
University of South Florida University of South Florida

Digital Commons @ University of South Florida Digital Commons @ University of South Florida

USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations

July 2022

Deep Learning and Feature Engineering for Human Activity Deep Learning and Feature Engineering for Human Activity

Recognition: Exploiting Novel Rich Learning Representations and Recognition: Exploiting Novel Rich Learning Representations and

Sub-transfer Learning to Boost Practical Performance Sub-transfer Learning to Boost Practical Performance

Ria Kanjilal
University of South Florida

Follow this and additional works at: https://digitalcommons.usf.edu/etd

 Part of the Electrical and Computer Engineering Commons

Scholar Commons Citation Scholar Commons Citation
Kanjilal, Ria, "Deep Learning and Feature Engineering for Human Activity Recognition: Exploiting Novel
Rich Learning Representations and Sub-transfer Learning to Boost Practical Performance" (2022). USF
Tampa Graduate Theses and Dissertations.
https://digitalcommons.usf.edu/etd/9384

This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at
Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses
and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more
information, please contact scholarcommons@usf.edu.

http://scholarcommons.usf.edu/
http://scholarcommons.usf.edu/
https://digitalcommons.usf.edu/
https://digitalcommons.usf.edu/etd
https://digitalcommons.usf.edu/grad_etd
https://digitalcommons.usf.edu/etd?utm_source=digitalcommons.usf.edu%2Fetd%2F9384&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.usf.edu%2Fetd%2F9384&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Deep Learning and Feature Engineering for Human Activity Recognition: Exploiting Novel

Rich Learning Representations and Sub-transfer Learning to Boost Practical Performance

by

Ria Kanjilal

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Electrical Engineering

College of Engineering
University of South Florida

Major Professor: Ismail Uysal, Ph.D.
Nasir Ghani, Ph.D.
Mia Naeini, Ph.D.

Robert Karam, Ph.D.
Deniz Dayicioglu, Ph.D.

Date of Approval:
June 23, 2022

Keywords: Data Augmentation, Healthcare, Spectrotemporal Representation,
Subject-specific Learning, Unsupervised Feature Learning

Copyright © 2022, Ria Kanjilal

Acknowledgments

I am deeply indebted to my Ph.D. supervisor Dr. Ismail Uysal for his continuous en-

couragement and guidance as I worked over many years towards this accomplishment. This

endeavor would not have been possible without his cordial support. I would also like to

express my deepest gratitude to Dr. Nasir Ghani, Dr. Mia Naeini, Dr. Robert Karam and

Dr. Deniz Dayicioglu for their willingness to serve as my supervisory committee members

and their valuable time reviewing my dissertation work. I’m extremely grateful to my super-

visor for providing me with the necessary research funding as well as USF’s Department of

Electrical Engineering for the teaching assistantship support such that I could complete my

research work. A special thanks to my friend Mainak Kundu. I could not have undertaken

this journey without his support and encouragement. Many thanks go to my friends and lab

partners, Rania Elashmawy and Dr. Muhammed Kucuk. Most importantly, I wish to thank

my parents and my brother for providing me with their unfailing support and continuous

encouragement throughout my academic life. Finally, I would like to thank God Almighty

for giving me the strength, opportunity and guidance for achieving my goal.

Table of Contents

List of Tables . iv

List of Figures . vi

Abstract . ix

Chapter 1: Introduction . 1
1.1 Motivation . 1
1.2 Deep Learning versus Feature Engineering 3
1.3 Empowering Deep Feature Learning in HAR 5
1.4 Sub-transfer Learning for Retuning the Outlier User Accuracy 6

Chapter 2: Introduction to Machine Learning and Deep Learning 9
2.1 Introduction . 9
2.2 What is Machine Learning? . 9
2.3 Relation Between ML, DL and AI . 10
2.4 Model Selection Paradigm . 10

2.4.1 Data Preprocessing . 12
2.4.1.1 Feature Engineering and Feature Processing 12
2.4.1.2 Feature Selection 14

2.4.2 Learning Algorithms . 15
2.4.2.1 Supervised Learning 15
2.4.2.2 Unsupervised Learning 15
2.4.2.3 Semi-supervised Learning 16
2.4.2.4 Self-supervised Learning 16
2.4.2.5 Reinforcement Learning 17

2.4.3 Cross Validation . 17
2.4.3.1 Holdout Cross Validation 18
2.4.3.2 Leave-one-out Cross Validation 18
2.4.3.3 Leave-P-out Cross Validation 18
2.4.3.4 K-fold Cross Validation 19
2.4.3.5 Stratified K-fold Cross Validation 19

2.4.4 Loss Function . 20
2.4.4.1 Mean Squared Error 20
2.4.4.2 Mean Absolute Error 21
2.4.4.3 Mean Squared Logarithmic Error 21
2.4.4.4 Binary Cross-Entropy Loss 21
2.4.4.5 Categorical Cross-Entropy Loss 22

i

2.4.5 Model Optimization . 22
2.4.5.1 Model Hyperparameters 22
2.4.5.2 Stochastic Gradient Descent Optimizer 23
2.4.5.3 Adam Optimizer 23

Chapter 3: Deep Learning versus Feature Engineering 24
3.1 Introduction . 24
3.2 Experimental Setup . 25

3.2.1 Dataset . 25
3.2.1.1 UniMiB-SHAR Dataset 25
3.2.1.2 ExtraSensory Dataset 27

3.2.2 Classification Algorithm . 28
3.2.3 Feature Extraction . 32

3.2.3.1 FE Using UniMiB-SHAR Dataset 33
3.2.3.2 FE Using Modified ExtraSensory Dataset 35

3.2.4 Feedforward ANN Setup . 35
3.2.5 RNN-LSTM Setup . 36
3.2.6 1D-CNN Setup . 37

3.3 Results and Discussion . 39
3.3.1 Experimental Results . 40

3.3.1.1 Results of UniMiB-SHAR Dataset 40
3.3.1.2 Results of Modified ExtraSensory Dataset 45

3.4 Summary and Conclusions . 48

Chapter 4: Empowering Deep Feature Learning in HAR 49
4.1 Introduction . 49
4.2 Design and Methodology . 50

4.2.1 Dataset . 50
4.2.2 Data Preprocessing . 51
4.2.3 Classification Algorithms . 51

4.2.3.1 DFNN . 54
4.2.3.2 AE-DFNN . 55
4.2.3.3 1D-CNN . 57
4.2.3.4 2D-CNN . 59
4.2.3.5 RNN-LSTM . 61
4.2.3.6 Data Augmentation: SMOTE 64

4.3 Experimental Setup . 65
4.3.1 Leave-One-Subject-Out Cross-validation 65
4.3.2 Model Hyperparameters . 66
4.3.3 Feature Engineering . 67

4.4 Results and Discussion . 67
4.4.1 Statistical Analysis of the Performances of Classifiers 71
4.4.2 Computational Complexity 72
4.4.3 Subject-based Classification Accuracies on Four Datasets . . 75
4.4.4 Deep Learning vs. Feature Engineering on Reduced Size Data 75

ii

4.5 Summary and Conclusions . 79

Chapter 5: Sub-transfer Learning for Retuning the Outlier User Accuracy 82
5.1 Introduction . 82
5.2 Methodology . 82

5.2.1 Dataset . 84
5.2.2 One-Dimensional Convolutional Neural Network 84
5.2.3 Synthetic Minority Oversampling Technique 88

5.3 Design and Experimental Setup . 90
5.3.1 Sub-transfer Learning Model 90
5.3.2 Subject-specific Learning Model 91
5.3.3 Experimental Setup and Model Design 91

5.4 Results and Discussion . 93
5.4.1 Statistical Significance Analysis of the Classification Models 98

5.5 Summary and Conclusions . 98

Chapter 6: Conclusions, Contributions and Future Work 100
6.1 Deep Learning versus Feature Engineering 100

6.1.1 Contribution 1 . 101
6.2 Empowering Deep Feature Learning in HAR 101

6.2.1 Contribution 2 . 102
6.3 Sub-transfer Learning for Retuning the Outlier User Accuracy 102

6.3.1 Contribution 3 . 103
6.4 Future Work . 103

References . 104

Appendix A: Copyright Permissions . 119

About the Author .End Page

iii

List of Tables

Table 3.1 Nine activities of daily living . 25

Table 3.2 Mean accuracies of four classifiers on AF-2 UniMiB-SHAR dataset . . 41

Table 3.3 Mean accuracies of four classifiers on A-9 UniMiB-SHAR dataset . . 41

Table 3.4 Computational complexity of classifiers on AF-2 and A-9 UniMiB-
SHAR dataset . 42

Table 3.5 Mean accuracies of four classifiers on modified ExtraSensory dataset . 46

Table 4.1 Activities of daily living categorized into four classes 52

Table 4.2 Number of observations of four Adult-Youth datasets 52

Table 4.3 The topologies for the different classifiers using feature learning
for human activity recognition . 65

Table 4.4 Average accuracies for the different classifiers using feature learn-
ing versus the subject agnostic feature engineering used in the
latest work on this dataset (Mannini et al. [64]) 68

Table 4.5 Average classification accuracies with and without data augmen-
tation on the youth-ankle dataset . 70

Table 4.6 Statistical significance analysis between the performances of the
classifiers on Adult dataset . 73

Table 4.7 Statistical significance analysis between the performances of the
classifiers on Youth dataset . 73

Table 4.8 Computational complexities of five classifiers for a single subject
on four datasets . 74

Table 4.9 Classification accuracies and computational time of RNN-LSTM
classifier based on three random subjects of four datasets 75

Table 4.10 Subject-based classification accuracies for four classifiers on adult-
ankle dataset . 76

iv

Table 4.11 Subject-based classification accuracies for four classifiers on adult-
wrist dataset . 77

Table 4.12 Subject-based classification accuracies for four classifiers, with and
without SMOTE on youth-ankle dataset 78

Table 4.13 Subject-based classification accuracies for four classifiers on youth-
wrist dataset . 78

Table 4.14 Subject-based classification accuracies for DFNN and FE-DFNN
classifiers on reduced size adult dataset 80

Table 4.15 Subject-based classification accuracies for DFNN and FE-DFNN
classifiers on reduced size youth dataset 81

Table 5.1 Experimental results of sub-transfer and subject-specific learning
models . 96

Table 5.2 Statistical significance analysis between the performances of the
learning representations on twelve subjects of four datasets 98

v

List of Figures

Figure 2.1 Comparison between the high label representation of (a) a tradi-
tional programming model and (b) a machine learning model 11

Figure 2.2 Interconnection between deep learning, machine learning and ar-
tificial Intelligence . 11

Figure 2.3 Hierarchy of ML algorithms . 17

Figure 2.4 Holdout cross validation . 18

Figure 2.5 Leave-one-out cross validation . 19

Figure 2.6 10-fold cross validation . 20

Figure 3.1 Time-series representations of single-axis acceleration data for each
class of activities of daily living for the UniMiB-SHAR dataset 26

Figure 3.2 Time-series representations of single-axis acceleration data for the
two classes of activities of daily living for the modified ExtraSen-
sory dataset . 27

Figure 3.3 Optimal hyperplanes of a linear (left) and a radial basis function
kernel (right) SVM . 28

Figure 3.4 A sample topology of the feedforward neural network used for A-9
with two hidden layers . 29

Figure 3.5 Schematic representation of the RNN-LSTM network 30

Figure 3.6 A high level representation of 1D-CNN classifier 32

Figure 3.7 Mean and variance features for the UniMiB-SHAR dataset 34

Figure 3.8 Pitch, roll, yaw, zero crossing rate of the mean and magnitude
features for the UniMiB-SHAR dataset 36

Figure 3.9 Mean and variance features for the modified ExtraSensory dataset . . 37

Figure 3.10 Pitch, roll, yaw, zero crossing rate of the mean and magnitude
features for the modified ExtraSensory dataset 38

vi

Figure 3.11 Confusion matrix of AF-2 raw data for 1D-CNN classifier 43

Figure 3.12 Confusion matrix of A-9 raw data for RNN-LSTM classifier 43

Figure 3.13 Mean accuracy plot of raw and feature-based models of UniMiB-
SHAR AF-2 dataset based on various topologies 44

Figure 3.14 Mean accuracy plot of raw and feature-based models of UniMiB-
SHAR A-9 dataset based on various topologies 45

Figure 3.15 Mean accuracy plot of raw and feature-based models of modified
ExtraSensory dataset based on various topologies 47

Figure 4.1 Human activity recognition using unsupervised feature learning . . . 50

Figure 4.2 Example observations from different subjects and sensor place-
ments for both re-sampled (marked by blue) and filtered (marked
by green) signals . 53

Figure 4.3 Time-series representations of single-axis acceleration data for four
classes of activities of daily living for the adult-ankle and adult-
wrist datasets . 54

Figure 4.4 Architecture of a simple DFNN used in the experiments 56

Figure 4.5 Autoencoder deep feedforward neural network model and training
of learned features (encoder output) using the DFNN 57

Figure 4.6 Feature learning using a one-dimensional convolutional neural network 58

Figure 4.7 Transformation of 1D time domain signal to 2D frequency domain
representation . 62

Figure 4.8 Frequency domain representation of sample observations from the
four datasets . 63

Figure 4.9 Feature learning using a two-dimensional convolutional neural network 63

Figure 4.10 Schematics of RNN-LSTM network used in this experiment 64

Figure 4.11 Boxplot distributions of classification accuracies across different
classifiers on all 4 datasets . 68

Figure 4.12 Average classification accuracies of 2D-CNN classifier with no
SMOTE and different percentages of SMOTE on the youth-ankle
dataset . 70

Figure 5.1 Time-series representations of single-axis acceleration data for four
classes of activities of daily living for the youth-ankle and youth-
wrist datasets . 83

vii

Figure 5.2 Framework of 1D-CNN classifier . 87

Figure 5.3 Generating synthetic samples using SMOTE 89

Figure 5.4 Block diagram of sub-transfer learning and subject-specific learn-
ing models . 92

Figure 5.5 Boxplot distribution to compare the classification accuracies of
sub-transfer learning and subject-specific learning models on Adult-
youth dataset . 97

viii

Abstract

A significant gap exists in our knowledge of how domain-specific feature extraction com-

pares to unsupervised feature learning in the latent space of a deep neural network for a range

of temporal applications including human activity recognition. This dissertation aims to ad-

dress this gap specifically for human activity recognition using acceleration data. To ensure

reproducibility, we use two publicly available datasets, UniMiB-SHAR and ExtraSensory,

with a well-established history in the human activity recognition literature. We methodi-

cally analyze the performance of 64 different combinations of i) learning representations (in

the form of raw temporal data or extracted features), ii) traditional and modern classifiers

with different topologies on iii) both binary (fall detection) and multi-class (daily activities

of living) datasets. We report and discuss our findings and conclude that while feature engi-

neering may still be competitive for activity recognition task, trainable front-ends of modern

deep learning algorithms can benefit from raw temporal data especially in large quantities.

In fact, this study claims state-of-the-art where we significantly outperform the most recent

literature on UniMiB-SHAR dataset in both activity recognition (88.41% vs. 98.02%) and

fall detection (98.71% vs. 99.82%) using raw temporal input.

We further improve the generalization capability of deep learning networks by introducing

a richer way to harness the spectral properties of biological time series in addition to temporal

features. A Stanford research group proposed subject agnostic features as state-of-the-art

when applied to a large dataset with many participants of different ages. In this dissertation,

we demonstrate that implicit feature learning in the latent spaces of deep learning algorithms

can be powerful alternatives to using finely tuned domain-specific features for human activity

recognition. In fact, when using a spectrotemporal representation of the raw sensor data

in the form of spectrograms, a standard convolutional neural network without any prior

ix

conditioning on the features, statistically significantly outperforms the prior state-of-the-art

using subject agnostic features in all the different partitions of the dataset with a significant

29.8% reduction in the overall average error rate.

Finally, we look at one of the most important practical challenges for human activity

recognition where a commercial algorithm can achieve very low accuracies for some outlier

subjects. In this context, we propose a method to exploit a source model to fine tune the

parameters for each specific subject to enhance their classification performances. In the liter-

ature, most of the research follow the mean classification accuracy as a performance metric.

However, some outlier users which provide low accuracies in classification can demote the

overall performance of a motion recognition system when compared to the median accuracy

reported on any given dataset. To find a solution to the problem, we study several approaches

in determining the impact of outlier users on activity recognition task and propose a novel

approach, sub-transfer learning which demonstrate that the principles of transfer learning

can be applied within the same dataset when coupled with augmentation techniques. Our

results show that on the most difficult users with the lowest subject specific accuracies, our

performance gains can be as much as 15% when using only a few additional samples for re-

tuning. Finally, we demonstrate that the performance improvements of the proposed model

are statistically significantly better than the source or subject-specific models across a range

of datasets with demographically diverse users and sensor locations.

x

Chapter 1: Introduction

1.1 Motivation

The most impactful research for our society almost always involves advances in health-

care and related disciplines as we strive to learn more about the disease trends and risk

factors of some chronic diseases, outcomes and methodologies of treatments, pattern of care

by continuous monitoring of patients’ health, medical costs etc. A recent projection about

the disease trends in the future reports that the ubiquity of diabetes will increase by 54% to

include more than 54.9 million Americans by 2030 [82]. Moreover, in [104], the authors pre-

dict that nearly one in every four adults will have severe obesity by 2030 and the prevalence

will be higher than 25% in twenty-five states. In this regard, researchers argue that contin-

uous monitoring and recognition of daily physical activities can reduce the risk of chronic

diseases including diabetes, obesity and cardiovascular problems. Moreover, the population

of the United States is aging. The U.S. Department of Health and Human Sciences projects

approximately 55 million people in the US aged 65 or older by 2030, which is almost double

its value in 1990. A recent study found that one in three adults older than 65 years of age

falls each year which is the leading cause of both fatal and non-fatal injuries for this age

group. In fact, they predict that there will be 7 deaths due to falls every hour by 2030. The

economic costs are staggering with direct medical costs of falls reaching $30 billion annually.

A simple wireless wristband with a fall detection algorithm can prevent a vulnerable person

from lying in the emergency room for hours or days due to future complications.

On the other hand, we saw that the COVID-19 pandemic has had an unprecedented

impact on the mental health of the front-line hospital staff. A recent report shows that up

to 37% clinicians globally and 47% U.S. healthcare workers plan to leave their present role

1

by 2025 for their psychological wellbeing [50]. In this scenario, a contact-free continuous

monitoring system can improve the conditions for the patients and reduce healthcare costs

by a significant amount [58].

Human activity recognition (HAR) plays an important role in the recent emergence of

personalized healthcare technologies via continuous monitoring and recognition of regular

physical activities of humans using accelerometer data. The developments associated with

HAR depend on the technological advancement of low-cost sensor-based systems and when

integrated in smart devices can help healthcare providers monitor daily symptoms of patients

to provide effective care. Researchers have more recently enlisted the help of mobile apps

to collect sensory data on human motions at an unprecedented scale using readily available

accelerometers and gyroscopes on smartphones, smart watches, etc. The ubiquitous avail-

ability of these sensors enables the developers to advance mobile and web-based healthcare

applications using various data science and machine learning techniques [73]. There are

different types of real life HAR applications such as still image based HAR [91, 96], video

surveillance HAR [110], wearable sensor based HAR [83] etc. The environmental and station-

ary constraints, noisy information captured by the camera due to the presence of non-target

people in the scene, and complexity and cost of video processing units are the main draw-

backs of vision based HAR [89]. On the contrary, sensor based HAR systems receive more

accurate and efficient signals from the multiple sensors placed on the body and reduce the

overall cost and complexity of the processes required for meaningful representation of data

to correctly distinguish between activities of daily livings such as jogging and running [22].

