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ABSTRACT 

 

 Aging is known to bring changes and decline to the human brain and body, especially in 

hearing. Cognition can decline with age alone, but can be accelerated when hearing is impaired. 

Cognitive decline can affect older adults’ everyday lives, particularly when it comes to driving. 

Driving cessation is also associated with mental depression, which can lead to heart disease or 

other serious health conditions. However, there are cognitive training programs that are designed 

to promote brain plasticity and create new neural pathways. Event Related Potentials (ERPs) can 

be used to show the neurophysiological changes in cognition that follow such training. The P3a 

is associated with involuntary attention as well as inhibition. In this study, a well-developed 

cognitive training program, Listening and Communication Enhancement (LACE), is used to see 

if older adults can slow or reverse age-related cognitive decline. Participants (n=18) were tested 

during three sessions (baseline, pre-training, and post-training) using an attentional blink (AB) 

paradigm. The AB task was measured with a short stimulus onset asynchrony (SOA) and a long 

SOA. Training occurred during the pre-training session but after participants had been tested, 

then again during the post-training. Electroencephalography (EEG) recordings were taken at 

each session during AB testing. Results showed that participants’ P3a mean amplitude for short 

SOA decreased across sessions, specifically after training had occurred. P3 mean amplitude for 

long SOA did not significantly change at all. This would suggest that training helped older adults 

reverse the age-related cognitive decline. 
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Examining the Effects of LACE Training on Cognitive Function in Older Adults: An ERP 

Study 

 

Aging and Auditory Deterioration 

Aging is associated with changes and impairments that occur throughout the body. 

Research has shown that declines in sensory, cognitive, and socio-emotional processes occur as 

we age (Craik & Salthouse, 2011; Gordon-Salant, Frisina, Popper, & Fay, 2010; Tun, Williams, 

Small, & Hafter, 2012). In hearing, many of these initial declines occur in the physical 

components of the ear. Deterioration of the inner ear can make detrimental differences to hearing 

(Chisholm, Willot, & Lister, 2003; Schneider & Pichora-Fuller, 2000). Middle and inner ear 

connective joints can develop arthritis, which in turn can cause blood vessels to decrease in size. 

This can ultimately limit blood flow and damage the cochlea, which turns sound energy into 

electrical neural energy that can be processed by the brain. When the processing power of the 

cochlea is slowed, this can again result in hearing loss (Tun et al., 2012). As people age, the 

cochlea, as well as other areas (commonly hair cells and ganglion cells), deteriorate. All of these 

declines have been correlated with hearing loss in older adults (Chisholm et al., 2003).  

Neural connectivity and synchrony can deteriorate as a result of the physical deterioration 

of the inner and outer ear. Schneider and Pichora-Fuller (2000) discuss evidence for hearing loss 

beyond the physical deterioration of the ear. When damage to the ear occurs, or certain neural 

pathways are not used, they deteriorate. If the nerve cells are not activated on a regular basis, 

they become obsolete and die (Anderson & Kraus, 2010; Schneider & Pichora-Fuller, 2000).  

Neural degradation commonly occurs from damage and deterioration of hair cells in the inner ear 
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(Chisholm et al., 2003). Damage to hair cells can be a result of various loud noises over the span 

of a person’s lifetime (i.e. loud concerts, plane engines, sirens, etc.). However, neural 

degradation in the auditory cortex can also occur naturally with age (Schneider & Pichora-Fuller, 

2000). Damage to hair cells, combined with the natural deterioration associated with aging, 

makes it difficult for older adults to hear high and low pitches in sound and speech. This leads to 

the neural degeneration in the auditory cortex. Neural degeneration in the auditory cortex is 

usually complete, meaning the entire neuron (soma, axon, and dendrites) dies (Chisholm et al., 

2003).  

It is difficult to identify when people have neural degeneration problems associated with 

hearing, but a common sign is the difficulty to understand words in speech. Tremblay, Piskosz, 

and Souza (2003) investigated how older adults with hearing problems varied from young and 

older adults with normal hearing in speech perception. Participants were given sets of voice-

onset-time trials (VOT), where different frequencies of word sounds were presented and 

measured based on time recognition. The researchers found that older adults (with and without 

hearing loss) took more time to process the words and to give a response to the VOT task 

(Tremblay et al., 2003). Furthermore, older adults with hearing loss performed significantly 

worse on the VOT task than older adults without hearing loss. These results suggest that hearing 

loss affects auditory processing time in older adults. While deteriorating sensory processes may 

be a contributing factor to hearing loss, the understanding of language could be an even greater 

factor. 
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Cognitive Decline in Older Adults 

The age at which cognitive decline begins has been debated (Aartsen, Smits, van Tilburg, 

Knipscheer, & Deeg, 2002; Albert & Moss, 1988; Rönnlund, Nyberg, Bäckman, & Nilsson, 

2005). Some research suggests that cognitive decline does not occur until the later ages of life 

(60s or 70s; Aartsen, et al., 2002). Other research reports that cognitive decline starts to occur 

around age 50 or slightly before (Albert & Moss, 1988; Rönnlund et al., 2005). However, 

research by Salthouse (2009) suggests that cognitive decline can start in the late 20’s to early 

30’s. In order to measure this, Salthouse recruited participants from a wide range of ages (18 to 

60). Each participant was given four standardized tests (WAIS III Vocabulary and Digit Symbol; 

WMS III Word Recall and Logical Memory) and were then asked to come back for a short-term 

(1 to 14 days) and long-term retest (1 to 7 years). Salthouse (2009) found that participants started 

showing signs of cognitive decline well before the age of 60, as early as the late 20s. However, 

there was a large amount of variability among participants and in the rate at which cognitive 

decline occurred. 

Different theories exist as to why cognitive decline occurs. One idea states that older 

adults lack inhibition when filtering out input (e.g., sounds) from multiple sources (Gmehlin, 

Kresiel, Bachmann, Weisbrod, & Thomas, 2011; Tremblay et al., 2003). This idea stems from 

the theory known as the inhibitory deficit hypothesis (Connelly, Hasher, & Zacks, 1991). In their 

study, Connelly and colleagues had younger and older adults read text from a passage out loud. 

Among the text was a distractor in a different font. Older participants read the sentences 

significantly slower than the younger participants. Connelly et al. (1991) believe this suggests 

that older adults have difficulty blocking out the task-irrelevant visual information. In order to 

address auditory inhibition among visual attention, Alain and Woods (1999) measured younger 
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and older adults (who had been screened and excluded for hearing loss) with one of two auditory 

tasks. The first task consisted of listening to a sequence of tones made up of small and large 

deviant tones throughout; participants were asked to identify which tone change they heard. The 

second task also consisted of a sequence of tones, but this time the tones alternated in frequency 

and repetition. Participants were tasked with ignoring the auditory stimuli while identifying 

changes in a set of visually presented black bars. Reaction time accuracy was measured by 

participants pressing a button on the keyboard. Oddly enough, reaction times were the same 

between younger and older adults. Alain and Woods (1999) believe this is due to the simplicity 

of the task performed in their study because in other studies the tasks have been more difficult. 

This would suggest that older adults may have difficulty inhibiting responses or have a different 

response criterion than young adults (Alain & Woods, 1999).  

