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ABSTRACT

The goal of the current research project is the formulation of a method for the estima-

tion and modeling of additive stochastic processes with both linear- and cycle-type trend

components as well as a relatively robust noise component in the form of Levy processes.

Most of the research in stochastic processes tends to focus on cases where the process

is stationary, a condition that cannot be assumed for the model above due to the pres-

ence of the cyclical sub-component in the overall additive process. As such, we outline a

number of relevant theoretical and applied topics, such as stochastic processes and their

decomposition into sub-components, linear modeling techniques, optimal sampling, har-

monizable processes, dynamic linear models, Bayesian estimation and modeling, as well

as non-parametric inference, all en route to the final chapter where we formulate a pro-

tocol for the estimation of this model among the theories of large deviation functionals,

optimization, and Bayesian inference.
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CHAPTER 1:

THEORETICAL BACKGROUND

1.1 Introduction

The purpose of the current document is to provide a physical space for the author to write

and elaborate their ideas, notions, and findings related to the pursuit of an algorithm for

trend estimation using an optimal subset of a larger stochastic process. While the author

has taken the time and effort to make the contents of this document digestible by as

wide an audience as possible, it is believed that the reader will be best served if they

have at least a working knowledge of measure-theoretic probability, stochastic processes,

Bayesian estimation, and linear modeling; as well as a solid understanding of calculus

and algebra. There are a number of proofs in this document, meaning that the reader

should also have a relatively good understanding of logic itself, which is, in some ways,

the foundation of mathematics.

Chapter 1 is devoted to the theoretical definitions, findings, and results necessary to

(somewhat) fully understand the current research project in general. There, the reader

will find many common results, as well as some of the more obscure concepts that prove

useful in conjunction with the aims of this document.

Chapter 2 is devoted to the applications of the theories and results covered in Chapter

1, including some useful examples and more detailed information not directly related to

theory, such as specific examples of the more general concepts outlined in Chapter 1. At

the culmination of Chapter 2, the reader should be in a position to understand the aims

and goals of the current research project.

Chapter 3 is devoted to the formulation, understanding, and use of an algorithm

forming the primary purpose of this document in the first place. In other words, Chapters

1 and 2 exist to bolster our understanding of the concepts at play in Chapter 3. In this
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chapter, the reader will find the treatment of a few novel results for trend estimation in

non-stationary stochastic processes with cycle- and linear-type trends. Future research

is expected to fill in the gap between the purely theoretical results provided here and

what industry expects for general use in the form of numeric input-output protocols

programmed into a computer for the lay-analyst.

Let us begin our theoretical exploration of required concepts with stochastic processes,

which largely form the concept basis for the current project. To the uninformed reader

perhaps worried about the difficulty of understanding such a concept, begin by noting

that stochastic processes are, in many ways, just an extension to the idea of random

variables, which most undergraduates learn about to some degree during their studies.

1.2 Stochastic Processes

In the simplest sense, a stochastic process is a collection of random variables, possibly

infinite in number, having some important index, such as time or space, for example.

For our current purpose, let us suppose that our stochastic process is indexed by time,

taking values in a subset of non-negative real numbers, τ ⊆ R+ = [0,∞). If our subset,

τ , is countable (i.e., consists of some subset of the natural numbers, possibly even the

natural numbers themselves), then our process is said to be a discrete-time process or in

the context of the current study, a time series. In the event that the subset, τ , is not

a countable set, then we refer to the process as a continuous-time process. Of course,

one may assume that it is usually measurement accuracy that creates a time series (as

opposed to the process inherently being discrete), with most natural processes being

continuous in nature. Notwithstanding this point, there is much to gain from treatment

of both discrete- and continuous-time processes as separate concepts.

Since the reader may not be fully familiar with the concept of a random variable in

the strictest of senses, some definitions are in line here. Before diving into the definition

of a random variable, let us discuss some necessary and preliminary concepts, such as

measurability and probability spaces. Suppose that we have both a set, say X, and a

sigma-algebra defined on the set, a sigma-algebra (often presented as ”σ-algebra”) merely

2



being a collection of subsets (of X in this case) which includes the set itself, is closed

under both complements and countable unions. Under the aforementioned conditions, the

pair (X,ΣX) is called a measurable space (with ΣX representing the previously-discussed

collection of subsets of X). Now that we have some understanding of what a measurable

space is, we can move on to define the concept of a measurable function.

Suppose that we are given two measurable spaces, (X,ΣX) and (Y,ΣY ), with each

set, X and Y , having their own respective sigma-algebras, ΣX and ΣY . A measurable

function, f , is a mapping from X to Y , such that for every subset of ΣY , say E ⊆ ΣY ,

the inverse image of f (over E and denoted f−1(E)) is an element of ΣX . Stated slightly

more mathematically, we have that a function, f , is measurable if

f−1(E) := {x ∈ X|f(x) ∈ E} ∈ ΣX (1)

Moving forward from the concept of measurable spaces and measurable functions, we

now address the concept of a probability space in route to understanding, in a decently

strict sense, random variables. Suppose that we endow a measurable space, for example

(X,ΣX), with a measure, µ, such that the following conditions on µ are granted as true:

the measure is non-negative, meaning that for every E ∈ ΣX , we have that µ(E) ≥ 0; the

measure is equal to 0 over the empty set, a condition usually written as µ(∅) = 0; and

the measure is countably additive, meaning that for all countable collections of disjoint

subsets of ΣX , we have that

µ (∪∞i=1Ei) =
∞∑
i=1

µ(Ei) (2)

Now that we have given definition to measures, we are prepared to understand the

concept of a probability space. Suppose that we are given a sample space, which is merely

a collection of all possible events for a given experiment (i.e., a collection of all possible

outcomes of an experiment, the ”things” that can happen). Suppose that we denote this

sample space in the usual way: Ω. Once a sample space is given, we may form, choose,

or derive a σ-algebra for Ω, denoting it too in the usual way as F . Suppose, additionally,

3



that our currently defined space, (Ω,F), is measurable in the sense previously described.

Lastly, suppose that we endow this space with a measure, P , having certain conditions

for probabilistic use granted. Namely, we assume that the measure, P , maps F to the

set [0, 1]. We refer to such a measure as a probability measure. The triple, (Ω,F , P ), is

referred to as a probability space.

We are finally in a position to understand the concept of a random variable. To

wit, suppose that we are given a probability space, (Ω,F , P ), and a measurable space,

(E,ΣE), the latter representing the possible values and the collections of possible values

of the random variable to be defined. An (E,ΣE)-valued random variable is a measurable

function from Ω to E. Essentially, Ω represents the abstract events that can result from

a given experiment, be they numeric (e.g., the boxing match is concluded in less than 11

minutes) or character in nature (e.g., Boxer A beats Boxer B to win the match). The

random variable takes such information, which is not usually numeric inherently, and

provides us with a numeric measure of the event or events in consideration. In this way,

random variables provide us with a means to mathematically describe the world around

us, especially those parts of the world dealing in events that cannot be fully described

before they occur, namely probabilistic events.

Now that we have sufficient context to understand stochastic processes beyond a

definition only, let us venture to better understand certain aspects of stochastic processes

that are important for the current project. In other words, let us look at some properties

and results for stochastic processes relevant to the goals and aims of the current project.

Before venturing too heavily into the theory of stochastic processes without some concrete

examples of stochastic processes, let us look at some relevant examples.

1.2.1 Example 1. Wiener Process

Let Zt be a stochastic process, such that τ = [0,∞) and Zt ∈ R for each t ∈ τ . Suppose,

further, that we endow Zt with the following properties:

1. Initial Value Condition:

Z0 = 0

4



2. Independent Increments:

Zu − Zs is independent of Zr − Zq whenever q < r < s < u

3. Gaussian Increments:

Zt+u − Zt is distributed as N(0, u) when u ≥ 0

4. Continuity of Paths:

Zt is continuous in t

From Property 3, we have that Zt ∼ N(0, t), which is a useful property for our current

purpose. Since it will be fruitful to determine some information about the moments of

this process, let us do so now. From Property 3, we have that

E[Zt] = 0 (3)

and

V [Zt] = t (4)

Suppose that we are given two arbitrary times, s and t, and would like to determine

the covariance between Zs and Zt, whenever s ≤ t.

COV [Zs, Zt] = E[(Zs − E[Zs])(Zt − E[Zt])] (5)

= E[Zs · Zt] (6)

= E[Zs · (Zt − Zs + Zs)] (7)

= E[Zs · (Zt − Zs)] + E[Z2
s ] (8)

= 0 + s (9)

= s (10)

where the first equation is true by the definition of covariance, the second is true by the

expectation equation above, the third is true by substitution, the forth by factoring, the

fifth by the independent increment condition and the variance equation above. As such,
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the covariance between two (possibly different) points of a Wiener Process is equal to the

value of the minimum of the two times, which is, in this case, s, by the condition that

s ≤ t. In other words, the covariance between two points of a Wiener Process is equal to

the variance of the process at the lesser of the two points.

Now that we have some elementary statements about the Wiener Process, let us

explore a relatively vast extension of the concept, namely the Levy Process.

1.2.2 Example 2. Levy Process

Let Zt be a stochastic process, such that τ = [0,∞) and Zt ∈ R for each t ∈ τ . Suppose,

further, that we endow Zt with the following properties:

1. Initial Value Condition:

Z0 = 0 (Almost Surely)

2. Independent Increments:

Zu − Zs is independent of Zr − Zq whenever q < r < s < u

3. Stationary Increments:

Zt+u − Zt follows the same distribution as Zu when u ≥ 0

4. Continuity of Probability:

For any ε > 0 and t ∈ R+, limh→0 P (|Xt+h −Xt| > ε) = 0

where the phrase ”Almost Surely” (henceforth labeled as ”a.s.”) simply means that

P (Z0 = 0) = 1. In the parlance of probability theory, this statement means that the

probabilistic condition is true outside of a set of zero measure. In the event that Prop-

erty 2 is applied to a sequence of non-overlapping differences, we assume that the in-

crements are mutually independent (i.e., independent across all subsets of the included

increments). Once again, the continuity of probability condition ensures that the process

is only discontinuous on a set of measure equal to 0, which amounts to saying that we do

not expect the process to be discontinuous.

6



To tie the current example to the previous, note that whenever Zt−Zs ∼ N(0, t− s)

and s ≤ t, the Levy Process reduces to the Wiener Process, thus establishing that the

set of all Levy processes contains the set of all Wiener processes.

While closed-form moment equations are not always possible for the Levy Process,

we do have the following useful property whenever the Levy Process does have finite

moments:

E[Xn
t+s] =

n∑
k=0

(
n

k

)
E[Xk

t ]E[Xn−k
s ] (11)

which establishes a binomial identity between the moments of the process at t+s and the

moments of the process at the points, s and t, separately. This property will prove useful

in the pursuit of our current goals, especially in the longer-term study of the concepts.

1.2.3 Infinite Divisibility

Another property of Levy Processes that will prove useful for the current research is the

concept of infinite divisibility. A probability distribution, say F , is infinitely divisible if,

for every n ∈ N∞1 = {1, 2, · · · }, there exists n Independent and Identically Distributed

(iid) random variables (each represented here by Xni) such that

Zn =
n∑
i=1

Xni (12)

where this sum, Zn, has the same distribution, F .

If we suppose that Zt is a Levy Process, such that t ∈ [0,∞), and write Zt as the sum

of n increments, we have

Zt =
n∑
i=1

(Zit/n − Z(i−1)t/n) (13)

which indicates that every Levy Process is infinitely divisible, since each of the increments

in the sum above is iid by Properties 2 and 3 above. This is a very useful property for

our current aims and goals, as it is used throughout the remainder of this document.
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1.2.4 Levy-Khinchin Representation for Levy Processes

Let us turn next to a very useful result for Levy Processes, namely the Levy-Khinchin

Representation of a Levy Process, which should greatly assist the reader in understanding

Levy Processes in general. Let us begin by defining the Characteristic Function (CF) of

a random variable.

Definition 1.1 (Characteristic Function). Let Zt be a random variable for each fixed

value of t ∈ [0,∞) (i.e., let Zt be a stochastic process defined on non-negative real num-

bers). Then, the following function, mapping the real numbers to the complex numbers,

is known as the characteristic function of Zt

φZt(u) = E[eiuZt ] (14)

which is a function that fully determines the probability distribution of the random vari-

able upon which it is calculated, in this case Zt for each fixed value of t. In the case

where the random variable of interest can be represented as the sum of independent ran-

dom variables, such as the case where the distribution of the random variable is infinitely

divisible, the characteristic function of the sum of such random variables can then be

written as the product of the characteristic functions across each of the independent ran-

dom variables. This property of the characteristic function can easily be verified via the

following route (where Y =
∑n

i=1 Xi)

φY (u) = E[eiuY ] (15)

= E[eiu
∑n
i=1Xi ] (16)

= E[eiuX1eiuX2 · · · eiuXn ] (17)

=
n∏
i=1

E[eiuXi ] (18)

=
n∏
i=1

φXi(u) (19)

where line 1 makes use of the definition of the characteristic function, line 2 makes use of
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substitution, line 3 makes use of a very well-known property of the exponential function,

line 4 utilizes the property that the expectation over products of independent random

variables is equal to the product over each random variable’s expectation, and the final

line merely uses, once again, the definition of the characteristic function.

Now that the characteristic function has been defined, let us continue our treatment

of the Levy-Khinchin Representation of a Levy Process. Let us state the theorem, first,

and seek to understand its components, second.

Theorem 1.1 (Levy-Khinchin Representation). If Zt is a Levy Process defined on t ∈

[0,∞), then the characteristic function for Zt has the following representation

φZt(u) = E(etψ(u)) (20)

where

ψ(u) = ibu− 1

2
cu2 +

∫
R
(eiux − 1)v(dx)−

∫
|x|<1

(iux)v(dx) (21)

Proof.

Before venturing to prove this theorem, let us begin by describing the nature of the

form of ψ(u) above. First, let’s describe a Brownian Motion process with drift, which is

merely a process defined by

Bt = µt+ σZt (22)

where Zt is a Wiener Process as described previously. Working from the moments of the

Wiener Process, we note that

E[Bt] = E[µt+ σZt] (23)

= E[µt] + E[σZt] (24)

= µt+ σE[Zt] (25)

= µt (26)

where line 1 utilized substitution, line 2 uses the additive property of expectation, line
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3 uses the property that the expectation over a constant is equal to that constant, as

well as the property that E[aX] = aE[X]. Lastly, line 4 uses the zero-mean property of

the Wiener process. The form obtained indicates that the expected value of a Brownian

Motion process with drift is equal to some constant, here µ, multiplied by the given value

of time, t. Further, this indicates that the process drifts in time, which is expected, given

the definition of the process. Moving on, let’s address the variation of this process.