Most prevalent sensor based HAR systems use wearable sensors including accelerometer,

magnetometer, and gyroscope which are embedded into portable smart devices including

smartwatches, smart bands, smartphones, glasses etc. [107] for continuous monitoring of

daily activities.

2

1.2 Deep Learning versus Feature Engineering

Over the past several decades, feature engineering has been the driving force behind many

contemporary applications of machine learning such as Mel frequency cepstral coefficients

for speech recognition [62] or edge-detection filters for object classification [76]. In recent

years, deep learning, which attempts to find abstract structures in data without relying

on explicit feature extraction methods common to many supervised learning schemes, has

gained significant traction [23]. As big data becomes more readily available, it becomes

practically more feasible to apply structurally deep and complex algorithms including the

convolutional neural networks, deep Boltzmann machines, sparse auto-encoders, generative

adversarial networks and transfer learning for a wide range of applications [59, 84, 21, 108].

New training cost optimization techniques such as stochastic gradient descent and parallel

processing allow for training deep networks which are orders of magnitude larger than their

predecessors. Simply, deep learning mimics the operational and organizational behavior of

the human brain, which works through abstraction [7]. For example, objects and sounds are

represented as electrical signals traveling through different types of connections with different

strengths between neurons in the visual and auditory cortexes respectively. Deep learning

takes inspiration from this and relies on higher-level representations of features embedded in

the data instead of human engineered characteristics.

In the context of mobile health applications, big data analytics led to significant improve-

ments in the accuracy of HAR or motion classification [93]. For instance, James Bartlett

et al. prepared a large dataset, AcctionNet, which contains 10.3 million observations over

13 different activity labels [8]. Two different deep learning architectures were studied with

the final observation that the performance of deep neural networks outweighs the predictive

power of traditional feature-engineering approach. Feature-engineering is a process which

extracts key characteristics from raw data through domain-specific expertise to ease the

input-requirements of the classifier by generating inputs that are mathematically and com-

putationally more convenient to process. Researchers focused on comparative analysis of

3

the performance of deep learning vs. expert feature engineering on various fields such as

reinforcement learning [51], healthcare and clinical practices [105] and food related appli-

cations [27] etc. For example, Yang Jiang et al. represented a comparative study on deep

neural network vs. expert features and concluded that feature-engineering models are better

when considering a single optimized threshold [47]. Nevertheless, the authors also acknowl-

edged the limitation of their study due to limited sample-size. Other researchers explored

a combination of feature engineering and deep learning such as a new comprehensive study

on feature extraction vs. deep modeling for medical image classification [61], where the

authors propose a deep learning model comprised of a multi-layer perceptron after extract-

ing the expert features of medical images using a convolutional neural network. Another

study proposed an unsupervised deep learning architecture named local deep-feature align-

ment which implements a dimension reduction technique to map the data points into a

learned low-dimensional subspace [111]. On the other hand, video based HAR and Human

Pose Recovery systems have gained compelling attention in the field of computer vision and

pattern recognition within the deep learning framework [90, 40, 39]. However, there is no

comprehensive study on model comparisons for HAR using raw data with deep learning ver-

sus expert features. Presently, deep learning methods including Recurrent Neural Networks

such as long short-term memory (RNN-LSTM) have demonstrated competitive performance

on raw data compared with the state-of-the-art models using feature engineering for HAR

[70]. In addition, for time-series classification, the one-dimensional convolutional deep neu-

ral networks (1D-CNNs) have shown state-of-the-art performance in terms of accuracy and

computational complexity [94]. Researchers proved that the performance of 1D-CNN can be

improved by the tuning of its hyper parameters such as the kernel size and filters [60, 74].

Apart from HAR [20, 33], 1D-CNN models are used in various fields of machine learning

applications such as radiology [106], split learning [5] and prediction of smoking events [4]

etc.

4

1.3 Empowering Deep Feature Learning in HAR

The approach of deep learning versus feature engineering has drawn significant attention

in the machine learning community. For most of the past decade, feature engineering has

been the dominant approach for better recognition by carefully casting handcrafted features

from data using traditional machine learning tools. In [36], J. Heaton shows an empirical

representation of what types of domain-specific features are best fit for which machine learn-

ing models. In a recent study [80], the feature engineering approach is reviewed for clinical

knowledge before applying machine learning algorithms to analyze its impact on compu-

tational complexity and performance. The engineered features are further incorporated in

various studies including geological data [46], financial fraud detection [44], and reinforcement

learning [51]. Generally speaking, if the dataset size is large enough, the feature extraction

methods may not be feasible to extract comparably rich information from the data especially

for complex and non-linear machine learning algorithms. Alternatively, deep feature learning

can more naturally utilize large volumes of raw data through computationally complex and

expensive algorithms where much of the feature extraction takes place in an unsupervised

manner. In fact, researchers have achieved unprecedented levels of accuracy using unsuper-

vised automatic feature learning from raw data in the hidden latent spaces of deep neural

networks in a variety of applications including natural language processing [95], deep clus-

tering on image datasets [55], DNA sequence processing [101], healthcare and biomedicine

[69], solid-state materials science [88], human activity recognition [48] etc. Deep learning

techniques allow incorporating feature extraction and classification tasks into a complex sin-

gle process. Nevertheless, there is a significant gap in our knowledge to optimally determine

what particular approach among deep learning and feature engineering would perform better

in different fields [47], specifically for healthcare applications.

With widely successful experimental results on a range of applications, deep learning

has become the most popular framework to change the future of healthcare. A recent report

from Report Linker claims that the expected growth of AI-healthcare market will exceed $35

5

billion by 2030 [3]. In healthcare, the researchers use the electronic health record data which

stores patient information such as medical history and lab results to create a predictive model

of the patients’ health. Another report regarding home healthcare technologies used in elder

care, specifically home tele-health and safety monitoring notes that the global market for

elder care technologies should grow from $5.7 billion in 2017 to $13.6 billion by 2022 [2] such

as continuous monitoring of daily activities and falls using 3-D motion sensors. In [86], G.

L. Santos et al. have implemented deep learning models using convolutional neural network

(CNN) classifiers for fall detection. In [42], the authors have used support vector machine

classifiers to detect falls with high sensitivity, specificity, and accuracy. In the context of

HAR, G. Ogbuabor et al. [73] investigated the role of motion sensors such as gyroscope and

accelerometer sensors to develop an effective HAR system using artificial neural networks.

In this paper, the authors showed that the accelerometer sensor data performed better than

the gyroscope sensor data whereas the highest accuracy was achieved when sensors’ data

were combined. In the context of activity recognition, various classification algorithms such

as RNN-LSTM [75], CNN [33], DeepConvoLSTM [37], and Deep Autoencoder [99] have been

explored to develop efficient HAR systems.

1.4 Sub-transfer Learning for Retuning the Outlier User Accuracy

At its core, HAR consists of an input processing unit where the sensory data is trans-

formed into a specific learning representation to be used in a machine learning algorithm for

classification. Recently, with the advance and successful deployment of deep learning tech-

niques, new research is directed from the conventional approach of feature engineering to

automatic unsupervised deep feature learning from raw data in many different applications

including image classification [103], language modelling [81], bioinformatics and biomedicine

[11] etc. However, a significant gap exists in our knowledge regarding the optimum selection

of a particular approach specifically for healthcare and HAR. Some of the results in medical

diagnosis seem promising but when it comes to fall detection and activity recognition the

6

details are sparse. In literature, the researchers have been doing a comprehensive study to

realize the proper learning algorithms for HAR datasets. In [24], the authors have imple-

mented CNNs to recognize the daily activities on the data collected from accelerometer,

gyroscope and magnetometer sensors. In another study, R. Mutegeki et al. proposed a

hybrid CNN-LSTM (long-short-term-memory) architecture to classify human activities [72].

In recent HAR research, the scientists have been exploring transfer learning [87], where a

model developed for a task is repurposed as the starting point for a model on a second task.

Transfer learning is a machine learning method where the knowledge from the prior training

is transferred to perform a new classification task. In [6], the authors have developed a HAR

transfer learning framework which transfers a reusable portion of the offline classifier to new

users to do the activity recognition.

In this dissertation [48, 49], we provide in-depth looks into these two fundamentally

different approaches to HAR while introducing a novel way to harness the spectral properties

of biological time series in addition to temporal features. However, in [72], the performances

of different classification algorithms reveal that a healthcare application such as HAR is

very much dependent on the specifics of subjects. Similarly, we have observed significant

changes in accuracy from subject to subject when the algorithm is tested on never-before-

seen data. For some subjects the accuracies are significantly lower where the lowest accuracy

average across all classes is 56% as opposed to the maximum average accuracy of 99%

for some subjects and the average accuracy of 90% for all subjects. In our search of the

literature, we haven’t encountered a method that specifically addresses the performance

issues for this subset of users where the performance is less than ideal. Hence, in addition

to the comprehensive investigation of feature learning versus feature engineering, in this

dissertation we also study two different approaches: sub-transfer learning and subject-specific

learning to specifically address subject specific accuracy problem and provide a thorough

analysis to boost the performances of outlier users. Sub-transfer learning is a novel method

which can be used as a powerful alternative to improve the subject-oriented classification

7

accuracies by using as few a number of samples as possible from the test subject to perform

auxiliary training of the classifier in addition to the prior training using the rest of the

subjects similar to transfer learning. We then compare subject-by-subject classification

accuracies of sub-transfer learning model with subject-specific learning (as a baseline model)

where the classifier is trained only on a few samples of the test subject and tested on the

remaining samples of the same test data without any prior training to demonstrate how

practical methods can be improved for challenging subjects.

8

Chapter 2: Introduction to Machine Learning and Deep Learning

2.1 Introduction

Humans have unparalleled superiority in building models for any complex phenomenon

and critically analyzing them to acquire knowledge and understand their mechanisms. The

knowledge we obtain from such models helps us theorize the underlying operations and pre-

dict the probable outcomes of the phenomenon in future [56]. As we build more and more

accurate models, we gain better insight into the true operational characteristics to ultimately

create an artificial replica of the same phenomenon. This probabilistic model-based approach

is often scientifically related to human intelligence with the concept of artificial neural net-

works (ANN) which mimic, in a very broad manner, the functions of the human brain. An

ANN consists of a collection of connected nodes called artificial neurons, which are, at a high

level, similar to the basic units or neurons in a biological brain. The interconnections in the

ANN have associated weights which are adjusted during the model learning phase much like

the biological neural network organically forming and changing during the learning process.

2.2 What is Machine Learning?

Machine learning (ML) is an analytical method including various computational algo-

rithms that can learn from the data by identifying its patterns and making decisions with

minimal user intervention. In other words, ML is a tool which can create complex non-linear

mappings between the input and output of a predictive model used in decision making.

As an example, in Figure 2.1, the traditional programming describes a paradigm where a

programmer or a user develops a program including a set of rules based on the input which

9

is then fed to the computer. The computer determines the output according to the specific

rules of the program and the corresponding input. If the output is not satisfactory, the

programmer goes back to the program and changes the rules to update the results. In the

case of ML approach, this process is automated. In other words, the computer performs a

non-linear mapping between the input and output according to the algorithm or program

to be learned where the model is trained for a certain number of iterations to accelerate

the decision-making process by updating the parameters of the model. After training, when

the model is provided with an input for testing, it will predict an output. ML algorithms

are applied in a diverse range of fields including finance, image processing, bioinformatics,

biomedicine, pattern recognition, computer vision and healthcare. The interconnections

between machine learning, deep learning (DL) and artificial intelligence (AI) is discussed in

the next section.

2.3 Relation Between ML, DL and AI

Artificial intelligence allows machines to perform specific tasks based on algorithms. The

term AI was first introduced by John McCarthy at the Dartmouth Summer Research Project

on Artificial Intelligence conference, a summer workshop that was held in 1956 [65]. ML is a

form of AI that emphasizes the ability of machines to learn from data rather than through

explicit programming. The term ML was coined in 1959 by Arthur Samuel, a computer

scientist at IBM and a pioneer in AI and computer gaming [85]. Finally, DL is a subset of

ML, where multi-layer ANNs are used to perform the prediction and classification tasks on

vast amounts of data to train a similarly large set of model parameters. Figure 2.2 displays

the strong interconnection between the fields of DL and ML as parts of the widespread AI.

2.4 Model Selection Paradigm

The most important part of building a model is to understand the mechanism and the

underlying nature of the phenomenon which is being modeled. A typical ML pipeline consists

10

Program

User

Input

Computer

Output

Input Output

Program
Training & Learning

(a) (b)

Traditional Programming Model Machine Learning Model

If
Satisfact

-ory

Output

Yes

No

Training Output

If
Converges

Output

Yes

No

Computer

Figure 2.1: Comparison between the high label representation of (a) a traditional
programming model and (b) a machine learning model

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 2.2: Interconnection between deep learning, machine learning and artificial
Intelligence

11

of the following steps: data acquisition, data preprocessing and model training followed by

validation on a hold-out subset of the data [71]. In [98], the author addresses the limitations

of the model selection process and focuses instead on minimizing the error over the data (to

achieve the maximum likelihood of model parameters over the dataset under consideration),

while keeping the bias and variance of the model as small as possible. During this process,

train-test split, cross-validation and other partitioning techniques are applied to properly

determine and boost the model’s expected performance.

2.4.1 Data Preprocessing

A dataset includes multiple observations where each observation is called a sample. Each

sample is represented by a set of values called features and labeled by different categories of

output classes based on the type of the learning problem. For instance, a human activity

recognition dataset can be represented as a set of observations in time domain with the

domain specific features extracted from the three axes of the accelerometer sensor to create

a compressed one-dimensional observation. The dataset is preprocessed and normalized

before training to prevent bias. The data preprocessing includes the following steps:

2.4.1.1 Feature Engineering and Feature Processing

Feature engineering (FE) is a machine learning technique where raw data is transformed

into more meaningful variables called features to better represent the problem-statement

of the model. In FE, domain-specific features are extracted from the data to speed up

the learning process while improving the performance of the model. Some of the common

features that we extract are mean, variance, maximum in a range, minimum in a range,

magnitude etc. For motion related data, some important features are pitch, roll, yaw, zero

crossing rate of mean etc. For natural language processing, features can be the number of

words, number of capital words, number of punctuations, number of unique words, number

of stop words, average sentence length etc.

12

On the other hand, after visualizing the data, sometimes we need to transform the features

further to make them more meaningful. This process is called feature processing. The

techniques for feature processing are listed below.

• Imputation: Missing values are one of the important issues in the dataset to handle

with while feeding the data to the model. These missing values can be included in the

dataset due to several reasons such as data flow interruptions, human errors, privacy

concerns, and others. Imputation method can fill out these missing values by assigning

some numbers based on the data of completed survey or census on a current population.

For categorical column variables, missing values are replaced by the highest value in

the column.

• Handling Outliers: To remove the outliers from a dataset, we use outlier handling

method. This technique can be used to generate more accurate representation of

a dataset which improves the model performance. Various techniques for handling

outliers are removal, replacing values, capping, discretization etc.

• Log Transform: In this method, a skewed distribution is turned into a normal or

less-skewed distribution by taking the log of the values in a column and utilizing it.

• One-Hot-Encoding: This is a one of the popular encoding processes in ML where an

element of a finite set is represented by the index in that set. Here, only one element has

its index set to “1” and remaining elements are assigned indices within the range [0, n-

1]. Since it is more challenging to the algorithm to understand the categorical variables,

this method transformed the categorical data to numerical format and enables the

model to group categorical data without an information loss.

• Scaling: This technique changes continuous features to identical in terms of the range.

Basically, there are two common ways of scaling:

13

(i) Normalization (or min-max normalization) where scaling of the data is done within

a fixed range between 0 and 1. If X is a feature vector and Xmax and Xmin are the

maximum and minimum values of the features respectively, then the normalization

can be defined as

Xnorm =
X − Xmin

Xmax − Xmin
(2.1)

(ii) Standardization (or z-score normalization) defines that the scaling of the data is

done by considering the value of standard deviation. In (2.2), X is a feature vector, the

mean of a given distribution X is defined as µ and corresponding standard deviation

is defined as σ.

z =
X − µ
σ

(2.2)

2.4.1.2 Feature Selection

Feature selection automatically selects the important and more independent features

using a scoring method such as correlation to rank the data and reduce the number features

by using statistical techniques [109].

Principal component analysis is a popular feature selection method which can reduce

the dimensions of the feature space by identifying the important statistical relationships

in the features through the covariance matrix. It transforms the existing data based on

these relationships, extracts the important features and drops the others. During linear

transformation of the covariance matrix, the eigenvectors and eigenvalues are computed.

The data is transformed using these eigenvectors to its principal components [114]. Other

popular feature selection techniques include wrapper methods, filter methods, and embedded

methods etc [18].

14

2.4.2 Learning Algorithms

ML algorithms are generally classified into four different categories.

2.4.2.1 Supervised Learning

In supervised learning the algorithm is trained on labeled data. During training, the

model establishes a linear or non-linear relationship between the input & output pairs in-

cluded in the training set by computing a differentiable loss between the model prediction

and the actual output. In ANNs, this process is performed via backpropagation through the

network to learn from the error (or cost function) by updating the weight and bias param-

eters to optimize the predictions. The model is then validated and tested on data not used

in the training process to predict the output. Supervised learning can be applied to perform

two general tasks: regression analysis and classification. For regression analysis, the labels

are continuous variables whereas for classification, the labels are categorical class labels. An

example of supervised learning is image classification using convolutional neural network.

2.4.2.2 Unsupervised Learning

Unlike supervised learning, unsupervised learning allows the model to learn from the

data without using explicit labels. The algorithm self-detects the trends or patterns in the

data and groups them by creating associated clusters of data points. Due to the absence of

labels unsupervised learning cannot build an explicit relationship between an input-output

pair. However, the algorithm still perceives a relationship between data points in an abstract

manner by creating a latent structure of the dataset. In the learning process, the algorithm

can adapt by dynamically changing the parameters of these hidden structures. Two major

subcategories of unsupervised learning are clustering and principal component analysis for

dimensionality reduction.

15

2.4.2.3 Semi-supervised Learning

Semi-supervised learning algorithm is an intermediate between supervised and unsuper-

vised learning where training takes place on both labeled and unlabeled data. Since genera-

tion of labeled data is very costly and there is a tremendous volume of unlabeled data in the

real world, this algorithm focuses on utilizing mixed datasets consisting of both labeled and

unlabeled data points in the training process. The main motivation behind semi-supervised

learning is to use the labeled data points of a mixed dataset in supervised learning first to

label the unlabeled part of the dataset which can be used in supervised learning later. In this

technique, the unlabeled data points are used to improve the generalization performance of

the model even if the pseudo-labeling may not be entirely accurate. Graph-based algorithm,

SGAN etc. are semi-supervised learning algorithms.

2.4.2.4 Self-supervised Learning

Self-supervised learning aims to leverage many unlabeled data points for supervised learn-

ing [79]. The self-supervised learning is called autonomous supervised learning as it uses nat-

urally available information as labels for supervised learning tasks. Like supervised learning,

self-supervised learning algorithm maps its inputs to outputs from labeled input-output

pairs. In the specific case of self-supervised learning, the model is pretrained on a similar

task before it is trained on the general target task.

When a labeled dataset corresponding to the target task is small, or the model could

benefit from auxiliary data, self-supervised learning can be used to leverage a more extensive

and unlabeled dataset of a similar type as the data for the target task and create the labels

for the pretext task. An example of self-supervised learning algorithm is ’wav2vec’ developed

by Facebook.

