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Abstract 

 

Induction machines are the workhorse of many military and commercial 

types of equipment. They are asynchronous machines referred to in this 

dissertation as induction motors. They are widely used due to their reliability 

in Naval Unmanned Systems like Remotely Operated Vehicles (ROV), 

Unmanned Untethered Underwater Vehicles (UUV), Autonomous Undersea 

Vehicles (AUV), and in platforms like Missiles and Satellites. These induction 

motors are mainly controlled using variable speed drive functions, i.e., 

thrusters, propellers, actuators. Though they are very robust, to harness the 

full technical benefits of induction motors, state-of-the-art drivers or 

controllers must be used to control such motors. 

  

In model-based fault diagnosis, i.e., fault detection, fault isolation, 

parameter characteristics monitoring, also called Prognostic Health Monitoring 

(PHM) system, drivers or controllers must be used with induction motors of 

AUV systems to assess when to abort the mission due to malfunctioning 

hardware issues, as well as sonar detected obstacles to bring the AUV to the 

surface for recovery.  

 



 

viii 
 

Induction motor drivers or controllers and model-based motor fault 

diagnostic systems require exact knowledge of information about all the major 

parameter characteristics of the motor, which are usually not available. These 

characteristics may be functions of joule heating, skin depth, motor linear or 

non-linear region of operation, and environmental operating conditions, to 

name a few. 

 

Novel Model-based Fault Diagnostic Systems are the primary goal of this 

research. In order to validate the proposed novel approach, an induction 

motor-based system was selected to implement and test the unified approach 

developed and used in this doctoral dissertation. Such a unified approach 

comprises of the following items: a) Proposed Model-based Fault Diagnostic 

System theoretical foundation b) applicable Control Engineering Techniques 

required in Fault Diagnostic c) System Identification & Verification d) the 

Induction Motor-based Validation system. Each of these items is a vast field 

and each constitutes a field of advanced research. This dissertation addresses 

only their relevant aspects as applicable to advance the research carried out 

and presented in this dissertation. The driven motivation of this work, the 

Model-Based Fault Diagnosis through Induction Motors, is mainly to uphold 

the Department of Defense (DoD) strenuous effectiveness, safety, and 

performance system requirements [129]. 
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Chapter 1: Introduction 

 

Electrical Engineering Systems are increasingly becoming more 

complex; thus, achieving reliability, maintainability, availability, and 

affordability is increasingly challenging. Model-based Fault Diagnosis, 

Detection, and Isolation (FDI) with all its required accompanied fields is an 

essential tool in managing these complex challenges. Model-based FDI is 

widely accepted as a powerful technique in engineering system fault diagnosis 

and more recently, in Digital Twin (DT), Digital Transformation using Model-

Based Systems Engineering (MBSE). Model-based FDI requires robust 

mathematical modeling of the system when using state space or input-output 

based models. It must account for noises, uncertainties, and disturbances ever 

present in the monitored system due to its design and operating environment. 

 

The Defense Industry is on the verge of fully integrating Model-based 

FDI systems into vehicle control systems, robots, transport systems, power 

systems, manufacturing processes, and process control systems. Model-based 

FDI efficacy in detecting faults in these systems has been fully proven [140]. 

For nearly forty years, fault diagnosis in dynamic systems and processes has 

been a research topic in Control Engineering. These research studies have 

resulted in numerous proven varieties of model-based fault diagnosis 
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approaches and techniques [78], [82-83], [85], [87], [90], [98], [104], 

[108]. In fact, the observer-based fault diagnosis has always been an active 

field of research in control theory and engineering. The essential difference 

between the state observer and diagnostic observer is that the diagnostic 

observer is an output observer while a state observer is often used for control 

purposes. The main role of the observer in a fault diagnosis system is to make 

the generated residual signals independent of the system input and initial 

conditions. 

 

This doctoral dissertation focuses on unraveling the underlying design 

aspects and computational analysis of fault diagnostic observers for electrical 

systems in a coherent way to advance its implementation in all the related 

industries and applications. It is important to highlight that the dissertation 

research outcomes align with the DoD efforts under the on-going Digital 

Transformation initiatives.  Model-based Systems Engineering is the core to 

the Digital Transformation era and is presently being used to develop the 

Digital Twin and Hardware-in-the-Loop efforts. The methodology proposed 

herein is a practical solution for complex multidisciplinary engineering 

applications.  Model-based Systems Engineering, Digital Transformation, 

Digital Twin, and Hardware-in-the-Loop techniques lend themselves easily to 

Electrical engineering. 
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Since electrical engineering covers a vast area ranging from the 

fundamental circuit card assembly to low frequency electric/electronic 

systems to microwave, infrared, electro-optical systems, power station 

system control, motor control, among others, the layout of diagnosis systems 

in electrical engineering systems is a complex challenge that entails many 

individual steps. Complete understanding of each element of the design 

requires knowledge of theory from various subjects. Engineers working in 

these multidisciplinary areas need to have a broad understanding of these 

multiple elements and see how many of them are analogous due to their 

physics properties, or which display mathematical dualities. For instance, 

analogies between electrical, mechanical, thermal, and fluid systems are 

extremely helpful for engineers who can readily use these analogies in their 

design, analysis, and or implementation. 

 

In system engineering, the coupling of different disciplines of science, 

engineering, technology, and applied mathematics make many Model-based 

fault diagnosis methods challenging to implement into real systems. Such 

implementation requires an engineer with broadband theory and practical 

knowledge in the relevant disciplines that may be beyond the scope of the 

engineer’s ability if one has not studied or not yet worked in these disciplines. 

The Model-based fault diagnosis will monitor the system about an expected 
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point of operation. This will allow the option of linear models as a simple 

alternative to the more complex nonlinear model systems. 

 

The proposed method is a novel approach to model-based fault 

diagnosis. This research is composed of steps of exploiting linear machine 

identification processes connected with the model-based residual technology 

challenge. The novel techniques set forth herein are validated using an 

induction motor that is widely used as electrical drives to convert electricity to 

mechanical energy for commercial and Aerospace/Defense Industries. 

 

This dissertation is most beneficial for students and engineers. It may 

serve as a basic understanding of Model-Based Fault Diagnosis Methods. 

Furthermore, it can lead to Digital Transformation via Model-Based Systems 

Engineering (MBSE), Digital Twin (DT), and Hardware in the Loop (HIL). For 

this reason, it is imperative to introduce the key parts of all areas involved to 

facilitate the understanding. The interested readers should refer to the 

reference section, which is quite exhaustive. 

 

1.1 Objective, Motivation, State of the Art, and Background 

There are many issues in complex engineering systems that keep 

eluding the model-free fault diagnosis method.  Modular testing of assemblies 

is common for systems that have several levels of testing and assembly. These 
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systems are susceptible to "ReTest OK" (RTOK) diagnostic conditions or 

"CanNot Duplicate" (CND) that considerably increases life cycle costs. It is 

vital to reduce the number of "RTOKs" and "CNDs." Focusing on fault 

accountability and test tolerances are the classical approaches used for that 

goal. To have an effect in reducing "RTOK" or "CND," these approaches require 

an exchange of data between design groups during the project development 

phase [142]. 

 

Fault accountability analysis ensures faults that are detectable by the 

higher levels of testing are also detectable by the lower levels of testing. For 

example, if a circuit card fault-open causes a system to fail, the fault must 

also be detectable by a Built-in-Test (BIT) system. A fault accountability 

analysis must verify that the same fault is detectable by offline testing of the 

circuit card. Failure to do so creates the diagnostic condition of RTOK or CND. 

Similarly, a CND or RTOK may occur if tolerances are not “tighter” at each 

lower level. The fault detection test report will record the test parameter 

regime of operation and all information about detected faults or failures for all 

modes of the BIT testing. This report can be designed to record the health 

information of the system, i.e., the fault parameter values that affect regular 

system operation. A Failure Mode and Effects Analysis (FMEA), verifying test 

tolerances, and creating a fault accountability matrix is essential in reducing 

CNDs. 
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An FMEA task is an excellent example of a hierarchical fault 

accountability analysis. Failure Mode and Effects Analysis (FMEA) is the 

mapping of faults to the functional operations of the system.  

 

An FMEA will typically identify the effect of component level failures or 

functional system failures on system operation. Besides a hierarchical 

analysis, it is essential to identify the boundaries between the levels of 

indenture. The diagnostic point is one solution to the boundary problem. It 

can be any point in the system where an assembly joins another assembly. 

Assemblies may join higher or lower indentures within a vertical accountability 

axis. In a horizontal axis, assemblies may join other assemblies of the same 

indenture. That is, assemblies or items inside the same subsystem may be 

linked together and connected to the subsystem. The diagnostic point captures 

the physical connectivity as a single data element. The diagnostic point is a 

physical representation of the hardware. The measurements made at a 

diagnostic point are the result of test implementation at each level of 

assembly. 

 

A solid-state power amplifier (SSPA) bias network in a communication 

device can illustrate a fault causing the DC offset to exceed acceptable 

tolerances if the amplifier serves as an input to a low pass and high pass filter. 

The fault will quickly propagate through the low pass filter. However, the high 
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pass filter will block the effects of the DC offset fault. A fault detected by a 

function may not affect the operation or propagate through adjacent functions. 

The model-free fault diagnosis method will have difficulty identifying and 

isolating this noncontiguous fault (Filtered or Blocked) fault condition. 

 

In RF-Microwave circuit design and analysis, there is a simple case of a 

noncontiguous fault, also called filtered or blocked fault that can elude the 

model-free fault diagnosis method even when the engineer is an RF-

Microwave engineer and is aware of this condition as described. 

 

These classical approaches, fault accountability, fault accountability 

matrix, and FMEA, can become tedious, cumbersome, and ineffective for 

certain types of faults. Therefore, advanced methods of fault supervision and 

fault diagnosis that can perform early detection of minor amplitude faults with 

abrupt or incipient time behavior are needed. These methods must be able to 

perform diagnosis of faults in all the monitored constituents (i.e., LRUs and 

CCAs, the actuator, and process components), which can perform fault 

detection in closed loops and monitor systems in transient states. 

 

The model-based fault diagnosis method is a scheme that uses a 

mathematical model of the monitored systems. In contrast to the model-free 

fault diagnosis, the model-based fault diagnosis uses analytical redundancy, 



 

8 
 

which compares system measurements with analytically computed values of 

their respective variable.  Although developed for different purposes by control 

engineering researchers, all model-based fault diagnosis systems use the 

monitored system model.  Algorithms are developed and implemented based 

on the system model for interpreting data that are collected and recorded 

during the system operation. 

 

Even when using the most advanced model-based fault diagnosis 

method, fault detection becomes challenging to implement because of 

unknown inputs like disturbances, the effect of noise, and modeling errors. 

When unknown inputs like disturbances influence the system, it is impossible 

to detect faults if their influence is smaller than the influence of the 

disturbance in the residual signals.  Recognizing this fact, model-based fault 

diagnosis with various strategies that decouple disturbances from residuals to 

handle noise is used. Among these strategies are parity space design observer 

based, Kalman filter, and parameter estimation techniques [20], [30], [32], 

[49], [54], [74]. It is worthy to note there exists a one-to-one mapping 

correspondence between parity space and observed-based residual 

generators. 

 

It is certain that the fault detection scheme has succeeded if it is robust 

to unavoidable modeling uncertainty challenges to prevent any false alarm 
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[126]. Those uncertainties are external disturbances and system model 

mismatches. In this work, a novel robust linear fault diagnosis methodology 

using a linear analytic redundancy technique is developed that can easily be 

adjusted to handle nonlinear conditions. The methods in this research may 

also be used for Fault Prognosis i.e., System of Prognosis Health Management; 

and Fault Accommodation, which is the ability for the system to continue the 

mission under a fault condition. The detailed theoretical development, along 

with the simulation results, is presented in this dissertation. 

 

Although many linear and nonlinear approaches are in use in many 

applications, robust FDI is still a challenge open to research. Guaranteeing 

that faults can be detected and isolated, mathematical models of the process 

under investigation are required, either in state-space or input-output forms. 

Residuals should then be processed to detect faults and rejecting any false 

alarms. However, in an actual fault detection situation, the straightforward 

application of model based FDI techniques can be difficult due to the dynamic 

model complexity. 

 

The system analytical model is configured to carefully encompass all 

relevant details to the analysis and the deployment of the real system in its 

operating environments. This renders almost unfeasible the use of many cited 

FDI methods because of their intrinsic complexity. Thus, an alternative 
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procedure for the practical application of FDI techniques is necessary in 

practical cases. 

 

Two practical aspects of this dissertation are stressed. A thorough 

mathematical, and physical models may not be necessary if a dynamic model 

identification method for FDI that is successfully used. Therefore, if a thorough 

mathematical and physical models of the system is not readily available from 

the design team, a linear mathematical model of the state variables or the 

input-and-output links may be obtained through system identification 

techniques. The latter approach provides a reliable model of the system under 

investigation as well. Linear prototypes for designs of linear output estimators 

have been developed instead of using nonlinear models. This is considered 

essential to avoid the complexity that would otherwise be inevitable when 

nonlinear models are used. Since monitoring the operation and performance 

of the system to an expected point of operation is the issue, linear system 

methods are very valid. Because this operation will be seen and pointed out 

during development and the implementation of the fault diagnosis that is done 

using an induction motor. Induction motors are the workhorse commonly used 

in systems that require control speed. They have nonlinear characteristics that 

can present a challenge to system identification and fault diagnosis. However, 

as stated above, the operation and the performance of the Induction Motor 

for an expected point of operation can be monitored. The linear system 
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methods for nonlinear systems have proven to be very valid [105]. The main 

challenges are to provide the technology for the system fault diagnosis. The 

approach being evaluated has an important implication on the use of on-line 

fault diagnostic tools. 

 

Additionally, Model-Based FDI method has overlapping tasks with Digital 

Transformation using Model-Based Systems Engineering (MBSE) principles, 

Digital Twin (DT), Hardware in the Loop (HIL) that facilitate system 

effectiveness, system requirements and system affordability. 

 

This dissertation sets forth an innovative hybrid method for fault 

diagnosis, with a wide field application that includes fault accommodation, 

anti-tampering, system security, health monitoring, and prognosis in dynamic 

engineering and structural systems. This dissertation has been developed and 

written by concentrating on both the theoretical and application aspects of the 

hybrid method, with a lesser focus on experiment and validation. The 

Induction Motor Driver and Controller section provides explanation of 

underlying motor physics modeling and where motor and control are 

discussed. The Induction Motor Driver and Controller used in this research is 

a Commercial Off the Shelf Item (COT) purchased from Texas Instrument (TI). 

The testing section where parameter estimation, experiments, and all related 
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topics are discussed, and a Fault Diagnosis section where Fault Diagnosis 

physics and techniques are discussed and implemented in MATLAB. The way 

to connect the different parts stated above is laid out in detail so that only a 

minimum background is required to follow the denouement from introduction 

to conclusion. 

 

The State of the Art of fault diagnosis means gauging fault diagnosis as 

it is mainly implemented in the industry today. Detecting fault and isolating 

failures or fault states of in an aerospace or military equipment are always 

part of a request for proposal (RFP) from the Department of Defense because 

fault detection and isolation is necessary for operation and maintenance of the 

equipment and the digital twin facilitator. Conventionally, classical fault 

diagnosis is performed in-situ or ex-situ. The in-situ fault diagnosis is plagued 

with challenges as stated above. The ex-situ fault diagnosis is plagued with 

challenges and is not dynamic detection. 

 

Failure Modes, Effects, and Criticality Analysis (FMECA) is the classical 

approach in the design of fault diagnosis systems. It involves the following 

steps: 

• System Built-in-Test (BIT) requirement  

• Allocating the BIT requirement to the Subsystems 
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• Develop the Concept of the BIT Testability in Hardware and Software 

Design Requirement Documents 

• Analyze the Test Requirement Documents to ensure where to place the 

BIT electrical circuits and instruct the Software Engineer how to write 

the test algorithm for the device to be monitored. 

• Review the draft Design Requirement Documents with Designer, 

Electrical, Software Engineers. 

• Develop the initial FMECA. 

• Document and evaluating failure modes and safety critical issues. 

• Perform the BIT analysis and prediction based on the FMECA. 

• Develop the BIT based on new and existing tests. 

• Proving the hardware and software Design Requirement Documents to 

the software engineer to implement the BIT algorithm and software. 

 

The FMECA approach has many weaknesses. For instance, FMECA may 

not be able to identify some failure modes during the design phase, as well as 

other undetectable root causes. Thus, the engineer must combine the FMECA 

with failure mode distribution (FMD) historical data to attempt to capture most 

of them. Not only do the FMECA or the classical based fault diagnosis not up 

to the tasks, but in hardware and software Design Requirement Documents 

the BIT algorithms does not account for Gaussian and Laplacian Noises Effects 
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on Parameters. Refer to dissertation IEEE published paper for more drawbacks 

on classical fault diagnosis [142]. 

 

In addition, the fault isolation of this approach requires subsequent 

Bayesian test networks, Bayesian and other statistical analyses of the BIT test 

results especially in the cases where many BIT tests are used when there is 

ambiguity or non-linearity condition, thus, the fault cannot be easily isolated 

to a particular component or module. The isolation result is forced to give 

three or more possible candidates that may potentially have failed. 

 

The fault isolation problem is tedious and has high data dependency. It 

estimates dependencies and relations between the BIT tests and the item, 

with a set of training data. Then, the BIT software algorithm calculates the 

diagnoses when BIT test results make an isolation. The tedious computations 

may be performed on-line or offline depending on the system storage 

capacity. 

 

FMEA is an inductive approach, whether it is a Systems FMEA (SFMEA), 

Design FMEA (DFMEA), Process FMEA (PFMEA) or a Failure Modes, Effects, and 

Criticality Analysis (FMECA) are used to identify defects at the device, 

component, module, line replaceable unit and subsystem level. Their effects 

are assessed on the next two or more assembly levels. 
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The industry has been searching a fault detection and isolation system 

that considers and solves some of the issues with the classical fault detection 

and isolation as well as serving as a springboard for the Digital Transformation 

era initiated by the DoD. The model-based fault diagnosis proposed in this 

dissertation serves that purpose. It provides a control engineering approach 

to detect fault aerospace of military equipment without the tedious ineffective 

steps in the classical approach described above. Model-based fault diagnosis 

methods uses the LRU, module or the equipment physical model of the system 

and the expected values in normal operating conditions.  In addition, it makes 

use of observers which are a mathematical structure that combines sensor 

and or system output and system voltage or current input signals with its 

physical models. The observer provides optimum feedback signals. Its results 

have no dependence on the data source for fault isolation and provide good 

dynamic performance. 

 

In the chapter that follows, a brief summary of the induction motor 

principle of operation is in order so that the link can be established how 

Electrical engineering lends itself easily to Model-based Systems Engineering, 

Digital Transformation, Digital Twin, and Hardware-in-the-Loop techniques.   
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Chapter 2: Induction Motor Brief Characteristics 

 

2.1 Characteristic Understanding for FDI Implementation 

The use of AC induction motors in dynamic system engineering is 

challenging because of their complex mathematical model, nonlinear 

characteristic during saturation, and the temperature-dependent nature of 

their electrical parameter oscillation. 

 

These complexities render induction motors a challenge for motor 

controller, driver, and Model-Based Fault Diagnostic designers. Vector or 

scalar control, drive algorithms, and a microcontroller are needed to operate 

the type of motors. In this dissertation, a TI scalar controller controls the 

motor during the system identification experiments. The environmental 

operation of the motor is steady-state using simple voltage excitation, 

current-controlled, or speed-controlled techniques. The motor scalar control 

transient and the nonlinear characteristics are not ideal; however, its steady-

state results are helpful for this purpose. 
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In this chapter, the induction motor model for transient and steady-

state operating conditions is derived. The model parameter values are 

calculated using System Identification and Parameter Estimation methods.  

 

The magnetic field's configuration in the motor rotor is created by 

induction. Thus, it is credited the name induction or asynchronous motor. The 

induction motor external excitation or power source is connected to the stator 

windings; however, the rotor itself in an induction motor is not externally 

excited, so there is no need for mechanical connectors like slip rings and 

brushes utilized in other motor types. 

 

The key factor here is in the aluminum or copper squirrel-cage type 

induction motor.  The three-phase squirrel cage induction motor is widely 

used, effortless, inexpensive, and has a reliable machine design. Its rotor has 

electrically shorted and non-accessible conductors with conducting bars 

installed in the rotor. The slots are short-circuited at both ends of the rotor 

structure and the bars are arranged parallel to the rotor axis and attached by 

a thick conducting ring at the ends, forming a short circuit. 

 

The alternating currents (AC) in the stator windings generate a rotating 

magnetic field in the stator and rotor air gaps. The rotating rotor and the 

stator magnetic field generate or induce a voltage in the rotor windings. This 
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induced voltage is done at different speeds.  The rotating stator magnetic field 

voltage induces currents in the short-circuited rotor conducting elements, 

which produce the rotor magnetic field interacting with the stator magnetic 

field and generates the mechanical torque output work.  These generated 

torque characteristics depend on the angle between the rotor and the stator 

magnetic fluxes. Therefore, the conditions to be met to keep the motor 

running at a constant speed in a steady state is that the rotor slip should be 

a function of the rotation speed of the stator field. Induction Motors are 

asynchronous machines. The physical definition is “In steady-state, the rotor 

rotation is not synchronized with the stator magnetic field”. The induction 

motor operates at a frequency less than that of the synchronous speed, i.e., 

the stator magnetic field. This rotating speed difference of the rotor and the 

stator magnetic fields is termed the slip of the motor. As the rotor speed picks 

up toward the synchronous one, the magnetic field of the stator, the relative 

speed of the rotor, and the stator flux (or slip) decreases. The slip decrease 

causes the induced voltage in the stator to drop, resulting in a reduced torque. 

 

2.2 Operating Principles to Facilitate FDI Implementation 

The AC induction motor has a solid rotor and stator. The currents in the 

stator windings are generated by the exciting phase voltages, which drive the 

induction motor. These currents generate a rotating magnetic field or a stator 

field governed by the winding currents and the number of turns in the phase 
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windings. The rotating magnetic field is analogous to the electric voltage and 

the magnetic flux to the electrical current. The stator magnetic field has a 

higher rotation speed than the rotor speed; thus, it generates an induction 

current in the rotor, which creates a rotor magnetic field. The fluxes produced 

by the stator and rotor magnetic fields give rise to the rotor torque. The stator, 

rotor technical explanation, and detail operating principles of induction motors 

are found in the 6th Edition publication of Electrical Machines, Drives and 

Power Systems, by Theodore Wildi [1]. 

 

A 3-pole pair stator with 5-turn winding each connect in series to 3-

phase terminal configuration [a-a], [b-b], and [c-c] giving rise to three 

identical sets of windings. They are as follows: phase/line A to neutral N, 

phase/line B to neutral N, phase/line C to neutral N, that are mechanically 

spaced at 120° to each other [1]. 

 

When the stator is excited by a 3-phase supply and the rotor is short-

circuited, the induced voltages in the rotor conductor bars generate a rotor 

current that interacts with the air gap field to create the torque. If the rotor is 

unlocked, it will rotate in the direction of the stator rotating field. According 

to Lens law, the relative speed between the stator rotating field and the rotor 

speed will decrease. At a steady state, the rotor speed is less than the 

synchronous speed of the stator rotating field in the air gap. During operation, 
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the only time the induced voltage and current in the rotor conductors are zero; 

is when the rotor speed equals the synchronous speed of the stator rotating 

field in the air gap. 

 

The rotational speed of the field depends upon the duration of one cycle. 

The duration of one cycle depends on the frequency of the source. For 

example, suppose the frequency is 60Hz (60 cycles/second) or 3,600 

revolutions per minute in an induction motor with P poles, one cycle of 

variation of the current will cause the magneto-motive wave to rotate 2/P 

revolutions. The revolutions per minute “n” of the traveling wave in a P-pole 

motor is given below. 

𝑛 =
2∗𝑓∗60

𝑃
=

120𝑓

𝑃
                    (1) 

The physical meaning of slip is described as the difference between the rotor 

speed “n” and the stator synchronous speed “ns”, of the rotating field. 

 

𝑆 =
𝑛𝑠−𝑛

𝑛𝑠
  or 𝑆 =

𝜔𝑠−𝜔𝑟

𝜔𝑠
                  (2) 

That is, the rotor is slipping behind the rotating field by the slip rpm given 

below as: 

   
𝑆𝑟𝑝𝑚 = 𝑛𝑠 − 𝑛 = 𝑆 ∗ 𝑛𝑠                (3) 

 

Let the frequency “f2” be the rotor circuit slip frequency because this is the 

relative velocity between the non-rotor rotating field and the solid rotor field. 

Thus, the slips frequency is the frequency of the induced voltage and current 

in the rotor. 



 

21 
 

 
𝑓2 =

𝑃

120
(𝑛𝑠 − 𝑛) =

𝑃

120
𝑆 ∗ 𝑛𝑠 = 𝑆𝑓1                   (4) 

 

𝑓1 =
𝑃

120
𝑛𝑠                 (5) 

At the slip velocity, one may the induced voltage formula is given below. 

𝐸2𝑠 = 4.44 𝑓2𝑁2𝜙𝑝𝐾𝑤2 = 𝑆𝑓1𝑁2𝜙𝑝𝐾𝑤2 = 𝑆𝐸2           (6) 

where: 

E2 is the induced voltage in the rotor circuit at a standstill that is a stator 

frequency f1. “Kw” range [0.85 to 0.95] is the winding reduction factor 3-

phase motors. “N” is considered to be the overall number of series turns for 

each phase with turns forming a concentrated full pitch winding. 

𝜙𝑝 is the air gap flux per pole 

𝜙𝑝 = 2𝐵𝑚𝑎𝑥𝑙𝑟 

“I” is the axial length of the stator. 

“r” is the radius of the stator at the air gap. 

“B” is the magnetic field.  

 

The induced currents in the rotor generate a rotating field. Its speed 

rpm_n2 with respect to the rotor is: 

𝑛2 =
120𝑓2

𝑃
=

120𝑆𝑓1

𝑃
= 𝑆𝑛𝑠               (7) 

The rotor is rotating at a speed n_rpm. The rotor field rotation is confined in 

the air gap. Its speed in “rpm” is formulated as follows: 

𝑛 − 𝑛2 = (1 − 𝑆)𝑛𝑠 + 𝑆𝑛𝑠 = 𝑛𝑠               
(8) 
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Both the stator and the rotor field rotations are synchronized and 

confined in the air gap. Therefore, the stator magnetic-field vector and the 

rotor magnetic-field vector are stationary. The stator magnetic-field and the 

rotor magnetic-field coupling produces the torque phenomenon. 

 

In the above chapter, the induction motor, principle of operation, 

characteristics, and parameters of primary importance to the Model Based 

Fault Diagnosis were recapped as basis parameters that will either be 

measured during the experiments; or calculated by the MATLAB code or the 

observers. 

 

In the following chapter, the various control schemes of the Induction 

Motor, the Texas Instrument (TI) High Voltage Digital Motor Control Kit used 

in the dissertation experiments are explained. Additionally, the induction 

motor and its datasheet showing the parameters whose specific shift will cause 

a fault, are introduced. Finally, the TI macro definitions are given so that the 

experiment can be reproduced easily. 
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Chapter 3: Control Scheme of Induction Machines 

 

3.1 Hardware Overview for Scalar Control  

The motor drive system used in this dissertation is connected to a single-

phase AC power supply. Such system contains additional hardware to 

generate the required three-phase power to the AC motor including a Power 

Factor correction block. The Power Factor is formulated as the useful power 

divided by the total power. It has no effect in the operation of the motor and 

it serves to neutralize the magnetizing current.  It is needed because the 

motor magnet or its magnetizing current as well as the voltage are out of 

phase. The additional Power control sub-systems are configured and identified 

on the Texas Instrument High Voltage Digital Motor Control and the Power 

Factor Correction tool kit TMDSHVMTRPFCKIT motor driver board.  This driver 

board is composed of numerous macroblocks [110]. Figure 3.1 depicts the 

power factor correction connection in the motor drive configuration.   

 

Figure 3.1  Motor Drive System Using Power Factor Correction [111] 

 
Note. From “High Voltage Digital Motor Control Kit Quick Start Guide” by TI 

Quick Start Guide, page 4. 

Copyright © 2010, Texas Instruments Incorporated. Reprinted with 
permission. 
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The tool kit TMDSHVMTRPFCKIT offers a convenient way to implement 

digital control methods in high voltage induction motors. 

 

3.1.1 Features of the High Voltage Motor Control  

The Texas Instrument (TI) High Voltage Digital Motor Control Kit, shown 

in Figure 3.2, contains [110-118] one High Voltage DMC board, called F28035 

controlCARD, a 15 Volts DC Power Supply slot for the control CARD, an AC 

power Cord, a Banana Plug Cord, an USB Cable CCS4 CD and an USB Stick 

with QuickStart GUI and Guide. 

 

Figure 3.2  TI TMDSHVMTRPFCKI, [117-118] 

 
Note. From “High Voltage Digital Motor Control Kit Quick Start Guide” by TI 

Quick Start Guide, page 2. 
Copyright © 2010, Texas Instruments Incorporated. Reprinted with 

permission. 

 

3.1.2 System Overview of Scalar Control  

The High Voltage Motor control contains a 3-Phase Inverter Stage 

capable of “sensor-less” and “sensor-red” Field-oriented Control (FOC) of high 

voltage ACI and Permanent Magnet Synchronous Motor (PMSM) motor and 

trapezoidal; and sinusoidal control of the high voltage brushless DC Motor 
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(BLDC).  In addition, it contains a 350 Volts DC maximum input voltage source 

and one KW maximum load. In the bullets below, other board specifications 

are presented.  

• Power Factor Correction stage rated for 750 Watts which takes rectified 

AC input with two different ranges, i.e., one from 85 volts to 132 Volts 

AC and a second one from 170 Volts to 250 Volts AC with a 400 Volts 

DC Maximum output voltage 

• AC Rectifier stage rated for 750 Watts maximum power which accepts. 

85 Volts to 132 Volts AC with 170 Volts to 250 Volts AC input 

• Aux Power Supply Module (400Vto15V&5V module) generates 15V and 

5V DC from rectified AC voltage or the PFC output (input Max voltage 

400V, min voltage 90V). 

• Isolated CAN, SCI & JTAG 

• Four PWM DACs to observe the system variables on an oscilloscope.  

    The Motor picture is shown in Figure 3.3 below. 

 

Figure 3.3  AC Induction Motor Model #HVACIMTR [118] 
 

Note. From “High Voltage Digital Motor Control Kit Quick Start Guide” by TI 
Quick Start Guide, page 3. 

