
University of South Florida University of South Florida 

Digital Commons @ University of South Florida Digital Commons @ University of South Florida 

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations 

March 2022 

Improving Robustness of Deep Learning Models and Privacy-Improving Robustness of Deep Learning Models and Privacy-

Preserving Image Denoising Preserving Image Denoising 

Hadi Zanddizari 
University of South Florida 

Follow this and additional works at: https://digitalcommons.usf.edu/etd 

 Part of the Artificial Intelligence and Robotics Commons 

Scholar Commons Citation Scholar Commons Citation 
Zanddizari, Hadi, "Improving Robustness of Deep Learning Models and Privacy-Preserving Image 
Denoising" (2022). USF Tampa Graduate Theses and Dissertations. 
https://digitalcommons.usf.edu/etd/9510 

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at 
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses 
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more 
information, please contact scholarcommons@usf.edu. 

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9510&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.usf.edu%2Fetd%2F9510&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


Improving Robustness of Deep Learning Models and Privacy-Preserving Image Denoising

by

Hadi Zanddizari

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: J. Morris Chang, Ph.D.
Nasir Ghani, Ph.D.
Xinming Ou, Ph.D.
Ismail Uysal, Ph.D.

Lu Lu, Ph.D.

Date of Approval:
March 22, 2022

Keywords: Black-box attack, internet of things, cloud computing, image denoising, sparse
coding

Copyright © 2022, Hadi Zanddizari



Dedication

This work is completely dedicated to my respectful parents without whose constant sup-

port this thesis paper was not possible.



Acknowledgments

First, I would like to express my sincerest gratitude to my advisor and my lifelong friend,

Professor J. Morris Chang, for the priceless guidance of me through my Ph.D. journey over

the last four years. I want to say thank you to Prof. Chang for unconditionally supporting me

with academic knowledge, research instructions, professional career advice, and particularly,

guiding me to choose research topics that are among the most interesting ones in the industry

and academia.

I would also like to thank the rest of the professors on my dissertation committee: Dr.

Nasir Ghani, Dr. Xinming Ou, Dr. Lu Lu, and Dr. Ismail Uysal. The knowledge that I

have gained from them during coursework or discussions helped enrich my dissertation.

Last but not the least, I would like to express my deepest gratitude to my family. This

dissertation would not have been possible without their warm love, continued patience, and

endless support.



Table of Contents

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1: The Robustness of Deep Learning Models against Adversarial Attacks 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Difference Between LaS and LoF Components . . . . . . . . 8
1.2.2 Effect of LaS Components on CNN Models . . . . . . . . . . 10

1.3 Perturbing LaS Components . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Case Study: Directed Perturbation . . . . . . . . . . . . . . . . . . . 12
1.5 Attacking Google Cloud Vision and YOLO . . . . . . . . . . . . . . . 16
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2: Improving the Performance of Deep Learning Models . . . . . . . . . 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Material and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 RoI Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.2 Deep Learning Models . . . . . . . . . . . . . . . . . . . . . 33

2.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 Case Study: Effect of Compression on the Performance of the Skin

Lesion Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 3: Lossless Privacy-Preserving Image Denoising . . . . . . . . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Sparse Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.3 Dictionary Update . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Lossless Privacy-Preserving Image Denoising . . . . . . . . . . . . . . 55
3.4.1 Proof of Lossless Property . . . . . . . . . . . . . . . . . . . 56
3.4.2 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . 59

i



3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Appendix A: Copyright Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . 81

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .End Page

ii



List of Tables

Table 1.1 The effect of keeping only 50% or 30% of LaS, LoF, and HiF
components on the accuracy of six CNN models(%). . . . . . . . . . . 9

Table 1.2 Comparing misclassification rates of directed attack over six CNN
models based on proposed method (LaS) and recent method (LoF). . 15

Table 2.1 Effect of segmentation on the accuracy of CNN classifiers (%). . . . . 36

Table 2.2 Effect of segmentation on the inference time of CNN classifiers (Ms ). 38

Table 2.3 Effect of segmentation on the training time of CNN classifiers (Hours). 38

Table 2.4 Effect of compression on the accuracy of CNN models. . . . . . . . . 42

Table 2.5 Comparing different compression methods. . . . . . . . . . . . . . . . 43

Table 3.1 The average execution times (seconds) of running denoising algo-
rithm with noisy images (baseline) and encrypted noisy images
(proposed) on the cloud-side. . . . . . . . . . . . . . . . . . . . . . . 61

Table 3.2 Comparing the quality of proposed privacy-preserving image de-
noising outsourcing with the regular outsourcing (baseline). . . . . . 63

Table 3.3 Comparing the average loss of proposed method with previous works. 63

iii



List of Figures

Figure 1.1 Transferring image into the sparse domain and zeroing small el-
ements of sparse signal: (a) original image, (b) zeroing 70%, (c)
80%, and (d) 90% of small elements. . . . . . . . . . . . . . . . . . . 8

Figure 1.2 The number of non-intersecting components of each image. . . . . . 10

Figure 1.3 Comparing the required number of queries to fool CNN models
based on proposed approach (LaS), and LoF. . . . . . . . . . . . . . . 20

Figure 1.4 Comparing number of misclassified samples for query less or equal
to 10 based on LaS and LoF. . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 1.5 Generating adversarial examples with different level of perturba-
tion on LeNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 1.6 Generating adversarial examples with different level of perturba-
tion on SVM classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 1.7 Comparing the misclassification rate of proposed method of per-
turbation and recent practical black-box (BBX) approach. . . . . . . 22

Figure 1.8 Information of dataset and trained model by Google Cloud Vision. . . 22

Figure 1.9 Comparing the required number of queries to fool a TFlite model
trained by GoogleAPI based on proposed approach (LaS), and LoF. . 23

Figure 1.10 Samples of attacking Google Cloud Vision. . . . . . . . . . . . . . . . 23

Figure 1.11 Performance of YOLOv5 over skin lesion dataset (ISIC-2017). . . . . 24

Figure 1.12 Samples of attacking the object detection algorithm (YOLOv5). . . . 24

Figure 2.1 Results of K-means segmentation, from left to right: (1) raw im-
age, (2) ground truth segmentation (3) segmented image. . . . . . . . 29

Figure 2.2 RoI extraction process: black texts show target images and its
size, and red texts illustrate corresponding method used at each
stage of the process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

iv



Figure 2.3 Results of MultiResUNet segmentation, from left to right: (1) raw
image, (2) segmented image, and (3) RoI extracted image. . . . . . . 31

Figure 2.4 F1-score of two classes: ’melanoma’, ’nevus’, and weighted-average
of all classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.5 Compressing one sample with CR = 4:1. . . . . . . . . . . . . . . . . 41

Figure 2.6 Training and testing each model with their corresponding datasets . . 42

Figure 2.7 Elapsed time of compression phase vs recovery phase of cs-based
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.1 Classic patch-based image denoising problem. . . . . . . . . . . . . . 47

Figure 3.2 The original signal and its single-sided amplitude spectrum. . . . . . 52

Figure 3.3 The noisy signal and its single-sided amplitude spectrum. . . . . . . . 53

Figure 3.4 An example of showing the effect of permutation on the sparse
coding step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 3.5 Comparing the execution times of running denoising task on noisy
patches (baseline) and encrypted noisy patches on the cloud-side
(proposed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 3.6 Experiment results of visual information exposed in the cloud-side,
and comparing the quality of denoised image with the baseline. . . . 65

v



Abstract

Applications of deep learning models and convolutional neural networks have been rapidly

increased. Although state-of-the-art CNNs provide high accuracy in many applications,

recent investigations show that such networks are highly vulnerable to adversarial attacks.

The black-box adversarial attack is one type of attack that the attacker does not have any

knowledge about the model or the training dataset, but it has some input data set and their

labels.

In this chapter, we propose a novel approach to generate a black-box attack in a sparse

domain, whereas the most critical information of an image can be observed. Our investigation

shows that large sparse (LaS) components play a crucial role in the performance of image

classifiers. Under this presumption, to generate an adversarial example, we transfer an image

into a sparse domain and add noise to the LaS components. We propose a comprehensive

evaluation and analysis to support our idea in chapter one.

In chapter two, we propose a new preprocessing approach that can enhance the robust-

ness of skin lesion classification. Machine learning models based on convolutional neural

networks have been widely used for automatic recognition of lesion diseases with high accu-

racy compared to conventional machine learning methods. In this research, we proposed a

new preprocessing technique to extract the skin lesion dataset’s region of interest (RoI).

We compare the performance of the most state-of-the-art convolutional neural networks

classifiers with two datasets that contain (1) raw and (2) RoI extracted images. Our ex-

periment results show that training CNN models by RoI extracted dataset can improve

the prediction accuracy. It significantly decreases the evaluation and training time of the

classification task.

FreeText
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Finally, we propose a secure and robust image denoising approach. Image denoising aims

to obtain the original image from its noisy measurements. While the quality of image denois-

ing has been increasing over the years, the complexity and the required memory to implement

the denoising task have also been increased accordingly. With such advancements and the

unlimited computing resources available in the cloud, trends to transfer the image denoising

task to the cloud have grown over the past years. However, it is still quite challenging to uti-

lize cloud-based resources without compromising users’ data privacy while maintaining the

quality of image denoising. In this chapter, we propose a novel lossless privacy-preserving

image denoising approach that protects the users’ privacy and simultaneously keeps the

quality of the denoising task.

Our proposed approach is suitable for computationally constrained devices such as many

IoT devices. In this method, we use two random keys to permute and perturb the noisy

image patches. The cloud service provider implements the denoising task on the encrypted

signal. After denoising, the output signal is still encrypted, and the real user who has

access to the keys would be able to decrypt the denoised image. We evaluate the security of

this method against known-plaintext, brute-force, and side-channel attacks. In addition, we

theoretically prove the lossless property of this method. To verify the applicability of this

approach, we implemented our experiments on multiple real images, and two well-known

evaluation metrics were used to compare our results with the baseline.

vii



Chapter 1: The Robustness of Deep Learning Models against Adversarial

Attacks

Applications of machine learning (ML) models and convolutional neural networks (CNNs)

have been rapidly increased. Although state-of-the-art CNNs provide high accuracy in many

applications, recent investigations show that such networks are highly vulnerable to adver-

sarial attacks. The black-box adversarial attack is one type of attack in which the attacker

does not have any knowledge about the model or the training dataset, but it has some input

data set and their labels. In this chapter, we propose a novel approach to generate a black-

box attack in a sparse domain, whereas the most important information of an image can be

observed 1.

Our investigation shows that large sparse (LaS) components play a critical role in the

performance of image classifiers. Under this presumption, to generate an adversarial exam-

ple, we transfer an image into a sparse domain and put a threshold to choose only k LaS

components. In contrast to the very recent works that randomly perturb k low frequency

(LoF) components, we perturb k LaS components either randomly (query-based) or in the

direction of the most correlated sparse signal from a different class. We show that LaS com-

ponents contain some middle or higher frequency components information, which leads to

fooling image classifiers with fewer queries.

We demonstrate the effectiveness of this approach by fooling six state-of-the-art image

classifiers, the TensorFlow Lite (TFLite) model of Google Cloud Vision platform, and the

YOLOv5 model as an object detection algorithm. Mean squared error (MSE), and peak

1This chapter was published in IEEE Transactions on Emerging Topics in Computational Intelligence [1].
Permission is included in Appendix A.
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signal-to-noise ratio (PSNR) are used as quality metrics. We also present theoretical proof

to connect these metrics to the perturbation level in the sparse domain.

1.1 Introduction

By the ever-increasing demands for analyzing and processing large datasets, ML algo-

rithms and particularly deep learning techniques have become the center of attention of many

companies and service providers. The remarkable performance of CNNs for image segmenta-

tion, classification, and object tracking could provide acceptable solutions for many problems

encountered in computer vision and biomedical engineering [2, 3, 4]. While almost CNNs

perform well and provide high accuracy, their robustness toward some malicious attacks still

is not acceptable [5, 6, 7]. Applying some perturbation on the input data may undermine

the high accuracy of a classifier since ML models are usually trained and deployed in benign

settings. In other words, they do not consider certain scenarios in which an attacker can

compromise the performance of the system.

Recently, many works have been proposed to point out the vulnerability of CNNs against

adversarial scenarios [8, 9, 10, 11, 12]. By slightly perturbing the input data, the ML classifier

may fool and predict a wrong label. If this perturbation is small enough to the human eyes,

then the perturbed image is called an adversarial example [6, 13, 14]. This problem can

be viewed from a different perspective; if we add a limited perturbation to an image, while

human eyes may detect the perturbation, still we expect the classifiers to classify correctly.

It opens up a new horizon of the robustness of ML models against adversarial examples.