16

Figure 2.3: Hierarchy of ML algorithms

2.4.2.5 Reinforcement Learning

The motivation behind reinforcement learning is how human beings to learn in real life

scenarios. Reinforcement learning algorithms perform a series of actions to maximize the

reward for a particular situation which leads to a more satisfactory outcome for a given

task [77]. The reinforcement agent makes a decision on what action to perform based on

the specifics of the situation for a given task from which the algorithm learns and corrects

itself in every step of the model. More specifically, the algorithm uses a variation of noting-

and-eliminating-error method to find more optimal steps to take for a better reward. The

desired outputs are reinforced, and the non-desired outputs are punished [1]. Reinforcement

learning algorithms are Q-learning, SARSA etc. Figure 2.3 shows the hierarchy of machine

learning algorithms and the corresponding tasks performed by each algorithm.

2.4.3 Cross Validation

To improve and properly assess the performance of the ML model on a fixed dataset

cross validation technique is used to achieve an unbiased training and testing operation.

Dataset is partitioned to prevent overfitting and selection bias in the training data for better

optimization of the model before the actual deployment in a new environment. Various cross

validation techniques are,

17

Train Test

Total Data

Figure 2.4: Holdout cross validation

2.4.3.1 Holdout Cross Validation

This technique is known as the train-test-split which is shown in Figure 2.4 The dataset

is randomly split into training and testing partitions where the test dataset has fewer data

points compared to the training data. Since the holdout cross validation performs the train-

ing and testing on these unique partitions once, it provides less optimization compared to

the other methods. However, this technique is straightforward and less resource intensive

especially when the dataset is sufficiently large.

2.4.3.2 Leave-one-out Cross Validation

A more exhaustive method, Leave-one-out cross validation ensures that each observation

in the dataset is used as test data by identifying a single sample for each train-test trial

and grouping the remaining samples as the training set. Multiple train-test operations are

carried out and the model is subsequently evaluated based on the average of single trial

performance metrics. Figure 2.5 shows how to partition the train-test splits using leave-one-

out cross validation where the dataset has N number of samples.

2.4.3.3 Leave-P-out Cross Validation

As a variation of the previous method, P samples are set aside for testing instead of a

single sample to cover all possible combinations of the train and test splits. The number

of data points could be a user defined number or for subject based data, P could indicate

18

Train Test

Iteration 1 out of N

Iteration 2 out of N

Iteration 3 out of N

Iteration N out of N

Total data (N samples)

Figure 2.5: Leave-one-out cross validation

the number of samples for each subject to create a leave-one-subject-out variation of this

cross-validation technique.

2.4.3.4 K-fold Cross Validation

A popular method for scientific datasets, K-fold cross validation creates K equally sized

testing partitions within the original dataset where each train-test trial uses one of these

partitions for testing and the rest for training to produce a stable and robust average result

compared to holdout cross validation. Figure 2.6 displays the train-test partitioning of a

dataset using K-fold cross validation method where K = 10.

2.4.3.5 Stratified K-fold Cross Validation

As often is the case with healthcare related datasets, a large imbalance of the class labels

in the dataset could mean the randomized K-fold cross validation generates a train or test

set with very few samples belonging to the minority class and downgrades the performance

of the model. Stratified K-Fold splits the dataset on K folds while ensuring approximately

the same percentage of samples for each target class is represented in each fold.

19

Train Test K-fold = 10

1st Fold

2nd Fold

10th Fold

Figure 2.6: 10-fold cross validation

2.4.4 Loss Function

Loss function calculates the error between the predicted and target outputs where the

ultimate aim of the model is to minimize the loss function to increase the accuracy and get

better predictions. Commonly used loss functions in ML include:

2.4.4.1 Mean Squared Error

Mean square error (MSE) finds the average of the squared difference between the true

value and the predicted value across all samples. The lower the value of MSE, the higher

the accuracy of the model. MSE is known as the L2 loss function and defined in (2.3) where

ŷi is the predicted output of the i th scalar value in the model, yi is the corresponding target

value, and n is the output size.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.3)

20

2.4.4.2 Mean Absolute Error

Mean Absolute Error (MAE) finds the average of the absolute difference between the

true value and the predicted value across all samples. It is known as the L1 loss function and

computes a non-directional error by calculating the average of the magnitudes. The formula

for MAE is defined in (2.4), where ŷi is the predicted output of the i th scalar value in the

model, yi is the corresponding target value, and n is the output size.

MAE =
1

n

n∑
i=1

|yi − ŷi | (2.4)

2.4.4.3 Mean Squared Logarithmic Error

Mean Squared Logarithmic Error (MSLE) calculates the log difference of the true and

predicted values and find the ratio which is shown in (2.5).

MSLE =
1

n

n∑
i=1

(log(yi + 1)− log(ŷi + 1))2 (2.5)

where, ŷi is the predicted output of the i th scalar value in the model, yi is the corresponding

target value, n is the output size and log(yi + 1)− log(ŷi + 1) = log yi+1
ŷi+1

.

2.4.4.4 Binary Cross-Entropy Loss

Binary Cross-Entropy (BCE) is called log loss and the output of the loss function is

calculated as the probability for the predicted class between 0 and 1. This loss function is

applied mostly for binary classification problems. The formula for binary cross entropy loss

is defined as [38],

BCE = −1

n

n∑
i=1

yi(log(p(yi)) + (1− yi)log(1− p(yi)) (2.6)

where, ŷi is the predicted output of the i th scalar value in the model, yi is the corresponding

target value, n is the output size. In (2.6), p(yi) = ŷi .

21

2.4.4.5 Categorical Cross-Entropy Loss

Categorical cross entropy loss (CCE) is used for multiclass classification tasks. CCE is a

variation of the entropy loss function, and it calculates the difference between two probability

distributions using the formula below:

CCE = −1

n

K∑
k=1

n∑
i=1

y k
i log(p(yi , k)) (2.7)

In (2.7) p(yi) = ŷi which is the predicted output of the i th scalar value in the model, yi is

the corresponding target value, n stands for training examples, K is number of classes, and

y k
i is the target label for training example i for class k [38].

2.4.5 Model Optimization

Optimization is an important part of the machine learning model. Optimization is done

to update both the internal parameters such as the weights and biases of the network to

reduce the loss function as well as the external parameters such as hyperparameters includ-

ing the number of learning elements, learning rate, and depth of the network for better

generalization. The techniques for model optimization are discussed below.

2.4.5.1 Model Hyperparameters

The optimization algorithm estimates the error gradient using the learning rate. Accord-

ing to the gradient descent optimization rule, the algorithm estimates the error gradient for

the present state using the samples from the training data and then updates the weights

of the model by finding the derivative of the loss function and the direction of its steepest

descent. For instance, in neural networks, this is accomplished by using backpropagation

where the weight-update is found by scaling the error gradient with the “learning rate” [15].

The learning rate can be between 0.0 and 1.0 and is used to adjust how quickly the model

can be adapted to the problem. If a learning rate is too large, the model converges too

22

quickly to a sub-optimal solution. On the other hand, for a very small learning rate, the

process can get stuck without convergence or a very slow convergence.

There is an extra layer to adjusting the speed of convergence using another hyperparam-

eter called the momentum which defines the velocity with which the learning rate itself can

be increased to reach the minima.

2.4.5.2 Stochastic Gradient Descent Optimizer

Stochastic gradient descent (SGD) is one of the most popular optimization algorithms

which computes a gradient for the whole dataset to update weights in the opposite direction

of the gradient to find a local minima on the error curve generated by the loss function.

Some optimizers such as Adagrad, Adadelta and RMSprop are adaptive gradient descent

algorithms and they provide an alternative to classical SGD for faster convergence.

2.4.5.3 Adam Optimizer

The limitation of using the conventional stochastic gradient descent algorithm is that its

hyper parameters depend on the model and the value of the learning rate remains unchanged

during training, where a fixed value of the learning rate is applied to update all the param-

eters. In case of adaptive learning algorithms such as Adam, individual learning rates are

considered to update different parameters by combining the concepts of both RMSprop and

SGD algorithm with momentum. For scaling of the learning rate, Adam optimizer uses the

squared gradients like RMSprop. Moreover, it follows the operation of the SGD with mo-

mentum by using the moving average of the gradient instead of the instantaneous gradient

itself [16].

23

Chapter 3: Deep Learning versus Feature Engineering

Parts of this chapter have been published in the journal of Neural Processing Letters in

2021, Springer and copyright permission is attached to Appendix A

3.1 Introduction

With the advance of deep learning, researchers have achieved unprecedented levels of

accuracy using unsupervised automatic feature learning from raw data in the hidden latent

spaces of deep neural networks in a variety of fields from image recognition to language

modeling. However, a significant gap exists in our knowledge to optimally determine what

particular approach would perform better, specifically for healthcare applications. Some of

the results in medical diagnosis seem promising but when it comes to fall detection and

activity recognition the details are sparse. Our research focuses on these predictive models

using both raw data and feature engineering for robust comparative analysis and design.

In this chapter, to explore deep learning versus feature engineering, we use two publicly

available datasets of moderate size and complexity and study the human activity recognition

(HAR) performance of a wide range of modern topologies such as the feedforward deep neural

networks, recurrent neural network with long short-term memory (RNN-LSTM) and one-

dimensional convolutional neural network (1D-CNN) to compare and contrast expert features

and raw data. We extract 13 domain specific features from raw temporal data and compare

classification accuracies with subsequent analysis of the models using feature-engineering

and raw data with deep learning. In the next section we describe the experimental setup in

detail including the dataset and classification algorithms used in the experiments followed

by the results with a detailed discussion of the performance comparisons.

24

Table 3.1: Nine activities of daily living

Dataset Activities of daily living
Standing up from sitting on a chair
Standing up from lying on the bed

Walking
Running

A-9 Going up the stairs
Jumping

Going down the stairs
Lying down on the bed from standing

Sitting down

3.2 Experimental Setup

3.2.1 Dataset

3.2.1.1 UniMiB-SHAR Dataset

To ensure reproducibility of this work, a publicly available dataset with a literature

history is used. UniMiB-SHAR dataset includes 11771 samples for falls and 7579 samples

for other human activities, referred to as activities of daily living (ADL), performed by

30 different agents of ages between 18 and 60 [68]. The data is further categorized with

17 sub-classes of the 9 different ADLs and 8 different types of falls. On this dataset, we

perform two different classification tasks: (i) identify fall vs. no-fall observations (this task

is labeled as AF-2, following the original paper for comparative purposes), and (ii) classify

9 different activities of daily living (this task is labeled as A-9, following the original paper

for comparative purposes). Table 3.1 shows the 9 activities of daily living.

In Figure 5.1, the single-axis acceleration data for these 9 ADLs and fall are shown where

each subplot in the figure is a representative sample of raw temporal acceleration data for

one of the three axes (x,y,z) which demonstrates the biggest dynamic range of motion as the

dominant axis.

25

0 20 40 60 80 100 120 140

Time domain samples
7.5

5.0

2.5

0.0

2.5

5.0

7.5

m
/s

^2

Standing up from sitting on a chair (class1)

0 25 50 75 100 125 150 175 200

Time domain samples

5

0

5

m
/s

^2

Standing up from lying on the bed (class2)

0 25 50 75 100 125 150 175 200

Time domain samples

1

0

1

2

3

4

m
/s

^2

Walking (class3)

0 25 50 75 100 125 150 175 200

Time domain samples
2

1

0

1

2

3

m
/s

^2

Running (class4)

0 25 50 75 100 125 150 175 200

Time domain samples
10.0

7.5

5.0

2.5

0.0

2.5

5.0

m
/s

^2

Going up the stairs (class5)

0 25 50 75 100 125 150 175 200

Time domain samples

7.5

5.0

2.5

0.0

2.5

5.0

m
/s

^2

Jumping (class6)

0 25 50 75 100 125 150 175 200

Time domain samples
10.0

7.5

5.0

2.5

0.0

2.5

5.0

m
/s

^2

Going down the stairs (class7)

0 25 50 75 100 125 150 175 200

Time domain samples
10

5

0

5

m
/s

^2

Lying down on the bed from standing (class8)

0 25 50 75 100 125 150 175 200

Time domain samples

5

0

5

m
/s

^2

Sitting down (class9)

0 25 50 75 100 125 150 175 200

Time domain samples
7.5

5.0

2.5

0.0

2.5

5.0

7.5

m
/s

^2

Fall

Figure 3.1: Time-series representations of single-axis acceleration data for each class of
activities of daily living for the UniMiB-SHAR dataset

26

3.2.1.2 ExtraSensory Dataset

To compare the performances of the deep learning and feature engineering classifiers, we

investigated a secondary publicly available dataset called ExtraSensory [97]. In the original

paper, the authors use smartphone and smartwatch sensors for recognizing the activities of

the users in their natural behavior. The labeled data which spans over 300,000 minutes is

collected using a mobile application. This dataset includes 100 context labels from sensors

and the activities are performed by 60 users. For our study, we split the data into a low di-

mensional version of 5775 observations and a high dimensional version of 55938 observations

with two labels: (i) lying down and (ii) sitting. Figure 3.2 shows the time series repre-

sentation of single axis acceleration data for these two classes of the modified extrasensory

dataset.

Figure 3.2: Time-series representations of single-axis acceleration data for the two classes
of activities of daily living for the modified ExtraSensory dataset

27

3.2.2 Classification Algorithm

In this chapter, we investigate four different classification algorithms in our quest to ex-

plore the differences in feature engineering and raw deep learning when it comes to HAR.

First, we use a support vector machine (SVM) classifier which is trained for a direct com-

parison with the results of the original paper. SVM constructs an optimal hyperplane or

a set of hyperplanes in a high or infinite dimensional space. The hyperplane in Figure 3.3

which has the largest distance to the nearest data points of any class would achieve a good

separation characterized by the larger margins for a lower generalization error [12].

To maintain a reasonable computational load, SVM uses various kernel functions. In this

project, the popular Radial Basis Function (RBF) kernel is used to separate the otherwise

not linearly separable data. The right image on Figure 3.3 displays the advantages of using

a non-linear kernel to be able to separate two classes which are not linearly separable.

0-0.3 -0.2 -0.1 0.1 0.30.2

0

0.1

0.2

-0.1

-0.2

-0.3

-0.4

0.4
ω. x+ b = -1

ω. x+ b = 0
ω. x+ b = 1

Maximum margin

Negative object y = -1 Positive object y = 1

Optim
al H

yperp
lane

Figure 3.3: Optimal hyperplanes of a linear (left) and a radial basis function kernel (right)
SVM

In addition to the SVM classifier, a deep feedforward artificial neural network (ANN)

is also trained to improve the classification rate. ANN as a multi-layer perceptron (MLP)

performs a nonlinear mapping between the input (x) and the output (y) such that y = f (x ; θ)

by learning the parameter set θ for the best possible approximation [31]. The layers of MLP

include units to transform the linear sum of inputs to the unit. Each layer is represented as

28

Input Layer

Hidden Layer 1

Output Layer

Softmax
(Class 1)

Softmax
(Class 9)

9 Neurons

Activations

Hidden Layer 2

500 Hidden Neurons500 Hidden Neurons

453 Neurons

Figure 3.4: A sample topology of the feedforward neural network used for A-9 with two
hidden layers

y = f (
∑

i wix + b), where f is the non-linear activation function, wi are the set of parameters

or connection weights for neuron i, x is the input vector which is often the output of the

previous layer, and b is the bias vector. In a feedforward MLP, the information flows in

one direction from the input layer through the hidden layers to the output. Hidden layers

increase the non-linearity of the network architecture and cause changes in the representation

of the data for better generalization over the mapping function. Figure 3.4 shows a sample

feedforward neural network architecture which is used in our study. This sample network

consists of two hidden layers with 500 hidden neurons in each layer. The input dimension of

this network is 453 (representing the size of the raw time-series vector for each observation)

and the output layer consists of 9 neurons (representing each of the 9 activity labels).

To further document the performance of deep architectures using raw data versus feature-

based models, a recurrent long-short-term-memory network is also implemented. To explore

the latent qualities of the deep neural network, we exploit the temporal dependencies within

the time-series dataset via recurrent connections of LSTM cells [115]. In a recurrent network,

29

OPt

IPt

Cell

ht

Input Gate

Output Gate

Forget Gate

Ft

Peephole

⎰

⎰

∑

∑

∑

∑ xt

Figure 3.5: Schematic representation of the RNN-LSTM network

the connections form a directed cycle and the current time step t considers the state of the

network in the previous time steps t − 1, t − 2 etc. [35]. Figure 3.5 shows the schematic

diagram of the RNN-LSTM network. This network is made up of three different gates: (i)

input gate (IPt) which receives the previous output and the current input and passes to a

sigmoid layer, (ii) output gate (OPt) controls the output activation of the LSTM unit ht ,

where the peephole connections provide the gates with the cell value, as an additional input

for the gate activation [30] and (iii) forget gate (Ft) stores the information of its internal

state in memory and determines the extent to which the information remains in the central

cell. The content of the LSTM memory cell can be modified by the unit’s input xt and the

simultaneous activation function of the input gate [67]. When these cells predict the output,

the information in memory is reset depending on the present input and the information from

the past internal states.

As the final modern architecture we investigate 1D-CNN. The difficulties of extracting

hand crafted features is that feature engineering requires deep expertise of domain knowledge,

30

whereas with the deep 1D-CNNs the sequence can be convoluted iteratively by sliding the

kernels over the input-sequence to map it to hidden vectors of features. A CNN is formed by

using two distinct types of layers: (i) the convolutional layer which is a combination of both

1D convolutional layers and pooling layers and (ii) the fully connected layers which function

like a standard MLP. Figure 3.6 displays the high level architecture of 1D-CNN model.

In 1D-CNN, the input layer receives raw 1D signals and the output layer is similar to an

MLP. In the convolutional layers, an input sequence is analyzed by a set of filters to map

the features with a pooling layer to reduce the size of the input space. The reduction of size

of the learned features helps speed up the training process. The output of the pooling layer

is fed into a set of fully connected layers which flatten the feature map and compare the

probabilities of each feature occurring in conjunction with the others to achieve the highest

classification rate. Since 1D-CNN performs a linear operation during the forward and back-

propagation operations, it provides low computational complexity when classifying 1D data.

In each 1D-CNN layer forward propagation can be represented as,

x lk = blk +

Nl−1∑
i=1

conv1D(w l−1
ik , s l−1

i) (3.1)

where x lk and blk are the input and the bias of k th neuron at layer l, s l−1
i is the output of the

i th neuron at layer l − 1 and w l−1
ik is the kernel from the i th neuron at layer l − 1 to the k th

neuron at layer l . After the conv1D operation the dimension of x lk is less than the output

s l−1
i . The intermediate output can be obtained by passing the input through an activation

function f (x) as follows:

y l
k = f (x lk)

s lk = y l
k ↓ ss

(3.2)

31

Figure 3.6: A high level representation of 1D-CNN classifier

where s lk is the output of the k th neuron of layer l and ↓ ss stands for the down sampling

operation with a scalar factor ss. The mean squared error of the back-propagation algorithm

is defined by Ep in (3.3).

Ep = MSE (tp, [yL
1 , ..., y

L
NL
]′) =

NL∑
i=1

(yL
i − tpi)

2 (3.3)

Here, the input layer is considered as l = 1 and the output layer is considered as l = L. If

NL represents the number of classes, then for an input vector p the target and the output

vectors are tp and [yL
1 , ..., y

L
NL
]′ respectively [53].

3.2.3 Feature Extraction

Human activity recognition can be divided into two categories. The first one is the

video-based HAR which includes monitoring and collecting data through a video camera

[113]. The second one is the sensor-based HAR [57] where sensors collect high resolution

time-series data by mobile accelerometers which could be mobile [92, 13], wrist-worn [100],

waist-mounted [32] or gyroscopes and magnetometers [112]. In accelerometer-based systems,

32

the multi-axial sensors are used for data collection including normal activities like walking,

standing, lying down, sitting, jumping, going up the stairs etc. These powerful sensors are

small and cost effective enough to have become ubiquitous as they are placed inside mobiles,

watches, laptops, etc. and collect the data in three physical dimensions.