Copyright © 2010, Texas Instruments Incorporated. Reprinted with 

permission. 
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Table 3.1  Marathon Induction Motor Parameter   

Marathon 5K33GN2A ¼ Induction Motor 

Parameter   

Values 

Stator resistance (Rs) 11.05 ohms 

Rotor resistance (Rr) 6.11 ohms 

Mutual inductance (Lm) 0.293939 H 

Stator inductance (Ls) 0.316423 H 

Rotor inductance (Lr) 0.316423 H 

Number of pole (p) 4 

Power ¼ hp 

Load inertia (J) 0.0006 2 kg-m2 

Viscous friction coefficient (F) 0.0008 (N.m)/(rad/s) 

 

 
 

Figure 3.4  TI HVDMCMTRPFC Kit Board Macros [110 –115] 

 
Note. From “High Voltage Digital Motor Control Kit Quick Start Guide” by TI 

Quick Start Guide, page 5. 
Copyright © 2010, Texas Instruments Incorporated. Reprinted with 

permission. 

 

The Texas Instrument (TI) list of all the macroblock names present on 

the board and a short description of their functions are described below and 

detailed in references [110-118]. 
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• HVDMC: Main Board [Main] – Consists of control CARD socket, 

communications (isoCAN) block, Instrumentation Digital-to-analog 

converters (DAC’s), Quadrature Encoder Pulse (QEP) and CAP 

connection, and routing of signals between the macros and to the 

control. 

• M1: AC-Power Entry that rectifies the AC power that it receives house 

wall power supply source. This rectified voltage of M1 may be either 

served as the input of the PFC stage or to excite directly the DC bus for 

the inverter. 

• M2: Aux Power Supply Module is able to receive up to 400V input and 

output powers of 5 Volts and 15 Volts DC. The rectified AC input may be 

directly connected to the Aux Power module. PFC stage Output can be 

used with appropriate jumper settings Aux Power module as well. 

• M3: Iso-USB-to-JTAG Macro supplies the board with an isolated JTAG 

connecting the USB and the host. It can be used for communication for 

connection with the Graphic Unit Interface (GUI). 

• M4: PFC-2PhiL Macro is a 2-phase interleaved Power Factor Correction 

stage that serves to improve drive efficiency. 

• M5: 2Ph-HV-3 shunt Macro, an analytical 3-phase inverter for control of 

AC motors. 
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• M6: DC-Pwr Entry Macro is the DC power entry, used for the 15 Volts, 

5 Volts, and 3.3 Volts for the board from 15 Volts DC power supply 

supplied with the TI kit. 

 

In order to quickly find a component, i.e., a jumper, a wire, components 

are referred to their macro number in the brackets. For example, [M3]-J1 

would refer to the jumper J1 located in the macro M3, and [Main]-J1 would 

refer to the J1 located Figures 3.5 and 3.6 below illustrate the jumper and 

connectors that need to be connected. 

 

Figure 3.5  Generating DC Bus Power with AC Power [111] 

 
Note. From “Sensored Field Oriented Control of 3-Phase Induction Motors” 

by TI, page 16. 
Copyright © 2013, Texas Instruments Incorporated. Reprinted with 

permission. 
 



 

29 
 

 

 

Figure 3.6  DC-Bus for the Inverter with DC Power Supply [111] 
 

Note. From “Sensored Field Oriented Control of 3-Phase Induction Motors” 
by TI, page 17. 

Copyright © 2013, Texas Instruments Incorporated. Reprinted with 
permission. 

 

The real-time control framework "C" used to demonstrate the scalar 

control of induction motors for the TI TMS320F2803x-based controllers Code 

Composer Studio is shown in Table 3.2, which contains the list of the TI Macro 

names [110-118]. The overall system implementing the induction motor V/Hz 

drive implementation used in this dissertation is illustrated in Figure 3.7. The 

illustration of a) the inverter of the voltage source type to control the motor 

b) the TI TMS320F2803x to provide the pulse-width-modulated six-pulse 

excitation are shown. 
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Table 3.2 TI Macro Names  

TI Macro Names Definition/Explanation 

Proportional Integral (PI) Micro 
means: 

Proportional Integral (PI) Regulator 

Ramp Controller (RC) Micro 

means: 

Ramp Controller (slew rate limiter) 

Voltage and Hertz (VHZ) PROFILE 

Micro means: 

Voltage and Hertz (VHZ) Profile 

Quadrature Encoder Pulse (QEP) 
/ CAP Micro means: 

Quadrature Encoder Pulse (QEP) and 
CAP Drives 

SPEED_PR Micro means: Speed Measurement, derived from 
sensor signal period 

SPEED_FR Micro means: Speed Measurement, derived from 

sensor signal frequency 

SVGEN_MF Micro means: Space Vector Pulse Width Modulator 

(PWM) (based on magnitude and 
frequency) 

PWM / PWMDAC Micro means: Vector Pulse Width Modulator (PWM) 

and PWMDAC Drives 

 

 

Figure 3.7  The Induction Motor V/Hz Drive Implementation [111] 
 

Note. From “Scalar (V/f) Control of 3-Phase Induction Motors” by TI, page 9. 
Copyright © 2013, Texas Instruments Incorporated. Reprinted with 

permission. 
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The hardware of the control system contains various solid-state devices. 

Solid-state control provides smoother control and higher efficiency. Multiple 

types of converters used to control electric machines are listed below. 

• AC Voltage Controller (AC to AC):  An AC voltage controller converts a 

fixed voltage AC to a variable voltage alternating current used to control 

the speed of an induction machine (voltage-control-method) and 

smooth induction motor starting. 

• Controlled Rectifier (AC to DC):  A controlled rectifier converts a fixed 

voltage AC to a variable voltage Direct Current (DC) used primarily as 

parts of the DC motor speed control device. The output voltage and 

output power can be controlled by controlling the instants at which the 

semiconductor devices switch. Thus, controlled rectifiers are parts of the 

DC motor speed control device. Some controlled rectifiers can convert 

DC power to AC power, which is known as inversion. This inversion mode 

of operation is used for regenerative braking of motors 

• Inverter:  Inverters are static circuits that convert power from a DC 

source to AC power at a specified output voltage and frequency. 

• Voltage Source Inverters (VSI):  In the voltage source inverter, the 

input is a DC voltage supply, and the inverter converts the input de 

voltage into a square wave AC output voltage source. 
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• Current Source Inverters (CSI):  In the current source inverter, the 

input is a DC current source, and the inverter converts the input DC 

current into a square-wave AC output current. 

• Chopper (DC to DC):  A chopper converts a fixed voltage DC to a variable 

voltage DC. It is used primarily to control the speed of de motors. 

• Inverter (DC to AC):  One role of an inverter is to convert a fixed Direct 

Current (DC) voltage to an either fixed or variable Alternating Current 

(AC) voltage with variable frequency. It has the ability that can be used 

to control AC motors. 

• Cyclo Converter (AC to AC):  One of the roles of a cyclo converter is to 

transform a fixed voltage and fixed frequency Alternating Current (AC) 

to a variable voltage and variable frequency Alternating Current (AC). 

• Pulse Width-Modulation (PWM) Inverters:  While induction motors speed 

is controlled, its voltage varies as a function of the frequency to keep 

the flux level constant. The output voltage of an inverter can be varied 

by changing the pulse width of each half-cycle of the inverter output 

voltage inverters with multiple pulses in each half-cycle of the inverter 

output voltages can reduce the harmonic content.  

 

The illustration in Figure 3.8 is a Texas Instrument (TI) TMS320F2803x.  

It has a modulating six-pulse width. Each inverter leg is a 2-way switch. The 

voltage source inverter makes it possible to connect the 3-phase induction 
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motor to the positive or negative side of the voltage supply inverter. The six 

power switching devices in the inverter or the six inverter states yield active 

vectors (𝑈⃗⃗ 1, 𝑈⃗⃗ 2, 𝑈⃗⃗ 3, 𝑈⃗⃗ 4, 𝑈⃗⃗ 5, 𝑈⃗⃗ 6) for the terminal voltage. 

 

The configuration for Voltage/Hertz (V/Hz) Drive in Induction Motor is 

given in Figure 3.8 below [112. 

 

Figure 3.8  Voltage Source Inverter Feeding Induction Machine [110] 
 

Note. From “Scalar (V/f) Control of 3-Phase Induction Motors” by TI, page 3. 
Copyright © 2013, Texas Instruments Incorporated. Reprinted with 

permission. 

 

The Voltage/Hertz (V/Hz) control system is gradually built up, so the 

final system can be confidently operated. [110–118] 
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The Incremental System Build Block contains the following development 

levels: 

• Step1, Level 1 checks the independent target modules V/Hz and 

SVGENMF. 

• Step2, Level 2 checks the PWM excitation, A/D conversion units. 

• Step3, Level 3 checks PI Regulator and Closed Loop functionality. 

 
 

Figure 3.9  V/Hz Control System Final Build Block Diagram [118] 
 

Note. From “Scalar (V/f) Control of 3-Phase Induction Motors” by TI, page 

23. 
Copyright © 2013, Texas Instruments Incorporated. Reprinted with 

permission. 

 
 

Figure 3.10  Space Vector PWM Used in TI V/Hz Drive Control [118] 
 

Note. From “Scalar (V/f) Control of 3-Phase Induction Motors” by TI, page 6. 

Copyright © 2013, Texas Instruments Incorporated. Reprinted with 
permission 
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The frequency of the input voltage can be varied by the duration of each 

active vector. The amplitude can be varied by varying either the DC voltage 

Ud or by using PWM, the two switching states for which the machine is short-

circuited. Based on the inverter 8 switching states, the output voltages (Ua, 

Ub, Uc), the phase voltages (Uan, Ubn, Ucn), and the line voltages (Uab, Ubc, 

Uca) can easily be calculated. 

 

3.1.3  Constant Current Controlled  

The induction machine is controlled and operated at constant current by 

providing a current loop and frequency around the AC-DC converter of the 

control apparatus of the machine. Since the motor rms current I1 is the rms 

stator or terminal current out of the inverter is proportional to the PFC stage 

DC link current I or Id, the motor current can be kept at the same value as 

the control current Ic.  

 

Figure 3.11  Detailed Block Diagram for Motor Drive Control System [118] 
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In constant-current controlled operation of induction machines, the 

rotor frequency at which maximum torque is developed is much smaller. 

𝑓2_𝑏𝑟𝑒𝑎𝑘_𝑑𝑜𝑤𝑛 =
𝑅2
′

2𝜋(𝐿𝑚+𝐿2
′ )

                                               (9) 

Table 3.3 Torque and Current Expressions Summary  

Condition Per Phase Value All Phase Value 

Constant Slip 

Frequency  
𝑇𝑒 =

4𝜋𝑝𝐿𝑚
2

𝑅2
′ 𝐼1

2
𝐿2

1+ |
2𝜋(𝐿𝑚+𝐿2

′ )𝑓2

𝑅2
′ |

2 𝑇𝑒 =
𝜓𝑠
2

𝑅𝑟

𝜔𝑟(1 − 𝜎)
2

1 + (𝜎𝜏𝑟𝜔𝑟)2
 

Constant Rotor 

Frequency  𝑇𝑒 =
𝑝

4𝜋𝑅2
′ (
𝑉1
𝑓1
)
2 𝑓2

1 + (
2𝜋𝑓2𝐿2

′

𝑅2
′ )

2 
 

Constant Flux  

 𝑇𝑚𝑎𝑥 =
𝑝

4𝜋𝑅2
′ (
𝑉1
𝑓1
)
2 1

4𝜋𝐿2
′  𝑇𝑝𝑢𝑙𝑙 =

𝜓𝑠
2(1 − 𝜎)2

2𝐿𝑚𝜎
 

Constant 

Current 
𝑇𝑚𝑎𝑥 =

𝜋𝑝𝐿𝑚
2

𝑅2
′ 𝐼1

2
𝑅2
′

2𝜋(𝐿𝑚 + 𝐿2
′ )

 𝑇𝑒 = 𝐼𝑠
2𝐿𝑚

𝜏𝑟𝜔𝑟
(𝜏𝑟𝜔𝑟)2 + 1

 

𝑇𝑚𝑎𝑥 =
𝑝𝐿𝑚

2

2(𝐿𝑚 + 𝐿2
′ )
𝐼1
2 𝑇𝑚𝑎𝑥 =

𝜔𝑟
𝑅𝑟
𝜓𝑟
2 

 

Current 
𝐼1 
 

𝐼𝑠
𝑠 = 𝐼𝑡

𝑠 = 𝐼𝑠𝑒
𝑗𝜔𝑠𝑡 

𝐼𝑠 =
1

𝐿𝑚
√(𝜏𝑟𝜔𝑟)2 + 1𝜓̃𝑟 

 

Flux 𝜓𝑝_𝑝ℎ𝑎𝑠𝑒 = 
𝑉1
𝑓1

 
𝜓𝑟
𝑅 =

𝐿𝑚
𝜏𝑟𝑗𝜔𝑟 + 1

𝐼𝑠𝑒
𝑗𝜔𝑟𝑡 

𝜓𝑠
𝑅 = 𝜓𝑟

𝑅𝐿𝜎𝐼𝑠𝑒
𝑗𝜔𝑟𝑡 

 

where: 𝜔𝑠 is stator field revolution frequency or the supply frequency in radiant 

per second (rad/s) 

𝜔𝑚 is the mechanical speed of the motor  

𝜔𝑟 is the difference between stator field revolution frequency and the 

mechanical speed of the motor 𝜔𝑚. Thus, 𝜔𝑟 is the slip frequency. The 

frequency of the magnetic field arises in the rotor windings. The 1-pole pair 

relative slip is formulated in equation 10 as follows: 
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𝑠 =
𝜔𝑠−𝜔𝑚

𝜔𝑠
= 

𝜔𝑟

𝜔𝑠
               (10) 

The motor is rotating a synchronous speed implies that the slip is zero. 

𝜔𝑠 − 𝜔𝑚 = 0                      (11) 

The slip rpm (revolution per minute) is formulated in equation 12 as follows: 

𝑠𝜔𝑠 = (𝜔𝑠 −𝜔𝑚)                      (12) 

The revolution per minute of a travelling of a field wave in a p-pole machine 

for a frequency f cycles per second the current in the rotor winding is given 

by: 

𝜔𝑚 = 
2

𝑝
𝑓 ∗ 60 =  

120𝑓

𝑝
                                    (12a) 

The slip frequency is the rotor circuit frequency in cycles per second. 

𝑓2 = 
𝑝

120
(𝜔𝑠 − 𝜔𝑚) =

𝑝

120
𝜔𝑟 =

𝑝

120
𝑠𝜔𝑠                (13) 

𝑓2 =  𝑠𝑓1                        (14) 

𝑓1 = 
𝑝

120
𝜔𝑠                     (15) 

 

If the supply frequency is in radiant per second (rad/s), the stator 

rotating field speed and the rotor rotating speed are:  

𝜔𝑠 =
𝑓1

𝑝
(rad/s)              (16) 

𝜔𝑚 = (1 − 𝑠)𝜔𝑠 = (1 − 𝑠)
𝑓1

𝑝
(rad/s)         (17) 

The frequency of the induced voltage and current in the rotor corresponds to 

the slip rpm. This is the rotating speed between the rotating field and the 

rotor winding. 
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The induced current in the rotor winding produces a rotating field as 

well, known as the rotor speed (rpm) with respect to the rotor as: 

𝜔2 =
120

𝑝
𝑓2 =

120

𝑝
𝑠𝑓1 = 𝑠𝜔𝑠                (18) 

 

The stator magnetic field and the rotor magnetic field interaction align 

both fields; this alignment force generates the machine torque. The rotor is 

rotating at a speed ωm (rpm).  The induced rotor field rotates in the air gap 

at the speed:  

𝜔𝑚 + 𝜔2 = (1 −  s)𝜔𝑠 + 𝑠𝜔𝑠 , thus, 𝜔𝑚 + 𝜔2 = 𝜔𝑠 rpm                 (19) 

Thus, the stator field and the induced rotor field rotate in the air gap at the 

same synchronous speed ωs.   
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Chapter 4: Induction Motor System Testing 

 

4.1 Induction Motor Offline Test 

Induction Motor tests can be performed during normal operation or by 

designed experimental test identification. The operation conditions and input 

signals can be tailored in the experimental tests or the off-line identification 

tests to estimate one or more motor parameters. The no-load and locked rotor 

tests are part of off-line identification experiments and are the common tests 

used to identify the electrical machine parameters. Other experiment tests 

can be performed when the machine is at a standstill and the inverter of the 

drive is used to generate the signals required for parameter estimations. Some 

of the equivalent circuit parameters, i.e., Rc, Xm, R1, X1, X2, and R2, may be 

determined by just measuring the resistance of the stator winding. 

Three tests are required to evaluate the impedances of an induction 

motor:  

• DC measurements of stator DC resistance 

• AC measurements with No-load test  

• AC measurements with Blocked rotor 

 

These tests were implemented using the TI (TMDSHVMTRPFCKI) board 

controller where the three-line terminals of the stator winding are accessible. 
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Consider the winding connected in a wye-configuration, or in a Delta-

configuration for calculation purposes. It is less difficult to address a wye- 

configuration circuit. Therefore, the DC resistance among any two terminals 

of the winding is twice the resistance of one stator phase. 

 

4.1.1 DC Measurements of Stator DC Resistance  

The stator winding resistance is preferably measured before any other 

test is performed since the resistance is dependent on the temperature. The 

experiment is conducted at room temperature, which means that the 

resistance must be adjusted during steady state. The following equation [1] 

can be used: 

𝑅𝑇 = 𝑅𝑇0 [
𝑇+𝑘

𝑇0+𝑘
]              (20) 

where: 

𝑘: is the characteristic constant for the winding material 

𝑇: is the limiting temperature according to the insulation classification 

𝑇0: is the temperature at which the experiment was conducted 

𝑅𝑇0: is the measured armature resistance at room temperature 

𝑅̂𝑠: is the measured stator resistance 

𝑅𝑇0 = 𝑅̂𝑠             (21) 
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4.1.2 Test Procedure  

The step-by-step test procedure is described below: 

• Excite the two series connected phases with the variable DC supply. A 

relatively low current should be used so that the resulting I2R loss will 

not cause a significant change in temperature during the time of 

application. The resulting current in the stator must be at its rated value. 

• Read the value of the resulting current using an ampere-meter. 

• Derive the mean value of the stator winding resistance. 

 

A current limiting load box is used to limit the current through the motor.  

Its resistance is set to bring the current to its rated value. Then, the potential 

difference across the induction motor poles is measured and given by: 

𝑅𝑠 =
1

2

𝑉𝐷𝐶

𝐼𝐷𝐶
             (22) 

 

The IEEE recommended Induction Motor equivalent circuit for a wye-

configured load shown in Figure 4.1 where 𝑈𝑇 = 𝑈1 is the DC variable voltage 

excitation, 𝑋1 = 𝑋𝑚 = 0. The rotor impedance is not in connection with the 

stator.  

 

 

 

Figure 4.1 Induction Motor IEEE Recommended Equivalent Circuit 
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𝑈1: is the line to neutral AC difference of potential 

𝑅1: is the per phase stator resistance 

𝑅2: is the per phase rotor resistance in reference to the stator 

𝑋2: is the per phase rotor leaky or spurious reactance in reference to or referred 

to the stator 

𝑋𝑚: is the shunt reactance 

s: is the slip 

 

The shunt reactance forms a path for the magnetizing element of the 

current in the stator. This current gives rise to the revolving field in the motor. 

In this case, note that core losses and rotational losses are not accounted for 

in the equivalent circuit. Small negligible errors are usually due to core losses. 

The generated values from the equivalent circuit are used to calculate 

mechanical power and torque. Rotational losses are subtracted from the 

generated values to obtain actual power and torque output values. Another 

assumption is that R2 is constant. The resistance identified as R2 is a function 

of the rotor frequency current and temperature. It is necessary to use the 

correct value of R2. Note - The frequency of the rotor is equal to the slip times 

the number of pole divided by 120 as follows: f_rotor = Ns*P/120. If the slip 

is equal to zero, the frequency of the rotor is equal to zero. When the operating 

speed is zero the frequency of the rotor current is equal to frequency of the 

stator current. The slip is the field speed minus the rotor speed.  
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4.1.3 Blocked Rotor Test and No-Load Test  

Blocked Rotor or Locked Rotor Test [46] is like the short-circuit test on 

a transformer. Leakage impedance information can be extracted from the test. 

During the test the rotor shaft is locked while a 3-phase voltage is applied to 

the stator terminals. During the blocked rotor test, rotor current and frequency 

values should not exceed those under normal operating conditions. 

 

If the performance characteristics of the induction motor in the low slip 

region are required, the motor blocked-rotor test should be performed at a 

reduced voltage, reduced frequency, and rated current. The low slip is the 

stable region, with high slip, the torque increases to its maximum: this is 

called the unstable or breakdown region. Especially for double-cage, deep-bar 

rotors, the reduced frequency corresponds to the lower values of slip. It is 

worth noting that the effective rotor resistance and leakage inductance at the 

reduced frequency test differ from their values at the rated frequency. Thus, 

the blocked-rotor test is to be done at 25 percent of the rated frequency 

according to the IEEE recommendation. Since the motor used in this 

dissertation is rated less than 20-hp, the effects of frequency are negligible, 

therefore, the locked rotor test may be performed at the rated frequency. 

 

The blocked rotor test can be viewed as a short-circuited test on a 

transformer. As mentioned earlier, in this test, the motor rotor shaft is 
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clamped so that it cannot turn, that is, ωm = 0 rad/sec.  The motor terminals 

are excited with a 3-phase supply. The rotor plays the role of the shorted 

secondary winding of a transformer operating at the supply voltage frequency.  

Because an induction motor is a basic transformer with its primary winding as 

the motor stator and its shorted secondary winding as the motor rotor, the 

flux due to the rotor current creates a counter electromagnetic force that 

opposes the stator flux. This flux phenomenon increases the stator current 

like the increase in the transformer secondary current that causes an increase 

in its primary winding. 

 

Using the Induction Motor IEEE Recommended Equivalent Circuit, at 

locked rotor condition slip in unity, the magnetizing reactance is shunted by 

the low impedance circuit branch. Since the magnetizing reactance is much 

greater than the rotor circuit branch impedance, it can be omitted in the locked 

rotor equivalent circuit. Using the equivalent circuit below, the parameters 

resulting from the blocked rotor tests are determined. 

 

Figure 4.2 Equivalent Circuit for Locked Rotor Test Based on IEEE Equivalent 

Circuit (per Phase) 
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The locked rotor resistance is: 

𝑅𝐿𝐾 =
𝑃𝐿𝐾

3𝐼1
2              (23) 

𝑅2
′ = 𝑅𝐿𝐾 − 𝑅1            (24) 

The locked rotor Impedance is: 

𝑍𝑁𝐿 =
𝑉1

𝐼1
             (26) 

The locked rotor reactance is: 

𝑋𝐿𝐾 = √𝑍𝐿𝐾
2 − 𝑅𝐿𝐾

2                    (27) 

𝑋𝐿𝐾 = 𝑋1 + 𝑋2
′                    (28) 

𝑋1 = 𝑋2
′              (29) 

 

Since at no-load: 

𝑋𝑁𝐿 = 𝑋1 + 𝑋𝑚            (30) 

the magnetizing reactance, 𝑋𝑚,  is formulated in equation 31. 

𝑋𝑚 = 𝑋𝑁𝐿 − 𝑋1            (31) 

 

Using the equivalent circuit below, a more accurate calculation of the 

rotor equivalent resistance “R’2” is found. 

 
                           a                                                            b 

Figure 4.3 Locked Rotor Test Circuit per Phase [46] 
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The locked resistance is the sum of R1 and an equivalent resistance R in the 

equivalent circuit shown in Figure 4.3, b side. 

𝑅𝐿𝐾 = 𝑅1 + 𝑅                 (32) 

where from the circuit shown in Figure 4.3:  

𝑅 =
𝑋𝑚
2

(𝑅2
′)
2
+(𝑋2

′+𝑋𝑚)
2𝑅2

′             (33) 

𝑅2
′ = (

𝑋2
′+𝑋𝑚

𝑋𝑚
)
2

𝑅            (34) 

𝑅 = 𝑅𝐿𝐾 − 𝑅1                (35) 

𝑈𝑡ℎ =
𝑋𝑚

(𝑅1
2+(𝑋1+𝑋𝑚)2)

0.5𝑈1 ; 𝑅𝑡ℎ = (
𝑋𝑚

𝑋1+𝑋𝑚
)
2

𝑅1 = 𝐾𝑡ℎ
2 𝑈1   and 𝑋𝑡ℎ = 𝑋1        (36) 

Using a Thevenin equivalent voltage, resistance, and reactance from a Short 

Circuit Transformer Equivalent Circuit, the Locked Rotor Test values are 

obtained. 

 

Figure 4.4 Locked Rotor Circuit as a Short-Circuited Transformer 

 

The input impedance at stator frequency “ω0” is as formulated in equation 37. 

𝑍𝑖𝑛𝑝𝑢𝑡 =
𝑈𝑡
𝑆(𝜔0)

𝐼𝑡
𝑆(𝜔0)

≈ 𝑅𝑠 + 𝑗𝜔0𝐿𝜎 +
𝑅𝑟𝐿𝑚𝑗𝜔0

𝑅𝑟+𝐿𝑚𝑗𝜔0
          (37)  
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As stated for the per phase approach, since the input impedance of the 

motor with a locked rotor is very low, during a locked rotor test, the voltage 

amplitude must be reduced compared to the rated amplitude to prevent large 

stator currents. The magnetizing current is given by equation 38 as: 

𝐼𝑚
𝑆 ≈ 0              (38) 

The input impedance at stator frequency becomes 

𝑍𝑖𝑛𝑝𝑢𝑡 =
𝑈𝑡
𝑆(𝜔0)

𝐼𝑡
𝑆(𝜔0)

≈ 𝑅𝑠 + 𝑗𝜔0𝐿𝜎 + 𝑅𝑟 = 𝑅𝑡 + 𝑗𝜔0𝐿𝜎        (39) 

 

From the stator measured voltage and current, the leakage inductance 

and the total stator and rotor resistance can be found. The stator DC test 

resistance can be used to find the rotor resistance [46]. If iron losses, skin-

effect, and saturation of the leakage inductance are insignificant, the rotor 

resistance and the leakage inductance can be calculated from the locked rotor 

test measurement. 

 

In the No-Load Test Plan [46], the induction motor no-load experimental 

test is analog to transformer open circuit tests. This test is performed by 

applying a balanced 3-phase voltages to the stator windings at the rated 

frequency of the motor. The rotor has no mechanical load attached.  The motor 

loss in the core, windage, and the friction account for very little power loss at 

no-load. The total rotational loss at no-load is the total rotational loss at the 

rated voltage and frequency under load.  
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Using the Induction Motor IEEE Recommended Equivalent Circuit, Figure 

4.1 at no-load condition, (R’2/s) is high, causing the magnetizing reactance 

“Xm” to be shunted by the rotor highly resistive circuit branch. Thus, the 

reactance of this parallel combination can be safely estimated to the 

magnetizing reactance “Xm”. Hence, at the stator terminals, the total 

reactance measured at no-load is: XNL= X1 + Xm. From the no-load Induction 

Motor IEEE Recommended Equivalent Circuit given in Figure 4.5 below, the 

parameters resulting from the no-load rotor tests can be determined [46]. 

 

Figure 4.5 Circuit for No Load Test per Phase 

 

The no-load model parameters are given in the equations below 

𝑅𝑁𝐿 =
𝑃𝑁𝐿

3𝐼1
2 : is the no-load resistance        (40) 

𝑋𝑁𝐿 = √𝑍𝑁𝐿
2 − 𝑅𝑁𝐿

2 : is the no-load reactance          (41) 

𝑋𝑁𝐿 = 𝑋1 + 𝑋𝑚             (42) 

 

The rotational loss power, the input per phase voltage and the No-Load 

Impedance are given respectively by equations 43, 44 and 45 below. 

𝑃𝑅𝑜𝑡_𝐿𝑜𝑠𝑠 = 𝑃𝑁𝐿 − 𝐼1
2𝑅1           (43)   
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𝑉1 =
𝑉𝐿𝑖𝑛𝑒

√3
             (44)  

𝑍𝑁𝐿 =
𝑉1

𝐼1
              (45)  

 

The measured DC resistance per stator phase is obtained in equation 46 

below, modeled from an Open Circuit Transformer Equivalent Circuit for No-

Load Rotor Test. 

𝑅1 = 𝑅𝑠             (46) 

 

As stated for the per phase approach, at no-load, the induction motor 

produces no torque. Thus, the rotor current is zero. Assuming iron-losses are 

negligible, the terminal impedance at no-load is given below: 

𝑍𝑖𝑛𝑝𝑢𝑡 =
𝑈𝑡
𝑆(𝜔0)

𝐼𝑡
𝑆(𝜔0)

= 𝑅𝑠 + 𝑗𝜔0(𝐿𝜎 + 𝐿𝑚)         (47) 

 

Once the stator resistance and the leakage inductance are obtained 

during the locked rotor test, the rotor flux can be computed using the formula 

below. 

𝜓𝑡
𝑆(𝜔0) =

1

𝑗𝜔0
(𝑈𝑡

𝑆(𝜔0) − 𝑅̂𝑠𝐼𝑡
𝑆(𝜔0)) − 𝐿̂𝜎𝐼𝑡

𝑆(𝜔0)        (48) 

𝐼𝑡
𝑆 = 𝐼𝑚

𝑆              (49) 

 

Using the reconstructed rotor flux and the measured stator current, 

which is at no-load equal to the magnetizing current, the main inductance can 
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be calculated. The magnetizing curve of the induction motor is obtained by 

taking many measurements at no-load at different stator voltages. That is, 

the magnetizing curve is the rotor flux amplitude as a function of stator 

voltage versus the magnetizing current amplitude. Thus, the main inductance 

can be calculated as a function of the magnetizing current. 

 

4.1.4 Draw Backs in DC, Locked Rotor and No-load Tests  

In identifying no-load test drawbacks, the operation is assumed to be at 

synchronous speed. Thus, the mechanical load is to be adjusted to 

compensate for the mechanical losses. In applications, the load can only be 

mechanically uncoupled from the motor. Losses are still present in the motor 

at no-load. Thus, they must be accounted for through additional 

measurements at various input voltages and rated supply frequency. The 

results are then extrapolated to low and zero voltages to account for all loss 

compensation [71], [101]. 