The variance of the process may be determined as follows:

V [Bt] = V [µt+ σZt] (27)

= V [σZt] (28)

= σ2V [Zt] (29)

= σ2t (30)

where the first line uses substitution, the second uses the property that V [a+X] = V [X]

whenever a is constant, the third uses the variance property that V [aX] = a2V [X], and

the final line uses the previously obtained result that the variance of a Wiener process,

say Zt is equal to t. From this result, we see that the variance of the Brownian Motion

process with drift, drifts in time according to the square of σ.

Given that linear combinations of Normally distributed random variables are, them-

selves, Normally distributed, we have (for each fixed value of time) that

Bt ∼ N(µt, σ2t) (31)

which implies that the characteristic function for this process is given by

φBt(u) = E(eiuBt) (32)

= eiuµt−
1
2
u2σ2t (33)

where the first line uses the definition of the characteristic function and line 2 uses the

form of the characteristic function for Normally distributed random variables. Since
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the characteristic function fully determines the probabilistic structure of a given random

variable, we see, by letting b = µt and c = σ2t, that the Levy Process (and more generally,

any process with an infinitely divisible distribution) is composed of the sum of a Brownian

Motion process with drift and two other as yet not described random variables. It is to

these latter two random variables that we turn our attention to next.

En route to describing the second random variable that makes up the Levy Process

according to the theorem above, let us describe the Compound Poisson Process, which is

a process with the following form

Zt =
Nt∑
i=1

Ui (34)

where Nt is a counting Poisson process (with rate λ), meaning that it takes values in the

non-negative integers and is non-decreasing in t. Such a Poisson process may be used

to model the number of arrivals up to and including time t, be they arrivals to a store,

technical service, or any other situation in which individual units or persons arrive. Ui is

the size or value associated with the ith arrival. The Ui’s are assumed to be independent

and identically distributed (with common distribution, say FUi), taking values in R.

Further, it is generally assumed that the Ui’s are independent of the underlying Poisson

process, Nt. The Ui’s may represent the amount of time a customer spends in a store,

the amount of money they spend, the amount of time in technical service queue, or any

other value that may be associated with the arrivals of a counting Poisson process.

Let s < t. Then, the increment Zt−Zs is equal to the sum of the Ui’s from i = Ns+1 to

i = Nt (by the definition above). Since Zt+h−Zs+h has the same distribution as Zt−Zs for

h ∈ N∞0 , the increments of the compound Poisson process are stationary. One can see that

these (increment) distributions are the same from the fact that both increments contain

the same number of iid random variables. Further, since the sums generated across

non-overlapping time intervals contain non-overlapping independent random variables,

namely the Ui’s, we have that the compound Poisson process has both independent and

stationary increments. Let us now turn to the moments of this process. Using the Law of

Total Expectation, we may obtain the mean of the process in the following way (letting
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E[Ui] = µ and V [Ui] = σ2 for all i)

E[Zt] = E[E[Zt|Nt]] (35)

= E[Ntµ] (36)

= µE[Nt] (37)

= µλt (38)

where line 1 uses the aforementioned law, line 2 uses the definition of expectation over

sums of independent and identically distributed random variables, line 3 uses the property

that E[aX] = aE[X] whenever a is constant, and line 4 uses the expectation form for a

Poisson process (namely, Nt). next, we move on to the variance of the compound Poisson

process. Using the Law of Total Variance, we have that

V [Zt] = E[V [Zt|Nt]] + V [E[Zt|Nt]] (39)

= E[σ2Nt] + V [µNt] (40)

= σ2λt+ µ2λt (41)

= (σ2 + µ2)λt (42)

where line 1 uses the mentioned law, line 2 uses the definitions of expectation and variance

over sums of independent and identically distributed random variables, line 3 uses the

expectation and variance forms for the Poisson process as well as the properties related

to constants, and line 4 is merely simplification of the result. Now, we seek to relate the

obtained moments to the characteristic function of the compound Poisson process on our

way to understanding the second random variable that makes up the Levy process.

Letting Zt represent a compound Poisson process, as described above, let us venture

to compute the characteristic function for this process. Working from the definition of
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the characteristic function, we have

φZt(u) = E(eiuZt) (43)

= E[E[eiuZt |Nt]] (44)

= E[E[eiu
∑Nt
i=1 Ui |Nt]] (45)

= E[φUi(u)Nt ] (46)

=
∞∑
k=0

φUi(u)k
(
λke−λ

k!

)
(47)

=
∞∑
k=0

(λφUi(u))ke−λφUi (u)eλ(φUi (u)−1)

k!
(48)

= eλ(φUi (u)−1)

∞∑
k=0

(λφUi(u))ke−λφUi (u)

k!
(49)

= eλ(φUi (u)−1) (50)

= eλ
∫
R(eius−1)dFUi (s) (51)

where line 1 uses the definition of the characteristic function, line 2 uses the Law of

Total Expectation, line 3 uses substitution, line 4 uses the property of the characteristic

function over sums of independent and identically distributed random variables, line 5

uses the expectation equation for functions of a Poisson random variable, line 6 utilizes a

collection of the terms as well as an equivalence of form, line 7 involves the factoring out of

a constant term with respect to k, line 8 uses the fact that the sum of a probability mass

function over its domain is equal to 1, while line 9 uses the definition of the characteristic

function.

Equating the final result above with the second random variable in the sum comprising

the decomposition of the Levy process, we have the following

∫
R
(eiux − 1)v(dx) = λ

∫
R
(eius − 1)dFUi(s) (52)
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which implies that (setting s = x)

v(dx) = λdFUi(x) (53)

= λfUi(x)dx (54)

where the final step is true if the distribution function for Ui is differentiable for all relevant

values of x, which is to say, all x ∈ R, given the nature of the integral from which the

terms involved come. Since v is commonly referred to as the Levy measure, we see that the

Levy measure has a scaled relationship with the differential of the distribution function of

the value distribution associated with the previously defined compound Poisson process.

Substituting the obtained form for the Levy measure, we have that the third random

variable in the sum comprising the Levy decomposition has the following form

∫
|x|<1

iuxv(dx) =

∫
|x|<1

iuxλfUi(x)dx (55)

= iuλ

∫
|x|<1

xfUi(x)dx (56)

which implies that the third random variable making up the sum has the form X =

λ
∫
|x|<1

xfUi(x)dx, which explicitly represents a scaled version of the expectation equation

for Ui over a subset of the real numbers whose absolute value is less than or equal to 1. As

such, this random variable is generally taken to represent the jumps in the Levy process

with small magnitude.

1.3 Decomposition of Stochastic Processes

Often, a stochastic process (more specifically, a time series) is decomposed into sub-

components, each having features that, once viewed collectively (e.g., as a sum or product

of the sub-components), are easier to study than the entire process. In other words, the

sub-components of an otherwise complex stochastic system, provide the researcher with

a means to understanding the overall process, which is often comprised of more easily

understood portions, referred to throughout this document as the components or sub-
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components of the overall stochastic process. For our current aims, we will refer to three

separate components which additively make up our overall stochastic process: linear

trend, cyclical trend, and noise.

For the purpose of the current research, suppose that we are given a stochastic process,

St, and would like to decompose this process into three separate components, Xt, Yt, and

Zt, representing the trend, oscillatory/cycle, and noise sub-components of the process,

respectively. The primary idea of decomposition in the context of a time series is that a

collection of separate processes does a reasonable job of providing context for the original

process without the need for more complex analytical procedures. It should be noted

that each sub-component is, in turn, itself a time series (or more generally, a stochastic

process). Decomposition is also quite useful for seasonally adjusting a time series, which

provides a clearer picture of the long-term trends of the process.

1.3.1 Trend Components

Generally, trend is seen as a, possibly non-linear, upward or downward propensity in a

stochastic process that is usually persistent and non-repeating (i.e., not repeating in the

same way as, say, a cycle component). The process of fitting an Ordinary Least-Squares

(O.L.S.) regression equation, which most elementary students of Statistics should be

familiar with, is an example trend estimation, where the overall upward and downward

trends within a given set of data are of primary concern, so much so that very strong

conditions are often placed on the random portions (i.e., noise components) of a given

process solely for the sake of obtaining an estimate of trend. Throughout the current

research, we assume that the trend sub-component is both deterministic and monotonic

in time, with other conditions being assumed where necessary. Let us recall next what it

means for the trend sub-component to be monotonic.

Definition 1.2 (Monotonic Function). Suppose that are given two arbitrary times, say s

and t, such that s ≤ t. Further, suppose that we are given a function, Xt : τ → R. Then,

our function, Xt, is said to be monotonically increasing whenever s ≤ t =⇒ Xs ≤ Xt.

That is, such a function has outputs which preserves the order of its inputs. If the order
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is reversed between inputs and outputs of the function, then the function is said to be

monotonically decreasing. In other words, a monotonically decreasing function is one

such that s ≤ t =⇒ Xs ≥ Xt. Note that the presence of equality in this definition

implies that a monotonic function need not be one-to-one. In other words, the function

may not have an inverse.

1.3.2 Cycle Components

Seeing as we are using the term cycle to mean a sub-component which is a deterministic

Fourier series in time, we may consider this sub-component as actually representing the

seasonal portions of a decomposition, since a cycle component is generally viewed as a

process with repeating but non-periodic behavior, while a seasonal component is generally

viewed as a process with both repeating and periodic behavior, the latter being well in

line with the concept of a Fourier series. One cannot fully appreciate the utility of the

Fourier series concept without it first being described, so let us describe such a process.

Definition 1.3 (Fourier Series). Let Yt represent the cycle sub-component of our stochas-

tic process, as described in the previous paragraph. Let P represent the period of this

sub-component, such that P is equal to the smallest value of T such that Yt = Yt+T for

every t. Then, by the definition of a Fourier series, we have that

Yt =
a0

2
+
∞∑
n=1

an cos

(
nπt

P

)
+
∞∑
n=1

bn sin

(
nπt

P

)
(57)

with the values an and bn referred to as the Fourier coefficients of the process, Yt, such

that

an =
2

P

∫
P

Yt cos

(
2π

P
nt

)
dt (58)

and

bn =
2

P

∫
P

Yt sin

(
2π

P
nt

)
dt (59)

It may be noted here that a Fourier series is a process that can be represented as an

infinite sum of sines and cosines, which well justifies our use of this sub-component to
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capture the periodic (i.e., sinusoidal) behavior of our overall process, St. Working with

such processes usually involves the calculation of the coefficients first, through integration,

as well as making use of the even or odd behavior of the process, Yt. Generally, statistical

analysts will assume, based on the nature of the data or the use of a spectral analysis

procedure such as the periodogram (which is based on the concept of a discrete Fourier

transform), that the period, P is known. However, such an assumption generally requires

certain strong assumptions about the nature of the cycles in the data. For instance,

it is possible that hierarchical/nested cycles exist within the data which have differing

periods. It is also possible that the period itself changes over time. Throughout this

document, we merely assume that there exists a common period, P , for the Fourier/cycle

sub-component of the overall process. We do not assume that this quantity is known.

1.3.3 Noise Components

The final sub-component in consideration is the noise component, which, unlike the pre-

vious two components, trend and cycle, is non-deterministic, meaning that we cannot

determine it’s value before that value has occurred. We will assume throughout this re-

search that the noise sub-component of St, denoted Zt, is either a Levy Process, Wiener

Process, or a mixture of the two. It is this sub-component that drives the randomness

of the process, allowing us to even use the term stochastic process in the first place. The

noise sub-component is responsible for the fluctuations in the process not described by

either the trend or the cycle sub-components. Generally, noise components have their

structure assumed (or at the very least verified approximately using a given set of data),

while the other components (i.e., trend and cycle) are estimated through the use of some

statistical modeling procedure.

As a final commentary on the relation between the sub-components of a stochastic

process, recall that trend describes the long-term non-periodic propensities of the process,

while the cycle component describes the repeating periodic behavior and the noise com-

ponent captures the randomness of the process in a structured fashion (i.e., that which is

left over or residual from what was otherwise expected based on trend and cycles alone).
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1.4 Linear Regression

One of the primary aims of the current research is to generate a procedure that isolates

those points in time of a given stochastic process where trend (in our case, both linear-

and cycle-type trend) may be estimated in a simple yet elegant way. In other words, we

aim to use simpler procedures available to most undergraduates willing to stay awake long

enough, to estimate trend, which further allow us to better understand the overall process

itself. Linear regression (as an algorithm) generally seeks to determine the coefficient

values (i.e., intercept of the line and slope(s) of the line) that minimizes some quantity

of interest, such as the sum of squared residuals; a residual merely being a measure of

the difference between a value observed in the data and the value that was expected

according to the resulting model, the linear regression.

Let us explore linear regression generally before delving into the concept’s specific

manifestations. To this end, suppose that are given a (column) vector of outputs,

y =



y1

y2,

...

yn


(60)

Let us suppose also that we are given a matrix of inputs, such that this matrix has

rows that represent observations on an experimental unit (e.g., a participant, a business,

a day, etc.) and columns that represent observations on a sequence of random vectors

(outside of the first column, which is set to 1 for all observations, representing the constant

or intercept effect). Mathematically, we write this matrix as (where X is not the same

as Xt described above)

X =



1 x11 x12 · · · x1p

1 x21 x22 · · · x2p

...
...

...
. . .

...

1 xn1 xn2 · · · xnp


(61)
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Generally, the matrix X, as described above, is known as the design matrix for a

given regression problem. Moving forward, we define what are known as the regression

coefficients, which are the values to be fitted (i.e., obtained) by the linear regression

procedure. Let us represent these regression coefficients in the form of a vector that will

be pre-multiplied by the design matrix to form the linear relationship between the inputs

and outputs of our regression problem. Namely, we have that

β =



β0

β1

β2

...