While the inhibitory deficit hypothesis is a well-known theory for its explanation of 

cognitive decline in older adults, it does not differentiate between sensory and cognitive decline 

very well. Another major theory that describes both sensory and cognitive decline in older adults 

is the frontal hypothesis of aging. Originally known as the hemispheric asymmetry reduction in 

older adults (HAROLD), this hypothesis states that the frontal cortex deteriorates in older adults, 

which causes problems with inhibition and other cognitive abilities (Andrés, Parmentier, & 

Escera, 2006; Cabeza, 2002). In the early studies on HAROLD, researchers found a bilateral 

change in the prefrontal cortex (PFC) that was associated with verbal recall in older adults. Since 

then, researchers have replicated this PFC change in different tasks (Cabeza, 2001; Cabeza et al., 

1997). Cabeza (2002) then showed that the PFC change was due to aging and not specific to a 

task. Inhibitory deficits allow for irrelevant information to access working memory, which then 

clutters and impairs working memory. In association with the HAROLD model, this means that 
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older adults need to use more resources from their PFC in order to perform at the same inhibitory 

level as younger adults (Cabeza, 2002). Andrés and colleagues (2006) tested the frontal 

hypothesis of aging by using visual stimuli and auditory distractors. Normal hearing participants 

were presented with a series of numbers and were asked to categorize them as odd or even, while 

concurrently presented with an irrelevant auditory distraction. Reaction times were measured in 

order to find differences between younger and older participants. Older adults’ reaction times 

were much slower compared to younger adults when the distraction was played. The researchers 

also found that older adults’ accuracy was slightly lower than that of younger adults when a 

novel sound was played. Andrés et al. (2006) believe this shows that more attentional resources 

are being used by older adults than younger adults. This suggests that older adults have difficulty 

inhibiting irrelevant sounds when working on a task, which in turn affects their cognitive 

performance. Andrés and colleagues believe this is due to the frontal cognitive decline associated 

with aging. In support of these findings, Persson et al. (2006) studied structural brain changes 

associated with longitudinal cognitive performance in normal aging younger and older adults 

using functional magnetic resonance imaging (fMRI). Participants were given a face recognition 

task. They were presented with 12 new and 12 previously presented faces and were asked to 

indicate if yes, they had seen the face before, or no, they had not seen the face. The second task 

was a free-recall of sentences, where imperative form sentences, such as “close the door” or 

“give me the keys,” were displayed and participants had to remember as many as possible. 

Results showed that older adults had increased activity in the frontal regions of the brain. 

Specifically, fMRI revealed that there was a significant increase in the right ventral frontal areas 

of the brain. This increase in brain activity was strongest among participants who showed 

moderate to declining performance on the behavioral memory tasks (Persson et al., 2006).  
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While the studies discussed so far have shown how cognitive decline affects older adults 

with normal hearing, they have not looked at cognitive decline in older adults with a hearing 

impairment.  Recently, Lin et al. (2013) published research from a longitudinal study in which 

participants were older adults, with and without hearing loss, who were followed for 11 years to 

measure cognitive function. Cognitive function was measured using the 3MS (The Modified 

Mini Mental State) scale for global function and the Digit Symbol Substitution (DSS) test for 

executive function. Testing for cognitive impairment occurred at years 5, 8, 10, and 11. The 

results indicated that participants who had hearing loss scored 41% worse on the 3MS and 32% 

worse on the DSS than individuals with normal hearing (Lin et al., 2013). Participants with 

hearing loss were also 24% more likely to develop cognitive impairments 6 years sooner than 

older adults with normal hearing. This suggests that hearing impaired older adults have 

accelerated cognitive decline compared to normal hearing older adults. The studies discussed so 

far have shown that cognitive decline can occur in healthy older adults and even more so in 

hearing impaired older adults. It is even more important to understand how these declines affect 

older adults in their daily lives. 

Effects of Hearing Loss and Cognitive Decline on Everyday Life  

A major complaint from older adults who suffer from hearing impairments is the inability 

to understand speech when they are talking to someone, even when using a hearing aid. As Lin et 

al. (2013) showed, this can increase the rate of cognitive decline. In addition, hearing loss and 

cognitive decline can both lead to difficulty in performing daily tasks. Crews and Campbell 

(2004) measured older adults’ Activities of Daily Living (ADLs) in a longitudinal study. 

Participants either had hearing problems, visual problems, or no sensory problems. Over the 

course of the study, participants were given the Second Supplement on Aging (SOA-II), a survey 
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that asks about quality of life and performance of daily tasks. Over the course of 17 months 

following their initial visit, participants were asked to complete the SOA-II. Crews and Campbell 

(2004) found that older adults with sensory problems were 1.7 times more likely to report 

problems with imbalance and experience more falls compared to participants without sensory 

problems. Participants with hearing loss were also 1.6 times more likely to have difficulty 

walking, going outside, getting in and out of bed, and remembering to take their medication than 

those with sensory problems (Crews & Campbell, 2004). These same limitations were not as 

different when comparing people with hearing problems to people who had developed visual 

problems around the same time. However, increased difficulty in the performance in all of these 

factors can make daily life more challenging.  

Sensory and cognitive function are also two main predictors of poor driving ability in 

older adults (Anstey, Wood, Lord, & Walker, 2005; Edwards et al., 2008). Driving is an activity 

that over 246 million people in the US perform every day (U.S. Bureau of the Census, 2010). For 

older adults, driving can be beneficial to mental stability and therefore it is important to 

understand how older adults can maintain their driving abilities for longer periods of time. 

Anstey and colleagues (2005) reviewed research on factors that predict driving cessation. Factors 

such as health issues, traffic accidents, and self-reported crash histories were reviewed. Overall, 

driving cessation predictors in older adults can be broken down into three main factors: 

cognition, sensory function, and physical function/medical conditions (Anstey et al., 2005). 

Similarly, Edwards and colleagues (2008) followed older adults for 5 years in a longitudinal 

study to measure driving cessation predictors. Along with physical health and sensory function, 

cognitive function was a significant factor in determining driving cessation. Participants who 

performed poorly on the Useful Field of Vision (UFOV) test, a speed of processing test that can 
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predict numerous driving mobility outcomes, were more likely to encounter driving problems 

and completely stop driving by the end of the 5 years (Edwards et al., 2008). By identifying the 

predictive factors associated with driving cessation, research could eventually help older adults 

maintain their driving privileges, which could ultimately improve their overall health.  

Research has shown that people who experience driving cessation show increased signs 

of depression (Edwards, Lunsman, Perkins, Rebok, & Roth, 2009; Fonda, Wallace, & Herzog, 

2001; Ragland & Satarino, 2005). Fonda et al. (2001) found that depression was significantly 

higher in older adults who could not drive. When asked about the depressive symptoms, people 

responded by saying that their freedom had been taken from them. They had to rely on someone 

else to run their errands for them and take them to and from appointments. Similarly, Edwards 

and colleagues (2009) found that social functioning had significantly decreased in older adults 

who experienced driving cessation. For some individuals, a decrease in social activity on its own 

can lead to depression. When a loss of social activity and driving occur at the same time, the 

prevalence of depression is much higher.  

While driving cessation can lead to mental and even physical impairments in older adults, 

hearing loss by itself can affect an individual’s quality of life (Dalton et al., 2003; Tambs, 2004). 

Elderly people who have been affected by hearing loss tend to be less active and feel more 

depressed (Dalton et al., 2003; Tambs, 2004). Depression in older ages can lead to an increased 

risk for cardiovascular disease and other health problems (Elderon & Whooley, 2013; Suls & 

Bunde, 2005; Whooley, 2006). The combination of increased health risks from sensory and 

cognitive decline and driving cessation can be detrimental to an individual’s health. The results 

from Edwards et al. (2008) showed that physical decline impacted health as much as mental 

decline in older adults who had lost the ability to drive. Older adults who are affected by driving 
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cessation are also at greater risk for being put into assisted living facilities (Edwards et al., 2008). 

The health of older adults who live in assisted living facilities is known to decline much quicker 

than adults who live on their own (Mitchell & Kemp, 2000). It is beneficial to provide training to 

adults as they reach their older ages. Research is starting to show that training and mental 

exercises can slow age-related decline and even improve sensory and cognitive functions in older 

adults (Berry et al., 2010; O’Brien et al., 2013; Willis et al., 2006). 

Neural Plasticity and Cognitive Training 

The declines encountered by people as they age have typically been viewed as inevitable. 

For years, researchers believed that the brain was only malleable during the early stages of life 

(Huttenlocher, 2009). However, current research has shown that the brain is still “plastic” in the 

sense that it can continue to change even into the later years in life (Huttenlocher, 2009). The 

term plasticity refers to the brain’s ability to create new neural connections (Burke & Barnes, 

2006). In order to embrace and enhance plasticity, cognitive training programs are being 

developed that expose individuals to complex mental activities. Most cognitive training 

programs require participants to spend hours, days, or weeks completing the same or similar 

tasks (Ball et al., 2002; Dahlin, Nyberg, Bäckman, & Neely, 2008). Cognitive training can be 

done at any age, however its effectiveness is commonly studied in older adults. Dahlin et al. 