 

In identifying the locked rotor test drawbacks, locking the rotor is not 

always mechanically feasible due to large torques production. Ignoring the 

magnetizing path in this test, locked rotor test flux low level, higher slip 

frequency, and significant rotor winding skin depth effect; are sources of 

inaccuracies. However, all these inaccuracies in no-load test and Locked rotor 

test experiments can be compensated. 
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As stated, the traditional tests present some drawbacks. For instance, 

the locked-rotor test requires the rotor to be externally locked, and the no-

load test needs the rotor to rotate freely at almost the synchronous speed. 

Performing these tests can be impractical or even impossible in case the 

machine has already been coupled to its mechanical load. Thus, it is best to 

replace these traditional tests with standstill tests. 

 

4.1.5 Standstill Tests  

Induction motor electrical parameters can be obtained from the stator 

voltages and currents at a standstill, i.e., the drive inverter produces the 

signals required for the parameter estimation. Time varying models are no 

longer applied; thus, simpler identification algorithms can be used easily. The 

physical parameters can be calculated easily using two output models between 

the measured voltages and currents. At different levels of DC input signal, the 

motor is excited various flux levels this help identify the motor inductances 

with saturation. 

 

4.1.6 Model for Standstill Tests  

Using the voltage as the input signal and the current as of the output 

signal, the model of an induction motor at a standstill is described by the 

following transfer given as the terminal admittance function expressed as 

[31], [36]: 
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𝑌𝑡(𝑞, 𝜃𝑝) =
𝐼𝑡
𝑆(𝑠)

𝑈𝑡
𝑆(𝑠)

=
1

𝑍𝑝(𝑠,𝜃𝑝)
           (50) 

𝑌𝑡(𝑞, 𝜃𝑝) =
𝑅𝑟+𝐿𝑚𝑆

𝐿𝜎𝐿𝑚𝑆2+(𝑅𝑠𝐿𝑚+𝑅𝑟𝐿𝜎+𝑅𝑟𝐿𝑚)𝑆+𝑅𝑠+,𝑅𝑟
        (51) 

The transfer function parameter vector representing the motor admittance: 

𝜃𝑝 = [𝑅𝑟 , 𝑅𝑠, 𝐿𝜎  , 𝐿𝑚]
𝑇           (52)  

With n measurements sample, the physical motor parameters can be 

calculated using the indirect approach discussed in this dissertation. Note that: 

𝑈𝑡
𝑆(𝑘) is Stator voltage, and 𝑈𝑡

𝑆(𝑘) is stator current. 

The indirect approach will be: 

• Using the physical model, the selected continuous to discrete-time 

transformation a discrete time model is arrived at 

• Using the measurements an optimal model derived from the discrete 

time model 

• Using the identified discrete time parameters, the physical parameter is 

derived 

 

The physical parameters must be uniquely defined. At a standstill, the 

model is linear time invariant. Thus, the indirect approach requires less 

computation than the direct method. Thus, the differential equation describing 

the relation between the directly sampled stator voltage and stator current 

with Tustin approximation is: 

𝑈(𝑘) = 𝑈𝑡
𝑆(𝑘𝑇𝑠) + 𝑈𝑡

𝑆(𝑘𝑇𝑠 − 𝑇𝑠)          (53) 
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𝑈(𝑘) = (1 + 𝑞−1) + 𝑈𝑡
𝑆(𝑘𝑇𝑠)          (54) 

𝑦(𝑘) = 𝐼𝑡
𝑆(𝑘𝑇𝑠)            (55) 

The discrete time model structure after the application of the Tustin 

approximation is: 

𝐺𝑑(𝑞, 𝜃𝑞) =
𝑦(𝑘)

𝑢(𝑘)
=

𝑏0−𝑏1𝑞
−1

1+𝑓1𝑞−1+𝑓2𝑞−2
          (56) 

The discrete time parameter vector is modeled in equation 57 below. 

𝜃 = [𝑏0, 𝑏1, 𝑓1 , 𝑓2]
𝑇            (57) 

The discrete time transfer function admittance between the stator current and 

voltage is obtained from the transfer function given in this section. 

.𝑌𝑡(𝑞, 𝜃𝑑) =
𝐼𝑡
𝑆(𝑘)

𝑈𝑡
𝑆(𝑘)

= (1 + 𝑞−1)𝐺𝑑(𝑞, 𝜃𝑑)         (58) 

The discrete time parameters, the corresponding physical parameters are 

derived uniquely. The relation between the discrete time parameters and the 

physical parameters is given in the equation below, and the inverse Jacobian 

can be found using the equation below as well. 

[
 
 
 
 
𝑅̂𝑟
𝑅̂𝑟
𝐿̂𝜎
𝐿̂𝑚]
 
 
 
 

=

[
 
 
 
 
 
 (

1−𝑓2

𝑏0−𝑏1
−
1

2

(𝑏0+𝑏1)(𝑓2−𝑓1+1)

(𝑏0−𝑏1)2
−
1

2

𝑓2+𝑓2+1

𝑏0−𝑏1
)

(
1

2

𝑓2+𝑓2+1

𝑏0+𝑏1
)

(
𝑇𝑠

4

𝑓2−𝑓2+1

𝑏0−𝑏1
)

(−
𝑇𝑠

4

(𝑏0−𝑏1)(𝑓2+𝑓2+1)

(𝑏0+𝑏1)2
+
𝑇𝑠

2

−𝑓2+1

𝑏0+𝑏1
−
𝑇𝑠

4

(𝑓2−𝑓1+1)

𝑏0−𝑏1
)]
 
 
 
 
 
 

       (59) 

The Jacobian matrix will help transform discrete-time parameters in the 

physical parameters coordinate system. The inverse Jacobian is used to 

relate the covariance of the discrete-time parameter with the physical 
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parameter covariance. Thus, discrete-time and physical parameters 

variability may be assessed. 

 

4.1.7 The Induction Motor Parameters  

Testing in stator coordinates can identify all machine parameters from 

measurements of the terminal voltage, terminal current, mechanical position, 

or mechanical speed. Identification in stator coordinates uses the direct 

method because the indirect method is not applicable when all machine 

parameters must be calculated simultaneously.   

Given: 𝑈𝑡
𝑆:  The terminal voltage; 𝐼𝑡

𝑆: The terminal current;  𝜔𝑚: The 

mechanical speed; 𝜃𝑚: The mechanical Position 

The Continuous time prediction model for the electromagnetic equations is 

given below. 

𝑀(𝜃,  𝜔𝑚): {
𝑥′ = 𝐴(𝜃,  𝜔𝑚)𝑥 + 𝐵(𝜃)𝑢

𝑦̂ =  𝐶(𝜃)𝑥 + 𝐷(𝜃)𝑢
         (60) 

where: 𝑢 ∈ 𝐶 = 𝑈𝑡
𝑆: The measured terminal voltage; 𝑦̂ ∈ 𝐶 = 𝐼𝑡

𝑆 :The measured 

stator current        

𝑥 = [
𝜓̂𝑠
𝑆

𝜓̂𝑟
𝑆
]              (61) 

𝐴(𝜃,𝜔𝑚) = [
−
𝑅𝑠

𝐿𝜎
         +

𝑅𝑠

𝐿𝜎
𝑅𝑟

𝐿𝜎
−
𝑅𝑟

𝐿𝜎
−

𝑅𝑟

𝐿𝑚
+ 𝑗𝜔𝑚

]         (62) 

𝜃 = [
1
0
] and  𝐶(𝜃) = [

1

𝐿𝜎
−

1

𝐿𝜎
]          (63) 
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The parameter vector is  

𝜃 = [

𝑅𝑟
𝑅𝑠
𝐿𝑚
𝐿𝜎

]             (64) 

 

The indirect identification method is not suited to uniquely estimate the 

physical parameters as the transfer function below revealed. These 

parameters cannot be identified with the indirect identification process as the 

speed cannot be implemented in the discrete-time model. As the transfer 

function below describes the relation between the terminal voltage and current 

at constant mechanical speed is constant. The transfer function contains four 

parameters to be calculated and one known parameter, which is the 

mechanical speed. 

𝑌𝑡
𝑆(𝑆) =

𝐼𝑡
𝑆(𝑆)

𝑈𝑡
𝑆(𝑆)

= 

1

𝐿𝜎
𝑆+

𝑅𝑟
𝐿𝜎𝐿𝑚

−𝑗𝜔𝑚
1

𝐿𝜎

𝑆2+(
𝑅𝑟
𝐿𝑚
+
𝑅𝑟
𝐿𝜎
+
𝑅𝑠
𝐿𝜎
−𝑗𝜔𝑚)𝑆+

𝑅𝑠
𝐿𝑚

𝑅𝑟
𝐿𝜎
−𝑗𝜔𝑚

𝑅𝑠
𝐿𝜎

        (65) 

 

The related black box transfer function contains eight parameters, of 

which four are complex parameters with four real parts and four imaginary 

parts. For example, for the direct identification method, let set the following 

parameters as: 

𝐴𝜎 =
1

𝐿𝜎
 and  𝐴𝑚 =

1

𝐿𝑚
           (66) 
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The parameter vector is   

𝜃 = [

𝑅𝑟
𝑅𝑠
𝐴𝑚
𝐴𝜎

]             (67) 

The system matrices become 

𝐴(𝜃,𝜔𝑚) = [
−𝑅𝑠𝐴𝜎 𝑅𝑠𝐴𝜎
𝑅𝑟𝐴𝜎    −𝑅𝑟𝐴𝜎 −𝑅𝑟𝐴𝑚 + 𝑗𝜔𝑚

]        (68) 

𝐶(𝜃) = [𝐴𝜎 −𝐴𝜎]          (68a) 

 

The gradient model calculation is illustrated in equations 69 to 72 below.

  

𝑧𝑖
′(𝜃) = 𝐴(𝜃, 𝜔𝑚)𝑧𝑙(𝜃) + 𝐴𝑖(𝜃, 𝜔𝑚)𝑥(𝜃)         (69) 

𝜓𝑙(𝜃) = 𝐶(𝜃)𝑧𝑙(𝜃) + 𝐶𝑙(𝜃)𝑥(𝜃)          (70) 

𝐴𝑙(𝜃, 𝜔𝑚) =
𝛿𝐴(𝜃,𝜔𝑚)

𝛿𝜃𝑙
            (71) 

𝐶𝑙(𝜃) =
𝛿𝐶(𝜃)

𝛿𝜃𝑙
              (72) 

The gradient matrices for the continuous prediction models are as follows:  

1. 
𝛿𝐴(𝜃,𝜔𝑚)

𝛿𝑅𝑟
= [

0          0
𝐴𝜎       −𝐴𝜎 − 𝐴𝑚

]  and  
𝛿𝐶(𝜃)

𝛿𝑅𝑟
= [0 0]         (73) 

2. 
𝛿𝐴(𝜃,𝜔𝑚)

𝛿𝑅𝑠
= [

−𝐴𝜎 𝐴𝜎
0        0

]  and  
𝛿𝐶(𝜃)

𝛿𝑅𝑠
= [0 0]        (74)  

3. 
𝛿𝐴(𝜃,𝜔𝑚)

𝛿𝐴𝑚
= [

0          0
0      −𝑅𝑟

]  and  
𝛿𝐶(𝜃)

𝛿𝐴𝑚
= [0 0]        (75)  

4. 
𝛿𝐴(𝜃,𝜔𝑚)

𝛿𝐴𝜎
= [

−𝑅𝑠 𝑅𝑠
𝑅𝑟      −𝑅𝑟

]  and 
𝛿𝐶(𝜃)

𝛿𝐴𝜎
= [1 −1]       (76)  

5. 
𝛿𝐴(𝜃,𝜔𝑚)

𝛿𝐿𝑚
= [

0           0
0              𝑅𝑟𝐴𝑚

2 ]  and    
𝛿𝐶(𝜃)

𝛿𝐿𝑚
= [0 0]         (77) 
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6. 
𝛿𝐴(𝜃,𝜔𝑚)

𝛿𝐿𝜎
= [

𝑅𝑠𝐴𝜎
2 −𝑅𝑠𝐴𝜎

2

−𝑅𝑟𝐴𝜎
2            𝑅𝑟𝐴𝜎

2 ] and 
𝛿𝐶(𝜃)

𝛿𝐿𝜎
= [−𝐴𝜎

2 𝐴𝜎
2 ]       (78) 

Equation set (1 to 6 above). 

 

The related fluxes are    

𝜓𝐿𝑚(𝜃) =
𝛿𝑦̂(𝜃)

𝛿𝐿𝑚
=

𝛿𝑦̂(𝜃)

𝛿𝐴𝑚

𝛿𝐴𝑚

𝛿𝐿𝑚
= −𝐴𝑚

2 𝜓𝐴𝑚(𝜃)        (79) 

𝜓𝐿𝜎(𝜃) =
𝛿𝑦̂(𝜃)

𝛿𝐿𝜎
=

𝛿𝑦̂(𝜃)

𝛿𝐴𝜎

𝛿𝐴𝜎

𝛿𝐿𝜎
= −𝐴𝜎

2𝜓𝐴𝜎(𝜃)         (80) 

 

Only one set of state evolution equations need calculating for all the 

sensitivity functions, thus rendering the computation easy. The sensitivity 

functions are computed and explained in [91]. 

where:  𝐸 = [
0 0

0
1

𝑅𝑠𝑅𝑟

]           (81) 

 

The parameter vector can be estimated using an iterative estimate or 

the recursive Gauss Newton algorithm. 

𝑈𝑡𝜎, 𝑈𝑡𝛽, 𝐼𝑡𝛼 and 𝐼𝑡𝛽 must be known in both axes. 

The prediction model based on the mechanical position is as follows:   

𝑀(𝜃,  𝜃𝑚): {
𝑥̂ = 𝐴(𝜃,  𝜃𝑚)𝑥 + 𝐵𝑢

𝑦̂ =  𝐶(𝜃,  𝜃𝑚)𝑥
           (82) 

where: 𝑢 ∈ 𝐶 = 𝑈𝑡
𝑆: The measured terminal voltage; 𝑦̂ ∈ 𝐶 = 𝐼𝑡

𝑆: The measured 

stator current, 𝑥̂ and 𝑦̂ are the predicted or estimated value of x and y. 



 

58 
 

𝑥 = [
𝜓̂𝑠
𝑆

𝜓̂𝑟
𝑅
]             (83) 

𝐴(𝜃,  𝜃𝑚) = [
−𝑅𝑠𝐴𝜎 𝑅𝑠𝐴𝜎𝑒

𝑗𝜃𝑚

𝐴𝜎𝑒
−𝑗𝜃𝑚 −𝑅𝑟𝐴𝜎 − 𝑅𝑟𝐴𝑚

]         (84) 

𝜃 = [
1
0
] and𝐶(𝜃,  𝜃𝑚) = [𝐴𝜎 −𝐴𝜎𝑒

𝑗𝜃𝑚]         (85) 

The gradient matrices for the continuous prediction model are as follows:  

𝛿𝐴(𝜃, 𝜃𝑚)

𝛿𝑅𝑟
= [

0           0
𝐴𝜎𝑒

−𝑗𝜃𝑚 −𝐴𝜎 − 𝐴𝑚
]    and   

𝛿𝐶(𝜃, 𝜃𝑚)

𝛿𝑅𝑟
= [0 0] 

𝛿𝐴(𝜃, 𝜃𝑚)

𝛿𝑅𝑠
= [−𝐴𝜎 𝐴𝜎𝑒

𝑗𝜃𝑚

0 0
]   and   

𝛿𝐶(𝜃, 𝜃𝑚)

𝛿𝑅𝑠
= [0 0] 

𝛿𝐴(𝜃, 𝜃𝑚)

𝛿𝐴𝑚
= [

0 0
0 −𝑅𝑟

]  and  
𝛿𝐶(𝜃, 𝜃𝑚)

𝛿𝐴𝑚
= [0 0] 

𝛿𝐴(𝜃, 𝜃𝑚)

𝛿𝐴𝜎
= [

−𝑅𝑠 𝑅𝑠𝑒
𝑗𝜃𝑚

𝑅𝑟𝑒
−𝑗𝜃𝑚 −𝑅𝑟

]and 
𝛿𝐶(𝜃, 𝜃𝑚)

𝛿𝐴𝜎
= [1 −𝑒−𝑗𝜃𝑚]      (86) 

 

They assess the sensitivity of certain motor parameters as a function of 

frequency. Thus, the parameter that is most sensitive can be predicted more 

accurately. For example, the gradients such as the stator resistance, the rotor 

resistance, the main inductance, and the leakage inductance can be graphed 

for a certain mechanical speed. The shape of the rotor sensitivity may be an 

electrical signature indicating whether the rotor resistance is observable for a 

specific range of frequencies at no-load. 

 

In this chapter, the induction motor test plan and procedure are laid out 

and explained as used in the defense industry. Various tests, including the no-
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load, locked rotor, DC measurement tests, and other tests performed at 

standstill tests are also explained. Additionally, the ways standard tests 

identify the induction motor parameters used in the Fault Diagnosis are 

explained so that any engineer familiar with the topic can reproduce the work. 

This chapter also explains how the equivalent circuit parameters, i.e., Rc, Xm, 

R1, X1, X2, and R2, may be determined by just measuring the resistance of 

the stator winding. These tests and experiments are needed in conjunction 

with the IEEE Equivalent Circuit Analysis to develop the parameters to use in 

the MATLAB codes used in this dissertation.  In the following chapter, the 

design of the Model-Based Fault Diagnosis is laid out and explained. 
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Chapter 5: Robust Fault Detection and Isolation 

 

5.1 The Robust Observer Approach to Fault Detection and Isolation 

For the fault diagnosis design and implementation, the induction motors 

can be assumed to be an uncertain Lipschitz nonlinear system, defined in 

section 5.4 and references [130] and [139] or a linear system. Thus, detecting 

and isolating faults in a nonlinear system like an induction motor may be 

analyzed as working with an uncertain Lipschitz nonlinear system. In this fault 

detection and isolation method, the system to be diagnosed must be 

transformed into two subsystems. The first subsystem contains both motor 

faults and motor uncertainties; the second subsystem only contains motor 

faults. A Luenberger observer [106] is used to detect faults in the motor 

subsystem_2. Due to their inherent robustness, a bank of sliding mode 

observers [109] is used to isolate faults in subsystem_1 and subsystem_2. 

 

Recall the Lipschitz condition about the state x means that if the function 

𝜙(𝑥, 𝑡): [𝑎, 𝑏] is Lipschitz then, there exists a constant ℒ called Lipschitz constant 

such that |𝜙(𝑥, 𝑡) −  𝜙(𝑥′, 𝑡)|  ≤  ℒ |𝑥 − 𝑥′|   ∀ 𝑥, 𝑥′   ∈  [𝑎, 𝑏];  ℒ must be the smallest 

constant meeting the Lipschitz condition [130], [139].  
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The effects of system uncertainties to the residual of the subsystem are 

decoupled by performing a coordinate transformation of the original system 

model, enabling us to perform early detection while suppressing false alarms. 

 

For Hard to Detect Faults (HDF), i.e., incipient and drift faults, the 

approach to use is fault estimation which assesses the magnitude, the shape, 

and the duration of the fault.  Fault estimation plays an important role in a 

system that requires fault accommodation or fault tolerant systems. As in the 

case of fault detection, a linear coordinate transformation of the system state 

vector into two parts will be used such that the induction motor faults are 

represented in the second state vector. The induction motor system with 

uncertainties can be assumed to be unstructured, and thus, cannot be 

decoupled entirely from faults but minimized. 

 

It is easier to implement model-based fault diagnosis using linear 

system models. The scheme to handle non-linear system behaviors has been 

to approximate the non-linear systems by linearizing the system models at an 

operating point and applying robust fault diagnostic techniques to the 

manipulated model. However, this approach does not always work since linear 

and non-linear models usually have considerable mismatches, the operating 

range becomes wider. Therefore, the need arises to design the fault diagnosis 

which can handle system non-linear behavior. 
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5.2 On-line Fault Detection and Isolation 

In on-line fault detection and isolation, the operations of detecting and 

isolating faults are performed while the system is running. Thus, all the 

information needed by the model-based system is available during system 

operation. The schematic below illustrates the dynamic between the fault 

diagnosis and the control loop. 

 
Figure 5.1 On-Line Fault Detection and Isolation   

 

The system can be breaking up into actuators, system dynamics, and 

sensors as illustrated in the figure below. 

 
Figure 5.2 Open-Loop System without On-Line Fault Supervision 

 

UR(t): the output of the Induction Motor becomes the input of the System 

Dynamic block 

YR(t): the output of the system Dynamic block becomes the input of the 

sensors, assuming that sensors are uses. 
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The System Dynamics state space model below is illustrated in the figure 

below. 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢𝑖(𝑡) + 𝑓𝑐(𝑡)            (87) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢𝑖(𝑡)            (88) 

𝑓𝑐(𝑡) : a component fault, i.e., the motor fault vector 

 

Figure 5.3 The System Dynamics with Faults 

where: 

A, B, C, and D are known system matrices 

x  Rn: The state vector 

uR Rr: The input vector to the actuator 

yR Rm: The real system output vector 

 

When sensors are used their output state space is illustrated in Figure 

5.4. Equation 89 are used if the sensors are incorporated into the system. In 

that case the output of the of sensor block Y(t) in Figure 5.4 contains the 

induction motor fault and the sensor fault, and YR(t) the output of the motor 

becomes the sensor input. 

𝑦(𝑡) = 𝑦𝑅(𝑡) + 𝑓𝑠(𝑡)              (89) 

System
Dynamics

In this Case
Induction Motor

Dynamics

output

yR(t)uR(t)

fc(t)

Parametric 

Faults

Component 

Faults
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Figure 5.4 The Sensors with Faults 

 

uR is the actuator response to an actuator command u(t) as illustrated in Figure 

5.5. 

𝑢𝑅(𝑡) = 𝑢(𝑡) + 𝑓𝑎(𝑡)            (90) 

 

Figure 5.5 The Induction Motor Actuator with Inputs 

 

The entire system is the system that comprises sensor faults, actuator, 

and induction motor faults. The entire system state vector model is written in 

equations 91 and 92. 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑓𝑎(𝑡) + 𝑓𝑠(𝑡)          (91) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)+𝐷𝑓𝑎(𝑡) + 𝑓𝑠(𝑡)           (92) 

 

Induction Motor
as Actuator

output y(t)

u(t)

fa(t)
Attuator 

Faults

uR(t)
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However, in this dissertation, the interest is only in the actuator, i.e., 

the induction motor. Thus, it is illustrated in Figure 5.6. 

 

Figure 5.6  The Induction Motor as the Sole Part of the System 

 

5.3 Model Based Fault Detection Implementation in System 

To be able to perform the tasks of fault diagnosis at its optimum 

capability, a fault diagnosis scheme must detect and isolate the fault, including 

incipient faults, abrupt faults in sensors, actuators (induction motor), and 

components. However, in this dissertation, the fault diagnosis must only 

detect and isolate faults in the induction motor, including incipient and abrupt 

faults. Therefore, the guideline to develop the fault diagnosis system in this 

dissertation is that the fault diagnosis system must be able to handle: 

• Noise in the system 

• Multiple faults 

• Disturbances i.e., additive uncertainty 

• Modeling errors i.e., multiplicative uncertainty 

• Nonlinearities 

• Detection delays 

System
Dynamics

In this Case
Induction Motor

Dynamics

output

y(t)u(t)

f(t)

Parametric 

Faults

Component 

Faults
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• FDI algorithm design complexity and implementation 

More details on these types of faults are given in references [132-136]. 

The fault diagnostic will be performed using an observer approach where the 

fault isolation is performed using a set structured residual obtained using the 

observer scheme. This observer fault isolation method is very suitable to 

handle: 

• Incipient faults, which are very fast. [135] 

• Detecting and isolating faults in induction motors in sensors 

• Able of detecting and isolating faults in parameters 

• Able of detecting and isolating multiple faults 

• Able of handling nonlinearity with Non-linear observers 

• Able of using robustness  

If the noise statistics in the system is unknown, a filter may be added to the 

residual scheme, based on assumed characteristics of the noise. A Kalman 

filter may be added to reduce false and missed detection [137]. 

 

5.4 Linear and Non-linear Observer in Fault Diagnosis 

In fault diagnostic systems, when a failure occurs during operation, the 

system is no longer operating at a fixed point. Therefore, it is better to use 

non-linear observers to represent non-linear systems than multiple linear 

observers. Here Sliding Mode Observers (SMO) are used as much as possible 

so they can deal with uncertainties, i.e., system disturbances. The main 
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advantage of SMO fault diagnosis is that, regardless of model uncertainties 

and system disturbances, the errors for the output estimation between the 

system and the observer can be minimized. 

 

The original system model is transformed into two subsystems, as 

explained in this document in sections 5.1, 5.7 and 5.9. Once a fault is 

detected, it must be isolated to a particular system component or function 

subsystem. One single observer may be enough to isolate faults if they have 

a different effect on residual space.  Multiple or a bank of observers handle 

fault isolation better, especially during non-linear system behavior [133]. 

 

There are two observer approaches for fault isolation. In the dedicated 

observer fault isolation, a certain number of observers generate the same 

number of residuals, and each residual is sensitive to the corresponding 

number of faults only. In the generalized observer approach, certain observers 

are employed to generate an equal number of residuals. In this case, the 

corresponding residual to the observer is not sensitive to the related observer 

fault but is sensitive to all faults that may occur in the system. Thus, our 

approach to fault detection is to use a dedicated observer for the second 

subsystem and a bank of robust observers, i.e., sliding mode observers for 

each fault in the system; and the induction motor, to estimate and generate 

the output vector. 
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One of the typical state vector nonlinear models is adapted below in 

equations 93 and 94 [105]. Faults and model discrepancy and nonlinearity are 

represented in the motor model as follows: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷𝑓𝐼𝑀(𝑡) + 𝜙(𝑥, 𝑡) + 𝐸Δ𝜓(𝑥, 𝑡)       (93) 

𝑦(𝑡) = 𝐶𝑥(𝑡)              (94) 

Given that: 

X  Rm and A  Rnxn : System Matrix (SM) 

U Rm and B  Rnxm : System Matrix (SM)   

Y Rp and C  Rpxn : Measurement Input Matrix (MIM)  

D  Rnxm   = B : Fault Distribution Matrix (FDM)  

fIM Rm  : Vector of actuator/motor fault 

E  Rnxr : Known Constant Rectangular Matrices (KCRM)  

𝜙(𝑥, 𝑡):  Rnx1:  Known as the nonlinear Lipschitz term 

Δ𝜓(𝑥, 𝑡) Rr: Unknown nonlinear term for model uncertainties, system  

                  disturbances, and model discrepancies. 

 

The assumption on matrices C and E are as follows: C and E are 

considered full rank, that is, if C is a 𝑝 ×  𝑛 matrix the maximum possible rank 

of matrix C is the smaller of p and n. The matrix C rank is the number of 

independent rows or columns in the matrix. Matrix property of full rank is 

explained in [137], [138]. The Term 𝜙(𝑥, 𝑡) is a known nonlinear term Lipschitz 

about the state x uniformly. 



 

69 
 

5.5 Fault Detectability Assumption 

Assuming that the matrix pair (A, C) is detectable, then there is a matrix 

L that can be defined as follows: 

L  Rnxp / A – LC is stable and for any Q > 0, the Lyapunov equation as given 

in equations 95 and 96 below [130]. 

(A – LC)T P + P*(A – LC) = - Q                (95) 

whose solution is P > 0 

where P, Q  Rnxn and given as: 

𝑃 =  [
𝑃1 𝑃2
𝑃2
𝑇 𝑃3

] , 𝑄 =  [
𝑄1 𝑄2
𝑄2
𝑇 𝑄3

]              (96) 

where if matrices P > 0, and Q > 0, then 𝑃1  >  0, 𝑄1  >  0 , 𝑃3  >  0, and 𝑄3  >  0 

It is worth noting that: 𝑃1 & 𝑄1R
(𝑛−𝑝)𝑋(𝑛−𝑝),  𝑃3 & 𝑄3R

𝑝𝑋𝑝  

 

5.6 Rank Assumption 

This assumption requires a greater degree of freedom; that is, the 

number of required measurements must be larger than all the number of 

unknown inputs, i.e., the model uncertainties and the input disturbances, and 

the number of induction motor faults. Given the following stipulation: 

• rank(CE) = rank(E) 

• rank(C[D E]) = rank(D)+rank(E), Thus, the rank (D E)  p is given. 

• Given a complex number “s” with positive real part, then the rank 

becomes: 
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𝑟𝑎𝑛𝑘 [
𝑠𝐼 − 𝐴 𝐸
𝐶 0

] = 𝑛 + 𝑟𝑎𝑛𝑘 (𝐸)             (97) 

𝑟𝑎𝑛𝑘 (𝐸) = 𝑟𝑎𝑛𝑘 [
𝑠𝐼 − 𝐴 𝐸
𝐶 0

] − 𝑛          (98) 

The rationale for the rank and detectability assumptions is in reference 

publication:  Robust Model Based Fault Diagnosis for Dynamic Systems [140]. 

The function Δ𝜓(𝑥, 𝑡) is the unknown bounded structured uncertainty. 

‖Δ𝜓(𝑥, 𝑡)‖ ≤  ℒ𝜓(𝑥, 𝑡) or ‖Δ𝜓(𝑥, 𝑡)‖ ≤  ℒ𝜓          (99) 

where ℒ𝜓(𝑥, 𝑡) is known and Lipschitz about x uniformly, and  ℒ𝜓 is a constant. 

For the fault vector it can be said: 

‖𝑓𝐼𝑀‖ ≤  𝜌𝑎(𝑡)  or  ‖𝑓𝐼𝑀‖ ≤  𝜌𝑎            (100) 

where 𝜌𝑎(𝑡) is a known and Lipschitz about x uniformly and 𝜌𝑎 is a constant.  

Depending on whether the induction motor fault is time-varying or a constant, 

𝜌𝑎 is the predefined threshold to be compared with the motor residual. 

 

5.7 Output Matrix Assumption 

Let assume that the output matrix C has full row rank and is as follows: 

𝐶 = [0 𝐼𝑝]             (101) 

C is a structured matrix because its matrix vector multiplication is simpler than 

the general matrix [145]. 

