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ABSTRACT 

        The ranked set sampling (RSS) design is applied widely in agriculture, environmental science, and 

medical research where the exact measurements of sampling units is costly, but sampling units can be 

ranked by a correlated concomitant variable.  RSS is usually a cost-efficient alternate to simple random 

sampling (SRS) for selecting more representative samples. This study presents a novel methodology to 

investigate the nonparametric estimation of transition probabilities in illness-death model using the RSS 

design.  We study the Aalen–Johansen estimator of transition probabilities in illness-death Markov model 

based on RSS design under random right censoring time and propose nonparametric estimators of the 

transition probabilities.  We compare the performance of the suggested estimators with their SRS 

counterparts via simulation study, in which two censoring levels are considered.   Our results show that 

the proposed estimator under RSS design outperforms its competitors in SRS design in many simulation 

scenarios.  When sample size is big with the highest set number, the proposed estimator performs the best. 

Conventional and RSS modified Aalen Johansen estimators are applied to healthy start project and colon 

cancer dataset correspondingly for illustration.  The Aalen-Johansen estimator under RSS design 

possesses higher efficiency as compared with its SRS competitor from simulation study and real research 

datasets.      
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1 Introduction 

1.1 Simple Random Sampling 

        As we know that performing a study for an entire population is expensive and unnecessary.  

Sometimes it is considered impossible.  Sampling technologies were developed to draw inferences about 

the target population from a sample with reduced costs.1,2  In order to produce reliable conclusions about 

the reference population, samples need to contain necessary sample size and sufficient 

representativeness.3  The most challenging aspect in reality is obtaining representative samples because it 

is essential in terms of generalizability.2  Probability sampling is a sampling technique which gives every 

unit in the target population a known and nonzero chance of being selected.  Compared with 

nonprobability sampling, probability sampling usually provides more representative samples, less 

selection bias and statistical inferences to the population.4  Simple random sampling (SRS) is the most 

fundamental and recognized procedure of selecting samples, in which each unit in the sampling pool has 

equal probability of being selected.5  If a population is denoted as , in SRS, sample s of size n is selected 

unit by unit with or without replacement.5  There are two prerequisites for simple random sampling to 

perfectly carry out: the whole population is accessible to the researchers and the researchers have a list of 

all individuals from the population.6  Researchers can use computer program, lottery method or a table of 

random numbers to generate the random sample.7  SRS design has certain advantages, such as high 

internal and external validity, simple and straightforward method to analyze data, minimal knowledge 

needed for the population.  All of the above make SRS design the most widely applied technique in 

observational studies.8  Other strengths of SRS include: every sampling unit has an independent 

probability of being selected; it is a facile method to understand and communicate; most statistical 

software have incorporated procedures to handle the inferential statistics.7        
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1.2 Ranked Set Sampling                    

        Ranked Set Sampling (RSS) was first introduced by McIntyre in 1952 to improve the accuracy of 

estimating pasture.9  Agricultural and environmental monitoring data are usually observational.10  Since 

laboratory analysis of these units are expensive, it is better to obtain such data with representative samples 

of the population.  The philosophy of RSS is that promising observational economy could be achieved if 

we could identify a large number of samples representing the population, yet only carefully select 

subsamples to be measured.10  In 1966, RSS was applied to estimate weights and forage yields, which 

showed considerably more efficiency than SRS.11 However, when population pool is large and sample 

size is small, samples selected by SRS may not represent the population well and have reduced power for 

a given significant level.12  In this situation, the uncertainty of estimating population mean is increased.  

To solve this problem, normally scientists increase sample size.10,12,13  However, the study economy is 

compromised after increasing sample size. 

        If we carry out the study with RSS of same sample size, more representative samples could be 

obtained via an underlying ranking process.  When the outcome variable is expensive to measure, we 

could use a less costly covariate which is correlated with the outcome to rank a random sample.  Then 

pick a unit according to its rank to perform full measurement and discard the rest.  Repeat this procedure 

multiple times.  The difference between this RSS process and previous SRS design is that though they 

both have same sample size, the number of subjects who participated the procedure is much higher for 

RSS.  There is a silent stratification process during the RSS procedure, which provides underlying 

information and finally helps to obtain more representative samples to span the full range of values in 

thepopulation.10,14    

1.2.1 Advantages of RSS 

        RSS is a sampling design technique to obtain more representative units from the population where 

measurement of the units is costly or time-consuming.15  This sampling technique is powerful, cost-

effective and efficient.16,17  The improved efficiency is a consequence of additional information provided 
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by ranked but not measured units.17  What we randomly sampled are the subpopulations with relatively 

low, medium and high distribution.  These subpopulations are formed without construction real strata but 

by ranking.10  Each subpopulation has its own distribution.  These subpopulations’ distributions comprise 

the parent distribution.  Even though both RSS and SRS obtain a sample size of km (k is set number, m 

is cycle number.), the number of units really participated in an RSS procedure is k2m.  However, only 

km units are measured.  Through this process of randomly sampling and ranking at the same time, RSS 

obtained more regularly spaced samples than SRS.     

        Both McIntyre and Dell have indicated that RSS could provide unbiased estimator of population 

mean.9,18  Estimator of population mean provided by RSS is at least as precise as SRS.18,19  RSS not only 

provides unbiased estimation of population mean but also much smaller confidence interval.10,20,21   The 

sampling efficiency comparing RSS versus SRS is expressed as the relative precision (RP). 

𝑅𝑃 = 
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑡ℎ 𝑆𝑅𝑆

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑤𝑖𝑡ℎ 𝑅𝑆𝑆
 

        It is proved that 1 ≤ 𝑅𝑃 ≤
𝑘+1

2
.9,10  k is the number of ranks (set number).  Since RP cannot be less 

than 1, RSS is always equal to or more efficient than SRS.  Not only for the unbiased mean, theoretical 

investigation by Stokes showed that an estimator of variance provided by RSS is asymptotically unbiased 

regardless of ranking errors.22  Stokes also indicated that RSS could generate more precise correlation 

coefficient compared to SRS.23  Stokes and Sager proved that empirical distribution function of a RSS is 

unbiased and has greater precision than SRS.21 

1.2.2 Application of RSS 

        In 1966, RSS was firstly applied by L. K. Halls and T. R. Dell to estimate weights of browse and 

herbage in a pine forest in Texas and RSS was considered more efficient than SRS.11  W. L. Martin et al., 

moved from applying RSS for estimating forage and pasture yields to shrub phytomass in a Appalachian 

oak forest in Virginia.  The RSS provided both closer mean to the population and smaller variance than 

SRS.24  J. M. Cobby et al., used RSS to estimate herbage mass clover contents in grazed swards.25 
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        Besides forestry and herbage, RSS is widely used  in many other fields, such as agriculture and 

environmental monitoring.18  L. E. Nelson et al., used RSS technique to estimate annual maximum and 

minimum standing crop production of Populus deltoides plantations in the Mississippi River Valley.26  N. 

A. Mode et al., applied RSS to measure stream habitat data in Pacific Northwest, which is correlated with 

salmon production.27,28  Mode mentioned that RSS is more efficient than SRS with same sample size even 

after accounting for cost of ranking.  As set number increases, the precision of RSS increases.27  Due to 

extensive sampling effort involved in studying the effect of spray deposit on the leaves of apple trees, R. 

A. Murray et al., applied RSS in the assessment of total deposit, which was found to be more efficient 

than SRS.29  M. F. Al-Saleh et al., applied RSS to estimate average sheep milk yield and compared it with 

SRS.  The relative saving of sampling units using RSS is between 32% and 44% compared with SRS to 

obtain the same precision of the estimator.30  Omer Ozturk et al.’s study showed that RSS has a 

substantial improvement in estimating both mean and variance of seven month sheep weights at a 

research farm in Erzurum, Turkey.19  The authors pointed out that the RSS mean estimator is unbiased 

regardless of the accuracy of ranking and the population size.  If the judgement ranking is imperfect, in 

the worst case, RSS estimator will be equivalent to SRS estimator.19  Therefore, there is nothing lost to 

use RSS where it is applicable.  

        In 2003, Paul H. Kvam applied RSS into stream water quality data from the National Stream Quality 

Accounting Network station on a river near Fredricksburg, VA.  This is the first time RSS used in a 

binary outcome data.31  The author affirmed that if the success probability could be ranked from 

correlated covariates, RSS is able to be applied in binary outcome data.  In his example, RSS showed 

superiority than SRS in both estimated precision and smaller confidence interval.31   

1.2.3 RSS and Censored Data 

        Yu and Tam applied RSS to estimate the population mean and standard deviation for censored data 

with lognormal maximum likelihood and Kaplan-Meier methods.32  This is the first study to investigate 

RSS in censored data.32  The results were compared with the corresponding SRS estimators.  They 
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considered four censoring levels (10th, 20th, 30th percentiles, no censoring) and two sample sizes (24, 120, 

RSS used different set size and cycle number combination to achieve same SRS sample size).  Their 

results indicate that for all the censoring levels RSS estimators have smaller bias and mean squared error 

(MSE) than corresponding SRS estimators.32  For both RSS and SRS, as censoring levels increase, bias 

and MSE of estimators increase.32  Larger sample size indicates smaller estimator bias and MSE for both 

RSS and SRS sampling methods.32  When sample size is fixed, estimator bias and MSE decrease as set 

number increases for RSS sampling in all censoring levels.32 

        Strzalkowska-Kominiak and Mahdizadeh modified Kaplan-Meier estimator based on RSS and 

compared it with traditional KM estimator under SRS.33  Under all censoring levels (0.1, 0.2, 0.3) and 

sampling sizes (n=36, 60, 120, 240), RSS estimators showed superiority over SRS estimators in MSE.  As 

sample size increases, MSE decreases for both RSS and SRS estimators.  When sample size and 

censoring level are fixed, MSE is decreasing as set size increases for RSS estimators.  However, they 

observed that as sample size increases the efficiency gain from RSS over SRS decreases.33   

        Nematolahi et al., improved Kaplan-Meier estimator from Partially Rank-Ordered Set (PROS) 

Samples and they compared the estimator with RSS and SRS correspondingly.34  In addition to RSS, 

PROS considers subsets.  Instead of ranking elements within the set, it ranks subsets.  An element is 

picked randomly from the lowest ranked subset to the highest one.  In this way, it allows certain 

flexibility compared with RSS.  PROS is equivalent to RSS when subset element number is 1.  In their 

study, they considered two censoring levels (0.1 and 0.6).  They indicate that with same sample size, KM 

estimators from PROS sampling method is more efficient than from RSS and SRS designs.  The 

advantage of PROS over SRS sampling is much more obvious than over RSS mothed in both censoring 

levels, which could be as high as 3 times better than the SRS sampling.  When sample size and censoring 

level are fix, efficiency of PROS estimator is improved with increased set size.  Regardless of censoring 

level and ranking error, as sample size increases the efficiency of PROC estimator is enhanced.34   

        The mean residual life (MRL) is defined as the expected additional lifetime given that a component 

has survived until time t.  Estimations and properties of MRL were thoroughly  
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𝑀(𝑡) = 𝐸(𝑋 − 𝑡|𝑋 > 𝑡) =
∫ 𝑆(𝑥)𝑑𝑥
∞

𝑡

𝑆(𝑡)
 

Studied based on simple random sampling.  Zamanzade et al., estimated MRL based on RSS and 

compared it with corresponding RSS estimators.35  Their simulation results showed that the MRL 

estimator in RSS setting is more efficient than in the SRS sampling for certain distributions.  The 

confidence intervals based on RSS setting is narrower than its SRS counterparts.35  Accelerated Failure 

Time (AFT) is a parametric model to provide a linear relationship between log of failure time and 

covariates.  Samawi et al., proved from simulation study that using a Moving Extreme Ranked Set 

Sampling (MERSS) or an Extreme Ranked Set Sampling (ERSS) could improve power testing and hazard 

ratio testing during the procedure compared with SRS.36 Discrete time survival analysis has a different 

data structure from continuous data model, in which every subject has multiple rows of data depending on 

the number of discrete times of following.  Therefore, researchers turn to delicate sampling design to 

improve the extended time of analysis due to the enlarged dataset.  Tutkun et al., performed a simulation 

study regarding discrete time survival analysis under RSS.  Their results indicate that RSS has improved 

efficiency compared to SRS in three samples sizes (30, 60, 100) and two censoring rates (10%, 60%).37    

1.3 Markov Process 

        The Markov models are a class of stochastic models that assume a finite number of health states 

(clusters) and allows movement or transition from one state to the other.38  The rate of movement from 

one state to the next are measured in terms of transition probabilities.39  The transition probability from 

state 𝑎 to state 𝑏 (0 ≤ 𝑠 < 𝑡) is represented mathematically as 

𝑝𝑎𝑏(𝑠, 𝑡) = (𝑃(𝑌(𝑡) = 𝑏|𝑌(𝑠) = 𝑎,𝐻𝑠−) 

𝐻𝑠− represents all the historical information from the data along the interval [0, s).  The model in the 

above equation is assumed to be independent on  𝐻𝑠−.  Any future evolution of the Markov process 

depends only on its current state and is independent of the previously visited states.  This is the 

memoryless property which must be satisfied by all Markov models.40   
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1.4 Illness-Death Model 

        The Markov model investigated in this dissertation is progressive illness-death model (also known as 

disability model).41  The model depicted in Figure 1 has initial state 0 “health”, intermediate state 1 

“illness” and final absorption state 2 “death”.  It assumes that individuals from an initial state may transit 

to an intermediate state and may finally enter a terminal state.  Individuals also have the possibility to 

bypass the intermediate state and enter the final absorption state directly.  Subjects could only stay in their 

current state or move forward.  Illness-death model is one of the most popular multi-state Markov 

models.42   

        This model has been applied in medical research to study the progression of human disease for a 

long time.43,44  Commenges et al., suggested that illness-death model is a better choice than survival 

model for studying the prevalence of dementia, since this model is able to provide the age specific 

incidence of dementia and mortality rate simultanuously.45  Harezlak et al., used illness-death model to 

estimate the transition hazard parameter to multiple states in a longitudinal dementia study.46  Frydman 

and Szarek applied illness-death model to infants born to HIV infected women for HIV positivity, HIV 

free survival and overall survival.47  Moreover, the illness-death model has also been utilized to analyze 

liver cirrhosis,48 bone marrow transplantation49 and diabetes data.50   

        Transition probabilities in illness-death model provide the probabilities of transition from one state 

to another.  Odd Aalen proposed using counting process to estimate the cumulative transition intensities 

by Nelson-Aalen estimator in her doctoral dissertation.51,52  However cumulative transition intensities is 

difficult to interpret in medical or observational research, transition probabilities is needed to be 

developed.  Aalen and Johansen made a breakthrough by generalizing the Kaplan-Meier estimator to 

Markov process to estimate the transition probabilities with a nonparametric method.53,54  Based on the 

inverse probability of censoring weighting (IPCW) principle, Datta and Satten proposed an estimator to 

extend the Aalen-Johansen estimators to data with dependent censoring.55  Meira-Machado et al., 

proposed non-Markovian estimator based on the landmark methodology to substitute Aalen-Johansen 

estimator in 2006.56,57  Later they modified this non-Markovian estimator based on presmoothing 
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method.58  However, this paper focus on conventional Aalen-Johansen estimator to estimator the 

transition probabilities in illness-death model. 

        Though there are extensive studies regarding RSS and survival analysis, all those studies have 

discussed only one event and censoring level.  There is no reported investigation about RSS and data 

having more than one events.  In this study, we present a novel methodology to investigate the 

nonparametric estimation of transition probabilities in illness-death Markov model using the RSS design.  

