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Abstract 

 Isoscapes are depictions of the spatial patterns of isotopic values in a given area. 

Isoscapes can be created using measurements form samples (empirical isoscapes) or using 

statistical models of spatial isotopic variation (modeled isoscapes). Isoscapes have a wide variety 

of potential applications though, in the realm of marine ecology, they are most often used infer 

ecological processes, food web linkages, the origin of samples, and the movements of marine 

organisms.   

  However, to use isoscapes for these applications, it is necessary to have isoscapes at 

spatial scales relevant to the application in question. It is also necessary to have isoscapes that 

are based on a material that allows them to be applied to the organism or process in question. To 

address these necessities, the following dissertation created regional Gulf of Mexico isoscapes 

using the δ13C and δ15N values of reef-associated mesopredators, so the isoscapes could be 

directly applicable to many fisheries species as well as other mesopredators of interest. 

 The objectives of this dissertation were (1) to create empirical δ13C and δ15N isoscapes 

for the Gulf of Mexico using fish muscle, (2) to create a statistical models for those δ13C and 

δ15N values using readily available remote sensing data, (3) to use those models to evaluate 

predicted temporal variability in those isoscapes, (4) to use the isoscapes and models to elucidate 

influential ecological processes for δ13C and δ15N baselines, and (5) to demonstrate one 

application of the isoscapes using Red Snapper eye lens stable isotopes to infer movement 

histories of individual fish. Care was taken that the methods and products presented here could 



x 

 

be used in future studies, and important considerations and caveats for these methods and 

products are listed at the end of each chapter. 

 First, muscle samples from Red Snapper (Lutjanus campechanus) and Yellowedge 

Grouper (Epinephelus flavolimbatus) were collected from longlining research cruises in the Gulf 

of Mexico and analyzed for δ13C and δ15N values. Regressions were performed between each 

isotope and fish standard length to assess if there was a significant effect of trophic growth 

(increase in trophic position with fish size). All regressions were significant and, to prevent 

spatial differences in fish trophic position from overwhelming spatial differences in baseline 

isotopic values, residuals from the regressions were used to create isoscapes instead of the 

original data. Isoscapes were created for δ13C and δ15N values on the continental shelf of the 

Gulf of Mexico in areas reflecting the capture locations of each species. The Red Snapper δ13C 

isoscape depicted a depth gradient, wherein δ13C decreased with depth. This pattern was 

attributed to higher productivity and/or higher benthic basal resource availability inshore. The 

Yellowedge Grouper isoscape did not depict a depth gradient because Yellowedge Grouper were 

only captured close to the shelf edge. The δ15N isoscapes of both species depicted a pattern of 

higher δ15N values in areas near freshwater input with more eutrophic conditions and lower δ15N 

values in areas with more oligotrophic conditions. This pattern was attributed to differences in 

the sources of bioavailable nitrogen. In areas near freshwater input, it appeared rivers were 

delivering organic waste (sewage or livestock effluent) that tends to have higher δ15N values, 

whereas, in oligotrophic areas, most bioavailable nitrogen came from diazotrophic nitrogen 

fixation that tends to have lower δ15N values.  

 Next, statistical models were created for the spatial patterns in δ13C and δ15N values to 

evaluate temporal variability and further elucidate influential ecological processes. Potential 



xi 

 

predictor variables included satellite remote sensing products [CDOM, Chl, Kd (PAR), surface 

PAR, PAR(z), PIC, POC, and SST] and static variables (latitude, longitude, and depth) collected 

with each longlining deployment. Optional transformations (x2, Ln(x), 1/x, and √x) were applied 

to predictor variables, and predictor variables were standardized. Potential predictor variables 

were used in linear multiple regression analysis, wherein variables were selected using forward 

selection and AIC. All models were significant and explained at least a moderate amount of 

spatial isotopic variation. Overall, the δ15N models had higher R2 values and performed better 

when the model created with one species was used to predict the δ15N values of the other species. 

The selected variables and coefficients of the models suggested that the ecological explanations 

applied to the empirical isoscapes were correct with a few additions. The Red Snapper δ13C 

model included SST with a negative coefficient, which was attributed to SST being an influence 

on or a proxy for phytoplankton species composition. The selected variables and coefficients of 

the Yellowedge Grouper δ13C model suggest productivity is highly influential, and, in areas 

where productivity is lower and more spatially uniform, light environment is influential. 

Temporal variability of these isoscapes was assessed by gathering satellite products from all four 

seasons within an El Niño and La Niña year and using the statistical models to predict isoscapes 

for those time periods. Overall, the predicted isoscapes depicted very little temporal variation.  

 Finally, the δ13C and δ15N isoscapes were used in conjunction with Red Snapper eye lens 

stable isotopes to infer movement histories of individual fish. Fish eye lenses are proteinaceous 

spherical structures used to focus light within the eyes of fish. As the fish grows, the eye lens 

grows with it by adding successive layers (laminae) to the outside of the lens. After each layer is 

laid down, it undergoes attenuated apoptosis and becomes metabolically inert. Therefore, the eye 

lens is a conserved isotopic record of the isotopic conditions encountered by the fish, wherein the 



xii 

 

center is the oldest material, and the outermost layer is the newest material. Individual laminae 

were peeled off the eye lens and analyzed for δ13C and δ15N values. Linear regressions between 

the isotopic values of laminae and eye lens diameter indicated that Red Snapper underwent 

trophic growth, and the equation from that regression was used to create a predicted isotopic life 

history (IHL) plot for a hypothetical stationary fish. Deviation scores were calculated for each 

fish as the summed absolute values of the differences between the measured isotopic values 

within the fish’s eye lens and the predicted isotopic values for the hypothetical stationary fish. 

Deviation scores were evaluated along with the rho values from Spearman rank correlations of 

the δ13C and δ15N values within the eye lens of each fish to infer if a fish had undergone 

movement or remained relatively stationary throughout its life. If a fish had a low deviation score 

and a high rho value, it was inferred to have remained relatively stationary. Overall, this analysis 

and evaluation depicted a high level of individual variability in Red Snapper movement histories.  

 The major conclusions of this dissertation are (1) that spatial δ13C variation in the Gulf of 

Mexico is consistent with productivity and/or basal resource dependence, and δ15N spatial 

variation is consistent with bioavailable nitrogen sources, (2) that, based on the statistical 

models, there is very little temporal variability in δ13C and δ15N isoscapes, (3) that fish eye lens 

stable isotopes can be used in conjunction with isoscapes to infer possible movement histories, 

and (4) that Red Snapper generally undergo trophic growth with a high level of individual 

variability in movement histories. This dissertation provides isoscapes and isoscape models that 

have potentially broad applications, but applications relating to fisheries management and fish 

ecology are probably the most apt. The results from the Red Snapper movement histories have 

implications for fisheries management including the need for large sample sizes for Red Snapper 

studies to capture the full range of behaviors.  
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Chapter 1: Introduction 

 

1.1. Stable isotope chemistry 

Isotopes are forms of an element with different numbers of neutrons. Generally speaking, 

isotopes that have the same, or slightly more neutrons than protons have long-term stability. It 

was just over 100 years ago that the first machine that was able to detect isotopes was built by 

Fracis W. Aston. Today, there are over 3100 known isotopes of 120 elements, but only 283 of 

those are stable isotopes (Fry 2006). The stable isotopes that are of primary concern for this 

dissertation are carbon-13 (13C) and nitrogen-15 (15N). So called “stable isotopes” do have a very 

slight probability of spontaneous decay, but it is negligible for most purposes (Sharp 2017). Most 

isotopes have skewed distributions with one isotope being far more common than others. For 

example, the light isotope accounts for over 98% of all carbon and nitrogen atoms (Fry 2006).  

 Isotopic ratios are commonly described using δ notation. This notation is essentially a 

ratio of ratios describing how much a sample’s isotopic ratio differs from that of a known 

standard. The standard for carbon is PeeDee belemnite limestone, and the standard for nitrogen is 

atmospheric air. The calculation for δ notation is as follows: 

δ𝑗𝑋 = (
( 𝑋

𝑗
/ 𝑋𝑖 )𝑠𝑎𝑚𝑝𝑙𝑒

( 𝑋
𝑗

/ 𝑋𝑖 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) ∗  1000 

where X is the element, j is the rarer, heavier isotope of X, and i is a more common, lighter 

isotope of X. The final multiplication by 1000 puts samples on the parts-per-thousand scale (i.e., 

a 1% difference becomes 10 ‰). The “natural abundance range” for most elements is -100 to 50 
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‰. The δ notation is useful because it allows for simple algebraic mixing and fractionation 

calculations with accurate results for the purposes of most studies. Small errors can arise in these 

calculations if samples have a δ value well outside the natural abundance range. If δ values are 

very high, fractionation may be underestimated, and if δ values are very low, fractionation may 

be overestimated (Fry 2006). 

 

1.1.1 Fractionation 

  The extra neutron(s) in heavier isotopes of an element causes a slight difference in how 

different isotopes undergo physical and chemical processes. The differential effect of physical 

and chemical processes on changing the ratio of heavy-to-light isotopes in a given pool of an 

element is called fractionation. Fractionation is normally mass dependent, meaning isotopes with 

a greater relative mass differential will experience greater fractionation. There are two main 

types of mass-dependent fractionation: kinetic fractionation and equilibrium fractionation. 

Kinetic fractionation is associated with fast, incomplete, or unidirectional processes like 

evaporation, diffusion, and dissociation reactions as well as many biological processes (i.e., 

photosynthesis). In general, lighter isotopes will have higher velocity at the same temperature as 

heavier isotopes and lighter isotopes and will accumulate on the products side of the reaction as a 

result. Equilibrium fractionation is associated with equilibrium reactions (reactions that proceed 

in both directions at equal rates). The energy required to break a bond with a heavier isotope is 

slightly higher than it is for a lighter isotope. This results in heavier isotopes concentrating where 

bonds are strongest. The magnitude of equilibrium fractionation will depend on the bonding 

environment of the phases in question, including the temperature. Generally, equilibrium 

fractionation decreases with increasing temperature in the proportion 1/T2 (Sharp 2017). It 
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should be noted that, if any kinetic reaction goes to completion (all substrate converted to 

products), there is no opportunity for fractionation to occur (Peterson and Fry 1987). As a 

reaction grows close to completion, the magnitude of fractionation will decrease, and the 

substrate and products will be closer in δ13C value. This process is often referred to as Raleigh 

distillation or Raleigh fractionation. 

 Carbon in the oceans is fractionated by a few key processes. First, there is equilibrium 

fractionation between the CO2 in the air and the carbon species (mostly bicarbonate) in the water. 

The heavier 13C is concentrated in the bicarbonate where bonds are stronger and, as a result, 

dissolved inorganic carbon in the surface oceans is around 0-1 ‰ whereas atmospheric CO2 is 

around -8 ‰ (Mook et al. 1974; Fry 2006). As an equilibrium fractionation process, the 

fractionation of 13C in surface ocean dissolved inorganic carbon is mediated by temperature 

(Epstein et al. 1953). 

Oceanic carbon isotopes are also kinematically fractionated by photosynthesis. The 

difference between the δ13C values of primary producers and ambient CO2 includes both the 

diffusion fractionation that occurs as CO2 enters primary-producer cells and the enzymatic 

fractionation (via the enzyme Rubisco) that takes place within the cells of primary producers. 

The net effect of these two processes is photosynthetic fractionation. Most commonly, the net 

effect of photosynthetic fractionation is that primary producers preferentially fix the lighter 12C 

isotope, which results in cellular δ13C values that are around 20 ‰ lower than the ambient CO2 

(Fry 2006). The magnitude of photosynthetic fractionation is influenced by the type or species of 

plant or algae performing photosynthesis, the concentration of ambient CO2, the rate of 

productivity, and light availability (Gearing et al. 1984; Cifuentes 1987; Cooper and Deniro 

1989; Rau et al. 1996; Hofmann et al. 2000). In general, macroscopic marine plants have higher 
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δ13C values than phytoplankton (Clementz and Koch 2001), and terrestrial C4 plants have higher 

δ13C values than C3 plants (Fry 2006). The concentration of CO2 affects photosynthetic 

fractionation through Raleigh fractionation, wherein the primary producer δ13C values will be 

closer to that of the ambient CO2 as a greater proportion of the ambient CO2 is consumed. This 

effect of the concentration of CO2 results in lower photosynthetic fractionation when CO2 

demand is high and/or when CO2 supply is low. These conditions can occur when there is high 

productivity rates/ high light availability (Popp et al. 1998; Hofmann et al. 2000; Radabaugh et 

al. 2014). This same process occurring at the scale of cell diffusion layers and within-cell 

transport results in larger algal cells generally having higher δ13C values than smaller algal cells 

(Cooper and DeNiro 1989; Muscatine et al. 1989). The environmental factors affecting 

photosynthetic fractionation can also covary wherein in one factor may affect relationships with 

others (Rau et al. 1996). For an example, see the effect of temperature on δ13C values discussed 

in section 4.1.  

 Nitrogen is fractionated by a variety of processes that convert nitrogen to various forms 

within the nitrogen cycle including assimilation, nitrogen fixation, denitrification, 

remineralization, and nitrification. Most of these processes are metabolically driven and 

therefore induce kinetic fractionation processes (Sharp 2017). Assimilation is the process by 

which inorganic nitrogen is incorporated into living tissue, and has a fractionation effect between 

-27 and 0 ‰. The wide range of values are controlled by the availability of nitrogen, what 

enzymes are responsible for NH3 fixation, and diffusion of NH3 through the cell walls (Fogel and 

Cifuentes 1993; Sharp 2017). In the oceans, nitrogen is often the limiting factor for 

phytoplankton growth, and therefore all bioavailable nitrogen is often consumed resulting in no 

fractionation effect (Lohrenz et al. 1997; Dagg and Breed 2003; Capone et al. 2008). Nitrogen 
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fixation is the process by which nitrogen gas is converted to organic nitrogen by bacteria, and 

has a fractionation effect close to 0 ‰ (Carpenter et al. 1997; Montoya et al. 2002; Montoya 

2007; Sharp 2017). A compilation of nitrogen fractionation values by Fogel and Cifuentes 1993 

ranged from -3 to 1 ‰. Denitrification is the process by which nitrate is converted to nitrite and 

nitrite is converted to nitrogen gas. Because this process is primarily performed by anaerobic 

bacteria, it usually occurs under hypoxic or anoxic conditions (Sharp 2017). Fractionation due to 

denitrification can range from -40 to 11 ‰ (Cline and Kaplan 1975; Mariotti et al. 1982). The 

large range of fractionation is due in part to the potential removal of produced nitrogen gas by 

diffusion into the atmosphere which results in Rayleigh fractionation and can produce more 

extreme fractionation effects (Sharp 2017). Remineralization is the process by which organic 

nitrogen is converted into ammonia, usually by bacterial decomposition. The fractionation effect 

of remineralization is close to 0 ‰ (Sharp 2017). However, because more labile, organic 

material with lower δ15N values is preferentially broken down via remineralization, inorganic 

nitrogen below the euphotic zone will often have lower δ15N values than residual particulate 

organic matter (Williams and Gordon 1970; Altabet, 1988; Smith et al., 1992; Mullerniklas et al. 

1994; Kiorboe, 2001; Lee et al., 2004). Nitrification is the process by which ammonia is 

converted to nitrite and nitrite is converted to nitrate by nitrifying bacteria. Fractionation from 

nitrification ranges from -12 to 20 ‰, with nitrate ultimately having a lower δ15N value than the 

ammonium precursor (Kendall 1998; Sharp 2017). The wide range is due to differing 

fractionations at each reaction step based on ambient conditions.  
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1.2. Stable isotopes in the environment 

 Stable isotopes in the environment are a result of the isotopic sources and fractionation 

processes present in an area (Fry 2006; West et al. 2010). Environmental stable isotope ratios can 

be used in a wide variety of ecological applications including predator-prey dynamics, 

competition, physiology, nutrient transport, landscape ecology, and movement history (Fry 2006; 

Post 2002; Bearhop et al. 2004; West et al. 2010). The focus of this dissertation is using the 

spatial patterns of carbon and nitrogen stable isotopes in the environment (isoscapes) to infer the 

movement history of organisms. In order to achieve this application, it is necessary to understand 

the ecological causes and implications of the δ13C and δ15N values in the environment and in 

consumer species.  

One concept that is necessary for the evaluation of environmental isotopic values is that 

of basal resources. Basal resources are the species, groups of species, or functional groups found 

at the base of the food web (i.e., trees, grasses, phytoplankton, benthic algae, seagrass etc.). 

Different basal resources will support different food chains, though consumers increasingly 

integrate multiple basal resources higher up in the food web (Rooney and McCann 2012). 

Identifying and assessing the contribution of basal resources to food webs is important for 

determining trophic connections and energy pathways. Stable isotopes are useful tools for this 

purpose since different basal resources often have distinct isotopic ratios that are preserved in 

higher trophic levels (i.e., Haines and Montague 1979; France 1995; Fry and Ewel 2003). The 

δ13C value of a consumer is assumed to largely reflect its basal resource dependence (Cherel and 

Hobson 2007; Grippo et al. 2011), whereas δ15N values are highly fractionated as material is 

passed through a food web (see section 1.3.1). On marine continental shelves, basal resources 

supporting consumers are often grouped as phytoplankton with a δ13C value around -22 ‰ 
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(Moncreiff, and Sullivan 2001) and benthic algae which are around 5 ‰ higher (France 1995; 

Doi et al. 2010; Rooney et al. 2006).  

 

1.3. Stable isotopes in consumers 

Whereas the stable isotopes found in consumers reflect those found in the environment, 

the environmental conditions and basal resource isotopic ratios will be filtered and modified by 

prey choice, movement, and fractionation processes that take place within a consumer. In 

essence, the isotopic ratios of consumers represent a combination of the isotopic composition of 

prey species, the assimilated proportion of each prey, the isotopic fractionation occurring during 

tissue production, and the foraging location (Fry 2006; Bearhop et al. 2004; West et al. 2010). It 

is important to consider the influence of all these processes when interpreting consumer stable 

isotopes or creating consumer isoscapes. 

Consumer tissues provide an isotopic signal that is averaged over the turnover time of the 

sampled tissue (Vander Zanden et al. 2015). Consumer tissues are considered to be at 

equilibrium with their diet after 4-5 half-lives of the tissue (Hobson and Clark 1992). More 

metabolically active tissues (i.e., blood, skin) have shorter turnover times than less metabolically 

active tissues (i.e., bone, scales; Vander Zanden et al. 2015). Fast growing organisms also have 

shorter turnover times than slower growing organisms (Fry and Arnold 1982; Hesslein et al. 

1993). When conducting isotopic studies using fish muscle, many researchers use a turnover 

time of three months (McIntyre and Flecker 2006; Buchheister and Latour 2010; Nelson et al. 

2011; Radabaugh and Peebles 2014). 

One of the factors that determines the isotopic value of consumer tissue is their basal 

resource dependence. Consumer δ13C values are often used as an indicator of basal resource use 
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(Hobson et al. 1994; Cherel and Hobson 2005; Radabaugh and Peebles 2014), although δ15N 

values can also sometimes respond to a change in basal resource dependence (i.e., switching to 

or from a cyanobacteria-dominated food chain; Fry and Sherr 1984; Montoya 2007). In general, 

species or individuals that feed lower in the food web tend to be primarily supported by a single 

basal resource (i.e., phytoplankton or benthic algae), whereas species or individuals that occur 

higher up in the food web tend to integrate multiple basal resources (Vander Zanden and 

Rasmussen 1999; Vander Zanden and Vadeboncoeur 2002; Rooney et al. 2006,). 

 

1.3.1 Trophic fractionation 

Whereas the primary purpose of this dissertation to infer migration through stable isotope 

analysis, consumer stable isotopes are also widely used in food web studies due to the isotopic 

fractionation associated with movement up the food web (Minagawa and Wada 1984; Post 

2002). The study of food webs includes concept of trophic levels, which are a discrete 

representation of how many steps up the food chain an animal was from a primary producer 

(Lindeman 1942). However, representation of trophic levels as discrete integers betrays the fact 

that most species feed on a number of food sources, each with their own different respective 

places in the food web. For this reason, most modern ecologists use the term “trophic position”, a 

quantitative, continuous measure of the hierarchical position of a given species in the food web, 

rather than “trophic level” (Vander Zanden and Rasmussen 1996).  

 Trophic discrimination factors (TDFs), sometimes referred to as trophic enrichment 

factors, are a quantity reflecting the isotopic enrichment accompanying an increase in trophic 

level (Δ13C and Δ15N for carbon and nitrogen, respectively; DeNiro and Epstein 1981; Minagawa 

and Wada 1984; Post 2002; Chikaraishi et al. 2007). Trophic fractionation of nitrogen is 
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generally attributed to either fractionation during amino acid deamination and transamination, 

whereby 14N amine groups are preferentially removed leaving relatively enriched nitrogen 

behind (metabolic fractionation; Gannes et al. 1997; Vander Zanden and Rasmussen 2001), or to 

isotopic discrimination during nitrogen assimilation (assimilative fractionation; Vander Zanden 

and Rasmussen 2001). The TDFs that are used for most trophic studies are around 1.0 ‰ per 

trophic level for bulk δ13C values and 3.4‰ per trophic level for bulk δ15N values (Minagawa 

and Wada 1984; Post 2002). However, reported TDFs range from −8.79 to 6.1 ‰ for carbon, and 

−3.22 to 9.2 ‰ for nitrogen (Caut et al. 2009), and TDFs have been shown to vary based on a 

variety of factors including consumer physiology, consumer type, diet quality, and trophic level 

(Vanderklift and Ponsard 2003; Caut et al. 2009; Canseco et al. 2021). For a pilot study 

exploring the relationship between TDF and growth rate, see Appendix A. 

 Whereas TDFs may be highly variable, and change based on a variety of factors, it is 

generally assumed that both δ13C and δ15N values increase (albeit to a minor degree in the case 

of δ13C) as the trophic position of a consumer increases (Post 2002; Fry 2006). In order to infer 

how a consumer’s stable isotopes reflect their environment (a pre-requisite for migration 

studies), the effect of trophic fractionation must be addressed. Some methods to address trophic 

fractionation include using compound specific isotope analysis to explicitly determine the basal 

resource isotopic value within a consumer and the consumer’s trophic position (Bradley et al. 

2015; Wallace 2019) and using the relationships between isotopes and consumer size to infer 

trophic contribution (Vecchio et al. 2021; Vecchio and Peebles 2022; discussed in section 6.3). 
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1.4. Isoscapes 

 An isoscape is a map of measured or predicted spatial variation in the isotopic ratios of a 

given element. The term first came into widespread use around 2005, but documentation of 

spatial variation in isotopic ratios dates back at least as far as 1954 (Dansgaard 1954; Bowen 

2010). The basic premise behind the creation of isoscapes is that of spatial autocorrelation 

wherein, due to underlying spatial patterns of environmental factors that determine isotopic 

ratios, samples that were collected closer together are more likely to be similar isotopically than 

those collected father apart (Bowen 2010). The biogeochemical processes that influence the 

spatial variation in isotopic ratios include geology, climatology, biology, and hydrology (Bowen 

2010). Isoscapes are used in a variety of scientific fields, including geology (West et al. 2010), 

archaeology (Kootker et al. 2016), and ecology (Boecklen et al. 2011). Within the realm of 

marine ecology, isoscapes have applications relating to basal resource dependence, food-web 

interactions, and the origins and movements of animals (Graham et al. 2010; Hobson et al. 2010; 

Olson et al. 2010).  

 There are two primary methods for creating isoscapes: spatially interpolating between the 

measured values of samples (empirical isoscapes) and creating a statistical model to predict the 

spatial patterns of isotopic values based on measured variables (modeled isoscapes; Bowen and 

Revenaugh 2003; Graham et al. 2010; West et al. 2010). Directly measured, empirical isoscapes 

can be very useful for individual studies however, they do not capture any potential temporal 

variation in the isotopic baselines of an area. If the environmental processes that influence 

isotopic ratios change over time, it is unlikely that an isoscape is temporally static (Bowen and 

Revenaugh, 2003). The temporal variation in isotopic values can be at seasonal (Mariotti et al. 

1984; Kline 1999; Kürten et al. 2013; Magozzi et al. 2017), annual (Kline 1999; Hannides et al. 
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2009; Rooker et al. 2010), or decadal (Schloesser et al. 2009) time scales. When it comes to 

applying isoscapes to many studies, modeled isoscapes allow for the inference of what isotopic 

spatial patterns would look like at time of data collection.  

 Both empirical and modeled isoscapes can be created using abiotic sources (i.e., Dutton 

et al. 2005), basal resources (i.e., Hofmann et al. 2000), or consumers (i.e., Radabaugh et al. 

2014). Isoscapes created using basal resources provide a more accurate picture of environmental 

factors controlling isotopic values in the food web; however many basal resources display a high 

level of temporal isotopic variation and so an isoscape created for any one time period may not 

be a good estimation of average conditions (Post 2002; McMahon et al. 2013a, b). The isotopic 

values of basal resources may change temporally due to a variety of factors including species 

composition, availability and sources of nutrients, light conditions, and temperature (Cloern and 

Jassby 2010; McMahon et al. 2013 a, b). Conversely, isoscapes created using consumer tissue 

provide a more time averaged, but trophically modified depiction of isotopic spatial patterns 

(Cabana and Rasmussen 1996; Vander Zanden and Rasmussen 1999; Post 2002; Fry 2006). 

 

1.4.1 Spatial patterns in δ13C values 

 Spatial patterns in δ13C values have been shown to correlate to aqueous carbon dioxide 

concentrations, depth, temperature, productivity rates, and, in consumers, basal resource 

dependence (Fry, 1988; Cooper and DeNiro, 1989; Rau et al. 1997; Hofmann et al., 2000; Liu et 

al., 2007; Barnes et al. 2009; Radabaugh et al. 2013;). The very first carbon isoscape was based 

around a model of the variable fraction of carbon by photosynthesis (Lloyd & Farquhar, 1994). 

This fractionation effect is less extreme under low CO2 concentrations or during times of high 

growth rates, which results in marine photosynthetic organisms from areas with high 
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productivity having higher δ13C values (Popp et al., 1998; Hofmann et al., 2000). For example, 

there is a general trend in which the δ13C values of benthic plants is higher in shallow water and 

lower in deeper waters, which is attributed to increased light availability in shallow waters 

leading to higher growth rates and less extreme fractionation (Wefer and Killingley, 1986; 

Cooper and DeNiro, 1989; Muscatine et al., 1989). Seasonal differences in light environment can 

also affect basal resource δ13C values, particularly if light, rather than nutrients, is limiting 

growth in the winter months (Mariotti et al. 1984; Kline 1999). Fractionation also varies with 

species composition. Phytoplankton with a smaller cell size tend to be isotopically lighter than 

phytoplankton with a larger cell size and benthic plants tend to be 5 ‰ heavier than 

phytoplankton (Fry 1981; France 1995; Laws et al. 1995; Radabaugh and Peebles 2014). 

Subsequently, consumers that rely on a benthic basal resource have higher δ13C values than 

consumers that rely on planktonic resources (Hobson et al. 1994; Cherel and Hobson 2007). The 

combination these trends often result in a pattern of consumers increasing in δ13C values from 

offshore (where benthic producers are not readily available and productivity is lower) to 

nearshore (Graham et al. 2010; Radabaugh et al. 2013; Quillfeldt et al. 2015; Ceia et al. 2018). In 

highly stagnated areas, carbon recycling can occur wherein photosynthetic fractionation occurs, 

that carbon is respired/remineralized, and the same carbon is fractionated a second time resulting 

in algae with δ13C values as low as -45 ‰ (Fry 2006). Whereas consumers that spend time in 

these areas may retain the very low δ13C value (i.e., Kurth et al. 2019), the algae from this area 

are not often transported away from the area and therefore, the effect is very limited spatially.  

 The effect of temperature on δ13C values is somewhat complex. Higher temperatures 

allow for higher maximum phytoplankton growth rates (Eppley 1972) which is often associated 

with lower fractionation as described above. Lower temperatures result in higher gas solubility in 
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water which allows for higher carbon dioxide concentrations. Higher carbon dioxide increases 

photosynthetic fractionation and so phytoplankton δ13C values are often lower in colder waters 

(Rau et al. 1997). It should be noted that the magnitude of temperature effects on photosynthetic 

fractionation is dependent on cell-wall permeability and the ability of primary producers to 

actively transport carbon into cells (Rau et al. 1996; Radabaugh et al. 2014). For all these 

reasons, δ13C values are often strongly correlated with temperature and/or latitude at both global 

(Goericke and Fry 1994; Hinga et al. 1994; Trueman et al. 2012; McMahon et al. 2013; Magozzi 

et al. 2017) and regional (Barnes et al. 2009; Radabaugh and Peebles 2014) scales. Conversely, 

higher temperatures result in increased ocean stratification which reduces vertical mixing and 

nutrient availability. These conditions favor smaller-celled phytoplankton which tend to have 

lower δ13C values (Fry 1981; France 1995; Laws et al. 1995). Therefore, in some cases, it is 

possible for temperature and δ13C values to have an inverse relationship. 

 

1.4.2 Spatial patterns in δ15N values 

 Because nitrogen is commonly a limiting nutrient for primary-producer growth in the 

marine environment (Lohrenz et al. 1997; Dagg and Breed 2003; Capone et al. 2008), all the 

available nitrogen is usually consumed and therefore nitrogen is not fractionated by 

photosynthesis. Exceptions to this include areas where nitrogen is not the limiting nutrient (i.e., 

equatorial Pacific; Altabet 2001) and time periods or locations when light limits photosynthesis 

rather than nutrients, which may occur during winter months (Mariotti et al. 1984; Kline 1999). 

Given those considerations, baseline marine nitrogen isotopic ratios are primarily a function of 

the δ15N values of the sources of bioavailable nitrogen present (i.e., fixed nitrogen). The 

processes determining the δ15N values of bioavailable nitrogen include the input and mixing of 
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different nitrogen sources and a variety of chemical and microbial processes all of which are 

variable spatially and temporally. However, a commonly observed pattern is higher δ15N values 

in eutrophic waters and lower δ15N values in oligotrophic waters (Alt-Epping et al. 2007; Nerot 

et al. 2012; Radabaugh et al. 2013). In oligotrophic areas, a major source of bioavailable nitrogen 

is diazotrophic cyanobacteria that fix nitrogen at or near 0‰, the same value as atmospheric 

nitrogen (Carpenter et al. 1997; Montoya et al. 2002; Montoya 2007). In the more eutrophic 

waters near river outflows, particulate organic matter (POM) nitrogen has been observed to be 

closer to 5–9‰ due to the isotopic dominance of sewage and manure relative to manufactured 

fertilizers in the watershed (Hansson et al. 1997; Kendall et al. 2001). The relative contribution 

and spatial distribution of nutrient sources is influenced by precipitation (riverine inputs) and 

advection of water masses (Mariotti et al. 1984; Kürten et al. 2013). Under hypoxic and anoxic 

conditions, denitrifying bacteria in water and sediments reduce NO3
- and NO2

- to gaseous N2O 

and N2. This denitrification process results in strong, positive fractionation (20–30‰), producing 

higher δ15N values for the residual nitrate (Altabet et al. 1999; Granger et al. 2008). This process 

often occurs in water column oxygen minimum zones at rates high enough to affect the average 

isotopic ratio of nitrate (Brandes et al, 1998) but, in the Gulf of Mexico, there is also a large 

seasonal hypoxic area between the Mississippi River outflow and Texas where denitrification has 

been observed in the sediments (Gardner et al. 1993; Childs et al. 2002; Childs 2004). 

Temperature can have an indirect influence on δ15N values because of its affect on ocean 

stratification which can influence the relative importance of nitrogen fixation (Montoya 2007) 

and the development of bottom hypoxia and anoxia (Altabet et al. 1999). In the winter to spring, 

there is a lower level of stratification and vertical mixing promotes entrainment of nitrate with a 

δ15N value around 5-7 ‰ into the euphotic zone, promoting the growth of larger phytoplankton 
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(Sigman and Casciotti 2001). In summer to early fall, stratification increases and nitrogen 

fixation becomes more influential (Montoya 2007).  

 

1.4.3 Gulf of Mexico isoscapes 

The influences on spatial patterns in δ13C and δ15N values mentioned above occur around 

the world, however the focus of this dissertation is the δ13C and δ15N patterns within the Gulf of 

Mexico. There have been five other studies that created coastal isoscapes for the Gulf of Mexico 

(Radabaugh et al. 2013; Radabaugh and Peebles 2014; Vander Zanden et al. 2015; Cuddy 2018; 

Le-Alvarado et al. 2021). These studies are summarized in Table 1.1. For more detail and 

synthesis, see section 3.4.3. 

 

Table 1.1 

A table summarizing studies that include the creation of Gulf of Mexico isoscapes. 

 

Citation Region Type Material δ13C patterns δ15N patterns 

Radabaugh et al. 