If C is not structured, the state and output transformation matrices must be 

such that given Tc: 

𝐶𝑇𝑐
−1  =  [0 𝐼𝑝]             (102) 

If the matrices (A, E and D) have the following structures in equation 102a, 



 

71 
 

𝐴 = [
𝐴1 𝐴2
𝐴3 𝐴4

];  𝐸 =  [
𝐸1
𝐸2
]   and D = [

𝐷1
𝐷2
]            (102a) 

where 𝐴1R
(𝑛−𝑝)×(𝑛−𝑝); 𝐸1R

(𝑛−𝑝)×𝑟; 𝐷1R
(𝑛−𝑝)×𝑞;  𝐴4R

𝑝×𝑝; 𝐸2R
𝑝×𝑟; 𝐷2R

𝑝×𝑞 

the original system typical state vector nonlinear models can be rewritten as: 

𝑥̇1(𝑡) = 𝐴1𝑥1 + 𝐴2𝑥2 + 𝐵1𝑢(𝑡) + 𝐷1𝑓𝐼𝑀  + 𝜙1(𝑥, 𝑡) + 𝐸1Δ𝜓(𝑥, 𝑡)    (103) 

𝑥̇2(𝑡) = 𝐴3𝑥1 + 𝐴4𝑥2 + 𝐵2𝑢(𝑡) + 𝐷2𝑓𝐼𝑀  + 𝜙2(𝑥, 𝑡) + 𝐸2Δ𝜓(𝑥, 𝑡)    (104) 

𝑦(𝑡) = 𝑥2               (105) 

𝑥 = column [𝑥1, 𝑥2 ];  𝑥1 & 𝜙1(𝑥, 𝑡)R
(𝑛−𝑝);    𝜙(𝑥, 𝑡) & 𝜙2(𝑥, 𝑡)R

𝑝 

 

5.8 The Sliding Mode Observer Fault Diagnosis 

The sliding mode observer is designed by first performing a linear 

change of coordinates. This coordinate change is needed to structure the 

uncertainty and fault distribution matrices. Since E and C are nonsingular 

matrices; rank(CE) =rank(E), the state and output nonsingular transformation 

matrices are as follows:  

𝔷 = 𝑇𝑥 = [
𝔷1
𝔷2
] ;  𝓎 = 𝑆𝑦 = [

𝓎1
𝓎2
]        (106) 

where: 𝔷1R
𝑟; 𝔷2R

𝑛− 𝑟;   𝓎1R
𝑟; 𝓎2R

𝑝−𝑟; 𝑆R𝑝×𝑝; 𝑇R𝑛×𝑛 

and [
𝐼𝑛−𝑝 𝑃1

−1𝑃2
0 𝐼𝑝

], the transformation of T and S are satisfied as: 

 

{
 

 𝑇 = [
𝐼1 −𝐷1𝐷2

−1

0 𝐼2
]

𝑇−1 = [
𝐼1 −𝐷1𝐷2

−1

0 𝐼2
]

  and {
𝑥 = 𝑇−1 [

𝔷1
𝔷2
]

𝑦 = 𝑆−1 [
𝓎1
𝓎2
]
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Given a matrix A, a nonsingular Transformation Matrix T may exist such 

that one can transform the original matrix A as follows: TAT-1.  Furthermore, 

for the given matrix A, a column vector “v” can be found such that the 

transformation matrix can be calculated using T = [An-n v, An-(n-1) v,…. An-(n-3) 

v] or T = [A0 v, A v,…. An-1 v], where T is non-singular.  

 

The new coordinate system matrices can be structured from the state 

input and output transformation matrices as given in equation 107. 

𝑇𝐴𝑇−1 = [
𝐴1 𝐴2
𝐴3 𝐴4

]; 𝑇𝐵 = [
𝐵1
𝐵2
] ;  𝑇𝐸 =  [

𝐸1
0
]; 𝑆𝐶𝑇−1 = [

𝐶1 0
0 𝐶4

]; 𝑇 = [
𝑇1
𝑇2
];𝑆 =  [

𝑆1
𝑆2
](107) 

 

The coordinate transformation must be performed to decouple the 

faults, incipient, and the unknown disturbance or signals. Then, the original 

system using the linear change state and output transformation can be 

rewritten as: 

𝔷 = 𝑇𝑥 = [
𝔷1
𝔷2
] = [

𝐴1 𝐴2
𝐴3 𝐴4

] 𝔷 + [
𝜙1
𝜙2
] (𝑇−1𝔷, 𝑡) + [

𝐵1
𝐵2
] (𝑢 + 𝑓𝐼𝑀)  + [

𝐸1
0
] Δ𝜓           (107b) 

 

𝓎 = 𝑆𝑦 = [
𝓎1
𝓎2
] = 𝐶𝑇−1𝔷                (107c) 

 

After some mathematical maneuvers, a compact version is obtained: 

𝔷̇(𝑡) = 𝑇𝐴𝑇−1𝔷 + 𝑇𝜙(𝑇−1𝔷, 𝑡) + 𝑇𝐵(𝑢 + 𝑓𝐼𝑀)  + 𝑇𝐸Δ𝜓                 (108) 

𝓎(𝑡) = 𝐶𝑇−1𝔷           (109) 
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The original system is converted into two systems whose descriptions 

are given below. 

System 1 is as follows: 

𝔷̇1(𝑡) = 𝐴1𝔷1 + 𝐴2𝔷2 + 𝐵1(𝑢 + 𝑓𝐼𝑀) + 𝜙1(𝑇
−1 𝔷, 𝑡) + 𝐸1Δ𝜓  

𝓎1 = 𝐶1𝔷1 

System 1 is in a slightly different form by replacing 𝜙1(𝑇
−1 𝔷, 𝑡) by its value 

𝔷̇1(𝑡) = 𝐴1𝔷1 + 𝐴2𝔷2 + 𝐵1(𝑢 + 𝑓𝐼𝑀) + 𝑇1𝜙(𝑇
−1 𝔷, 𝑡) + 𝐸1Δ𝜓      (110) 

𝓎1 = 𝐶1𝔷1                  (110a) 

System 2 as follows: 

𝔷̇2(𝑡) = 𝐴3𝔷1 + 𝐴4𝔷2 + 𝐵2(𝑢 + 𝑓𝐼𝑀) + 𝐷2𝑓𝐼𝑀  + 𝜙2(𝑇
−1 𝔷, 𝑡)          (111a)  

 

𝓎2 = 𝐶4𝔷2                   (111b) 

 

System 2 in a slightly different form by replacing 𝜙2(𝑇
−1 𝔷, 𝑡) by its value 

𝔷̇2(𝑡) = 𝐴3𝔷1 + 𝐴4𝔷2 + 𝐵2(𝑢 + 𝑓𝐼𝑀) + 𝐷2𝑓𝐼𝑀  + 𝑇2𝜙(𝑇
−1 𝔷, 𝑡)          (111c) 

 

𝓎2 = 𝐶4𝔷2                     (111d) 

 

 

If the rank assumption “𝑟𝑎𝑛𝑘 [
𝑠𝐼 − 𝐴 𝐸
𝐶 0

] = 𝑛 + 𝑟𝑎𝑛𝑘 (𝐸)” mentioned above 

is true (A; C) is detectable [140]. 

 

Suppose that the matrix pair (A; C) is detectable, it follows also that the 

pair (A4; C4) is detectable. There is a matrix L defined as follows: 

L  Rnxp / A4 – LC4 is stable and for any Q2 > 0, thus, the Lyapunov equation 

is as follows:  
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(𝐴4 −  𝐿𝐶4)
𝑇𝑃2 + 𝑃2(𝐴4 −  𝐿𝐶4) = −𝑄2 whose solution is P2 > 0 

A general Lyapunov equation in the context of nonlinear system stability or 

asymptotically stability definition maybe formulated as follows:  

𝐿𝐴 + 𝐴𝑇𝐿 = − 𝑄 ; where Q > 0, L > 0 and symmetrical square matrices 

 

Knowing A and Q, Q = I, the Lyapunov equation can be solved. In this 

dissertation YALIMP and appropriate functions in MATLAB are used to solve 

the equation. 

 

 The detectability of fault is the ability to detect the fault. Some faults 

become impossible to detect if the sliding mode observers are designed from 

the system before converting the original system into two subsystems because 

small magnitude faults can become zero, thus, unable to detect, thus, 

incipient. 

 

 In subsystem 2, whose equation is reproduced below: 

𝔷̇2(𝑡) = 𝐴3𝔷1 + 𝐴4𝔷2 + 𝐵2(𝑢 + 𝑓𝐼𝑀) + 𝐷2𝑓𝐼𝑀  + 𝜙2(𝑇
−1 𝔷, 𝑡)        (112) 

z1 and z2 are unaffected model uncertainties by faults prior to any system fault 

manifestation. 

 

Suppose 𝓎̂2 is the estimation of 𝓎2, then the output error/residual can 

be written as:  𝓎2 − 𝓎̂2 
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Thus, a sliding mode observer for equation 110 can be formulated as 

follows: 

𝔷̇̂1(𝑡) = 𝐴1𝔷̂1 + 𝐴2𝔷̂2 + 𝐵1𝑢 + (𝐴1 − 𝐴1
𝑠) 𝐶1

−1(𝓎1 − 𝓎̂1) + 𝜙1(𝑇
−1𝔷̂, 𝑡) + ℯ1

𝑖       (113) 

𝓎̂1 = 𝐶1𝔷̂1 

where:  

𝐴1
𝑠R 𝑟×𝑟: is a stable design matrix, which plays the role of a Luenberger 

observer gain  

where 𝔷̂ =  𝑐𝑜𝑙(𝔷̂1, 𝔷̂2)  

ℯ1
𝑖: is the added output error  

ℯ1
𝑖 = {

𝑘1
𝑃1(𝐶1

−1 𝓎1−𝔷̂1)

‖𝑃1(𝐶1
−1 𝓎1−𝔷̂1)‖

       𝑓𝑜𝑟  𝐶1
−1 𝓎1 − 𝔷̂1 ≠ 0 

0                                                      𝑒𝑙𝑠𝑒
    [140]     (114)  

It’s worth noting that in [140] the derivation and explanation of (114) can be 

found. where: 𝑘1 is a component of  𝑘(𝑡, 𝑦, 𝑢) the calculated gain; 𝑘1 = ‖𝐸1‖ℒ𝜓+𝜂1 

;  𝜂1: is a positive scalar to be determined; 𝑃1R
 𝑟×𝑟 >  0: is the symmetric 

definite Lyapunov matrix of 𝐴1
𝑠  

𝑘1 = 𝐶1
−1 𝓎1 =   𝐶1

−1 𝑆1𝑦                

The Luenberger observer is designed for subsystem equation (111) as: 

𝔷̇̂2(𝑡) = 𝐴4𝔷̂2 + 𝐴3𝐶1
−1𝓎1 + 𝐵2𝑢 + 𝐿(𝓎2 − 𝓎̂2) + 𝜙2(𝑇

−1𝔷̂, 𝑡) 

𝓎̂2 = 𝐶4𝔷̂2              (115) 

where 

𝐿R(𝑛 − 𝑟) ×(𝑝 − 𝑟): is the gain of the Luenberger observer [133] 

𝑒1 = 𝔷1 − 𝔷̂1 and 𝑒2 = 𝔷2 − 𝔷̂2 : are state estimation errors 
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𝑒̇1 = 𝔷̇1 − 𝔷̇̂1 and 𝑒̇2 = 𝔷̇2 − 𝔷̇̂2: are state estimation error dynamics prior to 

system faults 

 

The calculation of the state estimation error dynamics are as follows: 
 

𝑒̇1 = 𝔷̇1 − 𝔷̇̂1  =  𝐴1𝔷1 + 𝐴2𝔷2 + 𝜙1(𝑇
−1 𝔷, 𝑡) + 𝐵1𝑢 + 𝐸1Δ𝜓 − 𝐴1𝔷̂1 − 𝐴2𝔷̂2 

 

                             − 𝜙1(𝑇
−1 𝔷, 𝑡) − 𝐵1𝑢 − (𝐴1 − 𝐴1

𝑠)𝐶1
−1(𝓎1 − 𝓎̂1) − ℯ1

𝑖 

 

𝑒̇1 = 𝐴1
𝑠𝑒1 + 𝐴2𝑒2 + [𝜙1(𝑇

−1 𝔷, 𝑡) − 𝜙1(𝑇
−1𝔷̂, 𝑡)] + 𝐸1Δ𝜓 − ℯ1

𝑖 

 

𝑒̇1 = 𝐴1
𝑠𝑒1 + 𝐴2𝑒2 + Δ𝜙1 + 𝐸1Δ𝜓 − ℯ1

𝑖         (116) 

 

𝑒̇2 = 𝔷̇2 − 𝔷̇̂2 = 𝐴3𝔷1 + 𝐴4𝔷2 + 𝜙2(𝑇
−1 𝔷, 𝑡) − 𝐴4𝔷̂2 − 𝐴3𝐶1

−1𝓎1 − 𝜙2(𝑇
−1𝔷̂, 𝑡) − 𝐿(𝓎2 − 𝓎̂2) 

 

𝑒̇2 = 𝔷̇2 − 𝔷̇̂2 = (𝐴 − 𝐿𝐶4)𝑒2 + [𝜙2(𝑇
−1 𝔷, 𝑡) − 𝜙2(𝑇

−1𝔷̂, 𝑡)] 

𝑒̇2 = 𝔷̇2 − 𝔷̇̂2 = (𝐴 − 𝐿𝐶4)𝑒2 + Δ𝜙2        (117) 

 
where      

 

Δ𝜙1 = 𝜙1(𝑇
−1 𝔷, 𝑡) − 𝜙1(𝑇

−1𝔷̂, 𝑡)           (118) 

 

Δ𝜙2 = 𝜙2(𝑇
−1 𝔷, 𝑡) − 𝜙2(𝑇

−1𝔷̂, 𝑡)           (119) 

 

When the induction motor is operating with no failure, the error 

dynamics formulation in equations 116 and 117 above are stable given that 

matrices “𝐴1
𝑠 < 0 and 𝑃1 = 𝑃1

𝑇 > 0", and the positive scalars “𝛼1 > 0  and 𝛼2 > 0”  

exist. 
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Thus, the following inequality is given in equation 120 below. 

ℳ = [
𝜇1 +

1

𝛼1
(𝑃1)

2 𝑃1𝐴2

𝐴1
𝑇𝑃1 𝜇2 +

1

𝛼2
(𝑃2)

2𝛼𝐼𝑛−𝑟
] <   0      (120) 

where 

𝜇1 = 𝐴1
𝑠𝑇𝑃1 +  𝑃1𝐴1

𝑠 

𝜇2 = (𝐴4 − 𝐿𝐶4)
𝑇𝑃2 + (𝐴4 − 𝐿𝐶4)𝑃2 

𝛼 = 𝛼1ℒ𝜙1
2 ‖𝑇−1‖2 + 𝛼2ℒ𝜙2

2 ‖𝑇−1‖2 

The proof that the error dynamics are asymptotically stable is given in detail 

in references [123-130] and [135]. 

 

The Linear Matrix Inequality (LMI) can be derived from the equation 120 

above. For the LMI, the matrices: X, Y, P1 > 0, P, > 0 and the scalars: 𝛼1 > 0, 

𝛼2 > 0  can be found. 

 

Recall the Schur properties [141]. It states: Given a partitioned matrix  

𝑆(𝑥) = [
𝑆11(𝑥) 𝑆12(𝑥)

𝑆21(𝑥) 𝑆22(𝑥)
]  ;  

where 𝑆11(𝑥):a square matrix 

Then the followings are true and known as the Schur complement [141]. 

𝑆(𝑥) < 0;  𝑆11(𝑥) < 0,    𝑆22(𝑥) − 𝑆21(𝑥) 𝑆11
−1(𝑥)𝑆12(𝑥)  < 0     (121) 

𝑆22(𝑥) < 0,    𝑆11(𝑥) − 𝑆12(𝑥) 𝑆22
−1(𝑥)𝑆21(𝑥)  < 0       (123) 
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Thus, the linear matrix inequality LMI is given below according to Schur 

decomposition and as in [130]: 

[
 
 
 
𝑋 + 𝑋𝑇   𝑃1 𝑃1𝐴2 0
𝑃1 𝛼1𝐼 0 0

𝐴1
𝑇𝑃1 0 𝐴1

𝑇𝑃1 + 𝑃2𝐴4 − 𝐶4
𝑇𝑌𝑇 − 𝑌𝐶4 + 𝛼𝐼 𝑃2

0 0 𝑃2 −𝛼2𝐼]
 
 
 

< 0    (123) 

 

where: 𝑋 =  𝑃1𝐴1
𝑠 and 𝑌 = 𝑃2𝐿 

The proof and decomposition of a LMI of the form formulated in equation 123 

is given in [130]. 

 

5.8.1 Sliding Observer Design  

The first task in designing a sliding mode observer is determining the 

sliding surface that ensures the desired stable dynamics. The second step is 

to identify the control gain. When the induction motor is fault free, the error 

dynamics in equations 116 and 117 are asymptotically stable according to 

equation 120. 

 

The observer sliding mode control surface is formulated in equation 124. 

𝑆 = (𝑒1 − 𝑒2)| 𝑒1 = 0             (124) 

 

The sliding mode observer and the Luenberger observer [126], [133], 

[135] are reproduced respectively below as:   

𝔷̇̂1(𝑡) = 𝐴1𝔷̂1 + 𝐴2𝔷̂2 + 𝐵1𝑢 + (𝐴1 − 𝐴1
𝑠) 𝐶1

−1(𝓎1 − 𝓎̂1) + 𝜙1(𝑇
−1𝔷̂, 𝑡) + ℯ1

𝑖  
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𝑤̂1 = 𝐶1𝔷̂1            (125) 

𝔷̇̂2(𝑡) = 𝐴4𝔷̂2 + 𝐴3𝐶1
−1𝓎1 + 𝐵2𝑢 + 𝐿(𝓎2 − 𝓎̂2) + 𝜙2(𝑇

−1𝔷̂, 𝑡) 

𝓎̂2 = 𝐶4𝔷̂2              (126) 

Equations 116 and 117 errors are set as in equation 124 assuming equation 

121 can be solved, and the gain 𝑘1 = ‖𝐸1‖ℒ𝜓+𝜂1  is such that:  

𝜂1 ≥ (‖𝐴2‖ + ℒ𝜙1‖𝑇
−1‖) 𝜀 + 𝜂2 

 

Recall the explanation of equation 114 is given in [140] where 𝑘1 is a 

component of  𝑘(𝑡, 𝑦, 𝑢) the calculated gain; 𝑘1 = ‖𝐸1‖ℒ𝜓+𝜂1 ;  𝜂1: is a positive 

scalar to be determined; 𝑃1R
 𝑟×𝑟 >  0: is the symmetric definite Lyapunov 

matrix of 𝐴1
𝑠  

𝑘1 = 𝐶1
−1 𝓎1 =   𝐶1

−1 𝑆1𝑦                

 

If the fault occurs at time tf, then equations 116 and 117 are rewritten:  

𝑒̇1 = 𝐴1
𝑠𝑒1 + 𝐴2𝑒2 + [𝜙1(𝑇

−1 𝔷, 𝑡) − 𝜙1(𝑇
−1𝔷̂, 𝑡)] + 𝐸1Δ𝜓 + 𝐵1𝑓𝐼𝑀 − ℯ1

𝑖    (127) 

𝑒̇2 = (𝐴4 − 𝐿𝐶4)𝑒2 + [𝜙2(𝑇
−1 𝔷, 𝑡) − 𝜙2(𝑇

−1𝔷̂, 𝑡)] + 𝐵2𝑓𝐼𝑀     (128) 

 

The error 𝑒2 is only affected by the induction motor faults 𝑓𝐼𝑀 unaffected 

by the motor model uncertainties Δ𝜓 and the error injection ℯ1
𝑖. The bounded 

norm ‖𝑒2(𝑡)‖ depends on the initial condition on 𝑒2(0). Thus, the best candidate 

residual model for the induction motor fault is given in equation 129 below.     

‖𝑒𝓎2‖  =  ‖𝐶4𝑒𝓎2‖          (129) 
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𝐶4 is the system matrix new coordinate; it can be either positive or negative.   

Suppose the residual given in equation 130 is greater than the set fault 

parameter threshold. In that case, a fault is detected, else the system is fault 

free within the set detection time given in equation 131 below, which is the 

first time it is detected that the residual value exceeds that of the threshold. 

‖𝑒𝓎2‖   ≥   𝒯             (130) 

𝑡𝑑 ≥ 𝑡𝑓            (131) 

 

5.9 Modified Observer in the Fault Isolation Approach    

In the fault isolation part of the task, our objective is to identify where 

the faults or failures are; and to assess whether it is the occurrence of single, 

multiple faults, or failure in the system. It is assumed that the fault in the 

system, i.e., the induction motor, can be written as in equation 132 below. 

𝑓𝐼𝑀 =  [𝑓𝐼𝑀
1𝑇 ,   𝑓𝐼𝑀

2𝑇…,   𝑓𝐼𝑀
𝑚𝑇]𝑇           (132) 

Equation 132 represents the motor fault matrix. 

 

Assessing the value of “𝑓𝐼𝑀
𝑖  for i =1 through m” equates to isolating the 

occurrence of such a fault. Thus, each nonzero fault value requires a sliding 

mode observer for subsystem 1 and system 2 sensitive to the particular fault. 

 

The sliding mode observer for the subsystem is as follows:    

𝔷̇̂1
𝑖 =  𝐴1𝔷̂1

𝑖 +  𝐴2𝔷̂1
𝑖 + 𝐵1𝑢 + 𝜙1(𝑇

−1 𝔷, 𝑡) +  (𝐴1 − 𝐴1
𝑠)𝐶1

−1(𝓎1
𝑖 − 𝓎̂1

𝑖 )  + ℯ1
𝑖𝑖  
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𝓎̂1
𝑖 = 𝐶1𝔷̂1

𝑖               (133) 

Equation 133 contains the superscript “i” for i =1 to m faults, whereas 

equation 125 does not have this option. 

where the state estimate is defined as: 

𝔷̂𝑖 = 𝑐𝑜𝑙(𝐶1
−1𝓎1 , 𝔷̂2

𝑖 )             (134) 

The output error injection is given and explained in detail in [143]: 

ℯ1
𝑖𝑖 = {

(‖𝐸1‖ℒ𝜓 + ‖𝐵1‖𝜌𝑎+𝜂1 )
𝑃1(𝐶1

−1 𝓎1−𝔷̂1
𝑖 )

‖𝑃1(𝐶1
−1 𝓎1−𝔷̂1

𝑖 )‖
       𝑓𝑜𝑟  𝐶1

−1 𝓎1 − 𝔷̂1
𝑖 ≠ 0 

0                                                      𝑒𝑙𝑠𝑒
    (135) 

where: 𝜂1 is a positive scalar to be determined; 𝑃1R
 𝑟×𝑟 >  0 : is the positive 

definite Lyapunov matrix of 𝐴1
𝑠       

For the fault isolation, this time, a sliding mode observer is designed for the 

subsystem given by equation 115 is as follows: 

𝔷̇̂2
𝑖 =  𝐴4𝔷̂2

𝑖 +  𝐴3𝐶1
−1𝑤1

𝑖 + 𝐵2𝑢 + 𝜙2(𝑇
−1𝔷̂𝑖, 𝑡) + 𝐿 (𝓎2

𝑖 − 𝓎̂2
𝑖 )  + 𝐵̅2

𝑖ℯ2
𝑖𝑖 

𝓎̂2
𝑖 = 𝐶1𝔷̂2

𝑖               (136) 

where: 𝐿: is the observer gain 

𝐵2 = [𝐵2
𝑖 , … 𝐵2

𝑚]                  (136a) 

The output error injection is given by [143]: 

𝑒2
𝑖 = {

(𝜌𝑎+𝜂3) 
𝐹𝑖(𝓎2

−𝑖−𝓎̂2
𝑖 )

‖𝐹𝑖(𝓎2
−𝑖−𝓎̂2

𝑖 )‖
       𝑓𝑜𝑟  𝓎2

−𝑖 − 𝓎̂2
𝑖 ≠ 0 

0                                                      𝑒𝑙𝑠𝑒
          (137) 

where 

𝜂3: is a positive scalar to be determined 

𝐹̅𝑖R 𝑚×(𝑝−𝑟) : is a matrix to be determined 
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𝑒1
𝑖 = 𝔷1

𝑖 − 𝔷̂1
𝑖 : is the state estimation errors for the ith fault 𝑓𝐼𝑀

𝑖  

𝑒2
𝑖 = 𝔷2

𝑖 − 𝔷̂2
𝑖 : is the state estimation errors for the ith fault 𝑓𝐼𝑀

𝑖  

 

There will always be an error after a fault has occurred in the system, 

and the error is calculated as follows: 

𝑒̇1
𝑖 = 𝐴1

𝑠𝑒1
𝑖 + 𝐴2𝑒1

𝑖 + [𝜙1(𝑇
−1 𝔷, 𝑡) − 𝜙1(𝑇

−1𝔷̂𝑖, 𝑡)] + 𝐸1Δ𝜓 + 𝐵1𝑓𝐼𝑀 − ℯ1
𝑖𝑖   

𝑒̇2
𝑖 = (𝐴4 − 𝐿𝐶4)𝑒2

𝑖 + [𝜙2(𝑇
−1 𝔷, 𝑡) − 𝜙2(𝑇

−1𝔷̂𝑖, 𝑡)] + 𝐵2𝑓𝐼𝑀
𝑖 − 𝐵̅2

𝑖ℯ2
𝑖𝑖    

𝑒̇2
𝑖 = (𝐴4 − 𝐿𝐶4)𝑒2

𝑖 + [𝜙2(𝑇
−1 𝔷, 𝑡) − 𝜙2(𝑇

−1𝔷̂𝑖, 𝑡)] + 𝐵2
𝑖𝑓𝐼𝑀

𝑖 + 𝐵̅2
𝑖 (𝑓𝐼̅𝑀

𝑖 − ℯ1
𝑖𝑖)  (138) 

𝑓𝐼̅𝑀
𝑖 : is only the vector fault of the system as stated earlier 

Note that 𝑓𝐼𝑀
𝑖  is the “ith” column in 𝑓𝐼𝑀.  𝑓𝐼̅𝑀

𝑖  is the motor fault vector; it does 

not contain 𝑓𝐼𝑀
𝑖  

Given the assumption: 𝐴1
𝑠 < 0, L, F,  𝑃1 = 𝑃1

𝑇 > 0,  𝑃2 = 𝑃2
𝑇 > 0, and scalars: 𝛼1 >

0 , 𝛼2 > 0 . That is, it is assumed that 𝑃1,  𝑃2, 𝛼1  𝛼1 , and 𝛼2 can be found. 

Then afterwards equation 139, is obtained.  

 𝐵2
𝑇𝑃2 = 𝐹𝐶4            (139)  

and:  [
𝜇1 +

1

𝛼1
(𝑃1)

2 𝑃1𝐴2

𝐴2
𝑇𝑃1 𝜇2 +

1

𝛼2
(𝑃2)

2𝛼𝐼𝑛−𝑟
] <   0       (140) 

𝜇1 = 𝐴1
𝑠𝑇𝑃1 +  𝑃1𝐴1

𝑠           (141) 

𝜇2 = (𝐴4 − 𝐿𝐶4)
𝑇𝑃2 + (𝐴4 − 𝐿𝐶4)𝑃2         (142) 

𝛼 = 𝛼1ℒ𝜙1
2 ‖𝑇−1‖2 + 𝛼2ℒ𝜙2

2 ‖𝑇−1‖2         (143) 

𝑒2
𝑖 → 0  𝑖𝑓  𝑓𝐼𝑀

𝑖 = 0           (144) 

𝑒2
𝑖 → 0  𝑖𝑓  𝑓𝐼𝑀

𝑖 = 0 , else 𝑒2
𝑖  ≠ 0 and then for 𝑒2

𝑖 → 0   𝑒2
𝑖    can be written as: 
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𝑒2
𝑖 =  (𝐴4 − 𝐿𝐶4)𝑒2

𝑖 + [𝜙2(𝑇
−1 𝔷, 𝑡) − 𝜙2(𝑇

−1𝔷̂𝑖, 𝑡)] + 𝐵2
𝑖𝑓𝐼𝑀

𝑖 + 𝐵̅2
𝑖 (𝑓𝐼̅𝑀

𝑖 − ℯ2
𝑖𝑖)   (145) 

The equation 𝐵2
𝑇𝑃2 = 𝐹𝐶4 is rewritten as follows:   

𝑇𝑟𝑎𝑐𝑒 [(𝐵2
𝑇𝑃2 − 𝐹𝐶4)

𝑇(𝐵2
𝑇𝑃2 − 𝐹𝐶4)]  = 0         (146) 

There exists F as: 𝐹 ∃ if 𝑟𝑎𝑛𝑘 (𝐶4 𝐵2) =  𝑟𝑎𝑛𝑘 ( 𝐵2) 

(𝐵2
𝑇𝑃2 − 𝐹𝐶4)

𝑇(𝐵2
𝑇𝑃2 − 𝐹𝐶4)  < 𝛾2𝐼𝑛−𝑟   ≈   𝐿𝑀𝐼      (147) 

(𝐵2
𝑇𝑃2 − 𝐹𝐶4)

𝑇(𝐵2
𝑇𝑃2 − 𝐹𝐶4)  < 𝛾2𝐼𝑛−𝑟 ≈ [

− 𝛾 𝐼𝑛−𝑟 (𝐵2
𝑇𝑃2 − 𝐹𝐶4)

𝑇

𝐵2
𝑇𝑃2 − 𝐹𝐶4 − 𝛾 𝐼𝑚

] <   0 (148) 

Equations 147, 148 are explained by the Schur properties discussed in 

reference [141] and in equation 130. 

 

When the rank is formulated as “rank(C4, B2) = rank(B2)”, then 𝐵2
𝑇𝑃2 =

𝐹𝐶4 can be solved because “F” exists, and the inequality in equation 148 can 

be solved by finding the minimizing 𝛾 in the equation. Thus, 𝑀𝑖𝑛 𝛾  implies: 

• 𝑃1 > 0 in inequality equation 125 

• 𝑃2 > 0 in inequality equation 148 

 

Thus, in the fault diagnosis of the induction motor, a fault is detected if 

the fault value is different from zero, that is, if “𝑓𝐼𝑀
𝑖 ≠ 0” within the detection 

time “𝑡𝑑”. Once a fault is detected in the system having “m” possible faults, 

the fault isolation is to be performed using “2*m” observers with one observer 

equation 133 for the state estimation and one observer equation 133 for the 

output estimation. When a fault is present, or when 𝑓𝐼𝑀
𝑖 ≠ 0, the dynamic error 
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or the residual ‖𝑒𝓎2
𝑖 ‖ exceeds the set threshold for some set time, i.e., 𝑡𝑖 > 𝑡𝑑, 

else 𝑓𝐼𝑀
𝑖 = 0. Thus, the residual is measured against the isolation threshold as 

in the equation below to isolate the fault.  