The main focus of our work is the analysis of domain-specific features and how they

compare to deep learning architectures running on raw temporal data. Feature engineering

(FE) models have been incorporated using both datasets.

3.2.3.1 FE Using UniMiB-SHAR Dataset

In the deep learning model, each time domain sample of the dataset is fed as input to

the algorithm which is expected to learn the features as a non-linear distribution between

the hidden layers. In the feature-based model, 13 features are extracted manually from the

time domain samples of the dataset and are provided as input to the classifiers.

Most of the features used in our study are domain-specific and well-regarded in the

literature as motion-sensitive which includes the mean (on x, y and z), the variance (on x, y

and z), pitch, roll, yaw, zero-crossing rate of the mean (on x, y and z) and the magnitude.

The mean and variance as the first and second order statistics usually are the two most

commonly used features in feature-engineering regardless of the application domain [43].

Figure 3.7 shows the mean and variance features of UniMiB-SHAR A-9 dataset for different

samples in each class of activity. To consider the change of orientation during motion, three

features, pitch, roll and yaw are used which are calculated as follows [52].

pitch = arctan { xN√
y 2
N + z2N

} − arctan { x1√
y 2
1 + z21

} (3.4)

roll = arctan { yN√
x2N + z2N

} − arctan { y1√
x21 + z21

} (3.5)

yaw = arctan { zN√
x2N + y 2

N

} − arctan { z1√
x21 + y 2

1

} (3.6)

33

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

2

0

2

m
ea

n_
x

(m
/s

^2
) Mean(x)

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

1

0

1

m
ea

n_
y

(m
/s

^2
) Mean(y)

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

2.5

0.0

2.5

m
ea

n_
z (

m
/s

^2
) Mean(z)

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

0

2

Va
r_

x
(m

/s
^2

) Variance(x)

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

0.0

0.5

va
r_

y
(m

/s
^2

) Variance(y)

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

0

2

va
r_

z (
m

/s
^2

) Variance(z)

Figure 3.7: Mean and variance features for the UniMiB-SHAR dataset

34

In (3.4), (3.5) and (3.6) xN , yN and zN represent the Nth column data-matrix of x, y and

z axes and x1, y1 and z1 represent the 1
st column data-matrix of the corresponding axis. One

of the most significant features which boosts up the model accuracy is the zero-crossing rate

of the mean. It is the rate at which the mean changes from positive to negative and vice

versa. The feature extraction is performed using the Librosa package of Python [66]. To

round up the feature set, a commonly used acceleration feature, magnitude, is added which

can be calculated from the mean accelerations on each axis as follows (3.7):

R =
√
a2 + b2 + c2 (3.7)

where a, b and c represent the mean of x, y and z axes respectively.

The features pitch, roll, yaw, zero-crossing mean rate and magnitude are shown in Figure

3.8 for the A-9 dataset for different samples in each class of activity.

3.2.3.2 FE Using Modified ExtraSensory Dataset

For the modified ExtraSensory dataset, we extract the same thirteen domain specific

features as the UniMiB-SHAR dataset. Figure 3.9 and 3.10 display the thirteen extracted

features on the modified ExtraSensory dataset.

3.2.4 Feedforward ANN Setup

Different topologies are used for the neural network setup to cover a wide range of sce-

narios and to ensure a robust dynamic comparison in this study. For feedforward neural

networks, the different topologies include: one hidden layer with 500 hidden neurons, two

hidden layers with 500-500 hidden neurons, three hidden layers with 250-250-50 hidden neu-

rons, four hidden layers with 250-250-50-20 hidden neurons and five hidden layers with 250-

250-50-50-20 hidden neurons. In tables presenting the results, hidden layers are represented

as HL1, HL2 etc. respectively.

35

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

2.5
0.0
2.5

pi
tc

h
(m

/s
^2

) Pitch

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

2.5
0.0
2.5

ro
ll

(m
/s

^2
) Roll

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

2.5
0.0
2.5

ya
w

(m
/s

^2
) Yaw

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

0.05
0.10

zc
r_

x
(m

/s
^2

) Zero crossing rate of mean (x)

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

0.02

0.03

zc
r_

y
(m

/s
^2

) Zero crossing rate of mean (y)

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

0.050
0.075

zc
r_

z (
m

/s
^2

) Zero crossing rate of mean (z)

Class 1 Class 3 Class 3 Class 4 Class 4 Class 5 Class 7 Class 7
Time domain samples

0

5

m
ag

ni
tu

de
 (m

/s
^2

)

Resultant mean (three axes)

Figure 3.8: Pitch, roll, yaw, zero crossing rate of the mean and magnitude features for the
UniMiB-SHAR dataset

3.2.5 RNN-LSTM Setup

In time-series classification, the advantage of a recurrent LSTM network is that it can

directly learn without domain knowledge on the input features. In this chapter, the topologies

of LSTM networks follow the same setup as the feedforward neural network classifier above.

36

Figure 3.9: Mean and variance features for the modified ExtraSensory dataset

3.2.6 1D-CNN Setup

In order to improve the performance of the time-series classifier with lesser computational

complexity, we train raw data and domain-specific features using the 1D-CNN. In this study

two convolutional layers with filter sizes 64 and kernel sizes 3, followed by a dropout layer

37

Figure 3.10: Pitch, roll, yaw, zero crossing rate of the mean and magnitude features for the
modified ExtraSensory dataset

for regularization and a pooling layer of size 2 are considered for feature learning. After

the pooling layer the learned features are flattened using the same five topologies of fully

connected layers discussed above.

38

3.3 Results and Discussion

As briefly described before, we consider four different classification algorithms on two

separate classification tasks in this study.

The two classification tasks are labeled as AF-2 and A-9, following the original paper

which introduced the dataset for the first time. AF-2 includes 4192 samples which belong to

the motion class labeled “fall” and 7579 samples which include a variety of observations from

other motion classes (ADLs). The objective for AF-2 is the binary classification of samples

into fall vs. no-fall categories. A-9 on the other hand includes 7579 samples from each of the

9 “non-fall” motion classes where the objective is standard multi-way classification. Four

different algorithms are used for both AF-2 and A-9 in the form of SVM, a deep feedforward

ANN, RNN-LSTM and 1D-CNN. After the normalization of data, we used partitioning to

obtain statistically significant results for all configurations. For the SVM classifier, we applied

a 10-fold cross-validation where the dataset was split into 10 partitions and the algorithm

was trained with 90% of the dataset and tested with 10% of the dataset for each training

cycle. As for the neural network architectures, we applied random sub-sampling for cross-

validation where we randomly picked 20-30% of the dataset for testing and the remaining

partition for training.

For all configurations, the data is represented in two formats: (i) low dimensional feature

set extracted from the raw acceleration data as described in section 3.2.3 and (ii) high

dimensional raw data with minimal preprocessing. For AF-2, the activation function used

for the hidden layers is ‘relu’ where the output layer uses a ‘sigmoid’ function. Since the

model trained for A-9 is a multiclass classifier, the output activation function is ‘softmax’.

The stochastic gradient decent and Adam optimizers are used in these experiments with a

learning rate of 0.0001 and L2 regularization with probability 0.1 to prevent overfitting. For

1D-CNN a 0.5 probability Dropout is applied.

39

3.3.1 Experimental Results

3.3.1.1 Results of UniMiB-SHAR Dataset

Tables 3.2 and 3.3 include a detailed performance comparison between the four classifiers

using raw data and domain-specific features for AF-2 and A-9 datasets respectively. In the

case of binary classification, the accuracies are approximately the same regardless of the

input representation. For binary classification, 1D-CNN gives the highest classification rate

of 99.82 % and the raw data model outperforms the features. However, there is a significant

difference for the multi-class classification problem, where raw temporal data outperforms

domain-specific feature extraction by a wide margin. Table 3.3 shows that the RNN-LSTM

network on A-9 raw data using 250-250-50 topology reports the highest mean accuracy of

98.02% which outperforms the feature-based models with the highest accuracy of 96.35%.

It is worth noting that the raw temporal data not only outperforms the domain-specific

features but in fact achieves the highest recorded accuracy in the literature, including this

study, on this dataset.

Table 3.4 shows the analysis of computational time and complexity for all classifiers on

both datasets. The computer used in this study is configured with the following specifi-

cations: Intel(R) core (TM) i7 4.20GHz CPU, NVIDIA GeForce GTX 1080 GPU and 32

gigabyte memory (RAM). For the binary classification task, the SVM classifier displays

fast convergence in training, especially when using features, and similarly the quickest on-

demand test times compared with the other classifiers. Among the neural network setups, as

expected, the RNN-LSTM has the slowest training and testing times of any classifier due to

the recurrent feedback loops which require forward and back propagation. Surprisingly, 1D-

CNN demonstrates comparable training/testing times with ANN. It is worth noting however,

if one were to ignore the significant differences in the offline training times, the on-demand

testing times for all classifiers are all very short.

40

Table 3.2: Mean accuracies of four classifiers on AF-2 UniMiB-SHAR dataset

Classifier HL1 HL2 HL3 HL4 HL5 Mean Acc
raw data (%)

Mean Acc
features
(%)

SVM — — — — — 98.73 96.87
500 — — — — 98.76 97.32
500 500 — — — 98.64 99.02

ANN 250 250 50 — — 98.89 99.21
250 250 50 20 — 99.01 99.30
250 250 50 50 20 98.51 98.92
500 — — — — 99.38 99.41
500 500 — — — 99.52 99.12

RNN-LSTM 250 250 50 — — 99.51 99.32
250 250 50 20 — 99.54 99.13
250 250 50 50 20 99.46 99.32
500 — — — — 99.77 99.20
500 500 — — — 99.77 98.57

1D-CNN 250 250 50 — — 99.82 98.96
250 250 50 20 — 99.72 99.04
250 250 50 50 20 99.78 98.81

Table 3.3: Mean accuracies of four classifiers on A-9 UniMiB-SHAR dataset

Classifier HL1 HL2 HL3 HL4 HL5 Mean Acc
raw data (%)

Mean Acc
features
(%)

SVM — — — — — 85.47 63.14
500 — — — — 87.79 91.61
500 500 — — — 87.86 92.07

ANN 250 250 50 — — 88.20 93.79
250 250 50 20 — 85.75 91.87
250 250 50 50 20 84.83 92.05
500 — — — — 94.13 95.78
500 500 — — — 97.89 95.84

RNN-LSTM 250 250 50 — — 98.02 96.35
250 250 50 20 — 97.96 95.84
250 250 50 50 20 97.11 95.75
500 — — — — 97.46 95.44
500 500 — — — 97.25 94.74

1D CNN 250 250 50 — — 97.18 94.69
250 250 50 20 — 96.94 95.35
250 250 50 50 20 97.14 95.02

41

Table 3.4: Computational complexity of classifiers on AF-2 and A-9 UniMiB-SHAR dataset

Data Classifier Accuracy
(%)

Compu-
tational
Time
(Sec)

Train
Time
(Sec)

Test
Time
(Sec)

Epochs/
Training

Training
Parame-
ters

SVM Raw 98.73 91.18 91.18 0.0001 10 Fold CV —
SVM Feature 96.87 11.7 11.7 0.001 10 Fold CV —
ANN Raw 99.29 55.67 55.41 0.27 100 2600493

AF-2 ANN Feature 99.01 167.23 167.17 0.06 500 79841
RNN-LSTM Raw 99.7 555.67 553.99 1.69 52 3010501
RNN-LSTM Feature 99.45 572.29 571.24 0.97 350 825251
1D-CNN Raw 99.83 75.43 75.16 0.27 150 2349993
1D-CNN Feature 99.26 71.26 70.99 0.26 200 141609
SVM Raw 85.47 184.65 184.65 0.001 10 Fold CV —
SVM Feature 63.14 13.81 13.81 0.001 10 Fold CV —
ANN Raw 87.14 157.57 157.48 0.09 800 189259

A-9 ANN Feature 94.53 977.64 977.59 0.05 5000 79259
RNN-LSTM Raw 97.82 4617.31 4615.25 2.01 800 841269
RNN-LSTM Feature 96.57 1018.65 1017.75 0.906 1000 825659
1D-CNN Raw 97.14 37.06 36.78 0.28 100 2354001
1D-CNN Feature 96.09 88.36 88.17 0.19 300 145617

For the A-9 multi classification task, the SVM begins to fall behind both in accuracy and

computational times as expected from an otherwise binary classifier. Among the networks,

1D-CNN has the best performance/speed trade-off compared with the other two classifiers

where ANN has significantly lower performance and RNN-LSTM has significantly higher

training times. In fact, when using raw data, the performance difference between the 1D-

CNN and RNN-LSTM is almost insignificant whereas the difference in training times is

noticeably large.

Figure 3.11 and 3.12 represent the confusion matrices of AF-2 and A-9 raw data classifi-

cation achieved with 1D-CNN and RNN-LSTM classifiers respectively. Figure 3.11 shows the

classification accuracy as 99.86% and Figure 3.12 shows the classification rate as 97.82%. It

is interesting to note that the highest classification performances on the binary classification

task, AF-2, when using SVMs, are statistically the same between the original paper and this

one (98.71% versus 98.73%). However, the highest accuracy reported for A-9 in the original

paper was 88.41% using a random forest classifier whereas the highest accuracy in this study

42

Fal
l

No F
all

Predicted label

Fall

No Fall

Tr
ue

 la
be

l

1256 1

4 2271

Confusion matrix for 1D CNN

500

1000

1500

2000

Figure 3.11: Confusion matrix of AF-2 raw data for 1D-CNN classifier

Sta
nd

ind
UpF

S

Sta
nd

ing
UpF

L

Walk
ing

Run
nin

g

Goin
gU

PS

Jum
pin

g

Goin
gD

ow
nS

Lyi
ng

Dow
nF

S

Sit
tin

gD
ow

n

Predicted label

StandindUpFS

StandingUpFL

Walking

Running

GoingUPS

Jumping

GoingDownS

LyingDownFS

SittingDown

Tr
ue

 la
be

l

32 4 0 0 0 0 0 1 1

3 28 0 0 1 0 0 3 1

0 0 347 0 0 0 1 0 0

0 0 0 381 2 0 1 0 0

0 0 0 0 189 0 2 1 0

0 0 0 0 0 156 0 0 0

0 0 0 0 1 0 259 0 0

0 1 0 0 0 1 0 54 3

0 0 0 0 0 0 0 6 37

Confusion matrix for RNN-LSTM

0

50

100

150

200

250

300

350

Figure 3.12: Confusion matrix of A-9 raw data for RNN-LSTM classifier

43

[500] [500-500] [250-250-50] [250-250-50-20] [250-250-50-50-20]
Network Topologies (Hidden layers with number of Hidden Neurons)

97.5

98.0

98.5

99.0

99.5
M

ea
n-

Ac
cu

ra
cy

 (%
)

ANN:AF-2_raw
ANN:AF-2_feature
RNN:AF-2_raw
RNN:AF-2_feature
1D-CNN:AF-2_raw
1D-CNN:AF-2_feature

Figure 3.13: Mean accuracy plot of raw and feature-based models of UniMiB-SHAR AF-2
dataset based on various topologies

is obtained using an RNN-LSTM on raw data with a 98.02% classification rate. This is

to the best of our knowledge the highest classification rate reported on this dataset in the

literature so far. It also highlights the potential improvement in using complex non-linear

models for learning.

Comparing tables 3.2 and 3.3, another interesting observation is in how the accuracy

gaps between features and raw data change for different classification tasks. For example,

in the case of AF-2 (table 3.2), the features demonstrate a competitive performance when

it comes to binary classification accuracy for fall vs. no fall categorization. However, in the

multiclass problem (A-9, table 3.3) the gaps become significantly larger where the neural

networks seem to create a rich latent space from raw data to outperform engineered features

for the RNN-LSTM and 1D-CNN configurations. Most interestingly, the same observation

is not true for ANN where features outperform raw data representation. We conclude that

as long as the network topology allows for constructing a rich latent feature space from

44

[500] [500-500] [250-250-50] [250-250-50-20] [250-250-50-50-20]
Network Topologies (Hidden layers with number of Hidden Neurons)

86

88

90

92

94

96

98

M
ea

n-
Ac

cu
ra

cy
 (%

)

ANN:A-9_raw
ANN:A-9_feature
RNN:A-9_raw
RNN:A-9_feature
1D-CNN:A-9_raw
1D-CNN:A-9_feature

Figure 3.14: Mean accuracy plot of raw and feature-based models of UniMiB-SHAR A-9
dataset based on various topologies

the raw input data like the 1D-CNN, they can outperform expert features provided that

there is sufficient data to learn from. Figure 3.13 and 3.14 show how the average accuracies

change across topologies running on the AF-2 and A-9 datasets respectively for ANN, RNN-

LSTM and 1D-CNN classifiers as the complexity of the network changes. The figures show

that as the network gets deeper and more complex the accuracies generally increase as well.

Moreover, as the network becomes larger with a greater number of parameters to model the

nonlinear relationship, they begin to better utilize the richer information contained in the

two complex datasets.

3.3.1.2 Results of Modified ExtraSensory Dataset

For the modified ExtraSensory dataset, we extract the same motion-related features like

the UniMiB-SHAR dataset and follow the same network topologies & model parameters for

the ANN model as implemented for the UniMiB-SHAR dataset.

45

Table 3.5: Mean accuracies of four classifiers on modified ExtraSensory dataset

Dataset HL1 HL2 HL3 HL4 HL5 Mean Acc
raw data (%)

Mean Acc
features (%)

SVM — — — — — 85.47 63.14
500 — — — — 68.99 74.89
500 500 — — — 73.86 77.01

5775 Obser-
vations

250 250 50 — — 76 78.54

250 250 50 20 — 81.28 88.46
250 250 50 50 20 84.37 89.39
500 — — — — 66.92 80.28
500 500 — — — 66.13 85.61

55938 Obser-
vations

250 250 50 — — 84.26 92.51

250 250 50 20 — 83.74 91.12
250 250 50 50 20 86.76 93.10

Table 3.5 shows that for the low dimensional dataset with 5775 observations, the high-

est classification accuracies are 84.37% and 89.39% for the raw data and extracted features

respectively. As the size of the data is increased to 55938 observations, the accuracies of

both the raw data and the feature set increase yet with significant differences. The classifi-

cation accuracy for the raw data is increased to 86.76% whereas the domain specific features

now achieve 93.1% accuracy. When we train several RNN-LSTM topologies on these two

ExtraSensory datasets we still observe that regardless of the number of parameters, the high-

est accuracy achieved by the LSTM model is 84.23%, i.e., lower than the highest accuracy

achieved by the less complex feedforward ANN model. Figure 3.15 shows the mean accuracy

plots for raw and feature based models using feedforward ANN algorithm on the two modi-

fied extrasensory datasets to provide a clear overview of how the classification performance

changes with the change in dataset size. Surprisingly, as the number of observations is in-

creased, the performance of feature engineering gets significantly better compared to raw

data which one would otherwise expect to fare better with increased data dimensionality.

46

[500] [500-500] [250-250-50] [250-250-50-20] [250-250-50-50-20]
Network Topologies (Hidden layers with number of Hidden Neurons)

65

70

75

80

85

90

M
ea

n-
Ac

cu
ra

cy
 (%

)

Modified ExtraSensory:5775 observations_raw
Modified ExtraSensory:5775 observations_feature
Modified ExtraSensory:55938 observations_raw
Modified ExtraSensory:55938 observations_feature

Figure 3.15: Mean accuracy plot of raw and feature-based models of modified ExtraSensory
dataset based on various topologies

47

3.4 Summary and Conclusions

In this chapter, we show that in an activity of daily living recognition task using UniMiB-

SHAR dataset, which consists of 9 different motion classes, a black-box deep learning ap-

proach using raw temporal data on a recurrent LSTM model outperforms the most recent

results reported in the literature and achieves a state-of-the-art classification rate of 98.02%.

