dn-Tabletop system

and performed as a part of the printing process. Overall, the antenna consists of four conductive

layers and five dielectric layers with customized infill ratios and selective FDM. Figure 3.2 shows

the photo of the fabricated antenna with a SMA connector attached for characterization.
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25 25 mm2

15 15 mm2

Figure 3.2: Fabricated cavity-backed antenna.

3.2.2 Experimental Verification

The cavity-backed antenna is fabricated and tested. Figure 3.3 shows the simulated and

measured |S11| (dB) of the antenna. The antenna has 23.8% measured |S11| < −10 dB bandwidth.

Simulated |S11| <−10 dB bandwidth of the antenna is 18.7%. There is a good agreement with the

measured performance. The differences are due to the microstrip-to-CPW transition. Figure 3.4

shows the simulated and measured broadside realized gain of the antenna. The antenna exhibits

7.2 dBi peak gain at 10.4 GHz. It has more than 6 dBi realized gain between 9-11 GHz.Figure 3.5

shows the simulated radiation pattern of the antenna for E-plane andH-plane at the center frequency.

Simulated front-to-back ratio is greater than 20 dB. Figure 3.6 shows themeasuredH-plane radiation

pattern of the antenna at 10 GHz. The antenna exhibits more than 20 dB front-to-back ratio. The

simulated radiation efficiency is 81% for the model including the extended feed line and CPW line

transition. This also confidently represents the radiation efficiency of the fabricated antenna based

on gain comparison as the simulated and measured patterns are perfectly aligned with identical

realized gains.
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Figure 3.3: Reflection coefficient of the cavity-backed antenna.
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Figure 3.4: Average realized gain of the cavity-backed antenna.
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Figure 3.5: Simulated E-plane and H-plane radiation pattern of the cavity-backed antenna.

Figure 3.6: Measured H-plane radiation pattern of the cavity-backed antenna.
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3.3 Patch Antenna with Embedded Cavity and MMIC Phase Shifter

3.3.1 Substrate Stack-up

Figure 3.7 shows the substrate stack-up of the antenna with embedded phase shifter. Stack-

up is similar to the antenna without phase shifter. The 15 × 10 mm2 footprint of the cavity enables

packaging an MMIC phase shifter within the half-wavelength antenna spacing. TGP2109 8-12

GHz 6-bit digital phase shifter from Qorvo is embedded into the support and cavity substrates by

leaving a 4 × 4 × 1.64 mm3 void through selective FDM of ABS. The phase shifter package is

embedded into the support and cavity substrates. Due to the thickness of the phase shifter package,

support layer thickness is increased to 0.5 mm. Figure 3.8 shows a snapshot after the phase shifter

placement and microdispensing of feed/control lines. The corners of the void are rounded due to

the FDM process. This creates difficulty for tightly inserting the MMIC package. To remedy this

issue, smaller circular voids at the corners of the main void were created for the MMIC package.

This is referred to as ears in Figure 3.8. A tight fit between the MMIC package and void is critical

for printing of interconnecting traces to prevent leakage into the substrate and disconnection. The

control lines are extended towards the edge of the substrate where through-hole right-angle female

sockets are utilized for DC line connections. After the snapshot shown in Figure 3.8, antenna

fabrication continues with FDM of 0.25 mm thick ABS layer that forms the microstrip feed line

substrate. This substrate layer is slightly retracted around the edges by selective FDM of ABS to

fit the sockets in addition to the CPW. This substrate layer also exhibits a 2 × 2 mm2 void that

corresponds to the middle of the phase shifter. The void facilitates to realize the ground connection

of the MMIC package when microdispensing of silver ink is performed over this substrate to form

the ground plane. The rest of the fabrication is identical to the antenna without phase shifter.

Figure 3.9 shows the photo of the fabricated phased array unit cell with a SMA connector and

sockets assembled for measurement.
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Figure 3.7: Substrate stack-up of the antenna with phase shifter.

Figure 3.8: Snapshot taken after MMIC phase shifter package is placed.
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Figure 3.9: Fabricated antenna with embedded cavity and phase shifter.

3.4 Experimental Verification

Antenna with embedded cavity and phase shifter is characterized. Figure 3.10 shows the

measured |S11| of the antenna for several phase shifter states. The antenna is well matched and

|S11| is less than -10 dB within the operating frequency range. Figure 3.11 demonstrates a realized

peak gain for example phase shifter states. The measured realized gain ranges from 0.2 to 2.2 dBi

across the 9 – 11 GHz operating band, which is expected due to the 6 dB insertion loss of the phase

shifter. Figure 3.12 depicts examples from the phase shift characterization performed through

measuring the far-field radiated fields in anechoic chamber. Figure 3.13 shows the measured H-

plane radiation patterns at 10 GHz for some phase shifter states. The antenna exhibits more than

20 dB front-to-back ratio, which is similar to the antenna without phase shifter.

3.5 Concluding Remarks

A cavity-backed phased array antenna element with and without embedded MMIC phase

shifter is successfully demonstrated using DDM. The antenna without phases shifter operates with

23.8% bandwidth. It has 7.2 dBi realized gain and greater than 80% radiation efficiency including
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Figure 3.10: Measured |S11| of the antenna with phase shifter.

Figure 3.11: Measured average realized gain of the antenna with phase shifter.
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Figure 3.12: Measured phase shift of the antenna with phase shifter.