The Aalen–Johansen estimator of transition probabilities in illness-death model based on RSS under 

random right censoring is proposed.  The performance of suggested estimator was compared with its 

counterparts under SRS design via simulation study.  The conventional and RSS modified Aalen-

Johansen estimators are applied to the healthy start data set and a real-word colon cancer data set 

respectively for illustration.   
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2 Chapter I: RSS modified Aalen–Johansen estimator of transition probabilities in 

illness-death Model: A simulation study 

2.1 Ranked Set Sampling (RSS) 

        A preliminary condition for RSS is that a set of units drawn from population could be ranked by an 

uncostly measured covariate without fully measurement of the outcome variable.59   This covariate needs 

to be correlated with the interested outcome.  An RSS sampling procedure with set number k and cycle 

number m is illustrated in figure 1.  First, a set with sample size k is randomly drawn from the population.  

These k units are ranked with respect to a covariate, X.  The unit with the lowest rank is taken for full 

measurement and the remaining units in the sample are discarded.  Next, another set of sample size k is 

randomly drawn.  These k units are ranked with respect to X.  The unit with the second lowest rank is 

taken for full measurement and the remaining units in the sample are discarded.  This process continues 

until the kth set with sample size k is randomly drawn and ranked with respect to X.  The unit with the 

highest rank is taken for full measurement.  Until now, k units are selected.  This process is referred to as 

a cycle.  In figure 1 selected units are marked by dark blue color.  The cycle can repeat multiple times, 

refer to as m.  An RSS sample size is defined as N = km.          

2.2 Illness-Death Model 

        For two states a, b and two time points s < t, there are transition probabilities  

𝑝𝑎𝑏(𝑠, 𝑡) = 𝑃(𝑌(𝑡) = 𝑏|𝑌(𝑠) = 𝑎) 

        As indicated in figure 2, illness-death model has three states: State 0, the disease-free state; State 1, 

the diseased state; and State 2, the absorbing state or dead state.  There are five transition probabilities in 

the model: 𝑝00(𝑠, 𝑡), 𝑝01(𝑠, 𝑡), 𝑝02(𝑠, 𝑡), 𝑝11(𝑠, 𝑡), and 𝑝12(𝑠, 𝑡).  
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        In the above stochastic process, there is a random variable 𝑇𝑎𝑏 (0 ≤ 𝑎 ≤ 𝑏 ≤ 2), which represents 

the transition time from state a to state b.  There are two conditions in this model: subjects visit 

intermediate state 1 or not.  For subjects who do not visit intermediate state, there is a random variable T02 

(time from state 0 to state 2).  For those who visit state 1, there are two more random variables: T01 (time 

from state 0 to state 1), T12 (time from state 1 to state 2) with T02 = T01+T12.  𝑍 = 𝑚𝑖𝑛 (𝑇01, 𝑇02) is the 

sojourn time in state 0.    = I(𝑇01 < 𝑇02) is the indicator of visiting state 1.  Therefore, 𝑇 = 𝑍 + 𝑇12 is 

the total survival time.  For those who went through intermediate state 1,  = I(𝑇01 < 𝑇02) = 1 and 𝑇 =

𝑍 + 𝑇12.  For subjects who bypass state 1,  = I(𝑇01 < 𝑇02) = 0 and 𝑇 = 𝑍.  Z < T indicates subjects 

visit the intermediate state.  

        The transition probabilities can be expressed as depending on the joint distribution of (𝑍, 𝑇) as 

following: 

𝑝00(𝑠, 𝑡) = 𝑃(𝑍 > 𝑡|𝑍 > 𝑠) 

𝑝01(𝑠, 𝑡) = 𝑃(𝑍 ≤ 𝑡, 𝑇 > 𝑡|𝑍 > 𝑠) 

𝑝02(𝑠, 𝑡) = 𝑃(𝑇 ≤ 𝑡|𝑍 > 𝑠) 

𝑝11(𝑠, 𝑡) = 𝑃(𝑍 ≤ 𝑡, 𝑇 > 𝑡|𝑍 ≤ 𝑠, 𝑇 > 𝑠) 

𝑝12(𝑠, 𝑡) = 𝑃(𝑇 ≤ 𝑡|𝑍 ≤ 𝑠, 𝑇 > 𝑠) 

2.3 Proposed Estimators 

        Let C be a censoring variable, which is independent of Z and T.  We introduce 𝛿0 = 𝐼(𝑍 ≤ 𝐶) to be 

the censoring indicator of Z and 𝛿1 = 𝐼(𝑇 ≤ 𝐶) to be the censoring indicator of T.  For a censored 

variable Z, we define �̃� = min (𝑍, 𝐶).  For a censored variable T, we define �̃� = min (𝑇, 𝐶).  For a 

censored version of visiting intermediate state 1 or not, we introduce indicator 𝛽 = 𝐼(�̃� < �̃�).  For an 

observed subject, it he/she visits state 1, 𝛽 = 𝐼(�̃� < �̃�) = 1, otherwise 𝛽 = 0.  After considering 

censoring in practice, �̃� is the observed sojourn time in state 0.  𝑇12̃ = �̃� − �̃� is the observed sojourn time 

in state 1.  The available data of illness death model via RSS design with set number k and cycle number 

m (RSS(k, m)) are (𝑍�̃� , 𝑇�̃� , 𝛿0𝑙 , 𝛿1𝑙 , 𝛽𝑙), 1 ≤ 𝑙 ≤ 𝑚, 𝑖. 𝑖. 𝑑.             
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        The proposed Aalen–Johansen (AJ) estimator for transition probabilities based on the RSS (k, m) 

sampling in illness death model (�̃�, �̃�, 𝛿0, 𝛿1, 𝛽) is defined as the following. 

        For transition probability from state 0 to state 0, we have 

�̂�00𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�00[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�00[𝑟](𝑠, 𝑡) = ∏ (1 −
𝛿0𝑙

𝑅0(�̃�𝑙)

𝑚
𝑠<𝑍�̃�≤𝑡,𝑙=1

)
1{𝑠<𝑌[𝑟]𝑙

∗ ≤𝑡}
        (𝑟 = 1,… , 𝑘), 

where 𝑌[𝑟]1
∗ , … , 𝑌[𝑟]𝑚

∗  are ordered values of the units of the rth rank and 𝑅0(𝑡) = ∑ 𝐼(𝑍�̃� ≥ 𝑡)
𝑚
𝑙=1 .   

        For transition probability from state 1 to state 1, we have 

�̂�11𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�11[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�11[𝑟](𝑠, 𝑡) = ∏ (1 −
𝛿1𝑙

𝑅1(�̃�𝑡)

𝑚
𝑠<𝑇�̃�≤𝑡,𝛽𝑙=1,𝑙=1

)
1{𝑠<𝑌[𝑟]𝑙

∗ ≤𝑡}
       (𝑟 = 1,… , 𝑘), 

where 𝑅1(𝑡) = ∑ 𝐼(𝑍�̃� < 𝑡 ≤ 𝑇�̃�)
𝑚
𝑙=1 .  Then the modified transition probability from state 0 to state 1 is 

proposed as 

�̂�01𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�01[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�01[𝑟](𝑠, 𝑡) = ∑ �̂�00[𝑟](𝑠,
𝑚
𝑙=1 �̃�𝑙

−)�̂�11[𝑟](�̃�𝑙 , 𝑡)𝐼(𝑠 < 𝑍�̃� ≤ 𝑡)
𝛽𝑙

𝑅0(�̃�𝑙)
        (𝑟 = 1,… , 𝑘), 

        Finally, it is obvious to propose the following transition probabilities from state 0 to state 2, and 

from state 1 to state 2.  Since in Aalen–Johansen (AJ) transition probabilities, 𝑃00 + 𝑃01 + 𝑃02 = 1 and 

𝑃11 + 𝑃12 = 1. 

�̂�02𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�02[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�02[𝑟](𝑠, 𝑡) = 1 − �̂�00[𝑟](𝑠, 𝑡) − �̂�01[𝑟](𝑠, 𝑡)           (𝑟 = 1,… , 𝑘), 

�̂�12𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�12[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�12[𝑟](𝑠, 𝑡) = 1 − �̂�11[𝑟](𝑠, 𝑡)           (𝑟 = 1,… , 𝑘) 
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2.4 Simulation 

        In this section, a simulations study was performed to investigate properties of the proposed 

estimators.  More specifically, the estimators for RSS modified transition probabilities (P00, P01, P02) 

introduced in section 2.3 were considered.   

        First, a population of 20,000 subjects were simulated.  All subjects in this population went through 

illness-death model process.  Subjects were considered separately as two groups.  The first group went 

through intermediate state 1 ( = I(𝑇01 < 𝑇02) = 1), while the second group bypassed the intermediate 

state and went directly to the absorbing state 2 ( = I(𝑇01 < 𝑇02) = 0).   

        For the first group of individuals ( = 1), they have 𝑍, the sojourn time in the initial state 0, and 

𝑇12 = 𝑇 − 𝑍, the time in intermediate state 1.  These two successive gap times were simulated according 

to the following bivariate distribution:60 

𝐹1,2(𝑥, 𝑦) = 𝐹1(𝑥)𝐹2(𝑦)[1 + 𝜃{1 − 𝐹1(𝑥)}{1 − 𝐹2(𝑦)}] 

Where the marginal distribution functions 𝐹1 and 𝐹2 are exponential distribution with rate parameter 1.  

This is a multivariate distribution corresponding to Farlie-Gumbel-Morgenstern copula.  The parameter 𝜃 

controls the dependence level between successive gap times  𝑍 and 𝑇 − 𝑍.  Since illness-death model is a 

Markov process, the two successive gap times  𝑍 and 𝑇 − 𝑍 are independent.  The parameter 𝜃 is set to be 

0 in the study. 

        For the second group of individuals ( = 0), they only have 𝑍, the sojourn time in the initial state 0.  

𝑍 is simulated as an exponential distribution with rate parameter 1.  , a parameter used to control the 

number of individuals going through intermediate state 1, is simulated independently according to a 

Bernoulli distribution with parameter 𝑝 = 0.4 𝑜𝑟 0.8 to adjust the censoring level. 

        The simulation procedure is as following: 

1) Independently generate 𝑉1~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

2) Independently generate 𝑉2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1)      

3) 𝑈1 = 𝑉1, 𝐴 = −1,𝐵 = 1 
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4) 𝑈2 = 𝑉2 

5) 𝑍 = log (
1

1−𝑈1
) 

6)  ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝), 𝑝 = 0.4 𝑜𝑟 0.7 

7) 𝑇 = 𝑍 +  ∗ log (
1

1−𝑈2
) 

        An independent censoring time variable C is generated according to uniform distribution to control 

the censoring levels in successive gap times  𝑍 and 𝑇 − 𝑍.  C is simulated to be 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2) and 

𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1.5) to adjust the censoring level.  When  follows a Bernoulli distribution with parameter 

𝑝 = 0.4 and C is simulated as 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2), the final transition probabilities of the simulated 

population are: 𝑃00 = 0.1367, 𝑃01 = 0.1057, 𝑃02 = 0.7577, which is censoring level 1.  When  follows 

a Bernoulli distribution with parameter 𝑝 = 0.8 and C is simulated according to 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1.5), the 

final transition probabilities of the simulated population are: 𝑃00 = 0.1957, 𝑃01 = 0.2918, 𝑃02 = 0.5125, 

which is censoring level 2.  Therefore, from perspective of 𝑃02, censoring level 1 is 76% and censoring 

level 2 is 51%. 

        The following sample sizes are considered under the above censoring levels: 𝑛 = 200, 400, 800, 

1600.  For each of the above sample size, 500 samples are generated under both RSS and SRS sampling 

design.  Under RSS design, for each of the above sample size various set numbers are considered and 

corresponding cycle numbers are generated to reach the desired sample size.  When sample size is 200, 

set number k is 2 or 4 with cycle number m equal to 100 or 50.  When sample size is 400, k is 2, 4 or 8 

with cycle number m equal to 200, 100 or 50 respectively.  When sample size is 800, k is 2, 4, 8 or 16 

with m equal to 400, 200, 100 or 50.  When sample size is 1600, k is 4, 8, 16 or 32 with m equal to 400, 

200, 100 or 50 correspondingly.  R package “RSSampling” is applied to select RSS samples.61  

Estimators are computed under both sampling designs.  R package “TP.idm” is utilized to calculate 

transition probabilities.43  Their mean square errors (MSEs) and bias compared with population are 
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computed under 25, 50, 75 and 95 percentiles of the distribution function.34  A relative MSE with SRS 

MSE over RSS MSE is computed to compare the performance of two estimators. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑀𝑆𝐸 =
𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 

When relative MSE is larger than 1, it means RSS estimators have superiority over their SRS 

counterparts.  Otherwise, SRS estimators perform better.  

2.5 Simulation Results 

        Tables 1-13 display the MSEs of Aalen–Johansen (AJ) estimators based on RSS or SRS with sample 

size from 200 to 1600 under two censoring levels.  In Table 1, when sample size is 200 and set number is 

2, for both censoring levels the superiority of the RSS estimators compared to the SRS estimators is more 

obvious for transition probabilities P02.  In Table 2, for the same sample size as set number increased to 4, 

the efficiency ascendancy of the RSS estimators over SRS estimators becomes more obvious for both 

transition probabilities P00 and P02.  Table 3 reports that as sample sized increases to 400, MSE decreases 

for all transition probabilities at all time points.  In Table 4, for the same sample size 400, when set size 

increases to 4 the improved efficiency of RSS estimators over SRS estimators becomes more obvious for 

transition probabilities P00 and P02.  In Table 5, as set number increases to 8, the superiority of RSS 

estimators over its SRS counterparts turns out to be more obvious with a relative MSE equal to 2.29 for 

P02 at 50 percentiles (censoring level 1) and 2.03 for P02 at 75 percentiles (censoring level 2).  In Table 6, 

as sample size increases to 800, MSEs become even smaller, since power is increased.  In Table 7, as set 

number increases to 4, the highest efficiency of RSS estimator over SRS estimator is 1.7789 which 

happens for transition probability P02 at 75% percentiles when censoring level is 2.  In Table 8, for both 

censoring levels, 11 out 12 RSS estimators perform better than their SRS competitors with exceptions 

occurring for transition probability P01 at 25 percentiles.  Table 9 shows that when set number increases to 

16, the efficiency of RSS estimator for P02 at 25 percentiles is 2.7398 times as good as the corresponding 

SRS estimator.  In Table 10, as sample size increases to 1600 the MSEs of both RSS and SRS designs 

reduce with a minimum value of 0.0682×10-3 and a maximum value of 0.6958×10-3.  Table 11 indicates 
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that for the same sample size as set number increased to 8, the efficiency superiority of the RSS 

estimators over SRS estimators becomes significant for transition probabilities P00 and P02 at both 

censoring levels.  In Table 12, as set number increases to 16, the superiority of RSS estimators over SRS 

estimators escalates to another level with a relative MSE equal to 3.03 for P02 at 25 percentiles when 

censoring level is 1.  In Table 13, when set number rises to 16, RSS estimator for transition probability 

P02 at 25 percentiles (censoring level 1) is 4.09 times as efficient as the corresponding SRS estimator.   