However, on a different, larger and more complex modified ExtraSensory dataset where con-

ventional logic would suggest the deep learning model would perform even better, domain

specific features prove to have higher accuracy by a significant margin. What is more fasci-

nating is that even as the number of observations increases tenfold, the accuracy advantage

of feature engineering improves even further not to mention the more operational advantages

of reduced computational complexity and significantly faster training and testing (when us-

ing only 13 features compared to the sample time vector of size 2400). This could be due to

a number of reasons such as the reduced complexity of the classification task (binary versus

multi-class) where a lower dimensional feature vector is able to better capture the key dif-

ferences between the two classes but could otherwise be insufficient as more class labels and

statistics get added to the mix. So we look forward to another well reputed dataset which

proposes subject agnostic features for state-of-the-art performance and decided to compare

this performance with deep learning models.

48

Chapter 4: Empowering Deep Feature Learning in HAR

Parts of this chapter have been communicated to the Journal of Biomedical Informatics,

Elsevier for publication and currently, the paper is in its 2nd revision stage. Copyright

permission for this chapter is attached to Appendix A

4.1 Introduction

In the previous chapter, we include an in-depth study on a publicly available dataset of

human activities to compare the performances of feature engineering and deep learning al-

gorithms running on raw data where we have found that while the former has commendable

performance, the latter has better accuracy throughout a wide range of scenarios [48]. In this

chapter, we further expand the portfolio of technologies and consider a well-established pub-

licly available dataset from a research group at Stanford University which included subjects

of different ages, genders with different sensor placements. The observations were obtained

when looking into the sensor positions at different parts of the body and with persons of

different ages where the accelerometer sensors were placed on the ankle and wrist positions of

both young and adult subjects. Specifically, we investigate feature-engineering as applied by

the authors of the original paper and compare it to using raw data [64]. We find that in most

instances, raw data provides a better performance than even the most finely engineered fea-

tures. Furthermore, we explore a data-augmentation technique to boost the performance of

the feature-learner on the raw data and achieve a significant improvement in its performance

on one of the more challenging datasets. The rest of the chapter is organized as follows. In

the next sections we describe the design and methodology and the experimental setup in

detail including the specifications of the dataset as well as the classification algorithms and

49

x1

x2

x3

x2700

Ambu-
lation

Cycling

Others

Seden-
tary

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Output
Layer

2700
Neurons

250
Hidden
Neurons

250
Hidden
Neurons

50
Hidden
Neurons

4
Neurons

Softmax
Activation

Code

E
nc
od
er

D
ec
od
er

27
00

50
0

27
00

50
0

13
Input

Output
Input Layer Hidden Layers Output Layer

13 250 250 50 420

E
nc

od
ed

 o
ut

pu
t

13
 F

ea
tu

re
s

Adukt-ankle

10 20 30 40
Time (s)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

25

30

35

40

Adult-wrist

10 20 30 40
Time (s)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

25

Youth-ankle

10 20 30 40
Time (s)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

25

30

35

40
Youth-wrist

10 20 30 40
Time (s)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

25

30

35

40

2700
Time-series

Input

13×13×1
Spectrogram

(13×13×64)
Conv2D_1+
LeakyReLU MaxPooling2D_1

(8×8×64)
Conv2D_2+

LeakyReLU_2

(7×7×64)
MaxPooling2D_1

(12×12×64)

flattening

3136
Flatten

500
Fully_connected

Layer

4
Output

K
 E

 R
 N

 E
L

(5
×5

)

K
 E

 R
 N

 E
L

(5
×5

)

DFNN AE-DFNN

2D-CNN

Spectrograms

Training
Set

Machine Learning Models

Adult-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fre
que

ncy
 (H

z)

10

20

30

40

Po
we

r/fr
equ

enc
y (d

B/H
z)

Adult-wrist

10 20 30 40
Time (S)

3

6

9

12

15

Fre
que

ncy
 (H

z)

5

10

15

20

Po
we

r/fr
equ

enc
y (d

B/H
z)

Youth-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fre
que

ncy
 (H

z)

10

20

30

40

Po
we

r/fr
equ

enc
y (d

B/H
z)

Youth-wrist

10 20 30 40
Time (S)

3

6

9

12

10

Fre
que

ncy
 (H

z)

10

20

30

40

50

Po
we

r/fr
equ

enc
y (d

B/H
z)

Adult-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fre
que

ncy
 (H

z)

10

20

30

40

Po
we

r/fr
equ

enc
y (d

B/H
z)

Adult-wrist

10 20 30 40
Time (S)

3

6

9

12

15

Fre
que

ncy
 (H

z)

5

10

15

20

Po
we

r/fr
equ

enc
y (d

B/H
z)

Youth-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fre
que

ncy
 (H

z)

10

20

30

40

Po
we

r/fr
equ

enc
y (d

B/H
z)

Youth-wrist

10 20 30 40
Time (S)

3

6

9

12

10

Fre
que

ncy
 (H

z)

10

20

30

40

50

Po
we

r/fr
equ

enc
y (d

B/H
z)

Activity Detection

Daily Activities

(1-dimensional)

(2-dimensional)

Accelerometer Data

Figure 4.1: Human activity recognition using unsupervised feature learning

data augmentation such as synthetic minority over sampling technique (SMOTE) used in

the experiments. The results are provided in section 4.4 followed by a detailed discussion of

performance comparisons.

4.2 Design and Methodology

The framework of human activity recognition (HAR) system with unsupervised automatic

feature learning technique is described in Figure 4.1. The details of this process is discussed

in the rest of this chapter.

4.2.1 Dataset

In this research, we wanted to expand our analysis to subject agnostic features as de-

scribed by a recent paper from the research group at Stanford University on a dataset of

different ages, genders and sensor-locations [63, 64]. The overall data collection process in-

cludes 53 participants with 33 adults and 20 youths. The suits of synchronized sensors were

placed on ankles and wrists of the participants who were directed to perform a sequence

of common physical activities, lasting 3-5 minutes each. These common daily activities are

50

shown in table 4.1 [64] and categorized into four main classes: ambulation, cycling, other ac-

tivities and sedentary. In this data collection process, Triaxial Wocket accelerometers [64, 45]

which are small and lightweight devices, were placed on the wrist and ankle positions of the

participants using custom Velcro bands. Based on the ages of the participants and the lo-

cations of the sensors on the body, the datasets are classified into four distinct groups: (i)

adult-ankle, (ii) adult-wrist, (iii) youth-ankle and (iv) youth-wrist. Table 4.2 provides the

sample sizes of four different datasets. Our research includes twenty-five experiments on four

datasets when considering six classification algorithms for each dataset.

4.2.2 Data Preprocessing

In the data preprocessing stage, we re-sample the non-uniformly sampled data with a

uniform fixed rate. More specifically, the data is resampled at 900 samples per second and

filtered using a 4th order lowpass digital Butterworth filter with a cut-off frequency at 15

Hz and sampling rate at 90 Hz to limit the bandwidth and eliminate non-motion like noise

in the raw data. Figure 4.2 shows some example observations of resampled (in blue) and

filtered (in green) signals.

4.2.3 Classification Algorithms

To study the contributions of feature learning versus feature engineering, we employ six

different popular and state-of-the-art classifiers including deep feedforward neural network

(DFNN), auto encoder deep feedforward neural network (AE-DFNN), one-dimensional con-

volutional neural network (1D-CNN), two-dimensional convolutional neural network (2D-

CNN), recurrent neural network with long short-term memory (RNN-LSTM) and feature

engineering using deep feedforward neural network (FE-DFNN). Moreover, to boost up the

performance of 2D-CNN classifier which has a larger number of trainable parameters and

subsequently requires more data to train, we augment the number of observations using

SMOTE specifically for the youth-ankle dataset where the performance lagged behind sub-

51

Table 4.1: Activities of daily living categorized into four classes

Class Activities of Adult Dataset Activities of Youth Dataset

Walking: carrying load Walking, natural
Stairs: inside and down Treadmill walking: 2
Stairs: inside and up Treadmill walking: 3 - 4 mph

Ambulation Treadmill: 3 mph 0% incline Treadmill running:4.5 - 5 mph
Treadmill: 3 mph 6% incline –
Treadmill: 3 mph 9% incline –
Treadmill: 2 mph 0% incline –
Treadmill: 4 mph 0% incline –
Walking, natural –

70rpm. 50W. 0.7kg 70 rpm 50 watts
Cycling outdoor level Outdoor cycling

Cycling Cycling outdoor uphill –
Cycling outdoor downhill –

Painting: roller Basketball:- dribbling
Painting: brush Basketball:- passing
Sweeping with broom Basketball:- shortshots

Others – Clean room
– Soccer:- dribbling
– Soccer:- passing
– Tennis-ball:- fielding
– Tennis-ball:- throwing-catching

Sitting, internet search Sitting: reading
Sitting, computer typing Play-computer-game
Sitting: writing Play-on-gameboy
Sitting: reading Wii:-boxing

Sedentary Sorting files / paperwork Wii:-tennis
Lying: on back Lying: on back
Lying on left side Sitting: legs straight
Lying on-right-side Standing still
Sitting: legs straight –
Standing still –

Table 4.2: Number of observations of four Adult-Youth datasets

Dataset Observations

Adult-ankle 12812
Adult-wrist 12618
Youth-ankle 7910
Youth-wrist 7869

52

0 500 1000 1500 2000 2500 3000
Time

-2

-1.5

-1

-0.5

0

0.5

1
M

ag
ni

tu
de

Adult-ankle

Resample
Resample & filter

0 500 1000 1500 2000 2500 3000
Time

-1

-0.5

0

0.5

1

1.5

2

M
ag

ni
tu

de

Adult-wrist

Resample
Resample & filter

0 500 1000 1500 2000 2500 3000
Time

-3

-2

-1

0

1

2

3

M
ag

ni
tu

de

Youth-ankle

Resample
Resample & filter

0 500 1000 1500 2000 2500 3000
Time

-1

-0.5

0

0.5

1

M
ag

ni
tu

de

Youth-wrist

Resample
Resample & filter

Figure 4.2: Example observations from different subjects and sensor placements for both
re-sampled (marked by blue) and filtered (marked by green) signals

ject agnostic features. In this study, we perform a total of twenty-five experiments to classify

four different labels which are the group of activities of daily living (ADLs). Figure 4.3 pro-

vides some representative samples for the single-axis acceleration data for these 4 groups of

ADLs for the adult dataset. Each subplot in the figure is a representative sample of raw

temporal acceleration data for one of the three axes (x, y or z) which happens to demonstrate

the biggest dynamic range of motion as the dominant axis.

53

0 25 50 75 100 125 150 175 200

Time domain samples
1.1

1.0

0.9

m
/s

^2
Ambulation (class1)

0 25 50 75 100 125 150 175 200

Time domain samples

0.9

0.8

m
/s

^2

Cycling (class2)

0 25 50 75 100 125 150 175 200

Time domain samples

0.95

0.90

0.85

m
/s

^2

Other activities (class3)

0 25 50 75 100 125 150 175 200

Time domain samples

0.5

0.0

m
/s

^2

Sedentary (class4)

0 25 50 75 100 125 150 175 200

Time domain samples

1.0

0.5

0.0

m
/s

^2

Ambulation (class1)

0 25 50 75 100 125 150 175 200

Time domain samples

1.0

0.5

0.0

m
/s

^2

Cycling (class2)

0 25 50 75 100 125 150 175 200

Time domain samples

1.0

0.5

m
/s

^2

Other activities (class3)

0 25 50 75 100 125 150 175 200

Time domain samples

1.0

0.5

0.0

m
/s

^2

Sedentary (class4)

Time-series representation of the Adult dataset
Adult-ankle

Adult-wrist

Figure 4.3: Time-series representations of single-axis acceleration data for four classes of
activities of daily living for the adult-ankle and adult-wrist datasets

4.2.3.1 DFNN

Feed forward neural networks help realize a non-linear relationship between a set of

predictors and a desired set of outcomes. In this particular study, the sensor data collected

by the accelerometers is mapped into one of the four class labels. This is accomplished by

learning a linear model on the transformed version of the input space, more specifically, to

learn the nonlinear functions over the input x , the linear model is applied not to x itself but

to a transformed input ϕ(x). ϕ is nonlinear transformation and can be defined as a set of

54

latent features which represents the input vector. In very broad terms, a feedforward neural

network model can be represented as,

y = f (x , θ,w) = ϕ(x , θ)Tw (4.1)

where ϕ is a hidden layer and θ is used to learn ϕ from a broad class of functions and weight

parameters w . A deep feedforward neural network is basically a multilayer perceptron with

stacked hidden layers where each layer is represented as,

y = f (
∑
i

wix + b) (4.2)

where f is the nonlinear activation function, wi are the set of parameters or connection

weights for neuron i , x is the input vector which is often the output of the previous layer

and b is the bias vector [31].

Figure 4.4 represents a simple architecture of the DFNN which was the best topological

representation we arrived at for our specific experiment. As shown in the figure, in a DFNN,

the information flows in one (forward) direction, from an input layer (x) to the output

layer (y) through the intermediate computations which is defined as f in the dense layers

or hidden layers to finally produce a value that is close to y (ypred). During training, the

forward propagation generates a cost function from which the backpropagation algorithm

can compute the direction and size of change in weight parameters to reduce the cost function

with the gradient of the network.

4.2.3.2 AE-DFNN

The AE-DFNN topology has two parts: (i) autoencoder and (ii) deep feedforward neural

network. Autoencoder is a generative model which is trained to reproduce its input at its

output. The autoencoder has two components: (i) encoder and (ii) decoder. The encoder

55

x1

x2

x3

x2700

Ambu-
lation

Cycling

Others

Seden-
tary

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

Output
Layer

2700
Neurons

250
Hidden
Neurons

250
Hidden
Neurons

50
Hidden
Neurons

4
Neurons

Softmax
Activation

Figure 4.4: Architecture of a simple DFNN used in the experiments

function is denoted by ϕ which maps the input vector x to a latent space F , which is presented

at the bottleneck. The encoding operation can be denoted as ϕ : x → F .

On the other hand, the decoder function is represented by ψ which maps the latent

space F at the bottleneck to the output and can be shown as ψ : F → x̄ . In (4.3) the

encoding-decoding operation of the autoencoder can be defined as,

ϕ,ψ = argmin
ϕ,ψ

||X − (ϕ ◦ ψ)||2 (4.3)

56

Code

En
co
de
r

D
ec
od
er

27
00

50
0

27
00

50
0

13

Input

Output
Input Layer Hidden Layers Output Layer

13 250 250 50 420

En
co

de
d

ou
tp

ut
 1

3
Fe

at
ur

es
Figure 4.5: Autoencoder deep feedforward neural network model and training of learned

features (encoder output) using the DFNN

For HAR, a deep autoencoder allows for automated end-to-end feature learning and thus,

largely alleviates the need for domain-specific feature engineering procedures. In this regard,

we have used an AE-DFNN model shown in Figure 4.5, where the input is raw data with 2700

features where each feature is sample of acceleration in time. The autoencoder framework

includes an encoding layer with 500 and 13 neurons which automatically extracts 13 features

using unsupervised feature learning. These 13 features are fed into the DFNN as input

vectors to be trained through four hidden layers with 250, 250, 50 and 20 hidden neurons

respectively to classify the four labels of daily activities.

4.2.3.3 1D-CNN

In time-series classification with feature learning, 1D-CNN provides a high classification

rate with lesser computational complexity compared to other topologies [102]. 1D-CNN uses

one-dimensional convolution of the input signal via kernels to extract specific characteristics

from the raw signals [26]. Recent research on one-dimensional temporal data has proved that

a 1D-CNN is superior for 1D signals when compared to their more popular 2D counterparts

[41]. The architecture of a 1D-CNN combines the two major tasks, namely feature mapping

57

Conv1D_1 (898 × 64)
Kernel (3 × 3)

Conv1D_2 (896 × 64)
Kernel (3 × 3)

Dropout

MaxPooling1D (448 × 64)
flattening

28672
Flatten

Input
2700

250
Dense_1

250
Dense_2

50
Dense_3

20
Dense_4

4
OutputConvolution and pooling

Figure 4.6: Feature learning using a one-dimensional convolutional neural network

and prediction of a 1D signal into a single learning system. The input layer receives the raw

1D signal which is forwarded to the convolutional layers. The convolution layers are used for

feature mapping from the input, where every convolution layer consists of multiple kernels

of the same size, followed by the pooling layer. Pooling performs average or max pooling

operations to reduce the size of the input space to help speed up the training process and

then send the output to the fully connected layers for conventional input-output mapping

[26, 34]. Mathematically, if l is a convolution layer:

x lj = f (
M∑
i=1

x l−1
i ⊛ k l

ij + blij) (4.4)

where k represents the convolution kernels, j denotes the number of kernels, M represents

the channel number of the input x l−1, b is the bias corresponding to the kernel, f () is the

activation function and ⊛ is the convolution operator [41].

58

Figure 4.6 shows the proposed deep 1D-CNN architecture for the adult-ankle dataset

with 10080 observations in 2700 dimensions to be fed into the model as input. Two 1D-

convolutional layers with 64 filters of kernel size (3, 3) perform the forward-backward oper-

ation by adjusting the layer-weights and extract the features to provide a high classification

rate with lesser complexity. Here, a ‘Dropout’ layer with probability = 0.5 has also been

added to prevent the overfitting of the training process. After the convolution layer, a pool-

ing layer (of size 2) performs max pooling operation which is used to process each feature

map to reduce the data dimensionality to 448 by selecting the maximum parameters within

the range of the predetermined window as the output value. In this experiment, our model

consists of 4 fully connected layers 250, 250, 50, 20 neurons respectively to map the output

from the convolutional layers into the predicted class labels.

4.2.3.4 2D-CNN

A two-dimensional convolutional neural network automatically learns rich feature infor-

mation from a 2D input representation to provide high classification accuracy. In a time-

series classification task, the one-dimensional data naturally needs to be transformed into

a 2D representation before utilizing a 2D-CNN. In this study, we generate spectrogram im-

ages from the accelerometer data which models both time and frequency fluctuations in the

signals.

In a 2D-CNN, the input data is a matrix or tensor with a 3D spatial structure, where

(H ,W), (H ′,W ′), and (H ′′,W ′′) represent the size of the spatial dimension of input data,

convolution kernel, and output data, respectively. The number of convolution kernel feature

channels is represented by D, and D ′′ represents the 3D data.

59

x ∈ RH×W×D

f ∈ RH′×W ′×D×D′′

y ∈ RH′′×W ′′×D′′

(4.5)

where x is the input data, f is the convolution filter, and y is the output data. The 1D signal

x is convoluted by filter f to calculate signal y as follows:

yi ′′j ′′d ′′ = bd ′′ +
H′∑
i ′=1

W ′∑
j ′=1

D∑
d ′=1

fi ′′j ′′d ′′ × xi ′′+i ′−1,j ′′+j ′−1,d ′,d ′′ (4.6)

Equation (4.6) states that bd ′′ is the neuron offset and fi ′′j ′′d ′′ is the convolution kernel

matrix of the d th i ′ × j ′ (i
′th neuron and j

′th connection).