βp


(62)

and

y = Xβ + ε (63)

where ε is a vector of noise components of equivalent length to our output vector,

which in this case is represented by the natural number n. It is in this error term that

we venture from the general to the specific, as the assumptions necessary in a given

linear regression problem largely come from the nature of the noise components. Some

of the assumptions necessary for linear regression in general (i.e., those not borne out

of the conditions placed on the noise components) include assuming that the inputs are

observed without error (a condition largely assumed more than manifested in reality), the

relationship between the inputs and the outputs is linear (hence why we call the process

linear regression), and that the design matrix be of full rank. The design matrix being of

full rank means that we do not expect any of the input variables (i.e., columns 2 through p

of the design matrix) to be linearly related to any of the other input variables, a condition

which often ensures that our interpretation of the individual regression coefficients is not

influenced by any of the other coefficients in the same vector. In other words, we would

like to assume that our inputs are largely independent of one another for the sake of
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descriptive ease. In the event that one (or more) of our input vectors is linearly related

to any of the others, we have a condition known as multicollinearity, which can be a real

pain for a statistical analyst, as it muddles the information usually sought after most in

the linear regression analysis, especially in an applied setting, where many clients cannot

easily understand such a limitation.

Other assumptions which are borne about by the nature of the noise component

vector, include the assumption of homoscedasticity, which means that the variation among

the errors is constant across the observed values of the inputs vectors. In other words,

it is often (but not always) assumed that the variability of the noise components is not

a function of the input variables. Additionally, it is often (but, once again, not always)

assumed that each noise component (i.e., each row of the noise component vector) is

independent of each other noise component. Generally, the assumptions outlined above

(or, more specifically, their lack of justification in a given regression problem) can create a

need for an entirely different analysis procedure, such as the need for non-linear regression,

more robust errors, or the use of regularization, to name a few. As such, the assumptions

of a given model should be evaluated extensively to determine if the model being used is

in fact correct for a given set of data in the first place. Before setting certain conditions

on the errors for the sake of a more thorough understanding and exploration of linear

regression, let us explore some important results in linear regression theory, namely the

Gauss Markov Theorem and its extension to correlated errors, the method known as

Generalized Least Squares.

1.4.1 The Gauss-Markov Theorem

In preliminary summation of concept, the Gauss-Markov Theorem states that the OLS

estimate, β̂ = (X ′X)−1X ′y (to be explained below), is the Best Linear Unbiased Esti-

mator (BLUE) of β, which amounts to saying that this estimate equals the parameter

(vector) it is estimating in expectation and has the lowest mean squared error among all

such unbiased estimators of the same parameter. Now, let us explore this result in more

detail.
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Suppose, as before, that we have a vector of outputs, y ∈ Rn, a matrix of non-random

inputs, X ∈ Rn×k, a vector of noise components that induce randomness on the outputs,

ε ∈ Rn, and a non-random but unobservable parameter vector to be estimated via the

linear regression procedure, β ∈ Rk. Suppose, also, that these separate elements of the

problem are related via the following equation:

y = Xβ + ε (64)

As mentioned above, the assumptions that are made on the noise components signif-

icantly affect the nature of the regression procedure, often ruling out simpler procedures

for more complicated yet more accurate procedures. For the sake of the current theorem,

let us make the following assumptions on the moments of the errors of the model:

� E[ε|X] = 0

� V [ε|X] = σ2In

These assumptions amount to saying that each of the noise components has a mean

of zero, that each of the noise components is uncorrelated with each other, and that the

variance of each component is equal to the same value, namely σ2.

Suppose that the coefficient vector, β̂, is a linear estimator of β. Then, we have that

β̂ = C(X)y (65)

where the matrix C ∈ Rk×n is granted dependence on the design matrix, X, but not on

the parameter vector being estimated, β. Since the theorem is concerned with the best

linear unbiased estimator, let us assume that

E[β̂|X] = E[β̂] = β (66)

where the lack of dependence of this unbiasedness on the design matrix has been explicitly

stated. To establish that the estimator of β given at the beginning of this section is in
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fact the best linear unbiased estimator, we must establish that this estimate minimizes

the following quantity (for all choices of λ ∈ Rk)

V [λ′β̂] = E[(λ′β̂ − E(λ′β̂))2] (67)

= E[(λ′(β̂ − β))2] (68)

which amounts to saying that the best linear unbiased estimator is one that not only

minimizes the variance of the estimate β̂ for all choices of λ but also (equivalently, due

to unbiasedness) minimizes the mean squared error of the estimation. In this way, such

an estimator is known to be the lowest variance estimator among all similarly defined

estimators, making it the best estimator according to this lowest variance/mean squared

error criterion. Note that λ′ represents the matrix/vector transpose of λ.

To establish that the OLS estimator β̂ = (X ′X)−1X ′y is in fact the best such

estimator according to the criteria above, let us define some other unbiased estimator to

be compared to the given one. More specifically, let

β̌ = C1(X)y = ((X ′X)−1X ′ +D)y (69)

where C1 ∈ Rk×n has been provided a subscript to differentiate it from the more general

C(X) previously used. Additionally, D ∈ Rk×n.

Since this estimator, different from the one stated to be optimal, must be unbiased,

let us determine the nature of the (non-random) matrix D.

E[β̌] = E[((X ′X)−1X ′ +D)y] (70)

= E[((X ′X)−1X ′ +D)(Xβ + ε)] (71)

= E[((X ′X)−1X ′ +D)(Xβ)] + E[((X ′X)−1X ′ +D)(ε)] (72)

= E[((X ′X)−1X ′ +D)(Xβ)] (73)

= E[((X ′X)−1X ′(Xβ)] + E[(D)(Xβ)] (74)

= (Ik +DX)β (75)
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which implies that the matrix product DX must equal the matrix 0k×n for the estimator

β̌ to be unbiased. Step 1 utilized the definition of the estimator given, step 2 utilized the

relationship given for y (i.e., the linear model form), step 3 uses factoring of the terms,

step 4 uses the fact that E[ε] = 0n and ((X ′X)−1X ′ + D) is constant/non-random.

Step 5 uses, once again, factoring, while the final step is merely a simplification of the

previous step that uses the property A−1A = I, where the identity matrix has the same

dimension as the product of the inverse of A with A. In the current result, the identity

matrix has dimension k × k, hence the subscript k.

Now, we establish the minimum variance property of the OLS estimate (against the

arbitrary but different estimator β̌)

V [β̌] = V [C1(X)y] (76)

= C1(X)V [y]C ′1(X) (77)

= C1(X)(σ2In)C ′1(X) (78)

= σ2((X ′X)−1X ′ +D)((X ′X)−1X ′ +D)′ (79)

= σ2((X ′X)−1X ′ +D)(X(X ′X)−1 +D′) (80)

= σ2((X ′X)−1 +DX(X ′X)−1 + (X ′X)−1(DX)′ +DD′) (81)

= σ2(X ′X)−1 + σ2DD′ (82)

= V [β̂] + σ2DD′ (83)

where step 1 uses the definition of the alternative estimator, step 2 uses the variance

equation for the pre-multiplication of a random vector by a non-random matrix, step

3 uses the variance equation of the errors (since y receives all of its randomness from

the errors of the model), step 4 uses the definition of C1(X), step 5 uses a well-known

property of the matrix transpose, step 6 utilizes factoring, step 7 uses the constraint

imposed by the need for unbiasedness (determined in the expectation result above), and

the final step involves the substitution of the variance equation for the best estimator,
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which is derived as follows:

V [β̂] = V [(X ′X)−1X ′y] (84)

= ((X ′X)−1X ′)V [y]((X ′X)−1X ′)′ (85)

= ((X ′X)−1X ′)(σ2In)((X ′X)−1X ′)′ (86)

= σ2((X ′X)−1X ′)(X(X ′X)−1) (87)

= σ2(X ′X)−1 (88)

Thus, it has been established that the estimator, here referred to by β̂, is in fact the

best linear unbiased estimator among all similarly defined estimators. Stated differently,

it has been established that the OLS estimator is BLUE. Of course, this result, while

quite general in its own right, is limited by the assumptions made on the errors of the

model. We now relax these assumptions in line with the needs of the current research by

presenting and detailing the Generalized Least Squares procedure in the following section.

1.4.2 Generalized Least Squares

In order for the Gauss-Markov Theorem to be valid for a given problem, as stated above,

the errors of our model must have a mean of zero (i.e., E[ε] = 0) and must be spherical,

which is to say that the errors must be uncorrelated with each having the same (finite)

variance (i.e., V [ε] = σ2In). It should be noted, of course, that these conditions do not

include a need for the errors to be Normally distributed or independent and identically

distributed. However, if one wishes to apply the theorem to Wiener process type errors

or any other error process having correlation between the errors, then the assumptions

of the model will not be met and any resulting OLS regression estimates may not be the

best linear unbiased estimates. Fortunately, the theorem was extended by Aitken in his

1936 work ”On Least-Squares and Linear Combinations of Observations” to cases where

the errors have some degree of correlation between them. Let us now explore Aitken’s

result in more detail.

Suppose that the output vector, y, the design matrix, X, and the regression coeffi-
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cients, β, are as described in the previous section, and that our wish to estimate β with

the regression model is the same as in that section. Additionally, we assume, as we did

before, that the inputs/design matrix and outputs are related via the following linear

model

y = Xβ + ε (89)

where ε represents a vector of noise components having the following structure

� E[ε|X] = 0

� V [ε|X] = Σ

where Σ is assumed known and non-singular (as it would be in the case of the Wiener

process, where Σij = E[wtiwtj ] = min(ti, tj)).

Under these conditions, we obtain an estimate of the coefficient vector, β, by minimiz-

ing the square of the Mahalanobis distance between the points of the output vector (y)

and the points expected by the linear regression (Xβ) while accounting for the covariance

structure of the model (namely, the nature of Σ). Thus,

β̂ = arg min
β

(y −Xβ)′Σ−1(y −Xβ) (90)

Instead of attempting to prove the optimality of this estimate from this point, let us

first observe that, since the covariance matrix, Σ, is both symmetric and positive-definite,

it has a unique Cholesky decomposition Σ = LL′. Then, we may write an updated model

as follows:

L−1y = L−1Xβ +L−1ε (91)

where the invertibility of L is implied by the invertibility of the covariance matrix Σ.

Now, for this updated model, we may write the sum of squared residuals (noting

that E[L−1ε] = L−1E[ε] = 0) in the manner displayed at the top of the following page,

where step 1 uses factoring, step 2 uses association as well as a common property of the

transpose, step 3 utilizes known relationships between transposes and inverses, and the

25



final step makes use of the relationship between the Cholesky decomposition of Σ and L.

(L−1y −L−1Xβ)′(L−1y −L−1Xβ) = (L−1(y −Xβ))′(L−1(y −Xβ)) (92)

= (y −Xβ)′(L−1)′(L−1)(y −Xβ) (93)

= (y −Xβ)′(LL′)−1(y −Xβ) (94)

= (y −Xβ)′Σ−1(y −Xβ) (95)

As mentioned above, two relevant properties of matrices have been used: (AB)′ =

B′A′ and (A′)−1 = (A−1)′. Thus, minimizing the sum of squared residuals for the

updated model is equivalent to minimizing the squared Mahalanobis distance for the

original model. Exploring the first two moments of the errors of this updated model, we

have

E[L−1ε|X] = L−1E[ε] (96)

= 0 (97)

and

V [L−1ε|X] = (L−1)V [ε|X](L−1)′ (98)

= (L−1)Σ(L−1)′ (99)

= (L−1)(LL′)(L−1)′ (100)

= (L−1L)(L′(L′)−1) (101)

= In (102)

which shows that the updated model meets the assumptions of the Gauss-Markov The-

orem, specifically the zero mean condition for the noise vector of the process and the

sphericity condition for the variance structure of the noise vector. As such, the best lin-

ear unbiased estimate of β is given by the following, where yupdated = L−1y, Xupdated =
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L−1X, and εupdated = L−1ε:

β̂ = (X ′updatedXupdated)
−1X ′updatedyupdated (103)

= ((L−1X)′L−1X)−1(L−1X)′(L−1y) (104)

= ((X)′(L−1)′L−1X)−1(X)′(L−1)′(L−1y) (105)

= ((X)′(LL′)−1X)−1(X)′(LL′)−1y) (106)

= (X ′Σ−1X)−1(X ′Σ−1)y (107)

Note that step 1 uses the form of the best linear unbiased estimator of β given in the

Gauss-Markov result of the previous section, step 2 deals with substitution for the sake

of relating the updated model to the original model, steps 3 and 4 utilize the previously-

mentioned transposition and inverse properties for suitable matrices, and the final step

involves the substitution of the covariance matrix based on its Cholesky decomposition.

Thus, it has been established that the Generalized Least Squares form of regression, as

presented here, provides a best linear unbiased estimator for the extension of the Gauss-

Markov Theorem involving correlated random errors. To establish the unbiased nature

of this result, let us compute the expected value of the given optimal estimator,

E[β̂|X] = E[(X ′Σ−1X)−1(X ′Σ−1)y|X] (108)

= (X ′Σ−1X)−1(X ′Σ−1)E[y|X] (109)

= (X ′Σ−1X)−1(X ′Σ−1X)β (110)

= β (111)

where the fact that X and Σ are non-random has been used, as well substitution. Thus,

it has been established that the Generalized Least Square estimator is unbiased. By the

Gauss-Markov Theorem, we also know that this estimator has the lowest variance of all

such unbiased estimators. For the sake of being thorough, let us compute the variance of
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this estimator:

V [β̂|X] = V [(X ′Σ−1X)−1(X ′Σ−1)y|X] (112)

= ((X ′Σ−1X)−1X ′Σ−1)V [y|X]((X ′Σ−1X)−1X ′Σ−1)′ (113)

= ((X ′Σ−1X)−1X ′Σ−1)V [ε|X]((X ′Σ−1X)−1X ′Σ−1)′ (114)

= ((X ′Σ−1X)−1X ′Σ−1)Σ((X ′Σ−1X)−1X ′Σ−1)′ (115)

= (X ′Σ−1X)−1 (116)

where step 1 uses substitution, step 2 uses the property V [Ay] = AV [y]A′, step 3 uses

the fact that the output vector receives all of its randomness from the vector of noise

components, step 4 uses the form given for the variance/covariance of the errors, and

step 5 involves the use of the transpose/inverse properties for suitable matrices already

mentioned and used several times within this document previously.

While the Gauss-Markov Theorem result is useful for regression problems involving a

linear trend component and uncorrelated noise components each having the same finite

variance, it is not readily equipped to handle models involving more complicated error

structures as well as situations involving periodicity in signal. Further, the extended form

of Ordinary Least Squares known as Generalized Least Squares, while being equipped

to handle correlated errors, does not handle situations with non-linear trend, such as

models that have a periodic component. These limitations directly indicate the need for

new modeling and estimation protocols for stochastic processes with both linear- and

cycle-type trend in the presence of general noise structures, namely Levy process noise.