2013 

West Florida 

Shelf 

Empirical Fish muscle Decrease in δ13C 

values with depth  

Higher δ15N 

values near 

freshwater 

input, lower 

δ15Nvalues in 

oligotrophic 

regions 

Radabaugh and 

Peebles 2014 

West Florida 

Shelf 

Modeled Fish muscle Decrease in δ13C 

values with depth 

Higher δ15N 

values near 

freshwater 

input, lower 

δ15Nvalues in 

oligotrophic 

regions 
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Table 1.1 (Continued) 

Citation Region Type Material δ13C patterns δ15N patterns 

Vander Zanden 

et al. 2015 

Eastern Gulf of 

Mexico, 

Yucatan 

peninsula, 

Caribbean and 

the east Florida 

shelf 

Empirical Loggerhead sea 

turtle scutes 

Higher δ13C 

values towards 

the Caribbean 

Higher δ15N 

values near 

freshwater 

input, lower 

δ15Nvalues in 

oligotrophic 

regions 

Cuddy 2018 Texas estuarine 

systems 

Empirical Seagrass leaf 

tissue 

Lower δ13C 

values with 

higher 

freshwater 

inflow and near 

urban areas 

Higher δ15N 

values near 

urban areas 

Le-Alvarado et 

al. 2021 

Whole Gulf of 

Mexico 

Empirical Zooplankton Low δ13C values 

in northwest 

Gulf of Mexico 

and high δ13C 

values near 

Florida Keys 

Higher δ15N 

values near 

freshwater 

input, lower 

δ15Nvalues in 

oligotrophic 

regions 

 

1.5. Migration studies and isoscapes 

Animals may migrate in order to pursue optimal combinations of higher food availability 

and lower mortality risk (Dingle and Drake, 2007). Migration within a species can be regular and 

fixed (i.e., Schofield et al. 2010) or highly differentiated among individuals (i.e., Diamond et al. 

2007; Patterson 2007). The particulars of how migration occurs has implications for fisheries 

management (Cowen et al. 2000; Hobson et al., 2019) as well as nutrient and energy dynamics 

within and among ecosystems (Deegan, 1993). Fisheries managers require life-history data, 

including migration data, to properly understand habitat use, food web structures, habitat 

connectivity, population structure, and energy pathways through food webs (Hyslop 1980; Fisk 

et al 2001; Sheppard 2010; Hobson and Norris 2008; Kell et al. 2009; Ramos and Gonzalez-Solis 

2012; McMahon and McCarthy 2016).  
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For years, fish migration studies were primarily performed using artificial tags such as 

anchor tags, spaghetti tags, transmitters, satellite data loggers, and others. Whereas artificial tags 

certainly yield useful data, there are certain drawbacks intrinsic to the methods, including cost in 

terms of time and money and low rates of recapture (West et al. 2009). Most of these tagging 

studies are also conducted on a time scale much shorter than the potential decades-long lifespan 

of fish. Stable isotopes, in contrast, represent a set of natural tags require only one capture (rather 

than the tagging capture and subsequent recapture required by many artificial tags) and can 

provide large datasets of complete lifetime movement histories at a relatively low cost. 

The stable isotopic values recorded in the tissues of consumers can provide information 

about foraging and movement along isotopically distinct habitats (Peterson and Fry, 1987; 

Hobson, 1999). Stable isotope data from tissues within an organism can be evaluated in 

conjunction with an isoscape to compare measured stable isotopic ratios to ratios that would be 

expected in different areas. Early marine stable isotope migration studies used δ18O values of 

commensal organisms growing on long-lived organisms such as whales and sea turtles 

(Killingley 1980; Killingley and Lutcavage 1983). The use of δ13C values to track migration was 

first demonstrated by Fry (1981) using brown shrimp. **rewrite He recorded a shift in δ13C 

values as the shrimp moved from inshore seagrass beds to offshore plankton-based food webs. 

Since then, stable isotopes have been used to track migration in a variety of organisms (Hobson, 

1999). 

There are two primary methods used for stable isotope migration studies. First, a 

comparison can be made between two tissues with different turnover times. If the two tissues 

have the same isotopic value, it can be presumed that the consumer did not migrate during the 

turnover time period. If the two tissues have different isotopic values, it can be presumed that the 
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consumer migrated at some point within the shorter of the two turnover times (Tieszen et al. 

1983; Hobson 1999). Second, a longer isotopic history can be obtained using sequentially 

synthesized, metabolically stable tissues (Vander Zanden et al. 2015; Tzadik et al. 2017). 

Metabolically inert tissues provide a conserved record of the isotopic environment the consumer 

was exposed to at the time the tissue was created and, in the case of sequentially synthesized 

tissues, provide a biochemical record of an individual’s trophic geography across long periods of 

time up to the entire lifespan of individual organisms (Campana and Neilson 1985; Campana 

1999; Trueman et al. 2012). Stable isotope analysis of sequentially synthesized tissues has the 

potential to provide trophic and geographic records for life stages (i.e., postlarval or juvenile 

stages) that are often under-sampled by fisheries gear (Bell-Tilcock et al. 2021; Simpson et al. 

2019; Vecchio and Peebles 2020). For fish, these tissues include scales, fin rays and spines, 

otoliths, vertebrae, and eye lenses (Tzadik et al. 2017). 

Otoliths are primarily composed of calcium carbonate and are secreted in concentric rings 

over the course of a fish’s life, providing a full life history of the carbon and oxygen stable 

isotopes encountered by that fish. In the Gulf of Mexico, otoliths stable isotopes have been used 

to determine the nursery habitat of Red Snapper (Sluis et al. 2012; Sluis et al. 2015). First, age-0 

Red Snapper were sampled from six regions around the Gulf of Mexico in order to chemically 

distinguish the six regions (Sluis et al. 2012). However, the use of otoliths of subadult and adult 

Red Snapper to assess the population connectivity between US and Mexican waters was 

inconclusive (Sluis et al. 2015). A similar study was conducted using the otoliths of Red Drum 

(Rooker et al. 2010). The δ13C and δ18O values of Red Drum from different nursery estuaries in 

the Western Gulf of Mexico were measured and then those values were compared to values 

found near the core of otoliths from young of the year Red Drum to determine connectivity 
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between early life and adult habitats. They found southern estuaries had higher δ13C and δ18O 

values and lower rate of movement between regions than the northern estuaries.  

 

1.6. Fish eye lenses 

1.6.1 Eye lens structure 

Whereas otoliths are excellent recorders of isotopic life histories in δ13C and δ18O values, 

they often do not contain adequate nitrogen for δ15N analysis which prevents the acquisition of 

potentially useful information about diet and movement along δ15N gradients (Pinnegar and 

Polunin 1999). Rather than being mineral, eye lenses are largely composed of crystallin protein 

which contains ample N for isotopic analysis. Fish eye lenses are spherical and layers (laminae) 

are laid down at the outer lens as the animal grows (Nicol 1989; Horwitz 2003). They are 

composed of two cell types; fiber cells and lens epithelial cells (Dahm et al. 2007; Wride 2011). 

Epithelial cells form a one-cell-thick layer around the lens and secrete new fiber cells as the fish 

grows. Each new layer of fiber cells undergoes attenuated apoptosis, wherein cells remove their 

cytoplasmic organelles to establish and maintain optical transparency of the lens (Nicol 1989; 

Horwitz 2003; Dahm et al. 2007; Vihtelic, 2008; Wride 2011). Protein synthesis stops in the lens 

layer once attenuated apoptosis is complete, making the eye lens a metabolically inert record of 

biochemical life history (Nicol 1989; Dahm et al. 2007; Vihtelic 2008; Wallace et al. 2014). The 

nucleus of the lens is the oldest material (Grainger et al. 1992) and the outermost layer of the 

lens is the newest material (Nicol 1989). Eye lenses grow isometrically with the fish which has 

allowed for eye lens weight at age and eye lens diameter at standard length equations to be 

developed though these equations may vary by species (Wallace et al. 2014; Quaeck-Davies et 

al. 2018). These relationships allow for an approximation of fish size and/or age for a given eye 
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lens weight or diameter or for a given eye lens lamina (i.e., Quaeck-Davies et al. 2018; Vecchio 

et al. 2021). 

 

1.6.2 Stable isotopes in eye lenses 

 Several studies have been conducted to assess how δ13C and δ15N values are recorded in 

eye lenses. Tests to assess the magnitude and temporal resolution of variation of δ13C and δ15N 

values within fish eye lenses found that variation among laminae was far higher than that within 

laminae, and that there was a high degree of agreement between the isotopic records of the left 

and right eye lenses of the same fish (Wallace et al. 2014). The intra-laminar variation was 

comparable to the nominal differences between left and right eye lenses which indicated intra-

laminar variation was due to measurement precision. Both these findings suggested isotopic 

variation across laminae within an eye lens was not an artifact. General lifetime patterns were the 

same when analyzing fewer laminae (lower temporal resolution) and when analyzing more 

laminae (higher temporal resolution), but certain early life history details were not captured at 

the lower temporal resolution. A step-change feeding experiment, wherein captive fish were fed 

a low δ15N value diet and then switched to a relatively high δ15N value diet, found that the 

dietary change was first recorded in the eye lens an average of 15.7 days after the diet switch, 

and that 90% assimilation of the new diet occurred 38.5 days after the diet shift (Granneman 

2018). The same experiment found the TDF between food δ15N values and lens δ15N values was 

3.15 ± 0.06‰. A review of the state of knowledge regarding the use of eye lenses for 

retrospective isotopic analysis found that eye lens diameter has a strong linear relationship with 

body size, but the equations governing that relationship differ among species (Quaeck-Davies et 

al. 2018). The review also found that eye lens δ15N and δ13C values are generally lower 
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compared to that muscle tissue, but mean δ15N values and δ13C values did not differ significantly 

between tissues, and the isotopic differences are low enough that they are likely to be obscured 

by between-individual variation and analytical error. 

 

1.6.3 Eye lens stable isotope studies 

 Eye lenses are a relatively new but increasingly used source of consumer isotopic 

histories. Several studies have shown the utility of eye lens stable isotopes for the elucidation of 

life history traits in squid (Parry 2003; Hunsicker et al. 2010; Onthank 2013; Meath 2019; Xu et 

al. 2019) and fish (Wallace et al. 2014; Kurth et al. 2019; Quaeck-Davies et al. 2018; Simpson et 

al. 2019; Curtis et al. 2020; Vecchio et al. 2021; Vecchio and Peebles 2022). Eye lens stable 

isotopes have the potential to record ontogenetic shifts in location (Wallace et al. 2014; Kurth et 

al. 2019; Vecchio et al. 2021) and diet/basal resource usage (Curtis et al. 2020; Vecchio and 

Peebles 2022). 

One trend that is commonly observed in eye lens stable isotope studies is trophic growth 

(Parry 2003; Hunsicker et al. 2010; Onthank 2013; Curtis et al. 2020; Vecchio et al. 2021; 

Vecchio and Peebles 2022). Trophic growth is an ontogenetic increase in trophic position with 

size (Curtis et al. 2020; Vecchio et al. 2021). As fish increase in size, their mouth gape increases 

(Karpouzi and Stergiou 2003), which allows them to consume larger (usually higher trophic 

position) prey. Because both δ13C and δ15N values tend to increase with trophic position (Post 

2002; McMahon et al. 2013b), trophic growth can be documented as a strong correlation 

between body size and either δ13C or δ15N values or as a strong correlation between δ13C and 

δ15N values (Curtis et al. 2020; Vecchio and Peebles 2020). There is stronger trophic 

fractionation for nitrogen (Minagawa and Wada 1984; Post 2002), so it is likely that under 
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conditions of trophic growth, δ15N values would have a stronger correlation with size whereas 

δ13C values will also respond to shifts in basal resource which may or may not be accompanied 

by a shift in trophic position (Hobson et al. 1994; Cherel and Hobson 2005; Radabaugh and 

Peebles 2014). 

 One shortcoming of bulk stable isotope analysis is that temporal patterns observed in eye 

lens δ13C and δ15N values could be due to movement and/or changes in diet, and it can be 

difficult to determine which processes is/are responsible for temporal patterns. In order to 

address this problem, stable isotope data can be combined with diet or artificial tag data (i.e., 

Vecchio and Peebles 2022) or compound specific isotope analysis can be performed in addition 

to bulk analysis in order to refine or confirm the interpretation of results (Wallace 2019). 

Another potential interpretation method is to infer what an isotopic life history (IHL) for a 

consumer would look like if the consumer had remained stationary, only undergoing trophic 

growth, and compare the stationary IHL to measured IHLs. One way to achieve this process is to 

compare the IHL of a species that is known to be stationary throughout life to the IHLs of the 

consumer of interest (Vecchio and Peebles 2020). Another method is to create a statistical model 

of a stationary ILH by using the average relationship between δ13C and δ15N values and eye lens 

diameter to model stationary trophic growth. Then, deviations from that model can be used to 

infer movement (Vecchio and Peebles 2022). 

Eye lens stable isotope studies seem to be particularly well-suited to documenting inter-

individual variation in diet and/or movement within a species (Hunsicker et al. 2010; Wallace et 

al. 2014; Simpson et al. 2019; Xu et al. 2019; Curtis et al. 2020; Vecchio and Peebles 2022). In a 

study that combined eye lens and muscle stable isotope analysis with stomach content analysis to 

determine the feeding ecology of Commander Squid (Berryteuthis magister), it was noted that 
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the eye lens analysis indicated feeding variability that was not captured using more traditional 

methods (Hunsicker et al. 2010). High inter-individual feed strategy variation was also noted in a 

study featuring Humbolt Squid (Dosidicus gigas; Xu et al. 2019). In a study using fish, it was 

found that variability within individual fish had no obvious, consistent trends that could be 

attributed to environmental or temporal covariates, which suggests that the inter-individual 

variation was behavioral rather than environmental (Curtis et al. 2020). The same study noted 

that one species (lionfish; Pterois spp.) exhibited measurably less inter-individual variation than 

the other (graysby; Cephalopholis cruentata), which suggests that eye lens stable isotopes may 

be used as an indication of differences in behavioral plasticity between species. A study on 

Atlantic Tarpon eye lens stable isotopes found Atlantic Tarpon had low inter-individual variation 

in their early life histories and then demonstrated more individual variation once they moved to a 

coastal environment around 10 years of age (Kurth et al. 2019). Documenting the inter-

individual variation of a species or life stage is useful for both ecology and fisheries management 

(Wallace 2019) and could be an indication of which species or life stages may be more adaptable 

to environmental changes (Hunsicker et al. 2010).  

 

1.7. Objectives 

 The objectives of this dissertation were to: (1) create empirical shelf δ13C and δ15N 

isoscapes of the Gulf of Mexico based on the muscle of two reef fish species [Red Snapper 

(Lutjanus campechanus) and Yellowedge Grouper (Epinephelus flavolimbatus)], (2) use readily 

available satellite data products to create a statistical model of the Gulf of Mexico isoscapes in 

order to create a temporally dynamic product, (3) evaluate the overall temporal variability 

predicted by the model by comparing seasonal and interannual differences between predicted 
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isoscapes, (4) use the empirical isoscapes and their models to infer which ecological processes 

are influential to spatial isotopic patterns, and (5) demonstrate how stable isotope eye lenses can 

be used in conjunction with isoscapes to infer movement histories in a Red Snapper. All the Gulf 

of Mexico isoscapes from section 1.4.3 either did not cover the entirety of the Gulf of Mexico 

continental shelf and/or did depict spatial isotopic patterns found in a reef-associated 

mesopredator fish species. The isoscapes in this dissertation were created using tissue from two 

reef-associated mesopredator fish species, and, because many exploited Gulf of Mexico fish 

species are reef-associated mesopredators, my isoscapes have potential to be useful for fisheries 

management. Most eye lens studies to date have primarily used eye lens stable isotopes to 

describe trophic patterns within and among individuals. Some studies have demonstrated that eye 

lens stable isotopes can also be used to infer movement but many of those studies have been 

limited by the spatial extent of isoscapes. Furthermore, methods for the interpretation of eye lens 

stable isotopes are still being developed and refined. The methods presented in this dissertation 

represent another step in the process of creating robust methods for the use of eye lens isotopes 

to infer movement histories. 

It is my hope these products and techniques can be used in future ecological and fisheries 

applications. The modeled isoscapes were created in such a way that it can be easily used in a 

variety of studies by simply downloading satellite data products from a time period and location 

relevant to the study and applying them to the statistical models to predict δ13C and δ15N values 

in any location on the continental shelf of the Gulf of Mexico. The methods used in this 

dissertation for eye lens analysis can easily be applied to individuals of any species to determine 

the likelihood that they changed location over any particular time period.  
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Chapter 2: Fish-based 13C and 15N isoscapes for the continental shelf of the Gulf of 

Mexico 

 

2.1 Chapter Summary 

 Isotope maps (isoscapes) are used to spatially depict ecological processes, to determine 

the energetic foundations of food webs, and to trace the origin and movement of animals. 

Isoscapes of δ13C and δ15N values were created for the continental shelf of the Gulf of Mexico 

using muscle samples from Red Snapper (Lutjanus campechanus) and Yellowedge Grouper 

(Epinephelus flavolimbatus). Red Snapper and Yellowedge Grouper had significant, positive 

relationships between both δ13C and δ15N values and fish length. Residuals from those 

regressions were used in the creation of the isoscapes in order to remove the effect of potential 

spatial differences in trophic position. Some influence from trophic growth could be seen in the 

isotopic data from each species. The δ13C isoscape had a pattern of decreasing δ13C values with 

increasing depth and, to a lesser extent, increased δ13C values near areas of freshwater input. The 

δ15N isoscape had a pattern of high δ15N values near areas of freshwater input and low δ15N 

values near oligotrophic Caribbean waters where production is dominated by diazotrophs. Red 

Snapper and Yellowedge Grouper isoscapes had similar overall patterns, with differences 

appearing to be related to differences among the locations where each species was collected. 
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2.2 Background 

An isoscape is a map of the spatial patterns of isotopic values, either measured 

(empirical) or predicted via statistical models. Spatial variation in isotopic ratios is determined 

by a variety of biogeochemical processes that involve geology, climatology, biology, and 

hydrology (Bowen 2010). Within the realm of marine ecology, isoscapes have been used to 

determine the primary-producer types at the base of food webs (i.e., basal resources), food-web 

interactions, and the origins and movements of animals (Graham et al. 2010; Hobson et al. 2010; 

Olson et al. 2010). Isoscapes can also provide information on ecological processes that affect 

isotopic baselines. Two elements that are often used in these types of studies are carbon and 

nitrogen.  

 

2.2.1 Causes of spatial variation in isotopic baselines 

Photosynthetic fractionation by primary producers is a key factor that affects δ13C 

variation in aquatic ecosystems. Primary producers preferentially fix the lighter 12C isotope, 

which results in cellular δ13C values that are lower than the ambient CO2. The factors affecting 

photosynthetic fractionation can covary, wherein in one factor may affect relationships with 

others (Rau et al. 1996). For example, at the global scale, the δ13C values of phytoplankton has 

been demonstrated to covary with latitude/temperature (Goericke and Fry 1994; McMahon et al. 

2013; Magozzi et al. 2017). Increases in temperature decrease the solubility of CO2 in seawater 

and increase maximum phytoplankton growth rate (Eppley 1972). However, the magnitude of 

those effects on photosynthetic fractionation is dependent on cell-wall permeability and the 

ability of primary producers to actively transport carbon into cells (Rau et al. 1996; Radabaugh et 



56 

 

al. 2014). Therefore, factors that influence spatial patterns of δ13C values should not be 

considered in isolation. 

Photosynthetic fractionation is generally less extreme under low CO2 concentrations, low 

light intensity, fast growth rates, and for cells with higher surface-area-to-volume ratios (Gearing 

et al. 1984; Cifuentes 1987; Cooper and Deniro 1989; Rau et al. 1996; Hofmann et al. 2000). In 

each of these cases, a reduction in extracellular [CO2] results in Raleigh fractionation. Under 

Raleigh fractionation, the primary producer δ13C values will be closer to that of the aqueous CO2 

as a greater proportion of the aqueous CO2 is consumed. This phenomenon leads to (1) marine 

primary producers from high-productivity areas generally having higher δ13C values than those 

from low-productivity areas (Popp et al. 1998; Hofmann et al. 2000), (2) benthic primary 

producers in shallow waters having higher δ13C values than benthic primary producers in deeper 

waters (Cooper and DeNiro 1989; Muscatine et al. 1989; Radabaugh et al. 2014), (3) benthic 

algae under lower-light conditions having δ13C values around 5‰ higher than overlying 

phytoplankton under higher-light conditions (France 1995; Radabaugh et al. 2014), and (4) 

phytoplankton with a larger cell size having higher δ13C values than phytoplankton with a 

smaller cell size (Fry 1981; Gearing et al. 1984; France 1995; Laws et al. 1995). The net effect of 

these factors is a trend of decreasing δ13C values in both benthic and planktonic primary 

producers with increasing water depth (Fry 1988; Cooper and Deniro 1989), and this trend being 

passed on to consumers (Radabaugh et al. 2013; Quillfeldt et al. 2015; Ceia et al. 2018). 

Nitrogen is also fractionated during photosynthesis (Needoba et al. 2003), but because 

nitrogen is commonly a limiting nutrient for primary-producer growth (Lohrenz et al. 1997; 

Dagg and Breed 2003; Capone et al. 2008), all the available nitrogen is consumed. There is 

therefore no net fractionation from photosynthesis. Instead, baseline nitrogen isotopic ratios are 
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often a function of the δ15N values of the sources of bioavailable nitrogen present (i.e., fixed 

nitrogen). Whereas the processes determining the availability of bioavailable nitrogen are 

variably influential, δ15N values are generally higher in eutrophic waters and lower in 

oligotrophic waters (Alt-Epping et al. 2007; Nerot et al. 2012; Radabaugh et al. 2013). In the 

oligotrophic waters of the Gulf of Mexico, the main source of bioavailable nitrogen is 

diazotrophic nitrogen fixation which creates nitrate at or near 0‰ (Carpenter et al. 1997; 

Montoya et al. 2002; Montoya 2007). In the more eutrophic waters near river outflows, 

particulate organic matter (POM) tends to have higher δ15N values due to the isotopic dominance 

of organic waste (sewage and manure) relative to other nitrogen sources (Hansson et al. 1997; 

Kendall et al. 2001). Under anoxic conditions, certain bacteria in water and sediments perform 

denitrification, preferentially removing bioavailable 14N and producing higher δ15N values for 

the residual nitrate and nitrite (Altabet et al. 1999; Granger et al. 2008).  

The δ15N baselines that result from interactions among the above processes are then 

transferred into the food web where they are further modified by trophic fractionation 

(Minagawa and Wada 1984). Tissue δ15N values increase by roughly 3.4‰ per trophic level, 

although there are multiple studies that suggest this type of fractionation is not numerically 

consistent (Minagawa and Wada 1984; Pinnegar and Polunin 1999; Vander Zanden and 

Rasmussen 2001; Hussey et al. 2014). Carbon within food webs also undergoes trophic 

fractionation, but to a lesser extent (an increase of around 0-1‰ per trophic level), so δ15N 

values are generally preferred as an indicator of the trophic position of an individual consumer 

(Fry and Sherr 1989; Peterson and Fry 1987; Cabana and Rasmussen 1996; Vander Zanden and 

Rasmussen 1999). 
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2.2.2 Objectives 

 The principal objective of this chapter was to establish general spatial patterns of δ13C 

and δ15N values on the continental shelf of the Gulf of Mexico to facilitate future stable isotope 

ecology studies and to reveal ecological processes influential to baseline isotopic composition in 

the Gulf of Mexico. Two reef-fish species were compared to determine whether general spatial 

trends in the resulting isoscapes were consistent between species. The methods used here are 

similar to those of Radabaugh et al. (2013), which created δ13C and δ15N isoscapes using POM, 

the stomach linings and stomach contents of the sea urchin Lytechinus variegatus, and the 

muscle of three fish species from locations throughout the West Florida Shelf (WFS) of the 

northeastern Gulf of Mexico. The δ15N isoscapes they generated depicted spatial trends with 

higher δ15N values in the northwest region of the WFS and lower values near the southwestern 

Florida peninsula, which is in concordance with the presumed sources of bioavailable nitrogen 

(riverine input and diazotrophic nitrogen fixation, respectively). The δ13C isoscapes depicted a 

spatial trend with higher δ13C values inshore and lower δ13C values offshore, which is in 

concordance with the changes in benthic algal fractionation with light availability, primary 

productivity rates, and the availability of a benthic basal resource to consumers. Both the δ15N 

and δ13C isoscapes remained relatively consistent over seasons and years and among fish species. 

The present study expands the Radabaugh et al. (2013) isoscapes to the remainder of continental-

shelf waters of the United States and Mexico.  
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2.3 Methods 

2.3.1 Target species 

 Reef-fish muscle from two species, Red Snapper (Lutjanus campechanus) and 

Yellowedge Grouper (Epinephelus flavolimbatus), was used to create the isoscapes instead of 

POM in order to obtain more time-space-averaged isotopic patterns than those expected from 

phytoplankton (Vander Zanden and Rasmussen 2001; O’Reilly et al. 2002; Post 2002; Bump et 

al. 2007; Radabaugh et al. 2013). Red Snapper is a member of the family Lutjanidae (snappers), 

and is found throughout the Gulf of Mexico in 10-190 m waters (Allen 1985; Smith 1997). 

Adults are reef-associated and feed mainly on fishes, shrimps, crabs, worms, cephalopods, and 

some planktonic items, including urochordates and gastropods (Allen 1985; Frimodt 1995). 

 Yellowedge Grouper is a member of the family Serranidae (groupers) found throughout 

the Gulf of Mexico in 90-360 m waters. Adults are demersal and are associated with both hard- 

and soft-bottom habitats near the edge of the continental shelf. They feed primarily upon crabs 

and fishes (Craig and Hastings 2007; Craig et al. 2011).  

 

2.3.2 Muscle collection 

Dorsal muscle samples from Red Snapper (n = 127) and Yellowedge Grouper (n = 99) 

were obtained from freshly caught fish aboard chartered, commercial fishing vessels (2011) and 

the R/V Weatherbird II (2014, 2015, and 2016; Table 2.1). Fishes were collected using demersal 

longline gear deployed in a transect survey design that extended throughout the Gulf of Mexico 

continental shelf, excluding Cuba (Figure 2.1). Station placement was in continental shelf waters 

from 40 to 300 m deep. Longline sets were generally deployed at six stations along predefined 

transects that extended from relatively shallow to deep continental shelf areas (Murawski et al. 
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2018). The nominal water depths sampled along each transect were 37, 73, 110, 146, 183, and 

274 m. Along several transects, the bathymetric slope was so steep that six unique stations could 

not be effectively sampled; depth control at those stations was difficult because the shallowest 

and deepest stations were <8 km apart.  

 

Table 2.1 

Metadata for the research cruises from which the fish muscle samples were obtained. The 

regions include the West Florida Shelf (WFS), the northern Gulf of Mexico (NG), the western 

Gulf of Mexico (WG), Campeche Bay, Mexico (CB), and the Yucatan Peninsula, Mexico (YP). 

The numbers of Red Snapper (n RS) and Yellowedge Grouper (n YEG) refer to the number 

caught during each cruise. The numbers of Red Snapper (Used RS) and Yellowedge Grouper 

(Used YEG) refer to how many of the fish caught on each cruise were used in the present study. 

 

Year Vessel Region n RS n YEG Used RS Used YEG 

2011 F/V Sea Fox WFS 16 12 5 0 

2011 F/V Brandy WFS 86 42 23 10 

2011 F/V Pisces WFS, NG 475 55 35 33 

2014 R/V Weatherbird II WFS, NG 90 17 3 0 

2015 R/V Weatherbird II WFS, NG, CB, YP 133 40 23 19 

2016 R/V Weatherbird II NG, WG, CB, YP 347 56 38 37 

 

At each station, 8 km of 3.2 mm galvanized steel (2011) or 544 kg-test monofilament 

(2014, 2015, and 2016) main line was deployed, with a mean of 446 baited hooks per longline 

set. Monofilament leaders (gangions) of 136 kg-test and 2.4 m length were clipped to the main 

line and attached to size-13/0 circle hooks. Bait was cut fish (Atlantic Mackerel, Scomber 

scombrus) and cut squid (primarily Humboldt Squid, Dosidicus gigas wings). The type of bait 

was switched haphazardly from hook to hook during deployments. Fishing was conducted only 

during daylight hours and during summer. 

Upon longline retrieval, collected species were identified, and their standard lengths (SL) 

and total lengths (TL) were recorded in cm. Each specimen was weighed to the nearest gram on a 
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Marel motion-compensated scale; large fish (> 6 kg) were weighed with a hand scale (nearest 0.1 

kg). At each station, a subsample of the catch (10 or fewer, depending on total number caught) 

was selected to be sexed and sampled for dorsal muscle. Muscle samples were either 

immediately frozen (Weatherbird II samples) or placed on ice (all other samples).  

 

 

Figure 2.1 

Locations (stations) where fish were collected. Stations where Red Snapper were caught have 

circular symbols and stations where Yellowedge Grouper were caught have triangular symbols. 

Stations are colored by the year in which they were sampled; 2011 in red, 2014 in yellow, 2015 

in blue, and 2016 in green. 

 

2.3.3 Isotope analysis 

In the lab, muscle samples were dried in an oven for a minimum of 48 hours. The muscle 

samples were then powdered and homogenized using a dental amalgamator. A dry weight of 

300–600 µg of powdered muscle was placed in tin capsules for combustion and isotopic analysis. 

13C/12C, 15N/14N, and C:N were measured in replicate using a Carlo-Ebra NA2500 Series II 
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elemental analyzer coupled to a continuous-flow ThermoFinnigan Delta Plus XL isotope ratio 

mass spectrometer at the University of South Florida College of Marine Science in St. 

Petersburg, Florida. The lower limit of quantification was 12 µg C or N. Calibration standards 

were NIST 8573 (δ13C values = -26.39 ± 0.09 and δ15N values = -4.52 ± 0.12) and NIST 8574 L-

glutamic acid (δ13C values = 37.63 ± 0.1 and δ15N values = 47.57 ± 0.22) reference materials. All 

the muscle samples from 2011 were analyzed, whereas for 2014, 2015, and 2016, a maximum of 

three haphazardly chosen muscle samples for each species at each station were analyzed. Results 

are presented in standard notation (δ, in ‰) relative to international standards Pee Dee Belemnite 

(PDB) and air for C and N, respectively: 

δ𝑗𝑋 = (
( 𝑋

𝑗
/ 𝑋𝑖 )𝑠𝑎𝑚𝑝𝑙𝑒

( 𝑋
𝑗

/ 𝑋𝑖 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) ∗  1000 

where X is the element and j and i are each an isotope of X. 

 

2.3.4 Data analysis and isoscape generation 

 Before the isoscapes were created, the data were explored and modified. First, 

regressions between both isotopes and standard length were performed to determine whether 

there was a significant trophic effect. Because both species had significant relationships between 

both δ13C and δ15N values and standard length, residuals from isotope-length regressions (length-

corrected δ13C and δ15N values) were used in place of unaltered isotopic values. This was done to 

prevent spatial differences in species’ diet/trophic position from interfering with the spatial 

differences in baseline isotopic levels. Second, regressions were performed between δ13C and 

δ15N values in their unaltered and length-corrected forms to assess the collinearity of the two 

isotopes. Third, a Mann-Whitney U-Test was used to determine if there was a significant 
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difference between the average capture depths and/or isotopic values of the two species. The 

above analyses were performed in R (version 4.0.5, R Core Team 2020). Lastly, length-corrected 

δ13C and δ15N values (regression residuals) were averaged for each species by station to prevent 

stations with more individuals from arithmetically overwhelming the stations with fewer 

individuals. Data from up to eight muscle samples were averaged per station; at most stations, 

data from three samples were averaged. 

Isoscapes were spatially interpolated using point kriging with a linear variogram model 

with no drift and no nugget effect (Surfer version 19.1.189). Isoscapes were limited to depths of 

5-200 m for Red Snapper and 70-200 m for Yellowedge Grouper to reflect the depth 

distributions of each species, with 200 m representing the nominal outer edge of the continental 

shelf. 

 

2.4 Results 

In total, 1,147 Red Snapper and 222 Yellowedge Grouper were caught across all research 

cruises. Of these, 127 Red Snapper and 99 Yellowedge Grouper were analyzed for stable 

isotopes (Table 2.2). Red Snapper were caught at 49 stations, and Yellowedge Grouper were 

caught at 41 stations (Figure 2.1). The two species co-occurred at four stations. 

The following summary statistics characterize the unaltered isotope data rather than the 

length-corrected data (i.e., regression residuals). Red Snapper δ13C values ranged from -18.32 to 

-15.97‰, and Yellowedge Grouper δ13C values ranged from -18.45 to –16.53‰ for (Table 2.2). 

Red Snapper δ15N values ranged from 10.16 to 16.41‰, and Yellowedge Grouper δ15N values 

ranged from 10.74 to 16.09‰. The sample standard deviation was 0.56‰ for δ13C values and 

1.51‰ for δ15N values for Red Snapper and 0.41‰ for δ13C values and 1.29‰ for δ15N values 
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for Yellowedge Grouper. The only variables that had a significant difference between Red 

Snapper and Yellowedge Grouper were water depth and δ13C values. 

 

Table 2.2 

Summary statistics comparing Red Snapper and Yellowedge Grouper muscle isotopes. Values 

for depth, δ13C, and δ15N were first averaged by station before creating the means and standard 

deviations (std. dev.) below. Mean depth refers to the mean starting depth of all deployments 

where the species was collected. Length-corrected δ13C and δ15N values refer to the residuals of 

the regressions of stable isotopes on standard length (see Figure 2.2). An asterisk (*) indicates 

that there was significant (p < 0.05) difference between Red Snapper and Yellowedge Grouper as 

determined by a Mann-Whitney U-Test. 