The pooling layer performs max pooling operation which calculates the maximum re-

sponse of each feature channel in the H ′ ×W ′ region [29].

yi ′′j ′′d ′′ = max
1≤i ′≤H′,1≤j ′≤W ′

xi ′′+i ′−1,j ′′+j ′−1,d (4.7)

In this chapter, 1D data is first transformed into spectrogram images of dimension

(13 × 13) and applied as input to the convolution layers. Figure 4.7 displays that one-

dimensional temporal data is transformed into a two-dimensional frequency domain repre-

sentation considering a ’kaiser’ window with vector size as (128,18) which divides the input

into segments of equal size and activates the window operation. 64 overlapping samples

are used between the adjoining segments to compute a 64-point discrete Fourier Transform

where the sampling rate is set at 90Hz. Figure 4.8 shows the spectrograms of representative

samples from the adult-ankle, adult-wrist, youth-ankle and youth-wrist datasets respectively.

Figure 4.9 shows a framework of the specific 2D-CNN model using youth-ankle dataset

where two 2D convolution layers with ‘LeakyReLU’ activation functions perform the convo-

lution operation with 64 filters of kernel size as (5, 5) to extract the feature map. Here, two

60

max pooling layers with pool size (2, 2) and stride = 1 compute the maximum information

from the feature map and send this to a fully connected layer of 500 neurons. The out-

put layer with the ’Softmax’ activation function predicts the class labels for the four daily

activities.

4.2.3.5 RNN-LSTM

RNN-LSTM network has the repeating-module or chain like architecture where each

module has four interacting neural network layers. In LSTM network, the information flows

through the network’s memory cell by the specialized control units which are called gate units

such as forget, input and output units [10]. Figure 4.10 displays the RNN-LSTMmodel where

four LSTM hidden layers are considered with 250, 250, 50 and 20 hidden neurons to build

the recurrent network on youth-ankle dataset. At first, we reshape the youth-ankle input of

dimension (6098, 2700) to represent as (6098, 900, 3) which is then forwarded to the LSTM

layers. In LSTM layer, every LSTM cell is connected back to the previous time step to form

the recurrent connection. Here, the information flows through the LSTM layers and the new

information is stored in the memory unit of each LSTM cell. Then in the output layer, the

output activation of LSTM units process the stored information to determine the new states

hT .

This model is trained for certain iterations and tested to classify the four activity-labels.

However, the major drawback of RNN-LSTM network is the expensive computational time

to train the model due to its recurrent structure and for this reason this classifier does not

perform well for our Adult-Youth dataset with 2700 features.

61

62

One-Dimensional Time-Series Signal

Two-Dimensional Spectrogram Signal
(13 x 13)

kaiser Window (128, 28); overlapping samples
= 64, DFT = 64, sampling rate = 90 Hz

Adult-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Adult-wrist

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Youth-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Youth-wrist

10 20 30 40
Time (S)

3

6

9

12

10
Fr

eq
ue

nc
y

(H
z)

10

20

30

40

50

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Adult-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
we

r/f
re

qu
en

cy
 (d

B/
Hz

)

Adult-wrist

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

Po
we

r/f
re

qu
en

cy
 (d

B/
Hz

)

Youth-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
we

r/f
re

qu
en

cy
 (d

B/
Hz

)
Youth-wrist

10 20 30 40
Time (S)

3

6

9

12

10

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

50

Po
we

r/f
re

qu
en

cy
 (d

B/
Hz

)

Adult-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Adult-wrist

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Youth-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Youth-wrist

10 20 30 40
Time (S)

3

6

9

12

10

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

50

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Adult-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
we

r/f
re

qu
en

cy
 (d

B/
Hz

)

Adult-wrist

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

Po
we

r/f
re

qu
en

cy
 (d

B/
Hz

)

Youth-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
we

r/f
re

qu
en

cy
 (d

B/
Hz

)

Youth-wrist

10 20 30 40
Time (S)

3

6

9

12

10

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

50

Po
we

r/f
re

qu
en

cy
 (d

B/
Hz

)

Figure 4.7: Transformation of 1D time domain signal to 2D frequency domain representation

Adult-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Adult-wrist

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Youth-ankle

10 20 30 40
Time (S)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Youth-wrist

10 20 30 40
Time (S)

3

6

9

12

10

Fr
eq

ue
nc

y
(H

z)

10

20

30

40

50

Po
w

er
/fr

eq
ue

nc
y

(d
B/

H
z)

Figure 4.8: Frequency domain representation of sample observations from the four datasetsAdukt-ankle

10 20 30 40
Time (s)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

25

30

35

40

Adult-wrist

10 20 30 40
Time (s)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

25

Youth-ankle

10 20 30 40
Time (s)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

25

30

35

40
Youth-wrist

10 20 30 40
Time (s)

3

6

9

12

15

Fr
eq

ue
nc

y
(H

z)

5

10

15

20

25

30

35

40

2700
Time-series

Input

13×13×1
Spectrogram

(13×13×64)
Conv2D_1+
LeakyReLU MaxPooling2D_1

(8×8×64)
Conv2D_2+

LeakyReLU_2

(7×7×64)
MaxPooling2D_1

(12×12×64)

flattening

3136
Flatten

500
Fully_connected

Layer

4
Output

K
 E

 R
 N

 E
L

(5
×

5)

K
 E

 R
 N

 E
L

(5
×

5)

Figure 4.9: Feature learning using a two-dimensional convolutional neural network

63

y0 y1 y2 y3

Input shape
(6098, 900, 3)

Youth-ankle Data
(6098, 2700)

LSTM_1
Hidden Layer size: 250

LSTM_2
Hidden Layer size: 250

LSTM_3
Hidden Layer size: 50

LSTM_4
Hidden Layer size: 20

Output
Softmax: 4

28

Long Short-Term Memory (LSTM) Recurrent Neural Network

Deep learning models have become a useful tool to decode neural information (e.g., Agrawal
et al., 2014; Khaligh-Razavi & Kriegeskorte, 2014). Applying a deep learning approach to the
time series of EEG recordings (e.g., Bashivan et al., 2016) can be achieved using Long Short-
Term Memory (LSTM) recurrent neural networks (Hochreiter & Schmidhuber, 1995, 1997). With
their property to store and control relevant information over time, they can find adjacent as
well as distant patterns in (time) sequential data. The LSTM analysis was implemented in the
Python-based deep learning library TensorFlow (v.1.14.0; Google Inc., USA; Abadi et al., 2015;
Zaremba et al., 2015).

Figure 9: Schematic of the Long Short-Term Memory (LSTM) recurrent neural network (RNN).
At each training step, the LSTM cells successively slide over 250 data-arrays of neural compo-
nents (xt=0, xt=1, ... , xT=249) corresponding to 1-s of the EEG recording. At each step t, the LSTM
cell computes its hidden state ht. Only the final LSTM output (hT) at time-step T=249 is then
fed into the following fully connected (FC) layer. The outputs of all (LSTMs, FCs) but the final
layer are normalised by Rectified linear units (ReLU) or exponential linear units (ELU). Finally,
the model prediction is extracted from the last FC layer via a tangens hyperbolicus (tanh).
Note: depending on model architecture, there were 1-2 LSTM layers, and 1-2 FC layers.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

The copyright holder for thisthis version posted November 10, 2020. ; https://doi.org/10.1101/2020.10.24.353722doi: bioRxiv preprint

+

! ! tanh !

tanh

Xt

ht

×

× ×

Ct-1 Ct

ft

LSTM cell

Figure 4.10: Schematics of RNN-LSTM network used in this experiment

4.2.3.6 Data Augmentation: SMOTE

For three out of the four datasets the 2D-CNN provides better classification accuracies in

the raw data-space than the feature space. On the contrary, the feature learner does not per-

form as well on the youth-ankle dataset. This could be due to a number of reasons including

the entropy of the dataset and the number of observations available to train the large number

of trainable parameters. In these instances, synthetic data augmentation techniques such as

SMOTE can substantially improve performance as evident from modern image classification

applications [78]. SMOTE oversamples the minority class by taking each class sample and

generating synthetic samples along the line segments joining its k nearest neighbors. De-

pending upon the desired level of over-sampling, neighbors are randomly selected from the

k nearest neighbors as follows:

S ′ = S + rand(0, 1) ∗ |S − Sk | (4.8)

64

Table 4.3: The topologies for the different classifiers using feature learning for human
activity recognition

Classifier HNs
(HL1)

HNs
(HL2)

HNs
(HL3)

HNs
(HL4)

DFNN 250 250 50 –
AE-DFNN 250 250 50 20
1D-CNN 250 250 50 20
2D-CNN 500 – – –
RNN-LSTM 250 250 50 20
FE-DFNN 250 250 50 –

where S ′ denotes the new set of synthetic samples, S is the set of original samples for which

k-nearest neighbors are being identified and Sk is the set of randomly selected k-nearest

neighbor samples. To generate new samples, this process is repeated N number of times

where N is the oversampling rate commonly provided as a percentage [19]. In this chapter,

we look at four different levels of oversampling and demonstrate diminishing returns as the

synthetic samples begin to contribute less and less meaningful information to the training

process.

4.3 Experimental Setup

4.3.1 Leave-One-Subject-Out Cross-validation

Here, a wide array of topologies is tested using grid hyperparameter search, and the best

topology has been chosen for each classifier to train the raw data using leave-one-subject-out

(LOSO) cross-validation with a random ‘shuffle’ to estimate an unbiased and accurate model

performance for all experiments. For two adult datasets we consider LOSO with k-fold = 33

and for the remaining two youth datasets, k-fold = 20 is used to implement cross-validation

during the training process. Table 4.3 summarizes the best topologies used to train the six

classifiers and shows the number of hidden neurons (HNs) for each hidden layer (HL) such

as HL1, HL2 etc.

65

4.3.2 Model Hyperparameters

For the DFNN model, two dropout layers of probability 0.4 have been added after the

first two hidden layers and another dropout layer (probability = 0.1) is added after third

hidden layer to prevent overfitting of the network. In addition, a stochastic gradient descent

optimizer with learning rate lr = 0.0001 is used to make the model learn and optimize

faster. For the nonlinear model, categorical cross-entropy loss or softmax loss function has

been considered as a natural cost function which maximizes the likelihood of predicting the

output classes correctly.

The autoencoder model consists of two encoders with 500 and 13 neurons and two de-

coders with 500 and 2700 neurons. Using automatic feature learning technique, the model

is trained for 200 epochs with ‘Adam’ optimizer and the encoders learn 13 unsupervised

features from the original 2700 features which is then applied as input to the DFNN model.

The hypermeters used to train the DFNN are as mentioned above.

In the case of 1D-CNN model, the two convolutional layers along with a dropout layer

(probability = 0.5) reduce the dimension of the input time-series and extract the unsuper-

vised features by adding a pooling layer of size 2. After the pooling operation, the output is

flattened and passed through a group of fully connected layers using ‘Adam’ optimizer and

categorical cross-entropy loss for training. For the 2D-CNN, we use the same hyperparame-

ters mentioned above except the kernel size which is (5, 5) and only a single fully connected

layer with 500 hidden neurons.

To design RNN-LSTM model, we consider the best topology which consists of four LSTM

hidden layers with 250, 250, 50 and 20 hidden neurons. The LSTM layers are optimized using

‘Adam’ optimizer and ‘l2’ regularizer with probability 0.01 which is used in each layer to

prevent overfitting.

66

4.3.3 Feature Engineering

In this dissertation, we aim to provide a robust performance comparison of the deep

learning classification algorithms with feature engineering approaches. To accomplish this,

we provide a one-to-one comparison of the deep learning models with the feature engineering

results of both [64] and [48]. To do this, thirteen domain-specific motion sensitive features

are extracted from raw temporal datasets including the means and variances of x, y and z

axes of the accelerometer data, pitch, roll, yaw, zero-crossing rate of the mean (on x, y and

z) and the magnitude [48].

4.4 Results and Discussion

As previously discussed, in order to conduct a fair comparison with the original paper

from the Stanford group we apply the same LOSO cross-validation as we train & test six

different classification algorithms on raw data and features separately for adult and youth

datasets where the feature engineering is represented by the prior results reported in [64].

Moreover, we perform the classification experiments on these four datasets using other and

more recent state-of-the-art features published in 2021 [48] to provide a robust comparison

between deep learning and feature engineering. For DFNN, 1D-CNN, 2D-CNN and RNN-

LSTM, the resampled and filtered data is represented at the input layer as-is. The AE-DFNN

on the other hand is first trained to learn the unsupervised features from the latent space of

raw data where the extracted latent features are subsequently used to train another dense

FNN.

Table 4.4 represents the average classification accuracies with standard deviations across

the four datasets for all models with LOSO cross-validation. We observe that even though the

best result in each dataset is observed for the 2D-CNN feature learning deep neural network,

the significance of proper learning representation is highlighted by the fact that human

engineered features of [64] can actually outperform deep learning when the topology is not

carefully selected (i.e., both for regular feedforward neural network and for the autoencoder

67

Table 4.4: Average accuracies for the different classifiers using feature learning versus the
subject agnostic feature engineering used in the latest work on this dataset (Mannini et al.

[64])

Average classification accuracy (%)
Classifier Adult-ankle Adult-wrist Youth-ankle Youth-wrist
DFNN 91.17± 3.47 87.43± 7.87 85.86± 10.43 88.30± 8.3
AE-DFNN 88.33± 4.81 81.31± 7.74 82.68± 10.78 80.81± 8.04
1D-CNN 95.21± 2.38 88.02± 6.29 88.49± 8.98 90.54± 4.98
2D-CNN 95.57± 2.54 93.45± 3.55 93.38± 2.67 93.13± 3.5
Mannini et al. [64] 94.8 87 92.4 91
FE-DFNN [48] 92± 4.38 83.78± 8.45 85.79± 9.82 85.86± 8.47

2D-CNN 1D-CNN DFNN AE-DFNN FE-DFNN
Classifiers

60

70

80

90

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Adult-ankle

2D-CNN 1D-CNN DFNN AE-DFNN FE-DFNN
Classifiers

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Adult-wrist

2D-CNN 1D-CNN DFNN AE-DFNN FE-DFNN
Classifiers

60

70

80

90

100

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Youth-ankle

2D-CNN 1D-CNN DFNN AE-DFNN FE-DFNN
Classifiers

Cl
as

sif
ica

tio
n

Ac
cu

ra
cy

 (%
)

Youth-wrist

Figure 4.11: Boxplot distributions of classification accuracies across different classifiers on
all 4 datasets

68

feature learner). Ultimately, results indicate state-of-the-art performance using a 2D-CNN

model on raw data which outperforms the most recent results reported on the dataset using

feature-based models. The table also provides a one-to-one comparison of the best accuracies

reported in this study with the most recent results published in the literature [64] on this

dataset as well as the performances of FE-DFNN models using more recent state-of-the-

art features for motion data (not particularly tuned for this dataset) reported in [48]. Our

findings from these experiments reveal that the subject agnostic features in [64] perform much

better compared to the FE-DFNN classifier. However, the performances of convolutional

feature learners, especially with spectrotemporal features, outperform the feature engineering

classifiers. Figure 4.11 shows the boxplots for the accuracies of five classification algorithms

including feature engineering on four datasets for a better statistical comparison. It is

important to note that these results are all statistically significantly relevant as discussed

further in the next subsection.

Another important observation is the requirement to support the training of the more

complex 2D-CNN algorithm via a synthetic data augmentation method called SMOTE at

different levels of oversampling. Table 4.5 displays the average classification accuracies with

standard deviations of the 2D-CNN classifier on the youth-ankle dataset with and without

data augmentation. As one can see, without any augmentation, the accuracy of the 2D-

CNN classifier is actually slightly worse than the subject agnostic features reported in [64],

90.74% versus 92.4%. It is only through augmentation that the 2D-CNN model manages

to outperform the current state-of-the-art reported in the literature. Figure 4.12 clearly

shows the significant increases in performance as more synthetic samples are included in

the training process. The diminishing returns are also apparent as when more samples are

included in the training process, the classification accuracy no longer displays the same level

of improvement.

In the recently published article [64], the highest accuracies on domain-specific features

reported for adult-ankle, adult-wrist, youth-ankle and youth-wrist datasets are 94.8%, 87%,

69

No SMOTE 100% SMOTE 200% SMOTE 400% SMOTE 800% SMOTE 1600% SMOTE
No SMOTE and different percentages of SMOTE applied on the youth-ankle dataset

90.5

91.0

91.5

92.0

92.5

93.0

93.5
Cl

as
sif

ica
tio

n
ac

cu
ra

cy
 (%

)

Figure 4.12: Average classification accuracies of 2D-CNN classifier with no SMOTE and
different percentages of SMOTE on the youth-ankle dataset

Table 4.5: Average classification accuracies with and without data augmentation on the
youth-ankle dataset

Average classification accuracy (%)
Without
SMOTE

100%
SMOTE

200%
SMOTE

400%
SMOTE

800%
SMOTE

1600%
SMOTE

90.74±3.57 90.58±3.26 91.13± 3.1 92.32± 2.3 93.08±2.51 93.38±2.67

92.4% and 91% respectively using domain specific features with a support vector machine

classifier. The highest classification accuracies mentioned in the chapter are achieved using

2D-CNNs on raw temporal data on the same datasets with 95.57%, 93.57%, 93.38% and

93.13% respectively. These results suggest that raw data can compete and often outperform

feature engineering and that the latent features extracted by a 2D-CNN on rich spectrogram

images perform better than both the human engineered features and the fully unsupervised

feature learning using an autoencoder. Although it is difficult to make definitive conclusions

on empirical observations, our previously published work as well as the new findings in this

70

research clearly demonstrate at least the competitiveness of feature learning especially when

coupled with data rich input representations such as spectrograms which can be obtained

from temporal activity recognition signals.

4.4.1 Statistical Analysis of the Performances of Classifiers

To compare the statistical significance of the classification results, we perform a statistical

significance test between each pair of classifiers [9]. Since the outcomes of the goodness of

fit test and the variance test using subject based classification accuracies of deep learning

classifiers do not follow the conventional assumptions on the data distribution (such as

Gaussian (normal) distribution) and the data samples cannot necessarily be assumed as

independent, we have to follow a non-parametric approach for statistical testing [17]. More

specifically, as the subject-based classification accuracies of two classifiers come from the

same population and the data is paired, we perform a non-parametric Wilcoxon signed-rank

test, a popular statistical test for paired data which does not come from a normal distribution,

to investigate the null hypothesis [14]. The data distributions of all the proposed models

(with or without feature engineering) are dependent as the features are still drawn from the

raw data of the same subjects. Hence, we employ the same Wilcoxon signed-rank test for

hypothesis test between the deep learning models versus the feature-based model. Table 4.6

and 4.7 show that FE-DFNN model performs statistically significantly worse than the raw

models where the null hypothesis is rejected (h=1) for every dual comparison on three out

of four datasets except on the youth-ankle dataset, where all algorithms have statistically

the same performance except for 2D-CNN which is statistically significantly better than all

the other models. Furthermore, the 2D-CNN model which utilizes spectrotemporal features

automatically learned from the raw data, statistically significantly outperforms every other

model in every single scenario except one. On the adult-ankle dataset, both convolutional

models display the same performance, though still significantly better than the competing

approaches. However, for this specific case, it is still important to note that even a small

71

performance difference (in this case 0.36%) when properly cross-validated across the subject-

specific dataset still holds value for the machine learning community at large. Finally, we find

that the test fails to reject the null hypothesis (h=0) for 1D-CNN vs. DFNN on adult-wrist,

youth-ankle and youth-wrist datasets which further demonstrates that spectral properties of

the signal should be taken into account for classification purposes.