        Tables 14 to 17 report the estimated MSEs of SRS and RSS distribution function estimators at 25%, 

50%, 75% and 95% percentiles for various sample sizes when censoring level is 1.  Under a fixed sample 

size, the set number k was changed to investigate the effect of set number on MSE in RSS design.  When 

set number k is equal to 1, the columns indicate results of SRS sampling.  When RSS estimator is better 

than its SRS counterpart, the number is set bold.  From Table 14, it is shown that when sample size is 

200, censoring level is 1 with a set number of 2, the MSEs of all RSS estimators are smaller than their 

corresponding SRS counterparts except for P01 at 50 percentiles. When set number is increased to 4, the 

MSEs from RSS design become even smaller except for P01 at 25 and 50 percentiles.  In Table 15 when n 

= 400 with same censoring level, among 12 estimators of P00 based on RSS, 11 estimators are better than 

their SRS counterparts, only 1 estimator is worse (1.442×10-3, for P00 at 95% when k = 8).  In the same 

table, when the transition probability is P02, all 12 RSS estimators perform better than SRS counterparts.  

However, RSS design does not always dominate over SRS.  For the same sample size and censoring 

level, when transition probability is P01, 5 out of 12 RSS estimators are better than their SRS counter 

parts.  When sample size increases, MSEs decrease for both RSS and SRS designs with a minimum MSE 

of 0.2812×10-3 and a maximum MSE of 2.1278×10-3.  In Table 16, when sample size escalates to 800, 

MSEs continue reducing for both RSS and SRS designs with a minimum value of 0.984×10-3 and a 

maximum value of 0.9446×10-3.  As set number escalates from 2 to 16, RSS estimators keep improving at 

7 out of 12 percentiles (P00 at 50, 75, 95 percentiles, P01 at 50, 95 percentiles, P02 at 25, 75 percentiles).  

Among the total of 48 RSS estimators, 39 perform better than their SRS counterparts.  In Table 17, when 

sample size increases to 1600, the decreasing pattern of MSE with escalated set number continues for 
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RSS modified transition probabilities P00 and P02 except for P00 at 95 percentiles and P02 at 95 percentiles.  

From example, when set number increases from 4 to 32, the MSE reduced from 0.1304×10-3 to 

0.0946×10-3 for P00 at 25 percentiles.  Tables 18 to 21 show the estimated MSEs of SRS and RSS 

distribution function estimators at 25%, 50%, 75% and 95% percentiles for various sample sizes but with 

a censoring level of 2.  When censoring level of P02 increases from 0.24 to 0.49 and sojourn time in state 

0, P00, rises from 0.14 to 0.2, the overall efficiency advantage of RSS over SRS design does not change.  

In Table 18, when sample size is 200, among all 24 RSS estimators 22 show improved efficiency over 

their SRS competitors.  Table 19 reports that change of censoring level does not affect the overall 

decrease pattern of MSE as sample size increases.  When sample size climbs from 200 to 400, the MSEs 

of both RSS and SRS designs reduce with a minimum value of 0.1586×10-3 and a maximum value of 

3.2158×10-3.  In table 21, the decreasing trend of MSEs as set number escalates is similar for censoring 

level 2 as for censoring level 1.  When set number increases from 4 to 32, 9 out of 12 percentiles have 

reduced MSE except for P00 at 95 percentiles, P01 at 25 percentiles and P01 at 95 percentiles.       

        Tables 22 to 29 are estimated bias of distribution function estimators based on SRS or RSS designs 

at some percentiles for different sample sizes and censoring levels.  In Table 22, overall, when sample 

size is small, both RSS and SRS estimators have large bias with the minimum value of 0.0195 and a 

maximum value of 0.0522.  20 out 24 biases of RSS estimators are smaller than the corresponding SRS 

estimators.  In table 23, as sample size jumps from 200 to 400, the overall bias is reduced for estimators 

from both RSS and SRS designs with the minimum value of 0.0127 to a maximum value of 0.037.  In 

Table 24, the improvement of bias by RSS design is obvious for transition probabilities P00 and P02.  For 

transition probability P00, except for the estimator when set number is 8 at 95 percentiles (0.0208) is 

slightly greater than the corresponding SRS estimator (0.0205), all other RSS estimators are more 

competitive than their relative counterparts.  For transition probability P02, 10 out of 12 RSS estimators 

have improved bias.  In Table 25, when sample size becomes the largest, 1600, the improvement of bias 

for estimators from RSS design becomes even more apparent.  In total, 43 out 48 RSS estimators have 

smaller bias than their corresponding estimators under SRS design.  Tables 26 to 29 present estimated 
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bias of distribution function estimators based on SRS or RSS designs at some percentiles for various 

sample sizes, but the censoring level is 2.  In Table 26, for the same sample size, when censoring level is 

2 bias is slightly higher for estimators from both RSS and SRS designs than censoring level 1.  The 

minimum value in this table is 0.0176, while the maximum value is 0.0668.  Though the censoring level 

is changed, the overall improvement of bias for estimators from RSS design over SRS design is still clear 

for transition probabilities P00 and P02.  In Table 27, all RSS estimators have smaller bias than their 

relative SRS counterparts for transition probability P02.  In Table 28, as sample size increases to 800, 13 

out of 16 RSS estimators have improved bias than corresponding estimators from SRS design for 

transition probability P00 and 15 out of 16 RSS estimators show decreased bias values compared to 

estimators based on SRS design for P02.  Table 29 indicates that when sample size climbs to 1600, the 

overall bias is the smallest for both RSS and SRS designs with a minimum value of 0.0038 and a 

maximum value of 0.0209.  The general superiority of estimators from RSS design over SRS design 

becomes significant with 43 out of 48 RSS estimators having smaller bias than their SRS competitors.  

The exceptions are bias for P00 at 95 percentiles when k is equal to 4 (0.0162) and k is equal to 32 

(0.0166) compared to their corresponding SRS estimator (0.0159), bias for P01 at 25 percentiles when k = 

4 (0.0088) and k = 16 (0.0088) compared with the relative SRS estimator (0.0087). 

        Transition probabilities P11 and P12 could also be improved by RSS design by ranking T12.  Table 30 

presents the estimated MSEs of transition probabilities P11 and P12 for sample size 200, censoring level 2.  

We could notice that P11 and P12 have equal MSEs, which is due to P11 = 1 – P12.  When set number is 2, 6 

out of 8 RSS estimators have improved MSE compared to their SRS counterparts.  For the same sample 

size, when set number increases to 4, all 8 RSS estimators perform better than SRS competitors.  Table 31 

shows the bias of transition probabilities P11 and P12 for sample size 200, censoring level 2.  This result 

corresponds with the MSEs results.  Table 32 displays the estimated MSEs of transition probabilities P11 

and P12 when sample size is 400 and censoring level is 2.  We can see that when sample size increases the 

overall MSEs decrease with a minimum value of 0.0014 and a maximum value of 0.0085.  This is due to 

increased power.  When set number is 2, only 4 out of 8 estimators having lower MSEs than their SRS 



18 

 

counterparts.  When set number increases to 4, among 8 RSS estimators 6 perform better than 

corresponding SRS estimators.  The dominant advantage of RSS estimator continues when set number is 

increased to 8.  Table 33 shows the bias of transition probabilities P11 and P12 for sample size 400, 

censoring level 2.  The results correspond well with Table 32.           

        Figure 3 to 6 display the efficiency of the Aalen–Johansen estimator based on RSS with respect to 

SRS counterpart at different percentiles when sample size and censoring level vary.  As shown in figure 

3, AJ transition probabilities P00 and P02 based on RSS design is more efficient than SRS design in most 

cases since the majority of relative MSEs are larger than 1 with the exception happen for P00 when N = 

400, k = 8.  For transition probability P01, both sampling methods indicate comparable efficiency with 

most of their relative MSEs around 1.  In Figure 4, as sample size increases to 1600, the efficiency 

advantage of RSS estimators over their corresponding SRS estimators becomes more obvious for P00 and 

P02 with many relative MSEs above 1.5.  For transition probability P02, when sample size is fixed, relative 

MSE escalates as set number increases.  The relative MSE is above 4 when set size is 32 at 25 percentiles, 

which means the RSS estimator is 4 times as efficient as its SRS competitor in this scenario.  When 

censoring level is increased, the overall superiority of RSS modified AJ estimator over SRS design is not 

changed.  In Figure 5, for transition probabilities P00 and P02, most of the relative MSEs are larger than 

one, which indicates estimators under RSS design provide closer values to the population.  This trend 

becomes more obvious when sample size increases to 800 and 1600.  In Figure 6, for transition 

probability P02, almost all relative MSEs are above 1.  When sample size is fixed, as set number escalates 

the advantages of RSS design over SRS design for estimator efficiency is also enlarged.                

2.6 Discussion 

        In medical studies, when measurement of desired variables is expensive or the disease scientists are 

interested is rare, RSS could obtain representative samples by ranking a less costly concomitant variable 

of the sampling units.  Aalen-Johansen estimator is a widely applied technique in medical research fields 

to estimate the transition probabilities between health, illness, and death states in progressive illness-death 
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Markov model.  However, this estimator was not investigated under an RSS environment.  In this study, 

we proposed a modified Aalen-Johansen estimator in association with a randomly right-censored RSS 

sampling design.  The performance of this new estimator was compared with its counterpart in SRS 

design through simulation study to show the efficiency of the new estimator.  It would be appealing to 

apply the novel estimator to illness death Markov model for calculating transition probabilities when the 

measurement of interested variable is expensive but there is an economic concomitant variable.   

        The preceding sections established that the efficiency of Aalen-Johansen estimator under RSS design 

is improved in majority simulation scenarios compared to its SRS counterpart with the same sample size.  

Our simulation results suggest that for transition probabilities P00 and P02, when sample size is fixed the 

superiority of the new estimator over conventional Aalen-Johansen estimator under SRS design escalates 

as set number increases.  The same phenomenon was observed in RSS and Partially Rank-Ordered Set 

(PROS) modified Kaplan-Meier estimators previously.33,34  This is mainly due to when set number 

increases, the effect of ranking takes place which contributes to the selection of more representative 

samples.  As we discussed before, for RSS, when sample size is N = mk, the number of subjects who truly 

participate in the process is mk2.  As set number k increases, there are more subjects involved in the 

underlying ranking process.  Though sample size stays same as SRS, more information is provided by 

RSS process.  The results of simulation study also indicate that as sample size increases, the MSE of 

Aalen-Johansen estimator under both RSS and SRS designs decreases, since the power of study increases.  

This corresponds well with previous studies regarding RSS and PROS modified Kaplan-Meier 

estimators.33,34    

        The improvement in the efficiency of the estimator based on the RSS design was only observed for 

transition probabilities 𝑃00, 𝑃02, but not for transition probability 𝑃01, which corresponds well with the 

Markov property of illness death model.  In Markov process any future evolution of the Markov process 

depends only on its current state and is independent of the previously visited states.  Since progressive 

illness death model is a stochastic process, random variables T01 (time from state 0 to state 1), T12 (time 

from state 1 to state 2) and T02 (time from state 0 to state 2) are independent.60  When ranking variable is 
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T02, the transition probabilities that are influenced are 𝑃00 and 𝑃02, which justifies the Markov property of 

illness death model simultaneously.  However, though the ranking process put no effect on transition 

probability 𝑃01, the efficiency of the 𝑃01 estimator based on the RSS design did not perform worse than 

the efficiency of the corresponding estimator based on the SRS method with the same sample size, which 

corresponds with previous studies suggesting that there is no harm if we do RSS design.9,10 

        Our simulation results show that change in the censoring level does not affect the superiority of RSS 

modified estimator over its SRS competitor.  Under both censoring levels, the efficiency of the estimator 

based on the RSS sampling design is better than the efficiency of the estimator based on the SRS method 

with the same sample sizes.  For both censoring levels, by increasing the set size in RSS while the sample 

size stays the same, the RSS Aalen-Johansen estimator has improved MSE and bias than its SRS 

counterpart.  The similar trend of censoring level on estimator efficiency was observed in previous studies 

involving RSS design in survival analysis and censored data.32-34,37  We believe it would be appealing to 

apply the introduced methodology to medical studies when measurement of interested variable is costly or 

the disease is rare. 
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Table 1. MSEs of transition probabilities when sample size is 200 (set size: 2, cycle number: 100). 

 
 P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
1.203 1.416 1.8094 2.4926 0.5734 0.9442 1.3414 2.3626 0.9606 1.4108 2.169 3.6052 

SRS 

MSE 
1.3656 1.7638 2.0354 3.1796 0.625 0.909 1.4436 2.7198 1.1448 1.6222 2.4028 4.3172 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.1352 1.2456 1.1249 1.2756 1.0923 0.9627 1.0762 1.1512 1.1918 1.1498 1.1078 1.1975 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
1.1386 1.64 2.1342 3.5782 0.989 1.5298 2.2954 5.7448 0.4936 1.0338 1.7634 4.716 

SRS 

MSE 
1.2288 1.7086 2.155 4.2988 1.0092 1.6052 2.609 7.0796 0.5586 1.4554 2.4034 6.1004 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.0792 1.0418 1.0097 1.2014 1.0204 1.0493 1.1366 1.2323 1.1317 1.4078 1.3629 1.2936 

*MSEs are values listed in the table time 10-3. 
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Table 2. MSEs of transition probabilities when sample size is 200 (set size: 4, cycle number: 50). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
1.1194 1.2624 1.6582 2.46 0.6688 1.0306 1.2398 1.9136 0.713 1.1904 1.6038 3.2912 

SRS 

MSE 
1.3656 1.7638 2.0354 3.1796 0.625 0.909 1.4436 2.7198 1.1448 1.6222 2.4028 4.3172 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.2199 1.3972 1.2275 1.2925 0.9345 0.8820 1.1644 1.4213 1.6056 1.3627 1.4982 1.3117 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
1.0694 1.4876 1.8656 3.051 1.0136 1.7982 2.5184 4.8754 0.4792 0.903 1.763 3.5986 

SRS 

MSE 
1.2288 1.7086 2.155 4.2988 1.0092 1.6052 2.609 7.0796 0.5586 1.4554 2.4034 6.1004 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.1491 1.1486 1.1551 1.409 0.9957 0.8927 1.036 1.4521 1.1657 1.6117 1.3632 1.6952 

*MSEs are values listed in the table time 10-3. 
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Table 3. MSEs of transition probabilities when sample size is 400 (set size: 2, cycle number: 200) 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.6074 0.703 0.8576 1.2196 0.2986 0.4882 0.6682 1.202 0.4808 0.7678 1.0432 1.739 

SRS 

MSE 
0.658 0.9102 0.9584 1.4228 0.285 0.454 0.6364 1.4032 0.5572 0.8574 1.1706 2.1278 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.0833 1.2950 1.1175 1.1666 0.9545 0.9299 0.9524 1.1674 1.1589 1.1170 1.1221 1.2236 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.5844 0.8768 1.0922 2.2054 0.4774 0.822 1.354 3.0468 0.264 0.5378 0.8876 2.394 

SRS 

MSE 
0.6214 0.8646 1.062 1.8 0.4518 0.769 1.293 3.2158 0.2676 0.6798 1.2176 2.5728 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.0633 0.9861 0.9723 0.8162 0.9464 0.9355 0.9549 1.0555 1.0136 1.2644 1.3718 1.0747 

*MSEs are values listed in the table time 10-3. 
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Table 4. MSEs of transition probabilities when sample size is 400 (set size: 4, cycle number: 100). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.5676 0.6406 0.831 1.1972 0.3238 0.4808 0.6346 1.118 0.3538 0.604 0.8662 1.5456 

SRS 

MSE 
0.658 0.9104 0.9584 1.4228 0.285 0.454 0.6364 1.4032 0.5572 0.8574 1.1706 2.1278 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.1593 1.4212 1.1533 1.1884 0.8802 0.9443 1.0028 1.2551 1.5749 1.4195 1.3514 1.3767 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.5568 0.7088 0.9802 1.5862 0.4982 0.787 1.2174 2.5236 0.2176 0.4766 0.8024 2.0142 