(2008) measured older and younger adults on their executive function abilities after cognitive 

training, whether age played a role in gains in cognition after training and if these effects would 

still be seen after 18 months. Executive function was measured on five types of tests; perceptual 

speed, working memory, episodic memory, verbal fluency, and reasoning. Following this, 

participants were trained for five weeks on five different tasks. The first four tasks included 

updating a single list of items that consisted of numbers, letters, colors, and spatial locations. The 
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fifth task was a keep-track task in which participants were presented with words and were asked 

to categorize them (e.g. animals, clothes, countries, sports, or professions). At the end of each 

trial participants were asked to recall the last word in each category. Dahlin et al. (2008) found 

that after the training period, both younger and older participants performed significantly better 

in the first four tasks, suggesting that both age groups improved in executive function. In the 

keep-track task, younger participants performed better than older participants. However, older 

participants still performed significantly better than they did at baseline. After the 18 month re-

assessment, both younger and older participants showed significantly higher scores from the 

baseline measure. Older participants’ overall scores were even higher than the baseline scores of 

the younger participants. In other words, training improved executive function in both younger 

and older adults even after 18 months had passed (Dahlin et al., 2008). 

In order to enhance specific areas of cognitive abilities, different types of cognitive 

training programs have been developed. Lustig, Shah, Seidler, and Reuter-Lorenz (2009) discuss 

three of the different program types that have been developed over the last few decades. One 

type of training discussed is strategy training. This training focuses on cognitive functions in 

which individual weaknesses are identified, then helps them improve performance in these areas 

(Lustig et al., 2009). For example, training by using the method of loci to increase memory 

performance is a form of strategy training (Lustig et al., 2009). In order to show the 

effectiveness, transfer, and durability of strategy training, Rebok, Carlson, and Langbaum (2007) 

performed a meta-analysis on 218 studies that used strategy training to help older adults with 

memory impairments. Overall, it was reported that only 39 of the studies provided evidence 

based support for strategy training. However, the durability and the transfer from the strategy 

training used varied. Durability in memory ranged from 1 to 6 months in these studies. It was 
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also discovered that many individuals who learned a specific strategy (i.e. the method of loci), 

used that strategy to recall a list of words, but did not use it for anything else in their daily lives. 

Rebok et al. (2007) believe strategy training is still useful in older adults who are just starting to 

experience memory problems and can use a specific strategy to help them exercise their memory. 

The next major type of cognitive training is process training. Process training provides 

individuals with a set of tasks that are thought to rely heavily on a specific type of cognitive 

process. Unlike strategy training, process training asks participants to focus on a task that is 

thought to be specific to a certain cognitive process (Lustig et al., 2009). For example, the speed 

of processing training from Edwards et al. (2008) helped participants on the UFOV and their 

overall driving abilities. Bherer et al. (2006) studied younger and older adults to see if attentional 

control could be improved. Participants were given an auditory discrimination task and a visual 

identification task both together and separately. The auditory task involved participants 

identifying whether a pitch was either high or low. In the visual task, participants were asked to 

look and identify whether they saw a “B” or “C” on the computer screen. A baseline measure 

was taken and then participants were given five blocks of training that included either the visual 

or the auditory task. The training then moved on to a mixed block that displayed a combination 

of the visual and auditory task at random. Bherer and colleagues (2006) found that both older 

and younger participants improved on both tasks (visual and auditory) in response speed 

(measured with reaction time) and response accuracy (number of correct answers) after training. 

Response speed for older and younger participants significantly decreased, while response 

accuracy improved significantly for both older and younger participants. More interestingly, 

older participants’ improvement in accuracy was much higher than that of the younger 
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participants. Bherer et al. (2006) believe this shows that latent cognitive reserves exist in 

processing even in older adults. 

It is also common for cognitive training programs to be assessed by how well the 

program transfers the abilities learned to everyday life. Process and strategy training typically 

struggle in transferring abilities, so a third type of training, known as multimodal approaches, 

combine different aspects of training to improve transfer (Lustig et al., 2009). Multimodal 

approaches are usually more complex than strategy approaches because they contain social 

components as well as cognitive ones. Stuss and colleagues are among the researchers who use 

multimodal approaches to help develop cognitive training programs. Stuss et al. (2007) 

combined strategy training with social aspects of daily life to create a three part program 

consisting of: memory, goal management, and psychosocial function. Before training began, 

participants were given several neuropsychological batteries to assess cognitive function (e.g. 

Digit Span Test, Logical Memory, Wisconsin Card Sorting Test (WCST), and Boston Naming 

Test (BNT)). Participants then completed 14 weeks of the training seminar, which included an 

introductory week, 12 weeks of actual cognitive training, and a closing seminar. The overall goal 

was for the participants to take as much as they could from their training and apply it to everyday 

situations. Stuss et al. (2007) found that with their multimodal approach to cognitive training, 

participants did better in multiple areas of life. Participants were able to develop, focus, and 

maintain their long term goals after training. For example, participants may have wanted to 

improve on taking care of themselves. After training, participants showed improvements in 

simulated real-life tasks, overall well-being, self-reported executive function, and memory. 

Specifically, the researchers believe this multimodal approach benefits episodic memory, which 

assists older adults in their daily activities (Stuss et al., 2007).  
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Issues Concerning Behavioral Approaches to Cognitive Training 

As with most types of programs, there are strengths and weaknesses in cognitive training 

programs. The biggest issue is that cognitive training can result in training effects, where 

participants are just learning the task they are given over the period of time that they are trained 

and are not actually learning or improving a cognitive ability. In strategy-based training, for 

instance, it is common for participants to have large benefits specific to the tasks on which they 

were trained. However, these benefits are limited in their transfer to other types of training tasks 

(Lustig et al., 2009). Process training has shown promising results for the transfer of abilities to a 

large amount of different tasks, but the benefits from training requires close analysis for each of 

those tasks to determine which cognitive processes are being trained. It can also be difficult to 

distinguish which abilities are being transferred, so it is important to do a post-hoc task analysis 

to see where the abilities are being applied (Lustig et al., 2009). Multimodal approaches typically 

have the opposite pros and cons from process and strategy. Transfer effects can be widespread 

through a number of abilities but are often weaker in their effectiveness on a specific task (Lustig 

et al., 2009). Due to the complex nature of multimodal approaches, it can be difficult to know 

which part of the programs lead to transfer and which parts need to be emphasized. However, 

because multimodal tasks are so closely related to everyday living and social tasks, the training 

benefits still tend to be greater than with process or strategy training (Lustig et al., 2009). Even 

with some of the issues that occur with the behavioral methods of cognitive training, the 

multimodal approach has helped develop programs that are used for larger populations. 

 

 



LACE Training on Cognitive Function  14 

Combined Programs and LACE Training 

Multimodal approaches of cognitive training have become one of the more preferred 

methods for designing a program. The idea that one program can be designed to fit all people in 

a certain population and can help them with their daily tasks. The Advanced Cognitive Training 

for Vital and Independent Elderly (ACTIVE) is a program that combines the methods of 

cognitive training with the aspects of daily life. The ACTIVE program helps older adults transfer 

learned abilities from training into everyday situations (Ball et al., 2002; Jones et al., 2013; 

Willis et al., 2006; Wolinsky et al., 2006). ACTIVE is considered a strategy approach by some 

but is also seen as a multimodal approach to cognitive training as well. The ACTIVE program 

was among the first to be used with a large-scale sample, which allowed researchers to divide 

participants into four groups (memory training, reasoning training, speed-of-processing training, 

and a control group) (Ball et al., 2002). Each of the three training groups received 10 weeks of 

training. All three groups showed signs of improvement in cognitive performance right after 

training was finished and after a five-year follow up. Ball and colleagues originally found that 

the improvement in cognitive abilities did not transfer over to participants’ ability to perform 

everyday tasks. However, Willis and colleagues (2006) performed a follow-up study with 

ACTIVE participants and found that participants from the reasoning group reported significantly 

greater application of their cognitive abilities to performance on everyday tasks. 