Figure 3.13: Measured 0-2 dBi average gain across bandwidth.
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microstrip-to-CPW loss. The phased array unit cell exhibits more than 10 dB return loss within

the operating bandwidth and has 0.2-2.2 dBi realized gain due to the loss of the phase shifter.

The antenna with embedded MMIC phase shifter is suitable for half-wavelength spacing. In the

following chapter, the unit cell design is implemented in a 2×2 sub-array with additional layers to

perform the signal, control, and bias line routings. Chapter 4 also provides a literature review on

the additively manufactured antennas, antenna arrays and packaging techniques.
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Chapter 4: 3D Printed Electronically Scanned Antenna Arrays with Structural Electronics

4.1 Introduction

Phased arrays, also known as electronically scanned arrays (ESA) have many advantages

such as fast wide angle coverage without mechanical steering, adaptive beamforming and multiple

beams [40]. However, phased arrays are expensive due to costly transmit/receive (T/R) modules,

and hard to build at higher frequencies due to half-wavelength spacing (smaller than 18.75 mm ×

18. 75 mm at and above X-band). A major challenge is the need to incorporate many MMICs and

ICs within a small unit cell size [40]. Commonly used slat or tile array architectures [41] have

high depth, therefore they are not suitable for small platforms such as aircraft and satcom. Planar

phased array architectures are more suitable for small platforms due to their low profile, lightweight

and low cost [42]. Traditional fabrication techniques such as photolithography require many

fabrication steps and platforms. Therefore, they are not cost-effective. Additive manufacturing

(AM) can be used to realize monolithic array structure with embedded electronics on a single

platform in a one-pass process, potential for low cost fabrication. AM removed the boundaries

of traditional fabrication techniques by introducing design flexibilities that can be employed for

realizing phased arrays. Antennas with complex geometries or conformal antenna arrays can be

monolithically fabricated without special tooling and assembly. AM can be used to build compact

and lightweight antennas to satisfy size, weight and power (SWaP) requirements by using low-infill

plastic substrates. Dielectric properties and thicknesses of the substrates can be customized by

adjusting infill ratio. By using selective printing approach, electronics can be embedded within the

package. In addition, metallization can be realized on conformal or inclined surfaces.

Table 4.1 shows the additive manufacturing techniques used for RF devices. The ideal

AM technique for an antenna can be determined by material, the complexity of the geometry, and
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precision. Antennas with complex geometries are fabricated using stereolithography (SLA), binder

jetting, selective laser sintering (SLS), and selective laser melting (SLM). For multilayer antennas

with packaged electronics, inkjet/aerosol jet printing or combination of fused deposition modeling

(FDM) and microdispensing are suitable.

Table 4.1: Comparison of additive manufacturing techniques.

AM Technique Materials Advantages Disadvantages
Binder jetting Metal, ceramic or

polymer powder and
binding agent

High precision, com-
plex shapes

Rough surface, not
suitable for multilayer

SelectiveLaser Sin-
tering

Polymer powder High precision, suit-
able for complex
shapes

Rough surface, re-
quires post-processing
for metallization, not
suitable for multilayer

Selective Laser
Melting

Metal powder High precision, suit-
able for complex
shapes

Rough surface, not
suitable for multilayer
devices

Stereolithography Photopolymer resin High precision,
smooth surface, suit-
able for complex
shapes

Requires post-
processing for
metallization, not
suitable for multilayer

Inkjet Printing Dielectric ink, silver
nanoparticle ink

High precision,
smooth surface,
suitable for multilayer

Difficult to realize
thick layers, limited
material selection,
lossy dielectric inks

Aerosol Jet Printing Silver nanoparticle
ink, photopolymers,
solvent based poly-
mers

High precision,
smooth surface,
suitable for multilayer

Difficult to realize
thick layers, limited
material selection,
high dielectric losses

Fused Deposition
Modeling

Thermoplastic
polymers and ce-
ramic/plastic compos-
ites

Custom layer thick-
ness/dielectric proper-
ties, moderate dielec-
tric losses, easy to in-
tegrate with other AM
techniques

Rough surface, low
resolution

Microdispensing Conductive and di-
electric inks, pastes

Wide material variety,
easy to integrate with
other AM techniques

Lower conductivity
and resolution

Binder jetting builds the structure by depositing binding agent into the powder. SLS uses

laser to sinter polymer power to form the object. SLM, also known as direct metal laser sintering
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(DMLS), uses laser to melt metal powder together. SLA forms polymer from photopolymer resin

using UV laser. Post-processing might be required for metallization or improving the surface

roughness and mechanical strength. Binder jetting, SLS, SLM and SLA can be used to realize

high precision monolithic antennas with complex geometries. These geometries are not practical

to realize with conventional fabrication techniques. In [3, 4, 43, 44], 3-D fractal antennas and

free form antenna with overhanging features and internal gaps using AM are demonstrated. AM

enables the experimental verification of these antennas. Similarly, [45] shows a 35 GHz meshed

reflector antenna with the illuminating horn, waveguide feed and filter are fabricated monolithically

eliminating the need for joints. Design flexibilities of AM can also be harnessed to improve

antenna performance. In [3], a 3D Sierpinski fractal monopole antenna using binder jetting and

electroplating has wider bandwidth and significantly lower weight compared to the non-fractal

version. However, these AM methods are not suitable to integrate with other AM techniques in a

single platform. Therefore, they are not suitable for multilayer device fabrication.