 

 
Red Snapper Yellowedge Grouper 

n 127 99 

Number of stations 49 41 

Mean depth (m) 66.24* 173.99* 

Mean δ13C value -17.07* -17.47* 

δ13C std. dev. 0.46 0.39 

δ13C value on standard length δ13C = -17.90 + 0.016(SL) δ13C = -18.08 + 0.011(SL) 

Mean length-corrected δ13C 0.043 -0.017 

Length-corrected δ13C std. dev. 0.43 0.36 

Mean δ15N value 13.52 13.38 

δ15N std. dev. 1.43 1.36 

δ15N value on standard length δ15N = 11.63 + 0.038(SL) δ15N = 10.94 + 0.043(SL) 

Mean length-corrected δ15N -0.034 0.043 

Length-corrected δ15N std. dev. 1.39 1.07 

 

There was a significant relationship between fish length and δ13C and δ15N values for 

both Red Snapper and Yellowedge Grouper (Figure 2.2). The regressions had higher nominal R2 

values for Yellowedge Grouper for both δ13C and δ15N values. The R2 values were relatively low 

overall (all R2 <0.3), which indicates there was substantial variation in muscle isotopes that was 

not explained by fish length. 
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Figure 2.2  

Linear, least-squares regressions of stable–isotope values (δ13C or δ15N) values on standard 

length for Red Snapper and Yellowedge Grouper, wherein each symbol represents an individual 

fish. Regression equations, R2 values, p-values, and sample size (n) are presented on the graphs. 

Shaded areas depict 95% confidence limits for predicted means. 

 

 There was a significant relationship between δ13C and δ15N values in both the unaltered 

and length-corrected data for both Red Snapper and Yellowedge Grouper (Figure 2.3). For both 

species, the R2 values of the regressions were lower for the length-corrected δ13C and δ15N values 

than for the unaltered data. Yellowedge Grouper had nominally higher R2 values than Red 

Snapper in both cases.  
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2.4.1 Isoscapes 

 In general, the isoscapes created using the length-corrected values of Red Snapper muscle 

presented clearer patterns than those created using Yellowedge Grouper muscle (Figure 2.4). 

Both δ13C isoscapes produced a general pattern of higher δ13C values near areas of freshwater 

input (Tampa Bay, Mississippi River, Nueces River, and Laguna de Términos) and lower δ13C 

values near the edge of the continental shelf, although the pattern is barely evident in the 

Yellowedge Grouper isoscape (Figure 2.4). The highest Red Snapper δ13C value was at the 

station nearest Laguna de Términos. The station’s average was based on the muscle of two fish, 

both of which had length-corrected δ13C values greater than 0.95‰. The lowest Red Snapper 

δ13C value was at a station towards the southern edge of the West Florida Shelf. The station’s 

average was based on five fish, three of which had length-corrected δ13C values less than -0.8‰. 

The highest Yellowedge Grouper δ13C value was located off Pensacola, Florida; this station 

average was based on two fish, one of which had a very high δ13C value, and one of which had a 

moderately high δ13C value. 
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Figure 2.3 

Linear, least-square regressions of δ15N on δ13C, wherein each symbol represents an individual 

fish. Uncorrected data are presented in panels A and B, and length-corrected data are used in 

panels C and D. Regression equations, R2 values, p-values, and sample size (n) are presented on 

the graphs. Shaded areas depict 95% confidence limits for predicted means. 

 

 Both species had the lowest δ15N value at the station closest to the Caribbean. In the case 

of Red Snapper, that was at the southernmost station on the West Florida Shelf. The average 

value at that station was based on five fish, four of which had length-corrected δ15N values less 

than -3‰. Yellowedge Grouper had the lowest δ15N value at the easternmost station on the 

Yucatan Peninsula. The average value at that station was based on one fish with a length-



68 

 

corrected δ15N value of -1.86‰. This value does not appear to be an error or outlier since fish at 

nearby stations had similarly low length-corrected δ15N values. The highest δ15N value for Red 

Snapper was located at a station near the mouth of the Mississippi River. The average value at 

that station was based on three fish, all of which had length-corrected δ15N values greater than 

2.3‰. The highest δ15N value for Yellowedge Grouper was located off Pensacola. The average 

value at that station was based on two fish, both of which had length-corrected δ15N values over 

1.9‰. 

 

 

Figure 2.4 

Isoscapes of length-corrected δ13C and δ15N values for Red Snapper and Yellowedge Grouper. 

The spatial extent of the isoscape was limited beyond the nominal edge of the continental shelf 

(the 200 m isobaths) and landward of the 5 m and 70 m isobaths respectively for Red Snapper 

and Yellowedge Grouper to reflect the distributions of each species. 
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2.5 Discussion 

2.5.1 Isoscape patterns 

The isoscapes created by this project depicted general spatial trends in δ13C and δ15N 

values around the Gulf of Mexico that appear to reflect aspects of the region’s ecological 

processes. The trends in the δ13C isoscapes were not as consistent as those in the δ15N isoscapes 

and may merit further investigation, particularly investigations at increased spatial resolutions. In 

the Red Snapper isoscape, there was a decrease in δ13C values with depth on the West Florida 

Shelf and in the northwest Gulf of Mexico. This pattern agrees with the isoscapes generated by 

Radabaugh et al. (2013), which also depicted a δ13C value depth gradient. The depth gradient 

observed in most areas could be attributed to a decrease in the importance of benthic primary 

producers with depth as a result of decreased light availability at depth (Cooper and DeNiro 

1989; Muscatine et al. 1989; Radabaugh et al. 2014). If Red Snapper became less dependent on 

benthic primary producers in deeper waters (i.e., as a basal resource rather than a direct food 

source), then their δ13C values would have reflected this trend, as benthic algae generally contain 

δ13C values that are about 5‰ higher than that of overlying phytoplankton (France 1995; 

Radabaugh et al. 2014). In ocean waters beyond the continental shelf, local contribution of 

benthic algae to food webs disappears altogether due to light limitation at depth. In addition to 

this general trend, there are river-influenced areas of the continental shelf where benthic algae 

are less important because they are shaded by phytoplankton or turbidity. A second, non-

exclusive explanation for the δ13C value depth gradient is that productivity tends to be higher in 

shallower, nearshore environments, and higher productivity is associated with decreased 

fractionation (Popp et al. 1998; Hofmann et al. 2000) and consequently higher δ13C values in 

primary producers. Productivity rates are also a likely explanation for the spatial trend of higher 
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δ13C values near areas of high freshwater input that was observable in both the Red Snapper and 

(to a lesser extent) Yellowedge Grouper isoscapes. The major exception to this pattern is the 

stations near the Nueces River outflow in the Yellowedge Grouper isoscape. These stations 

depict very low δ13C values despite being near an area of freshwater outflow. It is possible that 

the lighter values seen in Yellowedge Grouper near the Nueces River are due to the area of 

higher productivity near that river not extending all the way out to the edge of the continental 

shelf where Yellowedge Grouper were caught. 

The relationship between δ13C values and depth is further supported by the differences 

between the two species. Red Snapper and Yellowedge Grouper had significant differences in 

depth of collection and δ13C values. On average, Red Snapper had higher δ13C values than 

Yellowedge Grouper and were caught at shallower depths. It is likely the significant difference 

in δ13C values between species was a result of the difference in depth of collection, for the 

reasons stated above.  

In general, lower δ15N values were observed near the tropical, oligotrophic Caribbean, 

where nitrate input is most likely dominated by diazotrophs, and higher δ15N values were 

observed near areas of freshwater input. This pattern of low δ15N values in the Caribbean Sea is 

consistent with other Gulf of Mexico isoscapes (Radabaugh et al. 2013; Vander Zanden et al. 

2015; Le-Alvarado et al. 2021) and a global, plankton-based δ15N isoscape (McMahon et al. 

2013). In tropical areas, diazotrophs convert N2 into bioavailable nitrogen that retains δ15N 

values near the atmospheric (air) standard of 0‰, which is passed on to consumers in the area 

(Carpenter et al. 1997; Montoya et al. 2002; Montoya 2007). The highest δ15N values were 

observed near the Mississippi River outflow and near the Nueces River outflow, where several 

rivers flow into the Gulf of Mexico. One likely reason for the high δ15N values at these locations 
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was riverine inputs of livestock waste or human sewage, which have relatively high δ15N values 

(Hansson et al. 1997; Kendall et al. 2001). Another, non-exclusive possible explanation for the 

high δ15N values in the northern Gulf of Mexico was seasonal hypoxia and anoxia allowing for 

denitrification which leaves behind high δ15N nitrate (Altabet et al. 1999; Childs et al. 2002; 

Granger et al. 2008).  

 

2.5.2 Effects of trophic growth 

Further information can be gained about the trophic ecology of both species and how that 

ecology affects the isoscapes by looking at the relationships of each isotope with standard length 

and the relationships of the isotopes with each other. Red Snapper and Yellowedge Grouper both 

had significant relationships between standard length and both isotopes. One likely explanation 

for this relationship is that both species increase their trophic position as they increase in size 

(trophic growth; Minegawa and Wada 1984; Post 2002; Wallace et al. 2014). The relationships 

were stronger (based on R2 value) for Yellowedge Grouper, which suggests one or both of these 

effects are stronger for this species.  

Another possible reason Yellowedge Grouper had stronger relationships between 

standard length and isotopic values, is Yellowedge Grouper exhibit less overall spatial isotopic 

variability because they were collected from a smaller spatial area that was closer to the open 

waters of the deep Gulf of Mexico. This is supported by the standard deviations of the two 

species. Yellowedge Grouper had a lower standard deviation than Red Snapper in all four 

isotopic categories (δ13C, δ15N, length-corrected δ13C, and length-corrected δ15N values). If the 

Yellowedge Grouper samples had less overall spatial variation, then a greater proportion of the 

total variation could be explained by standard length. This is supported by the regressions 
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between standard length and each isotope,wherein Yellowedge Grouper had higher R2 values 

than Red Snapper, and by the regressions between δ13C and δ15N values, wherein Yellowedge 

Grouper had a larger proportional change in R2 after length correction. Both of these 

relationships suggest a greater proportion of the isotopic variation in Yellowedge Grouper was 

explained by trophic growth than was for Red Snapper. 

There was a significant relationship between δ13C and δ15N values for both species both 

before and after length correction, but the R2 values for the regressions were lower after length 

correction. One reason for the decrease in R2 is that the relationship between δ13C and δ15N 

values both increase with increases trophic position (DeNiro and Epstein 1978; Minagawa and 

Wada 1984; Vander Zanden and Rasmussen 2001). The length correction was intended to largely 

remove the effect of trophic position on δ13C and δ15N values, and thus it follows that the 

relationship between δ13C and δ15N values would be weaker after length correction. However, 

the regressions between δ13C and δ15N values were still significant after length correction. Two 

non-exclusive explanations for this are (1) the length-correction did not fully remove the trophic-

position effect on δ13C and δ15N values, or (2) δ13C and δ15N values were spatially correlated. A 

visual inspection of the δ13C and δ15N isoscapes for both species suggests the second explanation 

is likely at least a contributor to the observed results. 

 

2.5.3 Isoscape utility 

 There are a few considerations when using these or other consumer-based isoscapes. 

First, the spatial variation depicted here could be a result of differences in baseline isotopes or in 

the diet of the consumers (i.e., eating different proportions of prey that depend on different basal 

resources). While the length-correction was meant to remove the effects of spatial differences in 
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trophic position, it is possible to have shifts in basal resource dependence without an 

accompanying shift in trophic position. A second consideration is that the methods used here 

have the implicit assumption that each fish sampled had reasonable spatial stationarity (i.e., that 

the fish has not recently moved to the collection location from an area with differing baseline 

values). Similarly, even if the fish from this study remained stationary, it is possible their prey 

recently moved to the collection location from an area with differing baseline values. This may 

be of particular concern with regards to the seasonal movement of species from nearshore 

habitats, which have distinct isotopic baselines, to offshore reef habitats (Nelson et al. 2012). A 

final consideration is that there is likely temporal variation in baseline δ13C and δ15N values, and 

the isoscapes would likely change season to season and year to year. For example, changes in the 

size and location of the Mississippi River plume would likely change the location and shape of 

the area of high δ13C and δ15N values in the northern Gulf of Mexico. 
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Chapter 3: Multiple regression models for Gulf of Mexico δ13C and δ15N isoscapes using 

satellite data 

 

3.1 Chapter Summary 

Modeled δ13C and δ15N isoscapes for the Gulf of Mexico (GOM) were created using the muscle 

tissue of Red Snapper (Lutjanus campechanus) and Yellowedge Grouper (Epinephelus 

flavolimbatus). The models were created using static (latitude, longitude, depth) and dynamic 

(satellite remote sensing products) predictor variables and length-corrected δ13C and δ15N values 

as response variables in multiple regression. The resulting models were used to create isoscapes 

reflecting the conditions from when samples were collected and seasonal isoscapes in an El Niño 

(2015) and a La Niña (2011) year to assess temporal variability. The Red Snapper δ13C isoscapes 

depicted a trend of decreasing δ13C values with depth everywhere except the southwestern GOM, 

where there was overall low spatial variability with a slight decrease in δ13C values towards the 

Caribbean. The Yellowedge Grouper δ13C isoscape depicted a trend of lower δ13C values in the 

northwest GOM, higher δ13C values in the southeast GOM, and the highest δ13C values near the 

Mississippi River outflow and Laguna de Términos. The δ15N isoscapes of both species depicted 

a trend of higher δ15N values in areas of high productivity and lower δ15N values in oligotrophic 

areas, most likely following a gradient of nitrogen derived from human and livestock waste to 

nitrogen derived from diazotrophic nitrogen fixation. Compared to the δ15N models, the δ13C 

models had lower predictive capability and performed more poorly when the model created 

using one species was used to predict the isotopic values of the other species. The predicted 
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models for δ13C and δ15N values showed very little seasonal or interannual temporal variation 

suggesting general spatial isotopic patterns are relatively consistent. These models of spatial and 

temporal isotopic variability may be useful for future stable isotope investigations of trophic 

level, basal resource dependence, and animal migration. 

 

3.2 Background 

For background on isoscapes and spatial δ13C and δ15N variation, see Chapter 2. 

 

3.2.1 Temporal variation in isotopic baselines 

 Isotopic baselines may vary temporally as well as spatially if the underlying 

environmental processes that control inputs and fractionation change over time (Bowen and 

Revenaugh 2003). Temporal variation in δ13C and δ15N values has been observed at seasonal 

(Mariotti et al. 1984; Kline 1999; Kürten et al. 2013; Magozzi et al. 2017), annual (Kline 1999; 

Hannides et al. 2009; Rooker et al. 2010), and decadal (Schloesser et al. 2009) scales. 

Temperature, sunlight levels, and precipitation are the primary environmental factors that have 

the potential to change the spatial patterns or levels of isotopic baselines over time. Temperature 

can influence isotopic baselines in relation to growth rate and [CO2] as explained in Chapter 2, or 

through the degree of ocean stratification. Ocean stratification can influence the relative 

importance of nitrogen fixation (Montoya, 2007), and the degree of seasonal hypoxia and anoxia 

which allow for denitrification (Altabet et al. 1999). Interannual and, more often, seasonal 

differences in temperature and light environment can change the species composition and 

community structure of primary producers, which contribute the isotopic baselines (Magozzi et 

al. 2017). Seasonal differences in temperature and light environment can also affect isotopic 
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baselines through growth rate, particularly if light, rather than nutrients, limits growth in the 

winter months (Mariotti et al. 1984; Kline 1999). Precipitation location and intensity affects 

fluvial input to the Gulf of Mexico which will affect both δ13C and δ15N values through the input 

of nutrients and advection of particulate organic matter (Mariotti et al. 1984; Kürten et al. 2013). 

For all these reasons, it is potentially useful to create modeled isoscapes that are temporally 

dynamic. 

Statistically modeled isoscapes have been created for terrestrial plant δ13C values (Suits 

et al. 2005), phytoplankton δ13C values (Hofmann et al. 2000, Magozzi et al. 2017), scallop δ15N 

values (Jennings and Warr 2003), scallop δ13C values (Barnes et al. 2009), and fish δ13C and 

δ15N values (Radabaugh and Peebles 2014) using various environmental parameters that 

commonly include latitude, longitude, and temperature. One study that used fish muscle from the 

West Florida Shelf in the Gulf of Mexico to create a statistically modeled isoscape found that 

spatial variation in δ13C values was primarily driven by photosynthetic fractionation, primary 

producer species composition, and consumer reliance on benthic algae vs. phytoplankton as basal 

resources. The same study found spatial variation in δ15N values was primarily driven by 

variation in nitrogen fixation and fluvial input (Radabaugh and Peebles 2014). This and other 

studies have demonstrated that models created using empirical data from one species can be used 

to predict isotopic values in other species with moderate accuracy (Jennings and Warr 2003; 

Barnes et al. 2009; Radabaugh and Peebles 2014), which suggests modeled isoscapes have the 

potential to be useful across multiple studies. 
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3.2.2 Objectives 

One objective of the present study was to create temporally dynamic isoscapes of the 

continental shelf of the Gulf of Mexico using the δ13C and δ15N values of muscle from two reef 

fish species as response variables and a combination of temporally static (latitude, longitude, and 

depth) and temporally dynamic remote sensing parameters as predictors. Fish muscle has been 

chosen for this study using consumer tissue for an isoscape smooths out the small-scale spatial 

and temporal variation of primary producers (Vander Zanden and Rasmussen 2001; O’Reilly et 

al. 2002; Post 2002; Bump et al. 2007; Radabaugh et al. 2013). By modeling isotopic values 

using readily available environmental parameters, these can easily be applied to other studies in 

the region. A second objective of the present study was to evaluate potential interannual and 

seasonal variability predicted by the modeled isoscapes and whether the general spatial patterns 

in δ13C and δ15N values changed substantially over time.  

 

3.3 Methods 

 The muscle samples used in this chapter are the same as those used in Chapter 2. 

Methods regarding muscle sample collection and isotopic analysis can be found in Chapter 2. 

 

3.3.1 Remote sensing data collection 

Data used in this paper were produced with the Giovanni online data system, which is 

developed and maintained by the National Aeronautics and Space Administration Goddard Earth 

Sciences Data and Information Services Center (NASA GES DISC; 

http://giovanni.gsfc.nasa.gov). Three-month averages of colored dissolved organic matter 

(CDOM; m-1), chlorophyll a (Chl; mg/m3), particulate organic carbon (POC; mg/m3), particulate 



90 

 

inorganic carbon (PIC; mol/m3), sea surface temperature (SST; °C), surface photosynthetically 

active radiation (PAR; Einstein/m2day), and light attenuation at 490 nm [Kd(490); m-1] data were 

obtained from MODIS-Aqua at 4 km resolution. NASA GES DISC defines particulate matter as 

particles that are caught by a filter with a 0.7 μm pore size, whereas dissolved matter passes 

through this filter. POC primarily consists of phytoplankton and organic detritus, whereas PIC 

primarily consists of biogenic calcium carbonate. Both are determined from remote sensing data 

through backscatter algorithms. The light attenuation coefficient of photosynthetically active 

radiation, Kd(PAR), was calculated from MODIS-Aqua derived light attenuation at 490 nm, 

Kd(490), using Equation 9 from Morel et al. 2007. PAR at depth, PAR(z), was calculated using 

water depth (z), Kd(PAR), and PAR (Kirk 1994). 

𝑃𝐴𝑅(𝑧) = 𝑃𝐴𝑅 ∗ 𝑒−𝐾𝑑∗𝑃𝐴𝑅∗𝑧. 

The value of each satellite product was assigned to each individual collection station 

from the pixel of satellite data closest to the latitude and longitude coordinates for the collection 

station. If the collection date of a station fell on the 15th of the month or later, the month of 

collection was included in the three-month average as well as the preceding two months. If the 

collection date of a station fell before the 15th of the month, the three-month average included the 

preceding three months and not the month of collection. The three-month time frame was 

selected to reflect muscle turnover time, which varies with fish species, growth, and metabolism. 

For muscle tissue in adult fish, isotopic half lives in diet-switch studies are generally on the order 

of 1.5 months to over half a year (McIntyre and Flecker 2006; Buchheister and Latour 2010; 

Nelson et al. 2011). 
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3.3.2 Data analysis and isoscape generation 

 Before the isoscape models were created, the data were modified in a few ways. First, 

regressions between both isotopes and standard length were performed to determine whether 

there was a significant trophic effect. Because both species had significant relationships between 

δ13C and δ15N values and standard length, residuals from isotope-length regressions (length-

corrected δ13C and δ15N values) were used in place of unaltered isotopic values (hereafter 

referred to as δ13C and δ15N values). This was done to prevent spatial differences in species 

diet/trophic position from interfering with the spatial differences in baseline isotopic levels. 

Then, δ13C and δ15N values were averaged for each species by station to prevent stations with 

more individuals from arithmetically overwhelming the stations with fewer individuals. For 

stations with more than one sample, data from between two and eight muscle samples were 

averaged per station; at most stations, data from three samples were averaged. Shapiro-Wilk tests 

indicated that δ13C and δ15N values were normally distributed in both the original and length-

corrected forms which allowed for the use of standard linear regression. 

Remote sensing data were combined with static spatial data (latitude, longitude, water 

depth) collected at the time of the corresponding biological collections to be used as potential 

predictor variables for the multiple regression models of δ13C and δ15N values. Several 

transformations were evaluated to account for non-linear relationships between the datasets. 

Possible transformations were x2, Ln(x), 1/x, and √𝑥. Data were converted into absolute values 

for the purposes of the Ln(x) and √𝑥 transformations. After possible transformations were 

applied, the transformed or untransformed predictor variables were standardized by conversion 

into z-scores. Linear regression was performed between each predictor variable with each 

transformation and the δ13C and δ15N data (Appendix B). If a transformation increased the linear 
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model R2
adj by 0.01 or greater, the transformed variable was used instead of the original. 

Variables for the multiple regression models were chosen using stepwise selection and AIC. If a 

model containing an additional variable did not decrease the AIC by at least 2, it was considered 

no better than the previous model. If a variable had a coefficient that was not significantly 

different from zero (p > 0.1), it was excluded from the dataset and the multiple regression was 

re-run. Variance inflation factors (VIFs; Fox and Monette 1992) and Cook’s distance (Cook and 

Weisberg 1982; Fox 1997) were calculated for each model to evaluate the multicollinearity of 

variables included in the model and outlier stations respectively. Based on Cook’s distance, two 

stations were excluded from the Red Snapper dataset and one station was excluded from the 

Yellowedge Grouper dataset (Fox and Weisberg 2011). If variables within a model had VIFs 

higher than five (James et al. 2013), the variable with the highest individual correlation with the 

isotope in question (Appendix B) was retained, other high VIF variables were excluded, and the 

multiple regression was re-run. This process was repeated until all variables included in the 

model had coefficients significantly different from zero and VIFs lower than five. All the above 

analyses were performed in R (version 4.0.5, R Core Team 2020). Residuals from the resulting 

models were plotted spatially to evaluate if the models performed particularly well or poorly for 

any regions of the Gulf of Mexico. 

 

3.3.3 Temporal variability 

 Isoscapes were created based on predicted δ13C and δ15N values from the multiple 

regression models described above. Isoscapes were spatially interpolated using point kriging 

with a linear variogram model with no drift and no nugget effect (Surfer version 19.1.189). 

Isoscapes were limited to depths of 5-200 m for Red Snapper and 70-200 m for Yellowedge 
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Grouper to reflect the depth distributions of each species, with 200 m representing the nominal 

outer edge of the continental shelf. First, four isoscapes were created using remote sensing data 

from the collection dates of the original muscle samples (hereafter referred to as ‘catchdate 

isoscapes’). Then, temporal variability in the isoscapes was assessed by obtaining remote sensing 

products from each season in a La Niña year (2011) and an El Niño year (2015) and using that 

data to predict δ13C and δ15N isoscapes in each of those seasons. The remote sensing data was 

gathered at the same locations as the original collection locations. Seasons within a year were 

defined as three consecutive month intervals starting in January of the year.  

 

3.4 Results 

A total of 1057 Red Snapper and 208 Yellowedge Grouper were caught on the research 

cruises in 2011, 2015, and 2016. Of these, 124 Red Snapper and 98 Yellowedge Grouper were 

analyzed for stable isotopes (Table 2.1). Red Snapper were caught at 48 stations around the Gulf 

of Mexico and Yellowedge Grouper were caught at 47 stations (Figure 2.1). Both species were 

captured throughout the Gulf of Mexico, excepting the southern West Florida Shelf where only 

Red Snapper was captured and only at a single station. Red Snapper were captured between 15 m 

and 140 m depth and Yellowedge Grouper were captured between 40 m and 345 m depth (10 

stations at > 200m). There was only a single Yellowedge Grouper captured in water shallower 

than 85 m and the species is generally considered a deep-water species and therefore, despite a 

single fish being captured in shallower waters, the isoscapes were limited to a depth of 70 m to 

200 m to reflect the general distribution of the species. 
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3.4.1 Isoscape models 

 All four multiple regression models created using remote sensing data were statistically 

significant (p-value < 0.05; Table 3.1). The model with the highest R2
adj value was the Red 

Snapper δ15N model (R2
adj = 0.875). The model with the lowest R2

adj value was the Red Snapper 

δ13C model (R2
adj = 0.346). The model that performed best when used to predict isotopic values 

for the other species was the Red Snapper δ15N model (R2
adj = 0.568). The model that performed 

the poorest when used to predict isotopic values for the other species was the Red Snapper δ13C 

model (R2
adj = 0.052). Because the predictor variables were standardized, the magnitude of the 

coefficients indicate the strength of the relationship between each predictor variable and the 

response variable, and the average predicted values were always the same for the same model. 

The δ13C model for Red Snapper included Depth^2, Long, 1/PIC, and SST. The coefficient with 

the greatest magnitude was Depth^2, which was also the best individual predictor of δ13C values 

(Appendix B). The predicted values for the time and location of capture ranged from -0.70 to 

0.49 with a standard deviation of 0.28 (Table 3.2). The δ13C model for Yellowedge Grouper 

included Ln(Chl), Long, Lat^2, and Ln(PAR(z)). The coefficient with the greatest magnitude was 

Ln(Chl), which was the third-best individual predictor of δ13C values after Long and POC. The 

predicted values time and location of capture ranged from -0.54 to 0.53 with a standard deviation 

of 0.25. The δ15N model for Red Snapper included Long, Ln(Chl), Lat, and PAR. The coefficient 

with the greatest magnitude was Long, which was a relatively poor individual predictor of δ15N 

values (R2
adj = 0.064). The predicted values time and location of capture ranged from -2.88 to 

1.81 with a standard deviation of 1.28. The Yellowedge Grouper δ15N model only included 

Ln(CDOM), which was also the best individual predictor of δ15N values. The predicted values 

time and location of capture ranged from -1.40 to 1.97 with a standard deviation of 0.95. When 
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the model created for one species was used to predict the length-corrected isotopic values for the 

other species, the δ13C models performed very poorly (both R2
adj < 0.1), and the δ15N models 

performed moderately well (both R2
adj > 0.5). 

 

Table 3.1 

A table of results from the δ13C and δ15N multiple regression models. Response variables were 

length-corrected Red Snapper and Yellowedge Grouper muscle isotopic values, and predictor 

variables were environmental parameters from remote sensing. Predictor variables were 

transformed as indicated and standardized before model creation. Predictor variables are 

presented in order of descending coefficient magnitude. The R2
adj for the other species refers to 

the model from the above species being used to predict isotopic values for the other species. 

  
Red Snapper Yellowedge Grouper 

δ13C Model 

equation 

LC_ δ13C = -0.198*Depth^2 - 

0.178*Long - 0.157*1/PIC - 

0.130*SST + 0.015 

LC_ δ13C = 0.333*Ln(Chl) + 

0.194*Long - 0.162*Lat^2 + 

0.157*Ln(PAR(z)) - 0.002 

R2
adj 0.346 0.597 

p-value <0.001 <0.001 

R2
adj for other 

species 

0.052 0.068 

δ15N Model 

equation 

LC_ δ15N = -0.991*Long + 

0.746*Ln(Chl) + 0.724*Lat + 

0.272*PAR - 0.016 

LC_ δ15N = 0.950*Ln(CDOM) + 0.036 

R2
adj 0.875 0.761 

p-value <0.001 <0.001 

R2
adj for other 

species 

0.568 0.554 

 

3.4.2 Catchdate isoscapes 

 The multiple regression models were used to predict δ13C and δ15N values at the original 

capture locations at the original time of capture, and these predicted values were used to create 

isoscapes (catchdate isoscapes; Figure 3.1). Patterns seen in the catchdate isoscapes were similar 

to those seen in the empirical isoscapes created in Chapter 2 (Figure 3.2) though the models had 

a smoothing effect on the overall patterns. The Red Snapper δ13C isoscape depicted a general 

pattern of decrease with depth in the northern Gulf of Mexico, the West Florida Shelf, and the 
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Yucatan Peninsula, but that pattern ended towards the western Gulf of Mexico and Campeche 

Bay. Instead, there appears there was a slight relative high near Laguna de Términos in 

Campeche Bay and consistent medium-high values in the western Gulf of Mexico. The highest 

overall values were seen near the Nueces River outflow and near the northern West Florida 

Shelf, and the lowest value was seen at the outer mid-West Florida Shelf. The Yellowedge 

Grouper δ13C isoscape did not depict a depth gradient, likely because the catch locations of 

Yellowedge Grouper did include shallower regions of the shelf. Instead, the Yellowedge Grouper 

δ13C isoscape had its highest values near Laguna de Términos and medium high values in the 

eastern Gulf of Mexico with a slight relative high near the Mississippi River outflow. The lowest 

values in the Yellowedge Grouper δ13C isoscape were found in the northwest Gulf of Mexico. 

 

Table 3.2  

A table of the maxima (Max), minima (Min), means, and standard deviations (Stdev) of length-

corrected δ13C and δ15N values predicted for El Niño and La Niña years. Values were predicted 

using the statistical models created in this study (Table 3.1). The values from the “catchdate” 

rows were predicted for the time period each respective station was sampled. The El Niño 

isoscapes rows were calculated using every value from the four seasonal isoscapes within the El 

Niño year (2015) and the La Niña isoscape rows were calculated using every value from the four 

seasonal isoscapes within the La Niña year (2011). The El Niño – La Niña rows were calculated 

using the differences between El Niño and La Niña values for each station in each seasonal 

isoscape (i.e., Station 1240 El Niño Jan-March δ13C – Station 1240 La Niña Jan-March δ13C). 

 

 Red Snapper Yellowedge Grouper 

Length-corrected δ13C values Max Min Mean Stdev Max Min Mean Stdev 

Catchdate Isoscape 0.49 -0.70 0.01 0.28 0.53 -0.54 <0.01 0.25 

La Niña Isoscapes 0.78 -0.87 0.01 0.35 0.92 -0.84 <0.01 0.32 

El Niño Isoscapes 0.83 -0.98 0.01 0.36 0.87 -0.67 <0.01 0.29 

El Niño - La Niña 0.48 -0.53 <0.01 0.18 0.39 -0.39 <0.01 0.13 

Length-corrected δ15N values Max Min Mean Stdev Max Min Mean Stdev 

Catchdate Isoscape 1.81 -2.88 -0.02 1.28 1.97 -1.40 0.04 0.95 

La Niña Isoscapes 2.58 -3.11 -0.02 1.17 2.95 -1.83 0.04 0.94 

El Niño Isoscapes 2.52 -2.54 -0.02 1.14 2.43 -1.42 0.04 0.94 

El Niño - La Niña 1.05 -1.10 <0.01 0.39 1.60 -1.57 <0.01 0.58 
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Figure 3.1 

Isoscapes created for length-corrected δ13C (top) and δ15N (bottom) values using the predicted 

isotopic values from the statistical models (Table 3.1). Isotopic values were predicted using 

satellite products from the three months prior to the catch date as described in the methods 

section. 

 

 Both species’ δ15N isoscapes depicted higher values in the northwest Gulf of Mexico and 

lower values near the Caribbean. The Red Snapper δ15N isoscape had its highest predicted values 

near the outflows of the Nueces River and Mississippi River. The lowest value was predicted on 

the southwest Florida Shelf near the Florida Keys. The Yellowedge Grouper δ15N isoscape also 

had its highest values near the Mississippi River outflow, but the predicted values were lower 

near the Nueces River outflow. The lowest predicted values for Yellowedge Grouper were off 

the Yucatan Peninsula. Both species had relative highs near river outflows excepting Laguna de 

Términos, where neither isoscape depicted high values. Both isoscapes had their lowest values at 

the station closest to the Caribbean. 
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Figure 3.2 

Empirical isoscapes of length-corrected δ13C and δ15N values for Red Snapper and Yellowedge 

Grouper (same as those in Chapter 2). Kriging was removed beyond the nominal edge of the 

continental shelf (the 200 m isobaths) and landward of the 5 m and 70 m isobaths respectively 

for Red Snapper and Yellowedge Grouper to reflect the distributions of each species. 

 

 Residuals (predicted - measured) of each model were plotted spatially to determine if the 

models did particularly well or poorly in any area (Figure 3.3). The Red Snapper model had a 

particularly low δ13C residual (predicted value was too low) near Laguna de Términos. This 

station’s measured value was based on two fish that had similar, non-anomalous δ13C values, so 

this station does not appear to be an outlier. The Yellowedge Grouper model had a cluster of low 

δ13C residuals near the Mississippi River outflow but there are also several stations in the area 

with high δ13C residuals which suggests that area may have spatial or temporal (since one of the 
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stations with a high δ13C residual was from 2015 whereas the rest were from 2011) variability 

that was not captured by the model. It appears the Red Snapper δ15N model generally predicted 

lower values than the measured values. The Yellowedge Grouper δ15N model residuals are 

generally closer to zero with a few scattered stations where the model performed more poorly. 