SRS 

MSE 
0.6214 0.8646 1.062 1.8 0.4518 0.769 1.293 3.2158 0.2676 0.6798 1.2176 2.5728 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.1160 1.2198 1.0835 1.1348 0.9069 0.9771 1.0621 1.2743 1.2298 1.4264 1.5174 1.2773 

*MSEs are values listed in the table time 10-3. 
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Table 5. MSEs of transition probabilities when sample size is 400 (set size: 8, cycle number: 50). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.4714 0.5148 0.7994 1.442 0.323 0.453 0.6784 1.0656 0.2812 0.3752 0.7912 1.8046 

SRS 

MSE 
0.658 0.9104 0.9584 1.4228 0.285 0.454 0.6364 1.4032 0.5572 0.8574 1.1706 2.1278 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.3958 1.7685 1.1989 0.9867 0.8824 1.0022 0.9381 1.3168 1.9815 2.2852 1.4795 1.1791 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.4834 0.6744 0.8824 1.6454 0.473 0.7204 1.2074 2.4508 0.1586 0.3866 0.5998 1.6136 

SRS 

MSE 
0.6214 0.8646 1.062 1.8 0.4518 0.769 1.293 3.2158 0.2676 0.6798 1.2176 2.5728 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.2855 1.2820 1.2035 1.0940 0.9552 1.0675 1.0709 1.3121 1.6873 1.7584 2.03 1.5944 

*MSEs are values listed in the table time 10-3. 
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Table 6. MSEs of transition probabilities when sample size is 800 (set size: 2, cycle number: 400). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.3322 0.3732 0.4326 0.6322 0.1514 0.236 0.3486 0.5518 0.2414 0.3944 0.4814 0.9222 

SRS 

MSE 
0.3256 0.409 0.4772 0.706 0.1494 0.238 0.3308 0.6372 0.2696 0.3848 0.5956 0.9118 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 0.9801 1.0959 1.1031 1.1167 0.9868 1.0085 0.9489 1.1537 1.1168 0.9757 1.2372 0.9887 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.2866 0.4286 0.614 1.0384 0.2412 0.4454 0.6816 1.6006 0.124 0.2904 0.4634 1.2606 

SRS 

MSE 
0.31 0.4346 0.5014 0.8528 0.2286 0.3896 0.7086 1.5468 0.14 0.3308 0.6468 1.2396 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.0816 1.014 0.8166 0.8213 0.9478 0.8747 1.0396 0.9664 1.129 1.1391 1.3958 0.9833 

*MSEs are values listed in the table time 10-3. 
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Table 7. MSEs of transition probabilities when sample size is 800 (set size: 4, cycle number: 200). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.2734 0.3416 0.3698 0.6246 0.132 0.2354 0.3404 0.6134 0.1748 0.3046 0.4262 0.797 

SRS 

MSE 
0.3256 0.409 0.4772 0.706 0.1494 0.238 0.3308 0.6366 0.2696 0.3848 0.5956 0.9118 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.1909 1.1973 1.2904 1.1303 1.1318 1.0110 0.9718 1.0378 1.5423 1.2633 1.3975 1.1440 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.2486 0.3544 0.4704 0.8282 0.2388 0.3582 0.5548 1.4196 0.1138 0.2142 0.3636 1.0166 

SRS 

MSE 
0.31 0.4346 0.5014 0.8528 0.2286 0.3896 0.7086 1.5468 0.14 0.3308 0.6468 1.2396 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.247 1.2263 1.0659 1.0297 0.9573 1.0877 1.2772 1.0896 1.2302 1.5444 1.7789 1.2194 

*MSEs are values listed in the table time 10-3.
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Table 8. MSEs of transition probabilities when sample size is 800 (set size: 8, cycle number: 100). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.2456 0.2844 0.3698 0.69 0.1654 0.2094 0.3074 0.562 0.1272 0.213 0.3738 0.8034 

SRS 

MSE 
0.3256 0.409 0.4772 0.706 0.1494 0.238 0.3308 0.6366 0.2696 0.3848 0.5956 0.9118 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.3257 1.4381 1.2904 1.0232 0.9033 1.1366 1.0761 1.1327 2.1195 1.8066 1.5934 1.1349 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.2508 0.3534 0.48 0.8132 0.2416 0.379 0.6014 1.321 0.082 0.1792 0.3176 0.8194 

SRS 

MSE 
0.31 0.4346 0.5014 0.8528 0.2286 0.3896 0.7086 1.5468 0.14 0.3308 0.6468 1.2396 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.236 1.2298 1.0446 1.0487 0.9462 1.028 1.1783 1.1709 1.7073 1.846 2.0365 1.5128 

*MSEs are values listed in the table time 10-3. 
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Table 9. MSEs of transition probabilities when sample size is 800 (set size: 16, cycle number: 50). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.2324 0.2782 0.362 0.7098 0.1602 0.2282 0.2832 0.558 0.0984 0.1496 0.3526 0.9446 

SRS 

MSE 
0.3256 0.409 0.4772 0.706 0.1494 0.238 0.3308 0.6366 0.2696 0.3848 0.5956 0.9118 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.4010 1.4702 1.3182 0.9946 0.9326 1.0429 1.1681 1.1409 2.7398 2.5722 1.6892 0.9653 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.2504 0.3248 0.4156 0.8074 0.232 0.377 0.5526 1.193 0.0696 0.1248 0.255 1.009 

SRS 

MSE 
0.31 0.4346 0.5014 0.8528 0.2286 0.3896 0.7086 1.5468 0.14 0.3308 0.6468 1.2396 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.238 1.3381 1.2064 1.0562 0.9853 1.0334 1.2823 1.2966 2.0115 2.6506 2.5365 1.2285 

*MSEs are values listed in the table time 10-3. 
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Table 10. MSEs of transition probabilities when sample size is 1600 (set size: 4, cycle number: 400). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.1304 0.1608 0.2006 0.3228 0.0682 0.1016 0.1486 0.2652 0.089 0.133 0.2068 0.386 

SRS 

MSE 
0.1776 0.2182 0.2228 0.3184 0.0708 0.116 0.1638 0.2774 0.1424 0.2164 0.2562 0.4034 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.3620 1.3570 1.1107 0.9864 1.0381 1.1417 1.1023 1.0460 1.6 1.6271 1.2389 1.0451 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.1256 0.1892 0.2448 0.416 0.1204 0.1896 0.301 0.6958 0.0546 0.1 0.1926 0.4876 

SRS 

MSE 
0.1706 0.2316 0.2666 0.382 0.1172 0.1912 0.3212 0.6808 0.0682 0.1692 0.2864 0.6042 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.3583 1.2241 1.0891 0.9183 0.9734 1.0084 1.0671 0.9784 1.2491 1.692 1.487 1.2391 

*MSEs are values listed in the table time 10-3. 
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Table 11. MSEs of transition probabilities when sample size is 1600 (set size: 8, cycle number: 200). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.1216 0.1376 0.1806 0.3102 0.0842 0.1072 0.1436 0.2852 0.064 0.0968 0.1864 0.3792 

SRS 

MSE 
0.1776 0.2182 0.2228 0.3184 0.0708 0.116 0.1638 0.2774 0.1424 0.2164 0.2562 0.4034 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.4605 1.5858 1.2337 1.0264 0.8409 1.0821 1.1407 0.9727 2.225 2.2355 1.3745 1.0638 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.1242 0.1626 0.234 0.3918 0.1178 0.1802 0.3154 0.6758 0.0432 0.0862 0.1506 0.406 

SRS 

MSE 
0.1706 0.2316 0.2666 0.382 0.1172 0.1912 0.3212 0.6808 0.0682 0.1692 0.2864 0.6042 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.3736 1.4244 1.1393 0.975 0.9949 1.061 1.0184 1.0074 1.5787 1.9629 1.9017 1.4882 

*MSEs are values listed in the table time 10-3. 
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Table 12. MSEs of transition probabilities when sample size is 1600 (set size: 16, cycle number: 100). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.1174 0.1348 0.1898 0.314 0.079 0.1076 0.1388 0.285 0.047 0.0726 0.1568 0.4178 

SRS 

MSE 
0.1776 0.2182 0.2228 0.3184 0.0708 0.116 0.1638 0.2774 0.1424 0.2164 0.2562 0.4034 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.5128 1.6187 1.1739 1.014 0.8962 1.0781 1.1801 0.9733 3.0298 2.9807 1.6339 0.9655 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.1174 0.144 0.1824 0.3708 0.1268 0.1756 0.2388 0.5998 0.0314 0.0698 0.1224 0.4386 

SRS 

MSE 
0.1706 0.2316 0.2666 0.382 0.1172 0.1912 0.3212 0.6808 0.0682 0.1692 0.2864 0.6042 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.4532 1.4942 1.4616 1.0302 0.9242 1.0888 1.3451 1.135 2.172 2.4241 2.3399 1.3776 

*MSEs are values listed in the table time 10-3. 
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Table 13. MSEs of transition probabilities when sample size is 1600 (set size: 32, cycle number: 50). 

  P00 P01 P02 

Censoring 

level 

Time 

point 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50 

(987) 

0.75 

(1481) 

0.95 

(1875) 

0.25 

(494) 

0.50  

(987) 

0.75 

(1481) 

0.95 

(1875) 

1 

RSS 

MSE 
0.0946 0.1256 0.1838 0.3958 0.0768 0.1204 0.1384 0.2762 0.0348 0.067 0.1536 0.5648 

SRS 

MSE 
0.1776 0.2182 0.2228 0.3184 0.0708 0.116 0.1628 0.2774 0.1424 0.2164 0.2562 0.4034 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.8774 1.7373 1.2122 0.8044 0.9219 0.9635 1.1835 1.0043 4.0920 3.2299 1.6680 0.7142 

2 

Time 

point 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50 

(748) 

0.75 

(1122) 

0.95 

(1421) 

0.25 

(374) 

0.50  

(748) 

0.75 

(1122) 

0.95 

(1421) 

RSS 

MSE 
0.106 0.153 0.2008 0.4198 0.1096 0.16 0.2408 0.5412 0.0234 0.0512 0.1012 0.4432 

SRS 

MSE 
0.1706 0.2316 0.2666 0.382 0.1172 0.1912 0.3212 0.6808 0.0682 0.1692 0.2864 0.6042 

𝑆𝑅𝑆 𝑀𝑆𝐸

𝑅𝑆𝑆 𝑀𝑆𝐸
 1.6094 1.5137 1.3277 0.9104 1.0693 1.195 1.3339 1.2579 2.9145 3.3047 2.83 1.3633 

*MSEs are values listed in the table time 10-3. 
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Table 14. Estimated MSEs of distribution function estimators at some percentiles for n = 200, the first 

censoring level. 

 
N = 200  

k  

Transition 

Probabilities 
Percentiles 1 2 4 

 

P00 

25 1.3656 1.203 1.1194  

50 1.7638 1.416 1.2624  

75 2.0354 1.8094 1.6582  

95 3.1796 2.4926 2.46  

P01 

25 0.625 0.5722 0.6688  

50 0.909 0.9442 1.0306  

75 1.4436 1.3414 1.2398  

95 2.7198 2.3626 1.9136  

P02 

25 1.1448 0.9606 0.713  

50 1.6222 1.4108 1.1904  

75 2.4028 2.169 1.6038  

95 4.3172 3.6052 3.2912  

*MSEs are values listed in the table time 10-3. 

Table 15. Estimated MSEs of distribution function estimators at some percentiles for n = 400, the first 

censoring level. 

 
 N = 400 

 k 

Transition 

Probabilities 
Percentiles 

 
1 2 4 8 

P00 

25  0.658 0.6074 0.5676 0.4714 

50  0.9104 0.703 0.6406 0.5148 

75  0.9584 0.8576 0.831 0.7994 

95  1.4228 1.2196 1.1972 1.442 

P01 

25  0.285 0.2986 0.3238 0.323 

50  0.454 0.4882 0.4808 0.453 

75  0.6364 0.6682 0.6346 0.6784 

95  1.4032 1.202 1.118 1.0656 

P02 

25  0.5572 0.4808 0.3538 0.2812 

50  0.8574 0.7678 0.604 0.3752 

75  1.1706 1.0432 0.8662 0.7912 

95  2.1278 1.739 1.5456 1.8046 

*MSEs are values listed in the table time 10-3. 
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Table 16. Estimated MSEs of distribution function estimators at some percentiles for n = 800, the first 

censoring level. 

 
 N = 800 

 k 

Transition 

Probabilities 
Percentile 

 
1 2 4 8 16 

P00 

25  0.3256 0.3322 0.2734 0.2456 0.2324 

50  0.409 0.3732 0.3416 0.2844 0.2782 

75  0.4772 0.4326 0.3698 0.3698 0.362 

95  0.706 0.6322 0.6246 0.69 0.7098 

P01 

25  0.1494 0.1514 0.132 0.1654 0.1602 

50  0.238 0.236 0.2354 0.2094 0.2282 

75  0.1654 0.3486 0.3404 0.3074 0.2832 

95  0.6366 0.5518 0.6134 0.562 0.558 

P02 

25  0.2696 0.3414 0.1748 0.1272 0.0984 

50  0.3848 0.3944 0.3046 0.213 0.1496 

75  0.5956 0.4814 0.4262 0.3738 0.3526 

95  0.9118 0.9222 0.797 0.8034 0.9446 

*MSEs are values listed in the table time 10-3. 

Table 17. Estimated MSEs of distribution function estimators at some percentiles for n = 1600, the first 

censoring level. 

 

 N = 1600 

 k 

Transition 

Probabilities 
Percentile 

 
1 4 8 16 32 

P00 

25  0.1776 0.1304 0.1216 0.1174 0.0946 

50  0.2182 0.1608 0.1376 0.1348 0.1256 

75  0.2228 0.2006 0.1806 0.1898 0.1838 

95  0.3184 0.3228 0.3102 0.314 0.3958 

P01 

25  0.0708 0.0682 0.0842 0.079 0.0768 

50  0.116 0.1016 0.1072 0.1076 0.1204 

75  0.1638 0.1486 0.1436 0.1388 0.1384 

95  0.2774 0.2652 0.2852 0.285 0.2762 

P02 

25  0.1424 0.089 0.064 0.047 0.0348 

50  0.2164 0.133 0.0968 0.0726 0.067 

75  0.2562 0.2068 0.1862 0.1568 0.1536 

95  0.4034 0.386 0.3972 0.4178 0.5648 

*MSEs are values listed in the table time 10-3. 
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Table 18. Estimated MSEs of distribution function estimators at some percentiles for n = 200, the second 

censoring level. 

 
N = 200 

k 

Transition 

Probabilities 
Percentiles 1 2 4 

P00 

25 1.2288 1.1386 1.0694 

50 1.7086 1.64 1.4876 

75 2.155 2.1342 1.8656 

95 4.2988 3.5782 3.051 

P01 

25 1.0092 0.989 1.0136 

50 1.6052 1.5298 1.7982 

75 2.609 2.2954 2.5184 

95 7.0796 5.7448 4.8754 

P02 

25 0.5586 0.4936 0.4792 

50 1.4554 1.0338 0.903 

75 2.4034 1.7634 1.763 

95 6.1004 4.716 3.5986 

*MSEs are values listed in the table time 10-3. 

 

Table 19. Estimated MSEs of distribution function estimators at some percentiles for n = 400, the second 

censoring level. 