For multilayer antennas, inkjet printing (ĲP) and aerosol jet printing (AJP) can be used.

These techniques use nanoparticle inks, and material selection is limited to low viscosity small

particle inks. They provide high precision and smooth surface, which is required for high frequency

antennas [7]. However, losses of the photosensitive polymers are significant [46]. Layer thicknesses

are also smaller than 10 µm. Multiple passes and dry or cure cycles are required to build thick

substrates. Therefore, a LCP laminate can be used as a host substrate as in [7, 47]. Another

approach is to use other AM techniques such as FDM for substrates [48]. FDM builds the structure

by extrusion of a melted thermoplastic filament, suitable for both thin and thick layers. Although

it is not a very high precision method, dielectric losses of the thermoplastic filaments are moderate

compared to the dielectric inks used in ĲP and AJP. The dielectric losses can be further minimized

by decreasing the infill ratio, as shown in [10, 14, 19]. [10] demonstrates a patch antenna with

15% higher radiation efficiency by using a low infill antenna substrate. FDM is easy to integrate

with other AM techniques. Microdispensing is used for metallization patterns on planar/conformal

surfaces. Wide material selection includes silver nanoparticle inks to conductive pastes with large
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particle sizes and high viscosity materials. However, microdispensing is not as high precision as

ĲP or AJP, and conductivity is lower compared to these techniques.

DDM combines FDM and microdispensing to build multilayer antenna on a single plat-

form. It also incorporates micromachining techniques such as micromilling for surface roughness

reduction and laser micromachining for conductivity enhancement [2, 49]. This approach does

not require post-processing; therefore, decreases fabrication complexity and potentially decreases

fabrication time and cost. In [8], half-wave dipole antenna is embedded into the dielectric struc-

ture using DDM, and the balun feed of the antenna is microdispensed on an inclined surface to

reduce surface wave losses and size. [9] demonstrates a 2.6 GHz half-wavelength dipole antenna

on artificial magnetic conducting (AMC) and low infill substrate using DDM. [14] demonstrates

a Ku-band aperture coupled patch antenna with 50% infill antenna substrate, and exhibits 90%

radiation efficiency.

Compared to single antennas using AM, there are few 3D printed antenna arrays in the

literature. In [11], an 8×8 Ku-band corporate-fed waveguide antenna array is fabricated as a single

block using SLM, matching the performance of CNC milling. [12] demonstrates meshed X-band

horn antenna and patch antenna arrays using SLM for lightweight applications without significant

performance change. In [50], a 2×2 horn antenna array with complex waveguide feed network

using SLA and copper plating is demonstrated.

Only two phased arrays using AM are available in the literature. In [13], Ku-band 4-element

waveguide phased array using polyjet printing, FDM and copper plating is demonstrated. However,

this array is not suitable for installations on small platforms. [13] presents the unit-cell of the first

multilayer 2.45 GHz phased array antenna using DDM, which has seven metal layers and seven

substrate layers. While the phased array antenna demonstrates the capabilities of AM, it operates

at lower microwave frequencies. Higher frequency phased arrays have different challenges such as

fitting the components within the small unit cell size and higher precision requirements.

Traditional bulky packaging techniques are replaced by new packaging concepts such as

system-on-chip (SoC), system-in-package (SIP), and system on-package (SoP) due to their compact
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size, low cost and higher performance [51]. AM offers design flexibilities to achieve smaller

packaging and low loss interconnects [52]. Table 4.2 shows novel packaging techniques using AM.

In [53], IC die package on a glass slide is integrated with a bow-tie slot antenna using inkjet printed

CPW interconnects. Due to the high losses of SU-8, the interconnects have high insertion loss.

In [54], a varactor diode integrated with several RF components such as T-line resonator and patch

antenna using SLAand damascene process. However, this hybrid approach requires significant post-

processing steps (sputtering titanium and copper and etching) for metallization. [55] also follows

a hybrid fabrication approach for chip-to-board interconnects. After 0-dB attenuator and MMIC

amplifier are inserted into an etched cavity, interconnects are printed using AJP. [56] demonstrates

additively manufactured multichip module. Encapsulation with FSS is also printed on chips using

SLA and ĲP. Inkjet printed interconnects exhibit 3.3 dB higher gain for low noise amplifier over

traditional ribbon bonding. In [57], power amplifier in bare die package is attached to molybdenum

copper alloy carrier. Substrate and metallization are built up around the package using AJP. [39]

presents packaging of MMIC low noise amplifier using DDM. Microdispensed interconnects are

laser micromachined for high precision. A hollow package is printed on the IC for protection.

Table 4.2: Comparison of advanced packaging techniques using additive manufacturing.