 

 

Figure 3.3 

Spatially plotted residuals (predicted - measured) from the length-corrected δ13C (top) and δ15N 

(bottom) values predicted by multiple regression models for the times and locations of data 

collection. Residuals are plotted on a continuous color scale wherein darker orange colors 

represent stations where predicted length-corrected δ13C or δ15N values were lower than the 

measured length-corrected δ13C or δ15N values and darker blue colors represent stations where 

predicted values were higher than measured values. 

 

3.4.3. Temporal variability  

 The models created for each species and isotope were also used to predict isotopic values 

at the sampling stations in different seasons and years. Those predicted values were used to 
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create isoscapes to assess if the general patterns seen in the catchdate isoscapes were stable at 

seasonal and interannual scales (Figures 3.4-3.7). The average predicted values for each species 

for each isotope were the same as those in the catchdate isoscapes due to the predictor variables 

being standardized (Table 3.2). Generally, the spatial patterns described in the above section for 

the catchdate isoscapes persisted regardless of season or year. The isoscapes created in El Niño 

(2015) and La Niña (2011) years had very similar maximum and minimum predicted values and 

the standard deviations of those values were also very similar. The δ15N isoscapes in the La Niña 

year had higher maximum and lower minimum predicted values for both Red Snapper and 

Yellowedge Grouper than in the El Niño year. The maxima and minima for the predicted δ13C 

values were not consistently higher or lower in the El Niño isoscapes or the La Niña isoscapes. 

The average difference between the predicted values at each station in the El Niño year and the 

La Niña year were less than 0.01 for each isotope and species. The greatest difference in values 

calculated for δ13C was at a station off the Yucatan Peninsula where the La Niña value predicted 

by the Red Snapper model was 0.53 higher than the value predicted in the El Niño year. The 

greatest difference calculated for δ15N values was at a station in the central west Gulf of Mexico 

where the value predicted by the Yellowedge Grouper model in the El Niño year was 1.60 higher 

than the value predicted in the La Niña year. The δ13C modeled isoscape with the highest spatial 

variability (based on maximum, minimum, and standard deviation) was for Yellowedge Grouper 

in the September-December season of the La Niña year though its variability was still lower than 

that of the measured Red Snapper δ13C values (Appendix C). The δ15N modeled isoscape with 

the highest spatial variability based on standard deviation was for Red Snapper isoscape in the 

April-June season of the La Niña year and the δ15N modeled isoscape with the highest maximum 
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and lowest minimum predicted values was for Red Snapper in the October-December season of 

the La Niña year.  

 The Red Snapper δ13C model (Figure 3.4) appears to have had more seasonal and 

interannual variability than the Yellowedge Grouper δ13C model. In both the El Niño year (2015) 

and the La Niña year (2011), the Campeche Bay region of the Gulf of Mexico had higher δ13C 

values in the July-September season than in other seasons. During the same season, the Northern 

Gulf of Mexico had lighter δ13C values than in other seasons. The highest overall δ13C values 

were seen in the northwest Gulf of Mexico though those values were overall slightly lighter in 

the Oct-Dec season. There is also an area of low δ13C values near the edge of the shelf in that 

region in the Jan-March season thought the nearshore δ13C values remain high, similar to other 

seasons. In general, there was a gradient on the West Florida Shelf with higher δ13C values in the 

northeast and lower values in the southwest. In the La Niña year (2011), the gradient covered the 

largest difference in values in the October-December season and the January-March season, 

whereas in the El Niño year (2015), the gradient did not cover as wide a range of values in 

general and is weakest in the January-March season. In the La Niña year, the Yucatan Peninsula 

had the lightest δ13C values in the October-December season, whereas in the El Niño year, it had 

the lightest values in the January-March season. 
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Figure 3.4 

Isoscapes created for length-corrected δ13C values using the model developed with Red Snapper 

(Table 3.1) for seasons within a La Niña year (2011) and an El Niño year (2015).  
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Figure 3.5 

Isoscapes created for length-corrected δ13C values using the model developed with Yellowedge 

Grouper (Table 3.1) for seasons within a La Niña year (2011) and an El Niño year (2015).  
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Figure 3.6 

Isoscapes created for length-corrected δ15N values using the model developed with Red Snapper 

(Table 3.1) for seasons within a La Niña year (2011) and an El Niño year (2015).  
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Figure 3.7 

Isoscapes created for length-corrected δ15N values using the model developed with Yellowedge 

Grouper (Table 3.1) for seasons within a La Niña year (2011) and an El Niño year (2015). 
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The Yellowedge Grouper δ13C isoscapes (Figure 3.5) showed very little seasonal or 

interannual variability. One slight anomaly to the general patterns in the Yellowedge Grouper 

δ15N isoscapes was that the area near the Nueces River outflow had slightly higher δ15N values in 

the April-June and October-December seasons the El Niño year compared to the La Niña year. A 

second anomaly was that the October-December season in the El Niño year had higher δ13C 

values in near Laguna de Términos than in the La Niña year. Those high δ13C values were also 

the highest seen overall in all the Yellowedge Grouper isoscapes. 

 In the Red Snapper δ15N model, there was very little seasonal or interannual variability in 

the overall patterns of change in the Gulf of Mexico other than some slight changes in a few 

regions (Figure 3.6). The area near the Mississippi River outflow generally had some of the 

highest δ15N values in the isoscape. In the April-June and October-December season, the area 

near the Nueces River outflow had similarly high δ15N values with an area of relatively lower 

δ15N values between the two rivers. In the January-March and July-September seasons, there was 

not a second high δ15N value area near the Nueces River outflow, and the relatively lower δ15N 

values were more ubiquitous in the entire northwestern Gulf of Mexico. There was some 

seasonal variability in the δ13C values at the southwest edge of the West Florida Shelf during the 

La Niña year (lowering over the course of the year) and in the El Niño year, that same area 

stayed at the (relatively higher) values depicted in the January-March season. 

 The Yellowedge Grouper modeled δ15N isoscapes (Figure 3.7) showed slightly more 

variability than the modeled δ13C isoscapes, but the general patterns of increase and decrease 

were similar among all isoscapes. Seasonally, there were slight differences in the magnitude of 

δ15N values in different areas even though general patterns were maintained. First, it appeared 

that the area near the Nueces River outflow had higher δ15N values in the April-June season. 
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Second, the area near Laguna de Términos had higher δ15N values in the January-March season, 

and the highest values occurred in the October-December season. Third, the area near the 

Mississippi River outflow had relatively lower δ15N values in the October-December season 

(compared to other seasons), and those relatively high (compared to the surrounding area) values 

did not extend as far out to the east and west from that region. The only interannual difference 

among isoscapes was on the Yucatan Peninsula which had lower δ15N values in the January-

March and October-December seasons in the La Niña year whereas the values remained 

relatively unchanged seasonally in the El Niño year. 

 

3.5 Discussion 

3.5.1 Spatial isoscape patterns 

 The modeled Red Snapper δ13C isoscapes depicted a pattern of decrease with depth in the 

northern Gulf of Mexico (indicated in the equation as a negative coefficient on Depth^2) and 

decreasing values closer to the Caribbean in the southern Gulf of Mexico (indicated in the 

equation as a negative coefficient on Long and on SST). As was the case with the empirical 

isoscapes, the depth gradient observed in most areas could be attributed to an increase in 

productivity nearshore and/or decrease in the importance of benthic primary producers with 

depth as a result of decreased light availability at depth (Cooper and DeNiro 1989; Muscatine et 

al. 1989). At a global scale, the δ13C values of phytoplankton often covary with SST which is 

usually attributed to SST’s effect on growth rates, [CO2], and rates of CO2 uptake (Goericke and 

Fry 1994; Hinga et al. 1994; Gruber et al. 1999; McMahon et al. 2013; Magozzi et al. 2017). 

However, at global scales, the δ13C values of phytoplankton generally increase with increased 

temperature, which is the opposite pattern observed in this dissertation. The δ13C model also 
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included 1/PIC. PIC tends to align with depth/productivity gradients (Acker and Leptoukh 2007) 

which would suggest it would be redundant with Depth^2 but, its inclusion suggests it is 

explaining additional variation, likely through its relationship with lithography (Daniels et al. 

2012) and/or its temporal variation. 

 The Yellowedge Grouper δ13C modeled isoscape depicts a very different pattern from the 

Red Snapper δ13C modeled isoscape. There was no depth gradient present, most likely because 

Yellowedge Grouper were captured within a spatially narrower and deeper depth range where 

benthic primary producers are likely to be less influential. However, Ln(PAR(z)) was one of the 

variables included in the Yellowedge Grouper δ13C model which suggests there was some 

influence from light environment, though it was the least influential of the selected variables 

based on coefficients. The variable with the largest coefficient was Ln(Chl). Chlorophyll was 

likely included in the model because of the relationship between productivity and fractionation 

mentioned above (Popp et al. 1998; Hofmann et al. 2000). Near the edge of the continental shelf, 

where most Yellowedge Grouper were captured, chlorophyll tends to be lower and less variable 

than it is near the coastline (Acker and Leptoukh 2007), but the high coefficient on Chl suggest 

that small changes in chlorophyll are associated with relatively large changes in δ13C values. 

Ln(Chl) is most likely the variable that is responsible for the areas of high δ13C values near the 

Mississippi River outflow and near Laguna de Términos in the modeled isoscape. Both Ln(Chl) 

and Ln(PAR(z)) have positive coefficients which suggest contradictory processes (areas with 

high chlorophyll would likely have higher Kd and consequently, lower Ln(PAR(z))). It could be 

that areas of high, variable primary productivity dominate the δ13C patterns but, in areas with 

lower, less spatially variable productivity (i.e., closer to the Caribbean) the light environment and 

amount of benthic vs planktonic production is more influential. There is also a pattern of lower 
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δ13C values in the northwest Gulf of Mexico and medium-high values in the southeast Gulf of 

Mexico. Rather than having a clear process-based cause in the model equation, this pattern seems 

to be primarily caused by the positive coefficient on Long and the negative coefficient on Lat^2 

which suggests that there are influential variables and processes not included in the statistical 

model. 

 The modeled δ15N isoscapes depicted very similar spatial patterns for Red Snapper and 

Yellowedge Grouper. Overall, δ15N values were lower in oligotrophic areas and higher near 

areas of freshwater input. This pattern matches that in the empirical isoscapes and has the same 

explanation regarding the sources of bioavailable nitrogen in these areas. Areas near freshwater 

input will have high chlorophyll and CDOM which is the likely reason for the inclusion of 

Ln(Chl) in the Red Snapper model and Ln(CDOM) in the Yellowedge Grouper model, both with 

positive coefficients. Ln(CDOM) was the only variable included in the Yellowedge Grouper δ15N 

model whereas the Red Snapper δ15N model also included Lat, Long, and PAR. The inclusion of 

Lat and Long suggest there are other variables that account for spatial patterns in Red Snapper 

δ15N values that were not included in the statistical model. The values for PAR are calculated at 

the surface of the water so they are primarily a function of weather, latitude, and season. Average 

PAR will decease with latitude, but both Lat and PAR were selected for the Red Snapper δ15N 

model which suggests PAR was explaining variation in δ15N values not explained by Lat (likely 

temporal variation).  

 

3.5.2 Temporal variability in the isoscapes 

 Overall, the modeled isoscapes showed very little temporal variability in the general 

spatial patterns of δ13C and δ15N values in the Gulf of Mexico. One reason for this could be that, 
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since this dissertation used higher trophic level consumers, any temporal variability was 

dampened by the relatively long turnover times of fish muscle (Post 2002). Another potential 

reason the statistical models did not depict high spatial or temporal variation could be that the 

predictor variables were standardized. Whereas standardizing the variables prevented variables 

with larger magnitude values from dominating results and allowed for coefficients in the model 

equations to equate to the relative strength of the relationship between each predictor variable 

and the explanatory variable, it also decreased the overall variability of each predictor variable 

(e.g., forced the standard deviation to be 1). Therefore, any seasonal or inter-annual extremes 

may have been dampened. 

 Whereas there was little temporal variability overall, the isoscapes were not fully static 

and the variables selected by the models give some indication for which processes may be 

influential over time. For Red Snapper δ13C values, the temporally variable variables included in 

the model are 1/PIC and SST, and the area that was predicted to experience the most temporal 

(seasonal) variability is the Campeche Bay and Yucatan Peninsula area. In general, the model 

predicted higher δ13C values in the spring and summer than in the fall and winter. PIC did vary 

temporally (it is generally higher in the winter; Acker and Leptoukh 2007), but it is difficult to 

determine what affect this has on δ13C values since the 1/x transformation indicated PIC had the 

largest influence on δ13C values at PIC values nearest to 0 (after standardization). That being 

said, SST was not the likely cause of the higher δ13C values in spring and summer since it had a 

negative coefficient in the equation, meaning the warmer summer months would have been 

associated with lower δ13C values. This is the opposite pattern expected based on previous 

studies comparing δ13C values and SST (Goericke and Fry 1994; Hinga et al. 1994; Gruber et al. 

1999; McMahon et al. 2013; Magozzi et al. 2017). Instead, it is possible that SST may have had 
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an influence on (or been a proxy for) spatial and/or temporal variation in primary producer 

species composition (Magozzi et al. 2017) which could explain its inclusion in the Red Snapper 

δ13C model. 

 The temporal variability in the δ15N isoscapes of both species appeared to primarily be 

related to freshwater inflow. Ln(CDOM) was the only variable included in the Yellowedge 

Grouper δ15N model which is primarily a combination of organics from terrestrial sources and 

phytoplankton, both of which will increase with increased freshwater input (Chen et al. 2004; 

Branco and Kremer 2005). The Red Snapper model included Ln(Chl) which is also highly 

influenced by freshwater input. The δ15N isoscapes showed the most predicted variability around 

areas of freshwater input (the Nueces River outflow, the Mississippi River outflow, and, for 

Yellowedge Grouper, Laguna de Términos). The likely mechanism behind these patterns is the 

effect of freshwater input on δ15N values through delivery of nutrients to primary producers and 

the advection of POM (Mariotti et al. 1984; Kürten et al. 2012). 

The Red Snapper δ15N model also included PAR which is likely primarily related to 

temporal variability (seasonality) rather than spatial variability since there is almost no spatial 

variability in PAR during summer months (Acker and Leptoukh 2007). In the δ15N model, PAR 

was most likely explaining variability induced by samples collected in early vs late summer and 

in different years. PAR had a positive coefficient which indicates δ15N values are higher under 

higher light conditions. Temporal differences in average surface PAR could have potentially 

affected δ15N values through light limitation. It is generally assumed that there is little to no 

photosynthetic fractionation of nitrogen during the summer months (when these samples were 

collected) because nitrogen is the limiting factor for photosynthesis and all ambient nitrogen is 

consumed. However, if PAR was low enough, perhaps due to persistent cloud cover, light could 
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have been limiting rather than nitrogen which would allow for the photosynthetic fractionation of 

nitrogen (Altabet 2001; Baker et al. 2011). Under these conditions, lower PAR would have led to 

increased fractionation of nitrogen and lower primary producer nitrogen values. 

 

3.5.3 Other GOM isoscapes 

 To my knowledge, there have been four other studies that created isoscapes for the Gulf 

of Mexico. Radabaugh et al. (2013) created measured isoscapes for δ13C and δ15N values for the 

West Florida Shelf based on fish muscle, and Radabaugh and Peebles (2014) created statistical 

models for those same data. The models were created using static (latitude, longitude, and depth) 

and satellite derived variables (SST, POC, PIC, CDOM, Chlorophyll a, Kd, and PAR) as 

predictor variables. The δ13C isoscape depicted a pattern of decreasing δ13C values with depth, 

which the authors attributed to the effect of light environment on basal resource availability. The 

δ13C model the authors created included SST, PAR(z), and Ln(POC) with PAR(z) explaining the 

most variation and SST explaining the least variation. The δ15N isoscape depicted a pattern of 

lower δ15N values near the Caribbean and higher δ15N values towards the Mississippi River 

outflow, which the authors attributed to transition from higher δ15N nitrogen sources in the north 

(human and livestock waste) and lower δ15N sources in the south (denitrifying bacteria). The 

δ15N model the authors created included Longitude, SST, and Ln(POC) with Longitude 

explaining the most variation and SST explaining the least variation.  

 Vander Zanden et al. (2015) created measured δ13C and δ15N isoscapes of potential 

foraging areas of loggerhead sea turtles, including the eastern Gulf of Mexico, Yucatan 

peninsula, Cuba, Bahamas, and the east Florida shelf, using the scutes of loggerhead sea turtles 

for the purpose of assigning individuals to a specific region. Most of the lower δ13C values were 
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located towards the middle of the West Florida Shelf and higher δ13C values were located closer 

to the Caribbean. The authors attribute the higher δ13C values near the Caribbean to a shift to a 

seagrass dominated ecosystem. There was no apparent δ13C depth gradient. The δ15N isoscape 

depicted lower δ15N values towards the Caribbean and higher δ15N values towards the 

Mississippi River outflow in the north and near Laguna de Términos in the south, though the 

area near the Mississippi River outflow was higher overall than the area near Laguna de 

Términos. The authors attribute spatial δ15N patterns to shifts in nitrogen sources similar to 

Radabaugh et al. (2013) and Radabaugh and Peebles (2014). 

 Le-Alvarado et al. (2021) created measured isoscapes of zooplankton bulk δ13C values, 

bulk δ15N values, and phenylalanine (a source amino acid) δ15N values in the entire Gulf of 

Mexico for the purpose of determining the feeding areas and trophic positions of Yellowfin 

Tuna. The bulk δ13C isoscape has its lowest values in the northwestern Gulf of Mexico and a 

relative low near Laguna de Términos. The highest δ13C values were near the Florida Keys. The 

bulk and phenylalanine δ15N isoscapes depicted very similar patterns with the highest δ15N 

values near the Mississippi River outflow and near the Trinity River outflow on the northern 

Texas coast with a locally relative high near Laguna de Términos. The authors attribute spatial 

δ15N patterns to shifts in nitrogen sources similar to the other studies in this section (Radabaugh 

et al. 2013; Radabaugh and Peebles 2014; Vander Zander et al. 2015). 

 Previous Gulf of Mexico δ15N isoscapes show strong agreement with each other and with 

the isoscapes presented in this dissertation, whereas the δ13C isoscapes do not show as high a 

level of agreement. In every case, δ15N isoscapes depict higher values near areas of freshwater 

input and lower values near areas of low productivity (tropical areas or, in the case of Le-

Alvarado et al. 2021, off the continental shelf). In every case, the authors attribute these spatial 
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patterns to influxes of animal and human waste nitrogen from rivers and input of diazotroph 

nitrogen from nitrogen fixation in oligotrophic areas (Carpenter et al. 1997; Montoya et al. 2002; 

Montoya 2007). These patterns appear to be consistent whether the isoscapes are created from 

organisms relying on planktonic basal resources (zooplankton; Le-Alvarado et al. 2021), 

organisms relying on benthic basal resources (Vander Zanden et al. 2015), or organisms that 

likely integrate those two trophic pathways (fish; Radabaugh et al. 2013, Radabaugh and Peebles 

2014, and this disertation). Radabaugh et al. (2013) and Radabaugh and Peebles (2014) 

documented a strong depth gradient in δ13C values, and a similar depth gradient was found in the 

Red Snapper δ13C isoscape of this study. The statistical models created in both cases included an 

explanatory variable relating to depth (Depth and PAR(z) for this dissertation and their study 

respectively). However, the δ13C isoscapes of the other studies do not appear to contain depth 

gradients (it should be noted that Vander Zanden et al. 2015 mention a δ13C depth gradient but, 

when visually examining their isoscape, there is a slight depth gradient in south Florida but not 

elsewhere within the Gulf of Mexico). One reason Le-Alvarado et al. (2021) and Vander Zanden 

et al. (2015) may not have found depth gradients in δ13C values is that the species used to create 

both isoscapes are likely primarily relying on one basal resource. One of the potential reasons for 

the decrease in δ13C values with depth that is found in this dissertation’s isoscape and the 

isoscape of Radabaugh and Peebles 2015 is that fish switch from higher δ13C value benthic basal 

resources inshore to lower δ13C value planktonic basal resources near the shelf edge where 

deeper waters decrease benthic production (France 1995; Doi et al. 2010). The Le-Alvarado et al. 

(2021) δ13C isoscape depicts patterns that are nearly the reverse of the δ13C patterns in the Red 

Snapper δ13C isoscape of this study. The authors do not offer an explanation for the spatial 

patterns of their δ13C isoscape but one possible explanation for lower zooplankton δ13C values in 



115 

 

high productivity areas is that higher productivity areas tend to have phytoplankton with larger 

cell sizes (Popp et al. 1998) which could allow for larger zooplankton to feed directly on 

phytoplankton cells and shorten food chains. If the zooplankton collected in high productivity 

areas were at lower trophic positions on average than those collected in oligotrophic waters, it 

could explain why their δ13C values were lower (Minagawa and Wada 1984; Post 2002). In this 

dissertation and in the Radabaugh and Peebles (2015) study, a length correction was applied to 

δ13C and δ15N values to reduce the effect of spatial differences in trophic position which could 

explain the different patterns. That being said, trophic fractionation of δ13C values is often very 

minimal (Fry and Sherr 1989; Peterson and Fry 1987; Vander Zanden and Rasmussen 1999) so it 

is possible there are other unknown causes of the Le-Alvarado et al. (2021) δ13C patterns. 

 

3.5.4 Limitations and future work 

 The δ13C and δ15N models created here both depict isoscapes that are relatively consistent 

over time that could be used for various stable isotope ecology applications in the Gulf of 

Mexico. However, it is important to note the limitations of these models that should be taken into 

account for future use. First, while the δ15N model of each species performed moderately well 

when predicting δ15N values of the other species, the δ13C models of both species performed 

poorly in that regard. The isoscapes created by the δ13C models also did not depict similar spatial 

patterns between species which suggests the δ13C isoscapes created here may not be applicable to 

other species. Another consideration is predicted isoscapes for time periods other than when the 

data were collected have the implicit assumption that the relationships between the predictor 

variables and the predicted isotopic ratios do not change over time (e.g., the selected variables 

and coefficients do not change over time) which may not be the case. A three-month average for 
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remotes sensing data was used to reflect an assumption of a consistent muscle turnover time of 

three months, but turnover time likely differs based on the growth rate of the fish, which will 

change with age and season (Boecklen et al. 2011). The statistical model assumes a static linear 

relationship between standard length and the isotopic values of the consumer (e.g., trophic 

position), but there is some evidence that the relationship between diet and consumer isotopic 

value (trophic discrimination factor) may change based on consumer physiology, consumer type, 

diet quality, and trophic level (Vanderklift and Ponsard 2003; Caut et al. 2009). The remote 

sensing products used in the isoscape models only represent surface values, whereas the fish 

used in this study were primarily benthic-associated thus, much of the unexplained variability in 

the isotopic models may due to differences between surface and bottom waters. Additionally, 

remote sensing products are confounded in near-shore waters due to suspended sediment, 

CDOM in coastal runoff, and bottom interference (Hu et al. 2010) so, the predicted isotopic 

values for any near-shore samples may be less accurate.  

 In the future, better predictive Gulf of Mexico isoscape models may be achieved in the 

following ways. First, particularly for δ13C values, the spatial and temporal scale of variability of 

baseline isotopes could be investigated. Both the δ13C models created here and those in 

Radabaugh and Peebles (2014) had relatively low predictive power based on their R2 values. 

This may be due to the reasons discussed above or it could be that δ13C baselines have higher 

spatial or temporal variability that was not measured by these models and introduced a high level 

of error. Second, additional potential explanatory variables could be introduced into the models 

to improve fit. In particular, variables explicitly describing freshwater input from various major 

rivers and variables describing sub-surface water conditions (i.e., sonde data) may be useful. 

Finally, models could be modified to include traits of individual fish to account for variability in 
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trophic fractionation and in tissue turnover time. With all the above considerations, the modeled 

isoscapes created here may be useful for future stable isotope investigations of trophic level, 

basal resource dependence, and animal migration (Graham et al. 2010; Hobson et al. 2010; Olson 

et al. 2010). 
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Chapter 4: Demonstration of the use of a Gulf of Mexico isoscapes to determine fish life 

history using Red Snapper eye lenses  

 

4.1 Chapter Summary 

Fish migration patterns are relevant to multiple realms of fisheries ecology and management. 

One way to infer fish migration is by comparing stable isotopic ratios found in fish eye lenses to 

spatial patterns in isotopic ratios found in the environment (isoscapes). Fish eye lenses grow in 

metabolically inert layers (lamina) and can be sectioned (delaminated) in order to provide a full 

isotopic history of the fish. The eye lenses of eight Red Snapper from around the Gulf of Mexico 

were delaminated, and each lamina was analyzed for δ13C and δ15N values. Regressions were 

performed between δ13C values, δ15N values, and laminar midpoints and measured isotopic life 

histories (ILHs) were compared visually and numerically with an ILH that was predicted based 

on a stationary fish that only had isotopic changes due to increasing trophic position (trophic 

growth). A fish was considered likely to have moved if the regression between δ13C and δ15N 

values had a low R2 value, if there was little resemblance in the shapes of the δ13C and δ15N 

ILHs, and if the measured IHLs had a high level of deviation from the ILHs predicted based on 

stationary trophic growth. Based on these criteria, three fish were highly likely to have moved, 

three fish were likely to have moved, and two fish were not likely to have moved. Deviations 

from the predicted ILH were compared with isoscapes to infer how movement occurred. Overall, 

a high level of individual variation was observed. Two fish sampled in the same region displayed 
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more similar movement histories, suggesting movement patterns may be more similar within a 

region than between regions. 

 

4.2 Background 

 Fish may migrate for a variety of reasons including pursuit of higher food availability 

and/or lower predation risk, ontogenetic habitat requirements, and avoidance of undesirable local 

conditions (Gallaway et al. 1999; Dingle and Drake 2007; Patterson et al. 2001b; Stanley and 

Wilson 2004; Gallaway et al. 2009). Understanding the timing, spatial extent, and associated 

abundances of migrations is useful not only for fisheries management (Hobson et al. 2019), but 

for quantifying the movement of biomass, nutrients, and energy within and among ecosystems 

(Deegan 1993).  

 One means of studying migration is through the use of stable isotopes (Hobson and 

Norris 2008). Stable isotopes are assimilated into the tissues of organisms and integrate dietary 

input over the metabolic turnover of the respective tissues. Thus, stable isotopes can provide 

information about foraging and movement along isotopically distinct habitats (Peterson and Fry 

1987; Hobson 1999). An isoscape provides the expected isotopic changes associated with 

movement across those habitats which can then be compared to data collected from individual 

organisms. Migration and/or diet switches can be inferred from stable isotopes by comparing 

tissues with different turnover rates (Tieszen et al. 1983; Hobson 1999), but that method is 

limited by the turnover times of the respective tissues and does not provide a complete life 

history. Instead, many stable isotope migration studies obtain longer histories from metabolically 

inert tissues such as whiskers, dentin in teeth, otoliths, shark vertebrae, and, most commonly in 

teleost fish, otoliths (Hobson and Sease 1998; Schwarcz et al. 1998; Estrada et al. 2006; Mendes 
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et al. 2007; Cherel et al. 2009). Metabolically inert tissues provide a “snapshot” of dietary 

isotopes at the time the tissue was created and, in the case of otoliths, provide a biochemical 

record of an individual’s trophic geography throughout of the entire life of the organism 

(Campana and Neilson 1985; Trueman et al. 2012). Otoliths are primarily composed of 

crystalline calcium carbonate on a protein matrix. Therefore, while otoliths provide a good 

isotopic history of C and O, the very low proportion of organic N inhibits the measurement of 

δ15N vlaues, which is frequently used to provide information about consumer diet and 

movement. This is one of the primary reasons fish eye lenses have recently been explored as a 

potential lifetime record of trophic geography. 

 

4.2.1 Eye lenses 

 Whereas the use of eye lens stable isotopes is a relatively new technique, early studies 

show promise for its utility. Eye lenses are largely composed of crystallin protein which is laid 

down in layers (laminae) as the fish grows and contains ample N for isotopic analysis (Nicol 

1989; Horwitz 2003). After each lamina is laid down, the layer undergoes attenuated apoptosis 

and protein synthesis stops, making the eye lens metabolically inert record of biochemical life 

history (Nicol 1989; Dahm et al. 2007; Vihtelic 2008; Wallace et al. 2014). The center of the lens 

is the oldest material, usually representing the late postlarval time period at the earliest (Grainger 

et al. 1992), and the outermost layer of the lens is material representing the time shortly before 

the fish died (Nicol 1989). Because the eye lens grows isometrically with the fish, the size and/or 

age of the fish at the time each lamina was formed can be estimated using statistical analysis of 

relationship between eye lens size and fish size for a given species (Wallace et al. 2014; Quaeck-

Davies et al. 2018). Eye lens δ15N and δ13C values are generally depleted compared to that of 
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muscle tissue, but isotopic differences are low enough that they are likely to be obscured by 

between-individual variation and analytical error (Quaeck-Davies et al. 2018). This indicates that 

eye lens stable isotopes have the potential for direct numeric comparison with more commonly 

collected muscle stable isotope data. The ability to document many lifetime trophic and 

geographic records is beneficial considering the growing evidence for high levels of individual 

variation within species populations (Bolnick et al. 2003; Bearhop et al. 2004; Lorrain et al. 

2011; Kim et al. 2012; Wallace et al. 2014). In particular, the core and inner layers of the eye 

lens provide data regarding early life history, such as ontogenetic shifts in diet and habitat, 

individual resource use specificity, and other aspects of consumer life history which are often 

difficult to obtain using other methods (i.e., artificial tags).  

 Eye lenses have been used to elucidate the life history traits of squid (Parry 2003; 

Hunsicker et al. 2010; Onthank 2013; Meath 2019; Xu et al. 2019) and fish (Wallace et al. 2014; 

Kurth et al. 2019; Quaeck-Davies et al. 2018; Simpson et al. 2019; Curtis et al. 2020; Vecchio et 

al. 2021; Vecchio and Peebles 2022). Many studies have focused on feeding chronologies rather 

than migration, but that may be due to a lack of appropriate isoscapes to compare with eye lens 

isotopes. Ontogenetic increases in trophic level (“trophic growth”; Curtis et al. 2020; Vecchio et 

al. 2021) were a commonly observed trend (Parry 2003; Hunsicker et al. 2010; Onthank 2013; 

Curtis et al. 2020; Vecchio et al. 2021; Vecchio and Peebles 2022). Trophic growth usually 

documented as a strong correlation between δ13C values, δ15N values, and eye lens diameter 

(Curtis et al. 2020; Vecchio and Peebles 2020). However, it is also becoming clear that many 

species demonstrate a high level of inter-individual variation in resource use and/or movement 

(Wallace et al. 2014; Simpson et al. 2019; Xu et al. 2019; Curtis et al. 2020).  
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 One shortcoming of bulk stable isotope analysis is that both movement and changes in 

diet have the potential to alter the δ13C and δ15N values of consumer tissues and it can be difficult 

to determine which processes resulted in measured isotopic values. This problem can be 

mitigated by combining stable isotope data with diet or artificial tag data (i.e., Vecchio and 

Peebles 2022) or by performing compound specific isotope analysis in conjunction with bulk 

stable isotope analysis (Wallace 2019) in order to refine or confirm the interpretation of results. 

If these methods are not available, it is possible to interpret bulk stable isotope data by inferring 

what an isotopic life history (ILH) would look like if the fish had remained stationary (isotopic 

changes only the result of trophic growth) and compare that visual to the observed ILH. This 

process can be achieved by either comparing a species of interest to a model species that is 

known to remain stationary throughout life (Vecchio and Peebles 2020) or by modeling a 

stationary ILH using the average relationship between δ13C and δ15N values and eye lens 

diameter and treating deviations from that model as the result of movement (Vecchio and 

Peebles 2022). 

 

4.2.2 Objectives 

 This study used the latter method to evaluate the ILHs of eight Red Snapper collected 

from areas around the Gulf of Mexico. These evaluations were intended to demonstrate how to 

use comparisons between the ILH of a hypothetical stationary fish and the measured ILH from 

fish eye lenses in conjunction with the isoscapes created in Chapters 2 and 3 and to gain insight 

into the life history of Red Snapper. Red Snapper ontogenetic habitat use patterns are well 

studied (Gallaway et al. 2009) but are not very consistent in regard to a particular depth or 

cardinal direction and some studies document high levels of individual variation (Diamond 2007; 
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Patterson 2007; Wallace 2019). Methods like those demonstrated here may be particularly useful 

in inferring the life histories of many individual fish with relatively little cost and effort. 

 

4.3 Methods 

4.3.1 Target species 

 Eye lenses from Red Snapper (Lutjanus campechanus) were used to create individual 

movement histories in conjunction with isoscapes created from muscle from the same species. 

Red Snapper is a member of the family Lutjanidae (snappers) and is found throughout the Gulf 

of Mexico in 10-190 m waters (Allen 1985; Smith 1997). Post-larval Red Snapper settle at 16-19 

mm TL on low-relief shell, mud, or sand habitat (for a review of Red Snapper habitat use, see 

Gallaway et al. 2009; also Szedlmayer and Lee 2004). Juvenile (>50 mm TL) move to more 

complex, low relief habitats. Sub-adults (~20 cm TL) move to mid- or high-relief structures. Red 

Snapper reach sexual maturity at age 2 (roughly 20-38 cm TL; Goodyear 1995) and recruit to 

larger reefs. Adults are generally reef-associated (though adults > 4 years are found more and 

more often on soft bottom habitat) and feed opportunistically mainly on fishes, shrimps, crabs, 

worms, cephalopods, and some planktonic items, including urochordates and gastropods (Allen 

1985; Frimodt 1995; McCawley and Cowan 2007). Red Snapper support both recreational and 

commercial fisheries when they enter the fishery at age 2. Regulations for the Red Snapper 

fishery were introduced in 1990 by the National Marine Fisheries service after a 1988 assessment 

noted they were in decline (Goodyear and Center 1988). The most recent Red Snapper stock 

assessment found the species was not being overfished (no overfishing) and was not overfished 

though they note this is due to a change to the definition of minimum stock size threshold 

compared with the previous assessment (SEDAR 2018).  
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4.3.2 Eye lens and muscle collection 

Dorsal muscle samples and eyes from Red Snapper (n = 126) were obtained from freshly 

caught fish aboard chartered, commercial fishing vessels (2011) and the R/V Weatherbird II 

(2015 and 2016; Appendix D). The fish collected here are the same as those in Chapters 2 and 3 

and eyes were removed and frozen onboard in the same manner as muscle tissue. See Chapter 2, 

section 2.2 for details on fish collection and muscle stable isotope analysis. 