4.4.2 Computational Complexity

Table 4.8 shows the computational complexities and computational run times of the five

classifiers. The computer used in this study is configured with the following specifications:

Intel(R) core (TM) i7 4.20GHz CPU, NVIDIA GeForce GTX 1080 GPU and 32 gigabyte

memory (RAM). From the table, the feature learning algorithms (AE-DFNN and 2D-CNN)

display fast convergence in training. However, comparing the high classification rates and

the low computational time for testing among all the classifiers, 2D-CNN provides the high-

est performance with the lowest computational times. Since our previous research [48] on

time-series data provided the highest accuracies for RNN-LSTM classifier, we investigate the

classification rate of RNN-LSTM classifier for this dataset as well. Table 4.9 displays the

RNN-LSTM classification-accuracies including computational time for three subjects ran-

domly selected from each dataset and a comparison between the classification accuracies of

2D-CNN and RNN-LSTM algorithms for those subjects.

In table 4.9, the most interesting observation is that RNN-LSTM has significantly higher

training time because of its recurrent feedback loop and for this reason the classification

using this algorithm for LOSO cross-validation on this dataset is computationally expensive

where it takes approximately 2-days to complete training only for a single subject partition

out of the 53 subjects in the adult and youth datasets. More importantly however, it does

not provide a better classification rate compared to 2D-CNN, so it was not considered for

the full experimental analysis in this study.

72

Table 4.6: Statistical significance analysis between the performances of the classifiers on
Adult dataset

Classification Algorithms Null Hypothesis
(h)

p-value (p)

Adult-ankle Dataset
2D-CNN vs. 1D-CNN 0 0.272
2D-CNN vs. DFNN 1 3.54E-06
2D-CNN vs. AE-DFNN 1 7.11E-07
2D-CNN vs. FE-DFNN 1 3.53E-05
1D-CNN vs. DFNN 1 5.39E-07
1D-CNN vs. AE-DFNN 1 5.91E-07
1D-CNN vs. FE-DFNN 1 4.99E-06
DFNN vs. AE-DFNN 1 0.001
DFNN vs. FE-DFNN 1 0.009
AE-DFNN vs. FE-DFNN 1 9.45E-05

Adult-wrist Dataset
2D-CNN vs. 1D-CNN 1 2.98E-06
2D-CNN vs. DFNN 1 4.58E-06
2D-CNN vs. AE-DFNN 1 1.02E-06
2D-CNN vs. FE-DFNN 1 5.39E-07
1D-CNN vs. DFNN 0 0.598
1D-CNN vs. AE-DFNN 1 4.45E-05
1D-CNN vs. FE-DFNN 1 1.69E-04
DFNN vs. AE-DFNN 1 0.0001
DFNN vs. FE-DFNN 1 1.47E-05
AE-DFNN vs. FE-DFNN 1 0.023

Table 4.7: Statistical significance analysis between the performances of the classifiers on
Youth dataset

Classification Algorithms Null Hypothesis
(h)

p-value (p)

Youth-ankle Dataset
2D-CNN vs. 1D-CNN 1 0.001
2D-CNN vs. DFNN 1 0.0001
2D-CNN vs. AE-DFNN 1 8.86E-05
2D-CNN vs. FE-DFNN 1 2.54E-04
1D-CNN vs. DFNN 0 0.03
1D-CNN vs. AE-DFNN 1 0.001
1D-CNN vs. FE-DFNN 0 0.145
DFNN vs. AE-DFNN 0 0.025
DFNN vs. FE-DFNN 0 0.737
AE-DFNN vs. FE-DFNN 0 0.247

Youth-wrist Dataset
2D-CNN vs. 1D-CNN 1 0.01
2D-CNN vs. DFNN 1 0.0003
2D-CNN vs. AE-DFNN 1 8.86E-05
2D-CNN vs. FE-DFNN 1 2.19E-04
1D-CNN vs. DFNN 0 0.021
1D-CNN vs. AE-DFNN 1 8.86E-05
1D-CNN vs. FE-DFNN 1 2.54E-04
DFNN vs. AE-DFNN 1 0.0002
DFNN vs. FE-DFNN 1 0.03
AE-DFNN vs. FE-DFNN 1 5.93E-04

73

74

Table 4.8: Computational complexities of five classifiers for a single subject on four datasets

Classifier Accuracy
(%)

Epochs Training
Time
(Sec)

Test
Time
(Sec)

Compu-
tational
Time (Sec)

Compu-
tational Time/
epoch (Sec)

Training
Parame-
ters

Adult-ankle Dataset, Subject - 14
DFNN 95.15 200 159 0.11 159.11 0.8 750754
AE-DFNN 90.61 1700 1528.95 1.607 1530.56 0.9 2796617
1D-CNN 97.58 1000 15589.27 0.25 15589.53 15.59 7257646
2D-CNN 98.49 500 368.2 0.18 368.38 0.74 1674632
RNN-LSTM 99.7 100 246182.98 13.77 246196.74 2461.97 815404

Adult-wrist Dataset, Subject - 7
DFNN 82.25 1500 1132.2 0.11 1132.32 0.76 750754
AE-DFNN 53.84 1700 1018.30 1.55 1019.85 0.6 2796617
1D-CNN 82.61 1000 15099.22 0.24 15099.46 15.1 7257646
2D-CNN 85.87 800 577.52 0.204 577.72 0.72 1674632
RNN-LSTM 64.86 150 386677.11 10.42 386687.54 2577.92 815404

Youth-ankle Dataset, Subject - 3
DFNN 85.08 1200 575.75 0.11 575.86 0.48 750754
AE-DFNN 76.82 1700 637.42 0.86 638.28 0.38 2796617
1D-CNN 81.5 1000 9566.86 0.25 9567.12 9.57 7257646
2D-CNN 87.16 800 371.64 0.21 371.84 0.47 1674632
RNN-LSTM 92.24 100 156094.16 13.43 156107.59 1561.08 815404

Youth-wrist Dataset, Subject - 4
DFNN 93.4 1500 699.62 0.1 699.72 0.47 750754
AE-DFNN 78.72 1700 623.009 0.859 623.868 0.367 2796617
1D-CNN 90.81 1500 14197.6 0.13 14197.73 9.47 7257646
2D-CNN 94.25 630 280.7 0.21 280.91 0.45 1674632
RNN-LSTM 89.99 100 137337.16 11.17 137348.33 1373.48 815404

Table 4.9: Classification accuracies and computational time of RNN-LSTM classifier based
on three random subjects of four datasets

Subject 2D-CNN Ac-
curacy (%)

RNN-LSTM
Accuracy (%)

Epochs Training
Time (Sec)

Test Time
(Sec)

Computa-
tional Time
(Sec)

Adult-ankle Dataset
1 95.52 92.41 53 123101.61 13.88 123115.49
3 92.86 90 50 123071.49 12.98 123084.47
14 98.86 99.7 100 246182.98 13.77 246196.74

Adult-wrist Dataset
1 93.96 93.46 100 259166.59 12.77 259179.36
7 89.86 82.68 135 348009.39 10.42 348019.81
10 98.54 93.21 100 289893.70 13.64 289907.34

Youth-ankle Dataset
1 92.76 88.69 100 150019.68 12.1 156106.26
2 94.41 93.01 100 158000.1 13.87 179271.62
3 91.54 92.24 100 156094.16 13.43 156107.59

Youth-wrist Dataset
1 84.91 84.71 150 214672.83 11.467 214684.3
3 91.05 66.57 100 137337.16 11.17 137348.33
7 97.68 95.07 150 216252.6 13.11 216265.71

4.4.3 Subject-based Classification Accuracies on Four Datasets

For the interested readers, a detailed breakdown of subject specific classification accura-

cies across the three models on all four datasets are presented in tables 4.10, 4.11, 4.12 and

4.13 respectively.

4.4.4 Deep Learning vs. Feature Engineering on Reduced Size Data

According to the results regarding the superiority of deep learning, we substantiate an

argument that deep learning could be valid in some instances, but not all. Moreover, to

make the argument stronger, we explore what real world situations would warrant choosing

human engineered features over feature learning. Specifically, we look into whether feature

engineering can perform better in a scenario where data collection is limited (which is true

in most medical applications of motion recognition). To test this hypothesis, we artificially

reduce the sizes of all four datasets by randomly selecting 100 samples from each subject

75

Table 4.10: Subject-based classification accuracies for four classifiers on adult-ankle dataset

Subject DFNN AE-DFNN 1D-CNN 2D-CNN FE-DFNN
1 89.65 82.67 94.14 95.52 86.2
2 95.58 91.99 96.21 91.17 94.65
3 89.53 93.08 93.06 92.86 90.31
4 91.9 89 94.17 98.38 95.47
5 94.18 91.56 96 97.45 94.9
6 93.9 85.21 94.31 93.09 95.52
7 88.5 80 90.22 88.04 89.85
8 92.03 92.33 94.4 96.17 91.15
9 92.06 92.75 95.47 97.03 94.9
10 93.19 88.88 93.49 96.45 92.6
11 91.06 91.59 94.52 95.1 91.35
12 91.22 87.64 96.95 96.95 91.98
13 88.99 91.05 92.05 93.58 89.6
14 93.93 89.36 98.18 98.86 94.84
15 95.58 93.79 98.24 96.47 93.52
16 89.88 85.96 97.92 98.81 91.96
17 86.08 72.45 91.88 93.65 80.28
18 92.87 90.97 97.52 98.14 96.9
19 90.12 90 93.42 93.83 93.82
20 87.22 86.75 93.15 90.34 90.34
21 94.78 93.81 98.7 97.08 97.71
22 93.92 85.46 96.66 96.66 94.83
23 90.88 81.5 95.88 93.65 93.52
24 91.69 92.84 97.13 97.71 91.4
25 89.43 88 94.85 97.35 94.3
26 87.32 86.78 93.8 94.94 91.26
27 89.13 88.2 95.34 97.93 89.75
28 77.68 80.93 89.28 93.94 80
29 93.35 93 98.01 97.67 96.34
30 91.02 90.01 94.87 94.87 93.58
31 92.28 93.12 98.71 97.11 94.21
32 92.72 84.51 96.73 96.01 96.36
33 95.62 89.71 96.56 96.88 82.18
Average ac-
curacy (%)

91.17 88.33 95.21 95.57 92

76

Table 4.11: Subject-based classification accuracies for four classifiers on adult-wrist dataset

Subject DFNN AE-DFNN 1D-CNN 2D-CNN FE-DFNN
1 85.1 75.01 86.60 93.96 83.98
2 93.23 80.13 87.38 92.13 88.45
3 95.34 73.33 90.00 98.46 92.39
4 94.49 81.2 90.61 99.03 89.47
5 87.27 74.33 82.25 88.04 81.69
6 58.95 63.29 69.26 89.11 62.85
7 86.45 83.6 84.06 89.86 82.34
8 93.09 82.39 94.13 97.36 86.72
9 89.65 76.33 85.59 96.48 81.69
10 91.52 88.44 90.67 98.54 93.47
11 80.61 69.84 86.17 92.22 75.33
12 90.17 63.48 93.96 95.09 83.12
13 80.59 76.78 83.69 92.05 75.31
14 94.87 83.14 91.81 99.02 88.61
15 89.77 86.79 94.05 97.02 91.39
16 85.64 84.63 75.16 86.99 80.27
17 87.35 85.61 89.91 95.10 84.17
18 93.42 83.49 95.98 98.04 89.56
19 89 74.55 84.40 88.40 84.56
20 88.75 86.47 86.08 95.15 86.77
21 94.88 92.83 95.14 91.41 88.36
22 83.45 77.69 91.67 92.86 80.07
23 85.55 78.89 90.29 92.94 81.02
24 88.03 80.52 85.01 89.34 82.91
25 86 88.53 85.37 91.33 82.02
26 89.61 89.56 92.68 92.55 89.11
27 68.71 77.2 74.11 87.73 58.87
28 75.48 73.39 88.45 94.22 65.66
29 93.67 92.39 92.62 96.31 92
30 94.91 83.99 94.97 93.62 90.12
31 96.87 93.48 96.69 96.69 96.01
32 86.59 84.11 87.27 92.73 86.45
33 86.12 93.87 88.52 90.16 89.88
Average ac-
curacy (%)

87.43 81.31 88.02 93.45 83.78

77

Table 4.12: Subject-based classification accuracies for four classifiers, with and without
SMOTE on youth-ankle dataset

Subject DFNN AE-
DFNN

1D-CNN 2D-CNN
(Without
SMOTE)

1600%
SMOTE+
2D-CNN

FE-
DFNN

1 86.36 84.87 88.99 92.76 93.13 78.61
2 89.58 90.45 92.19 94.41 97.82 90.99
3 93 88.84 84.18 91.54 93.83 86.26
4 89.34 90.21 93.39 94.83 95.07 85.83
5 88.3 88.00 90.35 85.67 90.89 94.15
6 91.66 89.66 89.87 85.33 92.52 92
7 89.08 87.08 95.94 89.26 95.62 93.62
8 56.05 59.07 58.03 85.56 87.30 63.09
9 85.24 64.56 84.94 87.45 92.34 83.97
10 92.46 87.7 92.28 92.67 93 91.96
11 93.75 87.99 95.61 95.45 93.98 87.31
12 95.29 91.56 97.94 96.10 98.63 88.65
13 86.97 89.24 89.66 87.69 92.7 89.27
14 90.14 85.11 97.43 93.42 95.26 94.15
15 87.89 68.95 84.50 91.01 94.02 90.35
16 89.69 89.41 93.96 92.07 94.74 88.21
17 86.02 88.67 91.79 91.83 91.35 91.79
18 66.28 69.2 76.95 93.74 93.57 88.31
19 93.57 90.33 90.00 86.44 93.45 80.43
20 66.5 63.21 81.71 87.55 88.41 56.86
Average
accuracy
(%)

85.86 82.68 88.49 90.74 93.38 85.79

Table 4.13: Subject-based classification accuracies for four classifiers on youth-wrist dataset

Subject DFNN AE-DFNN 1D-CNN 2D-CNN FE-DFNN
1 83.78 75 82.39 84.91 77.04
2 88.6 77.68 90.12 96.71 89.22
3 57 59.9 78.51 91.04 57.01
4 94.63 79.87 95.11 93.68 86.95
5 92 89.83 93.57 92.69 96.34
6 95 85.04 92.80 95.70 88.53
7 93.33 89.91 94.10 97.68 90.65
8 88.75 82.15 90.96 92.24 85.5
9 86.37 69.84 88.14 88.14 83.51
10 84 81.59 83.60 86.84 78.45
11 86.01 87.55 91.18 95.26 89.21
12 93.85 88.49 94.87 92.82 94
13 85.4 78.41 89.27 88.96 86.97
14 90.73 87 95.04 96.37 91.57
15 88.06 67.5 84.69 93.46 81.23
16 90 86.36 88.52 94.52 86.4
17 87.86 84.98 91.36 95.10 87.45
18 89.07 82.46 94.25 93.98 87.64
19 95.98 87.06 96 96 95.71
20 95.34 75.65 96.34 96.58 83.76
Average
accuracy
(%)

88.3 80.81 90.54 93.13 85.86

78

which generates 3300 samples for the adult-ankle and adult-wrist datasets and 2000 samples

for the youth-ankle and youth-wrist datasets. This corresponds to approximately a 10-fold

reduction in sample size. We extract 13 domain specific features which we have used in

our previously published feature engineering model (FE-DFNN) on a different dataset to

examine raw data versus feature engineering on this reduced size dataset. The results of the

experiments are presented in table 4.14 and 4.15.

From table 4.14 and 4.15, it is clear that the feature engineering now performs significantly

better than feature learning on all four reduced size datasets. In other words, in a real-life

scenario where data is limited, feature engineering still has the upper hand when it comes to

proper inference from the data. Finally, we want to once again stress the point that as shown

in table 4.4, the expert features which are hand-crafted by the Stanford group, actually did

outperform deep learning in almost every scenario except the 2D-CNN model – once again

highlighting how important it is to properly represent the data and sometimes augment it

to support the training of large parameter sized and complex models (since 2D-CNN did

perform worse without augmentation on youth-ankle dataset).

4.5 Summary and Conclusions

Our most significant contribution is the definitive performance analysis of feature en-

gineering versus feature learning and the subsequent development of the framework which

utilizes novel feature learning technique to outperform the state-of-the-art algorithm in rec-

ognizing human activity using cost-effective sensors placed on human body. In this chapter,

we investigate six classification algorithms including raw and feature-based models and based

on the results, we claim that automatic unsupervised feature learning outperforms feature

engineering by introducing a novel learning representation of temporal data into a two di-

mensional input space. However, we want to stress the fact that feature engineering being

outperformed by deep learning is never a forgone conclusion. In this context, we conduct an

auxiliary experiment where we have created a likely real-life scenario where “access to robust

79

Table 4.14: Subject-based classification accuracies for DFNN and FE-DFNN classifiers on
reduced size adult dataset

Adult-ankle Dataset Adult-wrist Dataset
Subject DFNN

(Raw)
FE-DFNN
(Feature)

DFNN
(Raw)

FE-DFNN
(Feature)

1 86. 89.61 79.52 83.98
2 94 96.77 85.71 88.45
3 87.53 92. 81.34 92.39
4 90 96 88.93 89.47
5 92.18 94.31 84.73 81.69
6 91.89 96.93 65.95 65.41
7 86.05 90 78.52 81.28
8 91. 93 90.34 93.47
9 91.06 96.91 83.59 89.63
10 90.19 94.84 88.62 92.65
11 89.86 94.08 75.61 80
12 91.1 93.66 80.05 85.61
13 86.69 91.87 75.66 78.69
14 92.3 96.19 84.37 90.05
15 94.97 93.68 78.6 95.55
16 88.88 92.74 80.07 84.68
17 85.12 83.39 75.71 84.81
18 92.01 98.59 90 90.04
19 90 93.18 89 86.77
20 85.69 92.68 81.15 86.77
21 93.55 96.81 86.37 91.23
22 90.91 95.33 80.47 82.54
23 91.09 92.89 78.98 84
24 89.89 92.01 88.03 82.91
25 87.13 94.87 86.3 78.83
26 84.79 93.23 85.13 87.71
27 85.08 88.34 56.71 65.5
28 74.88 83.83 69.39 75.43
29 92.47 95.89 81 86.71
30 90.86 93.64 80.7 86
31 91 94 83.81 90
32 90.12 97.73 88 86.68
33 92.48 84.07 79.3 86.97
Mean accu-
racy (%)

86.6 ±
15.82

93.12 ±
3.79

81.26 ±
7.17

85.03 ±
6.81

80

Table 4.15: Subject-based classification accuracies for DFNN and FE-DFNN classifiers on
reduced size youth dataset

Youth-ankle Dataset Youth-wrist Dataset
Subject DFNN

(Raw)
FE-DFNN
(Feature)

DFNN
(Raw)

FE-DFNN
(Feature)

1 78.91 80.61 75.34 75.73
2 86.61 92.99 77.15 90.63
3 87.32 91.26 63.73 64.88
4 83.49 84.63 87.29 89.04
5 85.17 93.71 83.65 90.74
6 84.12 92.71 73.11 83.55
7 86.3 91.88 93.16 89.37
8 48.05 70.14 87.13 89.74
9 74.81 82.92 63.84 83.16
10 90.88 83.85 70 76.37
11 89.27 89.29 90.02 85.6
12 90.13 92.41 87.53 92.23
13 83.22 91.69 78.81 93.27
14 86.93 96.13 78.55 85.75
15 84.11 94.04 85.67 82.34
16 87.94 84 87.47 84.61
17 80.45 90.61 85.05 86.46
18 60.84 80.81 91.24 94.39
19 90.36 81.92 90.37 94
20 61.26 64.62 86.68 87.01
Mean accu-
racy (%)

81.01 ±
11.45

86.51 ±
8.22

81.79 ±
8.83

85.94 ±
7.18

data is limited” to show that feature engineering can in fact outperform feature learning.

In fact, we demonstrate that in some cases the state-of-the-art human engineered features

outperform deep learning. In other words, we stress the importance of choosing the right

learning representation and the right topology.