An adversarial example can be obtained by solving the following minimization problem

||r ||2 s.t. C (x + r) ̸= C (x) (1.1)

where r is adversarial perturbation, ||.||2 is the Euclidean norm or ℓ2 norm, x is the legitimate

image (original image), and C (.) yields the classifier’s output label. Based on (1.1), there
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are two factors in generating adversarial examples, first having a minimum perturbation on

the legitimate image, and the second, fooling the classifier output.

Misclassification and targeted misclassification attacks are two major goals of adversarial

examples. In the misclassification attack, an adversary tries to fool the ML classifier by

misclassifying a legitimate example to different classes other than the original one. For

example, a legitimate image with label 1 of the MNIST (Modified National Institute of

Standards and Technology) dataset is perturbed in such a way that ML classifier yields an

output label belongs to {0,2,3,4,5,6,7,8,9}, yet not 1. The attacker tries to fool the classifier

to yield a targeted label in targeted misclassification. For example, the same legitimate

image with a label 1 is labeled as a specific number like 8 by the classifier. In this chapter,

we focus on misclassification attacks.

Adversarial examples can be generated based on two different approaches: white-box

and black-box. In white-box attacks, the attacker has comprehensive knowledge about the

training dataset, model parameters, number of CNN layers, loss function, and the whole

structure of the model. There are numerous works based on white-box attacks, such as fast

gradient sign method (FGSM) [15], beyond the image space approach that uses physical space

features of 3D images, [16], deepfool [17], Jacobean-based Saliency Map Attack (JSMA)[18].

For example, FGSM generates an adversarial perturbation for a given legitimate image by

computing the gradient of the cost function with respect to the legitimate image of the ML

algorithm as follows:

x∗ = x + ϵ sign (∇xJ (x , c)) (1.2)

where ϵ denotes a small scalar value which regulates the perturbation’s level, c is the input

label, J () denotes the model cost function, ∇x is the gradient of the trained model with

respect to the legitimate image, and sign(.) is the common mathematical function which

yields the sign of its input argument. The common property of white-box attacks is utilizing

the model’s information for generating the adversarial example. In contrast, the black-box

3



attack does not have any information about the model’s structure, parameters, and training

dataset[19, 20, 21, 22]. This type of attack is more practical because access to the training

dataset is not possible in many cases. Also, some information such as the model’s parameters,

number of layers, and loss function may not be public.

Black-box attacks can be separated into three categories: non-adaptive, adaptive, and

strictly black-box attacks [13]. In a non-adaptive black-box attack, an attacker can have

access only to the distribution of the training dataset [23]. In the adaptive black-box case,

the attacker does not have any information about the distribution of the dataset; however,

she can access the target model as an oracle. It means the attacker can query the output

labels of legitimate samples as well as adversarial samples [24, 25]. In the strict black-box

attack, the attacker does not have access to the dataset’s training distribution, and she

cannot adaptively modify the input query to observe the model’s output. In other words,

an attacker can query the legitimate input samples, but if she slightly perturbs an input

sample to observe its output label, the system identifies this process as a malicious attack

[26, 13]. Although these types of systems may provide a high level of security, in many real

cases input samples may be very similar to each other and as a result, there is no need to

block the user. Adaptive black-box attacks are more applicable than non-adaptive or strict

black-box attacks as they do not have any knowledge about the distribution of the training

dataset and assume the system would not block a user by evaluating a limited number of

close queries. However, if the number of queries increases, the system may detect a probable

malicious attack.

In [27], authors proposed generating adversarial examples based on perturbing one pixel

of an image through differential evolution. Although this method could fool almost all CNN

models due to the inherent features of differential evolution, there is no limit to the number of

queries to attack the model. Papernot et al. [19] proposed a practical approach for generating

adversarial examples based on Jacobian-based dataset augmentation technique to obtain new

synthetic training samples. After having an adequate number of samples and corresponding
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labels, they train a local model and apply a white-box attack (such as FGSM) on this

locally trained model to generate adversarial examples. They use the transferability property

of ML algorithms [20]. Transferability is a property that enables us to apply adversarial

examples generated by a model on another model with the same or different architecture.

The applicability of such attacks mainly revolves around the transferability property of ML

models and having enough large datasets for training the local model. Recently, Hosseini et

al. [28] proposed a three-step null labeling method to block the transferability property of

the ML models. In the first step, they train the model based on clean data, then add some

perturbations to the input data, and based on some threshold and probability functions, and

they assign the label ‘Null’ to the perturbed image. Then, they retrain the model with clean

and new adversarial examples with null labels. This approach enables the model to detect

the input adversarial examples by predicting as a ‘Null’. The previous black-box attacks try

to generate adversarial examples based on a white-box approach. In other words, they train

a local fake model, then apply a white-box attack to generate adversarial examples.

Some black-box approaches are not based on the white-box approaches. In [24], the

effectiveness of restricting the search for adversarial images to a low-frequency domain has

been investigated. After focusing on the lower frequency subspace, they randomly perturb

the components while restricting the perturbation level. It can be described as adding a

low-filtered random noise to the legitimate image. This approach could outperform many

black-box attacks. Y. Sharma et al. [25] used discrete cosine transform (DCT) dictionary to

map the image into the frequency domain. Then they put a hard threshold for choosing LoF

components. After transformation into the frequency domain, most of the frequency com-

ponents have small values, and only a few have large values. This property of the frequency

domain is well known as a sparse representation of an image. Then, by applying perturba-

tions on the LoF components, they could generate faster and more transferable adversarial

examples. This approach can completely bypass most of the top-placing defense strategies

at the NeurIPS 2017 competition. The authors also investigated the effect of perturbation
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on high frequency (HiF) components, but their results show that LoF components are the

ones that mostly affect CNN models. We were motivated by the aforementioned work and

used DCT dictionary to transfer images into the sparse (frequency) domain. Then, instead

of putting a hard threshold for choosing only k LoF components, we selected k LaS com-

ponents where some low, middle, and high-frequency components are picked up. In section

1.2.1, we show the difference between LaS and LoF components.

Focusing on LaS components has been used in many image processing and compression

techniques. The JPEG codec [29] takes advantage of this property in order to compress

the images. Because the most critical features and information of an image are available in

the LaS components and not just LoF components [29]. Intuitively, image classifiers mostly

consider specific components that bear more image information. We verify this property of

image classifiers by implementing systematic experiments (section 1.2.2). We propose adding

noise to LaS components in two scenarios. In the first scenario, we randomly perturb LaS

components, and by restricting the perturbation level, the number of required queries to fool

the state-of-the-art classifiers is evaluated. Our experiment results show that the proposed

approach can fool the classifiers with fewer queries compared to the very recent approach,

which works based on LoF components [25]. In the second scenario, a directed attack, we

suppose a few images from each class are available. Given a legitimate image, we perturb

its LaS components in the direction of the most correlated sparse sample from a different

class. Our experiments show that this method can successfully fool the state-of-the-art CNN

classifiers.

In this chapter, the summary of our contributions are as follows:

• We introduce a black-box approach to generate adversarial examples in the sparse

domain to fool the ML algorithms such as CNN models, support vector machine (SVM)

classifiers, object detection algorithm (YOLOv5), and model trained by the Google

Cloud Vision API.
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• In contrast to the recent black-box attacks that focused on LoF components, we show

that the LaS components can fool the classifiers with fewer queries.

• We proposed an analytical approach to show the relationship between the perturbation

level in the sparse domain and its effect on the pixel domain. Our results show that

the proposed method decreases the number of required queries to fool the ML models

and increases the misclassification rate of ML models.

1.2 Sparsity

Sparsity has been widely used in many applications such as image denoising, deblurring,

super-resolution, and compression [30, 31]. An image signal X ∈ Rp×q can be reshaped to a

vector x ∈ RN=p×q where N is the number of pixels. Dictionary D ∈ RN×L is a matrix which

linear combination of its columns di can approximately represent the x as follows:

x =
∑

i∈{1,2,..L}

sidi = Ds (1.3)

where s ∈ RL is the weight vector. If D provides a weight vector with only k large and l − k

negligible or zero elements, then D and s can be called as a sparsifying dictionary and sparse

representation of input x , respectively. For brevity, by the rest of this work, we omit the

’sparsifying’ and refer to the dictionary as a sparsifying dictionary. There are some fixed

dictionaries based on analytical approaches such as Fourier or wavelet transform which can

be designed very fast. In this work, we used DCT dictionary which is an orthonormal matrix

(D ∈ RN×N and ||di ||2 = 1). The coefficients of DCT dictionary can be obtained as follows:

di ,j = ai ,j cos
π(2i − 1)(j − 1)

2N
i , j ∈ 1, 2, ... ,N

ai ,j =


√

1
N

j = 1√
2
N

j ̸= 1

(1.4)
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where di ,j corresponds to the entry of ith row and jth column of DCT dictionary. If we

transfer an image into the DCT domain, zeroing small components will have negligible effects

on the visual information of the image. For example, Fig. 1.1 illustrates this property. The

original image was transferred into the sparse domain via DCT dictionary and forced 70%,

80%, and 90% of its small components to zero then transformed back into the pixel domain.

Reconstructed images based on only 30%, 20%, or 10% of its LaS components can still

preserve lots of visual information of the image.

(a) (b)

(c) (d)

Figure 1.1: Transferring image into the sparse domain and zeroing small elements of sparse
signal: (a) original image, (b) zeroing 70%, (c) 80%, and (d) 90% of small elements.

1.2.1 Difference Between LaS and LoF Components

The sparse domain enables us to access the important frequency components of an im-

age. Components may belong to low, middle, or high-frequency bands. Regardless of the

frequency bands, if we choose some top-ranked components, those specific components can
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Table 1.1: The effect of keeping only 50% or 30% of LaS, LoF, and HiF components on the
accuracy of six CNN models(%).

Model
Ground Truth Accuracy

(All components)
50% of
LaS

30% of
LaS

50% of
LoF [24] & [25]

30% of
LoF [24] & [25]

50% of
HiF [25]

30% of
HiF [25]

MobileNets 90.72 89.14 83.75 77.14 76.27 29.79 15.71
ResNet50 91.37 90.73 87.59 79.30 73.29 20.89 16.13
DenseNet121 92.29 91.27 88.05 79.76 77.84 26.31 16.74
InceptionV3 93.27 92.6 90.32 80.83 79.40 31.42 25.93
Efficient-B0 94.30 93.83 90.59 79.07 70.57 36.54 27.16
Efficient-B1 95.46 94.78 91.06 80.25 75.85 37.36 29.47

belong to any frequency band. Some images may have some information in the middle or

even higher frequencies; as a result, they would have LaS components corresponding to the

middle or higher frequencies.

To evaluate the intersection level between LaS and LoF components, we used 10000 color

images of size 256x256 pixels. The images had three color channels, and we mapped each

channel into the sparse domain separately. Then we selected N = k× k× 3 LaS and LoF

components. For chosen k = 8, k = 16, and k = 32, the number of components are N = 192,

N = 768, N = 3072, respectively. Figure 1.2 shows how many non-intersecting components

are available between LaS and LoF components. For k = 8, the mean of non-intersecting

components is 77, i.e., more than 40% of the LaS components belong to the middle or higher

frequencies components. For k = 16 and k = 32 the mean of non-intersecting components are

229 and 983, i.e., 39% and 32% of the LaS components do not belong to the low-frequency

space. This experiment shows that the LaS components do not completely overlap with

the LoF components, and some critical information of the image signals may belong to

the middle or high-frequency bands. In other words, for every image, different bands have

different information; as a result, we cannot limit the critical information of an image to

only its low-frequency space. In the next section, we evaluate the effects of manipulating

different frequency bands on the performance of CNN models.
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Figure 1.2: The number of non-intersecting components of each image.

1.2.2 Effect of LaS Components on CNN Models

Sparse transformation enables us to compact the signal’s energy into a few components.

On the other hand, many image classifiers work based on pixel domain and they do not

directly consider the sparse domain. A question that may arise here is: “how much can

manipulating LaS, LoF, or HiF components affect classifiers’ performance?”. This chapter

empirically shows that the LaS components are the most important part of images that affect

the classifiers’ performance. Our experiment was implemented over six state-of-the-art CNN

models namely, EfficientNet-B0 and B1 [32], ResNet50 [33], InceptionV3 [34], MobileNets

[35], and DenseNet121 [36].