 

4.3.3 Isotopic analysis 

Eight Red Snapper were chosen for individual movement history analysis (Figure 4.1). 

The eye lenses of these fish were processed using methods similar to those presented in Wallace 

et al. (2014) and which were a recommended first choice by Quaeck-Davies et al. (2018). Eyes 

were thawed individually in the lab before dissection. An incision was made to create a flap in 

the cornea to allow for the removal of the eye lens using forceps. The lens epithelium was 

removed, the eye lens was placed in a small amount of deionized water under a dissecting 

microscope, and fine-tip forceps were used to remove successive layers (laminae) of the eye lens 

(delamination) until the lens core was reached. After each delamination, the deionized water was 

removed, eye lens diameter (ELD) was measured using an ocular micrometer, and new deionized 

water was added to the dish. Individual laminae were air dried for one hour to 24 hours as 

needed and stored separately in vials. Eye lenses from eight Red Snapper were processed 

containing a total of 128 laminae. 
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Figure 4.1 

A post map of the capture locations of the eight Red Snapper whose eye lenses were analyzed for 

this study. Points are labeled with fish number. Orange dots represent fish sampled in 2015 and 

green dots represent fish sampled in 2016. 

 

A dry weight of 150–700 µg of each lamina was placed in tin capsules for combustion 

and isotopic analysis. 13C/12C, 15N/14N, and C:N were measured in replicate using a Carlo-Ebra 

NA2500 Series II elemental analyzer coupled to a continuous-flow ThermoFinnigan Delta+XL 

isotope ratio mass spectrometer at the University of South Florida College of Marine Science in 

St. Petersburg, Florida. The lower limit of quantification was 12 µg C or N. Calibration standards 

were NIST 8573 (δ13C value = -26.39 ± 0.09 and δ15N value = -4.52 ± 0.12) and NIST 8574 L-

glutamic acid (δ13C value = 37.63 ± 0.1 and δ15N value = 47.57 ± 0.22) standard reference 
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materials. Results are presented in standard notation (δ, in ‰) relative to international standards 

Pee Dee Belemnite (PDB) and air for C and N, respectively: 

δ𝑗𝑋 = (
( 𝑋

𝑗
/ 𝑋𝑖 )𝑠𝑎𝑚𝑝𝑙𝑒

( 𝑋
𝑗

/ 𝑋𝑖 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) ∗  1000 

where X is the element and j and i are each an isotope of X.  

 

4.3.4 Analysis and movement history 

Prior to assessment of movement histories, models were created to calculate predicted 

δ13C and δ15N values based on laminar midpoint. First, ELD of the intact eye lens was regressed 

against SL for 45 of the Red Snapper originally sampled in the longlining cruises to verify that 

ELD was strongly correlated with SL and can be considered a good proxy for SL. Then, the δ13C 

and δ15N values of the outermost lamina of each lens was regressed against muscle δ13C and 

δ15N values in order to assess whether eye lens isotopic values are a good proxy for the muscle 

isotopic values used to create the isoscapes. Next, ELDs of laminae were converted to laminar 

midpoints (LMs), where the midpoint is the lens diameter after lamina removal plus half the 

thickness of the removed lamina. Finally, the LMs of the intact eye lenses were regressed against 

the measured lens δ13C and δ15N values. In essence, this regression equation represented the 

relationship between fish size and isotopic values, which can be presumed to be primary the 

result of trophic growth (Wallace et al. 2014; Curtis et al. 2020). This regression equation was 

used to predict δ13C and δ15N values based on the LM of each lamina. The predicted δ13C and 

δ15N values represented the δ13C and δ15N values that would be expected if the fish was not 

moving and changes in δ13C and δ15N values were due only to trophic growth.  
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Two statistical measures were used to infer whether a fish had undergone movement. 

First, deviation scores were calculated by summing the absolute value of the difference between 

the predicted and measured isotopic value of each lamina for a fish. 

𝛿𝑋 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒 =  ∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝛿𝑋 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝛿𝑋|

𝑛

𝑖=1

  

In the above equation, δX is either δ13C or δ15N values and n is the number of lamiae for a 

particular fish. If a fish’s total deviation score was relatively low, it was considered an indication 

that the fish did not move. It should be noted that this metric is vulnerable to baseline offsets so, 

if a fish was captured in an area with a numerically unusual baseline, it is possible for it to have a 

high deviation score even if it remained stationary. Second, Spearman rank correlations were 

performed between laminae δ13C and δ15N values within each eye lens (one correlation for each 

fish). If the rho of this correlation was relatively low, it was considered an indication that the fish 

moved (Vecchio et al. 2021). It should be noted that this metric may be less accurate in areas 

where δ13C and δ15N values are spatially correlated. In these areas, a fish could move, and its rho 

would still be relatively high. 

As an additional means of assessment, plots were made of the measured δ13C and δ15N 

ILHs of each fish for for comparison with ILHs predicted based on LM. For fish that were likely 

to have moved, these plots were compared with capture location and the modeled δ13C and δ15N 

isoscapes to infer movement. The predicted isoscapes were created using data from the time of 

capture of the fish (the “catchdate” isoscapes seen in Chapter 3). For the methods of isoscape 

generation, see Chapters 2 and 3. Movement histories were inferred based on the sign (positive 

or negative) and magnitude of isotopic deviations from the values predicted by the ELD-isotope 
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regressions and the spatial isotopic patterns seen in the isoscapes near the capture location of 

each fish (Figure 4.2). All analysis was performed in R (version 4.0.5, R Core Team 2020). 

 

 

Figure 4.2 

Isoscapes of length-corrected δ13C and δ15N values created using the multiple regression models 

created in Chapter 2 and measured static and dynamic predictors from the time of capture all Red 

Snapper (these are identical to the “catchdate” Red Snapper isoscapes from Chapter 2). 
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4.4 Results 

4.4.1 Eye lenses as isotopic recorders 

 The first set of analyses of the eye lenses used in this study was to verify their utility as 

isotopic recorders. A regression between ELD and SL demonstrated that the eye lenses of Red 

Snapper grow isometrically with fish length and that ELD can be reliably used to predict SL 

(Figure 4.3). Regressions between the outermost lamina isotopic values and muscle isotopic 

values (Figure 4.4) indicated that lens δ15N values were a good predictor of muscle δ15N values 

(R2 = 0.85, p < 0.01) whereas lens δ13C values were a somewhat poor predictor of muscle δ13C 

values (R2 = 0.39, p = 0.10). However, it is possible the δ13C R2 would be higher with a larger 

sample size (n = 8). On average, muscle δ13C values were lower than eye lens δ13C values (with 

the exception of Fish 3), and muscle δ15N values were higher than eye lens δ15N values (with the 

exceptions of Fish 6, Fish 7, and Fish 8). The average difference between muscle and eye lens 

isotopic values was 0.41 ‰ for δ13C values and 0.12 ‰ for δ15N values. Compared to the other 

fish, Fish 3 appears to be an anomaly where the muscle δ13C values were higher than eye lens 

δ13C value, and the muscle δ15N values were far higher than eye lens δ15N values (muscle-lens = 

1.39).  
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Figure 4.3 

The graph of a linear regression of the ELDs and SLs of 45 Red Snapper. Dots are individual 

fish. The regression analysis included a forced intercept of zero (a fish with a length of zero 

would have an eye lens with a diameter of zero). The regression equation, R2, and p-value are 

presented at the top of the graph. 
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Figure 4.4 

Graphs of the linear regressions of δ13C and δ15N values measured in outermost eye lens lamina 

and in the muscle tissue of eight Red Snapper wherein dots are individual fish. The regression 

equation, R2, and p-value are presented at the bottom of each graph. 
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4.4.2 Trophic growth 

 A total of eight Red Snapper eye lenses were analyzed for δ13C and δ15N values. The size 

of the fish used ranged from 28 to 76 cm (Table 4.1). The number of laminae per eye lens ranged 

from 14 to 20 with larger eye lenses generally having more laminae. The δ13C values of the 

laminae ranged from -21.61 ‰ to -14.34 ‰, and the δ15N values of the laminae ranged from 5.31 

‰ to 16.20 ‰. The δ13C standard deviation within a fish ranged from 0.57 ‰ to 1.35 ‰, and the 

δ15N values standard deviation within a fish ranged from 1.40 ‰ to 2.55 ‰. 

 Regression analysis performed between δ13C values and LM (Figure 4.5), between δ15N 

values and LM (Figure 4.5), and between δ13C and δ15N values (Figure 4.6) were all significant, 

though R2 values were moderate to low. These results suggest that, in general, Red Snapper 

undergo trophic growth over the course of their lives, but, for most Red Snapper, there are other 

influences on δ13C and δ15N values. Whereas the relationship between δ13C and δ15N values was 

significant at the aggregate level (Figure 4.6), not all individuals had significant correlations 

between δ13C and δ15N values within their eye lens (Table 4.1) level. The rho values of the 

correlations between δ13C and δ15N values within eye lenses ranged from 0.33 to 0.77. 
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Table 4.1 

A table of results for individual Red Snapper analyzed for eye lens stable isotopes. The means and standard deviations (STDEV) of 

the isotopic values refers to the isotopic values of all laminae within a fish. The rho and p-value columns depict the results of a 

Spearman rank correlations between δ13C or δ15N values within each eye lens. The deviation score columns refer to the summed 

absolute values of the differences between the δ13C or δ15N value predicted by the regression equation using LM (Figure 4.5) and the 

measured δ13C or δ15N value for each lamina.  

 

Fish Standard 

Length (cm) 

n 

Laminae 

Mean 

δ13C 

value 

δ13C 

STDEV 

Mean 

δ15N 

value 

δ15N 

STDEV 

rho p-

value 

δ13C deviation 

score 

δ15N deviation 

score 

Total deviation 

score 

1 57 16 -16.92 0.92 14.54 1.55 0.34 0.20 8.41 36.20 44.62 

2 57 16 -17.74 0.73 12.47 2.55 0.69 < 0.01 11.65 25.60 37.25 

3 58 16 -17.58 0.57 12.98 2.37 0.54 0.03 9.21 22.98 32.20 

4 36 14 -17.37 0.91 12.02 2.08 0.77 < 0.01 8.96 15.66 24.62 

5 69 20 -16.88 0.66 11.63 1.45 0.44 0.05 6.65 31.00 37.65 

6 28 14 -17.69 1.00 12.19 2.18 0.57 0.03 6.47 23.80 30.28 

7 58 14 -16.29 1.17 10.28 2.11 0.56 0.04 14.49 21.74 36.22 

8 76 18 -16.89 1.35 11.24 1.39 0.33 0.18 10.50 19.86 30.36 
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Figure 4.5 

A graph of the regressions of the natural log transformed laminar midpoint (measured as the eye 

lens diameter at half the thickness of the removed lamina) of each lamina and its measured δ13C 

or δ15N value. Dots represent individual laminae (n = 128) of eight Red Snapper. The regression 

equation, R2, and p-value are presented at the bottom of each graph. 
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Figure 4.6 

A graph depicting the linear regression between the measured δ13C and δ15N values of individual 

laminae when all laminae were aggregated. Dots represent individual laminae (n = 128). Both 

linear and logarithmic regression were performed. The linear regression had a higher R2 value 

and was used for the figure. The equation, R2, and p-values are written on the graph. 

 

4.4.3 Isotopic life histories 

The ILHs of individual Red Snapper depict a few common patterns, but overall, there 

appears to be a fair amount of individual variation. The life histories of δ13C and δ15N values 

generally showed a logarithmic increase over the lives of individual fish (Figure 4.7 and Figure 

4.8), however, many fish also deviate from this pattern. It appears there is generally less 

convergence of ILHs among fish in δ15N IHLs than in δ13C IHLs. Fish 1, Fish 2, Fish 7, and Fish 



152 

 

8 all demonstrate a local peak and subsequent decrease in δ13C values around a laminar midpoint 

of 5.5 mm (~ 30 cm SL), and Fish 4 has a smaller local peak around a laminar midpoint of 2.5 

mm (15 cm SL) all of which could represent movement or a diet shift. Similarly, Fish 4, Fish 5, 

and Fish 6 demonstrate a local peak in δ15N values around a laminar midpoint of 2.5 mm (~15 

cm SL), and Fish 2 has a local peak around a laminar midpoint of 5 mm (~25 cm SL). Based on 

the δ13C values generally observed in all laminae, it is possible the relatively low initial δ13C 

value observed in Fish 8 was a measurement error. The measurement was of the eye lens core 

which had a mass lower than ideal for isotopic analysis (0.036 mg) which could cause a 

measurement error. However, there was no indication of measurement error from the IRMS 

quality control metrics and the concurrent δ15N value measurement was not anomalous, 

therefore, for the purposes of this study, the low δ13C value in Fish 8 will not be treated as an 

error. 

The likelihood a fish moved during its life was inferred through an examination of the 

δ13C and δ15N correlation rho values (Table 4.1), deviation scores (Table 4.1), and ILH plots 

(Figures 4.7-4.11) of each fish. The δ13C deviation scores for ranged from 6.47 to 14.49, and 

δ15N deviation scores ranged from 15.66 to 36.20. The total deviation scores ranged from 24.62 

(Fish 4) to 44.62 (Fish 1). When examining the ILH plots, Fish 4, Fish 5, and Fish 6 had very 

similar shapes to their δ13C and δ15N plots, and Fish 1, Fish 7, and Fish 8 had very different 

shapes to their δ13C and δ15N plots (Figure 4.11). If a Fish had a high δ13C and δ15N correlation 

rho, a low total deviation score, and a high level of similarity between its δ13C and δ15N ILH 

plots, it was inferred that it likely remained stationary throughout its life. Based on this 

evaluation, Fish 4 and Fish 6 are the most likely to have remained stationary, and Fish 1 and Fish 

8 are the most likely to have moved. 
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Figure 4.7 

A graph of the lifetime history of δ13C values as recorded in the eye lenses of eight Red Snapper. 

Each colored line represents the δ13C ILH of an individual fish. Estimated standard length, which 

was generated using the equation from Figure 4.3 is shown below laminar midpoint. The number 

of laminae per fish ranged from 14 to 20. 

 

 

Figure 4.8 

A graph of the lifetime history of δ15N values as recorded in the eye lenses of eight Red Snapper. 

Each colored line represents the δ15N ILH of an individual fish. Estimated standard length, which 

was generated using the equation from Figure 4.3 is shown below laminar midpoint. The number 

of laminae per fish ranged from 14 to 20. 
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Figure 4.9 

Graphs of the predicted and measured δ13C isotopic lifetime histories of eight Red Snapper. The 

predicted δ13C values are represented as a dotted line and were derived from the laminar 

midpoint of each lamina and the regression equation from Figure 4.5 The measured δ13C values 

are represented as a solid line. Deviations of the solid line from the dotted line are presumed to 

represent movement. 
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Figure 4.10 

Graphs of the predicted and measured δ15N isotopic lifetime histories of eight Red Snapper. The 

predicted δ15N values are represented as a dotted line and were derived from the laminar 

midpoint of each lamina and the regression equation from Figure 4.5. The measured δ15N values 

are represented as a solid line. Deviations of the solid line from the dotted line are presumed to 

represent movement. 
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Figure 4.11 

Graphs depicting the δ13C and δ15N isotopic life histories measured in the eye lenses of eight Red 

Snapper. The left y-axis and red lines correspond to the measured δ13C value of each lamina, and 

the right y-axis and black lines correspond to the measured δ15N value of each lamina. Similar 

shapes in the δ13C and δ15N lines indicate the fish may have been stationary throughout life. 
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4.5 Discussion 

4.5.1 Eye lens and muscle isotopes 

  The preliminary analyses performed on the eye lenses indicated a weak relationship 

between eye lens δ13C values and muscle δ13C values, wherein muscle δ13C values were higher 

on average compared to eye lens δ13C values. A stronger linear relationship was observed 

between eye lens δ15N values and muscle δ15N values, though the difference between the isotopic 

values of the muscle and eye lens was less consistent than that of δ13C values. These results 

contrast those of Quaeck-Davies et al. (2018) who found that muscle tissue had consistently 

higher δ13C and δ15N values than eye lens tissue, though they noted that the differences were 

minor enough to be obscured by between-individual variation and analytical error. In the results 

presented here, the average difference between muscle and eye lens tissue isotopic values was 

low enough to be considered negligible but, in the case of individual fish (Fish 5 δ13C values and 

Fish 3 δ15N values), the difference could be considered substantial. It is also notable that there 

was not a strong linear relationship between eye lens and muscle δ13C values. These results could 

be due to a fractionation process within the body of Red Snapper that is not consistent between 

muscle and eye lens tissue, or it could be due to a lag between isotopic values being recorded in 

muscle and in eye lens laminae. If many of the fish changed their basal resource dependence 

(Keough et al. 1998; Araujo et al. 2007; Ellis et al. 2014) or moved along a spatial δ13C gradient, 

the shift in δ13C values would be recorded first in the eye lens (which had a lag of 50 days; 

Granneman 2018), whereas the muscle would be an average of the isotopic environment 

encountered by the fish over last few months (Buchheister and Latour 2010; Nelson et al. 2011). 

Even though there is a weaker relationship between bulk muscle and eye lens δ13C values, the 

δ13C isoscape (which was created using Red Snapper muscle) should still be applicable to eye 
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lens data since that isoscape uses data that were corrected and kriged in order to infer how 

environmental isotopic conditions would be reflected in Red Snapper without influence from the 

condition of individual fish. 

 

4.5.2 Trophic growth 

 The eye lens isotopic histories showed an overall increase in δ13C and δ15N values over 

the course of the life of most fish. An increase in δ13C and δ15N values with age/size is generally 

interpreted as trophic growth (i.e., increase in trophic position with size; Curtis et al. 2020; 

Vecchio et al. 2022). The pattern of increase in the data was logarithmic (i.e., a natural log 

transformation on regressions between δ13C and δ15N values and LM improved fit over a linear 

regression), which indicates that δ13C and δ15N values increased logarithmically with the growth 

of the fish. Patterns associated with trophic growth have been observed in the majority of fish 

eye lens studies to date (Curtis et al. 2020; Kurth et al. 2019; Quaeck-Davies et al. 2018; 

Simpson et al. 2019; Wallace 2019; Vecchio et al. 2021; Vecchio and Peebles 2022; Wallace et 

al. 2014), and diet studies have also documented trophic growth in Red Snapper (Wells et al. 

2008). Whereas the isotope-LM regressions were significant, both had moderate to low R2 

values, which indicated trophic growth was not the only influence on δ13C and δ15N values over 

the course the lifetimes of the sampled Red Snapper. The influence of trophic growth may be 

obscured by shifts between basal resources and/or by movement across an isotopic gradient, or it 

could be that shifts in diet are sometimes tied to shifts in habitat rather than fish size (Szedlmayer 

and Lee 2004; Gallaway et al. 2009). 

At the individual level, several fish did not demonstrate a consistent increase in either 

δ13C or δ15N values with growth, as seen in the individual δ13C and δ15N correlation results and 
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visually in the IHL plots. Most fish had their highest δ13C values at 20-30 cm rather than at their 

maximum SL and, three fish (Fish 2, Fish 4, and Fish 6) had their highest δ15N values at a 

smaller size (10-20 cm) followed by a decrease. In both cases, the patterns seen here likely 

indicate movement which will be discussed below. A high carbon value earlier in life is similar 

to the “carbon bump” discussed in Vecchio and Peebles (2022). This pattern is defined as a peak 

in δ13C values, wherein δ13C values increase faster than δ15N values and then decrease faster than 

δ15N values (Vecchio and Peebles 2022). By this definition, only Fish 2 would be considered to 

have a carbon bump and, even though it fits the technical definition, the bump in δ13C values is 

accompanied by a bump in δ15N values. An accompanying bump in δ15N values is also seen for 

other fish that had their highest δ13C value earlier in their lives. In Vecchio and Peebles (2022), 

the carbon bump was attributed to juvenile fish settling in nearshore environments and increasing 

their dependence on benthic basal resources rather than the more planktonic resources they had 

relied on earlier in life, followed by movement back to the outer continental shelf at sexual 

maturity and a switch back to planktonic basal resource dependence. For the fish analyzed in this 

dissertation, the patterns seen in δ13C and δ15N values do not appear to follow the pattern 

expected for a “carbon bump”, and therefore the results do necessarily not suggest an early life, 

temporary switch to basal benthic resources in Red Snapper. 

 

4.5.3 Movement 

 Eye lenses are a relatively new but increasingly used source of organism ILH. A general 

means of determining movement is to determine what the expected δ13C and δ15N ILH curves 

would look like if no movement was occurring and assume any deviations are due to movement. 

Methods for determining potential movement of fish from eye lens isotopes include comparing 
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the eye lens ILH of the species of interest to the eye lens ILH of a species known to be stationary 

throughout life (Vecchio et al. 2021), performing correlations between δ13C values, δ15N values, 

and ELD (Vecchio et al. 2021), and comparing the measured eye lens ILH of a fish with a 

predicted eye lens ILH based on ELD (Vecchio and Peebles 2022). In this dissertation, a 

combination of the second and third methods was used. The basic principle behind these 

methods is that, if a fish was stationary throughout its life, δ13C and δ15N values would follow a 

general logarithmic pattern of trophic growth (Curtis et al. 2020; Vecchio and Peebles 2021) and 

be highly correlated with ELD and with each other (Vecchio et al. 2021). It should be noted that, 

while a strong correlation between δ13C and δ15N values is generally indicative of stationary 

trophic growth (Vecchio et al. 2021), there are several areas in the GOM where δ13C and δ15N 

values are spatially correlated (i.e., Western GOM), so a moving fish could also have highly 

correlated δ13C and δ15N values in those areas. For this reason, it is prudent to combine an 

evaluation of δ13C and δ15N correlations with a numerical (deviation score) and visual 

comparison of the eye lens ILH and expected logarithmic trophic growth. 

 Based on the correlation of δ13C and δ15N values and the plots of measured and predicted 

ILHs, Fish 4 and Fish 6 are the least likely to have moved, Fish 1 is the most likely to have 

moved, and the other fish sampled likely moved and/or changed diet several times in their lives. 

These results agree with numerous studies that have documented Red Snapper moving 

throughout their lives (Patterson et al. 2001a; Addis et al. 2013; Dance and Rooker 2019; 

Wallace 2019). Red Snapper may move for a variety of reasons including ontogenetic habitat 

shifts (Gallaway et al. 2009), diet changes (McCawley and Cowan 2007), water temperature 

(Gallaway et al. 1999), episodic events such as hurricanes and hypoxia (Patterson et al. 2001a; 

Stanley and Wilson 2004), and other local conditions (Diamond et al. 2007). 



161 

 

Several fish had early life peaks in δ13C values (Fish 1, Fish 2, Fish 5, and Fish 7) and/or 

δ15N values (Fish 2, Fish 4, Fish 5, and Fish 6) around 10-30 cm SL. Red Snapper reach sexual 

maturity at age 2 (roughly 20-38 cm TL; Goodyear 1995) and recruit to larger reefs (Gallaway et 

al. 2009). The peaks in δ13C values seen in the Red Snapper sampled here seem to coincide with 

the size at which Red Snapper reach sexual maturity which may indicate that some Red Snapper 

either move in the positive direction along a δ13C gradient or temporarily increase the proportion 

of prey derived from a benthic basal resource around sexual maturity. Red Snapper may switch 

habitat several times prior to sexual maturity, moving to areas of increasing relief as they 

increase in size (Gallaway et al. 2009). The peaks in δ15N values occurred at a smaller size than 

the peaks in δ13C values and may coincide with one of these earlier movements to habitats of 

higher relief. If this is the case, since movement is likely determined by the available habitat 

rather than depth, the early-life patterns seen in δ15N values may depend on the relative direction 

of movement required to reach higher relief reefs. In general, the fish sampled displayed a high 

level of individual variation in ILHs which suggests Red Snapper may be highly plastic in their 

behavior. The ILHs of several of the sampled fish are discussed below to demonstrate how to 

interpret eye lens ILHs and to illustrate ecologically interesting cases. 

Fish 8 has a relatively weak correlation between δ13C and δ15N values yet, looking at the 

ILHs, it seems to demonstrate logarithmic trophic growth in the δ15N graph, though at a lower 

δ15N values than predicted. It could be that Fish 8 was feeding at a lower trophic level than 

predicted, or the lower values could reflect that the area Fish 8 was captured which had lower 

δ15N values on the isoscape than any of the other capture locations. The δ13C life history of Fish 

8 does not appear to show stationary trophic growth which could be due to either of two possibly 

concurrent reasons. First, it could be that Fish 8 moved around near the area it was caught, but 
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this was not recorded in the δ15N ILH because there is very little spatial variation in δ15N values 

in this area compared with δ13C values. Second, it could be that the deviations in the δ13C ILH 

are due to shifts in basal resource dependence rather than movement. Red Snapper are 

opportunistic predators that prey on a wide variety of taxa such as fishes, squids, crustaceans, 

and larger zooplankton (McCawley and Cowan 2007; Ward 2017), so it could be that the jagged 

shape to most of the δ13C ILHs are at least partially due to haphazard basal resource usage. Fish 

7 was captured very close to Fish 8 and has a very similar ILH to that discussed above (though 

the δ13C ILH is even more jagged than that of Fish 8 and higher than expected) which could 

indicate fish have less individual variation at the regional level. 

Fish 1 was the individual for which movement was most likely to have occurred. The 

δ13C and δ15N ILHs were very deviant, both from each other and from the ILHs predicted for a 

stationary fish. The δ13C ILH had a peak at a median size as discussed above followed by an 

overall decrease in δ13C values. In the isoscape, areas of higher δ13C values than the capture 

location include near the outflow of the Apalachicola River, near Corpus Cristi, and, to a lesser 

extent, near the Alabama River outflow. The δ15N ILH of Fish 1 has a somewhat jagged shape 

that is overall higher than the δ15N values predicted for a stationary fish. Upon visual 

examination of the δ15N measured and predicted plots, it is clear that the high deviation score of 

Fish 1 due at least in part to a higher overall baseline located in that area. The jagged shape of 

the life history could be due to movement towards and away from the West Florida Shelf where 

δ15N values rapidly decrease. However, δ13C values also decrease in that direction so it would 

follow that δ15N and δ13C values would be more correlated in that case unless changes in δ13C 

values due to movement were overwhelmed by changes in δ13C values due to basal resource 

usage. It also should be noted that Fish 1 was collected in an area that likely experiences higher 



163 

 

temporal variability than other areas due to the influence of the Mississippi River, so some of the 

deviation in the ILH could have been due to changing conditions at a stationary location rather 

than movement. 

Fish 5 is a case where δ13C and δ15N values are moderately correlated, but the life history 

does not closely follow the predicted logarithmic growth curve. The δ15N ILH had more 

deviation from the predicted trophic growth curve than the δ13C ILH. The likely reason for this is 

there is more spatial variation in δ15N values than in δ13C values in the area Fish 5 was captured, 

so movement would result in larger deviations in δ15N values than in δ13C values. In the 

isoscape, both δ13C and δ15N values are relatively lower towards Campeche Bay and relatively 

higher towards mid-Texas. Based on the spatial isotopic patterns and the ILH of observed in the 

eye lens, it is likely Fish 5 initially settled in an area with low or moderate isotopic values (either 

off LA, south of Texas, or near the edge of the continental shelf) before rapidly moving closer to 

Corpus Cristi Bay and finally, gradually moving south to where it was captured. Fish 5 is 

particularly notable because if it moved in the manner described above, it would have moved 

over a large area including between the waters of different countries which has implications for 

both ecology and fisheries. This inferred movement history contrasts the results of Patterson et 

al. (2007) who found that Red Snapper did not cross the boundary between the US and Mexico 

and, instead, moved eastward from Texas. However, the Patterson et al. (2007) study was 

conducted on age 0 fish rather than adults, so the results in this dissertation may not be 

contradictory to this study. 
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4.5.4 Caveats 

 While the methods presented here are potentially useful for assessing the movement and 

basal resource dependence of fish, there are a few important caveats that should be considered. 

First, as discussed above, it is often not clear which portions of the patterns in δ13C ILH are due 

to movement and which portions are due to changes in basal resource dependence, especially for 

an opportunistic mesopredator like Red Snapper. Second, the regressions used to make the 

predicted ILHs for a stationary fish were created using only eight fish, most of which were likely 

not stationary throughout their lives. If a larger sample size of fish is available, a better method 

would be to split the fish into ‘likely moved’ and ‘likely stationary’ categories and only use the 

later to create the regression location (Vecchio and Peebles 2022). Also, the form of model used 

to predict trophic growth assumes Red Snapper trophic growth is smooth and uniform, which 

may or not be the case for individuals or the species as a whole. Compound specific isotopic 

analysis by Wallace (2019) suggests Red Snapper trophic growth is indeed a relatively smooth 

curve. Third, the isoscapes that are compared with eye lens life histories were created using 

muscle and, as shown here, muscle δ13C isotopes may not be very strongly correlated with eye 

lens isotopes. Fourth, it is important to note that the deviation score measure is vulnerable to 

baseline offsets (as seen in Fish 1), and the correlations of δ13C and δ15N values are vulnerable to 

areas with spatially correlated δ13C and δ15N values. Therefore, a high deviation score does not 

always mean a fish moved, and a low correlation rho does not always mean the fish did not 

move. Ideally, multiple metrics should be considered simultaneously when evaluating fish IHLs. 

Finally, the isoscapes used in this chapter have the same caveats as stated in previous chapters, 

the most relevant of which is that the isoscapes were created using fish caught within a single 

season (summer). The models created in Chapter 3 indicated that there is very little seasonal or 
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interannual variation in the isoscape, but it is also possible that the model created using only 

summer data was not adequate to predict the isoscapes in other seasons. 

  

4.5.5 Implications 

Whereas this study was primarily conducted to demonstrate the utility and associated 

methods for using isoscapes and eye lens ILHs to infer movement histories, there are a few 

results which have intriguing implications for Red Snapper ecology. First, the results of this 

dissertation support those of other studies that suggest Red Snapper may have a metapopulation 

structure in the Gulf of Mexico (Patterson 2007; Saillant et al. 2010; Fischer et al. 2004). 

Verifying the population structure of Red Snapper is important for fisheries management to 

prevent the depletion of localized subpopulations (Kell et al. 2009). Second, the results of this 

dissertation suggest a high level of individual variation in the movement behavior of Red 

Snapper which was also seen in other studies (Diamond et al. 2007; Patterson 2007). This 

implies that studies of Red Snapper should ideally have large sample sizes to document all 

potential movement patterns, and that there could be substantial annual variation in the location 

and densities of Red Snapper as they respond to local conditions (Diamond et al. 2007). 

 

4.5.6 Future applications  

 The methods outlined here could be useful for a variety of species in a variety of areas, as 

long as there is adequate spatial isotopic variation. Several modifications could be made to these 

methods to improve the results and refine the interpretation of eye lens ILHs. First, it may be 

prudent to split large areas into regions for future studies. Fish located in areas of particularly 

high or low δ13C or δ15N values sometimes had a high overall deviation score due to being 
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consistently higher or lower than the predicted values that were based on all fish combined. 

Second, more studies should be conducted to investigate the relationship between eye lens and 

muscle stable isotopes, since the results of this dissertation do not agree with those of Quaeck-

Davies et al. (2018). Alternatively, isoscapes could be created using eye lens data, so direct 

comparisons could be made to eye lens ILHs. Third, interpretations of ILHs could be improved 

and refined by analyzing additional isotopes (i.e., 18O, 34S, 2H). For a pilot study regarding a Gulf 

of Mexico δ18O isoscape, see Appendix E. Finally, in order to differentiate between deviations 

caused by trophic or basal resource changes and movement, bulk stable isotope data could be 

combined with compound specific isotope analysis (Bradley et al. 2015; Wallace 2019). 

Determining the movement histories of fish has high utility for fisheries management and 

ecology (Deegan 1993; Hobson et al. 2019). Using eye lens stable isotopes to determine 

movement history can provide data on under sampled life stages and to get data on many fish 

with relatively low cost and effort (West et al. 2009). 
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Chapter 5: Conclusions 

  

 The objectives of this dissertation were to create isoscapes for the Gulf of Mexico that 

could be used in various ecological studies and to provide a demonstration of how to use those 

isoscapes in conjunction with fish eye lenses to infer movement and diet histories for individuals. 