To better understand the exact nature of these stated limitations, let us explore linear

regression with Gaussian and non-Gaussian errors through examples and exposition.

1.4.3 Linear Regression with Gaussian Errors

Let us begin this section with the simplest and most well-known (and most ubiquitously

taught) linear regression procedure, namely Ordinary Least-Squares (O.L.S.) regression.

This elementary procedure seeks to determine the values of the regression coefficient
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vector by minimizing the sum of squared errors. More specifically, we seek to minimize

the quantity

SSE(β) = ||y −Xβ||2 (117)

which amounts to saying that we wish to minimize the vertical distance between our

observed output values, y, and what is expected (or predicted) based on the linear re-

gression model, ŷ := E[y] = Xβ. Note that we refer to the quantity y− ŷ as the residual

vector. The residual vector provides us with information about how well (or not-so-well)

the chosen model conforms to the nature of the data. The larger the residual for a given

data point, the further that point is from what is expected of it based on the chosen

model. This is why residuals form the computational basis for many of the modeling

protocols in statistical theory: they numerically indicate how wrong or right we are in

our model choices. Let us now continue our treatment of linear regression with Gaussian

noise.

Differentiating the sum of squares equation above (with respect to the vector β),

we find that the values of the regression coefficient vector may be estimated using the

following equation

β̂ = (X ′X)−1X ′y (118)

which directly places an invertibility/rank condition on the design matrix (as discussed

previously). Note that X ′ is the transpose of X, meaning that X ′ is a matrix whose rows

are the columns of X and whose columns are the rows of X. Since the nature of a given

regression procedure depends almost entirely on the conditions or assumptions we place

on its parts, let us explore what is typically assumed in an O.L.S. regression context.

In general, we must assume that our regression model is correctly specified, which

amounts to saying that we must assume that the relationship between our given inputs

and outputs actually follows a linear model. In the context of O.L.S., we must assume that

the expected value of the noise component vector conditioned on the design matrix has
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a value of zero: E[ε|X] = 0. By the Law of Total Expectation (i.e., E(E[ε|X]) = E[ε]),

this condition further implies that E[ε] = 0. Consistent with what has been mentioned

previously, we must also assume that the design matrix is of full rank (almost surely).

We must assume that the noise vector is Spherical, meaning that V [ε|X] = σ2In. This

latter condition implies that the spread/variation in ε is the same across the various

values of the design matrix, X, and that the noise components are uncorrelated with one

another. Finally, for certain properties of the O.L.S. (as most know it) to be true, we

usually assume that the noise components are Normally distributed when conditioned on

the design matrix: ε|X ∼ N(0, σ2In).

Under the conditions and assumptions outlined above, we may determine certain

distributional properties of the estimated/expected regression coefficient vector, β̂, which

will help us to understand the true nature of O.L.S. regression. To this end, we have the

following derivation proof, which has largely been presented elsewhere in this chapter.

Theorem 1.2. If the assumptions outlined above for O.L.S. are valid, then

β̂ ∼ N(β, σ2(X ′X)−1)

Proof. Let us begin by showing that β̂ is an unbiased estimator of β. In other words, let

us show that E[β̂] = β.

E[β̂] = E[(X ′X)−1X ′y] (119)

= (X ′X)−1X ′E[y] (120)

= (X ′X)−1X ′Xβ (121)

= β (122)

where line 2 made use of the fact that the design matrix is assumed fixed/constant, line

3 made use of the distributional properties of the noise vector, and line 4 made use of the

unity definition for matrices and their inverses. Next, let us establish the variance of the
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estimated coefficient vector:

V [β̂] = V [(X ′X)−1X ′y] (123)

= V [(X ′X)−1X ′(Xβ + ε)] (124)

= V [β + (X ′X)−1X ′ε] (125)

= V [(X ′X)−1X ′ε] (126)

= (X ′X)−1X ′V [ε]((X ′X)−1X ′)′ (127)

= (X ′X)−1X ′(σ2In)((X ′X)−1X ′)′ (128)

= σ2(X ′X)−1X ′X(X ′X)−1 (129)

= σ2(X ′X)−1 (130)

where line 2 made use of the definition of y, line 3 made use of unity property for

matrices and their inverses, line 4 made use of the variance property V [a + x] = V [x]

whenever a is constant, as β is in the current proof, line 5 made use of the property

V [AX] = AV [X]A′, line 6 made use of the assumptions placed on the noise vector

variance, and finally, line 7 made use, once again, of the unity property for matrices.

Thus, the expected value and variance of β have been established. The Normality of β̂

can easily be established from the Normality of ε, which induces all of the randomness

present in the O.L.S. procedure (according to the assumptions of the procedure).

In a more general context, we could take the phrase Linear Regression with Gaussian

Errors to mean the following model:

y = Xβ + ε (131)

ε ∼ N(µ,Σ) (132)

which is, perhaps, the most general form for the phrase (if fewer assumptions are placed

on the moments of the noise vector). However, Linear Regression with Gaussian Errors is

usually taken as synonymous with Ordinary Least-Squares Regression. If only for the sake
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of mathematical humoring and exploration, let us explore the nature of the coefficient

vector under these more general conditions. Let us, still, assume that X is constant

and full rank in the manner previously described. Let us also assume that the model is

correctly specified for a given problem.

Beginning with the goal of minimizing the same objective function as before, namely

the sum of squared errors, we obtain the following

∂

∂β
SSE(β) =

∂

∂β
||y −Xβ||2 (133)

=
∂

∂β
[(y −Xβ)′(y −Xβ)] (134)

=
∂

∂β
[(y′ − (Xβ)′)(y −Xβ)] (135)

=
∂

∂β
[y′y + (Xβ)′(Xβ)− y′(Xβ)− (Xβ)′y] (136)

= 2(X ′X)β − 2X ′y (137)

Setting this final quantity to zero, for the sake of minimization, we obtain

(X ′X)β = X ′y (138)

which implies that we should set β̂ = (X ′X)−1X ′y to minimize the aforementioned

objective function. It should be obvious from the quadratic nature of the objective

function, that setting the partial derivative (with respect to β) equal to zero does in fact

minimize the function, as opposed to maximizing it. Further, it has been established

that the optimal value β̂ is not influenced by our more general assumptions on the noise

vector, since its value is the same as what was previously determined.

Continuing with the more general assumptions on the noise vector outlined above,

we seek to determine the distributional properties of the regression coefficient vector, β̂.

This includes the calculation of the mean and variance of the regression coefficient vector

for this more general model. Here, we find that allowing the noise vector to have a non-

zero mean induces biasedness on the expected value of the coefficient estimate vector.

We also note that the variance of the estimate vector, while not having any additional
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dependencies, does become more complicated than what was seen in any of the cases

outlined so far. Let us compute the mean and variance now.

E[β̂] = E[(X ′X)−1X ′y] (139)

= (X ′X)−1X ′E[y] (140)

= (X ′X)−1X ′E[Xβ + ε] (141)

= (X ′X)−1X ′(Xβ + µε) (142)

= β + (X ′X)−1X ′µε (143)

which establishes that, in the event that the mean of the noise vector is non-zero, we

induce bias on the estimate of the regression coefficient vector, with the bias being equal

to (X ′X)−1X ′µε (i.e., the bias is a function of both the design matrix and the expected

value of the noise vector).

Continuing our calculations for the variance of the estimate, we obtain the following

equivalences.

V [β̂] = V [(X ′X)−1X ′y] (144)

= V [(X ′X)−1X ′(Xβ + ε)] (145)

= V [β + (X ′X)−1X ′ε] (146)

= V [(X ′X)−1X ′ε] (147)

= (X ′X)−1X ′V [ε]((X ′X)−1X ′)′ (148)

= (X ′X)−1X ′(Σε)((X
′X)−1X ′)′ (149)

Note that in this formulation, the noise vector has not been assumed spherical, the

noise components have not been assumed independent, nor have we assumed that the

noise vector has a zero mean. Finally, since linear combinations of Normally distributed

random vectors are also themselves Normally distributed, we have established the follow-
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ing property (whenever ε ∼ N(µε,Σε)):

β̂ ∼ N(β + (X ′X)−1X ′µε, (X
′X)−1X ′Σε((X

′X)−1X ′)′) (150)

Now that we have had a look at linear regression with Gaussian noise, let us look at

several variations of this overall concept. To guide this discussion, let us focus on the

assumptions for O.L.S. regression and how our model(s) must change to accommodate

more flexible circumstances. In the event that our model is not correctly specified (i.e.,

we are attempting to use a linear regression to model a non-linear phenomenon), we

will have to consider non-linear models, which will depend heavily on the nature of the

non-linearity in the data. In the event that some or all of our input variables, which are

manifested in the design matrix, are correlated with the noise components, our estimates

(i.e., β̂) become invalid, as we have not modeled this relationship between inputs and

noise. In some cases, a rank-deficient design matrix may completely prevent us from

obtaining estimates, such as for the case when (XTX) is not invertible, or may create

a need for us to use a different type of regression, such as Ridge Regression. One of the

current authors has had to employ ridge regression in a consulting project where most

(if not all) of the inputs were heavily correlated with one another.

Continuing the discussion of generalities as they related to linear regression with Gaus-

sian noise, let’s look at the sphericity condition often imposed on the noise components.

When the noise components of our model are heteroscedastic (i.e., they are inconsistent

across the values of our design matrix), we can usually employ Weighted Least-Squares,

which amounts to saying that we can adjust the sum of squared errors by the inverse

of the residual variance for each noise component. Additionally, one may wish to use a

more robust structure for the noise components to account for the lack of consistency

among them, a practice often used in economic research (based on personal experience of

the author). When our noise components are correlated, we may wish to use Generalized

Least-Squares. The final assumption to be discussed more generally is the relaxing of the

condition of Normality for the noise component vector distribution. This, is the point of

the following section.
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1.4.4 Linear Regression with Non-Gaussian Errors

Often, the noise component vector of our model cannot be Normally distributed, such

as in cases when our output vector is nominal, ordinal, or some other measurement type

that cannot be Normally distributed in the first place. Recall that we do not usually

place our distributional assumptions on our output vector, but we do place them on our

noise vector, which in turn, allows us to model the relationship(s) between our inputs and

outputs. One of the most popular procedures for modeling input/output relationships

in the presence of non-Gaussian noise is the Generalized Linear Model (G.L.M.). Let us

begin with a formulation of this model.

Suppose that we are given an output vector, y and a design matrix, X, which houses

the input variable information for our problem. Suppose that we relate our inputs and

outputs using what is often referred to as a link function:

E[y|X] = µ(η) = g−1(Xβ) (151)

where g is such that its inverse exists. This formulation being more general than the

O.L.S. case should be obvious to the reader. Our output vector, y is presumed to be

generated by an exponential family distribution, which includes a wide array of distribu-

tions, such as the Normal, Exponential, Chi-Squared, Bernoulli, and Poisson, to name

a few. The link function chosen for a given problem depends heavily on ones choice for

the (exponential family) probability distribution. The term Xβ is known as the linear

predictor and is usually denoted by η. Let us look at some special cases of the G.L.M.

model.

1.4.5 Example 1. Linear Regression with Gaussian Errors

Suppose that we let y ∼ N(η, σ2In) and y = µ(η) + ε = η + ε (i.e., the assumed

form for O.L.S. regression). In this case, g is an identity function, E[y|X] = Xβ, and

V [y|X] = σ2In.
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1.4.6 Example 2. Binary Logistic Regression

Suppose that each element of our output vector, y, follows a Bernoulli distribution:

yi ∼ Bernoulli(p, pq), such that the probability of success is the same for each yi and

that the yi’s are independent of one another, each having variance p · q, where q = 1− p.

In this case, we have the following equivalences:

ηi = (Xβ)i = g(µi) = ln

(
µi

1− µi

)
(152)

where our link function has been set to the familiar Logit function, a function useful for

mapping the set (0, 1) into the real numbers. Note that, being Bernoulli, our output

vector will consist of a sequence of 0’s and 1’s, where a value of 1 is generally viewed as a

success (i.e., a value representing the presence of some characteristic, such as a smoker,

a win in a baseball game, an adopter of some technology, etc.). Under this formulation,

we may write our mean function, µi in the following manner

µi =
1

1 + exp (−Xβ)
(153)

which expresses nicely how the inputs are mapped to the outputs using an S-curve.

1.4.7 Example 3. Poisson Regression

Suppose that our output vector, y, consists of a sequence of non-negative integers (i.e.,

yi ∈ {0, 1, 2, 3, . . .} for each i ∈ {1, 2, . . . , n}), each representing the number of occurrences

in a fixed span of time or space. This being a typical situation for the use of the Poisson

distribution, let us suppose that yi ∼ Poisson(λ, λ), such that λ ∈ (0,∞). Under this

scheme, one often used link function is the natural log. The following equivalences reflect

this choice.

ηi = (Xβ)i = g(µi) = ln(µi) (154)

In an applied setting, an analyst using Poisson regression should make sure that each
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yi is not influenced by the value of any other yi, but is instead (possibly) influenced by

the inputs of the model, reflected in the design matrix. In the case where the data of

a given problem do not meet the parametric requirement of the Poisson distribution,

namely that the mean and the variance are equal, one may wish to instead use Negative

Binomial regression, which is, in some ways, an extension of Poisson regression where

overdispersion is allowed (i.e., the mean and variance are not equal).

More examples of linear regression with non-Gaussian errors can always be provided.

However, the examples above should give the reader some idea of how the concept works

and what type of problems can be managed with such a class of models. Let us now turn

our attention to some concepts in optimal sampling theory.

1.5 Optimal Sampling

In general, observations on a stochastic process (i.e., the sample paths or realization of the

process) are measured using periodic sampling (also referred to as Riemann Sampling),

which is to say at a constant rate. In other words, the process is recorded at equally

spaced points in time, such as t0, t0 + h, t0 + 2h, . . .. While this form of sampling is

convenient, and as a result ubiquitous, it may not be the most efficient or unambiguous

method of sampling the continuous signal of a stochastic process. For example, there

may exist two or more possible processes that share the same sample path over the time

horizon(s) considered, creating an issue of ambiguity for our accurate measurement of

the process, which in turn may drastically alter the quality of our predictions based on

the given sample path.