‖𝑒𝓎2
𝑖 ‖  =  ‖𝐶4𝑒𝓎2

𝑖 ‖  ↔  𝒯𝑖          (149) 

 

The fault isolation is accomplished by comparing the residual from the 

fault isolation with the fault isolation threshold. The dissertation proposed 

approach for detecting and isolating fault in the induction motor is illustrated 

in the figure below. In this research, the induction motor parameters that is 

subject to contain the electrical fault signatures are: 

• the rotor resistance 

• the rotor inductance  

• the stator resistance 

• the stator inductance 

 

Figure 5.7  The Induction Motor Fault Detection and Isolation 
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Other observer methods can be designed. For instance, with a 3-

observer design observer structure, the first observer generates a robust 

residual to the unknown disturbance input vector “d”. The second generates 

a residual insensitive to faults in the rotor resistance and the rotor inductance. 

Finally, the third observer produces or generates a residual, which is 

insensitive to faults in the stator resistance and in the stator inductance. 

Table 5.1 The Nominal Induction Motor Parameters 

Marathon 5K33GN2A ¼  
Induction Motor Parameters 

Values Bias Faults 
Magnitudes 

Stator resistance (Rs); (Rs0) 11.05 ohms 𝛿𝑅𝑠 = 50% 

Rotor resistance (Rr); (Rr0) 6.11 ohms 𝛿𝑅𝑟 = 15% 

Mutual inductance (Lm) 0.293939 H  

Stator inductance (Ls); (Ls0) 0.316423 H 𝛿𝑅𝐿𝑠 = 10% 

Rotor inductance (Lr); (Lr0) 0.316423 H 𝛿𝐿𝑟 = 5% 

Number of pole(p) 4  

Power ¼ hp  

Torque Load (TL0) 1N.m 𝛿𝑇𝐿 = 20% 

Load inertia (J); (J0) 0.00062 kg*m2  

Viscous friction coefficient (F) ; (f0) 0.0008 (N.m)/(rad/s)  

 

For the sake of simplicity, the mutual inductance (Lm) may be assumed 

to be zero. Besides, the change in the mutual inductance is not considered as 

a fault.  

 

The type of faults that can occur in the motor are represented in Figures 

5.8, 5.9, 5.10, and 5.11 below. 

 

The abrupt or jump fault is modeled by a step function usually caused 

by faults and represented in Figure 5.8. 
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The Intermittent or drift fault is modeled by many step functions usually 

caused by noises, represented in Figure 5.9. 

 

The drift or incipient fault is modeled by a ramp function usually caused 

by faults or disturbances and represented in Figure 5.10. 

 

In the fault frequency behavior, the fact that the incipient fault detection 

and isolation approach can be used in the presence of all faults is illustrated 

in Figure 5.11. 

 
Figure 5.8 A Typical Abrupt Fault Representation 

 

 
Figure 5.9 A Typical Intermittent Fault Representation 



 

87 
 

 
Figure 5.10 A Typical Incipient Fault Representation 

 

 

Figure 5.11 Faults Frequency Behaviors  

 

The residual is evaluated at the nominal parameters of the motor. The 

nominal parameter values are estimated by the system identification method. 

In Figure 5.9 above, with an m-observer design observer structure, the fault 

detection observer generates a delta, which is the difference between the 

threshold and the estimated value. The generated delta is the residual. This 

differential value is attributed to all unknown disturbances and collected 

disturbances, I, and the unknown disturbance input vector “d”. The first 
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observer generates a residual value insensitive to resistance faults in the 

rotor. The second observer generates a residual value insensitive to 

inductance faults in the rotor. The third observer generates a residual 

insensitive to faults in stator resistance, and the fourth observer generates a 

residual insensitive to faults in stator inductance. Let 𝒓𝒅 be the fault detection 

residuals, ri be the fault isolation residuals, and 𝑟1 ⇏ 𝑅𝑟 which reads: residual 

1 insensitive to the rotor resistor fault. Let 0 and 1 mean: = 0 or =1.  

 

In the table below, only the four possible faults in the induction motor 

that manifest in the rotor and stator resistances and inductances are 

considered. However, in the simulation code, only two faults are used since 

two faults are enough to implement the detection and isolation schemes while 

keeping the code manageable. 
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Table 5.2 A Simple Fault Isolation Logic 
𝒓𝒅 𝒓𝟏 ⇏ 𝑹𝒓 𝒓𝟐 ⇏ 𝑳𝒓 𝒓𝟑 ⇏ 𝑹𝒔 𝒓𝟒 ⇏ 𝑳𝒔 Interpretation is based on 

∀(𝑱, 𝒇,  𝑻𝑳) 

0 0 0 0 0 No Fault Detected  

0 0 0 0 1 No Fault Detected   

0 0 0 1 0 No Fault Detected   

0 0 0 1 1 No Fault Detected   

0 0 1 0 0 No Fault Detected   

0 0 1 0 1 No Fault Detected   

0 0 1 1 0 No Fault Detected   

0 0 1 1 1 No Fault Detected   

0 1 0 0 0 No Fault Detected   

0 1 0 0 1 No Fault Detected   

0 1 0 1 0 No Fault Detected   

0 1 0 1 1 No Fault Detected   

0 1 1 0 0 No Fault Detected   

0 1 1 0 1 No Fault Detected   

0 1 1 1 0 No Fault Detected   

0 1 1 1 1 No Fault Detected   

1 0 0 0 0 No Fault Detected   

1 0 0 0 1 Fault Detected, but not a Ls fault 

1 0 0 1 0 Fault Detected, but not a Rs fault 

1 0 0 1 1 Fault Detected, not a stator fault 

1 0 1 0 0 Fault Detected, not a Lr fault 

1 0 1 0 1 Fault Detected, not a Lr or Ls fault 

1 0 1 1 0 

Fault Detected, not a Lr or Rs 

fault 

1 0 1 1 1 

Fault Detected, not a Lr, Rs, Ls 

fault 

1 1 0 0 0 Fault Detected, not a Rrfault 

1 1 0 0 1 

Fault Detected, not a Rr or Ls 

fault 

1 1 0 1 0 

Fault Detected, not a Rr or Rs 

fault 

1 1 0 1 1 

Fault Detected, not a Rr, Rs, Ls 

fault 

1 1 1 0 0 Fault Detected, not a Rr or Lr fault 

1 1 1 0 1 

Fault Detected, not a Rr, Lr, Ls 

fault 

1 1 1 1 0 

Fault Detected, not a Rr, Lr, Rs 

fault 

1 1 1 1 1 No Fault Detected 
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For the induction motor in this application, a linear magnetic circuit and 

a balanced three-phase motor in the reference frame (a, b, c) is obtained. The 

reference frame (d, q) is used for the induction motor expression in the dual 

frame of reference (d, q): [1-3] and [144].    

[
 
 
 
𝜓𝑠𝑑
𝜓𝑠𝑞
𝜓𝑟𝑑
𝜓𝑟𝑞]

 
 
 

= [

𝐿𝑠 0 𝐿𝑚 0
0 𝐿𝑠 0 𝐿𝑚
𝐿𝑚 0 𝐿𝑟 0
0 𝐿𝑚 0 𝐿𝑟

] ∗ [

𝐼𝑠𝑑
𝐼𝑠𝑞
𝐼𝑟𝑑
𝐼𝑟𝑑

]; see: [1-3] and [144]                   (150) 

𝑉𝑠𝑑 = 𝑅𝑠𝐼𝑠𝑑 + 𝜓̇𝑠𝑑 − 𝜓𝑠𝑞θ̇𝑠 

𝑉𝑠𝑞 = 𝑅𝑠𝐼𝑠𝑞 + 𝜓̇𝑠𝑞 + 𝜓𝑠𝑞θ̇𝑠 

𝑉𝑟𝑑 = 𝑅𝑟𝐼𝑟𝑑 + 𝜓̇𝑟𝑑 − 𝜓𝑟𝑞θ̇𝑟 = 0 

𝑉𝑟𝑑 = 𝑅𝑟𝐼𝑟𝑑 + 𝜓̇𝑟𝑑 + 𝜓𝑟𝑞θ̇𝑠 = 0 ; see: [1-3] and [144]                               (151) 

 

Equations 150 to 155 are Power Engineering topics related to induction 

motor physics and operation explained in [1-3] and [144]. 

𝜓𝑠𝑑 and 𝜓𝑠𝑞: stator fluxes in (q, d) reference frame  

𝜓𝑟𝑑 and 𝜓𝑟𝑞: rotor fluxes in (q, d) reference frame 

𝐼𝑠𝑑 and 𝐼𝑠𝑞 : the stator currents in (q, d) reference frame 

𝐼𝑟𝑑 and 𝐼𝑟𝑞: the rotor currents in (q, d) reference frame 

It’s worth noting that: (ψ = flx in the matlab code) 

The stator currents are assumed to be measured quantities in the (a, b, c) 

reference and expressed in the (d, q) reference frame. 
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𝑉𝑠𝑑 and 𝑉𝑠𝑞 : the stator voltages in (q, d) reference frame 

𝑉𝑟𝑑 and 𝑉𝑟𝑞: the rotor voltages in (q, d) reference frame 

𝑅𝑠𝑡𝑎𝑡𝑜𝑟 = 𝑅𝑠 and 𝑅𝑟𝑜𝑡𝑜𝑟 =  𝑅𝑟 = stator and rotor resistances  

𝐿𝑠𝑡𝑎𝑡𝑜𝑟 = 𝐿𝑠 and 𝐿𝑟𝑜𝑡𝑜𝑟 = 𝐿𝑟 = Stator and rotor inductances 

𝐿𝑠𝑡𝑎𝑡𝑜𝑟 = 𝐿𝑠 = Magnetizing inductances 

θ𝑠𝑡𝑎𝑡𝑜𝑟 = θ𝑠 = Theta-Angle between reference frames (a, b, c), and (d, q)  

θ𝑟𝑜𝑡𝑜𝑟 = θ𝑟 = Theta-Angle between reference frames (a, b, c), and (d, q) 

 

With the rotor voltages equal to zero in a squirrel cage induction motor, 

the squirrel-cage induction motor mechanical equation is obtained by adding 

inertia and friction effects. 

𝜔𝑚 = 
𝑑𝜃𝑚

𝑑𝑡
= (𝑇𝑒 − 𝑇𝐿 − 𝑓 ) 

1

𝐽
             (152) 

 

The rotor speed is assumed to be measured quantity. 
 

The electromagnetic torque is rewritten as: 

 

𝑇𝑒 = (𝐼𝑠𝑞𝐼𝑟𝑑 − 𝐼𝑠𝑑𝐼𝑟𝑞)𝑝𝐿𝑚                 (153) 

 

where:  

𝜔𝑚: mechanical /rotor speed; 𝑇𝐿 : load torque; 𝐽: the rotor inertia; 𝑓: the 

friction 

Fixing the reference frame (d, q) to the stator gives the Park transformation 

in the following setting: 

 θ𝑠 = 0  ; θ̇𝑠 = 𝜔𝑠;  𝑠 =
𝜔𝑒−𝜔𝑠

𝜔𝑒
= 

𝜔𝑚

𝜔𝑒
       (154) 
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θ̇𝑚 = θ̇𝑟 = −p
𝑑𝜃𝑚

𝑑𝑡
= −𝑝 𝜔𝑚               (155) 

𝜔𝑒: Electrical excitation frequency of the stator; 𝜔𝑠 : Stator speed 

Thus, the induction motor nonlinear state space equations may be written as 

follows: 

ẋ(t) = 𝐴x(t) + 𝐵𝑢(𝑡)          (156) 

𝑦(𝑡) = 𝐶𝑥(𝑡)             (157) 

where 

𝑥(𝑡) =

[
 
 
 
 
 
 
𝐼𝑠𝑑
𝐼𝑠𝑞
𝐼𝑟𝑑
𝐼𝑟𝑞
𝜔𝑟
𝜔𝑠
𝜔𝑒 ]
 
 
 
 
 
 

; 𝑢(𝑡) = [
𝑉𝑠𝑑
𝑉𝑠𝑞
];  𝑦(𝑡) = [

𝐼𝑠𝑑
𝐼𝑠𝑞
𝜔𝑟
𝜔𝑠

]  ; 𝐵 =

[
 
 
 
 
 
 

0 0
0 0

−Υ𝐿𝑚 0
0 −Υ𝐿𝑚
0
Υ𝐿𝑟
0

0
0
Υ𝐿𝑟 ]

 
 
 
 
 
 

; 

 

𝐶 = [

0 −0.451 −0.40 1.55 0 −0.447 −0.052
0 1 −1 −5.2 0 0.347 −1.14
1
0

0
0

0
0

0
0

0
1

0
0

0
0

]     (158) 

 

𝐴𝑥(𝑡) =  

[
 
 
 
 
 
 
 
(−𝐿𝑟𝑅𝑠𝑥1 + L𝑚

2 𝑝𝑥5𝑥2 + 𝐿𝑚𝑅𝑟𝑥3 + 𝑝𝐿𝑟𝐿𝑚𝑥5𝑥4) Υ

(−L𝑟
2𝑝𝑥5𝑥1 − 𝐿𝑚𝑅𝑠𝑥2 − 𝑝𝐿𝑚𝐿𝑟𝑥5𝑥3 + 𝐿𝑟𝑅𝑟𝑥4) Υ

(−L𝑚
2 𝑝𝑥5𝑥1 − 𝐿𝑟𝑅𝑠𝑥2 − 𝑝𝐿𝑟𝐿𝑚𝑥5𝑥3 + 𝐿𝑚𝑅𝑟𝑥4) Υ

(𝐿𝑚𝑅𝑠𝑥1 − 𝑝𝐿𝑠𝐿𝑚𝑥5𝑥2 − 𝐿𝑠𝑅𝑟𝑥3 − 𝐿𝑠𝐿𝑟𝑝𝑥5𝑥4) Υ
(𝑝𝐿𝑠𝐿𝑚𝑥5𝑥1 + 𝐿𝑚𝑅𝑠𝑥2 + 𝐿𝑠𝐿𝑟𝑝𝑥5𝑥3 − 𝐿𝑠𝑅𝑟𝑥4) Υ
(𝑝𝐿𝑠𝐿𝑚𝑥5𝑥1 + 𝐿𝑟𝑅𝑠𝑥2 + 𝐿𝑠𝐿𝑟𝑝𝑥5𝑥3 − 𝐿𝑟𝑅𝑟𝑥4) Υ

(𝑝𝐿𝑚𝑥2𝑥3 − 𝑝𝐿𝑚𝑥1𝑥4 − 𝑓𝑥5 − T𝐿) J
−1 ]

 
 
 
 
 
 
 

   ; Υ =
1

𝐿𝑟𝐿𝑠− L𝑚
2        (159) 
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𝐴𝑥(𝑡) =  

[
 
 
 
 
 
 
 
 
 
 
 
 
−𝐿𝑟𝑅𝑠𝑥1

𝐿𝑟𝐿𝑠− L𝑚
2 +

L𝑚
2 𝑥5𝑥2

𝐿𝑟𝐿𝑠− L𝑚
2 +

𝐿𝑚𝑅𝑟𝑥3

𝐿𝑟𝐿𝑠− L𝑚
2 +

𝑝𝐿𝑟𝐿𝑚𝑥5𝑥4

𝐿𝑟𝐿𝑠− L𝑚
2

−L𝑟
2𝑝𝑥5𝑥1

𝐿𝑟𝐿𝑠− L𝑚
2 −

𝐿𝑚𝑅𝑠 𝑥2

𝐿𝑟𝐿𝑠− L𝑚
2 −

𝑝𝐿𝑟𝐿𝑚𝑥5𝑥3

𝐿𝑟𝐿𝑠− L𝑚
2 +

𝐿𝑟𝑅𝑟𝑥4

𝐿𝑟𝐿𝑠− L𝑚
2

−L𝑚
2 𝑝𝑥5𝑥1

𝐿𝑟𝐿𝑠− L𝑚
2 −

𝐿𝑟𝑅𝑠 𝑥2

𝐿𝑟𝐿𝑠− L𝑚
2 −

𝑝𝐿𝑟𝐿𝑚𝑥5𝑥3

𝐿𝑟𝐿𝑠− L𝑚
2 +

𝐿𝑚𝑅𝑟𝑥4

𝐿𝑟𝐿𝑠− L𝑚
2

𝐿𝑚𝑅𝑠𝑥1

𝐿𝑟𝐿𝑠− L𝑚
2 − 

𝑝𝐿𝑠𝐿𝑚𝑥5𝑥2

𝐿𝑟𝐿𝑠− L𝑚
2 −

𝐿𝑠𝑅𝑟 𝑥3

𝐿𝑟𝐿𝑠− L𝑚
2 −

𝐿𝑠𝐿𝑟𝑝𝑥5𝑥4

𝐿𝑟𝐿𝑠− L𝑚
2

𝑝𝐿𝑠𝐿𝑚𝑥5𝑥1

𝐿𝑟𝐿𝑠− L𝑚
2 +

𝐿𝑚𝑅𝑠𝑥2

𝐿𝑟𝐿𝑠− L𝑚
2 + 

𝐿𝑠𝐿𝑟𝑝𝑥5𝑥3

𝐿𝑟𝐿𝑠− 𝐿𝑚
2 −

𝐿𝑠𝑅𝑟𝑥4

𝐿𝑟𝐿𝑠− 𝐿𝑚
2

𝑝𝐿𝑠𝐿𝑚𝑥5𝑥1

𝐿𝑟𝐿𝑠− L𝑚
2 +

𝐿𝑟𝑅𝑠𝑥2

𝐿𝑟𝐿𝑠− L𝑚
2 + 

𝐿𝑠𝐿𝑟𝑝𝑥5𝑥3

𝐿𝑟𝐿𝑠− 𝐿𝑚
2 −

𝐿𝑟𝑅𝑟𝑥4

𝐿𝑟𝐿𝑠− 𝐿𝑚
2

𝑝𝐿𝑚𝑥2𝑥3

𝐽
−
𝑝𝐿𝑚𝑥1𝑥4

𝐽
− 

𝑓𝑥5−T𝐿

𝐽 ]
 
 
 
 
 
 
 
 
 
 
 
 

               (160) 

 

Using Park transformation, voltage measurements made in the (a, b, c) 

reference frame can be expressed in the (d, q) inequation 161 as follows: 

𝑢(𝑡) = [
𝑉𝑠𝑑
𝑉𝑠𝑞
] = [

1 −
1

2
−
1

2

0
√3

2
−
√3

2

] [
𝑉𝑎
𝑉𝑏
𝑉𝑐

]     and  [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] =

[
 
 
 
1 0

−
1

2
−
√3

2

−
1

2
−
√3

2 ]
 
 
 

[
𝑖𝑠𝑞
𝑖𝑠𝑑
]           (161) 

 

5.10 The Induction Motor Diagnostic Model 

The most common faults encounter in the induction motors are stator 

windings, short circuits, and broken rotor bars. These faults manifest as 

electrical faults in the induction motors. Thus, they can be modeled as 

variations in the electrical parameters in the motor: the parameter values the 

stator and the rotor resistor and inductance.  

 

A typical state vector nonlinear models may be as follows: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷(𝑥)𝑑 + 𝜙(𝑥, 𝑡)𝑓𝐼𝑀(𝑡) + 𝐸Δ𝜓(𝑡)    (162) 

𝑦(𝑡) = 𝐶𝑥(𝑡)             (163) 
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The nature of all the terms in equations 162 and 163 are exactly the same as 

those described for equations 93 and 94. 

 

Now considering a (d, q) equivalent circuit on a synchronous frame for 

the equation 162 above, the matrices x, u, y, B and C are as follows: 

𝑥(𝑡) =

[
 
 
 
 
 
 
𝐼𝑠𝑑
𝐼𝑠𝑞
𝐼𝑟𝑑
𝐼𝑟𝑞
𝜔𝑟
𝜔𝑠
𝜔𝑒 ]
 
 
 
 
 
 

; 𝑢(𝑡) = [
𝑉𝑠𝑑
𝑉𝑠𝑞
];  𝑦(𝑡) = [

𝐼𝑠𝑑
𝐼𝑠𝑞
𝜔𝑟
𝜔𝑠

]  ; 𝐵 =

[
 
 
 
 
 
 

0 0
0 0

−Υ𝐿𝑚 0
0 −Υ𝐿𝑚
0
Υ𝐿𝑟
0

0
0
Υ𝐿𝑟 ]

 
 
 
 
 
 

; 

 

𝐶 = [

0 −0.451 −0.40 1.55 0 −0.447 −0.052
0 1 −1 −5.2 0 0.347 −1.14
1
0

0
0

0
0

0
0

0
1

0
0

0
0

] 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑅𝑠𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑒𝐿𝑠𝐿𝑟 − 𝜔𝑟𝐿𝑚
2

𝐿𝑟𝐿𝑠 − L𝑚
2

−𝑅𝑟𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑠𝐿𝑚𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑠𝐿𝑚𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑠𝐿𝑚𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑠𝐿𝑚𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑟𝐿𝑚
2 − 𝜔𝑒𝐿𝑠𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑠𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝜔𝑠𝐿𝑚𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑟𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑟𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑟𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑟𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑠𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝜔𝑠𝐿𝑚𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑟𝐿𝑠𝐿𝑟 − 𝜔𝑒𝐿𝑚
2

𝐿𝑟𝐿𝑠 − L𝑚
2

𝜔𝑟𝐿𝑠𝐿𝑟 − 𝜔𝑒𝐿𝑚
2

𝐿𝑟𝐿𝑠 − L𝑚
2

𝜔𝑟𝐿𝑠𝐿𝑟 −𝜔𝑒𝐿𝑚
2

𝐿𝑟𝐿𝑠 − L𝑚
2

𝜔𝑟𝐿𝑠𝐿𝑟 − 𝜔𝑒𝐿𝑚
2

𝐿𝑟𝐿𝑠 − L𝑚
2

𝜔𝑠𝐿𝑚𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑠𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑒𝐿𝑚
2 − 𝜔𝑟𝐿𝑠𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑠𝐿𝑚𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑠𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑒𝐿𝑚
2 − 𝜔𝑟𝐿𝑠𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑠𝐿𝑚𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑠𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑒𝐿𝑚
2 − 𝜔𝑟𝐿𝑠𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝜔𝑒𝐿𝑚𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝑅𝑠𝐿𝑚
𝐿𝑟𝐿𝑠 − L𝑚

2

−𝜔𝑠𝐿𝑚𝐿𝑟
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2

𝑅𝑟𝐿𝑠
𝐿𝑟𝐿𝑠 − L𝑚

2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(164) 

Thus, a fault vector is derived as: 𝑓𝐼𝑀 = [

𝛿𝑅𝑠 
𝛿𝐿𝑠
 𝛿𝑅𝑟
𝛿𝐿𝑟

],       (165) 

The unknown input vector disturbance: d = [
𝛿𝐽
𝛿f
 𝛿T𝐿

],       (166) 
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Assuming the disturbance will impact the states thus: 

𝐷(𝑥) =  [
𝛿Ax

𝛿J

𝛿Ax

𝛿f

𝛿Ax

𝛿𝑇𝐿 
]
0
                        (167) 

where 

𝛿Ax

𝛿J
=

[
 
 
 
 
 
 
0
0
0
0
0
0
𝜏1]
 
 
 
 
 
 

; 
𝛿Ax

𝛿𝑓
=

[
 
 
 
 
 
 
0
0
0
0
0
0
𝜏2]
 
 
 
 
 
 

; 
𝛿Ax

𝛿𝑇𝐿
=

[
 
 
 
 
 
 
0
0
0
0
0
0
𝜏3]
 
 
 
 
 
 

               

Thus: 𝐷(𝑥) =   

[
 
 
 
 
 
 
0
0
0
0
0
0
𝜏1

0
0
0
0
0
0
𝜏2

0
0
0
0
0
0
𝜏3]
 
 
 
 
 
 

=  [
0 0 0 0 0 0 𝜏1
0 0 0 0 0 0 𝜏2
0 0 0 0 0 0 𝜏3

]

(𝑅𝑠0 , 𝐿𝑠0 , 𝑅𝑟0,   𝐿𝑟0 , 𝐽0 ,   𝑓0 , 𝑇𝐿0  )

𝑇

       (168) 

where 

𝜏1 =  
(−𝑝𝐿𝑚𝑥2𝑥3+ 𝑝𝐿𝑚𝑥1𝑥4+𝑓𝑥5−𝑇𝐿 )

𝐽2
,  𝜏2 = −

𝑥5

𝐽
 and 𝜏3 = −

1

𝐽
        (169) 

and D(𝑥) to be evaluated at the nominal values of the following parameter: 

(𝑅𝑠0 , 𝐿𝑠0   , 𝑅𝑟0   , 𝐿𝑟0 ,  𝐽0 ,   𝑓0 , 𝑇𝐿0  ) 

𝐵𝑢(𝑡) =

[
 
 
 
 
 
 

0
0

−Υ𝐿𝑚𝑉𝑠𝑑
−Υ𝐿𝑚𝑉𝑠𝑞

0
Υ𝐿𝑟𝑉𝑠𝑑
Υ𝐿𝑟𝑉𝑠𝑞 ]

 
 
 
 
 
 

 = 

[
 
 
 
 
 
 
 
 
 

0
0

−𝐿𝑚𝑉𝑠𝑑

𝐿𝑟𝐿𝑠− L𝑚
2

−𝐿𝑚𝑉𝑠𝑞

𝐿𝑟𝐿𝑠− L𝑚
2

0
𝐿𝑟𝑉𝑠𝑑

𝐿𝑟𝐿𝑠− L𝑚
2

𝐿𝑟𝑉𝑠𝑞

𝐿𝑟𝐿𝑠− L𝑚
2 ]
 
 
 
 
 
 
 
 
 

           (170) 
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Assuming the known nonlinear term will impact the states thus: 

𝜙(𝑥, 𝑢) =  [
𝛿Ax

𝛿𝑅𝑠 

𝛿Ax

𝛿𝐿𝑠 

𝛿Bu

𝛿𝐿𝑠 

𝛿Ax

𝛿𝑅𝑟 

𝛿Ax

𝛿𝐿𝑟 

𝛿Bu

𝛿𝐿𝑟 

𝛿Ax

𝛿𝐽
]
(𝑅𝑠0 , 𝐿𝑠0   , 𝑅𝑟0   𝐿𝑟0 , 𝐽0 ,   𝑓0 , 𝑇𝐿0  )

      (171) 

Equation 171 states that 𝜙(𝑥, 𝑢) must be evaluated for the values of 

“𝑅𝑠0 , 𝐿𝑠0   , 𝑅𝑟0   𝐿𝑟0 , 𝐽0 ,   𝑓0 ,𝑇𝐿0  “ 

For simplicity let us denote the matrix elements as: 𝜙𝑐𝑜𝑙𝑢𝑚𝑛,   𝑟𝑜𝑤 

 

𝛿Ax

𝛿𝑅𝑠 
=  

[
 
 
 
 
 
 
 
 
 𝜙11 =

−𝐿𝑟𝑥1

𝐿𝑟𝐿𝑠− L𝑚
2

𝜙12 =
−𝐿𝑟 𝑥2

𝐿𝑟𝐿𝑠− L𝑚
2

𝜙13 =
𝐿𝑚𝑥1

𝐿𝑟𝐿𝑠− L𝑚
2

𝜙14 =
𝐿𝑚𝑥2

𝐿𝑟𝐿𝑠− L𝑚
2

𝜙15 = 0
𝜙16 = 0
𝜙17 = 0 ]

 
 
 
 
 
 
 
 
 

             (172) 

 

𝛿Ax

𝛿𝐿𝑠 
=   

 

[
 
 
 
 
 
 
 
 
 
 
 
 𝜙21 =

𝐿𝑟𝐿𝑟𝑅𝑠𝑥1
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
−

𝐿𝑟L𝑚
2 𝑥5𝑥2

(𝐿𝑟𝐿𝑠 − L𝑚
2 )2

−
𝐿𝑟𝐿𝑚𝑅𝑟𝑥3

(𝐿𝑟𝐿𝑠 − L𝑚
2 )2

−
𝐿𝑟𝑝𝐿𝑟𝐿𝑚𝑥5𝑥4
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2

𝜙22 =
𝐿𝑟L𝑚

2 𝑝𝑥5𝑥1
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
+

𝐿𝑟𝐿𝑟𝑅𝑠 𝑥2
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
+
𝐿𝑟𝑝𝐿𝑟𝐿𝑚𝑥5𝑥3
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
−

𝐿𝑟𝐿𝑚𝑅𝑟𝑥4
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2

𝜙23 = −
𝐿𝑟𝐿𝑚𝑅𝑠𝑥1

(𝐿𝑟𝐿𝑠 − L𝑚
2 )2

−
(𝑝𝐿𝑚𝑥5𝑥2)(𝐿𝑟𝐿𝑠 − L𝑚

2 ) − 𝐿𝑟𝑝𝐿𝑠𝐿𝑚𝑥5𝑥2
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
−
(𝑅𝑟 𝑥3)(𝐿𝑟𝐿𝑠 − L𝑚

2 ) − 𝐿𝑟𝐿𝑠𝑅𝑟 𝑥3
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
−
(𝐿𝑟𝑝𝑥5𝑥4)(𝐿𝑟𝐿𝑠 − L𝑚

2 ) − 𝐿𝑟𝐿𝑠𝐿𝑟𝑝𝑥5𝑥4
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2

𝜙24 =
(𝑝𝐿𝑚𝑥5𝑥1)(𝐿𝑟𝐿𝑠 − L𝑚

2 ) − 𝐿𝑟𝑝𝐿𝑠𝐿𝑚𝑥5𝑥1
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
−

𝐿𝑟𝐿𝑚𝑅𝑠𝑥2
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
−
(𝐿𝑟𝑝𝑥5𝑥3)(𝐿𝑟𝐿𝑠 − L𝑚

2 ) − 𝐿𝑟𝐿𝑠𝐿𝑟𝑝𝑥5𝑥3
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2
−
(𝑅𝑟𝑥4)(𝐿𝑟𝐿𝑠 − L𝑚

2 ) − 𝐿𝑟𝐿𝑠𝑅𝑟𝑥4
(𝐿𝑟𝐿𝑠 − L𝑚

2 )2

𝜙25 = 0
𝜙26 = 0
𝜙27 = 0 ]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

                                     (173) 
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𝛿Bu

𝛿𝐿𝑠 
= 

[
 
 
 
 
 
 
 
 
 
 

𝜙31 = 0
𝜙32 = 0

𝜙33 =
𝐿𝑟𝐿𝑚𝑉𝑠𝑑

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙34 =
𝐿𝑟𝐿𝑚𝑉𝑠𝑞

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙35 = 0

𝜙36 = −
𝐿𝑟𝐿𝑟𝑉𝑠𝑑

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙37 =
𝐿𝑟𝐿𝑟𝑉𝑠𝑞

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 ]
 
 
 
 
 
 
 
 
 
 

;     
𝛿Ax

𝛿𝑅𝑟 
= 

[
 
 
 
 
 
 
 
 
 𝜙41 =

𝐿𝑚 𝑥3

𝐿𝑟𝐿𝑠− L𝑚
2

𝜙42 =
𝐿𝑚 𝑥4

𝐿𝑟𝐿𝑠− L𝑚
2

𝜙43 =
−𝐿𝑠𝑥3

𝐿𝑟𝐿𝑠− L𝑚
2

𝜙44 =
−𝐿𝑠𝑥4

𝐿𝑟𝐿𝑠− L𝑚
2

𝜙45 = 0
𝜙46 = 0
𝜙47 = 0 ]

 
 
 
 
 
 
 
 
 

       (174) 

 
𝛿Ax

𝛿𝐿𝑟 
=  

 

[
 
 
 
 
 
 
 
 
 
 
 𝜙51 =

−𝑅𝑠𝑥1(𝐿𝑟𝐿𝑠− L𝑚
2 )+𝐿𝑠𝐿𝑟𝑅𝑠𝑥1

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 −
𝐿𝑠L𝑚

2 𝑥5𝑥2

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 −
𝐿𝑠𝐿𝑚𝑅𝑟𝑥3

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 +
𝑝𝐿𝑚𝑥5𝑥4(𝐿𝑟𝐿𝑠−L𝑚

2 )−𝑝𝐿𝑟𝐿𝑟𝐿𝑚𝑥5𝑥4

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙52 =
𝐿𝑟L𝑚

2 𝑝𝑥5𝑥1

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 −
𝑅𝑠𝑥2(𝐿𝑟𝐿𝑠−L𝑚

2 )−𝐿𝑠𝐿𝑟𝑅𝑠𝑥2

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 −
𝑝𝐿𝑚𝑥5𝑥3(𝐿𝑟𝐿𝑠−L𝑚

2 )−𝐿𝑠𝑝𝐿𝑟𝐿𝑚𝑥5𝑥3

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 +
−𝐿𝑠𝐿𝑚𝑅𝑟𝑥4

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙53 =
−𝐿𝑠𝐿𝑚𝑅𝑠𝑥1

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 −
−𝐿𝑠𝑝𝐿𝑠𝐿𝑚𝑥5𝑥2

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 −
− 𝐿𝑠𝐿𝑠𝑅𝑟𝑥3

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 −
(𝐿𝑠𝑝𝑥5𝑥4)(𝐿𝑟𝐿𝑠− L𝑚

2 )−𝐿𝑠𝐿𝑠𝐿𝑟𝑝𝑥5𝑥4

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙54 =
−𝐿𝑠𝑝𝐿𝑠𝐿𝑚𝑥5𝑥1

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 +
−𝐿𝑠𝐿𝑚𝑅𝑠𝑥2

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 +
(𝐿𝑠𝑝𝑥5𝑥3)(𝐿𝑟𝐿𝑠− L𝑚

2 )−𝐿𝑠𝐿𝑠𝐿𝑟𝑝𝑥5𝑥3

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 −
−𝐿𝑠𝐿𝑠𝑅𝑟𝑥4

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙55 = 0
𝜙56 = 0
𝜙57 = 0 ]

 
 
 
 
 
 
 
 
 
 
 

      

    

                      (175) 
 

 

𝛿Bu

𝛿𝐿𝑟 
= 

[
 
 
 
 
 
 
 
 
 
 

𝜙61 = 0
𝜙62 = 0

𝜙63 =
𝐿𝑠𝐿𝑚𝑉𝑠𝑑

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙64 =
𝐿𝑠𝐿𝑚𝑉𝑠𝑞

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙65 = 0

𝜙66 =
𝑉𝑠𝑑(𝐿𝑟𝐿𝑠−L𝑚

2 )−𝐿𝑠𝐿𝑟𝑉𝑠𝑑

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙67 =
𝑉𝑠𝑞(𝐿𝑟𝐿𝑠−L𝑚

2 )−𝐿𝑠𝐿𝑟𝑉𝑠𝑞

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 ]
 
 
 
 
 
 
 
 
 
 

                (176) 
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Following the same mathematical maneuvers above 
𝛿Ax

𝛿𝐽
 may be calculated and, 

thus equation 177. 