First, I created empirical isoscapes using the length-corrected δ13C and δ15N values of muscle 

tissue from two species of reef fish (Red Snapper and Yellowedge Grouper). I described the 

general spatial patterns in δ13C and δ15N as well as likely ecological explanations for those 

patterns. I assessed how the isoscapes varied between species and likely reasons for those 

differences. Next, I developed statistical models for the spatial patterns of δ13C and δ15N using 

static (latitude, longitude, and depth) and temporally dynamic (satellite products) predictors in 

order to make the isoscapes temporally dynamic and to further elucidate how ecological 

processes affected δ13C and δ15N values. I used these models to create predicted isoscapes for 

different seasons within an El Nino (2015) and a La Nina (2011) year to assess how different 

environmental conditions would change the isoscapes. I used these isoscapes in one application 

using Red Snapper eye lens isotopes. I demonstrated a series of techniques to assess whether a 

particular fish has moved over the course of its life. I developed a metric, called a “deviation 

score”, which indicated how much the isotopic history of a fish deviated from a predicted 

isotopic life history where no movement occurred. Throughout this work, I showed how isotopic 

tools can be used to infer regional and organismal ecology. The products and techniques 
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developed here can be used for a variety of management and ecological purposes within the Gulf 

of Mexico and could even be modified for global applications. 

 

5.1 Chapter summaries 

5.1.1 Chapter 2 

Isoscapes of δ13C and δ15N values were created using reef-fish muscle from two species, 

Red Snapper (Lutjanus campechanus; n = 127) and Yellowedge Grouper (Epinephelus 

flavolimbatus: n = 99). Fishes were collected on demersal longline research cruises throughout 

the Gulf of Mexico continental shelf. Muscle samples were dried and homogenized before being 

analyzed for δ13C and δ15N values using continuous flow mass spectrometry. Mann-Whitney U-

Tests were used to determine whether there was a significant difference between the average 

capture depths and/or isotopic values of the two species. Both species had significant 

relationships between both δ13C and δ15N values and standard length, indicating both species 

undergo trophic growth. To remove the effect of spatial differences in trophic position, residuals 

from isotope-length regressions (length-corrected δ13C and δ15N values) were used in place of 

unaltered isotopic values for isoscape creation. This was done to prevent so isoscapes would 

primarily depict spatial differences in baseline isotopic levels relevant to the captured species.  

Both δ13C isoscapes produced a general pattern of higher δ13C values near areas of 

freshwater input which can be attributed to rivers delivering nutrients which allows for higher 

productivity and, consequently higher δ13C values (Popp et al. 1998; Hofmann et al. 2000). The 

Red Snapper δ13C isoscape depicted decrease in δ13C values with depth, which could be similarly 

attributed higher productivity closer to shore and or/ it could be attributed to a decrease in the 

importance of benthic primary producers with depth (Cooper and DeNiro 1989; Muscatine et al. 
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1989; Radabaugh et al. 2014). Both δ15N isoscapes depicted a general pattern of higher δ15N 

values near areas of freshwater input and lower values closer to oligotrophic/Caribbean regions. 

These patterns are most likely due to rivers delivering bioavailable nitrogen from organic waste 

sources such as livestock effluent or sewage which has higher δ15N values, whereas, in 

oligotrophic regions, a larger portion of the bioavailable nitrogen comes from diazotrophic 

nitrogen fixation which has lower δ15N values (Carpenter et al. 1997; Hansson et al. 1997; 

Kendall et al. 2001; Montoya et al. 2002; Montoya 2007). The high δ15N values depicted in the 

northern Gulf of Mexico could be explained by the above processes but, it should be noted, this 

area experiences seasonal hypoxia and anoxia which allows for denitrification. Denitrification 

leaves behind high δ15N nitrate which could be a contributing reason for the high δ15N values 

found in consumers in that area (Altabet et al. 1999; Childs et al. 2002; Granger et al. 2008).  

The differences that were observed between species (mostly in the δ13C isoscapes) appear 

to primarily be a function of the differences in capture locations. For example, Yellowedge 

Grouper had less isotopic variation than Red Snapper based on the standard deviation of isotopic 

values. Yellowedge Grouper also had a large portion of its isotopic variation explained by 

trophic position based on the R2 values of regressions between standard length and isotopic 

values. One explanation for these findings is that Yellowedge Grouper exhibit less overall spatial 

isotopic variability because they were collected from a smaller spatial area that was closer to the 

open waters of the deep Gulf of Mexico and therefore, a greater proportion of the total isotopic 

variation was explained by length.  

There are a few caveats to consider in regard to these isoscapes. First, the spatial 

variation depicted here could be due to spatial differences in basal resource dependence of the 

consumers rather than baseline differences (as may be the case with the δ13C depth gradient). 
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Second, the methods used here have the implicit assumption that the sampled fish were an 

adequate representation of local isotopic conditions and had not recently moved to the collection 

location from an area with differing baseline values. Third, the isoscapes created here may only 

represent isotopic conditions at the time of the sample collections and there may be temporal 

variation in baseline δ13C and δ15N values.  

 

5.1.2 Chapter 3 

  While empirical isoscapes like those created in Chapter 2 are useful in many cases, they 

may only represent a snapshot of time and, if ecological processes influencing isotopic values 

have temporal variability, it is possible an isoscape will not be static over (Bowen and 

Revenaugh, 2003). In order to address this issue, I created statistically modeled isoscapes for 

length-corrected δ13C and δ15N values using the muscle tissue of Red Snapper and Yellowedge 

Grouper (collection and isotopic analysis methods are as described in Chapter 2) and satellite 

data products. Three-month averages of colored dissolved organic matter (CDOM; m-1), 

chlorophyll a (Chl; mg/m3), particulate organic carbon (POC; mg/m3), particulate inorganic 

carbon (PIC; mol/m3), sea surface temperature (SST; °C), surface photosynthetically active 

radiation (PAR; Einstein/m2day), and light attenuation at 490 nm [Kd(490); m-1] data were 

obtained from the Giovanni online database (http://giovanni.gsfc.nasa.gov ) for the MODIS-

Aqua satellite at 4 km resolution. The three-month time frame was selected to reflect fish muscle 

turnover time, (McIntyre and Flecker 2006; Buchheister and Latour 2010; Nelson et al. 2011). 

The light attenuation coefficient of photosynthetically active radiation, Kd(PAR), was calculated 

from MODIS-Aqua derived light attenuation at 490 nm, Kd(490), using Equation 9 from Morel 
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et al., 2007. PAR at depth, PAR(z), was calculated using water depth (z), Kd(PAR), and PAR 

(Kirk 1994).  

I combined the remote sensing data were with variables calculated from said data [light 

attenuation coefficient of photosynthetically active radiation; Kd(PAR) and PAR at depth; 

PAR(z)] and static spatial data (latitude, longitude, water depth) which were collected at the time 

of the corresponding muscle collections.. Several possible transformations were evaluated to 

allow for non-linear relationships between the datasets including, x2, Ln(x), 1/x, and √𝑥. If any 

transformation improved the R2
adj of a linear regression between a transformed predictor variable 

and the δ13C or δ15N data, by 0.01 or greater, the transformed variable was used instead of the 

original. Finally, the predictor variables were used in multiple regression analysis with δ13C and 

δ15N wherein variables were selected using forward selection and AIC. 

The resultant Red Snapper models were: 

LC_ δ13C = -0.198*Depth^2 - 0.178*Long - 0.157*1/PIC - 0.130*SST + 0.015 

LC_ δ15N = -0.991*Long + 0.746*Ln(Chl) + 0.724*Lat + 0.272*PAR - 0.016 

The resultant Yellowedge Grouper models were: 

LC_ δ13C = 0.333*Ln(Chl) + 0.194*Long - 0.162*Lat^2 + 0.157*Ln(PAR(z)) - 0.002 

LC_ δ15N = 0.950*Ln(CDOM) + 0.036 

For all the above equations, explanatory variables are presented in order of most explained 

variation to least explained variation. The inclusion of latitude and longitude variables in several 

models suggest there are additional influential processes that were not captured by the potential 

predictors included in this study. The δ13C models of both species had lower R2 values and did 

not perform as well when the model created using one species was used to predict the isotopic 

values of the other species. 
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 Isoscapes were created based on predicted δ13C and δ15N values from the multiple 

regression models above. First, four isoscapes were created using remote sensing data from the 

collection dates of the original muscle samples. Then, in order to assess the maximum temporal 

variability that could be expected based on the models, isoscapes were generated based on model 

predictions using data from each season in an El Niño year (2015) and a La Niña year (2011). 

 Similar to the empirical isoscapes, the modeled Red Snapper δ13C isoscapes depicted a 

pattern of decrease with depth in the northern Gulf of Mexico and decreasing values closer to the 

Caribbean in the southern Gulf of Mexico. The depth gradient is represented in the model by the 

selection of the depth variable but the ecological reason for the depth gradient is likely due to 

productivity and/or basal resource dependence. The Red Snapper δ13C model also included SST 

with a negative coefficient which is the opposite of the relationship between δ13C and SST found 

at global scales (McMahon et al. 2013). I hypothesized that, in the case of the GOM isoscape, 

SST is a proxy for phytoplankton species composition wherein smaller phytoplankton are found 

near oligotrophic tropical regions with high SST. Since smaller phytoplankton tend to have lower 

δ13C than larger phytoplankton, that would explain the region of lower δ13C near the Caribbean 

depicted in the isoscape. 

 The Yellowedge Grouper δ13C modeled isoscape did not depict a depth gradient, most 

likely because Yellowedge Grouper were captured within a spatially narrower and deeper depth 

range. Based on the model equations, chlorophyll levels were the most influential variable for 

Yellowedge Grouper δ13C followed by light levels. Chlorophyll was likely included in the model 

because higher chlorophyll is associated with higher productivity and higher productivity is 

associated higher δ13C values in primary producers (Popp et al. 1998; Hofmann et al. 2000). The 

selection of light levels at depth for the Yellowedge Grouper model may be indicative of basal 
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resource dependence, particularly in areas where chlorophyll is more uniform (most of the shelf 

edge apart from the northern GOM; Acker and Leptoukh 2007).  

 The modeled δ15N isoscapes had very similar spatial patterns for both species. Lower 

δ15N values were depicted near the tropical, oligotrophic Caribbean, and higher δ15N values were 

depicted near areas of freshwater input. Similar to the empirical isoscapes, this pattern can be 

explained by the relative influence of bioavailable nitrogen from organic waste and nitrogen 

fixation in these areas (Carpenter et al. 1997; Hansson et al. 1997; Kendall et al. 2001; Montoya 

et al. 2002; Montoya 2007). 

 When isoscapes were created based on the isotopic values predicted by the models for 

seasons in and El Niño year and a La Niña year, the modeled isoscapes showed very little 

temporal variability in the general spatial patterns of δ13C and δ15N. It could be that the Gulf of 

Mexico experiences very little isotopic variation over time however, there are additional 

explanations for the observed low temporal variability. First, since the models used higher 

trophic level consumers, temporal variability may be dampened by the relatively long turnover 

times of fish muscle (Post 2002). Second, since the predictor variables were standardized which 

decreased the overall variability of each predictor variable (e.g., forced the standard deviation to 

be 1).  

 The δ13C and δ15N models created here could be used for various stable isotope ecology 

applications in the Gulf of Mexico however, there are several limitations of these models that 

should be noted for future use. First, the δ13C models of both species performed poorly in regard 

to predicting the δ13C values of the other species and the isoscapes created using the generated 

models depicted different spatial patterns in δ13C. Therefore, the δ13C models and isoscapes may 

not be as applicable to other species and studies as the δ15N models and isoscapes. Second, the 
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statistical models the implicit assumption the ecological processes determining spatial patterns in 

isotopic values do not change over time which may not be the case. Third, using a three-month 

average for satellite data assumed a consistent muscle turnover time of three months, but 

turnover time likely changes based on the growth rate/age of the fish (Boecklen et al. 2011). 

Third, assessing trophic growth via linear regression assumes a static linear relationship between 

fish size/age and trophic position, but there is some evidence that trophic discrimination factors 

may change based on consumer physiology, consumer type, diet quality, and trophic level and 

fish may not increase their trophic position in a linear fashion (Vanderklift and Ponsard 2003; 

Caut et al. 2009). Last, the remote sensing products used in the isoscape models captured surface 

conditions whereas the fish used in this study were primarily benthic-associated, thus much of 

the unexplained variability in the isotopic models may due to subsurface conditions.  

 

5.1.3 Chapter 4 

 I used the Red Snapper isoscapes described above in conjunction with stable isotopes 

from the eye lenses from eight Red Snapper to infer individual movement histories. Red Snapper 

samples were collected on the same longlining cruises described in Chapter 2. In the lab, I used 

fine-tip forceps to remove successive layers (laminae) of the eye lens until the lens core was 

reached measuring the diameter of the eye lens after each removal. I then analyzed each lamina 

for δ13C and δ15N values using continuous flow isotope mass spectrometry.  

 Linear regressions between δ13C values, δ15N values, and eye lens diameter indicated Red 

Snapper underwent trophic growth, however the moderate to low R2 values of these regressions 

indicated trophic growth was not the only influence on δ13C and δ15N values within the eye 

lenses of Red Snapper. At the individual level, most fish demonstrated a general increase in δ13C 
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and δ15N values, but neither always increased from point to point within a fish’s isotopic life 

history and there was a high degree of individual variation in the shape of isotopic life histories. 

The regression equations from the above analysis were used to predict δ13C and δ15N 

values based on the eye lens diameter of each lamina. The predicted δ13C and δ15N values 

represented the δ13C and δ15N values that would be expected if the fish was stationary and 

changes in δ13C and δ15N values were due only to trophic growth. Deviation scores were 

calculated by summing the absolute value of the difference between the predicted and measured 

isotopic value of each lamina for a fish. If the R2 value of the regressions between δ13C and δ15N 

values was low and the deviation scores were high, a fish was considered likely to have moved 

over its life. Based on these criteria, six of the eight sampled fish were likely to have moved. 

Differences between the measured and predicted isotopic life histories (IHLs) of each fish were 

compared to values found in isoscapes to infer how each fish may have moved over its life. In 

general, the fish sampled displayed a high level of individual variation in ILHs which suggests 

Red Snapper may be highly plastic in their behavior  

There are several caveats to consider when applying the methods described above. First, 

the δ13C of a consumer may change due to movement along a baseline δ13C gradient or due to 

changes in basal resource dependence and, it is often not clear which is responsible for the 

patterns observed in δ13C ILHs. Second, the ILHs predicted for a hypothetical stationary fish 

were based on regression equations from regression using only eight fish, most of which were 

likely not stationary throughout their lives. A more accurate predicted ILH could be created 

using only fish that were likely to be stationary (Vecchio and Peebles 2022). Finally, the 

isoscapes used in this chapter have the same caveats and considerations as stated in previous 

chapter summaries. 
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5.2 My work in context of other studies 

Several other δ13C and δ15N isoscapes have been created for the Gulf of Mexico and these 

show varying levels of agreement with the isoscapes created in this dissertation. Overall, δ15N 

isoscapes from other studies show a high level of agreement with the isoscapes created for this 

dissertation and with each other. All these isoscapes depict δ15N values are high near areas of 

freshwater input and low in oligotrophic regions and these patterns are always attributed to the 

relative contributions of bioavailable nitrogen from riverine sources and diazotrophic nitrogen 

fixation (Radabaugh et al. 2013; Radabaugh and Peebles 2014; Vander Zanden et al. 2015; Le-

Alvarado et al. 2021). Relatively low δ15N values in the Caribbean Sea are also depicted in 

isoscapes at a global scale (McMahon et al. 2013). The spatial pattern of δ15N in the Gulf of 

Mexico appears to be consistent whether the isoscapes are created from organisms relying on 

planktonic basal resources (zooplankton; Le-Alvarado et al. 2021), organisms relying on benthic 

basal resources (Vander Zanden et al. 2015), or organisms that likely integrate multiple trophic 

pathways (fish; Radabaugh et al. 2013, Radabaugh and Peebles 2014, and this dissertation).  

There is considerably less agreement among δ13C isoscapes in the Gulf of Mexico. 

Isoscapes created using fish muscle on the West Florida Shelf depicted a δ13C depth gradient 

similar to that seen in the Red Snapper δ13C isoscape created in this dissertation, which the 

authors attributed to the effect of light environment on basal resource availability (Radabaugh et 

al. 2013; Radabaugh and Peebles 2014). Other Gulf of Mexico δ13C isoscapes did not share this 

trend. One reason the other isoscapes did not find δ13C depth gradients is that the species used to 

create both isoscapes are likely only relying on one basal resource whereas the fish used in this 

dissertation likely integrate multiple basal resources. One possible explanation for the decrease 
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in δ13C values depicted in the isoscapes of this dissertation, is that fish switch from higher δ13C 

benthic basal resources inshore to lower δ13C planktonic basal resources near the shelf edge 

(France 1995; Doi et al. 2010). Therefore, it could be that isoscapes that use species that do not 

have the potential to switch basal resources spatially would not depict a δ13C depth gradient. 

The results of this dissertation suggest a different relationship between δ13C and SST than 

what is commonly observed in other studies. At a global scale, the δ13C values of phytoplankton 

often covary with SST, which is usually attributed to SST’s effect on growth rates, [CO2], and 

rates of CO2 uptake (Goericke and Fry 1994; Hinga et al. 1994; Gruber et al. 1999; McMahon et 

al. 2013; Magozzi et al. 2017). However, at global scales, the δ13C of phytoplankton generally 

increases with increased temperature which is the opposite pattern observed in my dissertation. It 

may be that the inverse relationship between δ13C and SST documented in my dissertation is 

because SST had an influence on (or was a proxy for) spatial and/or temporal variation in 

primary producer species composition (Magozzi et al. 2017). 

The results from the eye lens analysis in Chapter 4 present a few contrasts to previously 

published studies. First, the preliminary analyses performed on the eye lenses indicated muscle 

δ13C values were higher on average compared to eye lens δ13C values, and the difference 

between the δ15N values of the muscle and eye lens was inconsistent. These results differ from 

those of a previous study which found that muscle tissue had consistently higher δ13C and δ15N 

values than eye lens tissue (Quaeck-Davies et al. 2018). Second, based on the widely used δ13C 

and δ15N tropic discrimination factors of 1 ‰ for δ13C values and 3-3.4 ‰ for δ15N values 

(Minagawa & Wada 1984; Post 2002), the expected slope for a regression between δ13C and 

δ15N would be around 3-3.4. However, the slope coefficient for the fish that was inferred to be 

most likely to have remained stationary was 2.05, which indicated the ratio of the trophic 
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discrimination factors of δ15N and δ13C values was close to 2.05. Since Red Snapper are likely to 

feed at a moderate to high trophic position, this result may align with the work of Hussey et al. 

(2014) which suggested that the trophic discrimination of δ15N values decreases at higher trophic 

positions. 

The ILHs observed in Chapter 4 have a few implications for Red Snapper ecology. First, 

my results support those of other studies that suggest Red Snapper may have a metapopulation 

structure in the Gulf of Mexico (Patterson 2007; Saillant et al. 2010; Fischer et al. 2004). 

Verifying whether Gulf of Mexico Red Snapper should be considered a single population or a 

metapopulation is important for fisheries management to prevent the depletion of localized 

subpopulations (Kell et al. 2009). My results also suggest a high level of individual variation in 

the behavior of Red Snapper, even with the small sample size used in my dissertation. Other 

studies have also found individual variation in Red Snapper and these results suggest that studies 

of Red Snapper should ideally have large sample sizes to document all potential behavioral 

patterns. The plastic response of Red Snapper to local conditions could also cause unexpected 

variation in the location and densities of Red Snapper (Diamond et al. 2007; Patterson 2007).  

 

5.3 Conclusions and future directions 

 The major findings of this dissertation are as follows. Consumer isoscapes may present 

differences based on the location and life history differences of different species but, generally, 

spatial patterns of δ13C values respond to basal resource dependence and productivity gradients 

and spatial patterns of δ15N values respond to the δ15N values of bioavailable nitrogen (animal 

waste near areas of freshwater input and diazotrophic fixed nitrogen near the tropics). There is 

little predicted seasonal or interannual variation in the general spatial patterns of increase and 
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decrease in δ13C and δ15N values though this area requires further study, particularly for δ13C 

values. Pairwise regressions among δ13C values, δ15N values, and eye lens diameter can be used 

in conjunction with how a fish’s isotopic life history deviates from that predicted based on only 

trophic growth (deviation score) to assess whether and in what direction a fish moved throughout 

its life. Red Snapper have a high level of individual variation in their movement and diet 

histories though there may some convergence in those traits at a regional scale.  

 In the future, the Gulf of Mexico isoscape models could potentially be improved in the 

following ways. First, the spatial and temporal scale of variability of baseline isotopes could be 

investigated, particularly that of δ13C values. Whereas δ15N isoscapes appear to be consistent 

regardless of temporal or spatial scales, the δ13C isoscapes created here were not very consistent 

and the δ13C models had relatively low predictive power. It could be the spatial or temporal 

variability of δ13C baselines was not captured in these models and that introduced a high level of 

error. Second, additional explanatory variables could be evaluated for the multiple regression 

models to improve fit. Variables explicitly describing freshwater input or organic loading from 

various major rivers and variables describing sub-surface water conditions (i.e., sonde data) may 

particularly relevant.  

Several modifications could be made to improve the results and refine the interpretation 

of eye lens isotopic life histories. First, it may be prudent to split large areas into smaller regions 

for future studies if sample sizes allow. The deviation score metric was vulnerable to baseline 

offsets, and it is possible that fish located in areas of particularly high or low δ13C or δ15N values 

could have high deviation scores despite remaining stationary. Splitting large areas into regions 

could lower the influence of baseline offsets and increase the interpretive power of deviation 

scores. Second, the relationship between the stable isotope values of eye lenses and muscle tissue 
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requires further investigation. The results presented in this dissertation differ from previous 

studies (Quaeck-Davies et al. 2018) which suggests the relationship between muscle and eye lens 

stable isotopes may be variable and eye lens data may not be as directly applicable to isoscapes 

created with muscle tissue. Third, data from other isotopes (i.e., 18O, 34S, 2H) could increase the 

accuracy of ILH interpretations. Fourth, bulk stable isotope data could be combined with 

compound specific isotope analysis in order to determine what portions of ILH variability is due 

trophic or basal resource changes and what portions of variation are due to movement (Bradley 

et al. 2015; Wallace 2019).  

Finally, both isoscape models and eye lens interpretations could be modified to include 

traits of individual fish to account for variability in trophic fractionation and in tissue turnover 

time. There is evidence that trophic fractionation is not constant and responds to a variety of 

factors including consumer physiology, consumer type, diet quality, and trophic level 

(Vanderklift and Ponsard 2003; Caut et al. 2009). Of particular concern to the interpretation of 

eye lens isotopes, it is possible that the growth rate at the time of tissue formation may affect the 

tissue-diet isotopic spacing (Trueman et al. 2005) and/or isotopic incorporation rate. Only one 

study, to date, has investigated the timing of isotopic incorporation within eye lenses 

(Granneman 2018). This study found that isotopic incorporation began 16 days after a diet 

switch however, this study used younger fish (< 1 year) that were experiencing a relatively high 

growth rate and, it is possible that, for adult fish, isotopic incorporation may not be as rapid. 

Future studies could investigate these relationships and develop equations that could modify the 

measured eye lens isotopes based on life stage to better infer location or trophic position. Future 

investigation of these relationships could also be applied to interpretations based on the growth 
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seasons of certain species (e.g., the location/diet of the fish during growth seasons may be 

overrepresented within a lamina). 

 

5.4 Citations 

Acker, J. G., and Leptoukh, G. 2007. Online analysis enhances use of NASA earth science 

data. Eos, Transactions American Geophysical Union 88(2): 14-17.  

 

Altabet, M. A., Pilskaln, C., Thunell, R., Pride, C., Sigman, D., Chavez, F., and Francois, R. 

1999. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern 

North Pacific. Deep Sea Research Part I: Oceanographic Research Papers 46(4): 655-679. 

 

Alt-Epping, U., Mil-Homens, M., Hebbeln, D., Abrantes, F., and Schneider, R. R. 2007. 

Provenance of organic matter and nutrient conditions on a river- and upwelling influenced shelf: 

a case study from the Portuguese Margin. Marine Geology 243, 169–179. 

 

Barnes, C., Jennings, S., and Barry, J. T. 2009. Environmental correlates of large-scale spatial 

variation in the δ13C of marine animals. Estuarine, Coastal and Shelf Science 81(3): 368-374. 

 

Boecklen, W. J., Yarnes, C. T., Cook, B. A., and James, A. C. 2011. On the use of stable 

isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics 42: 411-440. 

 

Bowen, G. J. 2010. Isoscapes: Spatial Pattern in Isotopic Biogeochemistry. Annual Review of 

Earth and Planetary Sciences 38(1): 161-187. 



195 

 

 

Bowen, G. J. and J. Revenaugh. 2003. Interpolating the isotopic composition of modern meteoric 

precipitation. Water Resources Research 39:1299. 

 

Bradley, C. J., Wallsgrove, N. J., Choy, C. A., Drazen, J. C., Hetherington, E. D., Hoen, D. K., 

and Popp, B. N. 2015. Trophic position estimates of marine teleosts using amino acid compound 

specific isotopic analysis. Limnology and Oceanography: Methods 13(9): 476-493. 

 

Buchheister, A., and Latour, R. J. 2010. Turnover and fractionation of carbon and nitrogen stable 

isotopes in tissues of a migratory coastal predator, summer flounder (Paralichthys 

dentatus). Canadian Journal of Fisheries and Aquatic Sciences 67(3): 445-461. 

 

Campana, S. E., and Neilson, J. D. 1985. Microstructure of fish otoliths. Canadian Journal of 

Fisheries and Aquatic Sciences 42(5): 1014-1032. 

 

Canseco, J. A., Niklitschek, E. J., and Harrod, C. 2021. Variability in δ13C and δ15N trophic 

discrimination factors for teleost fishes: a meta-analysis of temperature and dietary 

effects. Reviews in Fish Biology and Fisheries 1-17. 

 

Carpenter, E. J., Harvey, H. R., Fry, B., and Capone, D. G., 1997. Biogeochemical tracers of the 

marine cyanobacterium Trichodesmium. Deep Sea Research Part A: Oceanographic Research 

Papers 44: 27–38. 

 



196 

 

Caut, S., Angulo, E. and Courchamp, F. 2009. Variation in discrimination factors (Δ15N and 

Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of 

Applied Ecology 46: 443-453. doi:10.1111/j.1365-2664.2009.01620.x 

 

Childs, C. R., Rabalais, N. N., Turner, R. E., and Proctor, L. M. 2002. Sediment denitrification in 

the Gulf of Mexico zone of hypoxia. Marine Ecology Progress Series 240: 285-290. 

 

Cifuentes, L. A. 1987. Sources and biogeochemistry of organic matter in the Delaware estuary. 

Doctoral dissertation, University of Delaware. Retrieved from: 

https://www.proquest.com/docview/303473515?pq-origsite=gscholar&fromopenview=true 

 

Ceia, F. R., Cherel, Y., Paiva, V. H., and Ramos, J. A. 2018. Stable Isotope Dynamics (δ13C and 

δ15N) in Neritic and Oceanic Waters of the North Atlantic Inferred From GPS-Tracked Cory's 

Shearwaters. Frontiers in Marine Science 5. 

 

Cooper, L. W. and DeNiro, M. J. 1989. Stable carbon isotope variability in the seagrass 

Posidonia oceanica: evidence for light intensity effects. Marine Ecology Progress Series 50: 

225–229. 

 

Curtis, J. S., Albins, M. A., Peebles, E. B., and Stallings, C. D. 2020. Stable isotope analysis of 

eye lenses from invasive lionfish yields record of resource use. Marine Ecology Progress 

Series 637: 181-194. 

 



197 

 

Dahm, R., Schonthaler, H. B., Soehn, A. S., Van Marle, J., and Vrensen, G. F. 2007. 

Development and adult morphology of the eye lens in the zebrafish. Experimental Eye 

Research 85(1): 74-89. 

 

Deegan, L. A. 1993. Nutrient and energy transport between estuaries and coastal marine 

ecosystems by fish migration. Canadian Journal of Fisheries and Aquatic Sciences 50: 74-79. 

 

DeNiro, M. J. and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in 

animals. Geochimica et Cosmochimica Acta 42(5): 495-506. 

 

Diamond, S. L., Campbell, M. D., Olsen, D., and Wang, Y. 2007. Movers and Stayers: 

Individual Variability in Site Fidelity and Movements of Red Snapper off Texas. In American 

Fisheries Society Symposium 60: 163-187. 

 

Dingle H. and Drake V.A. 2007. What is migration? BioScience 57(2):113-121. 

doi:10.1641/B570206. 

 

Fischer, A. J., Baker Jr, M. S., and Wilson, C. A. 2004. Red snapper (Lutjanus campechanus) 

demographic structure in the northern Gulf of Mexico based on spatial patterns in growth rates 

and morphometrics. Fishery Bulletin 102(4): 593-603. 

 

France, R. L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb 

implications. Marine Ecology Progress Series 124: 307-312. 



198 

 

 

Fry, B. 1988. Food web structure on Georges Bank from stable C, N, and S isotopic 

compositions. Limnology and Oceanography 33: 1182–1190. 

 

Gallaway, B. J., Szedlmayer, S. T., and Gazey, W. J. 2009. A life history review for red snapper 

in the Gulf of Mexico with an evaluation of the importance of offshore petroleum platforms and 

other artificial reefs. Reviews in Fisheries Science 17(1): 48-67. 

 

Gearing, J. N., Gearing, P. J., Rudnick, D. T., Requejo, A. G., and Hutchins, M. J. 1984. Isotopic 

variability of organic carbon in a phytoplankton-based, temperate estuary. Geochimica et 

Cosmochimica Acta 48(5): 1089-1098. 

 

Goericke, R., and B. Fry. 1994. Variations of marine plankton δ13C with latitude, temperature, 

and dissolved CO2 in the world ocean. Global Biogeochemical Cycles 8:85–90. 

 

Goodyear, C. P. 1995. Red snapper in U.S. waters of the Gulf of Mexico. NOAA, National 

Marine Fisheries Service, Southeast Fisheries Center, Miami Laboratory, Coastal Resources 

Division. 171 pp.  

 

Graham, B.S., Koch, P.L., Newsome, S.D., McMahon, K.W., Aurioles, D., 2010. Using 

isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. 

In: West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P. (Eds.), Isoscapes: Understanding 



199 

 

Movement, Pattern, and Process on Earth through Isotope Mapping. Springer, New York, pp. 

299–318. 

 

Granger, J., Sigman, D. M., Lehmann, M. F., and Tortell, P. D. 2008. Nitrogen and oxygen 

isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnology 

and Oceanography 53(6): 2533-2545. 

 

Granneman, J. E. 2018. Evaluation of trace-metal and isotopic records as techniques for tracking 

lifetime movement patterns in fishes. University of South Florida. Graduate Theses and 

Dissertations. https://scholarcommons.usf.edu/etd/7675 

 

Gruber, N., Keeling, C. D., Bacastow, R. B., Guenther, P. R., Lueker, T. J., Wahlen, M., Meijer, 

H.A., Mook, W.G. and Stocker, T.F. 1999. Spatiotemporal patterns of carbon‐13 in the global 

surface oceans and the oceanic Suess effect. Global Biogeochemical Cycles 13(2): 307-335. 

 

Hannides, C. C. S., Popp, B. N., Landry, M. R., and Graham, B. S. 2009. Quantitative 

determination of zooplankton trophic position using amino acid-specific stable nitrogen isotope 

analysis. Limnology and Oceanography 54: 50-61. 

 

Hansson, S., Hobbie, J. E., Elmgren, R., Larsson, U., Fry, B., and Johansson, S. 1997. The stable 

nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology 78: 

2249–2257. 

 



200 

 

Hinga, K. R., Arthur, M. A., Pilson, M. E., and Whitaker, D. 1994. Carbon isotope fractionation 

by marine phytoplankton in culture: the effects of CO2 concentration, pH, temperature, and 

species. Global Biogeochemical Cycles 8(1): 91-102. 

 

Hobson, K. A., Barnett-Johnson, R., and Cerling, T. 2010. Using isoscapes to track animal 

migration. In: West, J.B., Bowen, G.J., Dawson, T.E., Tu, K.P. (Eds.), Isoscapes: Understanding 

Movement, Pattern, and Process on Earth through Isotope Mapping. Springer, New York, pp. 

273–298. 

 

Hobson, K. A., Norris, D. R., Kardynal, K. J., and Yohannes, E. 2019. Animal migration: a 

context for using new techniques and approaches. In Tracking animal migration with stable 

isotopes (pp. 1-23). Academic Press, London. 

 

Hofmann, M., Wolf-Gladrow, D. A., Takahashi, T., Sutherland, S. C., Six, K. D., and 

MaierReimer, E. 2000. Stable carbon isotope distribution of particulate organic matter in the 

ocean: a model study. Marine Chemistry 72: 131–150. 

 

Horwitz, J. 2003. Alpha-crystallin. Experimental Eye Research 76(2): 145-153. 

 

Hunsicker, M. E., Essington, T. E., Aydin, K. Y., and Ishida, B. 2010. Predatory role of the 

commander squid Berryteuthis magister in the eastern Bering Sea: insights from stable isotopes 

and food habits. Marine Ecology Progress Series 415: 91-108. 

 



201 

 

Hussey, N. E., MacNeil, M. A., McMeans, B. C., Olin, J. A., Dudley, S. F., Cliff, G., Wintner, S. 

P., Fennessy, S. T. and Fisk, A. T. 2014. Rescaling the trophic structure of marine food 

webs. Ecology Letters 17(2): 239-250. 

 

Jennings, S. and K.J. Warr. 2003. Environmental correlates of large-scale spatial variation in the 

δ15N of marine animals. Marine Biology 142: 1131-1140. 

 

Kell, L. T., Dickey-Collas, M., Hintzen, N. T., Nash, R. D., Pilling, G. M., and Roel, B. A. 2009. 

Lumpers or splitters? Evaluating recovery and management plans for metapopulations of herring. 