The ACTIVE program is commonly used because it shows a strong transfer of learned 

cognitive abilities to everyday situations. Edwards and colleagues (2009) looked at data from 

two different cognitive training programs (ACTIVE and SKILL). The SKILL training is similar 

to ACTIVE, except in that it includes people with dementia and other cognitive diseases. From 

these two trainings, participants’ data was assessed to see if the speed of processing training 
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(from both ACTIVE and SKILL) had an effect on the participants’ ability to drive. The UFOV 

test and the Mobility Driving Habits Questionnaire were used to assess participants’ driving 

ability before and after training. Participants who completed the speed of processing training 

were 40% less likely to stop driving within three years of the initial training. This means that the 

speed of processing training can transfer to driving and delay cessation (Edwards, Delahunt, & 

Mahncke, 2009). Even though the ACTIVE program has shown good transferability to everyday 

tasks, other programs are still needed to help with abilities that ACTIVE does not cover. 

While the ACTIVE program is commonly implemented among older adults, it is limited 

in the range of abilities that can be trained. As previously mentioned, ACTIVE uses memory 

training, reasoning training, and speed-of-processing training to teach skills. However, the 

ACTIVE program does not help older adults with hearing impairments. Listening and 

Communication Enhancement (LACE) is a program designed to help older adults with hearing 

aids improve their listening and comprehension skills (Sweetow & Henderson-Sabes, 2004). The 

program focuses on hearing, listening, comprehension, and communication in older adults. In 

one of the early studies of LACE, participants were given training that consisted of Speech in 

Babble, Time Compressed speech, Competing Speaker, Target Word, and Missing Word. The 

Speech in Babble task requires participants to identify words among multi-talker babble sounds 

(Sweetow & Sabes, 2006). Time Compressed speech is the same as Speech in Babble, except 

that the stimuli are presented at an 85% faster rate. The Competing Speaker task is again similar 

to the Speech in Babble task, but with only a single speaker in the background. The Target Word 

task is an auditory working memory task that involves a visually presented target word and an 

auditory sentence. The participant first sees a target word and then listens to a sentence in which 

the target word occurs. The participant is then asked to choose the target word from a forced 



LACE Training on Cognitive Function  16 

alternative choice selection. The Missing Word exercise involves presenting the participant with 

a sentence but masking one word with environmental noise (i.e. road sounds, construction 

sounds, emergency vehicles, etc.). The participant’s goal is to identify the word that was masked. 

The researchers found that participants improved significantly over the four weeks in all of the 

test areas. A year later, Sweetow and Sabes performed a follow up study that replicated the 

results and showed that participants only needed two weeks, as opposed to 10 weeks, of LACE 

training in order to reach the desired level of learning (Sweetow & Sabes, 2007).  

More recently, Olson, Preminger, and Shinn (2013) investigated the effectiveness of 

LACE training in participants with and without hearing aids. Olson and colleagues measured 

participants who were old (had been using) and new (never used) to hearing aids on the LACE 

training. Each participant was asked to complete 10 sessions of training and then asked to come 

back after a follow-up period. Olson and colleagues found that participants who were new to 

hearing aids showed an improved ability in speech-in-noise tasks after just two weeks of 

training. Over half of participants who were old to hearing aids also showed signs of 

improvement after just two weeks of the LACE training. Both hearing aid groups performed 

better than the control group who were also new to hearing aids but did not experience any 

training (Olson et al., 2013).  

As previously mentioned, behavioral methods to cognitive training are limited in the 

gains that come from training. Among some of these limitations is knowing whether or not 

participants adhere to the programs, specifically when they are given tasks that can be completed 

at home (Chisholm et al., 2013). Chisholm and colleagues (2013) investigated how high 

adherence was to LACE training at home and found that participants still completed training 

tasks about 86% of the time. Regardless of adherence, behavioral methods used to study LACE 
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and other cognitive training programs leave too many confounding variables that were 

previously mentioned. This is where it becomes important to study the neurophysiological 

aspects of the training as well as the behavioral ones. 

Neurophysiological Evidence in Cognitive Training 

Advances in neurophysiological measurement technology have allowed researchers to 

visually observe areas of the brain and to measure complex cognitive processes that occur in 

neurons that cannot be detected through behavioral methods. One of the most well-known forms 

of neurophysiological measurement is functional magnetic resonance imaging (fMRI). Studies 

that use fMRI allow researchers to see different areas of the brain that become more active, less 

active, or completely inactive when a given task is performed. Research using fMRI has given 

researchers the ability to see brain localization of auditory function and hearing loss in older 

adults (Peelle, Troiani, Grossman, & Wingfield, 2011). fMRI research has also elucidated some 

of the changes that occur with cognitive training (Jäncke, Gaab, Wustenberg, Scheich, & Heinze, 

2001). For example, Jäncke and colleagues (2001) investigated whether the auditory cortex 

reflected changes due to cognitive training and if it did, which areas of the cortex changed after 

training occurred. Participants were split into a training and no training group and then given an 

auditory oddball task with concurrent fMRI recording. The oddball task consisted of a standard 

tone played at 950 Hz with three target stimuli played at 952, 954, and 958 Hz throughout the 

standard tone. The results showed that participants in the no training group had significantly 

more activation in the superior temporal gyrus (STG) than those in the training group. This is 

important because the STG contains the primary auditory cortex, which is responsible for 

processing sounds. Jäncke and colleagues (2001) believe that increased STG activation means 

there are more auditory resources used in the brain to process the stimuli. In other words, the 
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group that received training was able to detect the sounds at the 954 and 958 Hz level and did not 

need to spend as many resources processing the stimuli. While the results from the Jäncke et al. 

(2001) study are able to show the localized changes in the STG, they were not able to show the 

temporal changes in amplitude from the neuronal responses. fMRI does not allow for the 

investigation of sensory, perceptual, and cognitive processing with millisecond precision. This 

kind of high temporal resolution would allow for the study of early information processing and 

the transition of sensory processing to higher cognitive function that is necessary to navigate the 

stimulus heavy environment of daily life. For this reason, it is important to use other methods of 

neurophysiological measurement.  

Electroencephalography (EEG) is a measurement of neurophysiological response that 

allows researchers to measure the electrical activity of the brain via scalp electrodes when a 

given task is performed. An event related potential (ERP) reflects the underlying sensory, motor, 

and cognitive processes that accompany thought and behavior when the task is performed (Luck 

& Kappenman, 2011). While ERPs do not allow for the localization of brain activity, they are a 

valuable measurement of brain function because they allow researchers to measure the neural 

responses within milliseconds (ms) of an activity occurring (Luck & Kappernman, 2011). ERPs 

result in a series of positive and negative wavelengths that indicate the occurrence of an event. 

The timing of these neural responses indicate the occurrence of different psychological functions 

such as attention, working memory, and the processing of sensory information. 

The positive and negative wavelengths are identified by their peaks over the first few 

milliseconds when a task is performed. The first peak occurs around 100 – 130 ms and is known 

as the P100 or P1. The P1 is thought to represent the suppression of unattended information as 

well as the general level of arousal (Key, Dove, & Macguie, 2005). With auditory stimuli, the P1 
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has been associated with auditory inhibition. The inhibition of sounds occurs with the sharpening 

of auditory stimuli for needed for response and ignoring irrelevant sounds in the environment. 

This has been shown to decrease in amplitude in the P1 (Key et al., 2005). The next peak is 

negative going, can occur around 100 – 200 ms, and is known as the N100 or N1. The N1 is a 

sensory response that is invoked by auditory or visual stimuli. The amplitude has been shown to 

be affected by spatial attention but tends to be even larger when an individual performs a 

detection task (Luck, 2005). This is thought to be due to some form of discrimination processing 

(Luck, 2005). The positive going peak following the N1 is known as the P2 and commonly 

occurs with the N1, also known as the N1/P2 complex. The P2 tends to be sensitive to the 

physical aspects of stimuli, such as pitch and tone in auditory stimuli (Key et al., 2005). It is also 

thought that the P2 amplitude changes with different cognitive tasks such as selective attention, 

short term memory, and feature detection (Key et al., 2005).  