Going as far back as the late 1940’s, Claude Shannon observed that a process that

doesn’t contain frequencies higher than B hertz (i.e., B cycles per second) is completely

determined if the sampling rate is greater than 2B hertz, the quantity 2B being referred

to as the Nyquist rate. Sampling a process at a rate less than this requirement may

lead to a phenomenon known as aliasing, which as described above, creates a situation

of ambiguity in the determination of the process. Of course, this sampling frequency

requirement concerns sampling the process in a periodic way, so there is, in general, hope
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for sparser sampling regimes that sample the process non-periodically based on some

control rule(s). Regardless of this hope for more efficient sampling, non-uniform samples

(i.e., those that are not periodic), must still have an average sampling rate greater than

2B hertz (Marvasti, 2001).

To explore the various types of non-uniform sampling, let us begin with the concept of

Lebesgue Sampling if only for its simplicity. In this type of sampling protocol, the process

is sampled only when its realized values pass some predefined threshold (usually in an

absolute sense). By focusing only on points in the process with large enough values, we

may capture the variation in the underlying process without having to sample periodically.

In essence, Lebesgue sampling allows us to focus on the most information-rich points of

the process, those points that tell us the most about the movements of the continuous

process. Lebesgue sampling has been compared to Riemann/periodic sampling and has

been found, under certain conditions, to reduce the necessary sampling rate required to

maintain the same mean error variance as Riemann sampling (Astrom and Bernhardsson,

2002).

In its simplest form, optimal sampling theory seeks to utilize those points in a given

process that provide the most information about that which is most important to the

researcher. In this way, the theory seeks to isolate certain points of the process, creating

a powerful subset of data that can then be used to model the phenomenon in question

in a more targeted fashion. In the current research, this means, for instance, isolating

those points where linear-type trend is important from those points where cycle-type

trend is important. In other words, we believe that there are points that lean themselves

toward the prediction of trend, Xt, while other points lean more toward the prediction

of cycles in the process. Once such points have been isolated via some algorithm, one is

then able to use these points in a way that is computationally more efficient or easier to

understand than some more complex procedure being used on the overall process. This

perspective, of points leaning to linear versus cyclical trend, is how we approach the

current problem. Let us now wrap up this chapter with some remarks before venturing

into the next chapter.
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1.6 Chapter 1 Remarks

The concepts outlined in Chapter 1 largely represent what should be learned by a graduate

student in pursuit of a degree in mathematical statistics. However, some rather general

references are in line here. For a very thorough treatment of stochastic processes consult

Gikhman and Skorokhod (1969). For less complicated yet decently rigorous expositions,

see Billingsley (2008) or Ross (1996), which are commonly-used texts for graduate courses

in probability theory. For a more detail explanation of most of the concepts of this

first chapter, please consult Satō (1999). Any references more specific than these were

included in the chapter where relevant. Now we move on to the more applied segment

of this document, namely Chapter 2, which concerns the presentation of more specific

statistical results for the goals of the current project. It is in this upcoming chapter that

we see more specific results en route to our ultimate goal.
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CHAPTER 2:

APPLIED STATISTICAL BACKGROUND

2.1 Stochastic Processes

A great deal of information about stochastic processes can be found in Chapter 1, where

relevant preliminaries were outlined. Here, in Chapter 2, we present additional infor-

mation about such processes, information more fundamentally related to the problem at

hand. For a more thorough description of some of the topics of this chapter, please see

Teodorescu (2013). Let us start by recalling what it means for a stochastic process to

be wide-sense stationary, which we will merely refer to as stationary where there is no

confusion.

We consider a stochastic process stationary if it has the following properties (where

m(t) and K(s, t) = V [Xs, Xt] are the mean and covariance function of some generally

stated stochastic process, Xt, respectively):

1. Constant Mean Condition:

m(t) = m(t+ h) for all t, h ∈ R

2. Time Difference Condition for Covariance:

K(s, t) = K(0, t− s) := K(t− s) for all s, t ∈ R

3. Finite Absolute Second Moment Condition:

E[|Xt|2] <∞

For stationary (i.e., wide-sense stationary) stochastic processes, the Bochner-Lesbegue

theorem implies that there exists a measure on R, denoted below by µ and often referred

to as the spectral measure, such that

K(t) =

∫
e−2πitνdµ(ν) (155)
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This result implies that the (auto-)covariance function a (zero-mean) stationary stochas-

tic process is the Fourier transform of well-behaved densities. Generally, this result allows

us to use the standard and well-understood tools of time-series analysis, such as filtering,

prediction and estimation (see Section 2.2 below). This is about as good as one can hope

to do when dealing with stochastic processes. Recall, however, that we are concerned

with the prediction and estimation of non-stationary stochastic processes. As such, the

question now becomes: how far away from stationarity can one go and still apply the

standard tools? Along these lines, let us now explore a class of non-stationary processes,

namely harmonizable stochastic processes.

2.1.1 Strongly Harmonizable Processes

As outlined in Loeve (1965) and detailed in Hurd (1989), a non-stationary stochastic

process, Xt, is strongly harmonizable if there exists a measure µ on R2, such that

K(s, t) =

∫
R2

ei(sν−tη)µ(ν, η)dνdη (156)

which is to say that, like in the case of stationary processes, there exists a kind of Fourier

transform representation for the covariance function of the process. Unlike the stationary

case, however, the relationship for strongly harmonizable processes involves a measure on

R2 as opposed to R. This need for more free parameters to describe the spectral nature

of the process has a lot to do with the fact that stationary processes have covariance

functions which have only one input, namely the time difference t− s, as opposed to the

covariance function having two inputs, t and s, as is the case for strongly harmonizable

processes. This highlights the need for more involved spectral formulations to describe

the nature of non-stationary processes, even those only slightly non-stationary, like is

the current case. We turn our attention next to an inequality for stongly harmonizable

processes, which is based on work done by Martin and Putinar (1989). This inequality is

here to provide the interested reader with another perspective on the nature of strongly

harmonizable processes.
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Theorem 2.3. Xt is strongly harmonizable if there is a positive constant C such that:

∣∣∣∣∫
R2

f(s, t)K(s, t)dsdt

∣∣∣∣ ≤ C||f ||∞ (157)

for any finite-norm function f .

Alternatively, we have the following result from Hurd (1989).

Theorem 2.4. Xt is strongly harmonizable if it is the Fourier transform of another

stochastic process on the reciprocal space:

Xt =

∫
R
eitνZ(ν)dν, (158)

where Z satisfies E(Z(A) ·Z(B)) = µ(A×B), for any A,B ⊂ R+. If Z satisfies Z(A) ⊥

Z(B) if A ∩ B = ∅, then Xt is actually stationary. Let us now turn to a result which

gives us hope for the analysis of strongly harmonizable processes.

Theorem 2.5. Any strongly harmonizable process is asymptotically stationary. In other

words, there is a smooth limit such that:

K(t) = lim
T→∞

[
1

2T

∫ T

−T
K(s+ t, s)ds

]
(∀)t ∈ R+ (159)

This result certainly provides one with hope for analysis of strongly harmonizable pro-

cesses, as the tools for estimation, prediction, and filtering of asymptotically stationary

processes are the same as for stationary ones (with minimal supplementary conditions

placed on the stochastic model).

Now that we have justified the existence of protocols (i.e., statistical techniques) for

the treatment of certain non-stationary time series models, namely strongly harmonizable

stochastic processes, let us now turn our attention to yet another form of non-stationary

process, the weakly harmonizable process. For more information about weakly harmo-

nizable processes, see (once again) Hurd (1989). For an even more detailed treatment

of the concept than what is found in Hurd (1989), see Niemi (1975) or Chang and Rao

(1987).
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2.1.2 Weakly Harmonizable Processes

Definition 2.4. A function f is a bi-measure if it is the Fourier transform of any bounded

function on R2. Then, Xt is weakly harmonizable if it is a bi-measure.

Theorem 2.6. The following two statements are equivalent:

� Xt is the Fourier transform of an arbitrary stochastic process on the reciprocal space

� Xt is the projection of a stationary process Yt from higher-dimensional space

From Definition 2.1 and Theorem 2.4, we may infer that the properties needed for a

stationary process analysis (i.e., the properties associated with the process being either

stationary or asymptotically stationary) are lost during the projection from a higher-

dimensional space. Seeing as the projection of a stationary stochastic process to a lower

number of dimensions generically leads to a weakly harmonizable process, we do not have

the same analytical luxuries afforded to us in the strongly harmonizable case, where the

standard tools could be used in an asymptotic sense. As such, we have established that

the existing tools do not address all non-stationary processes equally well, especially not

processes as general as our current concern, a process with both linear- and cycle-type

trend in addition to Levy process noise. Let us now explore some results related to the

estimation, prediction, and filtering of an asymptotically stationary process. In many

ways the following section is a continuation of the strongly harmonizable section above.

2.2 Applications: Estimation, Prediction and Filtering

Here, we briefly list some applications to estimation, prediction and filtering for asymp-

totically stationary processes. Recall from Theorem 2.3 that any strongly harmonizable

process is also asymptotically stationary. The following results are presented without

proof as they are important to but largely incidental in the overall goals of the current

project. It is worth noting, however, that proof of these results is largely computational.
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Theorem 2.7. Assume that Xt is asymptotically stationary and that the following two

conditions are true (i.e., the “minimal supplementary conditions” mentioned previously):

lim
T→∞

sup
[−T,T ]

∣∣∣∣ 1

2T

∫ T

−T
K(s+ t, s)ds

∣∣∣∣ = 0 (160)

1

2T

∫ T

−T
[E(||Xt||4)]1/2dt ≤M (∀)T ∈ R+ (161)

then

µn,N(ν) :=
1

N

N∑
i=1

1

4n2

∫ n

−n

∫ n

−n
e−itνE[Xi(s+ t)Xi(s)]dsdt (162)

is a consistent estimator of µ. By consistency, we mean that this estimator converges in

probability to the true value of the parameter being estimated.

Theorem 2.8. The least-squares predictor of any asymptotically stationary process with

limit auto-correlation K (such as that outlined in Theorem 2.3) is as good as the least-

squares predictor of a stationary process with auto-correlation K.

Theorem 2.9. Adding any stationary noise term to an asymptotically stationary process

with vanishing auto-correlation in the infinte-time limit and bounded fourth moment does

not affect the estimators or predictors obtained based on the asymptotically stationary

process without the additional noise.

Based on the results of the current section, we see that the tools available for stationary

processes are largely available for asymptotically stationary processes, as was mentioned

previously. Let us now move on to some of the limitations experienced so far.

2.3 Decomposition of Stochastic Processes

What can be done to model non-stationary processes when none of the conditions dis-

cussed above describe the system well enough? In other words, how can we generalize

the currently available methods to handle more complicated (i.e., more non-stationary)

trends within the data? Rigorously speaking, only a direct integration of the stochastic

equations is justified in this case. For specific (linearizable) models (such as trend-cycle),
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an exact time-dependent solution for the reduced variables may be obtained. However,

these cases are all restricted to linear first-order equations, so that the case discussed

above, that involving a stochastic process with both linear- and cycle-type trends and

Levy process noise, cannot be treated with the approximation strategies outlined earlier

in this chapter. Let us now focus our attention on a broader class of non-stationary

stochastic process models, namely Dynamic Linear Models.

2.4 Dynamic Linear Models

Let us begin this section by discretizing the time step and transforming all linear differ-

ential equations (in time) into difference equations with unit time step. Then a general

dynamical linear model (in the manner covered in West and Harrison, 1997) is given by

Yt = Ftθt + νt, νt ∼ N(0,Vt) (163)

θt = Gtθt−1 + ωt, ωt ∼ N(0,Wt) (164)

where Yt represents the observed outputs to be modeled, Ft plays the role of the design

matrix (see the Linear Regression section of Chapter 1), θt represents the regression

parameter vector at time t, νt is the observational noise vector (with known covariance

matrix Vt), Gt is a matrix representing the evolution of the regression parameter vector in

time, and ωt is the noise vector associated with the evolution of the regression parameter

vector. The first equation is generally taken to be the observation equation for the

modeling problem, while the second equation is taken to be the evolution equation for

the same problem. The noise terms are taken to be uncorrelated, unbiased, possibly

time-dependent Gaussians. Suppose, lastly, that

θ0 ∼ N(µ0,Σ0) (165)

Under these conditions, the time-dependent solution of the DLM system outlined

above is given via the following updating equations, where Dt represents all data observed
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up to time t, such that Dt := {Y0, . . . ,Yt}:

(θt|Dt−1) ∼ N(at,Rt), at = Gtµt−1, Rt = GtΣt−1G
′
t +Wt (166)

(Yt|Dt−1) ∼ N(φt,Qt), φt = Ftat, Qt = FtRtF
′
t + Vt (167)

(θt|Dt) ∼ N(µt,Σt), µt = at +Atet, Σt = Rt −AtQtA
′
t (168)

where At = RtF
′
tQ
−1
t , et = Yt − φt, (θt|Dt−1) represents the prior for θt, (Yt|Dt−1)

represents the single-step forecast for Yt, and (θt|Dt) represents the posterior for θt.

These updating equations assume complete knowledge of the parameters of the noise

vectors, which here means knowledge of the structure of the covariance matrices for νt

and ωt. Yet, we can almost never rely on the data to give us this information directly.

As such, we must now turn our attention to updating equations not conditioned on Vt:

(θt−1|Dt−1) ∼ Tn(t−1)(µt−1,Σt−1) (169)

(θt|Dt−1) ∼ Tn(t−1)(at,Rt) (170)

(Yt|Dt−1) ∼ Tn(t−1)(φt,Qt) (171)

(θt|Dt) ∼ Tn(t)(µt,Σt), (172)

where n(t) = t (to avoid confusion). In these equations, Tn stands for the T distribution

with n degrees of freedom. Now, we turn to the forecasting and prediction of DLM models

as outlined above.

2.4.1 Forecasting and Prediction of Dynamic Linear Models

Let us introduce the forecast function, which represents what is expected of the observable

process, Yt, k steps ahead of what has been observed (i.e., Dt):

ft(k) = E[Yt+k|Dt], k ≥ 1 (173)
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In light of this forecast function, we have the following:

(θt+k|Dt) ∼ Tn(t)(at(k),Rt(k)) (174)

(Yt+k|Dt) ∼ Tn(t)(ft(k),Qt(k)), (175)

where

ft(k) = Ft+kat(k) (176)

Qt(k) = Ft+kRt(k)F ′t+k + Vt+k (177)

at(k) = Gt+kat(k − 1) (178)

and

Rt(k) = Gt+kRt(k − 1)G′t+k +Wt+k (179)

Note that covariance matrices may also be forecasted in a similar manner. Now that

we have some background, definitions, and forecast equations for dynamic linear models,

which are (once again) a type of non-stationary stochastic process model, let us move on

to the concept of Bayesian estimation, which while very general itself, will prove quite

useful in our current aims and goals.