Reference Fabrication Technique Materials Performance
[53] ĲP SNP ink, SU-8 ∼2 dB IL and∼10 dB

RL at 30 GHz
[54] SLA, damascene Acrylic photopolymer,

copper
0.78 dB IL at 7 GHz

[55] Photolithography, AJP LCP laminate, UV
curable epoxy, SNP
ink

0.15 dB at 40 GHz

[56] ĲP, SLA SNP ink, SU-8, resin ∼3 dB IL and∼10 dB
RL at 40 GHz

[57] AJP Polyimide, barium ti-
tanate, silver ink

∼1 dB IL at 15 GHz

[39] DDM, laser microma-
chining

ABS, silver paste ∼2.4 dB IL at 20 GHz

Work in Chapter 2 DDM ABS, silver paste 0.12 dB IL and 33 dB
RL at 20 GHz

[37] DDM ABS, silver paste –
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In Chapter 2, an MMIC phase shifter is placed on a ground plane of a dual-polarized

antenna using DDM. By optimizing the ramped transitions, the interconnects exhibit 0.12 dB

simulated insertion loss and more than 33 dB simulated return loss up to 20 GHz. In Chapter 3,

we successfully demonstrated the X-band aperture-coupled patch antenna with embedded cavity

and MMIC phase shifter. Embedding of MMIC phase shifter allows smaller packaging required

for planar phased array architecture. In this chapter, we demonstrate a 2×2 sub-array for phased

array realizations, which is an extension to the phased array unit cell.

4.2 2×2 Sub-array Design

Figure 4.1 shows substrate stack-up of the 2×2 sub-array. A major challenge of the sub-

array design is a large number of control and bias lines that need to enter each unit cell which is 28

in total. To reduce this, a shift register is utilized in each unit cell along with the phase shifter. This

approach reduces the control bias lines to 8. Due to unit cell size, it is not possible to keep phase

shifter and shift register in the same layer. Hence, the phase shifter is taken below the cavity with

vertical feed transition across the cavity edge as it can be seen in Figure 4.2. Figure 4.3 shows the

unit cell of the sub-array. The design is 37 x 36 mm2. Overall thickness is 6.9 mm. The sub-array

exhibits seven metal layers and eight dielectric layers.

The sub-array is simulated without the phase shifters but with entire feed network and

control lines. Figure 4.3 shows the 3D broadside radiation pattern of the sub-array. It exhibits 7.8

dBi realized broadside gain, while 2 dB loss comes from the feed network. The feed network loss

of the sub-array in a larger array is lower since the signal will be brought from its center. Currently,

RF signal enters from the side to utilize an edge connector, which causes extra transmission line

length. The sub-array has |S11|<-10 dB within 9-11 GHz bandwidth.

4.3 Concluding Remarks

A detailed literature review on antennas, phased arrays using additive manufacturing in the

recent literature is presented in this chapter. Novel IC packaging techniques using AM are also
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Figure 4.1: Substrate stack-up of the 2×2 sub-array.

Patch antennas

Antenna Substrate

RFin
Cavity

Phase 
Shifter

Signal viaShift 
register

Figure 4.2: Side view of the sub-array.
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Figure 4.4: 3D radiation pattern of the sub-array.
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Figure 4.5: Reflection coefficient of the sub-array.

discussed for planar and conformal phased array architectures. The 2×2 sub-array design based

on the phased array unit cell and its simulated performance is also demonstrated. The fabrication

and experimental verification of sub-array implementation are carried out. However, the results of

these studies are not available to the public yet.
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Chapter 5: Conductivity Improvement of Microdispensed Microstrip Lines and Grounded

Coplanar Waveguides Using Laser Micromachining

5.1 Introduction

Metal deposition is one areawhereAM techniques can provide advantages over conventional

fabrication methods3. For example, AM can reduce the number of fabrication steps and does not

require special tooling such as masks needed in photolithography. AM also allows realizing

electronics on conformal surfaces. However, the efficiency of high frequency microwave devices

continues to be a concern due to the high losses of dielectric and conductive materials used in

AM techniques. Chapter 2 demonstrated low-loss transmission line design by harnessing design

flexibilities of DDM.However, conductor losses are still significant due to low conductivity of silver

inks/pastes. Silver nanoparticle (SNP) and flake based inks and pastes provide less than 10% of the

conductivity of copper [13, 30].This chapter presents techniques to minimize conductor losses for

different type of transmission lines. AM techniques such as selective laser melting (SLM) or direct

metal laser sintering (DMLS) provide higher conductivity by melting and fusing or sintering the

metallic powders. However, SLM and DMLS techniques are not suitable for multilayer devices.

Inkjet printing (ĲP), aerosol jet printing (AJP) and microdispensing are the AM techniques suitable

for realizingmetallizations inmultilayer device structures. ĲP andAJP provide smaller feature sizes

and thin layer thicknesses as compared to microdispensing. On the other hand, microdispensing

can be used as a thick film process and it is easy to integrate with fused deposition modeling (FDM)

3This chapter was published in IEEE Transactions on Components, Packaging and Manufacturing Technology
[49]. Permission is included in Appendix A. This effort was performed through the National Center for Defense
Manufacturing and Machining under the America Makes Program entitled“Project 4064 - Multi-material 3D Printing
of Electronics and Structures” and is based on research sponsored by Air Force Research Laboratory under agreement
number FA8650-16-2-5700. The U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.
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to develop a stand-alone AM platform for multilayer device realizations [58]. However, due to

the low glass transition temperature of thermoplastic polymers often used in FDM process (and

also in ĲP and AJP processes), the SNP inks and pastes are typically cured or dried below the

optimum temperatures. This exacerbates the conductor loss issue even further, as optimally cured

SNP inks/pastes already exhibit <10% of copper conductivity. Photonic curing, laser and thermal

sintering are techniques that are being investigated to improve the conductivity [27,59–63] of SNP

inks/pastes by transforming the physical structure from particles/flakes into a solid. Alternatively,

the work in [2] proposes to improve conductivity of microdispensed transmission lines (TLs)

using laser micromachining. The concept was investigated for coplanar waveguide (CPW). It was

observed that laser micromachining not only improves the minimum achievable feature size of the