We used the CIFAR-10 dataset, a color and balanced image dataset with a complex

background. This dataset contains 50000 training samples and 10000 test samples belonging

to 10 classes. We trained these models with 50000 training samples, and then we input the

original 10000 test samples (without any changes or manipulation) to obtain the ground

truth accuracy of each trained model (Table I). In the next step, via DCT dictionary, we

transferred all 10000 test samples into the sparse domain. Then we kept 50% and 30% of

LaS, LoF, and HiF components and zeroed the rest of the components. We transformed each
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image back to the pixel domain and input them into the same trained model. To further

clarify, after putting these thresholds, we obtained 6 test datasets, two for Las components,

two for LoF components, and two for HiF components.

As shown in Table 1.1, the accuracies belonging to LaS components test datasets are

much closer to their corresponding ground truth accuracies. While keeping only LoF or HiF

components leads to a considerable loss of accuracy. It shows that if we only focus on LoF

or HiF components; we lose some components that affect the decision boundaries of CNN

models. For example, Efficient-B1, one of the best image classifiers introduced by Google

in 2019, has an accuracy of 95.46% for the original test dataset. If we keep only 50% of

LaS components, the accuracy is almost the same 94.78%. If we keep 50% of LoF and HiF

components, the accuracies are 80.25% and 37.36%, respectively. To elucidate, only 50% of

LaS components affect classifiers, and the other 50% components do not affect the accuracy

much.

This experiment helps us determine which frequency components mainly affect the CNN

models. By having this information, we would be able to add perturbation on important

components to fool image classifiers. Also, this experiment verified the results of [25] that

showed the importance of LoF vs. HiF components. They concluded that perturbing LoF

components is more effective than perturbing HiF components. For brevity, we omitted the

results of our experiments over other CNN models and different threshold levels, which had

the same results to verify our assumption. We release our code publicly for reproducibility.

In the next section, we add a limited perturbation to LaS and LoF components to see which

of them can fool the classifiers in fewer queries.

1.3 Perturbing LaS Components

There is no prior information about the model’s parameters and distribution of the train-

ing dataset in the adaptive black-box attack, yet the attacker can query the label of legitimate

sample and corresponding perturbed sample. However, if the number of queries increases,
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the system may identify malicious activity. An adversarial attack is more practical if it fools

classifiers in fewer queries. We designed a systematic experiment to evaluate the effective-

ness of adding perturbation on LaS components. Our results demonstrate that the proposed

approach requires fewer queries to fool image classifiers. In this experiment, six CNN models

(EfficientNet-B0 and B1, ResNet50, InceptionV3, MobileNets, DenseNet121) were used. We

trained all models with 50000 training samples of the CIFAR-10 dataset. We used 10000

test samples of the CIFAR-10 dataset that had never been used in the training process to

apply the attacks. We utilized the DCT dictionary to transfer test samples into the fre-

quency domain. We used a Gaussian noise with zero mean and variance 1 to generate noise,

and to have a fair comparison with [25], we defined the MSE less than 0.001 as a successful

attack. We compared adding noise to k = 8 LaS and LoF components. In Fig. 3.6, the

histograms of the required number of queries to successfully fool the aforementioned CNN

models are demonstrated. The distributions of successful attacks show that manipulating

LaS components can fool the CNN models in fewer queries. Figure 1.4 shows the number

of all misclassified images in query less or equal to 10. This experiment first evaluated the

models’ prediction for each legitimate sample. If a model predicted a legitimate sample

wrongly, we put aside that sample and did not involve it in the experiment (because it was

already misclassified). Hence, the number of misclassified images in Fig. 3.6 and 1.4 are

only due to the perturbation on samples.

1.4 Case Study: Directed Perturbation

This section proposes a method for adding noise to the LaS components to fool the model

into a specific direction. In the black-box approach, the attacker can use some samples that

have never been used for the training stage. Then, the attacker can verify or find the

input sample’s label by observing the output of the objective model. This section assumes

the attacker can have multiple samples of each class and its labels. Suppose the available

dataset is X = {xi}i=p
i=1 which contains p samples and each sample belongs to one class out of
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m available classes, i.e., C (xi) ∈ {cj}j=m
j=1 . We map all samples of the dataset into the sparse

domain via DCT dictionary D. Doing so, S = {si}i=p
i=1 would be obtained where si is the

sparse representation of the xi . In the sparse domain, we keep the k LaS components and

force the rest of the components to zero. Then each sparse vector is normalized. Doing so,

we would have

Ŝ = {ŝi}i=p
i=1, ||ŝi ||0 = k , ||ŝi ||2 = 1 (1.5)

where ||.||0 is the zero-norm of a vector which counts the number of non-zero elements of

a vector. Sparse vector ŝi contains information of the positions and normalized values of

the k largest elements of si which belong to class C (si). Then for a given (ŝi , C (si)), we

find the most correlated sparse vector (ŝj , C (sj) ̸= C (si)). In other words, sparse vector ŝj is

the closest sparse vector to the ŝi , but they belong to different classes. We used the inner

product of two vectors ⟨ŝi , ŝj⟩ to calculate the correlation. If we change the k most important

elements of ŝi with respect to the k most important elements of ŝj , some information and

features of ŝj can be transferred into the ŝi . If some nonzero elements of ŝi and ŝj have the

same positions and close values, there is no need to change or manipulate them. Because

they have common information and changing them cannot help for fooling classifier and

may bring unnecessary perturbation in the pixel domain. To prevent this probable issue, we

subtract these two vectors to obtain the difference dij as follows:

dij = ŝi − ŝ j (1.6)

Then, we subtract a multiplier of dij from the original sparse vector si to obtain sparse

adversarial example s̃i as follows:

s̃i = si − δdij (1.7)
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where δ is a scalar number that controls the level of directed perturbation. Then, we transfer

back the adversarial sparse vector s̃i to the pixel domain via dictionary D as follows:

x̃i = Ds̃i (1.8)

where x̃i is the adversarial example. Since the response of ML classifier for sj is C (sj), when

we add the elements of ŝj to the ŝi , the classifier may be fooled. By choosing δ and k

properly, ML classifiers can be fooled. Two scalar parameters k and δ control the level of

perturbation. When we increase these scalars, the level of perturbation in the pixel domain

and misclassification rate would be increased accordingly. Two error metrics to compare

the adversarial image quality with the legitimate image are the Mean Square Error (MSE)

and the Peak Signal to Noise Ratio (PSNR). The MSE yields the cumulative squared error

between the adversarial and the legitimate image, whereas PSNR gives a measure of the

peak error. The higher the value of PSNR, the higher the quality.

MSE =
||xi − x̃i ||22

N
(1.9)

PSNR = 10 log10

(
h2

MSE

)
(1.10)

where h is the maximum fluctuation in the input image data type. For example, since we

normalized all image datasets to [0,1], input images’ pixels fluctuate between zero and one,

so h=1. Before investigating the relation between misclassification rate and quality metrics,

we recall two important properties of the matrix-vector multiplications; first, the product of

an orthonormal matrix by a vector does not change the norm-2 of that vector, and second, a

scalar number can take out of the norm-2 of a vector. With respect to these two properties,

since ||xi − x̃i ||22 = ||δDdij ||22 and due to the fact that the dictionary D is an orthonormal

dictionary and the δ is a scalar value, ||xi − x̃i ||22 = δ2||dij ||22. Equation (1.9) can be further

simplified to obtain a more straightforward relation between δ and MSE or PSNR in pixel
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Table 1.2: Comparing misclassification rates of directed attack over six CNN models based
on proposed method (LaS) and recent method (LoF).

k = 20 k = 30 k = 40
Model

LaS LoF LaS LoF LaS LoF
MobileNets 19.7 19.3 22.3 21.5 23.6 22.9
ResNet50 21.9 21.8 24.2 23.9 25.6 25.3
DenseNet121 20.0 19.2 22.3 20.8 23.4 22.3
InceptionV3 16.4 15.3 17.9 16.7 18.4 17.3
Efficient -B0 16.1 15.6 18.8 17.7 20.2 19.6
Efficient-B1 13.7 13.1 15.5 14.7 16.9 15.8

domain as follows:

MSE =
δ2

N
||dij ||22 =

δ2

N
||ŝi − ŝj ||22 =

2δ2

N
(1− ⟨ŝi , ŝj⟩) (1.11)

where ⟨·, ·⟩ is the inner product operation of two vectors. Since both ŝi and ŝj are normalized

vectors, their inner product equals a number belongs to [−1, 1]. Hence MSE can be bounded

0 ≤ MSE ≤ 4δ2

N
. However, as we choose the two most correlated sparse vectors, their inner

product is usually greater than zero. Hence, the upper bound of MSE may be smaller, i.e.

0 ≤ MSE ≤ 2δ2

N
. This inequality shows how adding perturbation in the sparse domain can

be reflected in the perturbation in the pixel domain. The value of the δ directly affects the

MSE. The order of sparsity, k, only affects the inner product.

We applied the directed attack over the same six CNN models and compared the effec-

tiveness of adding noise to the LaS components against adding noise to the LoF components.

In this experiment, we used multiple values for {k = 20, 30, 40}, and we fixed the value of δ

in order to have MSE ≤ 0.001. Table 1.2 shows the results and superiority of manipulating

LaS components.

As theoretically was discussed, changing δ can directly affect the perturbation level. To

show this property, we trained the LeNet network [37] with 60000 training samples of MNIST

dataset and achieved the accuracy of 98.2%, which means 1.8% misclassification rate over

10000 test samples. Then, we used the same test dataset and selected 6 different values
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for the δ and k. It leads to running 36 times, all combinations of δ and k to generate

the corresponding perturbed test dataset. Then we input all these 36 adversarial sets to the

LeNet classifier to observe the network’s response. Figure 1.5 illustrates the effect of δ and k,

PSNR, and misclassification rate of LeNet network. The left and right y-axes show the PSNR

value the misclassification rate of each perturbed dataset, respectively. Solid blue lines show

that PSNR decreases as delta value increases, and dash lines show that the misclassification

rate increases as we increase the value of δ. We also evaluated the effectiveness of our

proposed attack on the SVM classifier. Due to the computational limitation, we only used

15000 training and 3000 test samples of the MNIST dataset. After trying multiple kernels,

the polynomial kernel was the best kernel to achieve the highest score for the classification.

The misclassification rate of the trained SVM classifier on the benign test dataset was 5%.

Then we generated adversarial sets with different levels of perturbation. Figure 1.6 shows

that the SVM classifier is highly vulnerable to the proposed attack.

We compared our approach with recent work by Papernot et al. [19] which is not based

on frequency domain. We used the Cleverhans library [38], and to have a fair comparison,

the same CNN and parameters were used. We trained the network 10 times, and after each

time, the misclassification rate of the trained model on both adversarial sets was recorded.

Figure 1.7 shows that for δ =15 and k = 20, our proposed adversarial examples have a higher

misclassification rate than that of the previous work, while our method has a higher PSNR

which means less perceptible perturbation.

1.5 Attacking Google Cloud Vision and YOLO

To evaluate the realistic threat of LaS components perturbation, we attacked a popu-

lar online machine learning service, Google Cloud Vision. The platform provides a TFLite

version that can be deployed over Android operating systems. We used a high-resolution

dataset which contained 20,938 samples belonging to 10 animals “spider, dog, cat, squirrel,

sheep, butterfly, horse, elephant, cow, chicken” [39]. Figure 1.8 shows the details of the
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trained model by Google Cloud Vision. To assess the effectiveness of our proposed attack,

we downloaded its TFLite version. We randomly selected 500 test samples and added per-

turbation based on LaS and LoF approaches. By adding limited noise to LaS components,

132 out of 500 samples were misclassified. Also, adding noise to LoF components led to 129

misclassified samples. Figure 1.9 shows the number of required queries to fool the TFlite

model based on both methods. In addition, Fig. 1.10 shows three samples and correspond-

ing adversarial examples for MSE values equal to 0.001, 0.002, and 0.005. The first column

shows the legitimate samples that are classified correctly by the classifier, the second column

from the left that is closed by a green box, belongs to the adversarial examples with MSE =

0.001, the other two columns with red boxes related to the adversarial examples with MSE

= 0.002 and 0.005. As defined in [25], we set the threshold of MSE≤ 0.001 as a successful

attack.

In addition, we applied our attack over an object detection algorithm. Object detection

has been widely used by autonomous vehicles and biomedical devices. One of the fastest

and most accurate object detection algorithms is YOLOv5 [40]. YOLOv5 is a one-stage

algorithm that implements classification and regression tasks in a single step. Object de-

tection algorithms implement two tasks, detection and classification. If the model fails to

detect the object correctly, it may cause irreversible consequences in certain sensitive appli-

cations. In this experiment, we used International Skin Imaging Collaboration (ISIC)-2017

skin lesion dataset that contains 2000 training samples, 150 validation samples, and 600 test

samples belonging to three skin lesion classes: melanoma, nevus, and seborrheic keratosis.