2.5 Bayesian Estimation

Let us begin this section with some background on Bayesian estimation, first generally

and then in the context of non-stationary stochastic processes. Bayesian estimation is to

be contrasted with what is referred to as Fisher Estimation, in the sense that the latter is

data-driven and wholly dependent on availability of large data sets, while the former isn’t

so much. Fisher inference makes use of the Central Limit Theorem and its variants (Max-

imum Likelihood, Delta method, etc) to provide either point estimates (MLE, UMVUE)

or interval estimates (confidence intervals), whose statistical relevance and effectiveness

generally increase with increases in sample size. Seen as both a strength and weakness,

Bayesian estimation has a greater reliance on subjective information through its use of

47



distributions chosen by the researcher (and not based on the data) which may or may

not yield drastically different estimates in a given statistical analysis context.

In the Bayesian paradigm we have a data vector Y with density pθ for some unknown

yet variable parameter θ ∈ Θ. One of the initial goals of a Bayesian estimation problem

is to put a prior density on θ. The family of available prior densities can be denoted

as {νh, h ∈ H}, where h is called a hyperparameter, which is usually seen as a fixed

parameter for the distribution of the variable parameter, θ. Typically, the hyperparameter

is multivariate and choosing it can be difficult. However, this choice is also very important

and can have a rather large impact on subsequent inferences. As such, there are two issues

to consider, the first dealing with sensitivity analysis and the second with model selection:

� Suppose that we fix a quantity of interest, say, f(θ), where f is some function.

How, then, may we assess changes in the posterior expectation of f(θ) as we make

changes to h? In other words, how sensitive are the results to changes in the

hyperparameter, h?

� How do we determine if a given subset ofH constitutes a class of reasonable choices?

Once again, when comparing the two approaches, Bayesian versus Fisher estimation,

we must focus our attention on the relative importance of sample size. While the Fisherian

analyst can almost always say, “the more data, the better the estimates,” the Bayesian

analyst does not see sample size with the same importance. It is perfectly possible to

obtain a very good, precise, accurate Bayesian estimate from a small sample, provided

that the prior distribution was properly chosen. Conversely, with a bad choice of prior,

estimation based on a large sample will give bad Bayesian estimates, which is not the

case in Fisher inference. In some ways, we can see this difference as representing a

shift in importance from the rigid, objective nature of sample size to the more open,

more subjective nature of prior distribution choice. Next, we turn our attention to a

comparison of the ordinary and empirical Bayesian approaches, which may be seen as

more parametric and non-parametric Bayesian approaches, respectively.
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2.5.1 Ordinary Versus Empirical Bayesian Estimation

In ordinary Bayesian estimation, it is known (or assumed) that the distribution we aim

to determine is parametric, meaning that it belongs to a class of explicit functions char-

acterized by parameters, such as the Gamma, Normal, Uniform, etc. In empirical Bayes,

such an assumption is not needed, as we simply aim to determine the empirical c.d.f. (or

some other equivalent probabilistic description) for that population, based on the sample

available, the data of the problem.

Consider the problem of variable selection in Bayesian linear regression. Here, we

have a response variable Y and a set of predictors X1, . . . ,Xq, each a vector of length m.

For every (predictor index) subset γ ⊆ {1, . . . , q} we have a potential model Mγ given

by

Y = 1mβ0 +Xγβγ + ε, (180)

where 1m is the vector containing m 1’s, Xγ is the design matrix whose columns consist

of the predictor vectors corresponding to the subset γ, βγ is the vector of coefficients for

that subset, and ε ∼ Nm(0, σ2I). Let qγ denote the number of variables in the subset

γ. The unknown parameter vector for this model is θ = (γ, σ, β0,βγ), which includes

the predictor index subset for the subset of predictors that go into the linear model, γ.

A very commonly used prior distribution on θ is given by the hierarchical process in

which we first choose the indicator γ using an Independent Bernoulli Prior, where each

predictor goes into the model with a certain probability, say w, independently of all the

other variables. We then determine the vector of regression coefficients corresponding to

the selected predictors. Under these conditions, we have the following model:

Y ∼ Nm(1mβ0 +Xγβγ, σ
2I) (181)

(σ2, β0) ∼ p(σ2, β0) ∝ 1/σ2 (182)

(σ,βγ) ∼ Nqγ (0, gσ
2(X ′γXγ)

−1) (183)

γ ∼ wqγ (1− w)q−qγ (184)
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where the third distribution (183) is Zellner’s g-prior, which was introduced by Zellner in

1986 and is indexed by the parameter g. Although this prior is improper, meaning that it

is not a proper probability density (i.e., does not have a total measure of 1), its use does

result in a posterior distribution which is proper. Let us now continue the description of

this model.

The prior on the parameter θ = (γ, σ, β0,βγ) is given by the two-level hierarchy (184)

and (182, 183), and is indexed by h = (w, g). Loosely speaking, when w is large and g is

small, the prior encourages models with many predictors and small coefficients, whereas

when w is small and g is large, the prior concentrates its mass on parsimonious models

with large coefficients. Therefore, the hyperparameter h = (w, g) plays a very important

role, and in effect determines the model that will be used to carry out variable selection.

A standard method for approaching model selection involves the use of what are known

as Bayes Factors. For each h ∈ H, let mh(y) denote the marginal likelihood of the data

under the prior νh, that is, mh(y) =
∫
pθ(y)νh(θ) dθ. We will write mh instead of mh(y)

where there is no confusion in doing so. The Bayes factor of the model indexed by h2,

compared to the model indexed by h1, is defined as the ratio of the marginal likelihoods

of the data under the two models, mh2/mh1 , and is denoted throughout by B(h2, h1).

Bayes factors are widely used as a criterion for comparing models in Bayesian analyses.

In terms of selecting the best models from the family of models indexed by h ∈ H, the

strategy is usually to compute and subsequently compare all the Bayes factors B(h, h1),

where h ∈ H and h1 is a fixed hyperparameter value. We could then consider as good

candidate models those with values of h that result in the largest Bayes factors.

Suppose now that we fix a particular function f of the parameter θ. For instance,

we may choose to fix the indicator set so that predictor 1 is included in the regression

model. It is of general interest to determine the posterior expectation Eh(f(θ) | Y ) as

a function of h and to determine whether or not Eh(f(θ) | Y ) is very sensitive to the

value of h. If it is not, then two individuals using two different hyperparameters should

reach approximately the same conclusions and the results of the analysis should be less

controversial in general. On the other hand, if for a function of interest the posterior
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expectation varies considerably as we change the hyperparameter, then we will want to

know which aspects of the hyperparameter (e.g., which components of h) produce the

biggest changes. As such, we may wish to see a plot of the posterior expectations as we

vary those aspects of the hyperparameter. Except for extremely simple cases, posterior

expectations cannot be obtained in closed form, and are typically estimated via the

Markov-Chain Monte Carlo (MCMC) method. Seeing as it is slow and inefficient to run

Markov chains for every hyperparameter value h, we should not place too much hope in

obtaining a full numerical perspective or picture for all hyperparameter values. Before

moving on to a brief section comparing the Fisherian and Bayesian approaches to large

sample theory, some general references are in line here.

For good expositions of the concepts of Bayesian analysis in general see Bayesian Data

Analysis by Gelman et al. (2004) or Bayesian and Frequentist Regression Methods by

Wakefield (2013). The former is often used as a text for graduate courses in mathemat-

ical statistics, while the latter does a good job of comparing the Fisherian/Frequentist

approaches to the Bayesian approaches.

2.5.2 Bayesian Approach in Large Sample Theory

The main conceptual advantage of performing Bayesian inference even when data are

plentiful rests in the ability of the researcher to guess distribution functions whose an-

alytical structure is significantly different from the unimodal, mean-dominated kind of

inference afforded by the Fisherian approach. In other words, it is possible to obtain

a perfectly good Bayesian estimate with low convergence properties such as a Cauchy

distribution, which would be quite challenging for Fisher-based inference, even with large

samples.

A second important distinction is that the Bayes approach naturally allows us to

perform hypothesis testing in the framework of decision (game) theory, where the loss

functions, risk functions, etc. are far more general than those used in (classical) Fisherian

hypothesis testing methods (such as the UMP or LRT methods). Now that we have some

familiarity with model selection, let us turn next to sensitivity analysis.
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2.5.3 Sensitivity Analysis in Bayesian Inference

As mentioned previously, sensitivity analysis and model selection are issues often at the

core of Bayesian inference problems. One possible approach involves running Markov

chains corresponding to a few values of the hyperparameter, say, h1, . . . , hk, and using

these to estimate Eh(f(θ) | Y ) and the Bayes factors B(h, hi) for all h ∈ H. The difficulty

we face is that there is a severe computational burden caused by the requirement that

we handle a very large number of values of h. Another approach for estimating large

families of posterior expectations and Bayes factors is based on a combination of MCMC,

importance sampling, and the use of control variates.

The idea of using importance sampling to investigate data streams from multiple

densities has been studied repeatedly, as we see throughout the remainder of the current

section.

Suppose that we have a sample θ1, . . . , θn (of iid or ergodic Markov chain output) from

the posterior density νh1,y for a fixed h1 and we are interested in the posterior expectation

Eh
(
f(θ) | Y = y

)
=

∫
f(θ)

νh,y(θ)

νh1,y(θ)
νh1,y(θ) dθ (185)

for different values of h. Using the fact that

∫
pθ(y)νh(θ)/mh

pθ(y)νh1(θ)/mh1

νh1,y(θ) dθ = 1 (186)

we see that this expectation (185) may be written as

∫
f(θ)

pθ(y)νh(θ)/mh

pθ(y)νh1(θ)/mh1

νh1,y(θ) dθ =

∫
f(θ)(νh(θ)/νh1(θ))νh1,y(θ) dθ∫

(νh(θ)/νh1(θ))νh1,y(θ) dθ
(187)

where the right-hand side of (187) does not involve the ratio mh/mh1 (i.e., the Bayes

factor comparing h to h1). The idea to express
∫
f(θ)νh,y(θ) dθ in this way was proposed

in a different context by Hastings, in 1970. The right-hand side of (187) is the ratio of

two integrals with respect to νh1,y, each of which may be estimated from the sequence
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θ1, . . . , θn. We may estimate the numerator and the denominator by

1

n

n∑
i=1

f(θi)[νh(θi)/νh1(θi)] and
1

n

n∑
i=1

[νh(θi)/νh1(θi)] (188)

respectively, and
∫
f(θ)νh,y(θ) dθ is estimated by the ratio of these two quantities.

The disappearance of the likelihood function on the right-hand side of (187) is very

convenient because its computation requires considerable effort in some cases (e.g., when

we have missing or censored data, the likelihood is a possibly high-dimensional integral).

Note that the second average in (188) is an estimate of mh/mh1 , that is, the Bayes factor

B(h, h1). Ideally, we would like to use the estimates in (188) for multiple values of h using

only a sample from the posterior distribution corresponding to the fixed hyperparameter

value h1. But, when the prior νh differs from νh1 greatly, the two estimates in (188) are

unstable because of the potential that only a few observations will dominate the sums.

Their ratio suffers the same defect.

A natural approach for dealing with the instability of these simple estimates is to

choose k values h1, . . . , hk ∈ H and in (185) replace νh1,y with a mixture
∑k

s=1 asνhs,y,

where as ≥ 0, for s = 1, . . . , k, and
∑k

s=1 as = 1. For concreteness, consider the estimate

of the Bayes factor. Let ν ·y =
∑k

s=1 asνhs,y, and let ds = mhs/mh1 , s = 1, . . . , k. Note

that if νh(θ) = 0 whenever νhs(θ) = 0 for all s, then we have the following

B(h, h1) =

∫
νh(θ)∑k

s=1 asνhs(θ)/ds
ν ·y(θ) dθ (189)

and

∫
f(θ)νh,y(θ) dθ = (B(h, h1))−1

∫
f(θ)

νh(θ)∑k
s=1 asνhs(θ)/ds

ν ·y(θ) dθ (190)

=

∫
f(θ)(νh(θ)/

∑k
s=1 asνhs(θ)/ds)ν ·y(θ) dθ∫

(νh(θ)/
∑k

s=1 asνhs(θ)/ds)ν ·y(θ) dθ
(191)

Suppose that, for each l = 1, . . . , k, we have Markov chain samples θ
(l)
i , i = 1, . . . , nl,

from the posterior density νhl,y. Letting n =
∑k

s=1 ns: if as = ns/n, then the pooled
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sample is a stratified sample from ν ·y. In the case where the vector d = (d2, . . . , dk)
′ is

known, the right-hand side of (189) is the integral of a known function with respect to the

mixture density ν ·y. Then, under certain regularity conditions, the estimate of B(h, h1)

obtained by replacing the right-hand side of (189) by its natural Monte Carlo estimate

using the pooled sample is consistent and asymptotically normal.

In virtually all applications, the value of the vector d is unknown. The estimates

of B(h, h1) and
∫
f(θ)νh,y(θ) dθ usually considered in this case are constructed by first

forming an estimate d̂ of d, and then using the natural Monte Carlo estimates of the

integrals in (189, 190, 191) with d̂ substituted for d.

While it may feel as though we have ventured off a bit from the goals of this project,

this is not the case, as we will utilize the concepts of the current chapter to bolster our

understanding of the contents of Chapter 3. So far in this section, we have looked at

many results and concepts somewhat related (be they directly or tangentially related)

to the modeling of non-stationary stochastic process with both linear- and cycle-type

trend in the presence of Levy process noise. While the discussion has grown somewhat

armchair, we have not lost sight of the goals of the project. In the next section, we will

learn more about Nonparametric Inference, which consists of a class of procedures that

do not make the same distributional or parametric assumptions as Parametric Inference.

2.6 Nonparametric Inference

As indicated previously, parametric analysis assumes that the distributions of interest

belong to certain classes, and therefore the data, models, etc. can be fitted according to

some exact analytical expressions. By contrast, nonparametric analysis makes no such

assumptions and works exclusively with the empirical cumulative distribution function

and its derived quantities. Let us now explore some of the basic concepts of nonparametric

inference.

Let X be a random vector with distribution function F and let x = (x1, . . . , xn)′

be an observed sample from F . Suppose R(x, F ) is a statistical quantity that depends

in general on both the unknown distribution F and on the sample x. For example,
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R(x, F ) could be an estimator of an unknown parameter. If F is unknown, then the

exact distribution of the random variable R(x, F ) is generally unknown.