Following the N1/P2 is the negative going peak, N200 or N2, which has been associated 

with stimulus discrimination, orienting response, and target selection (Key et al., 2005). The N2 

is made up of several subsets known as the N2 family. Among these subsets are the N170, which 

is associated with the processing of human faces. The other subset of the N2 family is Mismatch 

Negativity (MMN), which does not require the focus of attention on a stimulus. This makes the 

MMN a common measure for test-retest reliability and sleep studies (Key et al., 2005). In 

auditory stimuli, MMN is thought to show pre-attentive sensory memory and is commonly used 

to measure an individual’s ability to discriminate linguistic stimuli (Key et al., 2005). After the 

N2 family, the most extensively researched peak is the P300/P3. Like the N2 family, the P3 has 

subcomponents that are believed to represent the various aspects of attention, amount of 

resources processing, and memory updating (Key et al., 2005). The P3b, a subset of the P3, has 
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been shown to be elicited by the oddball paradigm, when a target stimulus is presented 

infrequently among a series of more frequent distractor stimuli (Luck, 2005). The P3b has been 

shown to have shorter latencies in response to auditory stimuli than visual stimuli. A second 

subset of the P3 is the P3a, which is associated with involuntary attention as well as inhibition 

and has been shown to be elicited by Go No-go tasks. In this paradigm, amplitude is usually 

larger in the No-go condition compared to the Go condition (Key et al., 2005). Research on ERP 

components shows that they can be invoked by multiple stimuli, different paradigms, and tap 

into different types of cognitive processes. This allows researchers to measure a wide range of 

psychological functions among neural firings. 

 Researchers use ERPs with cognitive training to measure the different effects training has 

on perceptual and cognitive abilities. For instance, Berry et al. (2010) looked at improving 

perceptual abilities in working memory (WM) in older adults. Participants were trained over a 

five-week period on two perceptual tasks and a WM task. The perceptual tasks involved the 

participant clicking one of two buttons indicating whether or not they had seen an image increase 

or decrease in size. These tasks were also presented in different colors and participants were 

asked to recall which color the previous task had been in addition to the size perception task. 

Berry et al. (2010) found that participants who underwent training were likely to show a decrease 

in the N1 peak amplitude. These results are consistent with research that shows that with 

training, neural peaks become smaller (Alain & Snyder, 2008; Ding, Song, Fan, Qu, & Chen, 

2003), suggesting that trained visual stimuli elicit smaller EEG waves in humans. The decreased 

amplitude of the N1 is representative of perceptual gains within WM in older adults. In other 

words, N1 performance is consistent with the idea that increased performance on perceptual 

tasks frees up WM to store more information (Berry et al., 2010).  In order for this training to be 
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successful, strategy-based training on specific tasks is needed to increase WM performance. 

While the training benefits may not transfer directly to everyday tasks, improving WM can still 

be beneficial in daily activities. 

Current research on ERPs and cognitive training focuses primarily on visual stimuli. 

ERPs have been used in studies that measure auditory attentional decline (Finnigan, O’Connell, 

Cummins, Broughton, & Roberston, 2011; Getzmann, Gajewski, & Falkenstein, 2013; Manan, 

Franz, Yusoff, & Mukari, 2013) and auditory perception (Ghemlin et al., 2011; Passow et al., 

2012). However, few studies look specifically at the effects of cognitive training on auditory 

stimuli. Tremblay, Kraus, McGee, Ponton, and Otis (2001) measured the N1 and P2 wavelengths 

in adults to see if speech-in-sound recognition would improve with cognitive training. 

Participants were given different pitches of the tone “ba” and were asked to distinguish this 

sound among various noise at different speed intervals. The results showed that participants had 

an increased amplitude in the N1 and P2 peaks, following training. According to Tremblay et al. 

(2001) the peaks’ increase in amplitude suggests that there is more neural synchrony occurring 

when participants have learned to distinguish the “ba” sound from the rest of the noise. In other 

words, the increased amplitudes in the N1 and P2 peaks resemble the neural firings of learned 

stimuli. This suggests that training has a significant effect on early sensory processing of 

auditory stimuli (Tremblay et al., 2001).  

Research on the early ERP peaks gives insightful information about sensory differences 

in training. However, it is important to see what happens after sensory information is processed 

and for this many researchers look at the P300/P3 peak. As previously mentioned, the P3 

typically peaks when there is a surprise or oddball stimulus introduced during a task (Luck, 

2005). O’Brien and colleagues (2013) investigated how the N2pc and P3b amplitudes (subsets of 
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the N2 and P3) would change after cognitive training. Participants were trained over a 10 week 

period on different visual search tasks, which were adaptive in difficulty depending on individual 

performance. The tasks in the training included identifying orders of visual sweeps, visual 

discrimination of surrounding targets, tracking and remembering visual targets, discriminating a 

center target while locating a peripheral target, and detecting and remembering targets. O’Brien 

et al. (2013) found that after training there was a significant increase in amplitude of the N2pc 

and P3b peaks in response to visual stimuli. This increase did not occur in the control group with 

no training. These results suggest that training can increase the attentional capacity (P3b) and 

processing capacity (N2pc) in older adults (O’Brien et al., 2013). Process training was used to 

train participants across a variety of tasks in order to transfer the gains from training to everyday 

situations. Regardless of the type of training used, this study and the previously mentioned 

studies all provide evidence that age-related decline can be reversed. 

Increased vs. Decreased ERP Amplitude in Cognitive Training Studies 

 The results from Tremblay et al. (2001) varied from O’Brien et al. (2013) and Berry et al. 

(2010) in very different ways. First, Berry et al. (2010) and O’Brien et al. (2013) used visual 

stimuli in their studies, while Tremblay et al. (2001) used auditory stimuli. The presentation of 

visual and auditory stimuli have been known to elicit different peak amplitudes and latencies 

from one another (Key et al., 2005). Second, Berry et al. (2010) found that amplitudes of the 

ERP components decreased after training had taken place, while the research by Tremblay et al. 

and O’Brien et al. showed an increase in amplitude after training. There is no clear definition as 

to whether or not an increase or decrease in amplitude shows the effects of training. Either 

outcome can be supported by the research. However, going back to the research on attentional 

resources and decline in older adults, a decrease in amplitude would be expected. For example, 
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Kok (2000) reviewed research on age-related changes in attention through ERP components. The 

research showed that when a task was more complex (i.e. required more attentional resources), 

ERP amplitudes (from N1 to P3) typically increased (Kok, 2000). Therefore, training should 

improve attentional resources and decrease the ERP amplitude. For further evidence, recall the 

Jäncke et al. (2001) study where fMRI revealed a decrease in activation of the STG after 

training. Even though ERPs do not localize neuron activation, they still measure the amount of 

neuronal activity occurring during an event. With this evidence, we would expect to see a 

decrease in amplitude after cognitive training has occurred.  

Attentional Blink and ERPs as a Measure of Cognitive Decline 

As previously established, older adults have difficulty dividing, focusing, and inhibiting 

information from their attention (Craik & Salthouse, 2011). This can be dangerous for older 

adults, particularly when it comes to driving (Edwards et al., 2009; Edwards et al., 2008). 

Driving requires visual and auditory abilities in order to see and maneuver around complex 

traffic situations. The speed at which many of these situations occur is very quick, therefore it is 

useful to have a measure that can test the temporal aspects of attention in older adults. The 

attentional blink (AB) phenomenon, first noted by Raymond, Shapiro, and Arnell (1992), occurs 

during a rapid serial visual presentation (RSVP) of stimuli when a first identifying target is 

presented and a second target is presented too quickly after the first for an individual to detect. 

An AB occurs because too many attentional resources are used on a first target (T1), leaving 

attentional resources briefly unavailable for detecting a second target (T2). In other words, the 

AB reflects the competition between two targets for WM encoding, episodic registration, 

response selection, target representations, and inhibition of distractors (Dux & Marois, 2009). 

The use of the RSVP allows researchers to measure the unique temporal properties of attention. 
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It is also a good measure of age-related cognitive decline because it has been shown that the AB 

effect tends to get worse after the age of 40 (Georgiou-Karistianis et al., 2007).  