We resized the input samples into 640x640 pixels and set two parameters as Intersection over

Union (IoU) to 0.50 and confidence threshold to 0.25. We trained the model and evaluated

its performance over 600 test samples. Figure 1.11 shows the performance of the trained

model over test dataset. Precision measures how accurate the predictions are, while recall

measures how well the model finds all the positive cases.
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IoU measures the overlap between the predicted box around the object with the ground

truth. The model achieved mean Average Precision (mAP) equal to 0.72 over three classes.

In the next step, we randomly selected some test samples that had never been used in the

training process to add perturbation and observe the model response. Our results show that

by adding limited noise to the LaS components, this model predicts wrong labels with high

confidence scores. In Fig. 1.12, we only showed a few adversarial examples that had been

misclassified. However, the model had adversarial samples that could not detect any object.

In this experiment, we set MSE≤ 0.001 to generate adversarial examples. We released our

code, the TFlite model trained by Google Cloud Vision, the trained object detection model,

and the annotation files of ISIC-2017 dataset publicly for reproducibility [41].

1.6 Conclusion

In this work, we proposed a new approach for generating adversarial examples in the

sparse domain. We show that LaS components differ from LoF components, and they belong

to all frequency bands (low, middle, or high). We proposed a hypothesis that LaS components

affect the decision boundaries of CNN models much more than LoF components. This

hypothesis was the key to building our proposed adversarial method.

We designed a systematic experiment to support this hypothesis. By running experiments

over six advanced CNN models, we empirically verified that LaS components affect the

decision boundaries of CNN models more than LoF components. Then we added a limited

noise to the LaS components to generate our proposed adversarial example. We evaluated the

response of six advanced CNN models against our adversarial examples and compared them

with recent work. Our results over MNIST and CIFAR-10 datasets unanimously support

this hypothesis that adversarial examples generated based on manipulating LaS components

can fool the CNN models in fewer queries than the LoF approach.

We also implemented our experiments over Animal and skin lesion ISIC-2017 datasets

to evaluate Google Cloud Vision API and YOLO algorithm. Results show the effectiveness
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of our proposed method to fool the models mentioned above. By introducing the potential

threat within this type of attack, an appropriate defense mechanism can be investigated in

the future. Moreover, we used a DCT dictionary to transfer images into the sparse domain.

However, there are many other ways to transfer an image into a sparse domain other than

the DCT domain that can be further investigated.
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Figure 1.3: Comparing the required number of queries to fool CNN models based on
proposed approach (LaS), and LoF.
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Figure 1.4: Comparing number of misclassified samples for query less or equal to 10 based
on LaS and LoF.

20



10 15 20 25 30 35

delta ( )

4

6

8

10

12

14

16

18

20

22

P
S

N
R

(d
B

)

0

10

20

30

40

50

60

70

80

90

100

M
is

c
la

s
s

if
ic

a
ti

o
n

 R
a
te

 (
M

R
)

PSNR (k = 10)

PSNR (k = 15)

PSNR (k = 20)

PSNR (k = 25)

PSNR (k = 30)

PSNR (k = 35)

MR (k = 10)

MR (k = 15)

MR (k = 20)

MR (k = 25)

MR (k = 30)

MR (k = 35)

Figure 1.5: Generating adversarial examples with different level of perturbation on LeNet.
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Figure 1.6: Generating adversarial examples with different level of perturbation on SVM
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Figure 1.8: Information of dataset and trained model by Google Cloud Vision.
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Figure 1.9: Comparing the required number of queries to fool a TFlite model trained by
GoogleAPI based on proposed approach (LaS), and LoF.

Figure 1.10: Samples of attacking Google Cloud Vision.
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Figure 1.11: Performance of YOLOv5 over skin lesion dataset (ISIC-2017).

Figure 1.12: Samples of attacking the object detection algorithm (YOLOv5).
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Chapter 2: Improving the Performance of Deep Learning Models

The skin lesion is one of the severe diseases, in many cases, endanger the lives of patients

to a worldwide extent. Early detection of disease in dermoscopy images can significantly

increase the survival rate. However, the accurate detection of disease is highly challenging

due to the following reasons: e.g. visual similarity between different classes of disease (e.g.,

melanoma and non-melanoma lesions), low contrast between lesions and skin, background

noise, and artifacts 2.

Machine learning models based on convolutional neural networks (CNN) have been widely

used to automatically recognize lesion diseases with high accuracy compared to conventional

machine learning methods.

In this research, we proposed a new preprocessing technique in order to extract the RoI

of the skin lesion dataset. We compare the performance of the most state-of-the-art CNN

classifiers with two datasets which contain (1) raw and (2) RoI extracted images. Our

experiment results show that training CNN models by RoI extracted dataset can improve

the prediction accuracy (e.g., InceptionResNetV2, 2.18% improvement). Moreover, it also

significantly decreases the evaluation (inference) and training time of classifiers.

2.1 Introduction

With the growing advance of deep learning, numerous tasks have been solved by Artifact

Intelligence (AI). Especially, the demand for AI for medical images has become emerging

in recent years since, with the early detection of the disease, we can now provide better

treatment plans. However, the main issue related to medical image classification is insuffi-

2This chapter was published in Medical Biological Engineering Computing [4]. Permission is included
in Appendix A.

25



cient image samples. Skin is the largest organ of the body that contains lots of information

about the individual’s health condition, and also their identity [42]. The skin lesion is a

serious disease that may lead to detrimental consequences if it does not diagnose in a proper

time. There are many sources for skin image datasets, among them, the International Skin

Imaging Collaboration (ISIC) provides public datasets that are mainly used for skin lesion

classification [43, 44, 45, 46, 47]. Image segmentation is one of the most important computer

vision tasks to partition an image into multiple segments. The main aim of segmentation

is to locate objects of interest and its boundary to enable more efficient and effective fur-

ther analysis. Segmentation has been widely investigated and implemented in many works

[48, 49, 50].

There are many machine learning methods for object segmentation. One of the well-

known methods for object semantic segmentation tasks is U-Net [51]. The network can be

trained on both the original and augmented dataset in this method. This characteristic

is primarily appropriate when the target datasets are from medical fields (mostly limited)

since data augmentation enriches training samples. Also in [52], residual multitasking net-

work achieved second place (among 28 teams) in ISBI 2016 Skin Lesion Analysis Towards

Melanoma Detection Challenge segmentation task [44]. This model includes more than

50 layers with residual layers, separated into two sub-architectures for classification and

segmentation. Another promising method, namely fully convolutional network (FCNs), is

introduced by [53]. This deep neural architect aims to localize the coarse approximation in

the early learning stage; then, the exact approximation will be learned later. Besides, the

author also introduced a fusion framework to facilitate their model’s performance. The final

model achieved 90.66% in the PH2 dataset and 91.18% in ISIC-2016.

In [54], an end-to-end training procedure has been proposed that utilizes the Jaccard Dis-

tance loss. The model includes 19 layers trained thoroughly by their proposed loss function.

Although the result is not outstanding for more challenging samples (involving hairs, badges,

poor lightning condition, etc.), their approach outperforms the [44] and [53] within the same
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datasets. The first attempt towards multi-class segmentation on ISBI 2016 was conducted

by [55], enabling segmentation with classes’ information. The sequential learning method

involved Faster-RCNN and U-Net in [56] also tackles the same segmentation task. In [57]

a fully resolution convolutional network for learning visual representation from skin lesion

images, reaching 77.11% Jaccard Index on ISIC-2017 private test set has been proposed.

In this study, we investigated the effectiveness of ROI extraction after the segmentation

step to improve the performance of the classification task. We have experimented and

evaluated recently developed methods of semantic segmentation so as to isolate and extract

the RoI (lesion) of the images. It enables us to remove unwanted background pixels and

artifacts such as hairs and badges before training CNN models.

2.2 Material and Method

We started our study with a lightweight non-training-based segmentation method, then

to have a better result, we extended our study by implementing a complex training-based

segmentation method. One of the non-training-based segmentation algorithms that we inves-

tigated is Otsu’s thresholding [58] which clusters the background (skin) and the foreground

(lesions) based on the optimal threshold from the histogram of the pixel counts. Several pre-

vious works utilize Otsu’s thresholding segmentation due to its simplicity, for example, H&E

staining images [59], MRI and CT scan images [60], and also melanoma lesions detection

[61]. However, the main assumption of this segmentation method relies on the histogram of

pixel counts, which is assumed to be bimodal distribution. Hence, the performance of Otsu’s

segmentation on noisy images that possess badges, hairs, and black borders is unsatisfactory.

The second approach for non-training-based segmentation is K-means clustering based

on the color spaces [62]. The unsupervised cluster took three inputs: (1) two components of

three color spaces: Hue which is related to the color’s position on a color wheel. Cr and Cb

are the blue-difference and red-difference chroma components of an image, (2) pixel-based

features and (3) rough estimation of skin’s boundary gained from the color-based classifier.
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In both segmentation algorithms, we have used the Jaccard index for evaluating segmentation

performance as follows:

J(A,B) =
|A ∩ B |
|A ∪ B |

(2.1)

where A corresponds to the ground truth binary segmentation mask, B represents the pre-

dicted binary segmentation mask, |A ∩ B | is the area of overlap, and |A ∪ B | is the area of

union [63]. We used ISIC-2017, which contains 2000 skin lesion samples with 2000 corre-

sponding masks as ground truth, to evaluate the performance of these two algorithms [64].

Although the K-means clustering method was well-performed than Otsu’s thresholding seg-

mentation by having a Jaccard Index of 76.2% compared to 71.7%, it can still not eliminate

artifacts efficiently. However, our experiments over the skin dataset showed that both non-

training-based approaches could not segment images very well since artifacts like badges are

more often than not segmented as skin lesions. In addition, the K-means approach does not

consider the region’s border. We observed that ground truth masks of the skin lesions are

mostly solid closed-contour shape. However, the K-means approach does not give a solid

shape. In other words, there are some small dark regions inside a detected lesion contour.

This issue is because the algorithm tries to separate pixels into multiple clusters based on

the mean, regardless of the position and value of near pixels. Figure 1 shows two samples of

the ISIC-2017 that have been segmented based on the K-means approach. The red circles

inside the lesion contour show the disability of this approach for detecting the whole lesion

part.

To address this issue, and regarding the availability of 2000 masks of ISIC-2017, we

followed our investigation by evaluating training-based approaches. One of the most common

training-based approaches for image segmentation is “U-net” convolutional neural network

[51]. U-net architecture is an evolution of the traditional convolutional neural network, which

is a so-called end-to-end fully convolutional network (FCN). The architecture includes two
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Figure 2.1: Results of K-means segmentation, from left to right: (1) raw image, (2) ground
truth segmentation (3) segmented image.

parts: (1) the contraction path (the encoder) and (2) the symmetric expanding path (the

decoder).

The encoder is a conventional CNN, a sequence of matrix operations (convolutional layers,

max pooling, batch normalization, and so on). The main modification from conventional

CNN is lied on the decoder - successive expanding path, where the upsampling operator

is used instead of pooling operation. Thus, the resolution of outputs increases along with

these layers. The features from the encoder are then combined with upsampled output to

enable precise localization. Since fully connected layers are absent from U-net architecture,

the network’s outputs are segmentation maps that represent the mask of the lesion in the

corresponding image.

By using the train data (images and their corresponding masks), the FCN can segment

the lesion without segmenting artifacts as a lesion part. However, the database for training

segmentation task is rarely available since it requires the expertise of related fields. Medical

segmentation tasks often involve objects with varying size, ranging from cell nuclei [51], lung

[65], retina vessels [66], and tumors [67]. Especially in dermoscopy images, the RoI often

results in irregular shapes and varying sizes. Thus, the demand for a stable network that is

robust to a wide scale of image sizes is necessary for further analysis. In this work, we have

adopted the state-of-the-art MultiResUNet architecture, which integrated the idea of Resid-

ual Inception blocks [68]. By utilizing multiple kernels with different sizes in parallel fashion,
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Figure 2.2: RoI extraction process: black texts show target images and its size, and red
texts illustrate corresponding method used at each stage of the process.

the MultiResUNet outperforms the conventional U-Net architecture by 5.065% in skin lesion

boundary segmentation. Our experimental results show that the MultiResUNet segmenta-

tion network overcomes both Otsu’s thresholding and K-means segmentation method due to

its strong suit built on expertise-involved training data. Within the scope of this paper, we

used ISIC-2017 [64] database for skin lesion boundary segmentation. The MultiResUNet is

trained by 2000 images along with corresponding masks produced by dermoscopic experts

from ISIC-2017. We then selected the best segmentation model with the Jaccard Index of

80.4 for segmenting 23331 remaining images of ISIC-2019.