A well-known method to nonparametrically estimate the distribution of R(x, F ) con-

sists of the following steps:

(i) From the observed sample x, use the empirical distribution function, F̂n, as an es-

timate of the probability function F . The empirical distribution function is defined

by F̂n(x) = n(x)
n
, where n(x) is the number of values xi in x that are less than or

equal to x.

(ii) Draw B samples of size n from F̂n conditional on x. Denote these as x∗j , for

j = 1, . . . , B.

(iii) For each sample x∗j , compute R∗j = R(x∗j , F̂n) and approximate the distribution of

R(x, F ) with the empirical distribution of R∗1, . . . , R
∗
B.

The empirical distribution function can also be computed, based on the sample avail-

able. Denote this function by F̂ . A (1 − α)100% confidence interval based on the per-

centile method of Efron (1979) is given by [F̂−1(α), F̂−1(1− α)]. Here, xL = [F̂ ]−1(α) is

the largest value of x such that the number of elements in the sample that are less than

x is smaller than αn. Likewise, xU = [F̂ ]−1(1 − α) is the smallest value of x such that

the number of elements in the sample that are smaller than x is larger than (1 − α)n.

Specifically,

xL = max
{
x : F̂n(x) ≤ α

}
(192)

xU = min
{
x : F̂n(x) ≥ 1− α

}
(193)

2.6.1 Nonparametric Kernel Density Approach

Assume that if X1, . . . , Xn are iid random variables having a common probability density

function f(x). Then the kernel estimate of f(x) is defined by

f̂n(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(194)
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where h is the bandwidth and K(u) is the kernel function. The kernel estimate of the

cumulative distribution function F̂ (x) and reliability functionR(x) are, respectively, given

by

F̂n(x) =
1

nh

n∑
i=1

∫ x

−∞
K

(
y −Xi

h

)
dy (195)

and

R̂n(x) = 1− F̂n(x) (196)

It is usually assumed that K(y) is a symmetric function, which can be taken to be nor-

malized to 1, centered (zero first moment), and positive-definite (positive second centered

moment). Using a kernel approach has the advantage that it is often possible to optimize

the analysis and obtain reliable results relatively quickly. However, the kernel method

ignores any interactions between the data, missing entirely any unwanted correlations or

higher-order effects. Therefore, it is better to use a hierarchical approach, where we first

use the usual kernel approach and then use a function that has dependence on both x

and predictor pairs, such as Xi, Xj, etc. Note that here K represents the kernel function

and not the covariance function outlined previously.

Properties of the kernel function K(u) partially determine the properties of the kernel

density estimates, such as differentiability and continuity. For example, ifK(u) is a proper

density function, that is if it is non-negative and it integrates to one, then the kernel

density estimate is also a proper density function. If K(u) is n times differentiable, so is

f̂n(x). Early works on kernel density estimation include Rosenblatt (1956), Hodges and

Lehmann (1965), and Epanechnikov (1969). In their work, Hodges and Lehmann showed

that the Epanechnikov kernel (which was not yet fully defined at the time) optimizes

the expression used in finding the optimal bandwidth, thus making it the most efficient

kernel.

When evaluating subject kernels by comparing them with the Epanechnikov (i.e.,

parabolic) kernel, the optimal bandwidth is given by

ho =

[
||K||2

nM2R(f ′′)

]1/5

(197)
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where ||K||2 =
∫
K2(t)dt and M2 =

∫
t2K(t)dt. The optimal bandwidth value is deter-

mined by minimizing the mean square error (MSE) for the estimate,

MSE(f̂) = E(f̂ − f)2 = Bias(f̂)2 + Var(f̂) (198)

If h→ 0, nh→∞, and the underlying density f is a sufficiently smooth L2 function,

then it can be shown that Bias → h2M2f
′′(x)/2 and Var → f(x)||K||2/(nh).

Thus, we can infer that if the bandwidth decreases, the bias of the kernel estimate also

decreases but the variance increases, resulting in a rough and unacceptable estimate of the

kernel density. Conversely, if the bandwidth increases, the variance of the kernel estimate

decreases but the bias increases. This means that there is significant smoothing and the

underlying characteristics of the probability density are smoothed out. Combining these

results and integrating over the entire real line gives us an estimate of the global accuracy

of f̂(x), the asymptotic significant mean integrated square error (AMISE):

AMISE(f) =
h4M2

2R(f ′′)

4
+
||K||2

nh
(199)

Thus, we can conclude that AMISE depends on four quantities: the bandwidth h, the

sample size n, the kernel function K, and the target density f(x). The target function

and the sample size are largely out of our control. However, we can minimize AMISE by

choosing the appropriate kernel and the bandwidth. If we fix the kernel function K(u)

and minimize AMISE with respect to the bandwidth we obtain the following optimal

forms:

ho =

[
||K||2

nM2R(f ′′)

]1/5

(200)

and

AMISEo =
5

4

[√
M2||K||2

n

]4/5

(C(f ′′))
1/5

(201)

To calculate the optimal kernel function, we minimize AMISEo with respect to K.

The optimal kernel function was derived by Epanecnikov in 1969 (in the same work cited
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above) and is given by

K(u) =
3

4
(1− u2)χ|u|≤1 (202)

The value of
√
M2||K||2 for the Epanechnikov kernel is 3/(5

√
5), so that the ratio

√
125M2

3
||K||2 provides a measure of inefficiency for other kernels. We then have a measure

of the relative effectiveness of other kernels relative to the Epanechnikov kernel.

2.7 Chapter 2 Remarks

Throughout the current chapter, we have seen a number of different approaches to op-

timization and estimation. At the beginning of the chapter, we explored harmonizable

processes, which form a class of non-stationary models theoretically close to stationary

processes. There, we found that asymptotically stationary processes may be treated quite

similarly to stationary processes in terms of estimation and prediction.

After briefly touching on the topic of stochastic processes decomposition, we then

explored dynamic linear models, which form a rather general class of non-stationary

models. In that section, we also explored the forecasting and prediction of such models,

focusing our attention again on those points where the existing methods fall short of our

current goals, namely the goals associated with the prediction, estimation, and modeling

of stochastic processes having both linear- and cycle-type trend in addition to Levy

process noise.

Following our treatment of dynamic linear models, we then explored Bayesian estima-

tion, if only as a candidate approach among candidate approaches. There, optimization

was detailed in a regression context, with importance placed on the limitations, pitfalls,

and benefits of using a Bayesian approach to modeling. Among the treatment of Bayesian

inference concepts, we explored the differences between ordinary and empirical Bayesian

approaches and looked at the primary focus points of a Bayesian analysis, namely model

selection and sensitivity analysis, which provide us with a means of selecting and opti-

mizing our hyperparameters.

Lastly, we explored certain results and concepts in nonparametric inference, which

will prove fruitful in our longer-term goals for the current project.
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CHAPTER 3:

LINEAR TREND SIGNAL DETECTION IN THE PRESENCE OF

PERIODIC SIGNALS AND LEVY PROCESS NOISE

3.1 Statement of the Problem

Suppose that we have an additive stochastic process, St, such that

St = Xt + Yt + Zt (203)

where Xt is a (deterministic) linear trend process, monotonic in t; Yt is a (deterministic)

Fourier series in t; and Zt is a purely stochastic process (i.e., Zt is a random variable for

each time, t).

The goal of the current project is to determine, without knowledge of the components

of St, the optimal sampling protocol such that a linear regression conducted on {tk, Stk}

(i.e., the set of points chosen by some protocol) is optimally close to the trend sub-

component, Xt.

To state this goal more clearly, suppose that we are given a number of measurements

N ∈ Z, a target time T ∈ R≥0, an initial time t0 < T . Our goal is then to determine a

subset of N such that

t0 < tk1 < tk2 < · · · < tkn < T (204)

and Stk ≈ Xt

Toward this goal, the optimal linear regression conducted on the sub-sample data

should produce a model with

β ≈ XT −Xt0

T − t0
(205)

where β is the slope of the line generated by (linearly) regressing Stk on tk.
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3.2 Statistical Properties of the Problem

Before attempting to construct a solution to the current problem, let us venture to explore

some of the properties necessary to understanding what such a solution should look like.

Let us begin with an exploration of the moments of the processes involved. Since the

moments of a generally-stated Levy Process are quite non-trivial, let us begin by assuming

that the noise is a Wiener Process, which is a type of Levy Process. Once this noise

assumption has had it’s useful properties exhausted, we will then generalize the results

to the more general class of processes (i.e., Levy Processes).

The mean, µSt = E[St], of the overall (i.e., additive) process is given by

µSt = E[Xt + Yt + Zt] (206)

= Xt + Yt + E[Zt] (207)

= Xt + Yt (208)

where step 1 uses substitution, step 2 uses the linearity property of expectation as well

as the property that a deterministic process has a mean equal to the value of that (de-

terministic) process, and step 3 uses the fact that our chosen type of noise (i.e., Wiener

Process) has a mean of 0. Given that this derived expectation depends on t, the process

St is non-stationary. Next, we explore the variation of the overall process.

The covariance, K(s, t) = E[(Ss − µSs)(St − µSt)], of the overall process is given by

K(s, t) = E[(Ss − µSs)(St − µSt)] (209)

= E[(Xs + Ys + Zs − (Xs + Ys))(Xt + Yt + Zt − (Xt + Yt))] (210)

= E[ZsZt] (211)

= min(s, t) (212)

where step 1 uses the definition of the (auto-)covariance function, step 2 uses substitution

for the processes involved, step 3 is a simplification of the previous step, and step 4 uses

the familiar autocovariance/autocorrelation result for Wiener processes. Since this result
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depends t but not merely through the difference between s and t, we see, once again,

the process is non-stationary. Therefore, in its full generality, our problem concerns an

additive stochastic process that is most certainly non-stationary.

In general, any computational results associated with the current problem formulation

will come in the form of a sequence of discrete measurements (i.e., a time series), as

computers are not yet equipped to handle continuous problems in their natural state. As

such, let us explore the mean and autocovariance of the differenced process.

Let us define the (first) differenced process as follows:

∆St = St − St−1 (213)

= (Xt + Yt + Zt)− (Xt−1 + Yt−1 + Zt−1) (214)

= (Xt −Xt−1) + (Yt − Yt−1) + (Zt − Zt−1) (215)

= (α + βt− (α + β(t− 1))) + ∆Yt + ∆Zt (216)

= β + ∆Yt + Z1 (217)

where substitution, collection of terms, and the linearity of Xt (in t) are used. By the

Gaussian increment properties of the Wiener process, Z1 is a standard normal random

variable, regardless of the value of time used in the differencing. Now that the differenced

process has been defined and identified, let compute the mean and autocovariance of this

process.

The mean of the differenced process is given by

µ∆St = β + ∆Yt (218)

where similar steps as before were used to obtain this result. If ∆Yt is a function of t,

then the differenced process, like the overall process, St, is non-stationary.

We may observe so far that it is the inclusion of both the linear- and cycle-type trend

that makes the problem new and more difficult. In the mere presence of linear trend and

noise, we may use the Generalized Least Squares approach outlined in Chapter 1. In
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the mere presence of cycle-type trend and noise, we may use a modified Wiener filtering

approach. It is in the presence of both types of trend that we must explore, entertain,

and create new methods for the estimation, prediction, and modeling of such a process.

The auto-covariance of the differenced process is given by

K∆S(s, t) = E[(∆Ss − µ∆Ss)(∆St − µ∆St)] (219)

= E[(Zs − Zs−1)(Zt − Zt−1)] (220)

=


1 |t− s| = 0

0 |t− s| > 0

(221)

which indicates that the autocovariance function for the differenced process meets the

conditions for wide-sense stationarity, since the autocovariance function depends only on

the difference between the input times, s and t. As mentioned in the mean calculation

above, however, the process does not meet all of the conditions for wide-sense stationarity,

as the mean derived is generally a function of time (through ∆Yt).

In order to obtain a stationary variant of the overall process, let us now explore a

period-differenced version of the process. To this point, let P be the (single) period

of the periodic signal of the problem, namely the period of Yt. Defining the period-

differenced process as follows, we may determine the mean and autocovariance of this

differenced process.

∆PSt = St − St−P (222)

= (Xt + Yt + Zt)− (Xt−P + Yt−P + Zt−P ) (223)

= (Xt −Xt−P ) + (Yt − Yt−P ) + (Zt − Zt−P ) (224)

= (α + βt− (α + β(t− P ))) + ∆PYt + ∆PZt (225)

= βP + ∆PZt (226)
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The mean of this period-differenced process is given by

µ∆PSt = βP (227)

which meets the mean condition for wide-sense stationarity, due to its lack of dependence

on time. The steps to calculate this value should be obvious to the reader, given the

previous computations of this section.

The auto-covariance of the period-differenced process is given by

K∆PS(s, t) = E[(∆PSs − µ∆PSs)(∆PSt − µ∆PSt)] (228)

= E[∆PZs∆PZt] (229)

= E[(Zs − Zs−P )(Zt − Zt−P )] (230)

= E[(Zs − Zs−P )(Zs+τ − Zs+τ−P )] (t− s = τ) (231)

=


P − |t− s| |t− s| < P

0 |t− s| ≥ P

(232)

= K∆PS(0, t− s) (233)

which establishes that the auto-covariance function of the period-differenced process

meets the conditions for wide-sense stationarity. The most important property used

to determine this result is the independent increment property of the Wiener process,

which allows us to focus only on the interval on which (Zs −Zs−P ) and (Zs+τ −Zs+τ−P )

overlap, which happens to have length P − τ = P − |t− s|. Since one of the times, s or t

must be smaller than or equal to the other, the reader may focus their attention on the

case where s ≤ t, noticing that the result is symmetric about 0 (i.e., t = s).

Since wide-sense stationarity has been established for the period-differenced process

for both the mean and auto-covariance function, the final step is to determine that the

absolute value of the variance of the process is finite. By the Cauchy-Schwarz inequality
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and the derivations above, we have that

|K∆PS(0, t− s)| ≤ K∆PS(0, 0) (234)

= V [∆PSt] (235)

= P (236)

<∞ (237)

where the equivalence between steps 2 and 3 is true for all t ∈ R. Thus, we have estab-

lished that the period-differenced process is wide-sense stationary. Of course, differencing

is a type of linear filter, so let us describe this period-differencing filter in more detail

before moving on to the next section, which involves the construction of a solution for

the aims and goals of the problem.