Slawinski and Goddard (2001) made use of an AB task to see the age-related differences 

in the processing of auditory tones in younger and older adults. The AB task was used in line 

with the idea that older adults have greater difficulty inhibiting information from their attention 

when trying to process a different stimulus (Alain & Woods, 1999). Participants were divided 

into two conditions (control and experimental), where the control condition was given a dual 

auditory AB task in which participants were presented with a target sound (T) and asked to 

identify that same sound again during rapid auditory presentation (RAP) of stimuli. The 

experimental condition was presented with the same target but with a different probe (P) sound 

that had different stimulus onset asynchrony (SOA) lengths from T1 to T2. Older adults 

performed much worse at identifying P when it occurred in the RAP regardless of SOA. The AB 

effect was significantly greater for the older adults when compared with the younger adults. 

Slawinski and Goddard (2001) believe these results suggest that older adults have greater trouble 

inhibiting information from their attention. While this study shows that older adults are slower at 

performing an AB task behaviorally, it does not show the changes (if any) that are occurring in 

the AB on a neural level. 

Much of the existing research using an AB paradigm and ERPs focuses on the age-related 

changes of attention in older adults. Cona, Bisiacchi, Amodio, and Schiff (2013) compared 

younger and older adults on an AB paradigm to see if there were differences in the capacity of 

attentional resources, the ability to inhibit irrelevant stimuli, and if older adults took longer to 

process stimuli. The RSVP contained a continuous stream of 500 black letters with 75 target 

letters presented among them. Participants were asked to press the space bar whenever an “X” or 
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“Y” appeared. Behavioral results showed that reaction times were much slower for older adults 

than for younger adults. ERP analyses showed that the N2 and P3a latencies were significantly 

later in older adults compared to younger adults for T1 and T2. The increased latencies of the N2 

and P3a support the behavioral results that older adults take longer to process stimuli in an AB 

paradigm. The amplitude for T1 was greater in older adults than in younger adults. The 

amplitude for T2 was the reverse, greater for younger adults than older adults. Cona and 

colleagues suggest that this represents older adults’ need to use more attentional resources for the 

first target and do not have as many resources to process the second target. Finally, Cona et al. 

(2013) believe that these increased latencies and amplitudes in the N2 and P3a in older adults is 

synonymous with older adults’ difficulty inhibiting and shifting attention. The research using AB 

paradigms and ERPs is insightful for exploring the age-related changes in cognitive decline. 

However, there is minimal research on cognitive training and the use of ERPs and an AB task. 

Aims of the Current Study 

Studies have shown that cognitive training can reverse the effects of age-related cognitive 

decline in older adults (Berry et al., 2010; Dahlin et al., 2008; O’Brien et al., 2013). This could 

potentially be helpful in bolstering older adults’ driving abilities (Edwards et al., 2008) and 

ultimately, their physical health (Dalton et al., 2003; Tambs, 2004). Attentional processes such as 

the inhibition of attention and the allocation of attentional resources has been known to decline 

with age (Craik & Salthouse, 2011). These declines in attentional function can cause problems 

for older adults who drive because they may not be able to process the complex traffic situations 

that occur on the road. It is important to be able to focus attention and block out unwanted 

stimuli quickly when driving. Enhancing an individual’s ability to hear speech may help slow 

and even reverse the effects of age related cognitive decline. The current study examines the 
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effects of LACE training on older adults’ ability to hear speech in noise. Using an AB task is 

helpful for these situations because it is a way to measure attention in a rapid temporal 

presentation of stimuli. It is also useful because it has been shown that after the age of 40, older 

adults have slower reaction times when performing an AB task (Georgiou-Karistianis et al., 

2007). Although the AB paradigm has been used extensively to study visual attention, there is 

minimal research of its use on auditory attention and cognitive training. 

In this study, participants were tested on an auditory AB paradigm for a baseline 

measure, a pre-training measure after 10 weeks of no contact (thus creating a within-subjects 

control condition), followed by LACE training, and finally, a post-training after the completion 

of the training. EEG measurements during the AB task shows performance of the P3a before 

training, at the baseline and pre-training measure and after training at the post-training. Changes 

in the P3a component will show differences in attentional and cognitive performance. In all, 

participants completed three sessions (baseline, pre-training, post-training) and LACE training 

occurred in-between the second and third sessions. The P3a is not expected to change from the 

first to second session, as there was no intervention during this time. However, a change is 

expected to occur from the baseline to post-training measure as well as the pre-training to post-

training, indicating a change in attentional awareness and cognition.  
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Method 

Participants 

Eighteen older adults (10 females) were recruited by the School of Aging Studies at the 

University of South Florida Tampa. Informed consent was obtained for all participants prior to 

their participation. Participants’ ages ranged from 64-84 years (M= 70.44, SD= 6.46). All had 

adequate cognitive status; Mini-Mental State Examination (MMSE) > 24 (Folstein, Folstein, & 

McHugh, 1975) and no history of neurological disease. All participants were fluent English 

speakers. None of the participants reported completion of any previous auditory or cognitive 

training programs. All participants were high school graduates and had at least some college 

experience (education in years; M= 16.11, SD= 2.14). Pure tone hearing thresholds indicated that 

the primary hearing configurations were sloping high frequency hearing loss with no evidence of 

a conductive component per normal type A tympanograms. Pure tone averages (PTA) mean = 

23.33 dB HL (range 10.00-43.33 dB HL) for the right ear and mean = 19.09 dB HL (range 8.33-

46.67 dB HL) for the left ear. High frequency PTA mean = 37.95 dB HL for the right ear and 

mean = 33.18 dB HL for the left ear.  

Listening and Communication Enhancement (LACE) Training 

Training sessions for LACE were completed in a computer lab in the Department of 

Communication Sciences and Disorders building at the University of South Florida Tampa. 

Training classes were 2-3 times per week. Participants had the opportunity to finish 1-2 training 

sessions per visit with each training session approximately 20 minutes in duration. Participants 
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each completed 20 training sessions in total. Each session included five modules that focused on 

degraded speech and cognitive skills. A detailed description of the training modules is provided 

in Table 1.  

Table 1. LACE Training Modules and Descriptions 

Exercise Description 

Speech in Multi-

talker Babble 

Identify and repeat primary sentence in the presence of multi-

talker speech babble. Score determined by self-reported 

accuracy and intensity of multi-talker speech babble. 

Rapid Speech Identify and repeat time compressed sentence and answer 

questions. Score determined by self-reported accuracy and 

speed of speech signal. 

Competing Message Identify and repeat primary sentence and answer questions in 

the presence of a competing talker. Score determined by self-

reported accuracy and intensity of competing message signal. 

Missing Word Determine omitted word from sentence based on contextual 

cues. Score determined by accuracy and time of response. 

Target Word Identify and recall word preceding/proceeding target word. 

Score determined by accuracy and time of response. 

 

The modules were adaptive with the level of difficulty increasing or decreasing based on the 

accuracy of the previous response. Scores and progress were repeated back to the participant 

following each training module. Participant time and performance were recorded at the end of 

each training session. 