2.2.1 RoI Extraction

The image sizes of the skin lesion dataset are various and large. Due to the computational

limitations of CNN models, the input/output layers’ size of the segmentation model are fixed

and smaller than that of the raw image. For example, in Fig. 2 and Fig.3 first and second
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Figure 2.3: Results of MultiResUNet segmentation, from left to right: (1) raw image, (2)
segmented image, and (3) RoI extracted image.

rows, the raw image size is 682×1024×3, 1024×768×3, and 1024×682×3 pixels, respectively.

But the size of the input/output layers of the segmentation model is fixed to 224×224 pixels.

It means, regardless of the raw image’s size, the output segmented image’s size is 224×224×3

pixels. Moreover, by observing the segmented images in Fig. 3, it is obvious that many

pixels are black (detected as background), and only a small number of pixels is related to

the lesion part. If we directly input segmented images to a classifier, those black pixels do

not contribute much to the classification tasks. Also, since the legion part is highly down-

sampled, some critical information could be lost. To verify our assumptions, we trained and

evaluated multiple CNN models based on a segmented dataset, but their accuracy was much

lower (up to 10%) than that of the raw dataset.

We developed an algorithm to extract the RoI from raw images based on derived masks

to overcome this issue. As illustrated in Fig. 2, the output mask is first resized to the same

size as the raw image, then contour’s structural analysis was applied to detect locations of

bounding rectangle box (green rectangle). After finding the rectangle of RoI, we extract this

part of the raw image and input it into the classifier. In Fig. 2.3, two samples are depicted
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to show how our approach can focus on the most important part of the skin image. This

approach can prevent to useless input pixels (black pixels) to CNN models, and the input

lesion part would have more information.

In this study, the importance of extracting RoI on the performance of the CNN-based

classifiers is investigated. While CNNs have been widely used for skin lesion classification

[69, 70, 71, 68], to the best of our knowledge, there is no work about the effect of RoI

extraction before training CNN models. In the next section, we discuss in more detail about

CNNs, followed by the experimental settings and results.

2.3 Classification

2.3.1 Transfer Learning

Unlike traditional machine learning, where an expert needs to observe the target and

extract good reliable features based on his knowledge, deep learning methods automatically

extract reliable, high-quality features from large amounts of targets, making them more

beneficial than traditional methods. Consequently, deep learning methods highly depend on

mass data since they need a large amount of data to have a reliable comprehension of the

patterns of the data set. The more data set a deep learning network has, the bigger it should

be to extract well-behaved features. It means that to achieve an outstanding performance

from a deep neural network, it needs a large amount of data that requires an extensive

network to understand its patterns.

In deep neural networks, some of the final layers are responsible for making a decision

related to the task, and the rest of them can be used to extract high-level features. Lack

of sufficient data is one of the main problems that researchers usually face when training a

model on specific data. This problem can be more severe in biomedical image classification

tasks since it is much harder to find a large amount of a high-quality data set. Transfer

learning addresses this problem and is a solution. In traditional machine learning, we should

consider that training data must be independent and identically distributed with the test
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data. However, transfer learning assumes that training and test data do not need to be

independent and identically distributed entries. It means that for a specific task, the network

is not required to train from scratch, which has two specific benefits, first, it eliminates the

requirement of accessing a big dataset, and second, it reduces the time of training the

network.

CNN pre-trained models are usually trained on large image classification tasks. Convo-

lutional layers are responsible for extracting high-level features from an image, while dense

layers must decide on those features. There are two kinds of transfer learning: feature

extraction and fine-tuning. In the former, the convolutional layer parameters are frozen

during back-propagation and are used to extract features on a new data set, and the new

dense layer is added to fit the network for the new data set. After adding a new dense

layer, relax back-propagation will be done on the whole parameters for tuning them with

the new dataset. Pre-trained models by ImageNet have been widely used for skin lesion

classification[72, 73, 74]. We also tested this property and found that if we initialize the

models with ImageNet pre-trained wights, the training process converges in fewer epochs

while maintaining higher accuracy. Also, we used data augmentation by randomly rotating

the training images up to 90 degrees, and flipping them horizontally.

2.3.2 Deep Learning Models

Since 2012, when Alex Krizhevsky et al. introduced the AlexNet[75], CNN models which

were not able to absorb attention came back to the play and in the next few years, many

researchers and experts tried to come up with new deep neural networks in the similar way

to improve the accuracy on different tasks[76, 32, 77, 34, 78, 36, 33, 79]. We have used some

of these pre-trained networks via transfer learning in our work to evaluate the effectiveness of

our proposed method. We have used InceptionResNetV2[76], Xception[77], InceptionV3[34],

DenseNet[36], ResNet-152[33], and VGG19[79] which each of them has different architecture

in the number of fully connected layers and convolutional layers.
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These artificial models have tried to look at different problems and are designed by some

experts since it requires a suitable selection of architectures that need high-quality knowledge

in machine learning, as well as it is a tedious and time-consuming task. Moreover, different

architectures should be designed for different targets to get a better result. However, some

works named the neural architecture search(NAS) have been introduced recently to address

this problem and try to find a good architecture for a certain target automatically, which is

logically suitable for different types of image classification. In our work, we also tried to use

some of these networks, which are trained well on the ImageNet data set to evaluate our work.

We have used two networks EfficientNet[32] and NasNet[78] which both are automatically

designed by Google brain team members.

2.4 Experiments and Results

We used ISIC-2019 dataset that contains 25331 dermoscopic images belong to 8 classes:

melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, benign keratosis, der-

matofibroma, vascular lesion, and squa-mous cell carcinoma. On the other hand, the ISIC-

2017 dataset contains 2000 samples with masks for skin lesion segmentation and classification.

These 2000 samples of ISIC-2017 are exactly available in ISIC-2019 as well. We used those

2000 samples and their masks to train the MultiResUNet model, and we did not involve

them in the evaluation. We set the input/output size of the segmentation model to 224×224

pixels. After training MultiResUNet model for 50 epochs, we generated 23331 segmented

images(2000 samples out of 25331 were excluded). The average required time for segmenting

each image was 11 milliseconds (Ms). Then, we applied our RoI extraction algorithm in

order to focus on the main information of the image. After doing so, two sets of images

were generated for our experiments: one contained 23331 raw images and the other had

23331 corresponding RoI extracted images. We randomly split the 23331 samples into three

sub-sets, training (18890 samples), validation (2101 samples), and test (2340 samples). We
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applied the same data augmentation from the Keras framework over both training datasets

by randomly rotating the images up to 90 degrees and horizontally flipping them.

Python was used as the programming language. We used Keras, a high-level neural

networks API written in Python and can run on top of TensorFlow. All models were directly

selected from Keras documentation, and the default input size of the first layer was chosen

according to the Keras documantation[80]. Keras framework provides models that can be

converted to TensorFlow lite (TFLite) format. TFLite models can be deployed over the

android operating system. We used a single GPU (Nvidia GeForce GTX 1080 Ti with 11

GB GDDR5X memory) for all of our experiments (training and evaluation).

We have done several experiments in order to demonstrate the effectiveness of the seg-

mentation and RoI extraction before the classification. To have a fair comparison, all input

and hyperparameters were set the same for each model while training raw or segmented

datasets. We used a learning rate of 0.001, batch size 8 for the NasNet model, and batch

size 16 for the rest of the models. Default input size of each model was used (refer to Table

2.1). Each model was trained for 50 epochs and 1000 steps per epoch.

In Table 2.1, we evaluated the accuracy of each trained model over the test dataset. The

results show that extracting the RoI prior to classification can improve the accuracy of skin

lesion diagnosis. Table 2.1 only presents the results based on the default size of each network

where we obtained the best accuracy of each model. However, we trained each model with

a smaller size as well. The smaller input size gave lower accuracy but higher improvement.

Since skin lesion contains eight unbalanced classes, overall accuracy may not completely

convey the effectiveness of our approach. Hence, to evaluate the impact of our approach over

each class separately, we used an F1-score which can yield a more realistic measure of the

classifier’s performance. It avoids being misled by the average accuracy that can be wrongly

obtained from a very poor precision or very high recall. Figure 2.4 shows the F1-score of two

diseases, ’melanoma’ and ’nevus’, and also weighted-average over all classes. In this figure,

classifiers’ indices are as follows: #1: InceptionResNetV2, #2: Efficient-B7, #3: Xception,
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Table 2.1: Effect of segmentation on the accuracy of CNN classifiers (%).

Model Input Raw RoI extracted
size data data

InceptionResNetV2[76] 299 × 299 86.75 88.93
Efficient-B7[32] 224 × 224 84.87 87.95
Xception[77] 299 × 299 86.03 87.74

InceptionV3[34] 299 × 299 87.09 87.39
NasNet[78] 331 × 331 85.85 86.24
DenseNet[36] 224 × 224 85.68 86.03
ResNet-152[33] 224 × 224 84.15 85.17
Efficient-B0[32] 224 × 224 81.75 84.87
VGG19[79] 224 × 224 80.17 82.61

#4: InceptionV3, #5: NasNet, #6: DenseNet, #7: ResNet-152, #8: Efficient-B0, #9:

VGG19. The proposed approach can improve the performance of almost all classifiers.

In Table 2.2, the required time for predicting the label of each input sample has been

reported. It is evident that the inference time of segmented data is much lower than that of

the raw data. To have stable results, we repeated our experiments ten times over the test

dataset, and then the average of results was calculated. In Table 2.3, the required time for

training each model has been evaluated for both datasets. It shows that segmented data

can be trained in a shorter time. Although training and generating segmented images take

time, in certain cases, we generate a dataset one time and use it for training many models.

For example, in ensemble learning, many models are used to calculate the best accuracy

[81]. Using a segmented dataset would significantly decrease the time of training and, as

a result, save more power and computational resources. By using segmented images, the

required times for training all models would be decreased, but the required time for the

evaluation would be decreased accordingly. The size of the raw dataset (23331 samples)

is 9.4 GB (gigabyte), while the size of the segmented dataset is 1.4 GB. On overage, the

size of a segmented image is less than one-sixth of a raw sample. This property would be

important if we need to send the data over a communication channel. For example, in a

remote classification task, a client may send the image to a remote server for doing more
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Figure 2.4: F1-score of two classes: ’melanoma’, ’nevus’, and weighted-average of all
classes.

reliable classification. By doing a segmentation over the client-side (e.g., android device), we

would be able to reduce the communication bandwidth.

2.5 Case Study: Effect of Compression on the Performance of the Skin Lesion

Classification

Image compression is an important type of data compression applied to digital images to

decrease storage or transmission costs. Image compression may be lossless or lossy. Lossless

compression methods are preferred for archival purposes and often for medical imaging.

In many IoT resource-constrained devices, images are sent to a remote server through a

communication channel in order to apply appropriate post-processing. A straightforward

scenario is sending raw images to the server. However, it may take more bandwidth uploading

time. By applying an appropriate compression technique, we can reduce the size of the

image, thereby decreasing the upload time and required communication bandwidth. There
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Table 2.2: Effect of segmentation on the inference time of CNN classifiers (Ms ).

Model Input Raw RoI extracted
size data data

InceptionResNetV2[76] 299 × 299 22 12
Efficient-B7[32] 224 × 224 20 14
Xception[77] 299 × 299 24 10

InceptionV3[34] 299 × 299 22 8
NasNet[78] 331 × 331 30 23
DenseNet[36] 224 × 224 19 8
ResNet-152[33] 224 × 224 21 11

Efficient-B0[32, 35] 224 × 224 19 7
VGG19[79] 224 × 224 21 9

Table 2.3: Effect of segmentation on the training time of CNN classifiers (Hours).

Model Input Raw RoI extracted
size data data

InceptionResNetV2[76] 299 × 299 16.2 9.6
Efficient-B7[32] 224 × 224 17.4 11.7
Xception[77] 299 × 299 11.8 6.7

InceptionV3[34] 299 × 299 12.8 10.5
NasNet[78] 331 × 331 13.3 12.7
DenseNet[36] 224 × 224 11.4 9.3
ResNet-152[33] 224 × 224 10.5 7.1
Efficient-B0[32] 224 × 224 6.5 3.5
VGG19[79] 224 × 224 12.7 5.3
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are many image compression techniques; however, only a few are energy efficient and require

very limited computational resources. In this study, we suppose a resource-constrained IoT

device has generated the image, such as a smartphone; as a result, we propose using a method

to be fast, energy efficient, and deployable over IoT devices. Compression should not affect

images’ quality and image classification performance. Compressed sensing was one of the

best choices that could meet our requirements.