ICES Journal of Marine Science 66(8): 1776-1783. 

 

Kendall, C., Silva, S. R., and Kelly, V. J., 2001. Carbon and nitrogen isotopic compositions of 

particulate organic matter in four large river systems across the United States. Hydrological 

Processes 15: 1301–1346. 

 

Kline, Jr, T. C. 1999. Temporal and spatial variability of 13C/12C and 15N/14N in pelagic biota of 

Prince William Sound, Alaska. Canadian Journal of Fisheries and Aquatic Sciences 56(S1): 94-

117. 

 

Kürten, B., Frutos, I., Struck, U., Painting, S. J., Polunin, N. V., and Middelburg, J. J. 2013. 

Trophodynamics and functional feeding groups of North Sea fauna: a combined stable isotope 

and fatty acid approach. Biogeochemistry 113(1-3): 189-212. 

 



202 

 

Kurth, B. N., Peebles, E. B., and Stallings, C. D. 2019. Atlantic Tarpon (Megalops atlanticus) 

exhibit upper estuarine habitat dependence followed by foraging system fidelity after ontogenetic 

habitat shifts. Estuarine, Coastal and Shelf Science 225: 106248. 

 

Laws, E. A., Popp, B. N., Bidigare, R. R., Kennicutt, M. C., and Macko, S. A.,1995. Dependence 

of phytoplankton carbon isotopic composition on growth rate and [CO2]aq: Theoretical 

considerations and experimental results. Geochimica et Cosmochimica Acta 59: 1131–1138. 

 

Le-Alvarado, M., Romo-Curiel, A. E., Sosa-Nishizaki, O., Hernández-Sánchez, O., Barbero, L., 

and Herzka, S. Z. 2021. Yellowfin tuna (Thunnus albacares) foraging habitat and trophic 

position in the Gulf of Mexico based on intrinsic isotope tracers. PloS One 16(2): e0246082. 

 

Magozzi, S., Yool, A., Vander Zanden, H. B., Wunder, M. B., and Trueman, C. N. 2017. Using 

ocean models to predict spatial and temporal variation in marine carbon isotopes. Ecosphere 

8(5): e01763. 

 

Mariotti, A., Lancelot, C., & Billen, G. 1984. Natural isotopic composition of nitrogen as a tracer 

of origin for suspended organic matter in the Scheldt estuary. Geochimica et Cosmochimica 

Acta 48(3): 549-555. 

 

McIntyre, P. B., and Flecker, A. S. 2006. Rapid turnover of tissue nitrogen of primary consumers 

in tropical freshwaters. Oecologia 148(1): 12-21. 

 



203 

 

McMahon, K.W., Hamady, L.L., and Thorrold, S.R. 2013. A review of ecogeochemistry 

approaches to estimating movements of marine animals. Limnology and Oceanography 58(2): 

697–714. 

 

Meath, B., Peebles, E. B., Seibel, B. A., and Judkins, H. 2019. Stable isotopes in the eye lenses 

of Doryteuthis plei (Blainville 1823): Exploring natal origins and migratory patterns in the 

eastern Gulf of Mexico. Continental Shelf Research 174: 76-84. 

 

Minagawa, M. and Wada, E. 1984. Stepwise enrichment of δ15N along food chains: Further 

evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 

48(5): 1135-1140. 

 

Montoya, J.P. 2007. Natural abundance of δ15N in marine planktonic ecosystems. In: Michener, 

R. and Lajtha, K. (Eds.), Stable Isotopes in Ecology and Environmental Science, second ed. 

Blackwell Publishing, Malden, Massachusetts, pp. 176–201. 

 

Montoya, J.P., Carpenter, E.J., and Capone, D.G. 2002. Nitrogen fixation and nitrogen isotope 

abundances in zooplankton of the oligotrophic North Atlantic. Limnology and Oceanography 47: 

1617–1628. 

 

Muscatine, L., Porter, J.W., and Kaplan, I.R. 1989. Resource partitioning by reef corals as 

determined from stable isotope composition. 1. δ13C of zooxanthellae and animal tissue vs depth. 

Marine Biology 100: 185–193. 



204 

 

 

Nelson, J., Chanton, J., Coleman, F., and Koenig, C. 2011. Patterns of stable carbon isotope 

turnover in gag, Mycteroperca microlepis, an economically important marine piscivore 

determined with a non-lethal surgical biopsy procedure. Environmental Biology of Fishes 90(3): 

243-252. 

 

Nerot, C., Lorrain, A., Grall, J., Gillikin, D. P., Munaron, J. M., Le Bris, H., and Paulet, Y. M. 

2012. Stable isotope variations in benthic filter feeders across a large depth gradient on the 

continental shelf. Estuarine, Coastal and Shelf Science 96: 228–235. 

 

Nicol, J. A. C. 1989. The eyes of fishes. Oxford University Press, Oxford. 308pp. 

 

Olson, R. J., Popp, B. N., Graham, B. S., Lopez-Ibarra, G. A., Galvan-Magana, F., LennertCody, 

C. E., Bocanegra-Castillo, N., Wallsgrove, N. J., Gier, E., Alatorre-Ramirez, V., Balance, L.T., 

Fry, B. 2010. Food-web inferences of stable isotope spatial patterns in copepods and yellowfin 

tuna in the pelagic eastern Pacific Ocean. Progress in Oceanography 86: 124–138. 

 

Onthank, K. L. 2013. Exploring the life histories of Cephalopods using stable isotope analysis of 

an archival tissue. PhD Dissertation, School of Biological Sciences, Washington State 

University. Retrieved from: https://www.proquest.com/docview/1425317087?pq-

origsite=gscholar&fromopenview=true 

 



205 

 

Parry, M. 2003. The trophic ecology of two Ommastrephid squid species, Ommastrephes 

bartramii and Shenotheuthis oualaniensis, in the North Pacific sub-tropical gyre. PhD 

Dissertation, Oceanography (Marine Biology), University of Hawaii-Manoa. Retrieved from: 

https://scholarspace.manoa.hawaii.edu/handle/10125/3068 

 

Patterson, W.F., III. 2007. A review of Gulf of Mexico red snapper movement studies: 

Implications for population structure. In W.F. Patterson, III, J.H. Cowan, Jr., D.A. Nieland, and 

G.R. Gitzhugh, editors. Population Ecology and Fisheries of U.S. Gulf of Mexico Red Snapper. 

American Fisheries Society 60: 221-236. Bethesda, Maryland. 

 

Peterson, B. J. and Fry, B. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology 

and Systematics 18(1): 293-320. 

 

Pinnegar, J. K. and Polunin, N. V. C. 1999. Differential fractionation of delta C-13 and delta N-

15 among fish tissues: implications for the study of trophic interactions. Functional Ecology 

13(2): 225-231. 

 

Popp, B. N., Laws, E. A., Bidigare, R. R., Dore, J. E., Hanson, K. L., and Wakeham, S. G. 1998. 

Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et 

Cosmochimica Acta 62(1): 69-77. 

 

Post, D. M. 2002. Using stable isotopes to estimate trophic position: Models, methods, and 

assumptions. Ecology 83(3): 703-718. 



206 

 

 

Quaeck-Davies, K., Bendall, V. A., MacKenzie, K. M., Hetherington, S., Newton, J., and 

Trueman, C. N. 2018. Teleost and elasmobranch eye lenses as a target for life-history stable 

isotope analyses. PeerJ 6: e4883. 

 

Quillfeldt, P., Ekschmitt, K., Brickle, P., McGill, R. A., Wolters, V., Dehnhard, N., and Masello, 

J. F. 2015. Variability of higher trophic level stable isotope data in space and time – a case study 

in a marine ecosystem. Rapid Communications in Mass Spectrometry 29(7): 667-674. 

 

Radabaugh, K. R., Hollander, D. J. and Peebles, E. B. 2013. Seasonal δ13C and δ15N isoscapes of 

fish populations along a continental shelf trophic gradient. Continental Shelf Research 68: 112-

122. 

 

Radabaugh, K. R., and Peebles, E. B. 2014. Multiple regression models of δ13C and δ15N for fish 

populations in the eastern Gulf of Mexico. Continental Shelf Research 84: 158-168. 

 

Radabaugh, K. R., Malkin, E. M., Hollander, D. J., and Peebles, E. B. 2014. Evidence for light-

environment control of carbon isotope fractionation by benthic microalgal communities. Marine 

Ecology Progress Series 495: 77-90. 

 

Rau, G. H., Riebesell, U., and Wolf-Gladrow, D. 1996. A model of photosynthetic 13C 

fractionation by marine phytoplankton based on diffusive molecular CO2 uptake. Marine 

Ecology Progress Series 133: 275-285. 



207 

 

 

Rooker, J. R., Stunz, G. W., Holt, S. A., and Minello, T. J. 2010. Population connectivity of red 

drum in the northern Gulf of Mexico. Marine Ecology Progress Series 407: 187-196. 

 

Saillant, E., S. C. Bradfield, and J. R. Gold. 2010. Genetic variation and spatial autocorrelation 

among young-of-the-year red snapper (Lutjanus campechanus) in the northern Gulf of Mexico. 

ICES Journal of Marine Science 67(6):1240-1250. 

 

Schloesser, R. W., Rooker, J. R., Louchuoarn, P., Neilson, J. D., and Secord, D. H. 2009. 

Interdecadal variation in seawater δ13C and δ18O recorded in fish otoliths. Limnology and 

Oceanography 54(5): 1665-1668. 

 

Simpson, S. J., Sims, D. W., and Trueman, C. N. 2019. Ontogenetic trends in resource 

partitioning and trophic geography of sympatric skates (Rajidae) inferred from stable isotope 

composition across eye lenses. Marine Ecology Progress Series 624: 103-116. 

 

Szedlmayer, S. T. and Lee, J. D. 2004. Diet shifts of juvenile red snapper (Lutjanus 

campechanus) with changes in habitat and fish size. Fishery Bulletin 102(2): 366-375. 

 

Trueman, C. N., McGill, R. A., and Guyard, P. H. 2005. The effect of growth rate on tissue‐diet 

isotopic spacing in rapidly growing animals. An experimental study with Atlantic salmon (Salmo 

salar). Rapid Communications in Mass Spectrometry 19(22): 3239-3247. 

 



208 

 

Trueman, C. N., MacKenzie, K. M., and Palmer, M. R. 2012. Identifying migrations in marine 

fishes through stable‐isotope analysis. Journal of Fish Biology 81(2): 826-847. 

 

Vanderklift, M. A., and Ponsard, S. 2003. Sources of variation in consumer-diet δ15 N 

enrichment: a meta-analysis. Oecologia 136(2): 169-182. 

 

Vander Zanden, M. J. and Rasmussen, J. B. 2001. Variation in δ15N and δ13C trophic 

fractionation: implications for aquatic food web studies. Limnology and Oceanography 46, 

2061–2066. 

 

Vander Zanden, H. B., Tucker, A. D., Hart, K. M., Lamont, M. M., Fujisaki, I., Addison, D. S., 

... and Bjorndal, K. A. 2015. Determining origin in a migratory marine vertebrate: a novel 

method to integrate stable isotopes and satellite tracking. Ecological Applications 25(2): 320-

335. 

 

Vecchio, J. L., and Peebles, E. B. 2020. Spawning origins and ontogenetic movements for 

demersal fishes: An approach using eye-lens stable isotopes. Estuarine, Coastal and Shelf 

Science 246: 107047. 

 

Vecchio, J. L., Ostroff, J. L., and Peebles, E. B. 2021. Isotopic characterization of lifetime 

movement by two demersal fishes from the northeastern Gulf of Mexico. Marine Ecology 

Progress Series 657: 161-172. 

 



209 

 

Vecchio, J. L. and Peebles, E. B. 2022. Lifetime-scale ontogenetic movement and diets of red 

grouper inferred using a combination of instantaneous and archival methods. Environmental 

Biology of Fishes 1-20. 

 

Vihtelic, T. S. 2008. Teleost lens development and degeneration. International Review of Cell 

and Molecular Biology 269: 341-373. 

 

Wallace, A. A., Hollander, D. J. and Peebles, E. B. 2014. Stable isotopes in fish eye lenses as 

potential recorders of trophic and geographic history. PLOS One 9(10): e108935 DOI: 10.1371/ 

journal.pone.0108935 

 

West, J. B., Bowen, G. J., Dawson, T. E., and Tu, K. P. (Eds.). 2009. Isoscapes: understanding 

movement, pattern, and process on Earth through isotope mapping. Springer Science & Business 

Media, New York. 487 pp. 

 

Wride, M. A. 2011. Lens fibre cell differentiation and organelle loss: many paths lead to 

clarity. Philosophical Transactions of the Royal Society B: Biological Sciences 366(1568): 1219-

1233. 

 

Xu, W., Chen, X., Liu, B., Chen, Y., Huan, M., Liu, N., and Lin, J. 2019. Inter-individual 

variation in trophic history of Dosidicus gigas, as indicated by stable isotopes in eye 

lenses. Aquaculture and Fisheries 4(6): 261-267. 

  



210 

 

 

 

Appendix A: Pilot study of growth rate effect on trophic discrimination factor using 

Common Snook (Centropomus undecimalis) fin clips 

 

A.1. Background 

The idea of animals interacting in a food web goes back as far as the 1920’s (Elton 1927). 

The introduction of this concept was important for a number of reasons, not least of which is the 

implication that species do not exist in isolation and therefore should not be managed in the same 

way as isolated resources. The food web concept was later updated by the theory of trophic 

dynamics (Lindeman 1942), which included the definition of discrete trophic levels representing 

how far up the food chain an animal was from a primary producer. However, trophic levels do 

not capture the real-world complexity of individuals feeding on any number of food sources, 

each with their own different respective places in the food web. Therefore, “trophic position” is a 

more accurate measure to use when describing measured trophic relationships. As opposed to the 

discrete numbers that represent trophic level, trophic position is a quantitative, continuous 

measure of the hierarchical position of a given species in the food web (Vander Zanden and 

Rasmussen 1996). 

 The application of food webs and trophic positions to ecology allowed for a number of 

insights including the length of food chains (Vander Zanden et al. 1999a), the role of bottom up 

or top down forcing in community structure (Menge and Sutherland 1976), levels of omnivory 

(Thompson et al. 2007), and the presence of trophic cascades (Bascompte et al. 2005). In terms 

of resource management and conservation, these concepts provide a quantitative metric to 

https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12226#ele12226-bib-0047
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12226#ele12226-bib-0030
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12226#ele12226-bib-0044
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12226#ele12226-bib-0002
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measure the effects of fishing, (Pauly et al. 1998; Branch et al., 2010), altered trophic linkages 

(Vander Zanden et al. 1999b), and species removal (Myers et al. 2007). Trophic position may be 

calculated from stomach contents, whereby an aggregate trophic position is calculated for the 

consumer based on the proportions of broad prey groups. However, this method is biased 

towards more recent meals and more refractory prey items which may create an incomplete or 

incorrect picture of trophic position and food web dynamics. A method that is becoming more 

common, in conjunction with or as an alternative to stomach content analysis, is a calculation of 

trophic position using nitrogen stable isotope analysis (Hobson and Welch 1992; Post 2002). 

 

A.1.1 Trophic discrimination factors 

 In order to calculate a trophic position using δ15N values, first a δ15N value for the basal 

resource must be known. This can be achieved through compound specific isotope analysis 

(Chikaraishi et al. 2014), applying a priori knowledge about the species’ diet, or by using a δ13C 

mixing model (Post 2000). Once the δ15N consumer-basal value is known, it can be divided by a 

trophic discrimination factor (TDF) in order to calculate the trophic position (Hobson and Welch 

1992; Post 2002). Trophic discrimination factors, sometimes referred to as trophic enrichment 

factors, are a quantity reflecting the isotopic enrichment accompanying an increase in trophic 

level (Δ13C and Δ15N for carbon and nitrogen, respectively; DeNiro and Epstein 1981; Minagawa 

and Wada 1984; Post 2002; Chikaraishi et al. 2007). An accurate estimate of trophic position 

requires an accurate TDF estimate (Post 2002).  

Reported TDFs range from −8.79 to 6.1 ‰ for Δ13C, and −3.22 to 9.2 ‰ for Δ15N (Caut 

et al. 2009) but, generally, a fixed value of 1.0 ‰ per trophic level for bulk δ13C values and 

3.4‰ per trophic level for bulk δ15N values are used in food web studies (Minagawa and Wada 

https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12226#ele12226-bib-0036
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12226#ele12226-bib-0048
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.12226#ele12226-bib-0032
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1984; Post 2002). While using these fixed values may be adequate in some cases, there is 

evidence that TDFs are not constant and respond to a variety of factors including consumer 

physiology, consumer type, diet quality, and trophic level (Vanderklift and Ponsard 2003; Caut 

et al. 2009). Both the calculation of trophic position and the creation of food webs using mixing 

models are highly sensitive to inaccuracies in TDF (Bond and Diamond 2011; Caut et al. 2009; 

Ben‐David and Schell 2001). In fact, the accuracy of the TDF is often cited as the weakest link in 

the use of stable isotopes for food web studies (Phillips and Koch 2002; Gannes et al. 1997; Wolf 

et al. 2009). Understanding the mechanisms that cause changes in TDFs within individuals over 

time, among members of a species, or among species is necessary in order to use the correct TDF 

in the application of stable isotopes in food webs. 

 

A.1.2 Variation in TDFs 

 One of the oldest theories for the cause behind trophic fractionation was the excretion of 

isotopically light nitrogen by the consumer, leaving a heavier ratio of nitrogen in the consumer’s 

tissues (Minagawa and Wada 1984). It follows that taxa with different excretion mechanisms 

may have differences in the associated fractionation. It has been shown that ureotelic organisms 

and uricotelic organisms yielded significantly higher trophic enrichment than ammonotelic 

organisms, guanicotelic organisms, and organisms excreting mainly amino acids (Vanderklift 

and Ponsard 2003). The difference in fractionation is hypothesized to be the result of the 

additional biochemical reactions required to synthesize urea or uric acid from ammonia. The 

additional reactions may involve additional fractionation which would result in urea and uric 

acid being isotopically lighter than ammonia, all other things being equal (Rieutord 1999; 
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Vanderklift and Ponsard 2003). For example, one might expect most marine fishes 

(ammonotelic) to display less trophic enrichment than elasmobranchs (ureotelic). 

 Diet can create differences in trophic discrimination among individuals within a species 

or even within an individual over time. One of the first published instances of the effect of diet 

on trophic discrimination was documented as an increased trophic enrichment in bird species 

associated with fasting, both in a controlled experiment and in the field during egg laying and 

incubation (Hobson and Clark 1993). It was hypothesized that under conditions of nutritional 

stress, more nitrogenous compounds are derived from catabolism for protein synthesis. Since this 

source of nitrogen has already been enriched, the catabolism would “double enrich” the 

synthesized protein leading to an increase in trophic fractionation. The quality of diet (often 

measured as protein content or C:N) can similarly affect trophic fractionation through nutritional 

stress. An increase in Δ15N with lower diet quality has been found in copepods (Trochine et al., 

2019), anomopod crustaceans (Adams and Sterner 2000), fish (Bowes et al. 2014), mammals and 

birds (Robbins et al. 2005), and in meta-analysis (Vanderklift and Ponsard 2003; McMahon and 

McCarthy 2016). In a few studies (Adams and Sterner 2000; Trochine et al. 2019), results 

indicated that nutritional stress from decreased diet quality may have a greater effect on trophic 

fractionation than fasting. It was hypothesized that when an animal is fasting, its tissues initially 

increase δ15N values as it breaks down proteins into amino acids and then keto acids, each 

transamination resulting in nitrogen isotope discrimination (Scrimgeour et al. 1995). But, after a 

time, the animal stops breaking down proteins and switches to lipids as an energy source instead 

and the associated increase in δ15N values stops (Castellini and Rea 1992; Cherel et al. 1988). 

Therefore, while starvation is a state of enhanced nutritional stress compared to a consistent 

intake of a lower quality diet, a low-quality diet may result in ongoing “double enrichment” and 
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may be associated with greater trophic fractionation. However, other studies have found either 

the opposite relationship (Doi et al. 2011; Tamelander et al. 2006; Oelbermann and Scheu 2002) 

or a null result (Aberle and Malzahn 2007; Aguilar et al. 2014; Robbins et al. 2005) which 

suggests the effect of nutritional stress may be dependent on the species being studied. 

 Another source of variability in trophic discrimination is the δ15N values of the food 

source. There is evidence that Δ15N decreases as δ15N values (trophic position) increases (Caut et 

al. 2008; Caut et al. 2009; Germain et al. 2013; Hussey et al. 2014). To my knowledge, there is 

no proposed mechanism for this decreasing fractionation. It is possible that, if fractionation 

affects a proportion of the nitrogen rather than a set value, there is less and less 14N left as trophic 

postion increases and so there is less 14N available as an option for excretion or other 

fractionation processes. Regardless, it appears this effect occurs within bulk tissues (Caut et al. 

2008; Caut et al. 2009; Hussey et al. 2014), as well as amino acids (Germain et al. 2013). The 

pattern of decreasing Δ15N with increasing trophic position has many important implications 

including a likelihood that the lengths of many food chains have been underestimated.  

 

A.1.3 TDFs and growth rate 

 Previously published mechanisms for variability in trophic discrimination could imply 

that the growth rate of an organism may play a role in determining trophic discrimination. First, 

since the mortality of fishes tends to decrease as their size increases (Houde 1987), juvenile fish 

may be increasing the proportion of nitrogenous compounds derived from catabolism in order to 

maximize their protein synthesis capabilities and therefore maximize their growth rate. If this is 

the case, faster growth rates would be associated with increased trophic fractionation. However, 

if food is not as limiting (as were the conditions for this study), then fish may not rely on the 
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slower catabolism, transamination, and deamination processes and instead use the amino acids 

and proteins of their food unaltered. If this is the case, faster growth rates would be associated 

with decreased trophic fractionation. Another consideration is N use efficiency which may 

change either ontogenetically and/or in connection with growth rate. 

 There are a few studies that have found differences in trophic discrimination with age, 

life stage, or body size (Roth and Hobson, 2000; Vander Zanden et al. 2012; Villamarín et al. 

2018). These observed differences may be related to changes in growth rate since most 

organisms have an inverse relationship between growth rate and age/life stage/body size (West et 

al. 2001), but, to my knowledge, there had only been one paper that has specifically investigated 

the effect of individual growth rate on trophic discrimination factor in a controlled setting. 

Trueman et al. (2006) conducted a controlled feeding experiment with Atlantic salmon, Salmo 

salar, and compared individual growth rate to muscle, liver, and hind gut contents δ13C and δ15N 

values. They found fish with faster growth rates exhibited significantly lower δ15N trophic 

discrimination in muscle tissue and no significant relationships between growth rate and trophic 

discrimination for liver δ15N values or muscle or liver δ13C values. The authors attributed the 

differences in trophic discrimination to variation in N use efficiency, suggesting that increasing 

growth rate is accompanied by increasing N use efficiency and a decrease in de novo amino acid 

synthesis. They further suggest that the lack of significant change in trophic discrimination in 

liver tissue may be because liver tissue contains a greater proportion of essential amino acids 

relative to amino acids that are potentially synthesized de novo, so changes in N use efficiency 

have a reduced effect. They propose two mechanisms for growth rate related changes in N use 

efficiency; either individuals with higher food intake rates have greater N use efficiency, or 

genetic variation in N use efficiency leads to variation in individual growth rates. Other studies 
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have found the opposite pattern (Rother and Hobson 2000), or a null result (Ponsard and 

Averbuch 1999) which is one reason the relationship between TDFs and growth rate merits 

further investigation.  

 

A.1.4 Objectives 

 The objective of this study was to determine what, if any, effect the growth rate of fish 

has on trophic discrimination factor. Such a relationship would have implications for trophic and 

migration studies using stable isotopes. When inferring migration over time, changes in trophic 

position and their associated effect on δ13C and δ15N values are often calculated or inferred so 

that the remaining changes to δ13C and δ15N values can be said to be due to movement. Most 

often, this is done using fixed trophic discrimination factors but, if more accurate, dynamic 

trophic discrimination factors could be used instead, it could increase the accuracy of the 

calculated movement.  

 

A.2 Methods 

A.2.1 Sample collection 

Juvenile Common Snook (Centropomus undecimalis) fin clips and fish feed were 

obtained from Mote Aquaculture Park in Sarasota, Florida. The fish were hatched and reared as a 

single cohort in a controlled tank environment and fed the same food throughout. Thirty fish 

were selected haphazardly from the cohort, representing the full size range of the cohort. 

Standard length (SL), fork length (FL), total length (TL), and weight in grams were measured for 

each fish and a dorsal fin clip was collected and frozen. Since all fish were growing for the same 
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amount of time, the largest fish had the fastest average growth rate, and the smallest fish had the 

slowest average growth rate. 

 

A.2.2 Isotopic analysis 

In the lab, fin clip samples and fish feed were dried at 55°C for a minimum of 48 hours. 

A dry weight of 300–600 µg of material was placed in tin capsules for combustion and isotopic 

analysis. 13C/12C, 15N/14N, and C:N measured in replicate using a Carlo-Ebra NA2500 Series II 

elemental analyzer coupled to a continuous-flow ThermoFinnigan Delta Plus XL isotope ratio 

mass spectrometer at the University of South Florida College of Marine Science in St. 

Petersburg, Florida. Calibration standards were NIST 8573 and NIST 8574 L-glutamic acid 

standard reference materials. Results are presented in standard notation (δ, in ‰) relative to 

international standards Pee Dee Belemnite (PDB) and air: 

δ𝑗𝑋 = (
( 𝑋

𝑗
/ 𝑋𝑖 )𝑠𝑎𝑚𝑝𝑙𝑒

( 𝑋
𝑗

/ 𝑋𝑖 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) ∗  1000 

where X is the element and j and i are each an isotope of X. 

 

A.2.3 Statistical analysis 

First, a regression was performed between the δ13C and δ15N values of all fin clip samples 

to test the hypothesis that TDFs were constant among individuals. If TDFs were constant among 

individuals, there would be a strong correlation between δ13C and δ15N values. Based on the 

results of this regression, two samples were eliminated due to anomalous δ15N values that could 

have been the result of measurement error or contamination. The δ13C and δ15N values of the 

feed were subtracted from the δ13C and δ15N values of the fin clips to calculate δ13C and δ15N 
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TDFs. Each variable was tested for normality using Shapiro-Wilk test. All variables were normal 

except for δ15N values and, subsequently, δ15N TDF. However, the linear regressions involving 

δ15N values and δ15N TDF had normally distributed residuals, so assumptions of linear 

regression were not violated. Linear regressions were performed between δ13C and δ15N TDFs, 

indicators of growth rate (SL, FL, TL, and weight), and C:N to assess whether there was a 

significant relationship between growth rate and TDF values and whether the C:N ratio of the 

samples may have influences results. All analyses were performed in R (version 4.0.5, R Core 

Team 2020). 

 

A.3 Results 

 A total of 30 juvenile Common Snook fin clips were analyzed for δ13C and δ15N values. 

The size range for the juveniles was 7.8 to 13.4 cm SL with an average SL of 10.3 cm. The 

weights of the juveniles ranged from 7.99 to 36.65 g with an average weight of 17.42 g. The δ13C 

values of the fin clips ranged from -20.41 to -19.54 ‰ with an average of -20.05 ‰ and a 

standard deviation of 0.20 ‰ (Table A.1). The δ15N values of the fin clips ranged from 8.07 to 

11.74 ‰ with an average of 9.91 ‰ and a standard deviation of 0.66 ‰. The mean isotopic 

values of the food were -23.39 and 4.48 ‰ for δ13C and δ15N respectively, which were 

subtracted from each of the fin clips to determine TDF values. The full dataset can be seen in 

Table A.1. 

If feed did not change and isotopic TDFs were constant, δ13C and δ15N values would be 

highly correlated. However, while regressions between δ13C and δ15N values were significant, R2 

values were below 0.3. This was an indicator that TDFs were not identical among fish. Based on 

the results of an initial δ13C and δ15N regression (Figure A.1a) with all fin clips, two samples that 
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appeared to have anomalous δ15N values (highest and lowest points on Figure A.1a) were 

removed from further analysis. The fit of the regression line was improved after the removal of 

those samples (Figure A.1b), but the R2 remained below 0.3. 

 

 

Figure A.1 

Results of linear regression between δ13C and δ15N values with all fin clips (a) and with two 

outlier samples removed (b). Sample size (n), regression equations, R2 values, and p-values are 

displayed on each plot. Shaded area represents standard error. 

 

 There does not appear to be a strong relationship between any indicators of growth rate 

and δ13C TDF. None of the regressions were significant and all had R2 values at or below 0.01 

(Figure A.2 a-d). Of the regressions performed, the strongest was with C:N (Figure A.2e), which 
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may indicate the relative fat content of the fin clips was the best predictor of δ13C values. The 

average C:N ratio among all samples was 4.38 whereas 3.5 is the accepted ratio above which a 

lipid correction should be performed (Post et al. 2007). It is possible that if the samples were 

lipid corrected, there would be a stronger relationship between δ13C TDF and the growth rate 

indicators. 

 The linear regression results between δ15N TDF and indicators of growth rate indicate a 

stronger relationship between δ15N TDF and growth rate than δ13C TDF and growth rate (A.3 a-

d). These results agree with those of Trueman et al. (2006). The length- δ15N TDF regressions 

collectively had a slope of roughly -0.14 indicating that if a fish had achieved an extra 1 cm of 

growth up until that point, its δ15N TDF would be roughly 0.14 ‰ lower. The strongest 

relationship was between δ15N TDF and weight where the slope was -0.04 indicating that for 

every 1 g of extra growth, the δ15N TDF would be 0.04 ‰ lower. That being said, all regressions 

had R2 values below 0.3, which indicates these relationships are not particularly strong and the 

slopes indicate that there has to be a somewhat substantial difference in growth rate in order to 

have a noteworthy effect on δ15N TDF. There was not a strong relationship between δ15N TDF 

and C:N, which indicates that the relative lipid content of samples was not a cause of the 

unexplained variation in δ15N TDF values. Based on the apparent weak to non-existent 

relationship between δ13C and δ15N TDFs and growth rate, this research was not pursued further 

for the purposes of this dissertation however, the results presented here did indicate that there 

was a significant relationship between growth rate and δ15N TDF which could merit further 

investigation in another study. 
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Figure A.2 

The results of regressions between δ13C TDF, growth rate indicators [standard length (a), fork 

length (b), total length (c), weight (d)] and C:N ratios (e). Regression equations, R2 values, and 

p-values are displayed on each plot. Shaded area represents standard error. 
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Figure A.3 

The results of regressions between δ15N TDF, growth rate indicators [standard length (a), fork 

length (b), total length (c), weight (d)] and C:N ratios (e). Regression equations, R2 values, and 

p-values are displayed on each plot. Shaded area represents standard error.
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Table A.1 

The full dataset used in the Appendix A pilot study. Mean, maximum, minimum, and standard deviation values for each variable are 

presented at the bottom of the table. Note, Fish 4 and Fish 6 were removed based on the results of the δ13C and δ15N regression based 

on anomalous δ15N values. 

 

Fish number SL (cm) FL (cm) TL (cm) Weight (g) 

δ13C value 

(‰) 

δ15N value 

(‰) C:N δ13C TDF (‰) δ15N TDF (‰) 

2 12.1 13.8 15.2 26.94 -19.80 9.70 4.07 3.59 5.22 

4 9.9 11.3 12.6 14.06 -20.13 8.07 4.20 3.26 3.60 

5 10.7 12.1 13.6 18.35 -20.36 9.55 4.42 3.02 5.07 

6 10.6 12 13.6 17.93 -19.90 11.74 4.40 3.49 7.26 

7 13.3 15.7 17.5 36.65 -20.32 9.29 4.19 3.07 4.81 

8 11.2 13 14.6 24.62 -20.15 9.35 4.21 3.24 4.87 

9 8.7 9.7 10.9 9.51 -20.41 9.41 4.44 2.98 4.93 

10 10.2 11.5 13 16.02 -20.22 10.25 4.47 3.16 5.77 

11 8.1 9.3 10.4 7.99 -20.07 10.99 4.41 3.32 6.51 

13 9.5 10.7 12.4 13.18 -19.93 10.22 4.28 3.46 5.74 

14 11.2 12.7 14.3 21.96 -20.16 9.75 4.34 3.23 5.27 

15 7.8 9.2 10.4 8.29 -20.17 9.45 4.17 3.22 4.97 

16 11.7 13.3 14.9 22.27 -19.98 10.29 4.13 3.41 5.81 

17 13.4 15.3 16.8 32.12 -20.00 9.56 4.20 3.39 5.08 

18 10.8 12.5 14.2 19.48 -19.88 9.99 4.19 3.51 5.51 

19 9 10.3 11.5 10.93 -20.23 9.87 4.34 3.15 5.39 

20 10.9 12.5 13.9 19.31 -20.25 9.72 4.39 3.14 5.24 

21 8.9 10.3 11.4 9.85 -20.00 10.24 4.21 3.39 5.76 

22 10.8 12.2 13.1 20.66 -20.22 9.55 4.20 3.17 5.07 

23 10.1 12 13.5 17.93 -20.09 9.48 4.26 3.30 5.00 

24 10.6 12 13.5 19.01 -20.23 9.45 4.30 3.16 4.97 

26 11.3 12.9 14.4 19.49 -20.02 9.93 4.28 3.37 5.45 

27 9.4 10.7 11.7 12.31 -19.54 10.72 4.14 3.84 6.24 
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Table A.1 (Continued) 

Fish number SL (cm) FL (cm) TL (cm) Weight (g) 

δ13C value 

(‰) 

δ15N value 

(‰) C:N δ13C TDF (‰) δ15N TDF (‰) 

28 10.2 11.5 13 15.10 -19.80 9.66 4.16 3.59 5.18 

29 9.1 10.3 11.7 10.53 -19.84 10.73 4.26 3.55 6.26 

30 9 10.4 11.7 11.68 -19.99 10.16 4.38 3.40 5.69 

31 11.4 12.9 14.5 21.14 -20.05 9.51 4.23 3.34 5.03 

32 9.4 10.6 11.9 12.24 -20.14 10.21 4.42 3.25 5.73 

33 9.9 11.3 12.7 15.65 -19.86 10.74 4.32 3.53 6.27 

34 10.9 12.3 13.7 17.26 -19.81 9.82 4.27 3.58 5.34 

          

Mean 10.34 11.81 13.22 17.42 -20.05 9.91 4.28 3.34 5.44 

Maximum 13.40 15.70 17.50 36.65 -19.54 11.74 4.47 3.84 7.26 

Minimum 7.80 9.20 10.40 7.99 -20.41 8.07 4.07 2.98 3.60 

Standard 

Deviation 
1.34 1.56 1.70 6.75 0.20 0.66 0.11 0.20 0.66 
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Appendix B: Tables of adjusted R2 values used for variable transformation selection 

 

This appendix contains tables of adjusted R2 values (R2
adj) for the linear regression of individual 

predictor variables with potential transformations and measured length-corrected δ13C or δ15N 

values. Each variable was transformed (if applicable) and then standardized before linear 

regression. Asterisks indicate which transformation (if any) was used on the predictor variable in 

the creation of the multiple regression models. Transformations were used if the R2
adj was at least 

0.01 greater than the R2
adj of the regression with the untransformed variable. Transformed or 

untransformed variables were then standardized and used in the multiple regression analysis in 

Chapter 3. 