 
N = 400 

k 

Transition 

Probabilities 
Percentiles 1 2 4 8 

P00 

25 0.6214 0.5844 0.5568 0.4834 

50 0.8646 0.8768 0.7088 0.6744 

75 1.062 1.0922 0.9802 0.8824 

95 1.8 2.2054 1.5862 1.6454 

P01 

25 0.4518 0.4774 0.4982 0.473 

50 0.769 0.822 0.787 0.7204 

75 1.293 1.354 1.2174 1.2074 

95 3.2158 3.0468 2.5236 2.4508 

P02 

25 0.2676 0.264 0.2176 0.1586 

50 0.6798 0.5378 0.4766 0.3866 

75 1.2176 0.8876 0.8024 0.5998 

95 2.5728 2.394 2.0142 1.6136  

*MSEs are values listed in the table time 10-3. 
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Table 20. Estimated MSEs of distribution function estimators at some percentiles for n = 800, the second 

censoring level. 

 

 N = 800 

 k 

Transition 

Probabilities 
Percentile 

 
1 2 4 8 16 

P00 

25 
 

0.31 0.2866 0.2486 0.2508 0.2504 

50  0.4346 0.4286 0.3544 0.3534 0.3248 

75  0.5014 0.614 0.4704 0.48 0.4156 

95  0.8528 1.0384 0.8282 0.8132 0.8074 

P01 

25  0.2286 0.2412 0.2388 0.2416 0.232 

50  0.3896 0.4454 0.3582 0.379 0.377 

75 
 

0.7086 0.6816 0.5548 0.6014 0.5526 

95  1.5468 1.6006 1.4196 1.321 1.193 

P02 

25  0.14 0.124 0.1138 0.082 0.0696 

50  0.3308 0.2904 0.2142 0.1792 0.1248 

75 
 

0.6468 0.4634 0.3636 0.3176 0.255 

95  1.2396 1.2606 1.0166 1.8194 1.009 

*MSEs are values listed in the table time 10-3. 

Table 21. Estimated MSEs of distribution function estimators at some percentiles for n = 1600, the second 

censoring level. 

 
 N = 1600  

 k  

Transition 

Probabilities 
Percentile 

 
1 4 8 16 32 

P00 

25  0.1706 0.1256 0.1242 0.1174 0.106 

50  0.2316 0.1892 0.1626 0.155 0.153 

75  0.2666 0.2448 0.234 0.1824 0.2008 

95  0.382 0.416 0.3918 0.3708 0.4196 

P01 

25  0.1172 0.1204 0.1178 0.1268 0.1096 

50  0.1912 0.1896 0.1802 0.1756 0.16 

75  0.3212 0.301 0.3154 0.2388 0.2408 

95  0.6808 0.6958 0.6758 0.5998 0.5412 

P02 

25  0.0682 0.0546 0.0432 0.0314 0.0234 

50  0.1692 0.1 0.0862 0.0698 0.0512 

75  0.2864 0.1926 0.1506 0.1224 0.1012 

95  0.6042 0.4876 0.406 0.4386 0.4432 

*MSEs are values listed in the table time 10-3. 
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Table 22. Estimated bias of distribution function estimators at some percentiles for n = 200, the first 

censoring level. 

 
N = 200 

k 

Transition 

Probabilities 
Percentiles 1 2 4 

P00 

25 0.029 0.0271 0.0256 

50 0.033 0.0306 0.0303 

75 0.0343 0.0317 0.0322 

95 0.0425 0.0398 0.039 

P01 

25 0.0204 0.0195 0.0201 

50 0.0242 0.0243 0.0245 

75 0.027 0.0274 0.0271 

95 0.0384 0.0381 0.0366 

P02 

25 0.0256 0.0244 0.0216 

50 0.0351 0.0304 0.0262 

75 0.0395 0.0352 0.032 

95 0.0522 0.0503 0.0447 

 

 

Table 23. Estimated bias of distribution function estimators at some percentiles for n = 400, the first 

censoring level. 

 
N = 400 

k 

Transition 

Probabilities 
Percentiles 1 2 4 8 

P00 

25 0.0207 0.0198 0.0177 0.017 

50 0.0231 0.0225 0.0208 0.0193 

75 0.0241 0.023 0.0228 0.0215 

95 0.0292 0.028 0.0295 0.0288 

P01 

25 0.0137 0.0146 0.0139 0.014 

50 0.0168 0.0167 0.0168 0.0171 

75 0.019 0.0203 0.0199 0.0201 

95 0.0277 0.026 0.0282 0.0265 

P02 

25 0.0187 0.0173 0.015 0.0127 

50 0.0237 0.0211 0.0186 0.0176 

75 0.0282 0.0246 0.0233 0.0217 

95 0.037 0.0319 0.0342 0.0333 
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Table 24. Estimated bias of distribution function estimators at some percentiles for n = 800, the first 

censoring level. 

 
N = 800 

k 

Transition 

Probabilities 
Percentile 1 2 4 8 16 

P00 

25 0.0146 0.0144 0.0132 0.0117 0.0107 

50 0.0164 0.016 0.0147 0.0126 0.0127 

75 0.0167 0.0166 0.016 0.0159 0.0149 

95 0.0205 0.0204 0.0193 0.0208 0.0197 

P01 

25 0.01 0.0103 0.0098 0.0096 0.0094 

50 0.0121 0.0121 0.0121 0.0117 0.0114 

75 0.0141 0.0143 0.0142 0.0142 0.0132 

95 0.0184 0.02 0.0188 0.0189 0.0178 

P02 

25 0.0131 0.0122 0.0107 0.0091 0.0082 

50 0.0165 0.015 0.0131 0.0117 0.0107 

75 0.0188 0.0174 0.0165 0.0155 0.0143 

95 0.0239 0.0244 0.0226 0.0225 0.0244 

 

Table 25. Estimated bias of distribution function estimators at some percentiles for n = 1600, the first 

censoring level. 

 
N = 1600 

k 

Transition 

Probabilities 
Percentile 1 4 8 16 32 

P00 

25 0.0103 0.0094 0.0084 0.0079 0.0078 

50 0.0114 0.0099 0.0093 0.0093 0.0095 

75 0.012 0.0114 0.011 0.0106 0.0104 

95 0.0147 0.0139 0.0135 0.0139 0.0173 

P01 

25 0.007 0.007 0.0066 0.0068 0.0072 

50 0.0087 0.0084 0.0081 0.0081 0.0086 

75 0.0106 0.0101 0.0101 0.0098 0.0101 

95 0.0134 0.0137 0.013 0.0132 0.0132 

P02 

25 0.0091 0.0074 0.0063 0.0055 0.0044 

50 0.0112 0.0089 0.0083 0.0071 0.0063 

75 0.0132 0.0114 0.0105 0.0101 0.0093 

95 0.0166 0.0163 0.0148 0.0165 0.0207 
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Table 26. Estimated bias of distribution function estimators at some percentiles for n = 200, the second 

censoring level. 

 
N = 200 

k 

Transition 

Probabilities 
Percentiles 1 2 4 

P00 

25 0.0285 0.0269 0.0265 

50 0.0321 0.0324 0.0305 

75 0.0373 0.0366 0.0345 

95 0.0508 0.0475 0.0443 

P01 

25 0.0258 0.0253 0.0259 

50 0.0319 0.0318 0.0342 

75 0.0407 0.0378 0.0406 

95 0.0668 0.0601 0.0554 

P02 

25 0.0187 0.0178 0.0176 

50 0.0305 0.0262 0.0242 

75 0.0389 0.0332 0.0334 

95 0.0631 0.0544 0.0478 

 

 

Table 27. Estimated bias of distribution function estimators at some percentiles for n = 400, the second 

censoring level. 

 
N = 400 

k 

Transition 

Probabilities 
Percentiles 1 2 4 8 

P00 

25 0.02 0.0193 0.0186 0.0176 

50 0.0237 0.0237 0.0217 0.0209 

75 0.0264 0.026 0.0252 0.0237 

95 0.033 0.0363 0.0319 0.0325 

P01 

25 0.017 0.0172 0.0178 0.0171 

50 0.0218 0.0227 0.023 0.0218 

75 0.0285 0.0281 0.028 0.0278 

95 0.0448 0.0428 0.0404 0.0389 

P02 

25 0.0131 0.013 0.0117 0.01 

50 0.0209 0.0186 0.0174 0.0158 

75 0.0277 0.0238 0.0225 0.0196 

95 0.0409 0.0391 0.0356 0.0325 
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Table 28. Estimated bias of distribution function estimators at some percentiles for n = 800, the second 

censoring level. 

 
N = 800 

k 

Transition 

Probabilities 
Percentile 1 2 4 8 16 

P00 

25 0.0141 0.0135 0.0123 0.0128 0.0127 

50 0.0165 0.0165 0.015 0.015 0.0142 

75 0.0178 0.0198 0.0174 0.0175 0.0163 

95 0.0233 0.0257 0.0229 0.0228 0.0229 

P01 

25 0.0121 0.0124 0.0122 0.0127 0.0121 

50 0.0155 0.017 0.0152 0.0155 0.0153 

75 0.021 0.0204 0.0192 0.0197 0.0186 

95 0.0314 0.0316 0.0299 0.0289 0.0289 

P02 

25 0.0095 0.0091 0.0085 0.0073 0.0066 

50 0.0147 0.0136 0.0119 0.0106 0.009 

75 0.0205 0.0174 0.0152 0.0142 0.0127 

95 0.0275 0.0285 0.0251 0.0233 0.0262 

 

Table 29. Estimated bias of distribution function estimators at some percentiles for n = 1600, the second 

censoring level. 

 
N = 1600 

k 

Transition 

Probabilities 
Percentile 1 4 8 16 32 

P00 

25 0.0105 0.0089 0.0088 0.0085 0.0083 

50 0.0121 0.011 0.0103 0.0098 0.0099 

75 0.0132 0.0126 0.0122 0.0108 0.0114 

95 0.0159 0.0162 0.0157 0.0155 0.0166 

P01 

25 0.0087 0.0088 0.0086 0.0088 0.0084 

50 0.011 0.0108 0.0107 0.0105 0.01 

75 0.0143 0.014 0.0139 0.0125 0.0123 

95 0.0209 0.0208 0.0209 0.0195 0.0187 

P02 

25 0.0066 0.0058 0.0053 0.0045 0.0038 

50 0.0105 0.008 0.0076 0.0067 0.0057 

75 0.0133 0.0111 0.0098 0.0088 0.0079 

95 0.0197 0.0174 0.0162 0.017 0.0172 
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Table 30. Estimated MSEs of transition probabilities P11, P12 at some percentiles for n = 200, the second 

censoring level. 

 
N = 200 

k 

Transition 

Probabilities 
Percentiles 1 2 4 

P11 

25 0.0116 0.0125 0.0109 

50 0.0088 0.0068 0.0048 

75 0.006 0.0048 0.003 

95 0.0063 0.0054 0.0052 

P12 

25 0.0116 0.0125 0.0109 

50 0.0088 0.0068 0.0048 

75 0.006 0.0048 0.003 

95 0.0063 0.0054 0.0052 

 

 

 

 

Table 31. Estimated bias of transition probabilities P11, P12 at some percentiles for n = 200, the second 

censoring level. 

 
N = 200 

k 

Transition 

Probabilities 
Percentiles 1 2 4 

P11 

25 0.0841 0.0873 0.0861 

50 0.0752 0.0641 0.0554 

75 0.0624 0.0539 0.0433 

95 0.0636 0.0584 0.0591 

P12 

25 0.0841 0.0873 0.0861 

50 0.0752 0.0641 0.0554 

75 0.0624 0.0539 0.0433 

95 0.0636 0.0584 0.0591 
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Table 32. Estimated MSEs of transition probabilities P11, P12 at some percentiles for n = 400, the second 

censoring level. 

 
N = 400 

k 

Transition 

Probabilities 
Percentiles 1 2 4 8 

P11 

25 0.0054 0.0074 0.0079 0.0085 

50 0.0041 0.0038 0.0026 0.002 

75 0.0029 0.0023 0.0014 0.0024 

95 0.003 0.0027 0.0026 0.0025 

P12 

25 0.0054 0.0074 0.0079 0.0085 

50 0.0041 0.0038 0.0026 0.002 

75 0.0029 0.0023 0.0014 0.0024 

95 0.003 0.0027 0.0026 0.0025 

 

 

 

 

Table 33. Estimated bias of transition probabilities P11, P12 at some percentiles for n = 400, the second 

censoring level. 

 
N = 400 

k 

Transition 

Probabilities 
Percentiles 1 2 4 8 

P11 

25 0.0583 0.0669 0.0726 0.0787 

50 0.0512 0.0482 0.0416 0.036 

75 0.0435 0.0371 0.0297 0.0367 

95 0.0421 0.0404 0.0417 0.038 

P12 

25 0.0583 0.0669 0.0726 0.0787 

50 0.0512 0.0482 0.0416 0.036 

75 0.0435 0.0371 0.0297 0.0367 

95 0.0421 0.0404 0.0417 0.038 
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Cycle 1 

𝑿(𝟏)𝟏𝟏  ≤  𝑋(2)11… ≤ 𝑋(𝑘−1)11 ≤ 𝑋(𝑘)11  →  𝑿(𝟏)𝟏 

X(1)12  ≤  𝑿(𝟐)𝟏𝟐… ≤ 𝑋(𝑘−1)12 ≤ 𝑋(𝑘)12  →  𝑿(𝟐)𝟏 

… 

X(1)1(k−1)  ≤  𝑋(2)1(𝑘−1)… ≤ 𝑿(𝒌−𝟏)𝟏(𝒌−𝟏) ≤ 𝑋(𝑘)1(𝑘−1)  →  𝑿(𝒌−𝟏)𝟏 

X(1)1k  ≤  𝑋(2)1𝑘 … ≤ 𝑋(𝑘−1)1𝑘 ≤ 𝑿(𝒌)𝟏𝒌  →  𝑿(𝒌)𝟏 

Cycle 2 

𝑿(𝟏)𝟐𝟏  ≤  𝑋(2)21… ≤ 𝑋(𝑘−1)21 ≤ 𝑋(𝑘)21  →  𝑿(𝟏)𝟐 

X(1)22  ≤  𝑿(𝟐)𝟐𝟐… ≤ 𝑋(𝑘−1)22 ≤ 𝑋(𝑘)22  →  𝑿(𝟐)𝟐 

… 

X(1)2(k−1)  ≤  𝑋(2)2(𝑘−1)… ≤ 𝑿(𝒌−𝟏)𝟐(𝒌−𝟏) ≤ 𝑋(𝑘)2(𝑘−1)  →  𝑿(𝒌−𝟏)𝟐 

X(1)2k  ≤  𝑋(2)2𝑘 … ≤ 𝑋(𝑘−1)2𝑘 ≤ 𝑿(𝒌)𝟐𝒌  →  𝑿(𝒌)𝟐 

… 

Cycle m 

𝑿(𝟏)𝒎𝟏  ≤  𝑋(2)𝑚1… ≤ 𝑋(𝑘−1)𝑚1 ≤ 𝑋(𝑘)𝑚1  →  𝑿(𝟏)𝒎 

X(1)m2  ≤  𝑿(𝟐)𝒎𝟐… ≤ 𝑋(𝑘−1)𝑚2 ≤ 𝑋(𝑘)𝑚2  →  𝑿(𝟐)𝒎 

… 

X(1)m(k−1)  ≤  𝑋(2)𝑚(𝑘−1)… ≤ 𝑿(𝒌−𝟏)𝒎(𝒌−𝟏) ≤ 𝑋(𝑘)𝑚(𝑘−1)  →  𝑿(𝒌−𝟏)𝒎 

X(1)mk  ≤  𝑋(2)𝑚𝑘 … ≤ 𝑋(𝑘−1)𝑚𝑘 ≤ 𝑿(𝒌)𝒎𝒌  →  𝑿(𝒌)𝒎 

Figure 1. An RSS procedure of obtaining a sample size of km. 
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Figure 2. Illustration of progressive illness-death model. 
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Figure 3. The efficiency of the AJ estimators based on RSS with respect to SRS counterparts at different 

percentiles for n = 200, 400, the first censoring level. 
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Figure 4. The efficiency of the AJ estimators based on RSS with respect to SRS counterparts at different 

percentiles for n = 800, 1600, the first censoring level. 
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Figure 5. The efficiency of the AJ estimators based on RSS with respect to SRS counterparts at different 

percentiles for n = 200, 400, the second censoring level. 
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Figure 6. The efficiency of the AJ estimators based on RSS with respect to SRS counterparts at different 

percentiles for n = 800, 1600, the second censoring level. 
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3 Chapter II: Application of Aalen Johansen Estimator in Healthy Start Dataset 