Attentional Blink Paradigm  

The Attentional Blink (AB) paradigm consisted of 480 trials (approximately 1hr 

duration). The stimuli were presented binaurally via ER-3a insert earphones and were comprised 

of a sequence of monosyllabic words, white noise, and silence presented along with a continuous 

segment of multi-talker babble. One channel of the two channel stimulus contained the following 



LACE Training on Cognitive Function  29 

sequence of stimuli presented at 70dB HL: Target 1 (T1) a spoken digit (numbers 1 through 9, 

excluding bisyllabic 7), an interstimulus interval (ISI) of white noise masker of 150 ms (short 

ISI) or 400 ms (long ISI), target 2 (T2) a spoken 350 ms monosyllabic word given in Appendix 1 

(NU. 6; Tillman & Carhart, 1966, PB-50; Egan, 1948, & W-22; Hirsh, Davis, Silverman, 

Reynolds, Eldert, & Benson, 1952) represented as the deviant or 350 ms silence represented as 

the standard each with equal probability of occurrence, and a 150 ms white noise masker. The 

other channel contained a continuous segment of multi-talker babble that was either 1500 or 

1750 ms in duration to match the duration of the other channel and began 500 ms prior to the 

stimuli in the other channel. A signal-to-noise ratio was maintained 5 dB above each individual 

participant’s WIN score to ensure perceptibility (Wilson, 2003; Wilson, Abrams, & Pillion, 

2003; Wilson, Carnell, & Cleghorn, 2007). The 480 trials were presented equally in one of four 

stimuli sequences: 1. T1, short ISI, deviant T2, and masker; 2. T1, short ISI, standard T2, and 

masker; 3. T1, long ISI, deviant T2, and masker; 4. T1, long ISI, standard T2, and masker. Figure 

1 demonstrates the stimulus sequence for T1, short ISI, deviant T2, and masker.  
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Figure 1. Presentation of AB Paradigm. Upper panel shows stimulus sequence for the AB: T1 a 

spoken digit, 150 ms short ISI masker, T2 a 350 ms spoken word, 150 ms masker. Lower panel 

shows background of multi-talker babble. 

 

 

Following each trial, the participants responded using keys on a keyboard to prompts on a 

computer, designating T1 as an odd or even number and determining whether T2 matched a 

written word displayed on a computer monitor or not.  

Procedure 

ERPs were obtained in the auditory modality using an AB paradigm in three sessions: 1. 

A baseline session scheduled 10 weeks prior to LACE training; 2. A second session (pre-

training) scheduled one week prior to LACE training; and 3. A third session (post-training) 

scheduled one week following LACE training completion. In this way, each participant served as 

his/her own control. The experiment took place in a dimly lit, sound-attenuating booth. Figure 2 

represents the timeline of this procedure. 
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Figure 2. Timeline representation of testing and training procedure. Participants were not 

contacted during the 10 week period between Baseline and Pre-Training sessions. Participants 

started LACE training 1 week following the Pre-Training session, then were asked to come back 

for a final Post-Training session 1 week after the LACE training had been completed. 

 

Apparatus 

A Pentium 4 PC running E-Prime 1.1 (Schneider, Eschman, & Zuccolotto, 2002) hm 

recorded behavioral data and presented visual search stimuli on a 43 cm LCD monitor (60 Hz 

refresh, 1024 × 768 resolution) with a viewing distance of 90 cm. Responses were registered 

using a keyboard.  

Electroencephalography Recording and Analysis 

Continuous EEG activity was recorded using the NuAmps (NuAmp, Neuroscan, Inc., El 

Paso, TX) single-ended, 40-channel amplifier according to the NuAmps International 10–20 

electrode system using a Quikcap with sintered Ag/AgCl electrodes, and a continuous 

acquisition system (Scan 4.3 Acquisition Software, Neuroscan, Inc.). A right mastoid electrode 

was used as a reference. Four additional electrodes were placed the outer canthus of each eye and 

on the supra and infraorbital ridges of the left eye to monitor eye movement and blink activity. 

The EEG was sampled at 1000 Hz. Electrode impedances were kept below 5 kΩ for most 

electrodes. Continuous EEG was high-pass filtered at a corner frequency of .1 Hz. Ocular artifact 

from eye movement and blinks were corrected for each participant by extracting the 

electroocular signals from the EEG.  
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EEG for correct T1-response trials was separated into epochs of 2000 ms (-300 ms before 

trial onset to 2300 ms after) and low-pass filtered at a corner frequency of 30 Hz with a squared 

Butterworth zero-phase filter (12dB/octave roll-off). Epochs in which EEG amplitude exceeded 

criteria of ±125μV were rejected prior to averaging. Data were then averaged separately for each 

stimulus type (present, absent) for short and long ISI conditions; re-referenced to averaged 

mastoids; truncated to a critical interval of -150 – 600 ms; and baseline corrected (-150 to 0 ms). 

P3a mean amplitude was measured at frontal electrode site Fz for present and absent stimuli in a 

250 – 550 ms post-stimulus time window.  

Data Analysis Plan 

The following data analyses used in this study are secondary analyses based on data 

provided by Dr. Jennifer O’Brien from the University of South Florida St. Petersburg, in 

conjunction with the School of Aging Studies at the University of South Florida Tampa. 

Behavioral performance for the AB task was at ceiling, meaning that scores were at their 

highest for all participants at all three testing time points and therefore is not reported. Overall 

mean differences between amplitudes at all three session times (Baseline, Pre-training, and Post-

training), and by short and long SOA, were compared in a factorial ANOVA in IBM SPSS 22. 

This framework allows for the comparison of the Time x SOA interaction to see if SOA 

performance varied over time. An alpha of .05 was set for each measurement. Equal variances 

were assumed among the groups, with support being provided by Levene’s test of homogeneity 

(p= .05). Because sphericity was not assumed among the groups, Greenhouse-Geisser corrections 

were employed. In order to measure the means of short and long SOA individually across time, 

two omnibus one-way ANOVAs were used. This allowed the performance on short SOA to be 



LACE Training on Cognitive Function  33 

measured across time without interference from the means of the long SOA. The same procedure 

was done in reverse to measure the long SOA across session times. If either of the one-way 

ANOVAs provided significant results, post-hoc t-tests were used to see where specific 

differences occurred across the different session times and each SOA length.  
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Results 

Descriptive Analyses 

 The present sample consisted of 18 total participants that were close to even distribution 

by gender with 55.6% Female and 44.4% Male. Similarly, all participants were of 

White/Caucasian (100%) ethnicity and had at least some college education. Age, gender, 

education, and ethnicity did not affect P3a performance on short or long SOA. Even though there 

was a fairly equal amount of male and female participants, neither gender was more likely to 

differ in P3a amplitude. Also, the number of years of education an individual obtained did not 

affect P3a performance on SOA. For all correlations between demographic factors and SOA 

performance across sessions, see Table 2. 

Table 2. Correlations of Descriptive Factors and P3a Performance on SOA across Sessions 

 Age Gender Race Education 

Short SOA at Baseline -.28 -.34 -  .11 

Long SOA at Baseline  .01  .01 - -.07 

Short SOA at Pre-Training -.11 -.21 - -.24 

Long SOA at Pre-Training  .08  .15 - -.02 

Short SOA at Post-Training -.07  .19 -  .18 

Long SOA at Post-Training -.03 -.06 -  .28 

Note. *Represents a significant correlation at the .05 level. Race did not produce correlations due 

to the entire sample being one Race. 
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Time and SOA on P3a Amplitude 

 A 2 x 3 within-subjects factorial analysis of variance (ANOVA) was run to see if Time 

(baseline, pre-training, post-training) x SOA (short and long) had an effect on participants’ P3a 

amplitude. For means and standard deviations of the mean amplitudes for all sessions, see Table 

3. 

Table 3. Means and Standard Deviations for Short and Long SOA across Sessions 

 Baseline Pre-Training Post-Training 

 M(SD) M(SD) M(SD) 

Short SOA 2.01(2.38) .94(1.61) -.06(2.25) 

Long SOA .36(1.56) -.35(1.81) .10(5.47) 

 

The results show that the interaction of Time x SOA was not statistically significant, which may 

have been underpowered because interaction effects can be difficult to detect, F(1.23, 20.97) = 

1.19, p = .300, d = .36, r = .18, 95% CI [-.32, 1.05]. There was also no main effect of time, 

F(1.28, 21.70) = 2.22, p = .146, d = .50, r = .24, 95% CI [-.19, 1.18]. This suggests that a 

significant change in P3a amplitude was not detected over time. However, the main effect of 

SOA was approaching significance F(1.00, 17.00) = 4.05, p = .060, d = .67, r = .32, 95% CI [-

.03, 1.37]. These results suggest that when all other factors are removed, the type of SOA may 

show a change in participants’ P3a performance.  