 

Table B.1 

R2
adj from linear regressions with Red Snapper length-corrected δ13C values. 

 
 x Ln(x) x2 1/x √𝑥 

CDOM 0.005 0.076 <0.001 0.123* 0.029 

Chl 0.006 0.076 <0.001 0.133* 0.027 

Depth 0.154 0.112 0.166* 0.058 0.136 

Kd(PAR) 0.010 0.049 <0.001 0.096* 0.026 

Lat 0.002* 0.001 0.002 0.001 0.001 

Long 0.013* 0.014 0.013 0.014 0.014 

PAR 0.066 0.068 0.064* 0.069 0.067 

PAR(z) 0.009* 0.001 <0.001 0.002 0.015 

PIC 0.004 0.083 <0.001 0.147* 0.023 

POC 0.032 0.082 0.008 0.117* 0.055 

SST 0.004* 0.004 0.005 0.003 0.004 
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Table B.2 

R2
adj from linear regressions with Red Snapper length-corrected δ15N values. 

 
 x Ln(x) x2 1/x √𝑥 

CDOM 0.211 0.554 0.081 0.574* 0.391 

Chl 0.315 0.539* 0.215 0.511 0.419 

Depth 0.147 0.107 0.158* 0.058 0.130 

Kd(PAR) 0.346 0.478 0.244 0.530* 0.414 

Lat 0.275* 0.268 0.280 0.258 0.271 

Long 0.064* 0.067 0.062 0.070 0.065 

PAR 0.009* 0.009 0.008 0.010 0.009 

PAR(z) 0.045 0.196* 0.035 0.087 0.072 

PIC 0.235* 0.154 0.183 0.053 0.229 

POC 0.430 0.517* 0.339 0.508 0.481 

SST 0.027* 0.028 0.026 0.029 0.028 

 

Table B.3 

R2
adj values from linear regressions with Yellowedge Grouper length-corrected δ13C values. 

 
 x Ln(x) x2 1/x √𝑥 

CDOM 0.280* 0.209 0.260 0.100 0.256 

Chl 0.208 0.278* 0.103 0.153 0.266 

Depth 0.144* 0.134 0.138 0.100 0.142 

Kd(PAR) 0.247 0.260 0.192 0.219 0.261* 

Lat 0.045 0.035 0.057* 0.026 0.040 

Long 0.310* 0.307 0.314 0.302 0.308 

PAR 0.182* 0.187 0.176 0.191 0.184 

PAR(z) 0.040 0.078* 0.040 0.005 0.038 

PIC 0.198 0.167 0.143 0.060 0.217* 

POC 0.298* 0.281 0.253 0.196 0.300 

SST 0.160 0.148 0.172* 0.137 0.154 
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Table B.4 

R2
adj values from linear regressions with Yellowedge Grouper length-corrected δ15N values. 

 
 x Ln(x) x2 1/x √𝑥 

CDOM 0.681 0.767* 0.500 0.658 0.749 

Chl 0.485 0.706* 0.306 0.680 0.607 

Depth 0.013 <0.001 0.034* 0.021 0.004 

Kd(PAR) 0.608 0.697 0.481 0.713* 0.660 

Lat 0.417 0.383 0.449* 0.349 0.400 

Long 0.069* 0.069 0.068 0.069 0.069 

PAR <0.001* <0.001 0.001 <0.001 <0.001 

PAR(z) 0.082 0.393* 0.080 0.034 0.103 

PIC 0.249* 0.166 0.250 0.065 0.234 

POC 0.658 0.724* 0.558 0.698 0.699 

SST 0.028* 0.026 0.031 0.023 0.027 
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Appendix C: Summary data for predicted values used in temporal variability isoscapes 

 

Table C.1 

A table of the maxima (Max), minima (Min), means, and standard deviations (Stdev) of length-

corrected δ13C and δ15N values, including those predicted for seasons within La Niña (2011) and 

El Niño (2015) years. Values were either measured in the muscle tissue of the respective species 

or predicted based on the statistical models created in Chapter 3 (Table 3.1). The values from the 

“Catchdate” rows were predicted for the time period each respective station was sampled. 

 

 Red Snapper Yellowedge Grouper 

 Max Min Mean Stdev Max Min Mean Stdev 

Measured δ13C values  0.96 -1.04 0.01 0.42 0.58 -0.65 <0.01 0.31 

Measured δ15N values 2.35 -3.16 -0.02 1.36 2.40 -1.86 0.04 1.08 

Catchdate δ13C values 0.41 -0.59 0.01 0.22 0.53 -0.54 <0.01 0.25 

Jan – Mar 2011 δ13C values 0.43 -0.91 0.01 0.29 0.92 -0.69 <0.01 0.34 

Apr – Jun 2011 δ13C values 0.50 -0.71 0.01 0.31 0.58 -0.51 <0.01 0.26 

July – Sep 2011 δ13C values 0.45 -0.67 0.01 0.23 0.55 -0.61 <0.01 0.32 

Oct – Dec 2011 δ13C values  0.41 -0.83 0.01 0.30 0.88 -0.84 <0.01 0.37 

Jan – Mar 2015 δ13C values 0.39 -1.03 0.01 0.34 0.58 -0.67 <0.01 0.32 

Apr – Jun 2015 δ13C values 0.44 -0.71 0.01 0.29 0.56 -0.39 <0.01 0.23 

July – Sep 2015 δ13C values 0.55 -0.72 0.01 0.27 0.54 -0.58 <0.01 0.29 

Oct – Dec 2015 δ13C values 0.43 -0.96 0.01 0.31 0.87 -0.66 <0.01 0.34 

Catchdate δ15N values 1.81 -2.88 -0.02 1.28 1.97 -1.40 0.04 0.95 

Jan – Mar 2011 δ15N values 1.83 -2.36 -0.02 1.06 2.95 -1.83 0.04 0.95 

Apr – Jun 2011 δ15N values 2.09 -2.80 -0.02 1.29 2.44 -1.25 0.04 0.95 

July – Sep 2011 δ15N values 2.06 -2.86 -0.02 1.21 1.80 -1.30 0.04 0.95 

Oct – Dec 2011 δ15N values 2.58 -3.11 -0.02 1.16 1.85 -1.57 0.04 0.95 

Jan – Mar 2015 δ15N values 2.17 -2.23 -0.02 1.05 2.43 -1.42 0.04 0.95 

Apr – Jun 2015 δ15N values 2.52 -2.32 -0.02 1.15 2.38 -1.34 0.04 0.95 

July – Sep 2015 δ15N values 2.12 -2.50 -0.02 1.24 1.95 -1.36 0.04 0.95 

Oct – Dec 2015 δ15N values 2.06 -2.54 -0.02 1.15 2.32 -1.12 0.04 0.95 
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Appendix D: Metadata for research cruises including eye lens samples 

 

Table D.1 

Metadata for the research cruises from which the muscle and eye lens samples were obtained. 

The regions include the West Florida Shelf (WFS), the northern Gulf of Mexico (NG), the 

western Gulf of Mexico (WG), Campeche Bay, Mexico (CB), and the Yucatan Peninsula, 

Mexico (YP). The number of Red Snapper (n) refers to the number of Red Snapper caught 

during each cruise. The muscle and eye lens samples columns refer to how many muscle or eye 

lens samples were used respectively. Note: eyes were not sampled in 2011. 

 

Year Vessel Region n  

Muscle 

samples 

Eye 

samples 

2011 F/V Sea Fox WFS 16 5 0 

2011 F/V Brandy WFS 86 23 0 

2011 F/V Pisces WFS, NG 475 34 0 

2015 R/V Weatherbird II WFS, NG, CB, YP 133 23 3 

2016 R/V Weatherbird II NG, WG, CB, YP 347 38 5 
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Appendix E: Oxygen isoscape of Gulf of Mexico continental shelf using Red Snapper 

muscle 

 

E.1 Background 

E.1.1 Spatial trends in δ18O values 

Whereas carbon and nitrogen are perhaps the elements used most frequently for food web 

studies and are also often the preferred elements for migrations studies as well, oxygen has long 

been used in paleoceanographic studies (Hoefs 2004) and is also used in studies of modern 

ecosystems (Vander Zanden et al. 2016). Environmental values of δ18O are primarily driven by 

hydrologic processes, namely evaporation and precipitation. Evaporation preferentially removes 

16O from the oceans and precipitation preferentially adds 18O because of equilibrium 

fractionation processes (Gat 1996). Because of these processes, a few major patterns emerge. 

First, δ18O values tend to be highly correlated with salinity. Ocean regions such as the 

Mediterranean Sea experience high rates of evaporation and consequently have higher salinity 

and δ18O values (Bowen 2010), whereas areas receiving high amounts of freshwater input from 

precipitation or other sources have lower salinity and δ18O values (Campana 1999; LeGrande and 

Schmidt 2006). An exception to this rule is in areas where a high volume of sea ice is being 

formed. Sea ice preferentially incorporates 18O and excludes salt, and, in these areas, there may 

be seasonal changes in the δ18O–salinity relationship (Craig and Gordon 1965; Pfirman et al. 

2004; LeGrande and Schmidt 2006). A second trend is that of decreasing δ18O values toward the 

poles due to Raleigh distillation, wherein 18O is preferentially “rained out” of air masses as they 
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move away from the equator, leaving only relatively low δ18O values when the air masses reach 

the poles (Hoefs 2004). Last, the fractionation of oxygen isotopes is affected by temperature 

though the effect is relatively small (~0.2 ‰ per °C) and is often overwhelmed by the processes 

mentioned above (Fry 2006). There is evidence that seasonal extremes can influence time-

averaged spatial patterns of precipitation δ18O values (van der Veer et al. 2009) which would, in 

turn, affect ocean δ18O values. Since these relationships are relatively well-understood and 

predictable, δ18O values in water can provide key information on water origins (e.g., local 

precipitation, ground water), climate (ambient temperatures during condensation and 

precipitation), and the degree of evapotranspiration, and global δ18O isoscapes can be modeled 

with good accuracy (Clark and Fritz 1997; LeGrande and Schmidt 2006). 

 

E.1.2 δ18O isoscapes  

 Documentation of spatial variation in δ18O values goes back as far as the 1950’s 

(Dansgaard 1954) and, in the 1960’s, relationships between spatial patterns of δ18O values and 

precipitation, evaporation, and salinity were described (Craig and Gordon 1965). Whereas the 

primary focus for oxygen isoscapes and related migration studies has been on 

terrestrial/freshwater environments (i.e., Bowen 2010), several global seawater oxygen isoscapes 

have been created based on these same relationships. In 2006, LeGrande and Schmidt created an 

oxygen isoscape using data from the Schmidt (1999) database. The isoscape was created with 

empirically measured δ18O values and a combination of nearby datapoints, and δ18O values 

modeled from climatological salinity and the regional δ18O–salinity relationship were used to 

smooth between points and fill in data-poor areas. They note that the δ18O–salinity slope is 

greatest at mid-latitudes and high northern latitudes and shallowest at low latitudes and the 
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Southern Ocean due to the δ18O values of freshwater end members. For instance, near the 

equator, the majority of water exchanged between the ocean and atmosphere remains in the 

region, meaning the difference in δ18O values between freshwater endmembers and evaporate is 

very small. Another isoscape was created using the same dataset (though with more datapoints as 

it was created years later) by McMahon et al. (2013). Unlike LeGrande and Schmidt (2006), 

McMahon et al. (2013) only used measured δ18O values and interpolated between them rather 

than smoothing with modeled δ18O data. However, they do mention a model for δ18O values by 

Benway and Mix (2004) which uses evaporation, precipitation, advection, and river run off in a 

mass balance equation. They also note a few areas where the negative relationship between δ18O 

values and latitude to not hold true namely, the east and west coasts of the United States. On the 

waters off the west coast, the California Current brings isotopically light polar waters much 

further south than they would normally be found, and off the east coast, the Gulf Stream brings 

isotopically heavy tropical waters much further north than they would normally be found. Their 

isoscape also depicts the plumes of isotopically light water from major rivers such as Amazon 

and the Orinoco in the tropics and the MacKenzie and Ob in the Arctic.  

An important consideration when evaluating δ18O isoscapes is potential temporal 

variability. Temporal variation has been measured in meteoric, surface, and ground water and 

that variability is spatially heterogeneous (Kendall and Coplen 2001; Bowen 2008). Freshwater 

temporal variability can subsequently create temporal variability in an ocean isoscape through 

precipitation and riverine input. In regard to riverine input, temporal variability could also be 

introduced through changes in river management (e.g., dams, irrigation return, diversions for 

agricultural, and urban use) on an intra- or inter-annual scale (Kendall and Coplen 2001). Rooker 

et al. (2008) found significant inter-annual variability in tuna otolith δ18O values from the 
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Atlantic Ocean, but they also documented high success (87 %) in assigning natal locations to fish 

when year classes were pooled. Rooker et al., (2010) found very similar results working with 

Red Drum in estuaries within the Gulf of Mexico. This suggests that temporal variation may not 

overwhelm spatial patterns in oxygen isotopes but, accounting for or removing temporal 

variation (i.e., when fish year classes were analyzed separately) can improve results. 

 

E.1.3 δ18O values in the Gulf of Mexico 

 Global isoscapes indicate that there is very little variability in δ18O values within the Gulf 

of Mexico except, perhaps, a slight decrease with latitude (LeGrande and Schmidt 2006; 

McMahon et al. 2013). However, these isoscapes do not appear to have much data coverage for 

the Gulf of Mexico and the spatial scale for these isoscapes is so large that variation on the scale 

of the Gulf of Mexico may not be captured. It is likely δ18O values decrease from south to north 

in the Gulf of Mexico due to evaporation/precipitation conditions and Raleigh distillation but, 

there are other processes that are likely to affect δ18O values at a regional scale. 

Many rivers enter the Gulf of Mexico, transporting isotopic values from their watersheds 

to be mixed with ocean waters. Bowen (2010) created an oxygen isoscape of America’s river 

waters using a model by Dutton et al. (2005) and data from Kendall and Coplen (2001). This 

isoscape indicates that most rivers leading into the Gulf of Mexico will have δ18O values ranging 

from 0 to -6 ‰ but the Mississippi River will be a combination of waters ranging from -2 to -20 

‰, so the Mississippi River plume at the northern end of the Gulf of Mexico may have a lighter 

isotopic value than other riverine input. This may also mean that the waters in the northern Gulf 

of Mexico have lighter δ18O values than would be predicted based purely on latitude or salinity 

(as would be the case with global isoscapes), and the latitudinal gradient may be steeper than the 
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one seen in global isoscapes. The Mississippi River plume generally flows west past Louisiana, 

sometimes reaching as far as Texas (Justić et al. 1995), which could potentially create an east-

west gradient as Mississippi River water mixes with isotopically heaver ocean water. On the east 

side of the Mississippi River, Mobile River puts a substantial volume of freshwater into the Gulf 

of Mexico but, based on the isoscape by Bowen (2010) the freshwater from Mobile River should 

be isotopically heavier than Mississippi River water (though still lighter than ocean water). The 

interaction of these two freshwater sources and ocean water could potentially create another 

gradient to the east of the Mississippi River or, perhaps, a less linear spatial pattern. The 

Grijalva–Usumacinta River flows into the south end of Campeche Bay and is transported north-

west towards Texas (Zavala‐Hidalgo et al. 2003). This could potentially create another gradient 

between the river and ocean waters going north. The shape of rivers will also influence their 

isotopic values through evaporative dynamics (e.g., shallower, slower moving rivers will 

experience more evaporation than deep, fast rivers) and saltwater intrusion. This effect has been 

observed in otolith δ18O values from Red Drum in estuaries in the western Gulf of Mexico, 

wherein δ18O values were higher in estuaries with higher salinity (higher evaporation and/or 

saltwater intrusion; Rooker et al. (2010)). 

 Oxygen has an excellent potential as a natural tag in migration studies because δ18O 

values in aquatic organism tissues are primarily determined by water δ18O values rather than 

diet/trophic interactions (Ehleringer et al. 2008; Wang et al. 2009; Nielson and Bowen 2010; 

Soto et al. 2013; Schilder et al. 2015; Vander Zanden et al. 2016; Coulter et al. 2017; Camin et 

al. 2018). One reason for this relationship may be that most oxygen in biomolecules is found 

within functional groups and, therefore, oxygen does not experience as much atomic routing 

compared with other isotopes (Vander Zanden et al. 2016). Most of oxygen isotope work in fish 
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has been conducted using otoliths. According to the work of Thorrold et al. (1997), otoliths are 

deposited close to equilibrium with the ambient water, with a small but significant fractionation 

factor due to temperature [1000In(Δ18O) = 18.56(103 T K-1) - 32.54)]. Several studies have found 

that muscle δ18O values are also highly reliant on water δ18O values (Turchini et al. 2009; Soto et 

al. 2013; Coulter et al. 2017; Camin et al. 2019). There is evidence that other tissues may be 

affected by temperature-controlled fractionation similar to otoliths (Schilder et al. 2015), but not 

much research has been conducted exploring this effect. Food, physiological factors (i.e., growth 

rate), and dissolved oxygen δ18O values likely have an influence on aquatic animal tissue δ18O 

values (Darnaude et al. 2014; Vander Zanden et al. 2016; Coulter et al. 2017), but given that 

water δ18O values can account for over 80 % of the tissue δ18O values (Soto et al. 2013), it seems 

unlikely that effects from food, physiological factors, or dissolved oxygen would overwhelm the 

influence of water isotopic values.  

 

E.1.4 δ18O values in organism studies 

 Spatial oxygen isotope patters and preserved oxygen isotopes in organism tissues have 

allowed for oxygen isotopes to be used in a multitude of migration studies. Many of those studies 

are terrestrial (Hobson and Wassenaar 2008), but the use of oxygen isotopes for migration 

studies is becoming more common in aquatic studies as well. As mentioned previously, most 

aquatic studies are conducted using oxygen in otoliths, which provide a complete environmental 

history for individual fish. Early studies demonstrated that otolith stable carbon and oxygen 

could be used to differentiate between coastal marine, estuarine, river, and lake environments 

throughout the life cycle of New Zealand common smelt (Nelson et al. 1989). A subsequent 

study noted the utility of otolith oxygen isotopes for obtaining information about the larval 
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phases of fishes (Meyer-Rochiw et al. 1992). Since those early studies, otolith cores have been 

used to identify larval/juvenile habitat for both freshwater (Dufour et al., 2008; Zeigler and 

Whitledge 2010; Norman and Whitledge 2015) and marine species (Rooker et al. 2001; Thorrold 

et al. 2001; Dorval et al. 2005; Rooker et al. 2008). In the Gulf of Mexico, Red Snapper otolith 

stable isotopes and elemental ratios were used to distinguish six nursery habitats around the Gulf 

(Sluis et al.2012), and those established nursery chemical characteristics were then used to infer 

population connectivity for Red Snapper caught around the Gulf (Sluis et al.2015). Whereas 

those studies used both stable isotopes and elemental ratios, another study was able to distinguish 

between Gulf of Mexico estuaries as natal habitat using only stable isotopes (Rooker et al. 2010). 

A classification success of over 80 % was achieved for each year class studied, and it was noted 

that models containing only oxygen performed better than models containing only carbon. These 

results indicate, at least for Gulf of Mexico estuaries, oxygen may be more suited to geographic 

studies than carbon. Otolith stable isotopes have also been used to create environmental histories 

for fish, especially salinity and temperature histories (Kerr et al. 2007; Darnaude et al. 2014) 

which may, in turn, be used to infer geographic movement.  

Geographic studies using stable oxygen isotopes in fish muscle are much less common, 

most likely because, unlike otoliths, fish muscle does not provide a lifelong environmental 

record. The main application for these types of studies appears to be tracing the origin of market 

fish fillets. Turchini et al. (2009) set out to find the best methods to discriminate between Murray 

cod from different farms. They found that stable isotopes were more effective than fatty acid and 

tissue proximate compositions or morphological parameters. They further found that C and N 

were most useful for discriminating feed types, and that O could be used to link fish to a specific 

water source. Camin et al. (2019) used H, C, O, N, and S stable isotopes in Italian rainbow trout 
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investigate the ability of stable isotopes to trace trout fillets back to farms in one of two northern 

Italian regions. After determining the relationships between the various stable isotopes and either 

feed type or tank water δ18O values, they were able to assign geographic origins of fillets with 

91% accuracy. 

 

E.1.5 Objectives 

The objective of this study was to assess the spatial patterns of δ18O values in the Gulf of 

Mexico for possible future use in migration studies. Previous studies indicated there is ample 

variability in the Gulf of Mexico and that variability would be preserved in fish tissues. Other 

studies indicated that the δ18O values of seawater are transferred into fish tissues with no trophic 

fractionation which makes its interpretation less complicated than that of δ13C or δ15N values. If 

migration studies can use direct isotopic measurements, there is the potential for the ability to 

resolve differences between freshwater input sources that have δ18O values that are both lighter 

than seawater δ18O values but not equal to each other (i.e., Mississippi river and the Grijalva–

Usumacinta River). Of particular relevance to this dissertation, robust prediction of water δ18O 

values at different times of year could be used to create temperature-dependent fractionation 

equations, and these equations could be used to infer thermal histories of individuals using 

otoliths or eye lenses (Storm‐suke et al., 2007; Dufour et al., 2008). Since eye lenses do not have 

clear demarcations of time increments, it would be very useful to detect an annual temperature 

cycle in the δ18O values in eye lenses. Regardless of the temperature fractionation effect, a Gulf 

of Mexico oxygen isoscape has potential uses for ecology around the Gulf and could be used to 

resolve migration ambiguities from other isoscapes. 
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E.2 Methods 

E.2.1 Sample collection and isotopic analysis 

Red Snapper muscle samples were collected on longlining cruises in the Gulf of Mexico 

in the years 2015 and 2016 (Figure E.1a). These were same muscle samples used in Chapters 2 

and 3. See Chapter 2 for a full description of sample collection and δ13C and δ15N analysis 

methods.  

Thirty Red Snapper muscle samples were analyzed for δ18O values at the Stable Isotope 

Core Laboratory at Washington State University. Samples were converted to CO gas with a 

pyrolysis elemental analyzer (TC/EA, ThermoFinnigan) with a GC column. The gas was then 

analyzed with a continuous flow isotope ratio mass spectrometer (Delta Plus XP, 

ThermoFinnigan). Results were presented in standard notation (δ, in ‰) relative to international 

standard VSMOW: 

δ𝑗𝑋 = (
( 𝑋

𝑗
/ 𝑋𝑖 )𝑠𝑎𝑚𝑝𝑙𝑒

( 𝑋
𝑗

/ 𝑋𝑖 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

− 1) ∗  1000 

where X is the element and j and i are each an isotope of X. Results were normalized on scale 

such that the oxygen value of SLAP (Standard Light Antarctic Precipitation) was -55.5 ‰. The 

2-sigma uncertainty of oxygen isotopic results was 0.4 ‰. 
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Figure E.1 

Maps of the capture locations and years of capture (a), δ18O values by station (b), and a kriged 

isoscape based on the measured δ18O values (c). On map (a), green points were sampled in 2015 

and purple points were sampled in 2016. The values in (b) are station averages.  
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E.2.2 Statistical analysis 

 First, the δ18O values, SL, δ13C values, and δ15N values of the samples were tested for 

normality using the Shapiro-Wilk test. In order to assess if δ18O values undergo trophic 

fractionation, linear regressions were performed between δ18O values and SL, δ13C values, and 

δ15N values, all typically assumed to increase with trophic position (Post 2002). Spearman rank 

correlations were performed between δ18O values and the potential predictor variables used in 

Chapter 3 to assess which might have been influential to δ18O values. The potential predictor 

variables included colored dissolved organic matter (CDOM), chlorophyll a concentration (Chl 

a), the average depth of the trawl (Depth), light attenuation of photosynthetically active radiation 

[Kd(PAR)], latitude, longitude, photosynthetically active radiation (PAR), particulate inorganic 

carbon (PIC), particulate organic carbon (POC), and sea surface temperature (SST). All analyses 

were performed in R (version 4.0.5, R Core Team 2020). 

 

E.3 Results 

 A total of 30 Red Snapper muscle samples were analyzed for δ18O values. The measured 

δ18O values ranged from 15.82 to 19.39 ‰ with an average of 17.21 ‰ and a standard deviation 

of 0.91 ‰ (Table E.2). Trophic fractionation of δ18O values has not been documented in 

previous studies (Ehleringer et al. 2008; Wang et al. 2009; Nielson and Bowen 2010; Soto et al. 

2013; Schilder et al. 2015; Vander Zanden et al. 2016; Coulter et al. 2017; Camin et al. 2018). 

There was neither a substantial nor significant relationship between δ18O values and SL (Figure 

E.2a) nor between δ18O and δ15N values (Figure E.2c), which indicated δ18O values were not 

influenced by trophic growth. It should be noted that δ15N values were not normally distributed 

in these samples, and that the regression between δ15N and δ18O values did not have normally 
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distributed residuals. Therefore, the assumptions of linear regression were violated. However, the 

results of the linear regression were not marginal and, a visual examination of the data did not 

indicate the conclusion that there was no significant relationship between δ18O and δ15N values 

was incorrect. There was a significant but insubstantial negative relationship between δ18O and 

δ13C values (Figure E.2b) which suggests δ18O and δ13C values may be influenced similar 

ecological processes. 
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Figure E.2 

Graphs for the results of regressions between δ18O values and SL (a), δ13C values (b), and δ15N 

values(c). The equations, R2 values, and p-values are displayed on each plot. The shaded area 

represents standard error. 
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While the kriged isoscape depicts some spatial patterns (Figure E.1c), many of these are 

based on anomalous high or low values, and there was sometimes a high level of within-station 

variability. For example, the isoscape would suggest there is an area of high δ18O values off the 

coast of Louisiana. However, that pattern is mostly the result of the highest measured value 

(19.39 ‰) being measured at that location, and the other values measured at that location (18.7 

and 16.32 ‰) do not suggest this area commonly has particularly high δ18O values. Similarly, 

the area of low δ18O values off Florida was based off a single measurement of 16.35 ‰. The plot 

of δ18O values by station (Figure E.1b) often depicts stations with higher values very close to 

stations with lower values, which suggests many spatial patterns may not be consistent. There 

does appear to be a somewhat consistent gradient from the high value off Louisiana to lower 

values east and west of that location. 

The relationship between δ18O values and the potential predictors of spatial isotopic 

variation used in Chapter 3 was tested via Spearman rank correlations (Table E.1). None of the 

potential predictors had a significant correlation with δ18O values. The predictor that had the 

strongest relationship was PIC (rho = 0.49, p = 0.05). This correlation along with the significant 

regression between δ18O and δ13C values suggest that there may be fractionation of δ18O and 

δ13C values associated with the creation of PIC (primarily calcium carbonate) which may merit 

investigation. Overall, the results of these correlations do not indicate there are strong 

relationships between δ18O values and the predictors used in this dissertation on the continental 

shelf of the Gulf of Mexico. In conclusion, I decided not to expand on this pilot study for the 

purposes of my dissertation, but there may be indications that there is a spatial gradient present 

in the northern Gulf of Mexico that could be investigated in future studies. 
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Table E.1 

A table of the rhos and p-values for Spearman rank correlations between δ18O values and 

potential predictors of spatial isotopic variation. The potential predictors are colored dissolved 

organic matter (CDOM), chlorophyll a concentration (Chl a), the average depth of the trawl 

(Depth), light attenuation of photosynthetically active radiation [Kd(PAR)], latitude, longitude, 

photosynthetically active radiation (PAR), particulate inorganic carbon (PIC), particulate organic 

carbon (POC), and sea surface temperature (SST). All potential predictors except Depth, Lat, and 

Long were 3-month average values for the location from the MODIS-Aqua satellite (see Chapter 

3 for details). 

 
 rho p 

CDOM 0.40 0.12 

Chl a 0.40 0.12 

Depth 0.08 0.77 

Kd(PAR) 0.37 0.16 

Latitude 0.24 0.36 

Longitude 0.02 0.94 

PAR -0.25 0.36 

PIC 0.49 0.05 

POC 0.38 0.14 

SST 0.17 0.53 

 

 



253 

 

Table E.2 

The full dataset used in the Appendix E pilot study. The “Year” column refers to the year of collection for the muscle tissue. The “SL” 

column is standard length in cm. The potential predictors are colored dissolved organic matter (CDOM), chlorophyll a concentration 

(Chl a), the average depth of the trawl (Depth), light attenuation of photosynthetically active radiation [Kd(PAR)], latitude, longitude, 

photosynthetically active radiation (PAR), particulate inorganic carbon (PIC), particulate organic carbon (POC), and sea surface 

temperature (SST). All potential predictors except Depth, Lat, and Long were 3-month average values for the location from the 

MODIS-Aqua satellite (see Chapter 3 for details). 

 

Sample ID Station ID Latitude Longitude Year SL (cm) Depth (m) δ15N value δ13C value δ18O value 

1547063 47 28.37 -90.51 2015 43 50.84 12.89 -17.81 17.21 

1547069 47 28.37 -90.51 2015 50 50.84 14.10 -17.36 17.64 

1547076 47 28.37 -90.51 2015 61 50.84 15.31 -16.54 17.08 

150440019 440 28.07 -84.44 2015 52 64.62 11.66 -18.05 16.35 

150840005 840 29.89 -87.22 2015 60 75.51 14.73 -16.67 17.56 

150840007 840 29.89 -87.22 2015 40 75.51 14.19 -17.12 15.88 

151040058 1040 29.20 -88.87 2015 57 57.36 16.17 -16.91 17.39 

151040078 1040 29.20 -88.87 2015 54 57.36 15.56 -17.01 16.77 

141240003 1240 28.83 -89.51 2014 56 62.21 16.41 -17.66 18.49 

141240004 1240 28.83 -89.51 2014 55 62.21 16.08 -17.51 18.45 

141240011 1240 28.83 -89.51 2014 55 62.21 16.14 -17.90 19.21 

151240041 1240 28.83 -89.51 2015 50 59.85 15.66 -17.48 17.01 

151240046 1240 28.83 -89.51 2015 57 59.85 16.29 -17.01 17.27 

151240064 1240 28.83 -89.51 2015 55 59.85 15.72 -17.41 16.18 

162080003 2080 27.83 -93.46 2016 49 138.50 12.04 -18.09 16.32 

162080007 2080 27.83 -93.46 2016 53 138.50 12.49 -17.94 18.70 

162080012 2080 27.83 -93.46 2016 57 138.50 12.62 -17.79 19.39 

162220003 2220 27.52 -96.70 2016 58 47.13 15.17 -16.52 16.40 

162220006 2220 27.52 -96.70 2016 63 47.13 15.76 -16.22 16.94 

162240008 2240 27.44 -96.55 2016 61 76.50 14.91 -16.77 17.41 
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Table E.2 (Continued) 

Sample ID Station ID Latitude Longitude Year SL (cm) Depth (m) δ15N value δ13C value δ18O value 

162440010 2440 25.52 -96.66 2016 60 76.23 14.04 -17.24 16.93 

162440011 2440 25.52 -96.66 2016 54 76.23 14.76 -16.68 16.98 

162540026 2540 24.02 -97.31 2016 36 90.54 13.08 -17.24 16.67 

162740001 2740 19.96 -96.40 2016 69 90.32 12.77 -16.95 16.81 

162840001 2840 19.17 -95.76 2016 35 121.04 11.85 -17.69 17.11 

153360003 3360 22.25 -91.50 2015 54 114.30 12.31 -17.13 16.32 

153460012 3460 22.66 -90.11 2015 48 114.22 11.56 -17.22 17.78 

153460015 3460 22.66 -90.11 2015 76 114.22 12.00 -16.78 16.70 

154602002 4602 19.39 -92.33 2015 55 63.09 13.13 -16.02 17.39 

154602012 4602 19.39 -92.33 2015 62 63.09 12.92 -15.97 15.82 
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