Compressive sensing (CS) is a sampling technique for efficiently sampling a signal by

solving under-determined linear systems. It takes advantage of the signal’s sparsity, and

fewer measurements than the Nyquist rate can effectively represent the signal. For instance,

given a vectorized image signal x ∈ RN and an orthogonal basis Ψ ∈ RN×N , then one can map

the image signal to sparse domain via, = Ψs, where ∈ RN is a sparse vector with k ( k << N)

nonzero entries. In other words, is a sparse representation of under the chosen pre-defined

dictionary. The compression phase in CS provides the measurement vector through a linear

operation as given below:

y = Φx = ΦΨs (2.2)

where, y ∈ RM is the measurement vector and Φ ∈ RM×N is the measurement matrix. For

simplicity, let A = ΦΨ. A ∈ RM×N is a rectangular matrix, sometimes referred to as “total”

dictionary in the CS literature. For exact and stable recovery of sparse signal, restricted

isometry property (RIP) is a sufficient condition. RIP is satisfied if there exists a restricted

isometry constant (RIC) δK , 0 < δK < 1 such that

(1− δK )∥s∥22 ≤ ∥As∥22 ≤ (1 + δK )∥s∥22 (2.3)

where δK denotes the isometry constant of a matrix A, and its value belongs to a set of real

numbers between zero and one. But, checking the RIP condition of a matrix or calculating

the value of its isometry constant is difficult to verify. Hence, conditions that lead to RIP
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were proposed. Another condition, which is easier to verify in practice, is the requirement

that measurement matrix Φ must be incoherent with the sparsity basis Ψ. Mutual coherence

µ between Φ and Ψ is defined as follows:

µ(Φ,Ψ) =
√
N max

i ,j

| ⟨ϕi ,ψj⟩ |
∥ϕi∥2∥ψj∥2

(2.4)

where ϕi∈{1,...,M} and ψj∈{1,...,N} respectively represent the row vectors of Φ and the column

vectors of Ψ. The coherence measures the maximum correlation between the two matrices.

Smaller coherence can lead to better signal reconstruction performance and higher quality.

Since µ ∈ [ 1,
√
N ], the matrices Φ and Ψ are incoherent if µ(Φ,Ψ) is closer to one, which

corresponds to the lower bound of µ.

A step called the recovery process reconstructs the input signal from the measurement

vector by solving the equation (2.2). Since is a rectangular matrix (M < N), the problem

formulated in equation (2.2) is ill-posed and has infinite solutions. However, based on the

knowledge that has a sparse representation regarding a basis Ψ, the recovery process can

be performed in two steps. The first step finds the sparse vector s̃ by solving the following

optimization equation. Once the vector˜has been obtained, the second step reconstructs the

original signal as follows:

x̃ = Ψs̃. (2.5)

Various methods have been proposed to find an appropriate solution to the equation lead-

ing to numerous recovery algorithms such as Basic Pursuit, StOMP, OMP, CoSAMP, Belief

Propagation, and SL0. Compressive sensing (CS) takes advantage of the potential spar-

sity within signals, and through a non-adaptive linear measurement process, it can generate

compressed samples. In this approach, the compression phase is highly fast, energy-efficient.

Figure 2.5 shows one sample of skin lesion that has been compressed via compressed sensing

method for compression ratio (CR) of 4:1.
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Figure 2.5: Compressing one sample with CR = 4:1.

In the next step, we assessed the effect of compression on the performance of skin lesion

classifiers. With this regard, we compressed and sent the whole ISIC dataset to a remote

server. Then, we recovered all images and trained different CNN models to evaluate the

performance of classification tasks. Figure 2.6 shows the details of our experiments. We

compared our results with the case that there is no compression. As illustrated in Table 2.4,

if we compress images in edge devices and send them to the remote server, then making a

recovery before evaluating the ML model, it would improve the accuracy. In other words, the

compression-decompression process can reduce the noise of images, as CNN models would

be trained with less noisy data.

Furthermore, the test data would have less noise and as a result, the diagnosis would be

more precise. Also, we compared this CS-based compression with SVD-based compression

technique. Our experiments show that our proposed compression method can outperform

the SVD-based approach. As shown in Table 2.5, for a given compression ratio, CS-based

compression can maintain the accuracy much better than that of the SVD-based compression.

Figure 2.7 shows the effectiveness of using CS in terms of required computational resources in

both the client-side and server-side. We compressed and recovered 2340 skin lesion samples

based on the CS method. The average time for the compression phase is 0.004 seconds, while

the average time for recovery is 2.33 seconds. Regarding our objective of having resource-

constrained devices in clients, this experiment shows that CS can opt as a compression
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Figure 2.6: Training and testing each model with their corresponding datasets

Table 2.4: Effect of compression on the accuracy of CNN models.

Raw CR=2 CR = 4 CR = 6 CR=8 CR = 16
Resnet-152 86.88 87.61 88.59 87.18 87.09 86.67
EfficientNet-B0 88.83 88.97 89.10 88.08 87.91 86.71
EfficientNet-B1 89.31 89.0 89.61 89.16 88.50 87.05
EfficientNet-B2 88.80 89.49 89.23 88.33 88.46 87.95
EfficientNet-B3 90.26 89.79 90.30 89.57 88.25 87.61

method. Furthermore, we compared our method with that of the SVD based compression.

The average compression time for SVD-based was 0.01 seconds which is two and half times

larger than that of CS-based compression.

2.6 Conclusion

This study proposed a new preprocessing technique to separate the RoI section from

the unwanted background of skin lesions. To this end, we used one of the state-of-the-art

segmentation algorithms, MultiResUnet, to segment the skin lesion image. Then, we found

the bounding box around the lesion and cropped that part of the image. We applied this
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Figure 2.7: Elapsed time of compression phase vs recovery phase of cs-based method

Table 2.5: Comparing different compression methods.

CR = 4 CR=16
CS SVD CS SVD

EfficientNet B0 89.10 88.59 86.71 83.72
EfficientNet B1 89.61 88.33 87.05 85.00
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preprocessing over the whole ISIC-2019 except for 2000 samples of this dataset used for

training the MultiresUnet model. This preprocessing enabled us to only input the essential

part of the image to the classifiers for both training and evaluation steps. Our investigation

over different CNN models showed that if we train models with RoI extracted dataset,

the accuracy of models would be increased, and the training and inference time would be

dropped. We remove unwanted background and only input the most important part of the

skin image to the classifiers. Our results were based on Keras models in this study, and we

used ImageNet pre-trained weights to train all classifiers. We trained the models based on

their default input resolution size (based on Keras Documentation). As the discussion above

revealed, focusing on the RoI part of an image can improve the performance of skin lesion

classification. Instead of the segmentation technique, an object detection algorithm can also

be used to find the RoI of skin lesions. However, there is no available annotated dataset for

training object detection algorithms. But, converting the mask labels of ISIC-2017 to the

annotated dataset, would enable us to train an object detection algorithm. It can speed up

the RoI extraction phase and potentially improve the final accuracy of classifiers.
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Chapter 3: Lossless Privacy-Preserving Image Denoising

Image denoising aims to obtain the original image from its noisy measurements. While the

quality of image denoising has been increasing over the years, the complexity and the required

memory in order to implement the denoising task have also been increased accordingly.

Along with such advancements, and due to the unlimited computing resources available in

the cloud, trends to transfer the image denoising task to the cloud have grown over the

past years. However, it is still quite challenging to utilize cloud-based resources without

compromising users’ data privacy while maintaining the quality of image denoising. In

this chapter, we propose a novel lossless privacy-preserving image denoising approach that

protects the users’ privacy and preserves the quality of the denoising task concurrently. Our

proposed approach is suitable for computationally constrained devices such as many IoT

devices. In this method, we use two random keys to permute and perturb the noisy image

patches. The cloud service provider implements the denoising task on the encrypted signal.

After denoising, the output signal is still encrypted, and the real user who has access to the

keys would be able to decrypt the denoised image. We evaluate the security of this method

against known-plaintext, brute-force, and side-channel attacks. In addition, we theoretically

prove the lossless property of this method. To verify the applicability of this approach,

we implemented our experiments on multiple real images, and two well-known evaluation

metrics were used to compare our results with the baseline.

3.1 Introduction

With the recent advancements of the internet of things (IoT) and computing technolo-

gies, large-scale image datasets obtained from various applications such as medical imaging
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equipment, remote surveillance and traffic devices, smartphones, and satellites have been

growing. For example, in the context related to multimedia healthcare [82], images are in-

termittently generated from IoT-enabled and wearable medical imaging devices [83]. When

such data explosion is in high demand to store, process, and manage images via cloud re-

sources. [84, 85]. One of the most prominent and long-standing image processing techniques

is image denoising. Noise is a ubiquitous signal that can affect any image sensing process and

degrade the image’s visual quality. In specific biomedical applications such as autonomous

skin lesion segmentation [86], nail fungus disease detection [87], or magnetic resonance imag-

ing [88], it may cause wrong diagnosis. Also, a noisy image can mislead the state-of-the-art

deep networks deployed over autonomous vehicles by making wrong decisions [89].

The main objective of image denoising is to recover an original image from its noisy

version. In the literature, there exist numerous image denoising techniques. Among them,

Patch-based image denoising methods provide the highest quality [90, 91, 92]. In this chapter,

we consider the classic patch-based image denoising problem, which is capturing an ideal

original image I in the presence of the additive white Gaussian noise V with standard

deviation σ [91, 92]. As shown in Fig. 3.1, the noisy measured image Y can be obtained as

follows.

Y = I + V (3.1)

Restoring accurate I from Y is a challenging problem, i.e., zeroing as much noise as pos-

sible while preserving the visual details in Y . A common approach to implement an effective

denoising algorithm is generating noisy image patches. For this purpose, an overlapped slid-

ing window (solid red color window) is used to generate all possible noisy patches (Fig. 3.1).

One of the well-known approaches for patched-based image denoising is K-singular value

decomposition (K-SVD) [92]. This algorithm takes advantage of image patches’ sparsity to

restore the noisy image.
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Figure 3.1: Classic patch-based image denoising problem.

Over the years, other denoising methods based on supervised deep-learning [93, 94, 95,

96, 97] [93, 94], EPLL [98], BM3 D [99], WNNM [100] could surpass the K-SVD method.

However, very recently, deep K-SVD denoising was proposed by Scetbon et al.[90] and could

outperform the state-of-the-art denoising algorithms. They trained a deep model with the

same K-SVD computational path in order to obtain optimized denoising. In other words,

they try to use deep architecture to train a few parameters so as to improve the K-SVD

approach.

While the quality of denoising has been increasing over the years, the complexity and the

required memory to execute denoising processes have been increased accordingly[90]. For

example, given a noisy image, thousands of patches of that image should be generated to

input the denoising algorithm [90]. Also, many of the current methods use a deep architecture

which requires a strong enough processor to train or test processes.

The usages of edge devices with limited power and computational resources such as

smartphones or surveillance cameras have been rapidly increased. On the other hand, cloud
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or powerful servers have been steadily backing up the edge devices by providing robust

storage and computational resources.

Outsourcing is a way to shift away from the service from the user (edge device) with

limited resources to the cloud environment with strong computational resources in order to

store data or solve complex problems[101, 102]. However, sending users’ data to the cloud

may expose the users’ privacy. For example, biomedical images contain private information

of users that should not be revealed [103, 104].

Privacy-preserving outsourcing means implementing a process on the cloud resources

while protecting the users’ private information. The problem of privacy-preserving out-

sourcing is similar to the concept of zero trust framework, i.e., we do not trust any party,

particularly the cloud environment, for accessing the real data (noisy image patches) [105].

This is an ideal case from the security perspective. However, the cloud requires data to

implement our requested task.

There are many strong data encryption methods, but such methods generate encrypted

data that cannot be used (or harder to be used with) to implement the denoising task.

Therefore, before proposing or using any data encryption method, we must have knowledge

about the task’s properties and requirements, then choose an appropriate encryption method

that preserves privacy and enables the cloud to perform the task accurately. This process

is similar to homomorphic encryption methods, where the cloud is able to execute the task

over encrypted confidential data without decrypting them [106].

On the other hand, some non-training-based denoising methods yield moderate denoising

results and can be implemented on edge devices. However, when a client demands high-

quality denoising and pays the cost of outsourcing in terms of time and communication

bandwidth, he does not expect to lose quality due to the applied privacy-preserving method.

Otherwise, the client may not choose that privacy-preserving method, or even the problem

of shadow IT may come up.
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In this study, we propose a method that not only enables the cloud to perfectly implement

the image denoising task but also protects the private data of users. The summary of our

contributions are as follows:

• We propose lossless privacy-preserving image denoising, which maintains the denoising

quality and privacy of users concurrently.

• We theoretically prove the lossless property of this method. We also verify this property

by implementing our method on multiple noisy images.

• We show the robustness of the proposed approach against known-plaintext, brute-force,

and side-channel attacks.