𝜙(𝑥, 𝑢) =  [
𝛿Ax

𝛿𝑅𝑠 

𝛿Ax

𝛿𝐿𝑠 

𝛿Bu

𝛿𝐿𝑠 

𝛿Ax

𝛿𝑅𝑟 

𝛿Ax

𝛿𝐿𝑟 
 
𝛿Bu

𝛿𝐿𝑟 

𝛿Ax

𝛿𝐽
 ]
(𝑅𝑠0 , 𝐿𝑠0   , 𝑅𝑟0   ,𝐿𝑟0 , 𝐽0 ,   𝑓0 ,   𝑇𝐿0  )

             (177) 

Then equation 177 becomes: 

 

𝜙(𝑥) =    

[
 
 
 
 
 
 
𝜙11 𝜙12 𝜙13 𝜙14 𝜙15 𝜙16 𝜙17
𝜙21 𝜙22 𝜙23 𝜙24 𝜙25 𝜙26 𝜙27
𝜙31 𝜙32 𝜙33 𝜙34 𝜙35 𝜙36 𝜙37
𝜙41 𝜙42 𝜙43 𝜙44 𝜙45 𝜙46 𝜙47
𝜙51 𝜙52 𝜙53 𝜙54 𝜙55 𝜙56 𝜙57
𝜙61 𝜙62 𝜙63 𝜙64 𝜙65 𝜙66 𝜙67
𝜙71 𝜙72 𝜙73 𝜙74 𝜙75 𝜙76 𝜙77]

 
 
 
 
 
 

                   (178) 

The known nonlinear independent of the input may be written as: 

𝜙(𝑥) =  [
𝛿Ax

𝛿𝑅𝑠 

𝛿Ax

𝛿𝐿𝑠 

𝛿B

𝛿𝐿𝑠 

𝛿Ax

𝛿𝑅𝑟 

𝛿Ax

𝛿𝐿𝑟 

𝛿B

𝛿𝐿𝑟 
  
𝛿A

𝛿J
 ]
(𝑅𝑠0 ,𝐿𝑠0   , 𝑅𝑟0   𝐿𝑟0 , 𝐽0 ,   𝑓0 ,𝑇𝐿0  )

    (179) 

𝜙(𝑥) to be evaluated at the nominal values of the following parameters: 

(𝑅𝑠0 , 𝐿𝑠0, 𝑅𝑟0, 𝐿𝑟0, 𝐽0, 𝑓0 ,𝑇𝐿0  ) 

 

Note that the nonlinear term of the input may be calculated using the 

evaluated equations above or selected using any nonlinear function. 

 

The new fault vector is formulated in equation 180 given below. 
 

𝑓𝐼𝑀 =

[
 
 
 
 
 
 
𝛿𝑅𝑠 
𝛿𝐿𝑠
𝑢𝑇𝛿𝐿𝑠
 𝛿𝑅𝑟
𝛿𝐿𝑟
𝑢𝑇𝛿𝐿𝑟]

 
 
 
 
 
 

           (180) 
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Rewriting the matrix B from above as: 

𝐵 =

[
 
 
 
 
 
 
 
 
 

0 0
0 0

−
𝐿𝑚

𝐿𝑟𝐿𝑠− L𝑚
2 0

0 −
𝐿𝑚

𝐿𝑟𝐿𝑠− L𝑚
2

0 0
𝐿𝑟

𝐿𝑟𝐿𝑠− L𝑚
2 0

0
𝐿𝑟

𝐿𝑟𝐿𝑠− L𝑚
2 ]
 
 
 
 
 
 
 
 
 

;   
𝛿B

𝛿𝐿𝑠 
= 

[
 
 
 
 
 
 
 
 
 
 

𝜙31 = 0
𝜙32 = 0

𝜙33 = −
−𝐿𝑟𝐿𝑚

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙34 = −
−𝐿𝑟𝐿𝑚

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙35 = 0

𝜙36 =
−𝐿𝑟𝐿𝑟

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙37 =
−𝐿𝑟𝐿𝑟

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2 ]
 
 
 
 
 
 
 
 
 
 

 ;  
𝛿B

𝛿𝐿𝑟 
= 

[
 
 
 
 
 
 
 
 
 
 

𝜙61 = 0
𝜙62 = 0

𝜙63 = −
−𝐿𝑚𝐿𝑠

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙64 = −
−𝐿𝑚𝐿𝑠

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙35 = 0

𝜙36 =
𝐿𝑟𝐿𝑠− L𝑚

2 −𝐿𝑟𝐿𝑠

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2

𝜙37 =
𝐿𝑟𝐿𝑠− L𝑚

2 −𝐿𝑟𝐿𝑠

(𝐿𝑟𝐿𝑠− L𝑚
2 )

2
]
 
 
 
 
 
 
 
 
 
 

   

               (181) 
 

When the known nonlinear terms are independent of the input,  
𝛿B

𝛿𝐿𝑠 
  and 

𝛿B

𝛿𝐿𝑟 
  

must be used in the  𝜙(𝑥, 𝑡) not  
𝛿Bu

𝛿𝐿𝑠 
  and  

𝛿Bu

𝛿𝐿𝑟 
 .  

 

where the additional terms associated with the non-linearity and system 

uncertainty can be set in equation 182 as follows: 

𝐸 =

[
 
 
 
 
 
 
1
1
0
0
 1
0
0]
 
 
 
 
 
 

  and  Δ𝜓(𝑡) =  2 cos 𝑡 or Δ𝜓(𝑡) =  2 sin 𝑡       

𝜙(𝑥, 𝑡) =

[
 
 
 
 
 
 
𝑐𝑜𝑠(𝑥3 + 1)

𝑐𝑜𝑠(𝑥3 + 1)
0
0

 𝑐𝑜𝑠(𝑥3 + 1)
0
0 ]

 
 
 
 
 
 

  or 𝜙(𝑥, 𝑡) =

[
 
 
 
 
 
 
𝑠𝑖𝑛(𝑥3 + 1)

𝑠𝑖𝑛(𝑥3 + 1)
0
0

 𝑠𝑖𝑛(𝑥3 + 1)
0
0 ]

 
 
 
 
 
 

     (182) 
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In equation 192, nonlinear function, i.e., cosine or sine may be used to 

represent the nonlinear input term. 

One may as well omit and neglect these additional terms, or set them 

to zero. Some of these terms are already identified in the motor model. They 

come to manifest as an excessive change in specific parameters, i.e., 

resistance and inductance. Other faults manifest in other electrical signatures 

since the focus is on incipient faults that are not abrupt but time dependent. 

𝑓𝐼𝑀 = [

𝛿𝑅𝑠 
𝛿𝐿𝑠
 𝛿𝑅𝑟
𝛿𝐿𝑟

]                             (183) 

Modeling the fault using positive exponential distribution shows the change in 

the parameter value increasing with time as in incipient faults. Thus, the motor 

fault vector becomes  𝑓𝐼𝑀 = [𝑓𝐼𝑀1 𝑓𝐼𝑀2], known as the column values of the 

fault. 

where 

𝑓𝐼𝑀1 = 𝑒0.02∗𝑡                                          (184) 

However, for all time periods less than 25 seconds, fIM1 faults are ignored due 

to possible electrical parameter value excursion in the electronic system.     

where 

𝑓𝐼𝑀2 = 𝑒0.045∗𝑡            (185)     

However, for times less than 35 seconds, all fIM2 fault values are also ignored 

due to possible electrical parameter value excursion in the electronic system.     
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5.11 Nonlinear Disturbance Decoupling from a Nonlinear Perspective 

Using a more general nonlinear model to describe the induction motor 

is given as follows below: 

𝑥̇(𝑡) = 𝐴(𝑥) + 𝐵𝑢(𝑡) + 𝐷(𝑥)𝑑 + 𝜙(𝑥)𝑓𝐼𝑀       (186) 

𝑦(𝑡) = 𝐶(𝑥)             (187) 

The above model can be rewritten by means of a change of variables given by 

the state transformation matrix below. It defines a new state “z” uncoupled 

or decoupled from the unknown input [122-127], [130], [135]. 

𝔷 = 𝑇(𝑥)            (189) 

𝔷̇ = 𝑇̇(𝑥) =
𝜕𝑇(𝑥)

𝜕𝑥
(𝐴(𝑥) + 𝐵(𝑥)𝑢 + 𝐷(𝑥)𝑑 + 𝜙(𝑥)𝑓𝐼𝑀)         (190) 

𝜕𝑇(𝑥)

𝜕𝑥
 in equation 190 means that the transformation matrix T will be acting the 

entire state equation matrices to transform the system and obtain the 

coordinate in equation 189. 

 

For the transformed model to be unaffected by the unknown inputs but still 

able to detect faults, it is required that: 

𝜕𝑇(𝑥)

𝜕𝑥
𝐷(𝑥)𝑑 = 0                 (191) 

Thus, the disturbance decoupled is independent of the unknown inputs d. 

𝔷̇ = 𝑇̇(𝑥) =
𝜕𝑇(𝑥)

𝜕𝑥
[𝐴(𝑥) + 𝐵(𝑥)𝑢 + 𝜙(𝑥)𝑓𝐼𝑀]           (192) 

 

The ranks are given in equation 193 below. 
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rank[𝐷(𝑥)] = 𝑛𝑑   and rank(
𝜕𝑇(𝑥)

𝜕𝑥
) = 𝑟𝑎𝑛𝑘(

𝜕𝑇1(𝑥)

𝜕𝑥
:

𝜕𝑇𝑛−𝑛𝑑(𝑥)

𝜕𝑥

) = 𝑛 − 𝑛𝑑      (193) 

𝜕𝑇(𝑥)

𝜕𝑥
= (

𝜕𝑇1(𝑥)

𝜕𝑥
:

𝜕𝑇𝑛−𝑛𝑑(𝑥)

𝜕𝑥

)              (194) 

The complete transformation is: 𝔷 = 𝑇(𝑥) =(

𝑇1(𝑥)
:

𝑇𝑛−𝑛𝑑(𝑥)
)        (195) 

Thus, 𝔷 decoupled is stated as follows:    

𝔷̇ = 𝑇̇(𝑥) =
𝜕𝑇(𝑥)

𝜕𝑥
(𝐴(𝑥) + 𝐵(𝑥)𝑢 + 𝜙(𝑥)𝑓𝐼𝑀)𝑥=𝑉−1(𝑧,𝑦′)              (196) 

𝑦(𝑡) = 𝐶(𝑥)𝑥=𝑉−1(𝑧,𝑦′)                        (197) 

𝑉(𝑥) = [
𝔷
𝑦′]                         (198) 

𝑉(𝑥) = [
𝑇(𝑥)

𝑉′(𝑦)𝑦=𝐶(𝑥)
]                                       (199) 

 

The observer gain must be calculated under no-fault condition so that 

the observer is locally asymptotically stable. For the residual vector to be a 

function of fault or to reflect faults, it is required that:     

𝑟𝑎𝑛𝑘 [
𝜕𝑇(𝑥)

𝜕𝑥
 𝜙(𝑥)] = 𝑟𝑎𝑛𝑘[𝜙(𝑥)]          (200) 

Equation 202 is the condition for fault sensitivity; the rank of the derivative of 

transformation function T(x), and the function 𝜙(𝑥) equals the rank of the 

function 𝜙(𝑥). 
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5.12 Residuals and Other Observers for Fault Isolation 

As illustrated the fault isolation is performed using the fault vector by 

the aid of observer methods.   

𝑓𝐼𝑀
𝑖  is the set of faults to which a particular observer is sensitive. 

𝑓𝐼̅𝑀
𝑖  is the rest set of faults to which a particular observer is insensitive. 

𝐹𝑖(𝑥) and 𝐹̅𝑖(𝑥) are partitions of 𝐹𝑖 

then 

𝜕𝑇(𝑥)

𝜕𝑥
𝐷(𝑥)𝑑 = 0           (201) 

𝜕𝑇(𝑥)

𝜕𝑥
𝐷(𝑥)𝑑 = 0 ~  

𝜕𝑇(𝑥)

𝜕𝑥
[𝐷(𝑥)    𝐹̅𝑖(𝑥)] = 0       (202) 

𝑟𝑎𝑛𝑘 [
𝜕𝑇(𝑥)

𝜕𝑥
 𝐹𝑖(𝑥)] = 𝑟𝑎𝑛𝑘[𝐹𝑖(𝑥)]          (203) 

 

In the design of the fault isolation observer, the observers are restricted 

as follows: The first observer or the fault detection observer residual is robust 

to the unknown input disturbance vector, the ith observer residual is insensitive 

to faults in the rotor, and the (i+1)th observer residual is insensitive faults in 

the stator. 

 

The observer residuals, as shown in Figure 5.7 can be further structured 

by assuming that the fault detection observer generates five residuals. 

• an unknown disturbance related residual 

• a rotor resistance-related residual 

• a rotor inductance related residual 
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• a stator resistance-related residual 

• a stator inductance related residual 

These residuals are robust to the unknown disturbance input vector “d”, 

insensitive to faults in the rotor resistance, insensitive to faults in the rotor 

inductance, insensitive to faults in stator resistance, and insensitive to faults 

in stator inductance. 

 

In the implementation of the dedicated observer, all faults and their 

respective residuals must be specified. Each fault has its unique residual that 

serves to isolate one fault from another. For the generalized observer, all 

faults and their respective residuals must be specified. However, residual 1, 

for instance, is affected by all faults except fault 1.  

 

What follows is a digressionary explanation regarding the dedicated 

observer and the generalized observer. 

 

Thus, for a non-linear model given in equations 207 and 208 its related 

non-linear observer is given in equation 209 to 211. 

𝑥̇(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡)) + 𝑅1𝑓(𝑡)         (207) 

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡)) + 𝑅2𝑓(𝑡)           (208) 
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𝑥̇̂(t) = 𝑔(𝑥̂(𝑡), 𝑢(𝑡)) + 𝐾(𝑥̂(𝑡), 𝑢(𝑡))(𝑦(𝑡) − 𝑦̂(𝑡))      (209) 

𝑦(𝑡) = ℎ(𝑥̂(𝑡), 𝑢(𝑡))            (210) 

𝑟(𝑡) = 𝑦(𝑡) − 𝑦̂(𝑡)            (211) 

The reduction error in the state estimation and the residual model equations 

are: 

𝑒(𝑡) = 𝑥(𝑡) − 𝑥̂(𝑡)             (212) 

𝑒̇(𝑡) = 𝐹(𝑡)𝑒(𝑡) + 𝑂1(𝑒
2(𝑡), 𝑡 ) + 𝑅1𝑓(𝑡) − 𝐾(𝑥̂(𝑡), 𝑢(𝑡))𝑅2 𝑓(𝑡)      (213) 

𝑟(𝑡) = ℎ(𝑡)𝑒(𝑡) + 𝑂2(𝑒
2(𝑡), 𝑡 ) + 𝑅2𝑓(𝑡)         (214) 

where:  

𝐹(𝑡) =
𝛿𝑔(𝑥̂(𝑡),𝑢(𝑡))

𝛿𝑥̂(𝑡)
−  𝐾(𝑥̂(𝑡), 𝑢(𝑡)) 𝐻(𝑡)             (215) 

𝐻(𝑡) =
𝛿ℎ(𝑥̂(𝑡),𝑢(𝑡))

𝛿𝑥̂(𝑡)
             (216) 

 

As stated from the outset, this fault detection and isolation method is 

implemented using the described induction motor; however, instead of using 

all the motor's possible faults, two failures or faults are used for the validation 

of the proposed fault diagnosis method. Equations 207 to 211 are used as a 

digressionary explanation regarding dedicated the observer and the 

generalized observer. Chapter 5 lays out the steps and the mathematics of 

the fault detection and isolation.  The results are illustrated in chapter 6 and 

the rest of the dissertation. 
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Chapter 6: Fault Diagnosis Research Validation and Result Analysis 

 

6.1 MATLAB Code/Simulation and Outcomes 

Many equations and matrices used in this research are presented in this 

chapter. In sections 6.1, 6.2, and 6.3, results and preliminary matrices are 

obtained and discussed; concluding with the explanation of “Fault Diagnosis 

Research Validation Result Analysis” and discussing the “Technical Points to 

Note” in section 6.4. 

 

The Matrices A, B, C used in the model-based fault detection and 

isolation simulation code are calculated from the motor parameters given by 

the manufacturer, the measured parameters in the electrical laboratory 

experiments, from the non-measured parameters calculated by MATLAB code 

whose codes and results are in appendixes A and B, and equation in sections 

5.10, 5.11.  

 

The additional terms associated with the non-linearity and system 

uncertainty mentioned and explained earlier in the previous sections are 

restated here. They are the matrices E, Δ𝜓(𝑡) and 𝜙(𝑥, 𝑡) 
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where the equations are reproduced as: 

𝐸 =

[
 
 
 
 
 
 
1
1
0
0
 1
0
0]
 
 
 
 
 
 

  and Δ𝜓(𝑡) to be  Δ𝜓(𝑡) =  2 cos 𝑡 or Δ𝜓(𝑡) =  2 sin 𝑡 are chosen 

𝜙(𝑥, 𝑡) to be 𝜙(𝑥, 𝑡) =

[
 
 
 
 
 
 
𝑐𝑜𝑠(𝑥3 + 1)

𝑐𝑜𝑠(𝑥3 + 1)

0
0

 𝑐𝑜𝑠(𝑥3 + 1)
0
0 ]

 
 
 
 
 
 

   or 𝜙(𝑥, 𝑡) =

[
 
 
 
 
 
 
𝑠𝑖𝑛(𝑥3 + 1)

𝑠𝑖𝑛(𝑥3 + 1)

0
0

 𝑠𝑖𝑛(𝑥3 + 1)
0
0 ]

 
 
 
 
 
 

  are chosen as well. 

  

The fault vector of incipient and time-dependent faults is immediately 

below. 

𝑓𝐼𝑀 = [

𝛿𝑅𝑠 
𝛿𝐿𝑠
 𝛿𝑅𝑟
𝛿𝐿𝑟

]     

The fault is modeled using positive exponential distribution as given in 

equations 183 to 185. 

 

Depending on the number of faults anticipated in the monitored 

equipment, a column for each fault is used.      
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6.2 MATLAB Code for the System Matrix Transformation 

For a calculated system matrix, A, if there exists a column vector a, such 

that T = [a, Aa, · · ·, An-1a] is non-singular, the system matrix A can be 

transformed into a companion-like matrix. The column vector can be 

generated randomly; then, the System matrix is transformed and calculated. 

The transformed matrix is not unique. If one does need the standard 

companion form, the following statements can further be given. 

 

From motor nonlinear models explained above and restated here. 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷(𝑡)𝑑 + 𝜙(𝑥, 𝑡)𝑓𝐼𝑀 + 𝐸Δ𝜓(𝑡)      

𝑦(𝑡) = 𝐶𝑥(𝑡)              

𝑤ℎ𝑒𝑟𝑒 𝑥(𝑡) =

[
 
 
 
 
 
 
𝐼𝑠𝑑
𝐼𝑠𝑞
𝐼𝑟𝑑
𝐼𝑟𝑞
𝜔𝑟
𝜔𝑠
𝜔𝑒]
 
 
 
 
 
 

;, 𝑢(𝑡) = [
𝑉𝑠𝑑
𝑉𝑠𝑞
];  𝑎𝑛𝑑 𝑦(𝑡) = [

𝐼𝑠𝑑
𝐼𝑠𝑞
𝜔𝑟
𝜔𝑠

]  ;𝐵 =

[
 
 
 
 
 
 

0 0
0 0

−Υ𝐿𝑚 0
0 −Υ𝐿𝑚
0
Υ𝐿𝑟
0

0
0
Υ𝐿𝑟 ]

 
 
 
 
 
 

; 

 

The following system matrices and vectors are obtained. See section 5.10 for 

the derivation and appendixes for the MATLAB codes. 

A=[0, 0, 1, 0, 0, 0, 0; 0, -0.154, -0.04, 1.54,  0, -0.744, -0.032; 0,  0.249, 
-1, -5.2,  0,   0.337,  -1.12; 0.0386,  -0.996,  0, -2.117,  0, 0.02, 0; 0, 0.5, 

0, 0, -4, 0, 0; 0, 0, 0, 0, 0,   -20, 0; 0, 0, 0,  0, 0, 0,  -25]; 
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𝐵 =

[
 
 
 
 
 
 
0 0
0 0

−Υ𝐿𝑚 0
0 −Υ𝐿𝑚
0
Υ𝐿𝑟
0

0
0
Υ𝐿𝑟 ]

 
 
 
 
 
 

= 𝐵 =

[
 
 
 
 
 
 
0 0
0 0
0 0
0 0
0
7
0

0
0
19]
 
 
 
 
 
 

 

𝐶 = [

0 −0.451 −0.40 1.55 0 −0.447 −0.052
0 1 −1 −4.5 0 0.47 −1.14
1
0

0
0

0
0

0
0

0
1

0
0

0
0

] 

𝐸 =

[
 
 
 
 
 
 
1
1
0
0
 1
0
0]
 
 
 
 
 
 

;𝜙(𝑥, 𝑡) =

[
 
 
 
 
 
 
𝑐𝑜𝑠(𝑥3 + 1)

𝑐𝑜𝑠(𝑥3 + 1)
0
0

 𝑐𝑜𝑠(𝑥3 + 1)
0
0 ]

 
 
 
 
 
 

  or 𝜙(𝑥, 𝑡) =

[
 
 
 
 
 
 
𝑠𝑖𝑛(𝑥3 + 1)

𝑠𝑖𝑛(𝑥3 + 1)
0
0

 𝑠𝑖𝑛(𝑥3 + 1)
0
0 ]

 
 
 
 
 
 

  

 

MATLAB Codes for calculating the state space inputs and the output 

transformations are in appendix C. They yield the input transformation matrix 

T and the following matrices T1, T2, T3, T4, A1, A2, A3, and A4, the output 

transformation matrix S and the following matrices S1, S2, S3, S4, C1, C2, 

C3, and C4. 

 

6.3 The Matrices Needed in MATLAB-Ready Format 

The system matrices (A, B, C, E, 𝜙(𝑥, 𝑡), Δ𝜓(𝑡), T, and S) above in 

previous sections are explained and calculated and reproduced below in the 

MATLAB-ready form. 

A= [0, 0, 1, 0, 0, 0, 0; 0, -0.154, -0.04, 1.54, 0, -0.744, -0.032;  
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0, 0.249, -1, -5.2, 0, 0.337,  -1.12; 0.0386,  -0.996,  0, -2.117,  0, 0.02, 0; 
0, 0.5, 0, 0, -4, 0, 0; 0, 0, 0, 0, 0, -20, 0; 0, 0, 0,  0, 0, 0,  -25]; 

 
B= [0, 0; 0, 0; 0, 0; 0, 0; 0, 0; 7, 0; 0, 19]; 

 
C= [0, -0.451, -0.41, 1.55, 0, -0.44, -0.052; 0, 1, -1, -4.55, 0, 0.474, -

1.14; 1, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 
10, 0; 0, 0, 0, 0, 0, 0, 1]; 

 
E = [1; 1; 0; 0; 1; 0; 0]; 

 

𝜙(𝑥, 𝑡) =[cos(x3+1); cos(x3+1); 0; 0; cos(x3+1); 0; 0]; or 

 

𝜙(𝑥, 𝑡) =[sin(x3+1); sin(x3+1); 0; 0; sin(x3+1); 0; 0]; 
 

Δ𝜓(𝑡) is chosen to be  Δ𝜓(𝑡)= 2*cos(t) 

T= [ 0.9, 0.16, 0.04, -1.6, 0, 0.844, 0.03; -1, 1, 0, 0, 0, 0, 0;  
0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0; -1, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 1, 0;  

0, 0, 0, 0, 0, 0, 1]; 
 

S=[1, 0, -1, 0; - 1, 1, -0.5, 0; 1, 0, 0, 0; 1, 0, -0.9, 1]; 

 

𝑓𝐼𝑀1 = 𝑒0.02∗𝑡                                           

However, for all time periods less than 25 seconds, fIM1 faults are ignored due 

to possible electrical parameter value excursion in the electronic system.                         

𝑓𝐼𝑀2 = 𝑒0.045∗𝑡              

However, for times less than 35 seconds, all fIM2 fault values are also ignored 

due to possible electrical parameter value excursion in the electronic system.     

 

Depending on the number of faults monitored, detectable or critical 

faults are only monitored. The generic column fault expression is used below.          

𝑓𝐼𝑀𝑛 = 𝑒𝑥∗𝑡 𝑓𝑜𝑟 𝑡 = 𝑡𝑖𝑚𝑒 =  𝑡 𝑠𝑒𝑐𝑜𝑛𝑑𝑠    
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The MATLAB code that calculates matrix products “T*A/T”; “S*C/T”; 

“T*B” and “T*E” is in appendix C and the results are given below. 

 

The MATLAB matrix calculation of T*A/T result is in MATLAB form below. 

(T*A)* inv(T) 

 

ans = 
 

    1.4313    1.3499    0.7963    5.7157    0.0000  -18.2256   -0.8429 

   -0.1453   -0.1308   -1.0342    1.3075   -0.0000   -0.6214   -0.0276 
    0.2349    0.2114   -1.0094   -4.8242    0.0000    0.1387   -1.1270 

   -0.9032   -0.8515    0.0361   -3.5621   -0.0000    0.7823    0.0271 
   -3.3019    1.0283   -0.8679   -5.2830   -4.0000    2.7868    0.0991 

         0         0             0            0             0         -20.1100         0 
         0         0             0            0              0          0         -25.2100 

 

The MATLAB matrix calculation of S*C/T result is in MATLAB form 

below. 

 
(S*C) * inv(T) 

 
ans = 

 
   -1.3689   -0.2320   -0.3552   -0.6402   -0.0000    0.7153   -0.0109 

    0.8972    1.3075   -0.6259   -4.6645    0.0000    0.1568   -1.1149 

   -0.4255   -0.3829   -0.3930    0.8692   -0.0000   -0.0809   -0.0392 
   -0.3311   -0.3980   -0.3968    1.0202    1.0000   -0.1605   -0.0421 

 

The MATLAB matrix calculation of T*B result is in MATLAB form below. 
 
(T*B) 
 
ans = 
 
    5.9080    0.5700 
         0         0 
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         0         0 
         0         0 
         0         0 
    6.9110         0 
         0   18.9990 
 

The MATLAB matrix calculation of T*E result is in MATLAB form below. 