3.1 Introduction 

3.1.1 Small for Gestational Age 

        Small for gestational age (SGA) is defined as an infant weighing less than the 10th percentile at 

birth.62,63  Some reference define SGA as a neonate whose weight and/or crown-heal length at birth is at 

least 2 standard deviation below the mean for the infant’s gestational age, which is equivalent to the 2.3 

percentile.64  Appropriate for gestational age (AGA) is defined as infants between ninetieth and tenth 

percentile weight at birth.65  There are three categories of SGA: a low birth, a low birth length or both low 

birth weight and length.66  Infants born with SGA have increased risk of respiratory complications, 

hypotension, hypoglycemia, necrotizing enterocolitis, perinatal and later life morbidity and mortality.64    

        Factors contributing to SGA include: maternal high blood pressure, chronic kidney disease, 

advanced diabetes, heart or respiratory disease, malnutrition, infection, substance use, cigarette 

smoking.67  Kramer review 895 publications on risk factors of low birth weight.68  Factors with direct 

causal impact on intrauterine growth retardation (IUGR) include infant sex, racial/ethnic origin, maternal 

height, pre-pregnancy weight, paternal weight and height, maternal birth weight, parity, history of prior 

low-birth-weight infants, gestational weight gain and caloric intake, general morbidity and episodic 

illness, malaria, cigarette smoking, alcohol consumption, and tobacco chewing.  Black or Indian racial 

origin is one of the major determinants of IUGR for developing countries, while cigarette smoking is the 

leading factor for developed countries.  For most of SGA infants, multi-factors contribute the result, such 

as women who smoke tend to be younger, thinner and from lower socioeconomic classes.68,69  The impact 

of socioeconomic level is suggested to be indirect, since women from lower socioeconomic groups tend 

to have increased smoking level.70  Some socioeconomic indicator may have independent impact on SGA 

outcome, such as education.  Studies have found that in both East and West Germany, maternal education 
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was associated with SGA delivery.71  Improved education stands for better self-care, sufficient utilization 

of health care system and more knowledge of health-related behavior.  It is reported that pregnancy 

outside marriage had small but significant increase in adverse birth outcome including SGA, low birth 

weight and preterm.72  Several studies have found women older than 35 years old have increased risk of 

SGA, but not significant after adjusting for confounders.63  Birth weight was reduced for first and second 

time teen mothers compared with reference group in England.73  However, emotional support and 

intimacy for the teen mothers from family and friends represent highly preventive intervention for adverse 

birth outcomes.74 

3.1.2 Healthy Start Project 

        The term disparity is interpreted from racial or ethnic perspective for most of the time, but disparities 

present in many dimensions in healthcare system.  Healthy People describes that “Health disparities 

adversely affect groups of people who have systematically experienced greater obstacles to health based 

on their racial or ethnic group; religion; socioeconomic status; gender; age; mental health; cognitive, 

sensory, or physical disability; sexual orientation or gender identity; geographic location; or other 

characteristics historically linked to discrimination or exclusion.”75  Objectives in Healthy People 2010 

include designing interventions to reduce illness, disability and premature death, with a goal to eliminate 

health disparities.76  The nationwide Federal Government Healthy Start (HS) Project is a widely known 

program to reduce infant mortality and morbidity among disadvantage populations.  The Central 

Hillsborough Healthy Start Project (CHHS) is a community-based program funded through the Maternal 

and Child Health Bureau’s Healthy Start Initiative by the Federal Government in the 17-census tract area 

of Tampa, Florida.77  Many of the mothers are young, black, out of marriage and undereducated, which 

contributes to the poor birth outcomes in the area.78   

        Perinatal risk reduction services were provided collaboratively from CHHS and Florida Department 

of Health.  To identify those who will benefit from the service, risk screens were offered to pregnant 
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women and newborns.  Mothers who were interested in having HS services took the screen test and were 

referred to local HS programs. 

        Healthy Start services are mainly composed of three parts: 1) initial contact 2) initial assessment 3) 

care co-ordination.77  Within 5 days after screening and referral, initial contact is performed with 

participants.  In this contact, HS team members review the potential risk factors of adverse birth 

outcomes, explain concerns, and determine future services with the client.  Resource utilization issues, 

client’s ability to access health care are also considered in this stage.  Within 10 days after initial contact, 

initial assessment is attempted, which is a face-to-face contact.  During this stage, professional assessment 

of social and biological risk factors is carried out.  Assistance to overcome the risks are determined; 

health education about fetal development, normal/abnormal pregnancy, maternal nutrition, child spacing, 

preterm labor signs are performed; how clients access qualified resources are discussed; a comprehensive 

plan to ensure a smooth pregnant process till delivery is offered.  Care co-ordination is a prenatal 

assessment and care utilization package addressing specific risk factors to prevent adverse maternal health 

and birth outcomes. 

        Previous study found CHHS Health Start program reduce the risk for low birth weight (OR=0.7; 

95% CI=0.5-1.0) and preterm births (OR=0.7; 95% CI=0.5-0.9) for service recipients as compared to non-

recipients significantly.77  The study measured program effectiveness using odds ratios from logistic 

regression and number needed to treat (NNT).  Another study involved central Hillsborough Health Start 

data from 2000 to 2007 indicates women exposed to air particulate pollutants had elevated risk for low 

birth weight (AOR=1.24; 95% CI=1.07–1.43), very low birth weight (AOR=1.58; 95% CI=1.09–2.29) 

and preterm (AOR=1.18; 95% CI=1.03–1.34).79  And this adverse effect of air particulate pollutants was 

improved by Central Hillsborough Federal Healthy Start Project.  The Federal Healthy Start program in 

collaboration with community partners in east Tampa contributed to the decline in primary teen 

pregnancy (10-19 years), but no impact on repeated pregnancy.80  A study involved Healthy Start data in 

the above region from 2002-2009 linked with local vital record showed that pregnant women with the 

shortest interpregnancy interval (0-5 months: AOR=1.39, 95% CI 1.23-1.56) and longest interpregnancy 
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(IPI) (60 months: AOR=1.13, 95% CI 1.03-1.23) have an increased risk of adverse birth outcomes 

compared with IPI (18-23 months) group.81  Even though the role of Healthy Start in the association 

between interpregnancy interval and feto-infant morbidities is unclear, the study has important public 

health implications.  Providing education and counseling services for women to make optimized decision 

regarding birth space is a recommended public health strategy to reduce feto-infant morbidities.82 

3.1.3 Illness-Death Model Applied to Healthy Start Project for SGA Outcome 

        The Markov models are a class of stochastic models that assume a finite number of health states 

(clusters) and allows movement or transition from one state to the other.38  The rate of movement from 

one state to the next are measured in terms of transition probabilities.39  The transition probability from 

state ℎ to state 𝑗 (0 ≤ 𝑠 < 𝑡) is represented mathematically as 

𝑃ℎ𝑗(𝑠, 𝑡) = 𝑃(𝑋(𝑡) = 𝑗|𝑋(𝑠) = ℎ,𝐻𝑠−) 

𝐻𝑠− represents all the historical information from the data along the interval [0, s).  The model in equation 

1 is assumed to be independent on  𝐻𝑠−.  This is the memoryless property which must be satisfied by all 

Markov models.  The property states that any future evolution of the Markov process depends only on its 

current state and is independent of the previously visited states.40 

        The model applied to this study is similar to the progressive illness death/disability model.41  The 

model assumes that individuals from an initial state may transit to an intermediate state and may finally 

enter a terminal state.  This model has been widely used in medical research to study the course of 

disease.43  The setting of this study is similar to that of the illness death/disability model in which we 

investigate the likelihood of having an small for gestational age (SGA)64-66 infant (terminal state) in 

pregnant women (initial state).  These women had the opportunity to participate in the healthy start 

program before delivery (intermediate state).  

        Previous studies on this topic have utilized a cross sectional design to investigate  the association 

between socio-demographic characteristics and adverse birth outcomes.62,77  The longitudinal form of the 
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illness death/disability model is very attractive because it describes the progress of subjects from an initial 

state to a final state and have not been previously applied to maternal and child health settings.  

        In this study, we apply the illness-death model to study the progression of SGA65,83 infants in 

pregnant women who may participate in the healthy start program during follow-up. The impact of risk 

factors such as teen-mothers, obesity, race, marital status, smoking84 and education on the effect of SGA 

was also investigated.63,67,85-88 

3.2 Methods 

3.2.1 A Markov Model to Estimate Transition Probabilities for Healthy Start Study and Small for 

Gestational Age 

        A Markov model was used in this study to address possible transitions between states that include 

participant pregnancy (state 0), choosing to have healthy start service (state 1) and delivering a SGA 

infant (state 2), which corresponds with a typical three states progressive illness-death model well.  There 

are three possible transitions among them: 0 → 1, 0 → 2, 1 → 2.  At initial time, all subjects are in state 

0, and they are supposed to reach the final absorbing state 2 at future time point, along the process, they 

may experience or not an intermediate state (state 1).  In this study the intermediate state represents 

choosing to have healthy start service, the time spent in state 0 is referred to as no service and no SGA 

infant time.  In this study, Aalen Johansen53 approach based on Markov assumptions was exploited to 

estimate the transition probabilities.     

        Two sets of transition probabilities are to be estimated: for 0 ≤ s < t, {𝑃0𝑗(𝑠, 𝑡), 𝑗 = 0,1,2} and, for 0 

< s < t, {𝑃1𝑗(𝑠, 𝑡), 𝑗 = 1,2}.  N independent trajectories corresponding to n individuals are supposed to be 

observed.   

3.2.2 Statistical Analysis 

        A Markov model is a stochastic model89 with two properties: for each pair of states 𝑖, 𝑗 at each 

instant of time n and n+1, the transition probability 𝑝𝑖𝑗 depends only on the current state 𝑖, no matter what 

the previous states are.90  Therefore: 
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𝑝𝑖𝑗 = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖),                        𝑖, 𝑗 ∈ 𝑆 

𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 = 𝑖0) = 𝑃(𝑋𝑛+1 = 𝑗|𝑋𝑛 = 𝑖) = 𝑝𝑖𝑗 

        If there are m states total, then the transition probability matrix which is also called stochastic matrix 

could be listed as:90 

[

𝑝00    𝑝01    …    𝑝0𝑚
𝑝10    𝑝11    …    𝑝1𝑚

…
𝑝𝑚0    𝑝𝑚1    …    𝑝𝑚𝑚

] 

         

        For any s, t with 0 ≤ s < t, for Markov models we have 

𝑃ℎ𝑗(𝑠, 𝑡) = 𝑃(𝑋(𝑡) = 𝑗|𝑋(𝑠) = ℎ,𝐻𝑠−) = 𝑃(𝑋(𝑡) = 𝑗|𝑋(𝑠) = ℎ) 

        The future of the process after time s depends only on the state at time s, which is an important 

property made the dream of efficient estimation of transition probabilities come true. 

        Andersen et al.40 defined the integrated hazard matrix: 

𝐴 = (𝐴ℎ𝑗) 

𝑤ℎ𝑒𝑟𝑒 𝐴ℎ𝑗(𝑡) = ∫ 𝛼ℎ𝑗(𝑠)𝑑𝑠 
𝑡

0

𝑓𝑜𝑟 𝑎𝑙𝑙 ℎ, 𝑗 𝑤𝑖𝑡ℎ 𝛼ℎℎ(𝑡) = −∑ 𝛼ℎ𝑗(𝑡)
ℎ≠𝑗

. 

        Then the transition probability matrix is given as: 

𝑃(𝑠, 𝑡) = 𝑃ℎ𝑗(𝑠, 𝑡) =∏(𝐼 + 𝑑𝐴(𝑢))

(𝑠,𝑡]

 

Where A = (Ahj).  The Nelson-Aalen estimator of �̂�ℎ𝑗 is defined as: 

�̂�ℎ𝑗(𝑡) =

{
 
 

 
 ∫ 𝐽ℎ(𝑢)(𝑌ℎ(𝑢))

−1
𝑑𝑁ℎ𝑗(𝑢),     ℎ ≠ 𝑗,

𝑡

0

−∑ �̂�ℎ𝑗(𝑡),
ℎ≠𝑗

                             ℎ = 𝑗,

 

Where 𝐽ℎ(𝑢) = 𝐼(𝑌ℎ(𝑢) > 0).  𝑌ℎ(𝑢), the number of individuals observed in state h just prior time u.  

𝑁ℎ𝑗(𝑢), the number of observed direct transitions from h to j in the time interval [0, u].  The estimated 

N*N transition probability matrix is:43 
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�̂�(𝑠, 𝑡) =∏(𝐼 + 𝑑�̂�(𝑢))

(𝑠,𝑡]

 

        This is called Aalen-Johansen estimator.53  The variance of Aalen Johansen estimator could be 

calculated by a Greenwood-type formula.  The covariance matrix �̂�(𝑠, 𝑡) is:40,43 

𝐶𝑂�̂� (�̂�(𝑠, 𝑡)) = ∫ �̂�(𝑢, 𝑡)𝑇⊗ �̂�(𝑠, 𝑢 −)𝐶𝑂�̂� (𝑑�̂�(𝑢)) �̂�(𝑢, 𝑡) ⊗ �̂�(𝑠, 𝑢 −)𝑇
𝑡

𝑠

 

        Where 𝐶𝑂�̂�(𝑑�̂�) is the covariance of the matrix 𝑑�̂�. 