 With the main effect of SOA approaching significance, two omnibus ANOVAs were run 

to see if there was really a difference between short and long SOA performance. A one-way 

within-subjects ANOVA was run on short SOA performance across sessions. The results were 
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statistically significant F(2,34)= 8.40, p = .001, d = .97, r = .43, 95% CI [.25, 1.68]. This 

suggests that P3a mean amplitude on the short SOA changed over the session times (follow-up 

post-hoc analyses in next section). A one-way within-subjects ANOVA was also run on long 

SOA across sessions. The results were not statistically significant, F(1.12, 19.02) = .22, p = .670, 

d = .16, r = .08, 95% CI [-.52, .83]. These results suggest that P3 mean amplitude on the long 

SOA did not change across sessions.  

Post-Hoc Analyses 

 After finding a significant change in short SOA amplitudes across sessions, post-hoc 

analyses were run to see in which sessions these differences occurred. Figure 3 shows the 

differences in mean amplitude across all three sessions. 

 
Figure 3. P3a Mean Amplitude across Sessions. Mean amplitude is significantly different at 

Baseline and Pre-training, which is before training occurred. After training (in the Post-training), 

mean amplitudes are near the same. 

 

A paired sample t-test was run on the mean amplitudes of the short and long SOA at baseline. 

The results were statistically significant, t(17) = 2.25, p = .038, d = 1.09, r = .48, 95% CI [.11, 

3.20]. This suggests that mean amplitudes on the short SOA were significantly different from 
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amplitudes on the long SOA at the baseline session. A paired sample t-test was then run on the 

mean amplitudes of the short and long SOA from the pre-training. The results were statistically 

significant, t(17)= 2.77, p = .013, d = 1.34, r = .56, 95% CI [.31, 2.28]. These results suggest that 

the mean amplitudes of the short and long SOA were significantly different from each other in 

the pre-training session. Finally a paired sample t-test was run on the mean amplitudes of the 

short and long SOA at the post-training session. These results were not statistically significant, 

t(17)= -.14., p = .893, d = -.07, r = .03,  95% CI [-2.69, 2.36]. These results suggest that while 

P3a mean amplitude for short and long SOA were significantly different at baseline and pre-

training, these differences were no longer detected at the post-training session.  
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Discussion 

 

The goal of the current study was to see if changes to the P3a ERP component would 

occur in older adults after LACE training. These changes would serve as a benchmark to 

determine if there were any observed underlying neural gains and processes after LACE training 

was completed. Research has shown that the brain is malleable even into the later years in life 

(Anderson & Kraus, 2013; Berry et al., 2010; Jones et al., 2006; O’Brien et al., 2013). Using 

electrophysiological methods, this study has given support to the notion of the reversal of age-

related cognitive decline. Older adults’ auditory attention was improved in an AB paradigm after 

LACE training had taken place. The amplitude of the P3a component decreased significantly 

after training for the short SOA and was nearly equal to the amplitude of the long SOA.  

While significant results were uncovered for the key variables of time and SOA, several 

hypotheses were not supported by significant results. In particular, the results of the initial SOA 

and time analyses were not significant. This could have been due to the lack of change in 

amplitude from the long SOA overpowering the small SOA. Further inspection of the data 

revealed no significant change in long SOA even after training, supporting the hypothesis of this 

study. If a change in amplitude were uncovered in the long SOA, this may indicate the 

occurrence of cognitive decline or a lack in benefits from training. Further analyses showed that, 

as expected, the short SOA amplitudes decreased across sessions, specifically after training had 

taken place. 
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The current findings show decreased P3a amplitude after training, which supports the 

idea that age-related cognitive decline can be reversed. These findings coincide with those of 

Berry et al. (2010), who found that the N1 amplitude decreased after training and allowed for an 

increase in working memory performance. As previously established, there is some discrepancy 

in whether or not increased or decreased ERP component amplitude shows the effects of training 

in EEG studies. The results of this study support the idea that a decrease in amplitude shows 

signs of neural plasticity. One explanation could be the type of stimuli that were used, because 

visual and auditory stimuli have been known to elicit different strengths in ERP amplitude. 

However, in some research when visual stimuli were used (O’Brien et al., 2013) and in other 

research when auditory stimuli were used (Tremblay et al., 2001), there was still an increase in 

amplitude after training, which would not support the idea that the variation in stimuli could be 

the issue.  

It is also possible that the variation between increase and decrease in ERP amplitude is 

connected to the nature of the task. Research has shown that ERP amplitude can be affected by 

multiple factors including the difficulty of a task and the presentation speed (Comerchero & 

Polich, 1999; Philiastides, Ratcliff, & Sajda, 2006; Polich, 2007). According to Polich (2007), 

when people are required to use more attentional resources, they tend to show a decrease in P3a 

amplitude. This is also the case when a target to target interval (TTI) is shorter compared to a 

longer TTI (Polich, 2007). Results from the current study showing a decrease in amplitude 

coincide with this previous research; given that a rapidly presented AB paradigm and decrease in 

amplitude was seen across sessions for the short SOA, which has a shorter TTI than the long 

SOA. An increase in amplitude from this task might be the marker of cognitive decline rather 

than cognitive gains. These results also match other studies that did not use a rapid presentation 
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of stimuli. In O’Brien and colleagues (2013), P3b amplitudes were larger for the training group 

as compared to the control group. This may be due to the visual task search that was used. While 

the task was timed, and participants were asked to respond as quickly as possible, the TTI was 

much longer than if participants had been presented with an AB paradigm. Ultimately, it is still 

unknown as to why some researchers report an increase in ERP amplitude while others report a 

decrease in amplitude. 

 While measuring the amplitude of the P3a in older adults did yield important information 

for understanding cognition, other EEG components can be just as informative. Future studies 

might examine the latency of the P3a because it may provide significant information on the 

effects of cognition and training. Although latency has not been addressed much in this study, it 

can be a key factor in identifying perceptual and cognitive gains. Latency is the time at which the 

peak occurs, for example, the P3a typically peaks around 300 ms (Key et al., 2005). However, 

this time can vary by a couple hundred ms. Latency in the P300 component has been used to 

show how long it takes to detect and evaluate a stimulus, with shorter latencies showing 

increased cognitive performance (Polich, 2007). After seeing the effects of LACE training on 

P3a amplitude, it would be interesting to see if the latency of the P3a was affected as well. 

Future studies may also look into the amplitude of the N2 component as well. The N2 

peak is typically elicited by response inhibition, commonly seen with a Go No/Go task (Key et 

al., 2005). In association with the current study, this could be used to measure older adults’ 

ability to inhibit useless distractor sounds while trying to focus their attention on the AB 

paradigm target sounds. It might also be worth looking at the MMN component. In auditory 

stimuli, the MMN can be invoked by any stimuli that is different from the normal and is thought 
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to be representative of early preattentative memory, such as in echoic memory (Key et al., 2005). 

This could give insight into the early attention and how it changes after training. 

The ultimate goal of cognitive training studies is to see if the effects from training will 

transfer over to aspects in daily life. Although this study did not specifically test the effects from 

training in daily living situations, results suggest that older adults may benefit from the training 

for everyday cognitive performance. For example, improvements in the rapid recognition of 

words and sounds among distracting sounds may help individuals with their performance while 

driving. As previously mentioned, the loss of driving can lead to mental as well as physiological 

decline in older adults (Edwards et al., 2009; Fonda et al., 2001). Recognizing sounds from 

potential harmful situations could improve driving ability and increase the time an older adult 

driver has on the road. Results from this study and others that use similar methods can be used to 

better understand attention and cognition and to build a foundation from which future cognitive 

training programs are informed. Although further research must be conducted to explore the 

transferability of these results to the daily lives of older adults, the current study has shown 

support for the potential of cognitive training’s ability to reduce age related cognitive decline. 
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Appendix 

 

Word List for T2 in the AB Paradigm 

AIR 

ALL 

ART 

BEEF 

BOOK 

COOK 

CRY 

DAY 

DEAF 

DIME 

DITCH 

DOOR 

EAR 

EARTH 

EAST 

END 

FIST 

GO 

GOOD 

HALF 

HIT 

ILL 

KEY 

LOCK 

LOOK 

NEAT 

NEW 

NONE 

OWL 

RIP 

ROT 

TAPE 

TOOL 

TOY 

UP 

WALK 

WHAT 

WHIP 

WHITE 

WHO 

 

 