The period-differenced filter can be written as

yt = ∆PSt (238)

= St − St−P (239)

=
∞∑

j=−∞

ajSt−j (240)

where a0 = 1, aP = −1, and aj = 0 for all other j. It should be obvious to the reader

that the coefficients, aj (known collectively as the impulse response function) satisfy

the absolute summability condition, with their absolute sum being equal to 2, which is

obviously finite. The frequency response function for this filter is given by

AyS(ω) =
∞∑

j=−∞

aje
−2πiωj (241)

= 1− e−2πiωP (242)

Since the period-differenced process, here defined as yt, is wide-sense stationary, we

have the following result by the Wiener-Khinchin theorem. More information about this
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theorem may be found in Wiener (1930) or Chapter 11 of Champeney (1987).

s(ω) =

∫
R
ry(τ)e−2πiωτdτ (243)

where s(ω) is the power spectral density of the period-differenced process (which is a

function of the frequency, ω ∈ [0, 1]), ry is the auto-correlation function for the process

yt, and τ = t− s ≥ 0. To evaluate this relationship even further, let us first compute the

auto-correlation function of the period-differenced process.

ry(τ) = E[ytyt+τ ] (244)

= E[(St − St−P )(St+τ − St+τ−P )] (245)

= E[(βP + ∆PZt)(βP + ∆PZt+τ )] (246)

= (βP )2 + E[∆PZt∆PZt+τ ] (247)

= (βP )2 + χ|τ |<P (τ)(P − |τ |) (248)

where step 1 uses the definition of the autocorrelation function, step 2 uses the definition

of the period-differenced process, step 3 uses the previously-derived form for the afore-

mentioned process, step 4 uses the fact that E[βP∆PZt] = βPE[∆PZt] = 0 for any t,

and the final step uses the previously-derived form for the auto-covariance function of

the process yt.

Substituting this result into the Wiener-Khinchin theorem statement, we arrive at the

following form for the power spectral density of the period-differenced process:

s(ω) =

∫
R
ry(τ)e−2πiωτdτ (249)

=

∫
R
[(βP )2 + χ|τ |<P (τ)(P − |τ |)]e−2πiωτdτ (250)

= (βP )2

∫
R
e−2πiωτdτ +

∫
R
χ|τ |<P (τ)(P − |τ |)e−2πiωτdτ (251)

= (βP )2δ(ω) +

∫ P

−P
(P − |τ |)e−2πiωτdτ (252)

= (βP )2δ(ω) + P

∫ P

−P
e−2πiωτdτ −

∫ P

−P
|τ |e−2πiωτdτ (253)
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which may be further simplified to the following form:

s(ω) = (βP )2δ(ω) + P

∫ P

−P
e−2πiωτdτ −

∫ P

−P
|τ |e−2πiωτdτ (254)

= (βP )2δ(ω) + P

∫ P

−P
(cos(−2πωτ) + i sin(−2πωτ))dτ −

∫ P

−P
|τ |e−2πiωτdτ (255)

= (βP )2δ(ω) + P

∫ P

−P
cos(2πωτ)dτ − iP

∫ P

−P
sin(2πωτ)dτ −

∫ P

−P
|τ |e−2πiωτdτ

(256)

= (βP )2δ(ω) + 2P

∫ P

0

cos(2πωτ)dτ −
∫ P

−P
|τ |e−2πiωτdτ (257)

= (βP )2δ(ω) + 2P

(
sin(2πPω)

2πω

)
−
∫ P

−P
|τ |e−2πiωτdτ (258)

= (βP )2δ(ω) + 2P

(
sin(2πPω)

2πω

)
−
(∫ P

0

τe−2πiωτdτ −
∫ 0

−P
τe−2πiωτdτ

)
(259)

Based on the statistical properties of the problem outlined previously in this section,

we see that our process is non-stationary, that the first difference for our process is non-

stationary, and that our period-differenced process is wide-sense stationary. Following

these conclusions, we obtained a form for the power spectral density of the differenced

process. These calculations should provide the reader with some insights into the na-

ture of the overall additive stochastic process being considered. Let us now consider an

optimization approach to the problem.

3.3 Optimization Theory for the Decomposition Problem

For the practitioner, the main difficulty presented by the general analysis of the decom-

position problem stems from the fact that none of the existing approaches provides an

efficient algorithm for the approximate trend-cycle-noise decomposition of actual data,

in the sense of computational complexity relative to the size of the input. To illustrate

why, regarded as an algorithmic problem, decomposition is in fact intractable, consider

the case of a signal given by

S(t) = β0 + β1t+
M∑
k=1

[ak cos(kωt) + bk sin(kωt)] + Z(t) (260)
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where the random variable Z(t) is assumed to have the infinite divisibility property.

Realistically, the decomposition problem starts with a sample of N ∈ N observations,

ΛN = {S(t1), S(t2), . . . , S(tN)} (261)

and we wish to find the best approximation of (260) on the Hilbert space

Hν = C⊕ L2([0, 2π/ν]) (262)

that is to associate to ΛN a vector of coefficients corresponding to the linear part (trend)

(β̂0, β̂1) ∈ C and the oscillatory part

∑
n∈Z

ĉne
inνt ∈ L2([0, 2π/ν]), (ĉn)n∈Z ∈ `2(Z) (263)

Evidently, the main difficulty resides is the proper choice for the parameter ν ∈ (0,∞),

absent any information about the period of the oscillatory part of the signal, 2π/ω.

Formally, the decomposition is found by projecting the derivative of the signal (260) onto

L2([0, 2π/ν]), which then leaves only the determination of the constant terms β̂0 to be

accomplished by the Gauss-Markov theorem. Algorithmically, the numerical derivative

of the signal would be computed from ΛN in o(N) operations, and the projection would

add (according to Wiener’s theorem) another o(MNω/ν) operations.

However, this is only true under the assumption that the true period of the signal,

2π/ω, is known. While many practitioners may find it reasonable to assume the value

of the period based on a visual inspection of the data (or worse yet, intuition), this is

not justified in general, as the process may contain various forms of cycling behavior,

potentially with multiple period values and complex interplay between cycles. Therefore,

all the theoretical results surveyed thus far may be seen as impractical in the real-world.

To illustrate this, consider the simple computation of the Fourier coefficients for the

component cos(ωt) from the oscillatory part of the signal.
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The projection coefficients

∫ 2π/ν

0

cos(ωt) cos(nνt)dt =
ω[cos(2πω/ν)− 1]

ω2 − n2ν2
(264)

will require computations up to n corresponding to the closest rational approximation

of ω by nν, assuming that ν ∈ Q. But this is to say that for arbitrary values of ω,

the sample selection may be insufficient and cause the algorithm to fail. In other words,

there is no way to predict the minimum sample size N and the observation times {tk}Nk=1

needed for the application of the method. At the very least, these results highlight the

inherent complexity of the problem, displaying once again where the existing methods

and theory fall short of what is needed.

3.3.1 Large Deviations Functional and Optimal Sampling

The aim of the approach to be described in this section is to provide the mathematical

framework for an algorithm to select the distribution of observation times (in a Bayesian

sense) in such a way that the iterative process is proven to converge and that asymptoti-

cally it has for a limit the optimal distribution yielding the period of the oscillatory part

of the signal and the best estimators for both trend and cycle components of the signal.

This, of course, is no small task.

To begin, consider a simpler case of the signal:

S(t) = β0 + β1t+ a cos(ωt) + b sin(ωt) +B(t), (265)

where the parameters β0, β1, a, b, ω and the variance σ2 of the martingale B(t) are not

known. Let p(t) denote the discrete distribution ofN observation times {tk}Nk=1, and ζ > 0

an auxiliary variable to be used in the asymptotic approximation of the large deviations

functional for the process S(t). Computing the characteristic function of the signal S(t)

with respect to the distribution p(t), we have (by the independence assumption):

φS(λ) = E(eiλS(t)) = eiλβ0E(eiλB(t))
∑
k∈Z

[ikJk(aλ) + Jk(bλ)]E(ei(kω+λβ1)t) (266)
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Denoting by ϕp(λ) the characteristic function of the distribution of observation times

{τk = tk − t1}Nk=1 reset to begin at 0, we arrive (in the case of Gaussian noise) at the

expression

φS(λ) = eiλ(β0+β1t1)e−
σ2λ2

2 ϕp(−iλ2)
∑
k∈Z

[ikJk(aλ) + Jk(bλ)]ϕp(kω + λβ1) (267)

where we have used generating function formulas for the Bessel functions of the first

kind. As the distribution p(τ) has compact support, we can use analytic continuation

and write the moment-generating function for this distribution, mS(x) = φS(−ix), by

setting λ = −ix in (267):

mS(x) = ex(β0+β1t1)e
σ2x2

2 mp(x
2)
∑
k∈Z

[ikJk(−iax) + Jk(−ibx)]mp(β1x− ikω) (268)

Clearly, we have the conjugation identities

mp(β1x− ikω) = mp(β1x+ ikω) (269)

which ensure, together with the properties of integer-index Bessel functions, the reality

of mS(x) for real argument, and the following time - translation invariance result:

Theorem 3.10. If β1 = 0, the model (265) with Gaussian noise has a stationary moment-

generating function mS(x) independent of our choice of starting time t1.

Moreover, in this case, uniform sampling of τ over the interval [0, 2πn
ω

], n ∈ N, allows

us to retrieve the Wiener filtering result explicitly:

Theorem 3.11. If β1 = 0, the model (265) with Gaussian noise and uniform sampling

τ ∼ U [0, 2πn
ω

], n ∈ N has the moment-generating function

mS(x) = eβ0x+σ2x2

2 mp(x
2)[I0(ax) + I0(bx)] (270)

where In(z) is the modified Besel function of the first kind.

The proofs of both theorems are straightforward and largely computational.
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For the general case, we expand the Bessel functions into power series as entire func-

tions of the argument, which leads to the formula

mS(x) = eβ0x+σ2x2

2 mp(x
2)

[
mp(β1x)R0(x) + 2<

∞∑
k=0

Rk(x)mp(β1x− ikω)

]
(271)

where we have introduced the notation

Rk(x) =
(x

2

)k ∞∑
m=0

[a2m+k + (−i)kb2m+k]

(m!)(m+ k)!

(x
2

)2m

(272)

for all positive integers k.

3.3.2 Asymptotic Expansions of the Large Deviations Functional

For |x| sufficiently small, we can approximate the moment-generating function as follows:

mS(x) ' eβ0x+
σ2+2〈T 〉

2
x2
{

1 + [(β1 − bω)〈T 〉+ a]x+
1

2

(
a2 + 2aβ1〈T 〉+ 〈〈T 〉〉β2

1

)
x2

}
(273)

with 〈T 〉 and 〈〈T 〉〉 representing the first and second moments of the distribution of

sampling times, respectively. By completing the square for the quadratic term in paren-

thesis, we can summarize this asymptotic expansion of the moment-generating function

in a distributional sense:

S(t) ∼ N
(
β0 + a+ (β1 − bω)〈T 〉, σ2 + 2〈T 〉+ (a+ β1〈T 〉)2 + β2

1V [T ])
)

(274)

which (asymptotically) expresses the distribution of the process in terms of the parameters

β0, β1, a, b, ω, and σ, as well as the first and second moments of the distribution of the

sampling times.
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3.3.3 Optimal Sampling Distribution by Jeffreys Priors Bayesian Inference

We may arrive at an iterative converging procedure, which in turn, leads to the optimal

sampling distribution, by considering the problem of Bayesian inference of the parameters

µS = β0 + a+ (β1 − bω)〈T 〉 (275)

σ2
S = σ2 + 2〈T 〉+ (a+ β1〈T 〉)2 + β2

1V [T ] (276)

characterizing the Normal approximation conditioned on the sampling distribution for

the signal S(t), by recalling that the Bayesian inference will be self-conjugate when using

Jeffreys priors, that is uniform sampling for the parameters 〈T 〉 ∈ R, V [T ] > 0. This

is consistent with the fact that for uniform distributions, sampling times form a two-

parameter family, where

T ∼ U [τ, τ + L]⇒ 〈T 〉 = τ +
L

2
∈ R (277)

and

V [T ] =
L2

12
> 0 (278)

which is to say we have the following iterative procedure:

Theorem 3.12. Jeffrey’s Sampling for the Decomposition Problem

For the process (265), let H[R× (0,∞)] be the space of Haar measures on the product

space R × (0,∞). For any L > 0, consider a sequence of measures pj ∈ H[R × (0,∞)]

uniform on [τj, τj + L] with mean τj + L
2

and fixed variance L2

12
. Then the conditional

processes (
Sj

∣∣∣〈T 〉 = τj +
L

2
, V [T ] =

L2

12

)
(279)

have unbiased sample estimators µ̂Sj , σ̂
2
Sj whose linear regression on τj and τ 2

j yields

estimates for the curvature β̂2
1 , slope âβ̂1, and the intercepts β̂0 + â and σ̂2 + â2 (i.e.

the trend-noise components of (265)). So far in this process, we have estimates for all

parameters except for b and ω, which are to be estimated in the following steps.
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Once the trend-noise components of the process have been isolated, the remaining

oscillatory component will be optimally estimated by the choice of L which matches a

multiple of the period 2π
ω

and uniform sampling. This brings us to the final theorem of

this document, which will find computational treatment and further exploration in future

research.

Theorem 3.13. For the signal S0(t) = a cos(ωt) + b sin(ωt), a sample of N observations

with distribution p will yield zero mean if and only if ωL
2π
∈ N.

The proof is immediate using the fact that the sample average of S(tn) can be written as

S(tn) = aRφ(ω) + b=φ(ω), (280)

and the characteristic function on [τ, τ+L] vanishes identically if and only if exp(ωL) = 1.

3.4 Concluding Remarks

Throughout this document, we have focused our attention on the goal of modeling and

estimating an additive stochastic process with both linear and oscillatory signals along

with Levy process noise. To this end, we have discussed a variety of topics, some more

on base than others. Wherever possible within this document, we have also focused our

attention on those points where the existing theory is inadequate for our purpose. In

terms of limitations not yet discussed, there is the issue of theoretical breadth within

this document, mostly borne about by time constraints on the project. In the always

relevant words of Blaise Pascal, “I would have written a shorter letter, but I did not have

the time.” This is not to say that the project is unfocused. Instead, these words are

meant to reflect the inherent conundrum of modern research, in that we are given time

schedules for problems that don’t always match the schedules. Regardless of this issue,

the end of this document contains new results which provide some hope for the analysis

of more complicated stochastic processes. We hope that you have enjoyed this rather

complicated expression of mathematical ability and hope also that you decide to chase

giant dissertation-like goals if that’s what you’re into. Please, be well.
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