3.2 Related Work

In the literature, there are some works particularly related to privacy-preserving image

denoising in the cloud environment [107, 108, 109, 110]. Before discussing those works, we

define two terminologies to categorize different privacy-preserving outsourcing methods:

• Lossless privacy-preserving outsourcing : refers to the case when the quality of image

denoising with and without applying the security model is the same. In other words,

image denoising quality based on privacy-preserving outsourcing is the same as regular

outsourcing.

• Lossy privacy-preserving outsourcing : is the case when cloud does the image denoising

task with some degradation compared to the case of regular outsourcing due to the

applied security model.

In [107], a privacy-preserving image denoising service on the cloud-side has been intro-

duced. They used an image denoising technique based on deep neural networks (DNNs),

and via lightweight secret sharing and garbled circuits were able to preserve the privacy of
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image content on the cloud. Their security design could not maintain the perfect quality of

denoising service; hence it falls into the lossy privacy-preserving outsourcing category.

Zheng et al. [108] proposed DNN-based image denoising with security features based on

the homomorphic encryption model. This method requires training a DNN model, and the

user should stay online while interacting with the remote server for the denoising process.

Furthermore, their method is a lossy one as it cannot achieve the perfect denoising process.

Also, Zheng et al. in [109] used encrypted external databases in the cloud environment

and proposed a privacy-preserving image denoising method. They used a real-world image

dataset and achieved a comparable denoising quality, yet not perfect denoising quality.

Hu et al. [110] proposed a double-cipher architecture to implement privacy-preserving im-

age denoising based on nonlocal means in encrypted images. They used a privacy-preserving

transform to generate one ciphertext, and a Paillier scheme to generate another ciphertext.

Paillier is a partially homomorphic encryption system that enables two types of operation:

multiplication of ciphertext by a plaintext number, and addition of two ciphertexts. They

used the first cipher for the nonlocal search and the second cipher to enable the mean filter.

Their proposed security scheme does not affect the time of denoising compared to regular

denoising, yet cannot achieve the perfect quality of denoising service.

While all aforementioned works tried to securely implement the denoising task, they

failed to achieve the exact quality of denoising compared to the regular outsourcing. In this

study, we use a well-known patch-based image denoising technique and propose a lossless

privacy-preserving image denoising method. We theoretically prove the lossless property of

this method, and our experiment results verify that this method achieves the exact quality of

denoising compared to the regular denoising task. We show how effectively this method can

preserve the privacy of the users’ data without losing the quality of image denoising tasks.

To the best of our knowledge, this is the first lossless privacy-preserving image denoising

method. The rest of the chapter is organized in the following manner. In the next section,

the preliminary information about image denoising is introduced. In section 3.4 our proposed
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lossless privacy-preserving method is discussed, followed by the proof of lossless property and

security analysis. Section 3.5 contains the experimental results to verify the applicability of

this approach. Finally, section 3.6 concludes the chapter.

3.3 Preliminary

3.3.1 Image Denoising

One of the well-known image denoising methods is based on sparse and redundant rep-

resentations of image patches over trained overcomplete dictionaries[91, 90]. By transferring

noisy signals into a sparse domain, we can separate some parts of noise from the noisy sig-

nal. Basically, transferring signals into a sparse domain enables us to separate noise from

the signal of interest. In Fig. 3.2 and Fig. 3.3, a simple example to elaborate this property

of sparse representation is shown. By adding white Gaussian noise to the original signal

x(t) = 0.7 sin(100πt) + sin(240πt), and by using the Discrete Cosine Transform (DCT), we

transformed the signal into the sparse (frequency) domain in which the effect of noise can be

clearly identified. The denoised signal can be obtained by putting a threshold in the sparse

domain and then transferring the signal back into the time domain.

In the aforementioned example, a fixed dictionary (DCT) was used. However, for more

complicated and practical signals such as a noisy image, training a specific dictionary in

order to have a more sparse representation can lead to more noise removal. With this

regard, patch-based image denoising algorithms have been proposed as an effective image

denoising method. The main objective function of patched-based image denoising is the

following optimization problem [91]

min
Ψ,S

∥X −ΨS∥2F s.t ∀i∥si∥0 ≤ T0 (3.2)

where X ∈ Rnp contains p noisy image patches of size
√
n ×

√
n pixels that have been

reshaped to vector xi ∈ Rn, and Ψ ∈ RnL is an overcomplete sparsifying dictionary ( Ψ =
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Figure 3.2: The original signal and its single-sided amplitude spectrum.

[ψ1|ψ2|...|ψL] ,ψi ∈ Rn, n < L), S ∈ RLp contains p sparse vectors si ∈ RL corresponding

to the patches in X . In topics related to sparsity and image denoising, the term dictionary

is referred to matrix, and every column of a dictionary is called atom. Also in (3.2), ∥.∥F

stands for the Frobenius norm which equals the square root of the sum of the squares of its

elements, and ∥.∥0 is the number of nonzero coefficients of si , and T0 is an positive integer

number and equals to the order of sparsity.

Equation (3.2) is an optimization problem with two objectives: finding an overcomplete

dictionary Ψ, and sparse representation matrix S which every column of this matrix should

have at most T0 nonzero elements. The noisy image patches X are the only available infor-
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Figure 3.3: The noisy signal and its single-sided amplitude spectrum.

mation to solve this problem. A common approach to solve this problem is breaking it into

two separate optimization problems[91]:

• Sparse coding: finding the S by assuming Ψ as a fixed known dictionary.

• Dictionary update: finding the Ψ by assuming S as a fixed, known matrix.

The initial value for the dictionary can be chosen in different ways, such as a random

matrix, part of the image patches, or designed based on prior knowledge. The algorithm

iterates between these two steps until there is no significant update in dictionary elements.
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3.3.2 Sparse Coding

Every noisy patch xi ∈ Rn can be represented as a linear combination of atoms Ψ =

[ψ1|ψ2|...|ψL] ,ψi ∈ Rn, n < L , i.e. xi = Ψsi =
∑j=L

j=1 αjψj where si = (α1,α2, ...,αL). In the

sparse coding step, we suppose the dictionary is known. Ψ is an overcomplete dictionary

and yields an underdetermined system of equations where the number of unknowns is more

than the number of equations. Due to the rank deficiency of given Ψ, there are many s

that can be transferred to the same x . However, by adding a sparsity constraint on the s,

a unique sparse vector can be obtained or approximated. In this case, s is called a sparse

representation of x . With this regard, the first step can be done by solving the following

optimization problem:

min ∥si∥0 s.t ∥xi −Ψsi∥22 ≤ ϵ i = 1, 2, ..., p. (3.3)

where ϵ is a small number. There are numerous algorithms [111, 112, 113, 114, 115, 116] to

solve (3.3), the orthogonal matching pursuit (OMP) [116] is a well-known greedy algorithm

with the order of complexity O(T0nL). This algorithm is mostly used in image denoising

problems. After running the OMP algorithm for p times, sparse vectors {si}i=p
i=1 correspond

to noisy image patches {xi}i=p
i=1 are obtained.

3.3.3 Dictionary Update

In this step, the algorithm assumes X and S as fixed inputs and updates the dictionary

Ψ by minimizing the following error.

∥E∥2F = ∥X −ΨS∥2F (3.4)

There are different methods for updating a dictionary, but one of the best methods to

achieve minimum error is based on the method of optimal direction [91]. In this approach,
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we take the derivative of (2) with respect to the dictionary Ψ, and by zeroing the derivative

output, optimal dictionary based on given X and S can be obtained as follows.

∂∥E∥2F
∂Ψ

= 0

(X −ΨS)ST = 0

Ψopt = (XST )(SST )−1

(3.5)

Equation (3.5) gives the best local minimum error. After obtaining an updated Ψ, step

one is repeated to generate an updated sparse matrix. These two steps continue until there

are no considerable changes in the updating steps (depending on the given stop threshold).

For example after t iterations, the tth Ψopt and S are used to generate denoised image

patches, Xdenoised = Ψtth

optS
tth , and by knowing the position of each patch and taking average

of pixels, we can recover the denoised image.

Implementing the two steps mentioned above requires solid computational resources. For

p noisy image patches and executing two steps for t iterations, we need to run t×p times an

OMP algorithm and t times (3.5). In real applications, the number of patches is huge and

requires powerful resources. One solution to handle this problem is outsourcing the denoising

task to the cloud. We propose lightweight encryption over noisy patches that enables the

cloud to implement the perfect denoising and preserve the privacy of data simultaneously.

3.4 Lossless Privacy-Preserving Image Denoising

This section proposes a novel approach to preserve the privacy of users’ data and the

quality of image denoising tasks. As discussed3.3.1, the required data that should be sent

to the cloud is the noisy image patches X and initial dictionary Ψ. We should encrypt the

noisy image patches to preserve users’ privacy. Then, we use some parts of image patches

as an initial dictionary.
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We use two random matrices so as to encrypt noisy image patches. For every noisy

image, we randomly permute the position of the patches with a random permutation matrix

U ∈ Rp×p. Then we multiply an orthonormal random matrix Q ∈ Rn×n (e.g. Gaussian

random matrix with independent and identically distributed random variables) by permuted

X as follows:


X ⋆ = XU

X́ = QX ⋆ = QXU

(3.6)

where X ⋆ is the permuted noisy patches matrix, and X́ is the encrypted noisy image patches

that are sent to the cloud for the image denoising task.

Then upon a user request of the denoising task, the cloud solves (3.2) with the encrypted

input data as follows:

min
Ψ́,Ś

∥X́ − Ψ́Ś∥2F s.t ∀i∥śi∥0 ≤ T0 (3.7)

where Ś is the encrypted sparse matrix, and i th column of this matrix is śi . And Ψ́ = QΨ

is the encrypted sparsifying dictionary. T3.3.2, the cloud breaks (3.7) into two steps: sparse

coding and dictionary update to recover the denoised patches.

3.4.1 Proof of Lossless Property

We compare step by step solving the ordinary denoising (3.2) with that of the (3.7). In

the first step which is sparse coding, the cloud solves the following problem

min ∥śi∥0 s.t ∥x́i − Ψ́śi∥22 ≤ ϵ i = 1, 2, ..., p (3.8)

where x́i is the i
th column of the noisy image patches X́ . In (3.8), there is a norm-2 (Euclidean

norm) condition. When we multiply an orthonormal matrix with a vector, the norm-2 of

56



that vector does not change. We substitute corresponding values of x́i = Qx⋆i and Ψ́ = QΨ

in (3.8), and use the norm-2 property to simplify it as follows.


min ∥śi∥0 s.t ∥Qx⋆i − QΨśi∥22 ≤ ϵ i = 1, 2, ..., p

∥Qx⋆i − QΨśi∥22 = ∥Q(x⋆i −Ψśi)∥22 = ∥x⋆i −Ψśi∥22

⇒ min ∥śi∥0 s.t ∥x⋆i −Ψśi∥22 ≤ ϵ i = 1, 2, ..., p

(3.9)

The final minimization problem in (3.9) gives the same result as (3.3). Notice that X ⋆

contains the same noisy image patches with different orders that do not affect the sparse

coding step. Hence, after this step, we would have the permuted sparse representation

Ś = SU corresponding to the X ⋆. In Fig. 3.4, we illustrate an example of permuted sparse

coding. It is evident that after recovery, the results are the same; however, the order is not

the same as the regular case.

Figure 3.4: An example of showing the effect of permutation on the sparse coding step.

In the next step, we need to implement dictionary update by using the encrypted noisy

patches X́ and permuted sparse matrix Ś obtained from the last step. As we discussed in

section 3.3.3, we suppose X́ and Ś as fixed inputs, then we minimize the error ∥X́ − Ψ́Ś∥2F

by taking derivative with respect to the dictionary Ψ́, and by zeroing the derivative output,

optimal dictionary based on given X́ and Ś can be obtained as follows.
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Ψ́opt = (X́ ŚT )(Ś ŚT )−1 (3.10)

By substituting X́ = QXU and Ś = SU in (3.10), and regarding the orthonormal prop-

erty of the permutation matrix, we can achieve a direct relationship between the regular

sparsifying dictionary and encrypted one as follows.


Ψ́opt = (QXUUTST )(SUUTST )−1

Ψ́opt = (QXST )(SST )−1

Ψ́opt = QΨopt

(3.11)

After running t times the first and second steps, when there is no further update on

dictionary elements, the algorithm will be stopped, and the tth encrypted sparse matrix

Ś and sparsifying dictionary Ψ́opt will be used to generate encrypted denoised patches as

follows.