CPW slots, but also enhances the conductivity by solidifying the silver particles within the paste

at the edges of the slots. However, the study in [2] was limited to CPW lines and the selected

CPW line geometry was tightly coupled to the ground plane, thus suffering from extremely high

losses. It is well-known that conductor loss depends on the TL type and geometry. It is therefore

important to investigate the use of laser micromachining for other type of microdispensed TLs

and discover the limits of the achievable improvements in conductivity. Consequently, this letter

aims to investigate the laser micromachining for the first time for microstrip and grounded CPW

(GCPW). Laser micromachining is found to improve the conductivity of the lines within the 1 GHz

– 30 GHz frequency band. Scanning electron microscope (SEM) images and optical profilometer

data is utilized to explain the physical reasoning behind the conductivity improvement of the

microdispensed TLs. Conductivity improvement for microstrip lines exhibiting different substrate

thicknesses and varying GCPW width/slot ratios are reported.

5.2 Fabrication

Microwave characterizations are performed by utilizing test fixtures prepared on a planar

substrate (254 µm, RO3035, εr = 3.6, tanδ=0.0018). Standard printed circuit board (PCB)manufac-

turing is utilized for the generation of probe pads, through-reflect-line (TRL) calibration standards,
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and ground planes from 35 µm thick copper with electroless nickel immersion gold (ENIG) plating.

The test fixtures allow to isolate and investigate the conductor loss of signal traces in microdis-

pensed microstrip line and GCPW. Signal traces are microdispensed between the probe pads using

CB028, which is a flake-based silver paste from Dupont. The nScrypt SmartPump along with a

3Dn-Tabletop printer is the tool utilized in microdispensing process. Refrigerated paste is spun at

2000 rpm for 5 min to obtain a homogeneous mixture and left at room temperature for an hour

for viscosity stabilization. Ceramic dispensing tip with 75 µm inner and 125 µm outer diameters

is selected since it is found to provide a consistent single pass trace width of 125 µm, which is

satisfactory to generate the signal trace widths investigated in the presented work.

A main challenge in high frequency microwave device fabrication is the requirement for

precise control over the dimensions of the signal traces. Hence the microdispensing speed and

pressure values were iteratively investigated to achieve the 125 µm single pass trace width. 2 psi

pressure with 2 mm/sec printing speed is determined to be proper for providing adequate CB028

flow from the microdispensing tip nozzle. In addition, the gap between the microdispensing tip and

substrate surface is kept between 30 µm and 40 µm to achieve the signal trace width. Following the

completion of microdispensing, CB028 on the test fixture is dried at room temperature for 20 min

to evaporate some of its solvent. Afterwards, the test fixture is placed in a hot air oven for drying

with manufacturer recommended drying conditions at 160°C for an hour to achieve the highest

possible conductivity.

Figure 5.1 shows the 50 Ω microstrip line and GCPW with microdispensed signal traces.

Line width, thickness and roughness profile were measured with a Wyko NT9100 non-contact

nanometer scale optical profilometer. The thickness at the center of the signal trace is 17 µm. Cross

sections of microdispensed lines are trapezoidal due to the spreading of CB028 on the substrate.

Figure 5.2 shows the trapezoidal shape of the microstrip line measured with profilometer. All

dimensions are in µm. The base of the trapezoid is 250 µm wider than its top edge. The edge

angle is 7.8°. GCPW exhibits the same edge angle. Line widths are indicated with respect to the

trapezoidal base width. Line width for the microstrip line and GCPW are 546 µm and 432 µm,
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Figure 5.1: Microdispensed GCPW and microstrip line.
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Figure 5.2: Cross-section of microdispensed microstrip line.
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laser cut

Figure 5.3: Laser micromachined GCPW and microstrip line.
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Figure 5.4: Cross-section of laser micromachined microstrip line.

respectively. GCPW slots are 152 µm wide. Arithmetic average roughness (Ra) and root mean

squared roughness (Rq) along the center of the line are 0.7 µm and 0.84 µm, respectively. Ra and

Rq along the tapered edge are 0.92 µm and 1.15 µm, respectively. Rq of the bottom surface of the

signal trace is equal to 2.1 µm.

Figure 5.3 shows the laser micromachined microstrip line and GCPW. Signal lines are

microdispensed 250 µm wider than 50 Ω line widths given above. A 1064 nm Nd: YAG pulsed

picosecond laser is used to cut/remove 125 µm wide CB028 from each edge of the lines. Fig-

ure 5.4 shows the rectangular cross-section of the microstrip line and substrate removal after laser
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Figure 5.5: SEM images of cross-section (left) and top view (right) of laser micromachined
microstrip line.

micromachining. All dimensions are in µm.The cross-section before laser micromachining is the

same shape as Figure 5.2, while the line width is 250 µm wider. The measured widths for the

micromachined lines are 533 µm and 406 µm for the microstrip line and GCPW, respectively.