 

(T*E) 
 

ans = 
 

   [1.0600, 0, 0, 0, 0, 0, 0]T 

 

6.4 The Fault Research Validation and Results Analysis Explanation 

The Fault Diagnosis in appendix D performs the Linear Matrix Inequality 

(LMI) parameter calculation necessary for all the necessary MATLAB codes and 

function codes to work. For instance, the resulting parameters after running 

the code in appendix D, are: O1, O2, F A1s L, alpha1, and gam. These 

parameters mentioned above are not as unique as they are resulting from 

Linear Matrix Inequality calculations. These parameters are used in the 

Simulink, whose block diagram is given in appendix D as well.  The code that 

graphs these parameters is in Appendix E. Figures 6.1 to 6.6 support These 

resulting graphs demonstrate the dissertation's goal: to detect and isolate 

incipient faults.  

 

It is worth summarizing the steps taken to arrive at the results 

illustrated in Figures 6.1 to 6.6. The summary below may serve as an 
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executive summary for readers interested only in the essence of the 

dissertation. 

 

Figure 6.0 Major Steps Taken to Implement the Fault Diagnosis   

 

The residuals are graphed and explained in Figures 6.1 to 6.5. The steps 

involved but not limited the following equations: 

• Step 1:  Refer to equations 93, 94, 162 and 163 

• Step 2:  Refer to equations 150 to 155; 157 to 161; 164 to 185 

• Step 3:  Refer to equations 106 to 109 
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• Steps 4-5:  Refer to equations 110, 111d 

• Step 6:  Refer to equations 113,133 

• Step 7:  Refer to equations 115 

• Steps 8-10:  Refer to equations 136 

 

Figures 6.1 to 6.6 show that depending on the threshold requirement for 

faults detection and isolating, the approach used in the dissertation detects 

and isolates the faults at the set threshold if the residual value crosses the set 

threshold at a particular time. 

 

Once the fault is detected, if the Simulink simulation models more than 

one motor, the follow-up step is to identify which motor is faulty using the 

observers designed for fault isolation. The observer designed for the first fault 

has a corresponding residue analyzed with the threshold requirement for that 

motor fault. If the residual crosses the threshold line, it is noted at what time 

this has occurred. This event is illustrated in Figures 6.1 to 6.6. The same 

processes are implemented to isolate other faults in the motor models.    

 

In Figure 6.1, the threshold value of the fault parameter is independent 

of time and is graphed in red at a magnitude of about 2.25; the residual from 

the fault model is graphed in blue. The picks of the residual never reach its 

set threshold at any time. Thus, no fault occurs, therefore, no fault is detected. 
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Figure 6.1 Fault Detection and Threshold1 vs Time 

 

 
 

Figure 6.2 Fault Detection and Threshold2 vs Time 

In Figure 6.2, the threshold value of the fault parameter is 

independent of time and is graphed in red at a magnitude of about 0.1; the 
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residual from the fault model is graphed in blue. Three picks of the residual 

cross the set threshold at three different times. Thus, a fault is detected. 

 

 

Figure 6.3 Fault 1 Fault Isolation and Threshold1 vs Time 

 

In Figure 6.3 the fault isolation threshold value of the fault parameter is 

independent of time and is graphed in red is greater than zero. The residual 

from the fault model is graphed in blue. The first fault can be isolated. 
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Figure 6.4 Fault 1 Fault Isolation and Threshold2 vs Time 

 

Figure 6.4 shows the fault isolation threshold of the fault is independent 

of time and is graphed in red is greater than zero. The residual from the fault 

model is graphed in blue. The fault can be isolated at 20 and 30 seconds.  

 

 
Figure 6.5 Fault 2 Fault Isolation and Threshold 1 vs Time 
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Figure 6.5 shows the fault isolation threshold of the fault is independent 

of time and is graphed in red is greater than zero. The residual from the fault 

model is graphed in blue. The fault can be isolated at 10 seconds.  

 

 
 

Figure 6.6 Fault 2 Fault Isolation and Threshold 2 vs Time 

 

Figure 6.6 shows the fault isolation threshold of the fault is independent 

of time and is graphed in red is greater than zero. The residual from the fault 

model is graphed in blue. The fault can be isolated at 10, 20 and 30 seconds.  

  



 

119 
 

 
 

 
 

 
Chapter 7: Conclusion and Future Work 

 

The “Objective, Motivation, State-of-the-Art and Background” in section 

2.1 illustrates the author’s objective and motivation for developing this 

method of fault diagnosis methodically. The State-of-the-Art reiterates and 

summarizes why the conventional methods used for classical fault diagnosis 

are unable to take on this challenge. Thus, since the author has been 

implementing the classical method using FMECA and Bayesian algorithm in 

the industry for many years and seen its performance, the need to develop an 

innovative hybrid method for fault diagnosis for the defense industry has 

become a necessity as stated throughout the dissertation. This method solves 

the challenge the classical approach cannot solve, and it has a wide field 

application that includes fault detection, fault isolation, fault accommodation, 

anti-tampering, system security, health monitoring, and prognosis in 

engineering systems. Furthermore, this approach serves to advance the 

Digital Transformation era through Model-Based System Engineering, Digital 

Twin and Hardware-in-the-Loop since the goals in the fault diagnosis align 

with those Digital Twin and Hardware-in-the-Loop and overlapping tasks may 

be leveraged. 
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The approach used in this dissertation to develop and implement an 

efficient fault diagnosis for incipient faults applies to abrupt and intermittent 

faults as well as to additive faults, multiplicative faults, uncertainties, 

disturbances, and noises. Parametric deviations such as discrepancies and 

suppress modeling errors are detectable. The induction motor system model 

is transformed into two systems: 1) real faults, discrepancies, disturbances, 

uncertainties and 2) those containing only the faults. 

 

The fault diagnosis system's sensitivity and specificity are improved. 

This is done by separating the different types of faults, and; by transforming 

the induction motor state-space input matrix into a companion matrix and a 

transformation matrix. For readers who want to reproduce this work, all 

appropriated MATLAB codes are provided in the appendix. A well-versed 

reader in the topic will also note that the transformation matrix is not unique, 

and the induction motor state-space input companion matrix can be of the 

standard form. 

 

Thus, the goal of this dissertation is technically achieved by designing 

fault diagnosis for systems that are susceptible to the diagnostic conditions 

named ReTest OK (RTOK) and Can Not Duplicate (CND) when tested. These 

conditions increase system life cycle costs. Designers of these systems are 
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interested in the approach developed here as it reduces the number of these 

conditions. 

 

The relevance of this dissertation to the aerospace industry is enormous. 

However, the Model-Based Fault Diagnosis in aerospace industry is still at its 

infancy. In this dissertation, only fault detection and fault isolation of a system 

are investigated and can be extended to any system. The author plans to 

further investigate model-based fault diagnosis in the aerospace industry to 

include:  

• Fault estimation modeling  

• Hardware like sensors into the system 

• Estimation of system and system sensor faults simultaneously 

The inclusion of sensors will include sensor fault detection and fault isolation 

as faults will also occur in sensors. In that situation the model-based fault 

diagnosis, the observers design are more complicated. In this situation, the 

observer is implemented using the following signals: 

• Sensor Output 

• System Excitation Signal 

• System Model 

• Model Sensor 

• Proportional Integral-Proportional Integral Derivative (PI-PID) 

Compensator 
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Appendix A: Experiment Setup, MATLAB Codes and Results 

The equipment used in the experiment is listed below. 

1) The Induction Motor Described in the Dissertation; 1a: Encoder in 

Motor 

2) Clamp that locks up the motor shaft for the locked rotor experiment 

3) TI High Voltage Digital Motor Control (DMC) 

4) A Digital Meter 

5) A Digital Meter 

6) Variac Transformer (0 to 130 VAC)  

7) Power Meter 

8) The Dedicated HP Computer for the Experiment 

9) Heater, 10) Computer, 11) Bookcase  

The Heater 9, the Computer 10, and the Bookcase 11 are not related 

Experiment. 
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Figure A.1 The Home Lab Experiment Set Up 

 

Figure A.2 A Closer View at Some Experiment in the Home Lab Set Up 
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Figure A.3 The TI GUI Showing a Few Results 

 

Figure A.4 The TI HVDMC Kit User Interface the Experiment 
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Figure A.5 MATLAB Script Results from the No Load, and Locked Rotor 

 

 

Figure A.5 above illustrates the MATLAB script results from the No load, load 

and locked motor rotor /system identification experiment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

139 
 

 
 

 
 

 
Appendix B: MATLAB Script that Calculates Non-Measured Parameter  

 
Values from the Experiment Measurements 

 

Run the following experiment scripts in the order given below. 

 

Run the program below first. 

 

%Read me Instructions  
%Institute of Electrical and Electronics Engineers IEEE  

%Standard Test Procedure for Polyphase Induction Motors and Generators 

%used to derive the Test Procedure for these experiments 
 

%This is a script uses the measured induction motor parameters from the 
%experiment to calculate the non-measured parameters.   

 
%Circuit model contains: 

%Stator (Rs) Resistance 
%Stator (Ls) Leakage Reactance 

%Rotor (Rr) Resistance 
%Rotor (Lr) Leakage Inductance 

%Magnetizing Inductance 
%Core Resistance 

 
%The Calculation of model parameters is performed in the experiments by 

%measuring the followings: 

%rotor speed 
%line-to-line voltage phasor 

%line current phasor for No-Load Test 
%line current phasor for Locked-Rotor Test 

%line current phasor for Load-Point operating conditions 
%All measurements are performed with a three-phase source derived from 

my %private Engineering Lab in my house using the wall outlet connected to 
the %utility grid (110 Vac; 60Hz). 

%“%**” means measured, read off TI GUI, specification and/or input values 
%National Electrical Manufacturers Association (NEMA) defines Design A, B, 

%C, and D motors in NEMA MG-1-2003 
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clear all, clc; 
% The Nominal Induction Motor Parameters and Test conditions 

f = 60;   %Stator frequency applied for No Load Test (Hz) 
P = 4;    %Number of machine poles 4 Pole-machine 

m = 3;   %Number of phases 3-phase excitation source 
ns = (120*f/P);  %Synchronous speed for machine under test (rpm) 

TF = 72;   %Room Temp (Degree Fahrenheit) 
NemaRatio = 0.67;  %Ratio of X1 to X2 (X1/X2 = 0.67 for NEMA Design 

B)  
XmRatio = 1;   %Define a ratio (X1/Xm) for use in calculations  

%Rr = 6.11;   %Rr=R2 Rotor Resistance (RR) (unit in ohm) 
%∆Rr = 0.92;   %Bias Faults of Magnitudes (unit in ohm) at15% 

%Rs = 11.05;   %Rs=R1 Stator resistance (SR) (unit in ohm) 
%∆Rs = 5.525;  %Bias Faults of Magnitudes (unit in ohm) at 50% 

%Lm = 0.29395;  %Mutual Inductance (MI) (unit in henry) 

%Ls = 0.316423;  %Stator Inductance (SI) (unit in henry) 
%∆Ls= 0.031642;     %Bias Faults of Magnitudes at 10% 

%Lr = 0.316423;  %Rotor inductance (RI) in (unit in henry) 
%∆Lr= 0.015821; %Bias Faults of Magnitudes at 5% 

%TL =1;   %Torque Load (unit in N.m) 
%∆Lr = 0.2;  %Bias Faults of Magnitudes at 20% 

%F = 0.0008;  %Viscous friction coefficient unit in (N.m)/(rad/s) 

 

 

%First Experiment- Stator Resistance, R1 the per phase DC resistance, in 
ohms 

 
%Stator winding resistance is measured with Digital Multi-Meter 

%All three windings are measured, and their average is taken 
%For WYE connection Stator the measurement between terminals is twice 

%the resistance of each winding. 
 

TC = (5/9)*(TF - 32); 
Ta =TC; 

ta = TC;                 %Enter temperature of the coil at the time of 
measurement; ambient temperature in “oC” (Degree Celsius) 

 

tb = 40;                %Temperate at which resistance is reported; value on 
nameplate in “oC” (Degree Celsius) 

 
k1 = 234.5;            %factor for 100% IACS conductivity copper (inferred 

temperature for zero resistance) or 225 for aluminum, based on a volume 
conductivity of 62%. 

Rab = 20.5; %Measured value (ohm) per IEEE Std 112-2004 in home lab 
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Rbc =22;  %Measured value (ohm) per IEEE Std 112-2004 in home lab 
Rca = 25.5;  %Measured value (ohm) per IEEE Std 112-2004 in home lab 

R1 = (Rab/2 + Rbc/2 + Rca/2)/3; %Average stator resistance (ohm) 
 

 
%NO LOAD TEST 

%Second Experiment: No-Load and Locked Rotor tests finding Xm, X1, X2 
 

%Running the motor at rated voltage and frequency with no connected load. 
%What is measured: Stator terminal voltage, line current, phase and rotor 

%speed, line-to-line voltage, current and time between them 
 

VabcLL0 = 2*[104 104 103];    %[Vab Vbc Vca] %line-to-line voltage(Vroot-
mean-square) (rms) 

IabcL0 = [0.929 0.905 0.914];  %[Ias Ibs Ics] %line current (Aroot-mean-

square) (rms) 
tabc0 = (10^-3)*[5.2 5.2 5.2]; %[ta tb tc] %time measured between line-

to-line voltage and current peaks(s) 
 

%The Rotor speed during No Load Test (rpm) is read off the TI GUI 
nt0 = 1796;         % Rotor speed during No Load Test (rpm) 

 
%Experiment Data 

VabcLN0 = VabcLL0/sqrt(3);     % Line To Neutral  Voltage (LNV) 
VabcM0 = sum(VabcLN0)/3;     %Average Line To Neutral voltage (ALNV) 

I10 = sum(IabcL0)/3;          %Average Line current 
 

%Calculation of the Angle between line-to-line voltage and line current in 
%radiant 

alphaabc0 = tabc0/(1/60)*2*pi; %Angle between line-to-line voltage and 

line current in radiant 
%Calculation of Angle between line-to-neutral voltage and line current in 

%radiant 
thetaabc0 = alphaabc0 - pi/6;  

%Calculation of Average angle between line-to-neutral voltage and line 
%current in radiant 

theta0 = sum(thetaabc0)/3;  
%Calculation of Average power factor 

PF0 = cos(theta0);  
 

%Reference Voltage Phasor Model 
Va_zero = VabcLN0(1).*exp(i*0); 

Va0 =Va_zero; 
Vb_zero= VabcLN0(2).*exp(i*(-2*pi/3));  
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Vb0 =Vb_zero; 
Vc_zero = VabcLN0(3).*exp(i*(+2*pi/3));  

Vc0 =Vc_zero; 

 

%Line-to-neutral Voltage Phasors Vabc Model 
Vabc0 = [Va0 Vb0 Vc0];  

 

%Line Current phasors Model 
Ia_zero = IabcL0(1).*exp(i*(-thetaabc0(1))); 

Ia0 =Ia_zero; 
Ib_zero = IabcL0(2).*exp(i*(-thetaabc0(2) - 2*pi/3)); 

Ib0 =Ib_zero; 
Ic_zero = IabcL0(3).*exp(i*(-thetaabc0(3) + 2*pi/3)); 

Ic0 =Ic_zero; 
%Line current phasors Iabc Model 

Iabc0 = [Ia0 Ib0 Ic0];  
 

%Slip Calculation 
SS0 = ns - nt0;  %Slip Speed (rpm) 

s0 = SS0/ns;     %slip speed (pu) 
 

%Power Calculation  

S0NL = Vabc0 .* conj(Iabc0);  % This is per phase. 
P0 = real(sum(S0NL)); % this is for three-phase.  

Q0 = imag(sum(S0NL)); % This is for three-phase. 
 

 
%LOCKED OR BLOCKED ROTOR TEST USING A CLAMP AS A MECHANICAL 

ROTOR LOCKING DEVICE 
%The motor is excited via Texas Instrument (TI) GUI at rated frequency; 

however, the rotor is clamped; that is, it is not turning. 
%The voltage is increased using the Variac Transformer until the line current 

is at the rated value. 
 

%The stator terminal voltage, line current, and phase are measured. 
VabcLLLR = [36.2 35.5 36.1]; %[Vab Vbc Vca] %Line-to-line voltage (Vroot-

mean-square) (Vrms) 

IabcLinetoLineR = [1.60 1.69 1.65]; %[Ias Ibs Ics] %Line current 
magnitude (Aroot-mean-square) (rms) 

IabcLLR =IabcLinetoLineR; 
tabcLineR = (10^-3)*[3.4 3.4 3.4]; % Where the [ta tb tc] is 

% The Time measured between Line To Line (LTL) voltage and current 
peaks. 
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tabcLR =tabcLineR; 
ntLR = 0; %**Rotor speed read off the TI GUI while Locked Rotor Test  

 
%Experiment Data 

VabcLNLR = VabcLLLR/sqrt(3); %Note -  the Line To Neutral Voltage (LNV) 
V1L = sum(VabcLNLR)/3;  % Note - Average of the Voltage Line To Neutral 

(AVLN)I1Line = sum(IabcLLR)/3;  % Note - Average of the Line Current 
%(ALC) 

I1L= I1Line; 
alphaabcLR = tabcLR/(1/60)*2*pi; %Angle between line-to-line voltage and 

line current in radiant 
thetaanglebcLR = alphaabcLR - pi/6; %Angle between line-to-neutral 

voltage and line current in radiant 
thetaabcLR=thetaanglebcLR; 

thetaangleLR = sum(thetaabcLR)/3; %Average angle between line-to-

neutral voltage and line current in radiant 

thetaLR =thetaangleLR; 

PFL = cos(thetaLR);                 %Average power factor 
 

%Reference Voltage Phasor Model 
VaLine = VabcLNLR(1).*exp(i*0);  

VaL=VaLine; 
VbLine = VabcLNLR(2).*exp(i*(-2*pi/3)); 

VbL=VbLine; 
VcLine = VabcLNLR(3).*exp(i*(+2*pi/3));  

VcL=VcLine; 
VabcL = [VaL VbL VcL]; 

 
%Line Current Phasors Model 

IaLine = IabcLLR(1).*exp(i*(-thetaabcLR(1))); 
IaL=IaLine; 

IbLine = IabcLLR(2).*exp(i*(-thetaabcLR(2) - 2*pi/3)); 

IbL=IbLine; 
IcLine = IabcLLR(3).*exp(i*(-thetaabcLR(3) + 2*pi/3)); 

IcL=IcLine; 
IabcL = [IaL IbL IcL]; 

 
%Slip Calculation 

SSLR = ns - ntLR; %Slip Speed (rpm) 
sLR = SSLR/ns; %slip speed (pu) 

 
%Real and Reactive Power Calculations 

SLine = VabcL .* conj(IabcL);  %1-phase 
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SL= SLine; 
PLine = real(sum(SL)); %3-phase 

PL= PLine; 
QLine = imag(sum(SL)); %3-phase 

QL= QLine; 
 

%Xm, X1, and X2 Iteration to conversion 
%Setting X1, Xm and X2 initial values 

X1intial= 2*pi*f*(0.001); %**(2*pi*f*Lohm) 
X1 =X1intial; 

Xmintial= X1/XmRatio; %(ohm) 
Xm =Xmintial; 

X2intial = X1/NemaRatio; %(ohm) 
X2 =X2intial; 

 

%The set initial values used for determination of convergence as 
X1prev = X1;  

Xmprev = Xm;  
Xmc = Xm;  

 
%The iteration processes 

Xmc = m*VabcM0^2/(Q0-(m*I10^2*X1)) * 1/((1+X1/Xmc)^2); 
Xm = Xmc; %(IEEE Std 112 equation 30) 

X1Lc = QL/(m*I1L^2*((1+X1/X2+X1/Xm)/1)) * (X1/X2+X1/Xm); %(IEEE 
Std 112 equation 31) 

X1L=X1Lc;   
X1 = 60/f*X1L; 

 
%Calculating the delta between the previous and new value – is it > 0.1%  

while or((or((X1>1.002*X1prev), (X1<0.999*X1prev))), 

(or((Xm>1.001*Xmprev), (Xm<0.999*Xmprev)))); 
     X1prev = X1; %X1 Previous value is retained in X1 

     Xmprev = Xm; % Xm1 Previous value is retained in X1m 
Xm = 1*m*(VabcM0^2)/(Q0-(m*(I10^2)*X1)) * 1/((1+X1/Xm)^2); %New 

value 
X1L = QL/(1*m*I1L^2*(1+X1/X2+X1/Xm)) * (X1/X2+X1/Xm); %New 

value 
     X1 = 60/f*X1L;     %New value   

 
end     

 
%End the iterations and final values are saved 

X1 = X1; %(ohm) 
Xm = Xm; %(ohm) 
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X2 = X1/NemaRatio; %(ohm) 
 

%Convert Reactance to Inductance 
L1 = X1/(2*pi*f); %(Henry) 

Lm = Xm/(2*pi*f); %(Henry) 
L2 = X2/(2*pi*f); %(Henry) 

 

Run the program below second. 

 

%The Third Test  
%No Load test at range of voltages to assess friction and windage 

 
%Measured and Input voltages and currents at voltages from 125% rated 

down  
%to point at which current magnitude increases. 

VFWLL=2*[104 104 104; 101 100 101; 94.0 93.7 94.1; 88.2 87.9 88.1; 
82.7 82.2 82.8; 72.6 72.1 72.5; 63.4 62.7 63.4; 50.8 50.4 50.9; 43.4 43.0 

43.5; 35.5 35.0 35.6; 28.5 28.3 28.5; 23.3 23.0 23.3;]; 
VFWLL = VFWLLmatrice; 

%Where the rows are [Vab, Vbc, Vca], and the columns are different levels 
of voltage. 

 

IFWL = [0.928 0.922 0.927; 0.855 0.852 0.861; 0.786 0.790 0.786; 0.721 
0.718 0.718; 0.668 0.666 0.662; 0.580 0.561 0.567; 0.503 0.502 0.491; 

0.410 0.405 0.400; 0.360 0.355 0.349; 0.305 0.301 0.296; 0.285 0.283 
0.275; 0.283 0.278 0.276;];  

%Where the rows are [Ia, Ib, Ic]. 
 

tFW = (10^-3)*[5.2 5.1 5.1; 5.1 5.2 5.2; 5.1 5.1 5.1; 5.2 5.1 5.1; 5.1 5.1 
5.2; 5.1 5.1 5.2; 5.0 5.0 5.0; 4.8 4.8 4.9; 4.6 4.7 4.7; 4.5 4.6 4.6; 3.8 3.9 

3.9; 3.6 3.6 3.6; ];  
%The time between (Vab, Ia), (Vbc, Ib) and (Vca, Ic) 

 
VFWLN = VFWLL/sqrt(3);  %Line-to-Neutral voltage 

VFW = sum(VFWLN,2)/3;   %Average Voltage Line-to-Neutral  
IFW = sum(IFWL,2)/3;    %Average current, line current 

alphaFW = tFW/(1/60)*2*pi; %Angle between line-to-line voltage and line 

current in radiant 
thetaFW = alphaFW - pi/6; % Angle (radiant) between line-to-neutral 

voltage and line current in radiant 
thetaFW = sum(thetaFW,2)/3; %Average angle(radiant) between line-to-

neutral voltage and line current 
PFFW = cos(thetaFW); %Average power factor 
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%Input Power and Stator, I^2R loss Calculation 
%Setting the Line-to-Neutral voltage phasor as reference (V) 

VFW = VFW.*exp(i*0); 
%Line Current phasor(A)Model 

IFW = IFW.*exp(i*(-thetaFW)); 
 

%Input Power Model 
SinFW = 3*(VFW .* conj(IFW)); %3-Phase (VA) 

PinFW = real(SinFW); %3-Phase Input Power (PIP) (unit in Watt) 
 

%The Stator Loss Model and Calculation 
PsIR = 3*(abs(IFW).^2 .* R1); %3-Phase Stator Loss (PSL) (unit in Watt) 

 
%Graphing;  

%First, Subtract stator loss from input power 

%Second, graph the resulting power vs. voltage 
PM = PinFW - PsIR; %This is the Total Power Transferred across the airgap. 

 
%The friction and windage loss are obtained by graphing the power versus 

voltage.  
figure(1), clf; 

plot(abs(VFW), PM,'x');  
% Graph the Average Voltage Line To Neutral (VLN) versus PM. PM is the 

Power. 
hold on; 

p = polyfit(VFW,PM,2); 
x = 0:360; 

% plot(0:360,polyval(p,x)); 
%axis([0 360 0 360]); 

 

% Input the power at V=0 from the graph. 
PlossFW = input('What is the power at V=0. PFW = ');  

if isempty(PlossFW); 
PlossFW = 0; % Power loss due friction and windage is found at zero-voltage 

intercept. 
end; 

clc 
 

%Calculate Power due to Total Core Loss 
%No Load Core Loss 

%Ph0 equation assumes rotor current is zero (s=0, Zr=infinite) 
Ph0 = PinFW - PsIR - PlossFW; %Core loss for applied voltage at No-Load 

%Calculate Core Conductance for No-Load Friction Windage 
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Gfe0 = Ph0./(m*VFW.^2) * (1+X1/Xm)^2; %Core Conductance from No 
Load configuration 

 
Gfe0 = sum(Gfe0)/length(Gfe0); %Core conductance from Locked Rotor 

configuration 
 

%Calculate Core Resistance, Rfe 
Rfe = 1/Gfe0; %Core Resistance 

 
%Rotor Resistance, R2 Calculation by performing the full load test 

%Full Load Slip Test is Performed. The Voltage Slip Test is Decreased 
%The motor is turned at rated frequency, and rated voltage, then the load is 

applied by partially clamping the rotor without locking the rotor 
 

%Measured: 

%the stator voltage 
%the line current  

%the phase angle and slip  
%the calculations are performed per IEEE Std 112-2004 section 5.9.2.2.   

%Average of several loads (partially clamping the rotor) are taken. 
VSTLL = 2*[105 104 105]; % Note - Line To Line Voltage (LTL) at slip test 

ISTL = [1.11 1.13 1.14]; % Note - Line Current (LC) at Slip Test 
tST = (10^-3)*[3.7 3.7 3.7]; %Time between Line-to-Line voltage and line 

current peak (Vab to Ia, etc.) 
ntST = [1728]; %**Rotor speed during Slip Test (rev/per/minute) read of 

the TI GUI 

 

%Slip Test Condition  

VSTLN = VSTLL/sqrt(3); %Line-to-Neutral voltage at slip test 
VST = sum(VSTLN)/3; %Average Line-to-Neutral voltage during slip test (V) 

IST = sum(ISTL)/3; %Average Line current during slip test (A) 
alphaST = tST/(1/60)*2*pi; %Angle measured between line-to-line voltage 

and line current in radiant 
thetaST = alphaST - pi/6; %Angle between line-to-neutral voltage and line 

current in radiant 
thetaST = sum(thetaST)/3; %Average angle between line-to-neutral voltage 

%and line current in radiant calculation 

PFST = cos(thetaST); %Average power factor 
 

%Slip Calculation 
SSST = ns - ntST; %Slip Speed (rpm) 

sST = SSST/ns; %slip speed (pu) 
%R1 Adjusted for Temperature 
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R1 =  R1*(tb+k1)/(ta+k1); %Correct value for temperature (ohm)% Stator 
resistance 

 
%Rotor Winding Voltage V2 Reflected to Stator Calculation 

V1 = VST; %Value for equation taken from standard 112 
I1 = IST; %Value for equation taken from standard 112 

theta1angle = thetaST; %Value for equation taken from standard 112 
theta1 =theta1angle; 

X1ctheta1 = X1*cos(theta1); 
X1stheta1 = X1*sin(theta1); 

R1cos = R1*cos(theta1); 
R1sin = R1*sin(theta1); 

 
V2 = sqrt((V1-I1*R1cos - X1stheta1))^2 + 1+ (I1*(R1sin 

+X1ctheta1)))^2); 

 
% Formula for “Theta2” Calculation 

X1ctheta1 = X1*cos(theta1); 
X1stheta1 = X1*sin(theta1); 

theta2 = (atan((-I1*(R1sin - X1ctheta1)))/(V1 - I1*(R1cos - 
X1stheta1))))/1); 

 
%Ife and Ie Calculation 

Im = V2/Xm;      %See IEEE Std 112-2004 use figure 2 to find: V2/Xm = Im 
Ife = V2/Rfe ; 

 
%I2, Z2 and R2 Calculations 

I2 = sqrt((I1*cos(theta1) - Im*sin(theta2) – Ife*(Im/Im)*cos(theta2))^2 + 
(-(I1*1)*sin(theta1) + Im*cos(theta2) + Ife*sin(theta2))^2); 

Z2 = V2/I2; 

R2 = sST*sqrt(Z2^2 - X2^2); 
 

%Induction Motor Parameter Values Adjusted for Temperature, See IEEE Std 
112-2004 equation 3 Display ('Machine Parameters:') 

 
L1 % Stator-Leakage Inductance (H) 

R1 % Stator-Resistance (ohm) 
R2 % Rotor-Resistance (ohm) 

L2 % Rotor-Leakage Inductance (H) 
Lm % Magnetizing-Inductance (H) 

Rfe %Core-Resistance (ohm) 
PlossFW %Friction-and-Windage-Loss (W) 

%END SCRIPT 
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After the scripts are run, the result from MATLAB in the Workspace is 

obtained and provided here as pictures. 

 

This is the same script as above with fewer comments or no explanation, 

thus, more readable. 

 

Run the script below first. 

 

The new script starts below. All scripts start with “clear all, clc;”. 