        Linear confidence interval for �̂�ℎ𝑗(𝑠, 𝑡) is defined: 

�̂�ℎ𝑗(𝑠, 𝑡) ± 𝑧𝛼
2
∗ �̂�ℎ𝑗(𝑠, 𝑡) 

        Where �̂�ℎ𝑗(𝑠, 𝑡) is the empirical standard error, and 𝑧𝛼
2
 is the upper α/2 quantile of the standard 

normal distribution.  Log transformation, log log transformation and complementary log log 

transformation for small sample size were listed as following:91,92 

�̂�ℎ𝑗(𝑠, 𝑡)exp {
±𝑧𝛼

2
∗ �̂�ℎ𝑗(𝑠, 𝑡)

�̂�ℎ𝑗(𝑠, 𝑡)
} 

�̂�ℎ𝑗(𝑠, 𝑡)exp {
±𝑧𝛼

2
∗ �̂�ℎ𝑗(𝑠, 𝑡)

�̂�ℎ𝑗(𝑠, 𝑡)log (�̂�ℎ𝑗(𝑠, 𝑡))
} 

1 − (1 − �̂�ℎ𝑗(𝑠, 𝑡))exp {
±𝑧𝛼

2
∗ �̂�ℎ𝑗(𝑠, 𝑡)

(1 − �̂�ℎ𝑗(𝑠, 𝑡))log (1 − �̂�ℎ𝑗(𝑠, 𝑡))
} 

3.2.3 Population Examined in the Study 

        We conducted a retrospective cohort study using a statewide enhanced maternal-infant database 

that contains socio-demographic and perinatal information.  Birth and death vital records from the 

Florida Department of Health for children born from January 1, 2009, through December 31, 2017 were 

considered.  This dataset contains information on 25,161 pregnant women.  Gestational age was 

calculated in weeks and computed by taking the interval between the date of last menstrual 

period reported by the mother at her first prenatal visit and the date of delivery.  In the Florida database, 

https://www.sciencedirect.com/topics/medicine-and-dentistry/menstrual-cycle
https://www.sciencedirect.com/topics/medicine-and-dentistry/menstrual-cycle
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the menstrual estimates of gestational age of 19.7% pregnancies were inconsistent with birth weight (for 

example very low birth weight at term).  For these cases, a clinical estimate computed by the physician 

was used.93  The covariates examined as possibly affecting transition probabilities include: teen-

mothers, marriage status, race, obesity, smoking and education.  All cases with missing values on the 

above covariates were excluded from the dataset.  Mothers age less than 19 years are considered teen 

mothers, otherwise are non-teen mothers.  There are two race groups: white and non-white.  Mothers 

whose pre-pregnancy BMI was larger than 30 is considered obese otherwise non-obese.  Smoking 

groups are divided by maternal smoking or not.  Mothers who had one year, two years, somewhat 

college, earned degree and above are considered college, otherwise non-college. 

3.2.4 Setting 

        To model the above data, we consider a three-state Markov model consisting of pregnancy (state 

0), choosing healthy start service (state 1) and delivery (state 2) (Figure 7).  At the start of the study 

(state 0), all subjects are pregnant.  Between pregnancy and delivery, mothers could decide whether to 

have healthy start service (state 1) or not.  At delivery (state 2), these mothers will either have SGA or 

AGA infants.  Study subjects can have transition between states, however, once a subject enters state 2 

(absorption state), that subject will remain in this state with probability 1.94   

        From the study design, five possible transition probabilities could be identified from this model: 

• 𝑃01, the probability of transition from state 0 to state 1 (from pregnancy to receiving healthy start 

service); 

•  𝑃02, the probability of transition from state 0 to state 2 (from pregnancy to delivering an SGA 

infant without receiving healthy start service); 

• 𝑃12, the probability of transition from state 1 to state 2 (received healthy start service and 

delivered an SGA infant);  

• 𝑃00, the probability of staying in state 0.  Note that this is the transition probability that a woman 

did not choose healthy start service and delivered an AGA infant;   
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•  𝑃11, the probability of staying in state 1, which is the probability that a woman had healthy start 

service and delivered AGA infant. 

        From transition probability matrix, the sum of 𝑃00, 𝑃01, 𝑃02 is equal to one.  The sum of 𝑃11 and 𝑃12 

is one.  Once in state 2, the probability of getting out is 0 since it is an absorption state.  Therefore, 𝑃22 is 

equal to one.   

 

        From 

                State 0        State 1        State 2 

State 0       𝑃00            𝑃01              𝑃02 

                                               To    State 1        0               𝑃11              𝑃12 

  State 2        0                0                𝑃22 

3.3 Results and Discussion 

3.3.1 Results 

        The data used for this study included 25,161 pregnant women. Of these, 3,409 (13.55%) received 

healthy start service.  A total number of 3,607 (14.34%) deliveries were SGA (Table 34). 

        Table 35 shows demographic characteristics of all study participants.  The mean age of study 

participants was 26 years with a minimum of 12 and a maximum age of 51 years.  Additionally, 7.44% of 

study participants were below 19 years old.  The overall mean pre-pregnancy BMI of study subjects was 

26.5(SD=6.78) with a mean gestational age of 38.21(SD=2.38).  Also, 29.14% of study participants were 

married, 40.46% were white, 24.31% were obese, 4.63% were smokers and 33.78% had one year or more 

college education.      

        Table 36 presents transition probabilities at 2, 3, 4, 5, 6, 7, 8, 9 months from pregnancy to delivery.  

As can be observed from this table, prior to 5 months (no delivery) the only transition was from state 0 

(pregnancy) to state 1 (HS).  There was no transition between state 0 and state 2 or state 1 and state 2 

(SGA infant), meaning no delivery took place during this time.  After 5 months (as study participants 
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deliver) the transition probability from states 0 to 2 and from states 1 to 2 increases with gestational age.  

At the end of the study, 28.1% of study subjects who did not receive HS service had SGA infant whereas 

26.2% of subjects that received HS services had SGA infants with a risk reduction of about 2% (Table 

36). 

        Table 37 shows transition probabilities categorized by selected risk factors to investigate the impact 

of HS services on SGA.  Overall, women that received HS service had lower probabilities of having SGA 

infants compared to women that did not have HS service.  Six risk factors were considered: teen mothers, 

marriage status, race, obesity, smoking status, and education.  Additionally, for all risk factors considered, 

except for obese mothers, receiving HS service narrows the gap in the transition probability of having an 

SGA baby in high risk mothers compared to low risk mothers (Figure 8).  As can be observed from 

Figure 8, teenage mothers that did not receive HS service had 5.6% higher probabilities of having SGA 

infants compared to non-teenage mothers.  None married mothers that did not receive HS service had 

12.9% higher probabilities of having SGA infants compared to married mothers.  Non-white mothers that 

did not receive HS services have 16% higher probability compared to white mothers for having SGA 

infants.  This rate reduces to 9% after receiving HS services.  Smoking mothers that did not receive HS 

service had 13% higher probabilities of having SGA infants compared to non-smoking mothers. 

However, after receiving HS service, this difference reduces to 10%.  Non-college mothers that did not 

receive HS services had 9% higher probability compared to college mothers for having SGA infants.  

This proportion reduced to 8% after receiving service.   

        Figure 9 to figure 20 present transition probabilities of teen mothers, marriage groups, race groups, 

obesity status, smoking status, and education status.  These plots, which are visual display of results from 

Table 37, conforms well with this table.  For all the plots, transition probabilities P00, P11 showed 

decreasing trend along time, while P02, P12 showed increasing trend.  For plots of marriage, race, smoking 

and education statuses, there were obvious differences between the risk groups in transition probabilities 

P00.  However, for all the above groups, the plots of P11 for two groups entangled together, which 

indicates similarity in transition probabilities between groups.   
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3.3.2 Discussion 

        In this study we have successfully applied the Markov model to investigate the effectiveness of the 

healthy start program in relation to the delivery of an SGA infant.  Our results show that the risk of 

delivering an SGA infant was greatly reduced when a mother received healthy start services compared to 

mothers that did not receive healthy start services.  Using a similar data, Salihu et al.77 observed the 

healthy start program to be effective in reducing preterm birth but ineffective in impacting SGA.  To our 

knowledge, this is the only study that has shown the health start program in reducing SGA. 

        Another important observation in this study is that the gap in the rate of SGA in high risk mothers 

that participated in the healthy start program compared to low risk mothers that also participated in the 

healthy start program is filled.  Additionally, the rate of SGA was almost similar in high risk mothers that 

participated in the healthy start program compared to low risk mothers that did not take part in the healthy 

start program.  To our knowledge, these observations have not been previously reported by others on the 

effectiveness of the healthy start.   

        A previous study on the effectiveness of the healthy start program did not find the Hillsborough 

healthy start program to be effective in reducing the rates of SGA.  Since 2009, structural changes have 

occurred in the healthy start program in Hillsborough County, Florida.  The University of South Florida, 

Tampa was sub-contracted to take care of the evaluation part of the program, as well as the revamping of 

the database might have resulted in quality data.  Another reason why the rate of SGA is significantly 

lower for program participants might be attributed to the large sample size that this study possessed 

compared to previous study.  This study tracked nine years of high-risk population data from 2009 to 

2017 resulting to almost doubling of the power compared to previous studies on this program.  

        Another advantage that this study commands is the use of the Markov model to display the transition 

probabilities over a period of time.  Most study on this topic have been cross sectional.  The longitudinal 

design of this study ensures that we followed women over time and observe their movement throughout 

their pregnancy period.  Unlike traditional longitudinal models focusing on trends over time, the method 

used in this paper provides a novel angle to analyze longitudinal data as we have characterized discrete 
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sequences based on their transition patterns.  The model demonstrates a satisfactory and stable 

performance.    

      Additionally, the whole study process was expressed in a three states Markov model clearly and 

naturally.  The number of states the system requires is not large, which makes the system reliable and 

stable.95  Markov models have advantage in sequence dependent behavior.  For example, certain events 

have to take place until other events occur.95  In this study, all three states are followed by time sequence, 

with the first state happened at pregnancy time, the second state at choosing service time, the third state as 

delivery time.  The number of states in this study is not large, therefore, computation won’t require too 

much memory and execution time.  Correctly specifying states is not a challenge for this research.  

Markov assumption is restrictive, but this study generally meets the assumption.    

 

Table 34. Number of records for percentage of women choosing services and percentage of newborns 

with SGA in healthy start data set. 

Delivery Status Number of records Percentage 

Total 25,161 100.00% 

Women choosing services 3,409 13.55% 

Newborns with SGA 3,607 14.34% 
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Table 35. Summary of demographic statistics in healthy start data set. 

Demographics Statistics Value 

Age (yrs) 

N 25161 

Mean (SD) 26.05 (5.87) 

Median 25.00 

Min. 12.00 

Max. 51.00 

Pre-pregnancy BMI 

N 23603 

Mean (SD) 26.50 (6.78) 

Median 24.90 

Min. 13.70 

Max. 76.00 

Gestational weeks 

N 25161 

Mean (SD) 38.21 (2.38) 

Median 39.00 

Min. 20.00 

Max. 43.00 

Age (<19) N (%) 1873 (7.44) 

Married (Yes) N (%) 7327 (29.14) 

White (Yes) N (%) 10179 (40.46) 

Obese (Yes) N (%) 5736 (24.31) 

Smoking (Yes) N (%) 1164 (4.63) 

Somewhat College (Yes) N (%) 8470 (33.78) 

 



63 

 

Table 36. Transition Probability at 2, 3, 4, 5, 6, 7, 8, 9, and last day* from pregnancy in healthy start data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

*: the last woman giving birth in the study is 294 days from getting pregnancy. 

Time (days) State 0 to 0 State 0 to 1 State 0 to 2 State 1 to 2 State 1 to 2 

60 97.112% 2.888% 0.000% 100% 0.000% 

90 93.576% 6.424% 0.000% 100% 0.000% 

120 91.655% 8.345% 0.000% 100% 0.000% 

150 90.269% 9.714% 0.016% 100% 0.000% 

180 89.267% 10.648% 0.084% 99.964% 0.036% 

210 88.445% 11.378% 0.177% 99.899% 0.101% 

240 87.078% 11.967% 0.955% 99.210% 0.790% 

270 79.821% 11.471% 8.707% 91.952% 8.048% 

294* 62.591% 9.353% 28.057% 73.809% 26.191% 
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Table 37. Transition probabilities by treatment groups (%) in healthy start data set. 

***: significant difference between treatment groups.

Covariates State 0 to 0 State 0 to 1 State 0 to 2 State 1 to 1 State 1 to 2 

Age 

Teen mother (Age < 19) 
63.70 

(59.35, 68.05) 

2.91 

(1.15, 4.66) 

33.40 

(0.00, 100.00) 

73.43 

(64.19, 82.67) 

26.57 

(17.33, 35.81) 

Non-teen mother (Age ≥ 19) 
69.90 

(66.32, 73.48) 

2.32 

(2.04, 2.60) 

27.78 

(0.00, 64.41) 

74.52 

(71.10, 77.94) 

25.48 

(22.06, 28.90) 

Marriage 

Not Married 
64.73*** 

(59.02, 70.45) 

2.51 

(2.14, 2.87) 

32.76 

(0.00, 100.00) 

72.67 

(68.74, 76.60) 

27.33 

(23.40, 31.26) 

Married 
78.19*** 

(76.09, 80.30) 

1.99 

(0.00, 4.81) 

19.82 

(0.00, 54.33) 

80.50 

(76.08, 84.92) 

19.50 

(15.08, 23.92) 

Race 

Non-white 
62.46*** 

(57.39, 67.53) 

2.37 

(1.80, 2.95) 

35.17 

(0.00, 75.08) 

71.09*** 

(67.77, 74.40) 

28.91*** 

(25.60, 32.23) 

White 
78.05*** 

(76.40, 79.69) 

2.55 

(2.25, 2.86) 

19.40 

(0.00, 68.89) 

79.95*** 

(74.48, 85.42) 

20.05*** 

(14.58, 25.52) 

BMI 

Obese (BMI>30) 
74.35 

(71.50, 77.21) 

1.66 

(0.86, 2.45) 

23.99 

(0.00, 86.14) 

75.88 

(65.68, 86.07) 

24.12 

(13.93, 34.32) 

Non-obese (BMI≤30) 
67.54 

(62.91, 72.17) 

2.59 

(2.23, 2.94) 

29.87 

(0.00, 82.39) 

73.73 

(70.32, 77.15) 

26.27 

(22.85, 29.68) 

Smoking 

Smoking 
56.90*** 

(49.07, 64.73) 

1.84 

(0.80, 2.88) 

41.26 

(0.00, 100.00) 

64.55 

(44.71, 84.39) 

35.45 

(15.61, 55.29) 

Non-smoking 
69.81*** 

(66.17, 73.44) 

2.38 

(2.07, 2.68) 

27.81 

(0.00, 64.78) 

75.43 

(72.46, 78.41) 

24.57 

(21.59, 27.54) 

Education 

Non-college 
66.14*** 

(62.02, 70.25) 

2.58 

(2.15, 3.00) 

31.28 

(0.00, 71.77) 

72.12 

(67.93, 76.32) 

27.88 

(23.68, 32.07) 

College 
76.32*** 

(74.28, 78.36) 

1.93 

(1.65, 2.22) 

21.74 

(0.00, 100.00) 

80.00 

(76.04, 83.95) 

20.00 

(23.68, 32.07) 
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Figure 7. Illustration of progressive illness-death model applied to Healthy Start project. 