GCPW slots are 165 µmwide. Laser micromachining is performed with a 10 µm single pass width

by setting scanning speed to 25 mm/s, energy to 2 MW and repetition rate to 100 kHz. Although

laser parameters are optimized for the substrate, the laser still cuts 40 µm into the substrate due

to the substrate’s absorption at 1064 nm. The thickness roughness profile is identical to that of

the microdispensed line at the center. Despite small dimensional variations in line widths due to

different printing process (i.e. with or without laser micromachining), all lines exhibit near 50

Ω impedance and very well matched in measurements, as shown in Section III. Hitachi S-800

Scanning Electron Microscope (SEM) images obtained from a laser micromachined microstrip line

are shown in Figure 5.5. The line edges are perpendicular to the substrate surface. Similar to

what has been observed in CPW [2], CB028 is formed into solid silver at the line edges due to the

residual heat as laser micromachining is removing the adjacent material. The solidified edge width

is 12 µm. The conductivity of this region can be assumed to be identical to solid silver at 61 MS/m.
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5.3 Characterization

The S-parameters of the TLs were characterized using a Keysight N5227A PNAMicrowave

Network Analyzer, 650 µm pitch ground-signal-ground probes from GGB, and a portable probe

station from Cascade Microtech. The effect of probe pads on the measurement data was removed

by shifting the reference plane using TRL standards. Delay lines are 1.02 mm, 3.1 mm, and 7.82

mm longer than thru standard. WinCalXE software was used for the TRL calibration.

Figure 5.6 shows S-parameters of the measured and simulated microstrip lines and GCPWs

before and after laser micromachining. Multiple TLs were measured, and similar results were

achieved. Return loss of all measured lines is higher than 20 dB, implying mismatch losses are less

than 0.04 dB. Laser micromachining significantly reduces the insertion loss (IL) of both TLs. IL

improvement starts at low frequencies since the solidified edge width is larger than the skin depth

at 1 GHz (7.4 µm for CB028). At 30 GHz, IL decreases by 0.18 dB/cm for microstrip and 0.29

dB/cm for GCPW. Laser micromachined microstrip gives the lowest IL, while GCPWwithout laser

micromachining has the highest IL.

Table 5.1 compares the attenuation of planar TLs and conductivities reported in the literature.

In [64], ĲP 0.9 µm thick ML on 75 µmKapton tape is sintered at 200°C inside the oven. In [27], 16

µm thick CPWon 50 µmLCP is sintered at 140°C on a hot plate for several hours. However, thermal

sintering methods require long post-processing times and puts thermal load on the substrates [60]

and embedded electronics. In [61], conductivity after selectively laser sintering the SNP ink is

characterized using ring resonators. In [62], conductivity of AJP 2 µm thick ML on 30 µm SU-8

is improved using IR laser sintering. [2] demonstrates significant conductivity improvement on

tightly-coupled 25 µm thick CPW on 0.38 mm Rogers RT5870 by melting the edges. [65] applies

the same technique to 25 µm thick CPW on 0.5 mmABS with 20 µm slots between the conductors.

The laser micromachined lines investigated in this dissertation show the best IL performance. This

is partially due to the TL type and partially due to enhanced conductivity achieved with the laser

micromachining.
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Figure 5.6: |S21| (dB) of 25.4 mm long microdispensed and laser micromachined microstrip lines
and GCPWs.

Figure 5.7: |S11| (dB) of 25.4 mm long microdispensed and laser micromachined microstrip lines
and GCPWs.
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Table 5.1: Comparison of different conductivity improvement techniques.

Ref. Fabrication Technique Insertion Loss (dB/cm) Conductivity (MS/m)
[64] ĲP, thermal sintering Microstrip line (ML) 4.5

at 5 GHz
10.6 at DC

[27] AJP, hot plate sintering CPW 0.9 at 30 GHz 37.8 at DC
[61] ĲP, laser sintering — 6.48 at 15 GHz
[62] Microdispensing, laser

micromachining
ML 3 at 18 GHz 17 at DC

[2] Microdispensing, laser
micromachining

CPW 0.8 at 20 GHz 10 at 20 GHz

[65] Microdispensing, laser
micromachining

CPW 1.3 at 30 GHz —

This
work

Microdispensing, laser
micromachining

ML 0.4 at 30 GHz ML 5 at 30 GHz

This
work

Microdispensing, laser
micromachining

GCPW 0.55 at 30 GHz GCPW 12.5 at 30 GHz

5.4 Modeling

Full-wave electromagnetic simulations with Ansys HFSS v19.2 are utilized to extract the

effective conductivities of the TLs, understand the factors that contribute to performance enhance-

ment, and predict the potentially achievable performance when different line widths are needed.

HFSS models are based on the line geometry and material composition observed with profilometer

and SEM image measurements reported in Section 5.2. Modeling the top and bottom surface

roughness of the signal trace is critical for accurate modeling. CB028 conductivity is taken as its

DC conductivity obtained when drying at 160°C as 4.63 MS/m [13]. For solidified CB028 regions,

conductivity of silver is used which is 61 MS/m. Figure 5.6 shows the full-wave simulated vs.

measured transmission coefficient of 25.4 mm long lines. Excellent agreement is obtained between

the simulations and measurements – verifying the accuracy of the simulation model. Following

this agreement, TL models with perfect rectangular cross-sections and uniform conductivities are

utilized to extract effective conductivity values for the laser micromachined lines. For perfectly

shaped TL models, top surface roughness is not included; therefore, IL associated with top surface

roughness of microdispensed lines contributes to a lower effective conductivity. On the other hand,
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bottom surface roughness is kept for the model since this is determined by the substrate material.

At 30 GHz, effective conductivities of microdispensed microstrip line and GCPW are 1 MS/m

and 0.9 MS/m, respectively. Effective conductivities of laser micromachined microstrip line and

GCPW are 5 MS/m and 12.5 MS/m, respectively.