 

 
clear all, clc; 

 
% The Nominal Induction Motor Parameters and Test conditions 

f = 60;    

P = 4;     
m = 3;    

ns = (120*f/P);   
TF = 72;    

NemaRatio = 0.67;   
XmRatio = 1;     

 
 

%First Experiment- Stator Resistance, R1 the per phase DC resistance, in 
ohms 

 
TC = (TF - 32)*5/9; 

ta = TC;                  
tb = 40;                 

k1 = 234.5;             

 
Rab = 20.5;  

Rbc =22;   
Rca = 25.5;   

R1 = (Rab/2 + Rbc/2 + Rca/2)/3;  
 

%Second Experiment: No-Load and Locked Rotor tests finding Xm, X1, X2 
%NO LOAD TEST 

VabcLL0 = 2*[104 104 103];     
IabcL0 = [0.929 0.905 0.914];   
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tabc0 = (10^-3)*[5.2 5.2 5.2];  
 

%The Rotor speed during No Load Test (rpm) is read off the TI GUI 
 

nt0 = 1796;          
%Experiment Data 

VabcLN0 = VabcLL0/sqrt(3);      
VabcM0 = sum(VabcLN0)/3;      

I10 = sum(IabcL0)/3;           
 

alphaabc0 = tabc0/(1/60)*2*pi;  
thetaabc0 = alphaabc0 - pi/6;  

theta0 = sum(thetaabc0)/3;  
PF0 = cos(theta0);  

 

Va_zero = VabcLN0(1).*exp(i*0); 
Va0 =Va_zero; 

Vb_zero= VabcLN0(2).*exp(i*(-2*pi/3));  
Vb0 =Vb_zero; 

Vc_zero = VabcLN0(3).*exp(i*(+2*pi/3));  
Vc0 =Vc_zero; 

Vabc0 = [Va0 Vb0 Vc0];  
 

Ia_zero = IabcL0(1).*exp(i*(-thetaabc0(1))); 
Ia0 =Ia_zero; 

Ib_zero = IabcL0(2).*exp(i*(-thetaabc0(2) - 2*pi/3)); 
Ib0 =Ib_zero; 

Ic_zero = IabcL0(3).*exp(i*(-thetaabc0(3) + 2*pi/3)); 
Ic0 =Ic_zero; 

Iabc0 = [Ia0 Ib0 Ic0];  

 
SS0 = ns - nt0;   

s0 = SS0/ns;      
 

S0NL = Vabc0 .* conj(Iabc0);   
P0 = real(sum(S0NL));  

Q0 = imag(sum(S0NL));  
 

 
%LOCKED OR BLOCKED ROTOR TEST USING A CLAMP AS A MECHANICAL 

ROTOR LOCKING DEVICE 
 

VabcLLLR = [36.2 35.5 36.1]; %[Vab Vbc Vca]  
IabcLinetoLineR = [1.60 1.69 1.65];  
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IabcLLR =IabcLinetoLineR; 
tabcLineR = (10^-3)*[3.4 3.4 3.4]; %[ta tb tc] 

 tabcLR =tabcLineR; 
ntLR = 0;  

%Experiment Data 
VabcLNLR = VabcLLLR/sqrt(3);  

V1L = sum(VabcLNLR)/3;          
I1Line = sum(IabcLLR)/3;              

I1L= I1Line; 
alphaabcLR = tabcLR/(1/60)*2*pi;  

thetaanglebcLR = alphaabcLR - pi/6; 
thetaabcLR=thetaanglebcLR; 

thetaangleLR = sum(thetaabcLR)/3;  

thetaLR =thetaangleLR; 

PFL = cos(thetaLR);                  
VaLine = VabcLNLR(1).*exp(i*0);  

VaL=VaLine; 
VbLine = VabcLNLR(2).*exp(i*(-2*pi/3)); 

VbL=VbLine; 
VcLine = VabcLNLR(3).*exp(i*(+2*pi/3));  

VcL=VcLine; 
VabcL = [VaL VbL VcL] ; 

 
%Line Current Phasors Model 

IaLine = IabcLLR(1).*exp(i*(-thetaabcLR(1))); 
IaL=IaLine; 

IbLine = IabcLLR(2).*exp(i*(-thetaabcLR(2) - 2*pi/3)); 

IbL=IbLine; 
IcLine = IabcLLR(3).*exp(i*(-thetaabcLR(3) + 2*pi/3)); 

IcL=IcLine; 
IabcL = [IaL IbL IcL]; 

 
%Slip Calculation 

SSLR = ns - ntLR; %Slip Speed (rpm) 
sLR = SSLR/ns; %slip speed (pu) 

 
%Real and Reactive Power Calculations 

SLine = VabcL .* conj(IabcL);   
SL= SLine; 

PLine = real(sum(SL));  
PL= PLine; 

QLine = imag(sum(SL));  

QL= QLine; 
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X1intial= 2*pi*f*(0.001);  
X1 =X1intial; 

Xmintial= X1/XmRatio;  
Xm =Xmintial; 

X2intial = X1/NemaRatio;  
X2 =X2intial; 

 
X1prev = X1;  

Xmprev = Xm;  
Xmc = Xm;  

 
Xmc = m*VabcM0^2/(Q0-(m*I10^2*X1)) * 1/((1+X1/Xmc)^2); 

Xm = Xmc;  
%(IEEE Std 112 eqt 30) 

X1Lc = QL/(m*I1L^2*(1+X1/X2+X1/Xm)) * (X1/X2+X1/Xm);  

X1L=X1Lc;   
X1 = 60/f*X1L; 

 
while or((or((X1>1.002*X1prev), (X1<0.999*X1prev))), 

(or((Xm>1.001*Xmprev), (Xm<0.999*Xmprev)))); 
     X1prev = X1; %X1 Previous value is retained in X1 

     Xmprev = Xm; % Xm1 Previous value is retained in X1m 
Xm = 1*m*(VabcM0^2)/(Q0-(m*(I10^2)*X1)) * 1/((1+X1/Xm)^2);  

X1L = QL/(1*m*I1L^2*(1+X1/X2+X1/Xm)) * (X1/X2+X1/Xm);       
X1 = 60/f*X1L;      

 
end     

 
X1 = X1; %(ohm) 

Xm = Xm; %(ohm) 

X2 = X1/NemaRatio; %(ohm) 
 

L1 = X1/(2*pi*f); %(Henry) 
Lm = Xm/(2*pi*f); %(Henry) 

L2 = X2/(2*pi*f); %(Henry) 
 

 

Run the script below second. 

 

%The Third Test  
%No Load test at range of voltages to assess friction and windage 

%Measured and Input voltages and currents at voltages from 125% rated 
down to point at which current magnitude increases. 
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VFWLL=2*[104 104 104; 101 100 101; 94.0 93.7 94.1; 88.2 87.9 88.1; 
82.7 82.2 82.8; 72.6 72.1 72.5; 63.4 62.7 63.4; 50.8 50.4 50.9; 43.4 43.0 

43.5; 35.5 35.0 35.6; 28.5 28.3 28.5; 23.3 23.0 23.3;]; 
VFWLL = VFWLLmatrice; 

IFWL = [0.928 0.922 0.927; 0.855 0.852 0.861; 0.786 0.790 0.786; 0.721 
0.718 0.718; 0.668 0.666 0.662; 0.580 0.561 0.567; 0.503 0.502 0.491; 

0.410 0.405 0.400; 0.360 0.355 0.349; 0.305 0.301 0.296; 0.285 0.283 
0.275; 0.283 0.278 0.276;];  

%Where the rows are [Ia, Ib, Ic]. 
 

tFW = (10^-3)*[5.2 5.1 5.1; 5.1 5.2 5.2; 5.1 5.1 5.1; 5.2 5.1 5.1; 5.1 5.1 
5.2; 5.1 5.1 5.2; 5.0 5.0 5.0; 4.8 4.8 4.9; 4.6 4.7 4.7; 4.5 4.6 4.6; 3.8 3.9 

3.9; 3.6 3.6 3.6; ];  
 

VFWLN = VFWLL/sqrt(3);   

VFW = sum(VFWLN,2)/3;    
IFW = sum(IFWL,2)/3;     

alphaFW = tFW/(1/60)*2*pi;  
thetaFW = alphaFW - pi/6;  

thetaFW = sum(thetaFW,2)/3;  
PFFW = cos(thetaFW); %Average power factor 

 

VFW = VFW.*exp(i*0); 
%Line Current phasor(A)Model 

IFW = IFW.*exp(i*(-thetaFW)); 
 

SinFW = 3*(VFW .* conj(IFW)); %Note - 3-Phase (unit in VA) 
PinFW = real(SinFW); % Note - 3-Phase Input Power(unit in W) 

 
PsIR = 3*(abs(IFW).^2 .* R1); % Note - 3-Phase Stator Loss (unit in W) 

 
PM = PinFW - PsIR;  

figure(1), clf; 
plot(abs(VFW), PM,'x');  

 
hold on; 

p = polyfit(VFW,PM,2); 

x = 0:360; 
% plot(0:360,polyval(p,x)); 

%axis([0 360 0 360]); 
% Input the power at V=0 from the graph. 

PlossFW = input('What is the power at V=0. PFW = ');  
if isempty(PlossFW); 
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    PlossFW = 0;  
end; 

clc 
 

Ph0 = PinFW - PsIR - PlossFW;  
 

Gfe0 = Ph0./(m*VFW.^2) * (1+X1/Xm)^2;  
Gfe0 = sum(Gfe0)/length(Gfe0);  

Rfe = 1/Gfe0;  
 

VSTLL = 2*[105 104 105]; 
ISTL = [1.11 1.13 1.14];  

tST = (10^-3)*[3.7 3.7 3.7];   
ntST = [1728];  

 

%Slip Test Condition  
VSTLN = VSTLL/sqrt(3);  

VST = sum(VSTLN)/3;  
IST = sum(ISTL)/3;  

 
alphaST = tST/(1/60)*2*pi; 

thetaST = alphaST - pi/6; 

thetaST = sum(thetaST)/3;  
PFST = cos(thetaST);  

 
SSST = ns - ntST;  

sST = SSST/ns;  
 

%R1 Adjusted for Temperature 
R1 =  R1*(tb+k1)/(ta+k1);  

 
%Rotor Winding Voltage V2 Reflected to Stator Calculation 

V1 = VST;  
I1 = IST;  

theta1angle = thetaST;  
theta1 =theta1angle; 

 

X1ctheta1 = X1*cos(theta1); 
X1stheta1 = X1*sin(theta1); 

R1cos = R1*cos(theta1); 
R1sin = R1*sin(theta1); 

V2 = sqrt((V1-I1*R1cos - X1stheta1))^2 + 1+ (I1*(R1sin 

+X1ctheta1)))^2); 
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% Formula for “Theta2” Calculation 
X1ctheta1 = X1*cos(theta1); 

X1stheta1 = X1*sin(theta1); 
theta2 = (atan((-I1*(R1sin - X1ctheta1)))/(V1 - I1*(R1cos - 

X1stheta1))))/1); 
 

%Ife and Ie Calculation 
Im = V2/Xm;      %See IEEE Std 112-2004 use figure 2 to find: V2/Xm = Im 

Ife = V2/Rfe ; 
 

%I2, Z2 and R2 Calculations 
I2 = sqrt((I1*cos(theta1) - Im*sin(theta2) – Ife*(Im/Im)*cos(theta2))^2 + 

(-(I1*1)*sin(theta1) + Im*cos(theta2) + Ife*sin(theta2))^2); 
Z2 = V2/I2; 

 

R2 = sST*sqrt(Z2^2 - X2^2); 
 

%Induction Motor Parameter Values Adjusted for Temperature, See IEEE Std 
112-2004 equation (3) Displays ('Machine Parameters:') 

 
[L1 R1 R2 L2 Lm Rfe PlossFW ]T 
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Figure B.1 MATLAB Workspace Non-Measured and Measured Parameters 
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Figure B.2 MATLAB Workspace Non-Measured/Measured Parameters 
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Figure B.3 MATLAB Workspace Non-Measured/Measured Parameters 
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Figure B.4 MATLAB Workspace Non-Measured/Measured Parameters 

 

 
 

  



 

160 
 

 
 

 
 

 
Appendix C: MATLAB Script for State Space Inputs and Output 

 
Transformations 

 

This MATLAB Code calculates. the state space inputs transformation 

matrix. 

 

%This code will calculate the state transformation matrix and a transformed 

matrix. 

clear all 

clc 
 

%Input the obtained Matrix A 
 

A=[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0; 0.0, -0.154, -0.04, 1.54, 0, -0.744, -
0.032;  

0,  0.249, -1, -5.2,  0,   0.337,  -1.12; 0.0386,  -0.996,  0, -2.117,  0, 0.02, 

0.0; 0.0, 0.50, 0.0, 0.0, -4.0, 0.0, 0.0; 0.0, 0.0, 0.0, 0.0, 0.0, -20.0, 0.0; 
0.0, 0.0, 0.0,  0.0, 0.0, 0.0,  -25.0 ]; 

 
while (1), a=floor(2*rand(7,1));  

T=sym([a  A*a  A^2*a  A^3*a  A^4*a  A^5*a A^6*a]); 
if rank(T)== 7, break; end, end 

T,  
A1=inv(T)*A*T 

T1 = inv(T*fliplr(eye(7))), 
A2 = inv(T1)*A*T1, 

T2 = inv(T1*fliplr(eye(7)))', 
A3 = inv(T2)*A*T1, 

T3 = inv(T2*fliplr(eye(7)))', 
A4 = inv(T3)*A*T1, 

T4 = inv(T3*fliplr(eye(7)))', 

 
%The Nonsingular State Transformation Matrix (NSTM). 
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This program result yields the input transformed matrix T and the 

following matrices T1, T2, T3, T4, A1, A2, A3 and A4. 

The following code will calculate the output transformation matrix and a 

transformed matrix. 

 
%Code Begins 

clear all 
clc 

 
%Input the obtained Matrix A 

 

C=[0, -0.451, -0.41, 1.55, 0, -0.44, -0.052; 0, 1, -1, -4.55, 0, 0.474, -1.14;  
1,  0, 0, 0,  0,   0,  0; 0,  0,  0, 0, 1,  0, 0; 0, 0, 0, 0, 0, 0, 0; 

0.0, 0.0, 0.0, 0.0, 0.0, 10.1, 0; 0, 0, 0,  0, 0, 0,  1]; 
 

while (1), c=floor(2*rand(7,1));  
S=sym([c  C*c  C^2*c  C^3*c  C^4*c  C^5*c C^6*c]); 

if rank(S)== 7, break; end, end 
S,  

C1=inv(S)*C*S 
S1 = inv(S*fliplr(eye(7))), 

C2 = inv(S1)*C*S1, 
S2 = inv(S1*fliplr(eye(7)))’, 

C3 = inv(S2)*C*S1, 
S3 = inv(S2*fliplr(eye(7)))’, 

C4 = inv(S3)*C*S1, 

S4 = inv(S3*fliplr(eye(7)))’, 
 

%End of Code 
 
 

The output transformation matrix is not unique, there are many. This 

program result yields the input transformed matrix T and the following 

matrices S1, S2, S3, S4, C1, C2, C3 and C4. 

This MATLAB code calculates the matrix products “T*A/T 
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%Code Begins 
>> A= [0, 0, 1, 0, 0, 0, 0; 0, -0.154, -0.04, 1.54, 0, -0.744, -0.032 ;  

0, 0.249, -1, -5.2, 0, 0.337, -1.12; 0.0386,  -0.996,  0, -2.117,  0, 0.02, 0; 
0, 0.5, 0, 0, -4, 0, 0; 0, 0, 0, 0, 0, -20, 0; 0, 0, 0,  0, 0, 0,  -25]; 

 
T= [0.9, 0.16, 0.04, -1.6, 0, 0.844, 0.03; -1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0;  

0, 0, 1, 0, 0, 0, 0 ; 0, 0, 0, 1, 0, 0, 0 ; -1, 0, 0, 0, 1, 0, 0;  
0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]; 

 
(T*A)* inv(T) 

 
ans = 

 
    1.4313    1.3499    0.7963    5.7157    0.0000  -18.2256   -0.8429 

   -0.1453   -0.1308   -1.0342    1.3075   -0.0000   -0.6214   -0.0276 

    0.2349    0.2114   -1.0094   -4.8242    0.0000    0.1387   -1.1270 
   -0.9032   -0.8515    0.0361   -3.5621   -0.0000    0.7823    0.0271 

   -3.3019    1.0283   -0.8679   -5.2830   -4.0000    2.7868    0.0991 
         0         0            0            0             0          -20.001   0 

         0         0            0            0             0             0           -25.0000 
 

 
The MATLAB matrix calculation of S*C/T is given below. 

 
%Code Begins 

 
>> C= [0, -0.4510, -0.410, 1.55, 0, -0.440, -0.0520; 0, 1, -1, -4.550, 0, 

0.4740, -1.140; 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 
0.0]; 

 

S= [1.0, 0.0, -1.0, 0.0; - 1.0, 1.0, -0.50, 0; 1, 0, 0, 0; 1, 0, -0.90, 1.0]; 
 

T= [ 0.90, 0.160, 0.040, -1.6, 0, 0.8441, 0.030; -1, 1, 0, 0, 0, 0, 0;  
0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0; -1, 0, 0, 0, 1, 0, 0;  

0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]; 
 

(S*C) * inv(T) 
 

 
ans = 

 
   -1.3689   -0.2320   -0.3552   -0.6402   -0.0000    0.7153   -0.0109 

    0.8972    1.3075   -0.6259   -4.6645    0.0000    0.1568   -1.1149 
   -0.4255   -0.3829   -0.3930    0.8692   -0.0000   -0.0809   -0.0392 
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   -0.3311   -0.3980   -0.3968    1.0202    1.0000   -0.1605   -0.0421 
 
 

The MATLAB matrix calculation of T*B is below. 

 
%Code Begins 
 
>> T= [ 0.9, 0.16, 0.04, -1.6, 0, 0.844, 0.03; -1, 1, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0;  
0, 0, 0, 1, 0, 0, 0; -1, 0, 0, 0, 1, 0, 0;  0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]; 
 
B= [0, 0; 0, 0; 0, 0; 0, 0; 0, 0; 7, 0; 0, 19]; 
 
 
(T*B) 
 
ans = 
 
    5.9080    0.5700 
         0         0 
         0         0 
         0         0 
         0         0 
    7.000       0 
         0     19.000 
 
 

The MATLAB matrix calculation of T*E is below. 

 

%Code Begins 
 

>> T= [ 0.9, 0.16, 0.04, -1.6, 0, 0.844, 0.03; -1, 1, 0, 0, 0, 0, 0;  
0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0; -1, 0, 0, 0, 1, 0, 0;  

0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1]; 
 

E =[1; 1; 0; 0; 1; 0; 0]; 
 

 
(T*E) 

 
ans = 

 
    [1.0600, 0, 0, 0, 0, 0, 0]T 
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Appendix D: MATLAB Code for the Fault Diagnosis and Simulink 

 
Functional Block Diagram and all Required Functions 

 

The MATLAB Fault Diagnosis and Simulink Functional Block Diagram 

begins.  

 
%Code begins 

 
clear all 

clc 
  

% Given the Induction Motor System Matrices.  
A= [0, 0, 1, 0, 0, 0, 0; 0, -0.1, -0.04, 1.5, 0, -0.7, -0.03; 

      0, 0.2, -1, -5.2, 0, 0.3, -1.1; 0.03, -0.9, 0, -2.1, 0, 0.02, 0; 

  0, 0.5, 0, 0, -4, 0, 0; 0, 0, 0, 0, 0, -20, 0; 0, 0, 0, 0, 0, 0, -25]; 
 

B= [0, 0; 0, 0; 0, 0; 0, 0; 0, 0; 7, 0; 0, 19]; 
 

C= [0, -0.15, -0.04, 1.54, 0 -0.7, -0.03; 0, 0.2, -1, -5.2, 0, 0.3, -1.1; 1, 0, 
0, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0]; 

 
E = [1; 1; 0; 0; 1; 0; 0]; 

  
% Calculating the System Matrices Dimensions “n”, “m” 

% “p” and “r” 
n=size(A,1); 

m=size(B,2); 
p=size(C,1); 

r=size(E,2); 

  
% Use of Calculated Transformation Matrix T.  

T = [0.84, 0.23, 0.04, -1.5, 0, 0.80, 0.03; -1, 1, 0, 0, 0, 0, 0; 
       0, 0,1, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0; -1, 0, 0, 0, 1, 0, 0; 

       0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 1];    
 

% Use of Calculated Output Transformation Matrix S.  
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S = [1, 0, -0.8, 0; -1.4, 1, -0.5, 0; 1, 0, 0.2, 0; 1, 0, -0.8,1]; 
 

T1=T(1,:); 
T2=T(2:7,:); 

S1=S(1,:); 
S2=S(2:4,:); 

    
% Calculation of Transformed System Matrices in the new 

% coordinate. 
 

A=T*A*inv(T); 
B=T*B; 

E=T*E; 
C=S*C*inv(T);  

 

% Calculation of Subsystem Matrices, which are in the new 
% coordinate. 

   
A1=A(1:r,1:r); 

A2=A(1:r,r+1:n); 
A3=A(r+1:n,1:r); 

A4=A(r+1:n,r+1:n); 
  

% Calculation of Subsystem Matrices, which are in the new 
% Coordinate. 

   
       

B1=B(1:r,:); 
B2=B(r+1:n,:); 

  

% Calculation of Subsystem Matrix, which are in the new 
% coordinate. 

       
E1=E(1:r,:); 

  
% Calculation of Subsystem Matrices, which are in the new 

% coordinate. 
     

C1=C(1:r,1:r); 
C4=C(r+1:p,r+1:n); 

  
% As written below “lf1”, “f2”, are constant. 

lf1=1;   
f2 =0; 
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% “alph2” a is scalar. 

alph2=0; 

% Set the variables “O1= O1”, “O2= O2”, “𝑋 = (𝑂1𝐴1
𝑠𝑡𝑎𝑏𝑙𝑒)” 

% and “𝑌 =  (𝑂2𝐿)”, the matrix “F”, the scalar “alph1”, “gam” 

 

%Since this is an optimization problem, with  
%decision variables are dealt with. I download YALMIP to my home lab  

%computer using this command 
%Start script: 

%urlwrite('https://github.com/yalmip/yalmip/archive/master. 

%zip',%'yalmip.zip'); 
%unzip('yalmip.zip','yalmip') 

%addpath(genpath([pwd filesep 'yalmip'])); 
%savepath 

%End script 
%and test the installation using the command “yamiptest” 

 
%Decision variables in YALMIP are represented by the command %“sdpvar” 

thus: 
 

O1=sdpvar(r, r); 
O2=sdpvar(n-r, n-r); 

X=sdpvar(r,r); 
Y=sdpvar(n-r, p-r); 

F=sdpvar(m, p-r); 

alph1=sdpvar(1,1); 
gam=sdpvar(1,1); 

  
a=alph1*lf1^2*(norm(inv(T)))^2;   

 
 % The First Linear Matrix Inequality (LMI) Calculation  

 
M1=[X+X' O1 O1*A2 

      O1 -alph1 zeros(r,n-r) 
      A2'*O1 zeros(n-r,r) A4'*O2+O2*A4-C4'*Y'-Y*C4+a*eye(n-r)];   

  
% The Second Linear Matrix Inequality (LMI) Calculation 

 
M2= [-gam*eye(n-r) (B2'*O2-F*C4)' 

       B2'*O2-F*C4 -gam*eye(m)];     

  
const = [M1<0,M2<0,O1>0,O2>0,alph1>0];   

solvesdp(const,gam);     
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% “O1” and “O2” dummy variables. 
% “Y” and “F” are used for convenience 

% Recall “𝑌 =  (𝑂2𝐿)”, “F” is a Matrix, “alph1” and “gam” are scalar 

O1=double(O1) 

O2=double(O2) 
F=double(F) 

X=double(X); 
Y=double(Y); 

A1s=inv(O1)*X 

L=inv(O2)*Y 
alph1=double(alph1) 

gam=double(gam) 
 

zh=[inv(C1)*u(3);[x(2);x(3);x(4);x(5);x(6);x(7)]]; 
xh=inv(T)*zh; 

xh3=xh(3,:); 
f=[sin(xh3);sin(xh3);0;0;sin(xh3);0;0]; 

f1=T1*f; 
f2=T2*f; 

  
% proposed SMO for subsystem 1 

e1=inv(C1)*(u(3)-C1*x(1)); 
  

if e1 

    nu1=0; 
else 

    nu1=3*O1*e1/(norm(O1*e1)+0.01); 
end 

 
 

The Results from MATLAB Code are below. This is the solver for linear 

objective minimization under LMI constraints. The iterations best objective 

value so far is below.  

  
* switching to QR 

     1 

     2                   0.238668 
     3                   0.049671 

     4                   0.028506 
     5                   0.015189 

     6                   0.015189 
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     7               2.268839e-03 
     8               8.712340e-04 

     9               2.662916e-04 
    10               1.345352e-04 

    11               1.711341e-05 
    12               1.711341e-05 

    13               1.711341e-05 
    14               1.670530e-06 

    15               1.670530e-06 
    16               1.670530e-06 

    17               8.591267e-08 
    18               8.591267e-08 

    19               8.591267e-08 
    20               2.269219e-08 

    21               2.269219e-08 

    22               5.689903e-09 
    23               5.689903e-09 

    24               5.689903e-09 
    25               5.689903e-09 

    26               2.335687e-09 
    27               2.335687e-09 

    28               2.335687e-09 
    29               2.335687e-09 

    30               2.335687e-09 
    31               2.335687e-09 

    32               2.335687e-09 
    33               2.335687e-09 

    34               2.335687e-09 
    35               2.335687e-09 

    36               2.335687e-09 

 
 Result:  feasible solution 

          best objective value: 2.335687e-09 
          f-radius saturation:  1.324% of R =  1.00e+09  

 Termination due to SLOW PROGRESS: 
          the objective was decreased by less than  

          0.100% during the last 10 iterations. 
 

############################################### 
You are using LMILAB. Please don't use LMILAB with YALMIP 

https://yalmip.github.io/solver/lmilab/ 
  

Install a better SDP solver 
https://yalmip.github.io/allsolvers/ 
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To get rid of this message, edit calllmilab.m   

(but don't expect support when things do not work, 
YALMIP + LMILAB => No support) 

############################################### 
 

O1 = 
 

   8.0479e+03 
 

O2 = 
 

   1.0e+06 * 
 

    0.7729    0.0122   -0.3307   -0.6721    0.0343    0.0143 

    0.0122    0.5725    0.1577    0.2221    0.0995    0.0698 
   -0.3307    0.1577    1.2283    0.5359   -0.0699    0.0564 

   -0.6721    0.2221    0.5359    1.1852    0.0087    0.0064 
    0.0343    0.0995   -0.0699    0.0087    0.2109    0.1047 

    0.0143    0.0698    0.0564    0.0064    0.1047    0.0743 
 

 
F = 

 
   1.0e+06 * 

 
   -0.6023   -3.1641    0.0612 

   -1.1930   -4.9997    0.1213 
 

 

A1s = 
 

  -37.7957 
 

L = 
 

    2.3819    5.9244    1.4400 
   -2.7703  -11.8487   -1.2303 

   -3.8537  -11.8087    0.3798 
    4.6140   13.3747   -3.0116 

  -21.0300  -41.8140   -6.1198 
   55.0637  151.3668   24.4748 

 
alph1 = 
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   2.9493e+03 
gam = 

 
   2.3357e-09 

 

 
Figure D.1 The MATLAB Workspace for the Ran Script 

 

 
  

 



 

171 
 

Run the MATLAB Simulink KP_Motor2 as in the figure below. 

 

Figure D.2 MATLAB Simulink Functional Block Diagram 

 

KP_Motor2 Simulink calls for a series of short functions named below.  

Functions 6, 7 and 8 codes are provided below. The codes for functions 1, 2, 

3, 4 and 5 are available upon request for interested readers. 

• InductionMotor.m 

• Transformation.m 

• FaultIsolator1.m 

• FaultIsolator2.m 

• MototFault.m 

• SYSTEM1.m 

• SYSTEM2.m 

• SYSTEM3.m 
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SYSTEM1.m 
 

%Function Code Begins 
 

function threshold = Motor(e) 
threshold =norm(e); 

 
%Function Code Ends 

 
 

SYSTEM2.m 
 

%Function Code Begins 
 

function threshold = Motor(e) 

threshold =norm(e); 
 

%Function Code Ends 
 

 
SYSTEM3.m 

 
%Function Code Begins 

 
function threshold = Motor(e) 

threshold =norm(e); 
 

%Function Code Ends 
 

 

 

After running the “MATLAB Simulink KP_Motor2” the FDFI_graph.m is 

run. This FDFI_graph.m MATLAB code graphs the residual, threshold as a 

function of time to visualize the detected and isolated faults in the motor. 
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Appendix E: MATLAB Code Graphing Residuals and Thresholds 

This section graphs the residual, threshold as a function of time. 

 
% To Visualize the Detected and Isolated Faults. 

 
close all; 

  
figure(1) %  

plot(t,e_w2(:,1),'b',t,e_w2(:,2),'--r','linewidth',2); % The graph command 

xlabel('Time (Second)'); % The x axis label 
ylabel('Residual Magnitude'); %The y axis label 

legend('Residual Curve', 'Threshold for Motor Fault Detection');% The Curve 
legend 

  
figure(2) %  

plot(t,e_w21(:,1),'b',t,e_w21(:,2),'--r','linewidth',2); % The graph command 
xlabel('Time (Second)'); % The x axis label 

ylabel('Residual Magnitude'); %The y axis label 
legend('Residual Curve', 'Threshold for Motor Fault Isolation'); % The Curve 

legend 
 

  
figure(3)  %  

plot(t,e_w22(:,1),'b',t,e_w22(:,2),'--r','linewidth',2); % The graph command 

xlabel('Time (Second)'); % The x axis label 
ylabel('Residual Magnitude'); %The y axis label 

legend('Residual Curve', 'Threshold for Motor Fault Isolation');% The Curve 
legend 
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Appendix F: Copyright Permissions 

 

The  referenced paper [142] by the author in this Dissertation is the  

Senior author that writes the paper. No Copyright permission is needed per 

IEEE rules. See IEEE Copyright guidance below.  
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The permission below is for the of all referenced TI pictures and other 

TI items referenced in this dissertation. The Induction Motor, the software and 

most controller board are bought from TI. 

 

https://www.ti.com/legal/terms-conditions/copyright.html 
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Appendix G: YALMIP Installation 

 

YALMIP is a solver compatible with MATLAB. More information and installation 

are available in the solver manual. The required paths must be added. to your 

MATLAB installation that may already have solvers available that YALMIP can 

interface. 

 

Six steps towards a successful installation1 

Uninstall old versions of YALMIP 

unzip yalmip.zip. This should create the structure 

 

• /yalmip 

• /yalmip/@sdpvar 

• /yalmip/extras 

• /yalmip/solvers 

• /yalmip/modules 

• /yalmip/operators  

 

Copy these paths in your MATLAB path 

 

• /yalmip 

 
1 For detail visit YALMIP site. “https://yalmip.github.io/” The YALMIP installation here is for ease of access.  

https://yalmip.github.io/
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• /yalmip/extras 

• /yalmip/solvers 

• /yalmip/modules 

• /yalmip/modules/parametric 

• /yalmip/modules/moment 

• /yalmip/modules/global 

• /yalmip/modules/robust 

• /yalmip/modules/sos 

• /yalmip/operators  

 

This can be done either using the Graphic User Interface (GUI) or using 

the command "addpath" as in: 

addpath(genpath('yourcurrentlocation/yalmip')) 

• Verify you have the right solvers in your Matlab path.  

• Shut down and restart Matlab, and or type "clear classes". 

• Run the yalmiptest.m file and everything should work (as long as you 

have the necessary solvers).
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