X́denoised = Ψ́tth

opt Ś
tth

X́denoised = (QΨtth

opt)(S
tthU) = QXdenoisedU

(3.12)

The service provider in the cloud generates X́denoised which is an encrypted (permuted

and perturbed) version of ordinary denoised patches. The real user by having the real keys

Q and U , and calling the decryption function (Dec(.)) can decrypt the cloud’s output with

minimal complexity as follows.

Dec(X́denoised) = QT X́denoisedU
T = Xdenoised (3.13)

Then, by knowing the position of each patch and taking the average of pixels, the real user

can obtain the denoised image. Therefore our proposed method can perfectly maintain the

quality of denoising. In the next section, we analyze the robustness of the proposed method,
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and we show how this method completely perturbs the statistical and visual information of

the noisy image.

3.4.2 Security Analysis

One challenging attack in security designs is called known-plaintext attack (KPA) [117,

118]. In this type of attack, the attacker or curious cloud has access to the plaintext and

corresponding ciphertext. The attacker tries to guess the private keys in order to decrypt

the future ciphertexts. In our proposed method, the user generates new private keys for

every denoising request. In other words, for every noisy image, the user generates two new

and independent random matrices so as to prevent potential KPA attacks. Since the keys

are updated in each session, the attacker cannot use the previous keys to decrypt the future

ciphertexts.

We also consider a scenario in which an attacker tries to implement a brute force attack

to obtain the keys: random permutation matrix U ∈ Rp×p and an orthonormal random

matrix Q ∈ Rn×n. There is p! (! represents the factorial operation) possible permutation

matrices ∈ Rp×p. Similar to every cryptosystem, the length of the key(s) or the extent of

search space plays an important role in defining the level of secrecy of that cryptosystem.

In patched-based image denoising problems, p, the number of noisy image patches is large.

Given an r× r pixels image, there are p = (r−
√
n+1)2 possible

√
n×

√
n pixels patches. For

example, for a small image of size 32× 32 pixels, and patch size 8× 8 pixels, the number of

possible patches is p = (32-8+1)2 = 625, and the number of possible permutation matrices

is 625! which is a huge number. It is very hard to calculate this number even with the

powerful resources available on the cloud. In practice, the size of p is much larger than 625,

for example in [91] and [92], p = 11000 and p = 50000 patches have been used, respectively.

In addition, if we suppose that the attacker estimates the permutation matrix, she still

needs to guess the perturbation matrix Q. Since we update the Q in every session, it is

similar to a one-time random projection method. Authors in [119] theoretically proved the
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strength of this type of encryption against different attack scenarios. They reached this

point that if in every session a new and large enough non-Gaussian random matrix Q to be

used, only the energy of each patch would be leaked. However, if we use a Gaussian random

matrix, there would not be any leak of information. A direct consequence of their result is

the fact that the attacker would not obtain any information from the given ciphertext if we

use a random Gaussian matrix.

We further evaluated the strength of our method against the side-channel attack [120].

In this type of attack, the attacker (a curious cloud or a man-in-the-middle) measures the

difference between execution times in order to estimate the keys. Since we only encrypt the

data, our method does not impose any extra task on the cloud side. In other words, the

cloud executes the same procedure if the noisy image is sent. One important consequence of

this property is having close processing times which can nullify a side-channel attack.

We verified this claim by running a systematic experiment to compare the execution

times. In Fig. 3.5, we compare the execution times of the denoising process with and

without proposed encryption. In this experiment, the Baseline and Proposed refer to the

denoising process with the noisy data (plaintext) and encrypted noisy data (ciphertext),

respectively. To have reliable results, we repeated the experiment 100 times, and each

time we used new random keys to encrypt the data. We implemented all processes in the

MATLAB environment on a system with specifications of 16G RAM and processor Intel(R)

Core(TM) i7-8550U CPU @ 1.80GHz. The size of the noisy image was 64×64 pixels. We set

the size of the sliding window to 8×8 pixels and generated 3249 noisy patches. The results

show that the execution time of the proposed approach closely follows the baseline.

In Table 3.1, we present the average execution times on client and cloud-side. On the

cloud-side, the average execution times of the proposed method (49.65 seconds) and baseline

(49.48 seconds) are very close. Hence, the attacker cannot implement the side-channel attack

based on measuring the execution times. Besides, in Table 3.1, the average execution times in

client-side (encryption plus decryption) is much lower than that of the cloud-side. It verifies
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Table 3.1: The average execution times (seconds) of running denoising algorithm with
noisy images (baseline) and encrypted noisy images (proposed) on the cloud-side.

Cloud-Side Denoising
Proposed Baseline
49.65 49.48

Client-Side: Encryption plus Decryption
0.56

the high complexity of the denoising process and the reason to outsource the denoising task

to the cloud.
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Figure 3.5: Comparing the execution times of running denoising task on noisy patches
(baseline) and encrypted noisy patches on the cloud-side (proposed).

3.5 Experimental Results

In this section, we compare the proposed method to the baseline to verify the lossless

property. In addition, we compare our method with the previous works to show its superiority

in maintaining the quality of denoising. In this study, we use five images ’House, Boat,

Barbara, Lena, Fruits’ that are mostly used for evaluating the quality of image denoising

techniques. The size of the original images were 256×256 pixels, and to generate the noisy

images and accordingly noisy patches, we used white additive Gaussian noise with two levels
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of noise, σ = 15 and σ = 20. Also, we used a Gaussian random matrix with independent

and identically distributed random variables to generate the perturbation key.

We used two quantitative measures: peak signal-to-noise ratio (PSNR) and structural

similarity index (SSIM) to evaluate the performance of this method compared to the baseline.

PSNR measures the ratio between the maximum possible power of the input image and the

power of corrupting noise that affects the representation of the image. Also, SSIM is a

perceptual metric that takes both original and noisy images to evaluate the image quality

degradation. It ranges 0<SSIM<1, higher SSIM means a higher quality of denoising. Table

3.2 shows the comparison results. The baseline refers to the case that we do not encrypt

the data, i.e., implementing ordinary denoising on the plaintext. Then, we encrypted the

noisy patches and re-ran the same denoising algorithm on this encrypted data. After doing

denoising, we decrypted the image, and as presented in Table 3.2, the quality of the proposed

method is exactly the same as the quality of the baseline. This experiment verifies our claim

about the lossless property of this method.

Furthermore, we compared the average loss of previous works with the proposed method

in σ = 20. As presented in Table 3.3, previous works cannot maintain the quality of image

denoising. For the brevity and since we proposed a solid theoretical proof for the lossless

property, we omitted the results for other σ values and images. We released our MATLAB

code publicly for reproducibility and future comparisons3.

In addition, Fig. 3.6 illustrates the effect of perturbation on the cloud. The first column

from the left corresponds to the noisy images with σ = 20, the second column corresponds to

the denoised images based on the ordinary method (baseline), the third column corresponds

to the encrypted images that have been denoised on the cloud, yet not decrypted. And the

fourth column shows the decrypted image by the real user. This experiment shows that while

the cloud does the denoising task, it will have a completely noise-like image. Therefore, the

cloud would not be able to observe the content of images. Also, the real user can decrypt and

3https://github.com/hadizand/privacy-preserving-image-denoising.git
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Table 3.2: Comparing the quality of proposed privacy-preserving image denoising
outsourcing with the regular outsourcing (baseline).

Image Method
σ = 15 σ = 20

PSNR SSIM PSNR SSIM

House
Noisy 24.64 0.44 22.16 0.34

Baseline 30.46 0.69 27.94 0.58

Proposed 30.46 0.69 27.94 0.58

Boat
Noisy 24.70 0.58 22.20 0.48

Baseline 29.76 0.80 27.68 0.71

Proposed 29.76 0.80 27.68 0.71

Barbara
Noisy 24.64 0.61 22.19 0.45

Baseline 30.56 0.84 28.42 0.76

Proposed 30.56 0.84 28.42 0.76

Lena
Noisy 24.63 0.52 22.15 0.42

Baseline 30.55 0.78 28.17 0.68

Proposed 30.55 0.78 28.17 0.68

Peppers
Noisy 24.82 0.59 22.37 0.49

Baseline 30.52 0.83 28.43 0.75

Proposed 30.52 0.83 28.43 0.75

Table 3.3: Comparing the average loss of proposed method with previous works.

Loss in PSNR Loss in SSIM
LSH-voting [107] 0.74 0.10
External DB [107] 0.52 0.08
Denoising in the dark [109] 0.25 0
Proposed 0 0
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access the denoised image by having the keys. As shown in Fig. 3.6, our proposed method

does not affect the visual features of the denoising task.

3.6 Conclusion

In this study, we proposed a novel lossless privacy-preserving image denoising method

that protects the private data within noisy images and maintains the quality of the denoising

task concurrently. In this method, we used two random keys to permute and perturb the

noisy image to transform the noisy patches into an encrypted signal. Cloud implemented

the denoising task on this encrypted signal. After denoising, the output signal was still

encrypted, and the real user would be able to decrypt the denoised image by knowing the

keys. We evaluated the security of this method against known plaintext and brute-force

attacks. Also, we theoretically proved the lossless property of this method. We also verified

the applicability of this approach by implementing our experiments on five real images, and

two well-known evaluation metrics, PSNR and SSIM, were used to compare our results with

the baseline. Our results show that this method can maintain the quality of denoising while

imposing limited complexity to the client and cloud sides.
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Figure 3.6: Experiment results of visual information exposed in the cloud-side, and
comparing the quality of denoised image with the baseline.

65



References

[1] Hadi Zanddizari, Behnam Zeinali, and J. Morris Chang. Generating black-box adver-

sarial examples in sparse domain. IEEE Transactions on Emerging Topics in Compu-

tational Intelligence, pages 1–10, 2021.

[2] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and

L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural

Computation, 1(4):541–551, 1989.

[3] R. A. Novoa J. Ko S. M. Swetter H. M. Blau A. Esteva, B. Kuprel and S. Thrun.

Dermatologist-level classification of skin cancer with deep neural networks. Nature,

542(7639):115–118, 2017.

[4] Hadi Zanddizari, Nam Nguyen, Behnam Zeinali, and J. Morris Chang. A new prepro-

cessing approach to improve the performance of cnn-based skin lesion classification.

Med. Biol. Eng. Comput., 59:1123–1131, 2021.

[5] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik,

and Ananthram Swami. The limitations of deep learning in adversarial settings. In

2016 IEEE European Symposium on Security and Privacy (EuroS P), pages 372–387,

2016.

[6] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,

Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks, 2014.

66



[7] F. Marra, D. Gragnaniello, and L. Verdoliva. On the vulnerability of deep learning to

adversarial attacks for camera model identification. Signal Processing: Image Com-

munication, 65:240–248, 2018.

[8] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar.

Can machine learning be secure? In Proceedings of the 2006 ACM Symposium on

Information, Computer and Communications Security, ASIACCS ’06, page 16–25, New

York, NY, USA, 2006. Association for Computing Machinery.

[9] A. D. Joseph M. Barreno, B. Nelson and J. D. Tygar. The security of machine learning.

Machine Learning, 81(2):121–148, 2010.

[10] Chin-Feng Yu and Hsing-Kuo Pao. Virtual adversarial active learning. In 2020 IEEE

International Conference on Big Data (Big Data), pages 5323–5331, 2020.

[11] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pattern classi-

fiers under attack. IEEE Transactions on Knowledge and Data Engineering, 26(4):984–

996, 2014.

[12] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards

the science of security and privacy in machine learning, 2016.

[13] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Deb-

deep Mukhopadhyay. Adversarial attacks and defences: A survey, 2018.

[14] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in

computer vision: A survey. IEEE Access, 6:14410–14430, 2018.

[15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing

adversarial examples, 2015.

67



[16] Xiaohui Zeng, Chenxi Liu, Yu-Siang Wang, Weichao Qiu, Lingxi Xie, Yu-Wing Tai,

Chi-Keung Tang, and Alan L. Yuille. Adversarial attacks beyond the image space. In

2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 4297–4306, 2019.

[17] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: A

simple and accurate method to fool deep neural networks. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2574–2582, 2016.

[18] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik,

and Ananthram Swami. The limitations of deep learning in adversarial settings. In

2016 IEEE European Symposium on Security and Privacy (EuroS P), pages 372–387,

2016.

[19] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik,

and Ananthram Swami. Practical black-box attacks against machine learning, 2017.

[20] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine

learning: from phenomena to black-box attacks using adversarial samples, 2016.

[21] Nina Narodytska and Shiva Kasiviswanathan. Simple black-box adversarial attacks

on deep neural networks. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), pages 1310–1318, 2017.

[22] Ishai Rosenberg, Asaf Shabtai, Lior Rokach, and Yuval Elovici. Generic black-box

end-to-end attack against state of the art api call based malware classifiers, 2018.
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