HFSS models with full details of material and line cross-section non-uniformities are then

utilized to identify the factors that contribute to the IL reduction. The loss factors are compared for

microdispensed and laser micromachined TLs.

1) Dielectric loss: For the microstrip line, the 40 µm-deep cuts made in the substrate during

the laser micromachining are not critical since dielectric loss decreases only by 0.01 dB/cm at 30

GHz due to the substrate removal with laser micromachining.

2) Surface roughness loss: IL associated with surface roughness decreases by 0.07 dB/cm

at 30 GHz for the microstrip line. This is due to the smaller surface area of the laser micromachined

line and change in current distribution due to removal of tapered edges. For the GCPW, IL

associated with surface roughness decreases by 0.1 dB/cm with laser micromachining.

3) Conductor loss: For the microstrip line, the remaining 0.1 dB/cm IL improvement at 30

GHz is associated with conductivity enhancement. Switching from a trapezoidal to a rectangular

cross-section improves IL by 0.02 dB/cm. Inclusion of higher conductivity regions provides an

additional 0.08 dB/cm IL improvement. For GCPW, conductor loss decreases by 0.22 dB/cm

(0.02 dB/cm from cross-section, 0.2 dB/cm from conductivity). Since GCPW current is more

concentrated at line edges, it benefits more from laser micromachining compared to microstrip line.

Figure 5.8 shows the IL improvements that can be achieved with laser micromachining for

varying line widths. Numbers in the legend denote signal line widths. TL impedance is kept at

50 Ω. Hence, microstrip lines are over 127 µm and 508 µm thick substrates with 267 µm and

1070 µm line widths, respectively. GCPWs are kept on the original 254 µm thick substrate with

51 µm and 305 µm slot widths corresponding to 295 µm and 533 µm line widths, respectively.

At 30 GHz, IL improvement is 0.41 dB/cm for the GCPW and 0.39 dB/cm for the microstrip line

exhibiting the narrowest line width. It is observed that narrower lines benefit more from the laser
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Figure 5.8: Insertion loss improvement with laser micromachining.

micromachining. This shows that laser micromachining will be quite important for realizing chip

to package interconnects [39] not only from the feature size, but also from IL perspectives.

5.5 Concluding Remarks

The effect of laser micromachining on the IL and effective conductivity of microdispensed

microstrip line and GCPW is investigated for the first time. On a 254 µm thick εr = 3.6 substrate, 30

GHz IL of laser micromachined 50 Ω microstrip line and GCPW are shown to be 0.18 dB/cm and

0.29 dB/cm lower than their microdispensed counterparts. Effective conductivity of laser microma-

chined microstrip line at 30 GHz is 5x of its microdispensed counterpart. Laser micromachining is

shown to provide 13x improvement for effective conductivity of the GCPW. It is proven that while

laser micromachining is most beneficial for improving the effective conductivity of microdispensed

GCPWs exhibiting narrower signal traces, microdispensed microstrip lines can also greatly benefit

from the employment of laser micromachining process.
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Chapter 6: Concluding Remarks

In this dissertation, 3D printed antennas and phased arrayswith structural control electronics

are demonstrated. The antennas are designed to be utilized in a half-wavelength spacing at X-

band and Ku-band. Packaging of control electronics within a small unit cell is achieved by

structural embedding. Design flexibilities of DDM such as custom material compositions, shapes,

metallization patterns are harnessed to realize high radiation efficiency and wideband antennas

with structurally embedded electronics. High performance of the antennas is achieved by utilizing

low infill antenna and feed substrates. Transmission line losses are also investigated for minimizing

feed network losses of the antenna arrays and thus increase radiation efficiency. Specifically, this

dissertation demonstrates

• capabilities of DDM to realize multilayered RF devices with advanced packaging techniques.

• the lowest fully printed transmission line loss reported in the literature. By customizing

material properties and substrate thickness, the microstrip feed line exhibits 0.25 dB/cm

insertion loss at 18 GHz.

• a wideband Ku-band dual-polarized stacked patch antenna with embedded MMIC switch.

The antenna exhibits 6.3 dBi realized gain at 15 GHz, >80% radiation efficiency, and 45%

|S11| <-10 dB bandwidth. MMIC switch is embedded within the feed substrate and connected

to feed lines through 3D interconnects.

• a novel MMIC switch integration technique with 3D interconnects enabling more than 33 dB

return loss and compact packaging for 2D array applications.
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• an X-band phased array antenna unit cell with embedded cavity and MMIC phase shifter.

The antenna exhibits 23.8% |S11| <-10 dB bandwidth, 7.2 dBi realized gain at 10 GHz, and

80% radiation efficiency without including phase shifter loss.

• a 2×2 sub-array implementation of the unit cell. Each unit cell includes a shift register IC

for controlling phase shifter therefore significantly reducing the number of control lines.

• laser micromachined microstrip line and GCPW. Effective RF conductivity improvement

with laser micromachining is 5× for microstrip line and 13.9× for GCPW.

Structural integration of MMICs and ICs in QFN packages within a small unit cell is

suitable for passive electronically scanned arrays (PESAs). The industry is moving towards active

electronically scanned array (AESA) and digital phased array technology [41]. Each unit cell in

these arrays includes a transmit/receive (T/R) module. The current approach is to use a slat or tile

(also known as plank) array architecture, where the T/R module is connected perpendicular to the

antenna [41], resulting in significant depth. The demand for using AESAs in small platforms such

as aircraft, satellite communications on-the-move (SOTM), and 5G communications is increasing.