 

 

 

Figure 8. Transition probabilities of having an SGA infant by risk groups in healthy start data set. 
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Figure 9. Transition probabilities P00, P01 and P02 plots for teen mothers in healthy start data set. 
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Figure 10. Transition probabilities P11and P12 plots for teen mothers in healthy start data set. 
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Figure 11. Transition probabilities P00, P01 and P02 plots for marriage groups in healthy start data set. 
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Figure 12. Transition probabilities P11and P12 plots for marriage groups in healthy start data set. 
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Figure 13. Transition probabilities P00, P01 and P02 plots for race groups in healthy start data set. 
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Figure 14. Transition probabilities P11 and P12 plots for race groups in healthy start data set. 
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Figure 15. Transition probabilities P00, P01 and P02 plots for obese status in healthy start data set. 
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Figure 16. Transition probabilities P11 and P12 plots for obese status in healthy start data set. 
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Figure 17. Transition probabilities P00, P01 and P02 plots for smoking groups in healthy start data set. 
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Figure 18. Transition probabilities P11 and P12 plots for smoking groups in healthy start data set. 
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Figure 19. Transition probabilities P00, P01 and P02 plots for education groups in healthy start data set. 
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Figure 20. Transition probabilities P11 and P12 plots for education groups in healthy start data set.
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4 Chapter III: Application of Aalen–Johansen Estimator Based on RSS Design to Colon 

Cancer Dataset  

4.1 Data Description 

        “ColonTP” data include colon adenocarcinoma patients who have received en bloc resection.  This 

data set was first introduced by Laurie et al.96  A complete study report was described by Moertel et al.97  

After enrollment was completed in October 1987, eligible patients were randomly assigned to control 

group, therapy with levamisole group, or therapy with levamisole plus fluorouracil.97  Participants were 

followed to record cancer recurrence as well as survival up to 5 years.  The data set includes 929 subjects 

and 15 variables as following:43 

time1    Disease free survival time (time to recurrence, death, or censoring, whichever occurs first) 

event1    Disease free survival indicator (1=dead or relapsed, 0=alive disease free) 

Stime    Time to death or censoring. 

event    Death indicator (1=dead, 0=alive). 

rx    Treatment (Obs=observation, Lev=Levamisole, Lev+5-FU=Levamisole+fluorouracil). 

sex    1=male. 

age    Age in years. 

obstruct    Obstruction of colon by tumour. 

perfor    Perforation of colon. 

adhere    Adherence to nearby organs. 

nodes    Number of lymph nodes with detectable cancer. 

differ    Differentiation of tumour (1=well, 2=moderate, 3=poor). 

extent    Extent of local spread (1=submucosa, 2=muscle, 3=seros, 4=contiguous structures). 

surg    Time from surgery to registration (0=short, 1=long). 
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nodes    More than 4 positive lymph nodes. 

        Even though originally the data was designed for colon cancer survival analysis with Kaplan-Meier 

method, the data later became an classic real world example for illness death model cited by many 

literatures.43,60,98,99  In an illness death model, when subjects entered the study they were considered in 

State 0.  Those who encountered cancer recurrence entered State 1.  Death is State 2, which is an 

absorption state.  Since the data set includes the following variables: “event1 (Disease free survival 

indicator)”, “event (Death indicator)”, “time1 (Disease free survival time” and “Stime (Time to death or 

censoring)”, it could be a perfect illustration for illness-death model.   

4.2 Methods 

4.2.1 An RSS modified Aalen Johansen Estimator for Colon Cancer Dataset  

        An illness-death model was used in this study to address possible transitions between states that 

include health (state 0), cancer recurrence (state 1) and death (state 2), which corresponds with a typical 

three states progressive illness-death model well.  There are three possible transitions among them: 0 → 

1, 0 → 2, 1 → 2.  At initial time, all subjects are in state 0, and they are supposed to reach the final 

absorbing state 2 at future time point, along the process, they may experience or not an intermediate state 

(state 1).  In this study the intermediate state represents cancer recurrence, the time spent in state 0 is 

referred to as healthy with no cancer recurrence.  Aalen Johansen53 estimator based on Markov 

assumptions under RSS sampling design was exploited to estimate the transition probabilities.   

        To perform RSS sampling method, a covariable correlated with the interested outcome variable 

needs to be identified for ranking purpose.  Previous literatures indicate that age is correlated with colon 

cancer mortality rate.100,101  To investigate the relationship between survival time and all available 

variable, firstly, all censored variables were excluded.  Because after excluding the censored subjects, 

“Stime” is the uncensored variable indicating survival time until death.  There are 452 subjects remaining.  

A simple linear regression was carried out with “Stime” as dependent variable, other 11 variables as 

independent variables.  The regression coefficients and p values are listed in Table 38.  A simple random 
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sample of sample size 200 was selected from colonTP dataset.  Transition probabilities P00, P01, P02 were 

calculated.  Squared errors of distribution functions for the above estimators at 25%, 50%, 75% and 95% 

percentiles were calculated to show the performance.  A ranked set sample of set number 5 and cycle 

number 40, which is equal to sample size 200 was selected from colonTP dataset.  Transition probabilities 

P00, P01, P02 were calculated.  Squared errors of distribution functions for the above estimators at 25%, 

50%, 75% and 95% percentiles were calculated to show the performance.  Table 39 presents the study 

results.             

4.2.2 Statistical Analysis 

        The proposed Aalen–Johansen (AJ) estimator for transition probabilities based on the RSS (k, m) 

sampling in illness death model (�̃�, �̃�, 𝛿0, 𝛿1, 𝛽) is applied to calculate the transition probability. 

        For transition probability from state 0 to state 0, we have 

�̂�00𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�00[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�00[𝑟](𝑠, 𝑡) = ∏ (1 −
𝛿0𝑙

𝑅0(�̃�𝑙)

𝑚
𝑠<𝑍�̃�≤𝑡,𝑙=1

)
1{𝑠<𝑌[𝑟]𝑙

∗ ≤𝑡}
        (𝑟 = 1,… , 𝑘), 

where 𝑌[𝑟]1
∗ , … , 𝑌[𝑟]𝑚

∗  are ordered values of the units of the rth rank and 𝑅0(𝑡) = ∑ 𝐼(𝑍�̃� ≥ 𝑡)
𝑚
𝑙=1 .   

        For transition probability from state 1 to state 1, we have 

�̂�11𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�11[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�11[𝑟](𝑠, 𝑡) = ∏ (1 −
𝛿1𝑙

𝑅1(�̃�𝑡)

𝑚
𝑠<𝑇�̃�≤𝑡,𝛽𝑙=1,𝑙=1

)
1{𝑠<𝑌[𝑟]𝑙

∗ ≤𝑡}
       (𝑟 = 1,… , 𝑘), 

where 𝑅1(𝑡) = ∑ 𝐼(𝑍�̃� < 𝑡 ≤ 𝑇�̃�)
𝑚
𝑙=1 .   

        Then the modified transition probability from state 0 to state 1 is proposed as 

�̂�01𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�01[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�01[𝑟](𝑠, 𝑡) = ∑ �̂�00[𝑟](𝑠,
𝑚
𝑙=1 �̃�𝑙

−)�̂�11[𝑟](�̃�𝑙 , 𝑡)𝐼(𝑠 < 𝑍�̃� ≤ 𝑡)
𝛽𝑙

𝑅0(�̃�𝑙)
        (𝑟 = 1,… , 𝑘), 
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        Finally, it is obvious to propose the following transition probabilities from state 0 to state 2, and 

from state 1 to state 2.  Since in Aalen–Johansen (AJ) transition probabilities, 𝑃00 + 𝑃01 + 𝑃02 = 1 and 

𝑃11 + 𝑃12 = 1. 

�̂�02𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�02[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�02[𝑟](𝑠, 𝑡) = 1 − �̂�00[𝑟](𝑠, 𝑡) − �̂�01[𝑟](𝑠, 𝑡)           (𝑟 = 1,… , 𝑘), 

�̂�12𝑅𝑆𝑆
𝐴𝐽 (𝑠, 𝑡) =

1

𝑘
∑ �̂�12[𝑟](𝑠, 𝑡)
𝑘
𝑟=1 , 

�̂�12[𝑟](𝑠, 𝑡) = 1 − �̂�11[𝑟](𝑠, 𝑡)           (𝑟 = 1,… , 𝑘) 

 

4.3 Results 

        It is clearly showed in Table 38 that age (p = 0.0438), obstruction of colon by tumor (p = 0.0177), 

differentiation of tumor (p = 0.0049), extent of local spread and more than 4 positive lymph nodes (p = 

0.0044) have significant p values (p < 0.05).  Previous literature research indicates that age is correlated 

with colon cancer mortality rate.100,101  Age is a continuous demographic variable, which is uncostly to 

measure.  All above properties make age a qualified covariant for ranking in RSS sampling design.   

        In Table 39, among 12 estimators, except for P00 at 95 percentile and P01 at 50 percentile, 10 RSS 

estimators perform equal to or better than SRS competitors.  For transition probability P00 at 25 

percentiles, the squared error from SRS design is 476.19 times as high as the squared error from RSS 

design.  For transition probability P02 at 25 percentiles, the squared error from SRS design is 232.43 times 

as high as the squared error from RSS design.  Only the estimators for P00 at 95 percentiles (1.74e-4) and 

P01 at 50 percentiles (5.49e-4) have higher squared error for RSS design than for corresponding SRS 

design (1.14e-4, 1.15e-5).  Interestingly, the dominant superiority of RSS estimator over SRS estimator 

corresponds well with simulation results with transition probabilities P00 and P02 having more improved 

efficiency than transition probability P01. 

        In Table 40, it is shown that when RSS sample size is 200 with a set number of 4, the estimators are 

very close to the real transition probabilities of full colonTP dataset except for transition probability P01 at 
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50 percentiles.  For transition probability P00, all four RSS estimators are close to the true values with 

differences within 5%.  For transition probability P02, three out of four RSS estimators are highly close to 

the corresponding true values with differences within 2%.  The only exception is at 75%, however, the 

difference is still not large (6.36%) and the performance is still better than SRS counterpart.  When 

transition probability is P01, the RSS estimators are not as close to the true values as for other transition 

probabilities, except for 25% (99.67%).    

4.4 Discussion 

        The application results represent simulation study well with excellent estimation of the real transition 

probabilities for P00 and P02 based on RSS sampling design.  However, the efficiency of the RSS estimator 

is compromised for transition probability P01.  As we previously discussed, this is due to the fact that 

progressive illness-death model is a stochastic process, random variables T01 (time from state 0 to state 1), 

T12 (time from state 1 to state 2) and T02 (time from state 0 to state 2) are independent.60  When ranking 

variable is correlated with T02, the transition probabilities that are influenced are 𝑃00 and 𝑃02, which 

justifies the Markov property of illness-death model. 

        Additionally, in this real-world application RSS modified AJ estimator still shows dominant 

superiority than its SRS counterpart.  Even for transition probability P01 which has the worst performance 

for RSS design, 3 out of 4 RSS estimators show efficiency advantage than their SRS competitors.  This 

dominant advantage of RSS modified AJ estimator over SRS design also correspond with the simulation 

results. 

        A limitation of this application study is that the RSS study we performed here did not design and 

collect data from a population, which is not a real RSS sample.  The colon cancer dataset itself is a 

random sample from population from which we draw an RSS sample.  Carrying out research like this 

underestimates the difficulty of conducting an RSS study directly from population.  However, there is no 

reported clinical study based on RSS design.  Hopefully the situation could be improved in future.         
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Table 38. Regression coefficients and p values of linear regression between survival time and various 

variables in colonTP dataset. 

Variable name 
Regression 

coefficient 
p-value 

Rx (Lev) -77.051 0.24771 

Rx (Lev+5FU) -9.699 0.89251 

sex 46.112 0.42484 

age -4.774 0.04377* 

obstruct -165.165 0.01773* 

perfor 83.796 0.59073 

adhere -1.801 0.98120 

nodes -3.635 0.72026 

differ -157.241 0.00494* 

extent -202.991 0.00440* 

surg -10.905 0.86051 

node4 -232.771 0.00818* 
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Table 39. Squared errors of distribution function estimators at some percentiles for n = 200 in colonTP dataset. 

 P00 P01 P02 

Time point 
0.25 

(728) 

0.50 

(1455) 

0.75 

(2183) 

0.95 

(2765) 

0.25 

(728) 

0.50 

(1455) 

0.75 

(2183) 

0.95 

(2765) 

0.25 

(728) 

0.50  

(1455) 

0.75 

(2183) 

0.95 

(2765) 

RSS  

squared error 
2.31e-7 4.2e-6 3.23e-4 1.74e-4 3.29e-7 5.49e-4 1.6e-4 9.09e-5 1.11e-6 6.47e-4 2.81e-5 1.32e-5 

SRS  

squared error 
1.1e-4 4.86e-4 6.75e-4 1.14e-4 3.11e-5 1.15e-5 1.61e-4 6.36e-4 2.58e-4 6.47e-4 1.77e-4 2.11e-4 

Ratio of the two 476.19 115.71 2.09 0.66 94.53 0.02 1.01 7.00 232.43 1.00 6.30 15.98 
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Table 40. Percentage of RSS estimators of the real transition probabilities in colonTP dataset with a 200 

sample size. 

Transition probability Time point (percentile) RSS (%) 

P00 

25 99.92 

50 99.60 

75 96.11 

95 96.99 

P01 

25 99.67 

50 73.54 

75 118.45 

95 119.56 

P02 

25 100.47 

50 106.36 

75 101.13 

95 100.71 
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5 Limitations  

        The limitations of the study include not considering the cost of sampling and ranking, which is 

assumed to be minimum.  However, in practice though the cost of sampling and ranking is much less than 

full measurement, but it cannot be totally ignored.  There are studies focusing on comparing cost of RSS 

plus ranking expenses to the cost of SRS design and conclude that RSS design with optimum set number 

is still more efficient than SRS.102  Another limitation of the study is that properties of the proposed 

transition probabilities 𝑃11 and 𝑃12 are partially discussed.  Since the ranking variable is T02 (time from 

state 0 to state 2), the simulation results show that the efficiency of the RSS modified transition 

probability 𝑃01 was not improved.  But after ranking T12 (time from state 1 to state 2) transition 

probabilities 𝑃11 and 𝑃12 under RSS design show improvement under several simulation scenarios.   

        Future studies could consider ranking variable T01 (time from state 0 to state 1) to see if the 

performance of transition probability 𝑃01 will improve compared to its SRS competitor.  Under the same 

design, if there is no improvement of transition probability 𝑃02, then the Markov property of illness death 

model is justified again, since T01 (time from state 0 to state 1) and T02 (time from state 0 to state 2) are 

independent.  Efforts could also be put on continuing studying transition probabilities 𝑃11 and 𝑃12 under 

RSS design for larger sample sizes and other censoring levels.  We suspect that after ranking T12, the 

efficiency improvement of transition probabilities 𝑃11 and 𝑃12 will be like Kaplan-Meier estimator, since 

they are the last two states of Markov process, and it is one direction with no branches.  Finally, we would 

recommend the use of novel derivatives of ranked set sampling to extend the current study, such as 

Partially Rank-Ordered Set (PROS),34 even order ranked set sampling (EORSS)103 and quartile pair 

ranked set sampling (QPRSS).104      
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6 Contributions 

        This is the first time that the AJ nonparametric estimator using RSS sampling design was proposed 

and compared with its SRS counterpart through simulation study.  The effect of RSS design on two 

censoring indicators were investigated simultaneously, which is an extension of previous study regarding 

survival analysis with only one censoring event.  The simulation study finds the dominant superiority of 

RSS modified AJ estimator for transition probabilities P00 and P02 in illness-death Markov model over its 

counterpart from SRS design for various sample sizes.  The simulation study also indicates that when 

sample size is fixed, as set number increases the efficiency improvement for the estimator from RSS 

design compared with its SRS competitor becomes more significant, which proves the efficiency gain 

comes from ranking process.   

        It is the first time that illness-death model based on conventional AJ estimator was applied to 

investigate the effectiveness of the healthy start program in relation to the delivery of an SGA infant.  Our 

results show that the risk of delivering an SGA infant was greatly reduced when a mother received 

healthy start services compared to mothers that did not receive healthy start services.  Previously, Salihu 

et al.77 observed the healthy start program to be effective in reducing preterm birth but ineffective in 

impacting SGA.  To our knowledge, this is the only study that has shown the health start program in 

reducing SGA.  

        In this study, it is the first time RSS modified AJ estimator was applied to a real-world colon cancer 

dataset.  The RSS estimator presents dominant advantage over its SRS counterparts in approximating 

transition probabilities P00, P01 and P02.  The application results correspond well with the simulation 

outcome. 
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