Small size, lightweight, high power and low cost (also known as SWaP-C) are the most important

design requirements for these applications [42]. Fitting multiple MMICs and ICs (whole T/R

module) remains to be challenging [40]. For the planar phased array applications, design flexibilities

of additive manufacturing can provide many advantages over the conventional fabrication methods.

What follows is the list of future on additively manufactured antennas, phased arrays and RF

devices.

6.1 Planar Transmission Lines

Additively manufactured planar transmission lines still have higher losses compared to

the transmission lines fabricated with conventional fabrication methods such as photolithography.

Conductor losses are the major loss factor. The conductor losses are higher with 3D printed metal-

lization due to the low conductivity of silver inks/pastes. Post-processing techniques such as laser
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micromachining, laser sintering, photonic curing and thermal sintering have been used to improve

the effective RF conductivity of printed silver inks/pastes. While laser micromachining increases

conductivity to conductivity of bulk silver, its effect is local. While the effect of laser sintering,

photonic curing and thermal sintering on conductivity is not as significant as laser micromachining,

their effect is over all metallization. Therefore, combining these post-processing techniques can

further enhance conductivity. The surface roughness of additively manufactured substrates can also

increase transmission line losses significantly at higher microwave frequencies. For instance, FDM

causes waviness on the surface. Surface micromachining techniques such as micromilling and [37]

and thermal and vapor smoothing [66] can reduce surface roughness. Dielectric losses of printed

dielectric inks are significantly higher than standard LCP or PTFE laminates. Printed thermoplastic

polymers have moderate dielectric losses. Thermoplastic polymers such as polyetheretherketone

(PEEK) has lower loss tangent compared to ABS.

6.2 Interconnects

Printed interconnects can provide many advantages over conventional fabrication methods

such as the switch transition used in Chapter 2. Improving the robustness and flexibility of the

interconnects is crucial against harsh environmental conditions. Printed via performance is impor-

tant for multilayer device fabrication [67, 68]. Therefore, high-aspect-ratio via performance using

additive manufacturing should be investigated to achieve performance similar to PCB fabrication

techniques.

6.3 Connectors

Connectors can be fabricated and embedded within the package using additive manufactur-

ing. This method can be used to minimize the reflection at the connector launch. Also, connectors

optimized for additively manufactured multilayer RF devices can be fabricated with metal printing

techniques such as DMLS or SLM.

71



6.4 Active Electronically Scanned Arrays

The typical lateral size of the QFN MMIC packages is 4 mm × 4 mm, while unit cell sizes

at and above X-band are less than 18.75 mm × 18. 75 mm. When the routing of RF and control

lines are included, it is not possible to fit the entire T/R module formed of MMICs within the unit

cell. Therefore, beamformer ICs, also known as core chips, provide a small size for phased array

applications by fitting the entire T/Rmodule into an IC. The ADAR1000X-/Ku-Band Beamforming

Chip fromAnalog Devices, which has 7 mm× 7mm lateral size is an example for the beamforming

ICs. Phased array antennas with embedded beamformer IC using additive manufacturing should

be investigated. This would be the first active phased array using additive manufacturing in the

literature.

6.5 Power Handling

Commonly used thermoplastic polymers used in the FDM processes such as ABS and PLA

are easy to print. However, they have low glass transition temperatures. In order to integrate power

amplifiers with additively manufactured antennas, higher temperature thermoplastic polymers such

as Ultem, PEEK, or polyether ketone ketone (PEKK) can be used for fabrication. Also, using higher

conductivity silver inks or pastes decreases conductor losses and improves thermal management.

Other additive manufacturing techniques such as DMLS or SLM can also be integrated for heat

sink fabrication. The power handling limitations of additively manufactured RF devices should be

investigated.

6.6 Conformal Antenna Arrays

Compared to planar antenna arrays, conformal arrays have many advantages, such as main-

taining the radiation pattern at high scan angles, andwider scan angles [69]. Additivemanufacturing

can be used to fabricate antennas directly on the conformal platform, reducing aerodynamic drag.

It enables truly conformal array geometry compared to sector arrays.
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~ 133 128 mm2

Figure 6.1: Conformal 8x8 antenna array on doubly curved surface.

Figure 6.1 shows the conformal cavity-backed phased array model. The 8x8 array is doubly

curved on the surface. Fabrication of this antenna with traditional fabrication techniques is not

practical. The antenna is simulated in Ansys HFSS. 50 Ω lumped ports are used to excite the

antennas. Figure 6.2 shows the broadside radiation pattern of the antenna. Phases of the antenna

elements are corrected to arrive at the reference plane with the same phase. The array exhibits

22 dBi broadside realized gain. The radiation efficiency of the array without including the feed

distribution network is 86%. Mutual coupling between the antenna elements is less than -17 dB.

The antenna has 20% |S11|<-10 dB bandwidth. Traditional 3-axis printers cannot be used for the

fabrication of conformal arrays. In addition to 3-axis, two rotary axis motion is required to enable

conformal printing.
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Figure 6.2: Broadside radiation pattern of the conformal array.

Figure 6.3: 3D radiation pattern of the conformal array at high scan angle.
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