81

Chapter 5: Sub-transfer Learning for Retuning the Outlier User Accuracy

The sections of this chapter have been communicated to IEEE Sensors Journal for pub-

lication and currently, the paper is in its 1st revision stage.

5.1 Introduction

Human activity recognition (HAR) has become one of the most active areas of sensory

healthcare research due to its potential in improving the quality of life both for patients in

healthcare settings who are susceptible to falls or undergo physical therapy and the public to

promote a more active lifestyle. A variety of state-of-the-art machine learning and artificial

intelligence algorithms are applied to ever growing datasets of sensory data collected from

many users to achieve unprecedented performance in recognizing activities of daily living.

Majority of the research focuses on the average performance across the population of users

however, it is evident from these studies that the performance distribution across different

users is anything but uniform. In fact, the outlier users can demonstrate performance degra-

dations of as much as 30% compared to the median accuracy reported on any given dataset.

In this chapter, we study several approaches in determining the impact of outlier users on

HAR performance and propose our novel sub-transfer learning approach which follows the

principles of transfer learning within the same dataset when coupled with augmentation

techniques.

5.2 Methodology

In [49], we explored feature learning techniques for HAR including both one and two di-

mensional convolutional neural networks (1D-CNN and 2D-CNN) to investigate the classifi-

82

0 25 50 75 100 125 150 175 200

Time domain samples

1.2

1.0

m
/s

^2
Ambulation (class1)

0 25 50 75 100 125 150 175 200

Time domain samples

1.0

0.9

0.8

0.7

m
/s

^2

Cycling (class2)

0 25 50 75 100 125 150 175 200

Time domain samples

1.0

0.5

0.0

m
/s

^2

Other activities (class3)

0 25 50 75 100 125 150 175 200

Time domain samples
1.0

0.5

0.0

m
/s

^2

Sedentary (class4)

0 25 50 75 100 125 150 175 200

Time domain samples

1

0

m
/s

^2

Ambulation (class1)

0 25 50 75 100 125 150 175 200

Time domain samples

0.5

0.0

0.5
m

/s
^2

Cycling (class2)

0 25 50 75 100 125 150 175 200

Time domain samples
1.0

0.5

0.0

0.5

m
/s

^2

Other activities (class3)

0 25 50 75 100 125 150 175 200

Time domain samples
1.0

0.5

0.0

0.5

m
/s

^2

Sedentary (class4)

Time-series representation of the Youth dataset
Youth-ankle

Youth-wrist

Figure 5.1: Time-series representations of single-axis acceleration data for four classes of
activities of daily living for the youth-ankle and youth-wrist datasets

cation performances of feature learning from temporal and spectrotemporal data respectively

versus feature engineering using leave-one-subject-out (LOSO) cross validation on Stanford

Adult-youth dataset [64]. As previously discussed, some subjects have demonstrated signifi-

cantly lower classification accuracies than others regardless of the algorithm being used. We

will begin by describing the dataset followed by the specific learning algorithms used in the

chapter.

83

5.2.1 Dataset

To boost the classification performances of the subjects with lower accuracies for subject-

oriented training model using LOSO, we test our proposed learning representations named

sub-transfer learning model (STLM) and subject-specific learning model (SSLM) on some

subjects of the Stanford Adult-youth dataset. The dataset is categorized into four distinct

datasets based on the combinations of the subject being an adult or youth and where the

sensor is placed such as, (i) adult-ankle, (ii) adult-wrist, (iii) youth-ankle and (iv) youth-

wrist dataset. The dataset includes 53 subjects with 33 adults and 20 youths [64]. In the

preprocessing stage, the dataset is resampled and filtered considering the same parameters

which we used in our previous research on this dataset [49]. In this dataset, twenty-six

activities of daily living (ADLs) of the adult dataset such as walking: carrying load, stairs:

inside and down, cycling outdoor uphill, painting: roller etc. and twenty-two daily ADLs

of the youth dataset such as walking natural, outdoor cycling, basketball: dribbling etc.

are categorized into four different classes: (i) ambulation, (ii) cycling, (iii) other activities

and (iv) sedentary. Figure 5.1 represents a representative 200 samples from each of these 4

classes for the youth dataset for easy visualization. Each subplot in the figure displays the

single-axis acceleration data for one of the three axes (x, y or z) which characterizes a more

dynamic representation of motion as the dominant axis.

To study sub-transfer and subject-specific learning, we select three subjects from each of

these four datasets based on the maximum, minimum and median accuracies that we have

achieved among the 33 subjects for adult-ankle and adult-wrist datasets and the 20 subjects

for youth-ankle and youth-wrist datasets and implemented a 1D-CNN classifier using LOSO

cross validation.

5.2.2 One-Dimensional Convolutional Neural Network

Since HAR data is a one-dimensional time-series sequence, collected from accelerometer

sensors, we implement a one-dimensional convolutional neural network as a sequence clas-

84

sifier. 1D-CNN model learns the feature vector in unsupervised fashion in its latent space

from the sequences of raw temporal dataset and map the internal features to different ADLs.

1D-CNNs includes two distinct layers: i) convolutional layers where both 1D convolutions,

activation functions and pooling are included, and ii) fully connected or dense layers which

are similar to a standard multi-layer perceptron. While performing the convolution operation

on raw temporal data, 1D-CNN learns to extract the rich features used in the classification

task performed by the dense layers. The performance of the 1D-CNN classifier is optimized

to achieve the maximum classification accuracy by combining both automatic feature ex-

traction and classification operation into a single process which includes linear forward and

back-propagation operations. Due to the linear operations between the convolutional layers,

this algorithm results in a lower computational complexity compared to others. The 1D

forward propagation (1D-FP) in each CNN layer is described as [54],

x lk = blk +

Nl−1∑
i=1

conv1D(W l−1
ik , S l−1

i). (5.1)

where, x lk represents the input, blk is the bias of the k th neuron at layer l , S l−1
i is the output

of the i th neuron at layer l − 1 and W l−1
ik is the kernel from the i th neuron at layer l − 1 to the

k th neuron at layer l . conv1D(., .) is used to perform 1D convolution without zero-padding.

The intermediate output, y l
k can be defined as a function of the input x lk where the input

passes through the activation function f (.).

y l
k = f (x lk) and S l

k = y l
k ↓ ss. (5.2)

In (5.2), S l
k is the output of the k th neuron of the layer l and ↓ ss is defined as the down-

sampling operation with a scalar factor, ss. During training, 1D-FP generates an error and

the backpropagation (BP) of the error starts from the output of the fully connected layers

by computing the direction and the size of change in weight parameters to reduce the error

with the gradient of the network. The mean square error is shown as,

85

Ep = MSE (tp, [yL
1 , ..., y

L
NL
]′) =

NL∑
i=1

(yL
i − tpi). (5.3)

Let l = 1 for the input layer, l = L for the output layer and NL is the number of classes

in the dataset. In (5.3), the target and the output vectors are defined as tp and [yL
1 , ..., y

L
NL
]′

respectively for an input vector p. To find the derivative of Ep by each network parameter,

the delta error is calculated as ∆l
k = δE

δx lk
. For BP from the next layer, l + 1, to the current

layer, l, the input delta of the CNN layer l , is ∆l
k which is found as,

∆l
k =

δE

δy l
k

× δy l
k

δx lk
=

δE

δus lk
× δus lk

δy l
k

× f ′(x lk)

= up(∆S l
k)× β × f ′(x lk).

(5.4)

where, zero order up-sampled map, us lk = up(S l
k) and β = (ss)−1. The BP from the 1st layer

to the last CNN can be computed as,

δE

δS l
k

= ∆S l
k =

Nl+1∑
i=1

δE

δx l+1
i

δx l+1
i

δS l
k

=

Nl+1∑
i=1

∆l+1
i W l

ki . (5.5)

Then, BP of the delta error can be represented as,

δS l
k =

Nl+1∑
i=1

conv1Dz(∆l+1
i , rev(W l

ki)). (5.6)

where rev(.) is used to reverse the array and conv1Dz(., .) is used to perform 1D convolution

with zero-padding. The weight and bias can finally be updated as follows:

δE

δW l
ik

= conv1D(S l
k , ∆

l+1
i)

δE

δblk
=

∑
n

∆l
k(n).

(5.7)

86

87

Dropout

flattening

28672
Flatten

Input 2700

250
Dense_1

250
Dense_2

50
Dense_3

20
Dense_4

4
OutputConvolution and pooling

Conv1D_1 (898 × 64)
Kernel (3 × 3)

Conv1D_1 (898 × 64)
Kernel (3 × 3)

Conv1D_1 (898 × 64)
Kernel (3 × 3)

Conv1D_1 (898 × 64)
Kernel (3 × 3)

Conv1D_1 (898 × 64)
Kernel (3 × 3)

Conv1D_1 (898 × 64)
Kernel (3 × 3)

Conv1D_1 (898 × 64)
Kernel (3 × 3)

Conv1D_2 (896 × 64)
Kernel (3 × 3)

MaxPooling1D (448 × 64)

Figure 5.2: Framework of 1D-CNN classifier

Figure 5.2 represents the framework of the deep 1D-CNN classifier used in this chapter.

The figure shows that the adult-ankle dataset with 10080 observations in 2700 dimensions is

fed as the input to the model where two 1D-convolutional layers with 64 filters of kernel size

(3, 3) perform the forward-backward operation and optimize the layer-weights to extract the

features in the latent space of the deep neural network. In this architecture, a ‘Dropout’ layer

with probability = 0.5 is added to prevent overfitting during training. After the convolution

operation, a pooling layer (of size 2) maps each feature to 448 dimensions which is then

flattened to 28672 dimensions by selecting the maximum parameters within the range of the

predetermined window as the output value. The output of the flattened layer is processed

through four fully connected layers with 250, 250, 50, 20 neurons respectively to map the

output from the input.

5.2.3 Synthetic Minority Oversampling Technique

Deep learning requires a sufficient number of samples to properly train the thousands of

parameters included in the many layers of its topology. Even for a medium sized dataset such

as the one used in this study with tens of thousands of observations, unsupervised feature

learning demands additional data to be able to appropriately represent the most critical

features of raw data in the latent space. A popular technique to overcome the imbalance

problem is the “minority oversampling method,” or SMOTE [28, 78]. Its main contribution

is readjusting the size of the original training data set by increasing the minority class with

random sampling. When the SMOTE oversamples the minority class, it produces new data

instead of replicating the actual samples. This feature sets the SMOTE aside from other

oversampling techniques and actually allows it to be used for other applications as well,

such as data augmentation which we have used in this study. Obtaining new data is done

with interpolation between similar examples which belong to the same class. This procedure

works on the “feature (or latent) space” rather than the entire dataset. For instance, it

88

Original Samples Generated Samples Resampled Samples

S11

S14

S1
S13 S12

Minority
Class

Synthetic
Sample

gap

difference

*k=5S15

R1

Figure 5.3: Generating synthetic samples using SMOTE

creates a new sample between two samples that are in the same class. This new sample is

called a ‘synthetic sample’, which carries characteristics from these two class samples.

The procedure of the SMOTE algorithm can be described more formally as follows. The

amount of oversampling, N , which indicates how many new samples per original sample will

be generated is an important hyperparameter of the model. This is followed by an itera-

tive method where the SMOTE algorithm randomly selects a minority class sample in the

training data. The K-Nearest neighbor method is applied with a default value of 5 (another

hyperparameter). Finally, the k-value is chosen randomly based on the oversampling param-

eter N for the minority samples to produce a synthetic piece by interpolation [19]. First,

the distance is measured between the feature vectors and their neighbors by utilizing the

“Euclidean Distance”. Then, this measurement is multiplied randomly with a number in be-

tween [0,1] and added to the original feature sample. Hence, different samples are generated

89

that carry a variety of previous samples along the line. This process can be mathematically

defined as follows:

S ′ = S + rand(0, 1)× |S − Sk | (5.8)

where S ′ is the new set of synthetic data samples, and Sk denotes the randomly picked

k-nearest neighbor distance samples. Figure 5.3 shows the basic operational principle of

SMOTE graphically as new samples are generated between the original samples S1 and S11

for instance.

5.3 Design and Experimental Setup

In case of subject-agnostic datasets such as handwritten digits and speech recognition,

the performance of the classification algorithm depends on the richness of the subjects se-

lected for training. HAR is another example where the datasets are motion-sensitive and

everyone’s movement signature is quite different where some people can be considered out-

liers compared to the general population. In this case, the classification accuracies for these

subjects typically drop statistically significantly below the average accuracy levels when us-

ing the conventional training and testing methods. To address this important problem, we

investigate several learning representations such as STLM and SSLM to i) study their im-

pact on subject-specific accuracy and ii) potentially boost the performance for these outlier

subjects and compare the performances with the state-of-the-art methods.

5.3.1 Sub-transfer Learning Model

We introduce STLM as a powerful alternative to fine tune the accuracy of subject oriented

classification problems such as HAR in healthcare. In sub-transfer learning, we apply similar

principles of pre-training the model from transfer learning with the main difference in using

the same dataset but with other users to boost the performance on new users with fine

tuning unlike as in transfer learning where training is performed on a completely different

90

domain dataset. In other words, we reuse a previously trained model with different subjects

as the starting point for another model which can be trained/fine-tuned with only a handful

of samples from the test subject and tested on the remaining majority samples of the test

subject from the same dataset. The model which is trained using conventional training is

repurposed on the test data to optimize the training performance and allow rapid updates

to the fine-tuning process when modeling on the test subject of the same dataset. In order

to achieve a fair comparison with subject-specific learning and enhance the classification

accuracy, SMOTE is applied on the dataset to increase the number of test subject samples

which are much fewer in number than the main dataset used in training the source model

(SM).

5.3.2 Subject-specific Learning Model

As a baseline approach, we employ SSLM as a trivial approach where the training of the

model starts from scratch, without transferring any knowledge from the pre-trained model.

In this learning representation, the training is performed only on the training samples from

the test subject and tested on the remaining samples. Since SSLM is trained and tested only

on the test subjects individually, the size of the training data is augmented by generating the

synthetic samples with artificial oversampling algorithm like SMOTE for a fair comparison

with STLM and to boost the classification accuracy.

5.3.3 Experimental Setup and Model Design

Figure 5.4 shows the framework of our experimental setup and proposed model along

with SM and SSLM on the adult-ankle dataset with 33 subjects. The figure displays the

two learning representations with the 1D-CNN classifier used in this chapter. First, the

train-test-split is performed on the adult-ankle dataset using 33-folds to implement leave-

one-subject-out (LOSO) cross-validation to generate the train data SM from 32 subjects and

91

Conv 1
Conv 2
Pooling

FC
Softmax

Knowledge Transfer from
Pre-trained Source Model (SM)

Conv 1
Conv 2
Pooling

FC
Softmax

Conv 1
Conv 2
Pooling

FC
Softmax

Source Model: A new
untrained model

Sub-transfer Learning

Subject-specific Learning

1D-CNN

1D-CNN

1D-CNN

LOSO CV

k-fold CV (k=10, 4, 2)

Percentage-wise split

SM

STLM

SSLM

Train-test-split
using k-fold CV

(Train data,
Test data)

Adult-ankle
dataset

(33 subjects)

Train data_SM
(32 subjects)

Test data_SM
(1 subject)

1000% SMOTE
on Train data

Test data

Source Model:
SM

Output classes

Sub-transfer
Learning

Model: STLM
Output classes

Subject-specific
Learning

Model: SSLM
Output classes

Figure 5.4: Block diagram of sub-transfer learning and subject-specific learning models

the test data SM from the remaining subject. The training and validation of the models are

then completed using the following steps:

• A new untrained 1D-CNN model is trained on the 32 subject training data to cre-

ate a large SM which is then tested on test data SM to record the subject-oriented

classification accuracies.

• Test data SM from the previous step is split into five combinations to train STLM and

SSLM using 10, 4 and 2-fold cross validations to create the following training & testing

split: 10% , 25%, 50%, 75% and 90% for training and the rest for testing respectively.

As shown in Figure 5.4, these splits are called train and test data.

• To avoid the imbalanced classification problem and boost the performance of the clas-

sifier, we augment the size of the training data by 11-folds by applying SMOTE on

train data. Moreover, we use random oversampling as a data augmentation technique

92

for the cases where the number of samples from the minority class is ≤ 1. The N = 11

parameter is chosen experimentally such that the augmented data is comparable in

size to the data used to train the SM without too much repetition.

• Then STLM which includes a deep 1D-CNN classifier is trained on train data using the

knowledge (previous parameters) from the SM to classify the ADLs on test data.

• To do a fair comparison, we use the exact same data (Train data,Test data) as the

input to the SSLM. The only difference between STLM and SSLM is that SSLM is

trained from scratch whereas STLM is trained by retuning of the SM parameters using

the augmented data from the subject.

The operational algorithms for both the source and the subsequent sub-transfer learning

models are shown in Algorithm 1 and 2.

5.4 Results and Discussion

The experimental setup described in the previous section is applied to three different

subjects from each dataset with the training of a new untrained classification source model.

The subjects are specifically chosen at the different outlier levels in the classification space

(i.e., the highest, the median, and the lowest accuracies) to explore the performance of sub-

transfer and subject-specific learning for a range of challenging tasks. Table 5.1 shows a

robust comparison of the classification performances of STLM (where the knowledge from

the previously trained model is transferred during additional training on some samples from

the test dataset) and SSLM (where the model performs training only on the samples from

the test subject without doing a previous training) on twelve subjects (three for each of the

four datasets) and finally SM without any additional training using LOSO CV.

The advantages of sub-transfer learning using previous experience from training on other

subjects become apparent when we compare the classification performance of this learning

representation with the subject-specific learning with no prior training. We observe that

93

Algorithm 1: Source Model

Input : Ωin = (X fn
Sk
, YSk);

fn: number of features for n = 1, 2, · · · ,m;
Sk : number of subjects for k = 1, 2, · · · , l ;

Output: Labels of the time-series data;
labels : {0, 1, 2, 3};

1 for i ← 1 to l do
2 Compute Leave-one-subject-out cross-validation to generate Test data SM

(observations for 1 subject) and Train data SM (observations for remaining
subjects);

3 Train x [i] = {x f0Sk , x
f1
Sk
, · · · , x fnSk}, ∀k ̸= i ;

4 Test x [i] = {x f0Si , x
f1
Si
, · · · , x fnSi }, for k = i ;

5 Train data SM[i] = (X fn
Sk
, YSk);

6 Test data SM[i] = (X fn
Si
, YSi);

7 for iteration← 1 to num do
8 Fit 1DCNN model using Train data SM[i]; Back-propagate error and adjust

model parameters;
9 Compute accuracy and loss function;

10 end for
11 if convergence then
12 Predict the labels of Test data SM[i] using trained network;
13 Compute test accuracy;
14 Save source model;

15 end if

16 end for

94

Algorithm 2: Sub-transfer Learning Model

Input : Ωin = (X fn
Sk
, YSk);

fn: number of features for n = 1, 2, · · · ,m;
Sk : number of subjects for k = 1, 2, · · · , l ;

Output: Labels of the time-series data;
labels : {0, 1, 2, 3};

1 Repeat the steps of the source model;
2 accuracyList = [];
3 train size = [10, 25, 50, 75, 90];
4 for j ← 1 to len(train size) do
5 tr size = train size[j];
6 if (tr size == 10)or(tr size == 90) then
7 cross val = 10;
8 end if
9 if (tr size == 25)or(tr size == 75) then

10 cross val = 4;
11 end if
12 if (tr size == 50) then
13 cross val = 2;
14 end if
15 accList = [];
16 testx = Test x [i];
17 testy = Test y [i];
18 for tr id , ts id in cross val .split(testx , testy) do
19 tr x , ts x = testx [tr id], testx [ts id];
20 tr y , ts y = testy [tr id], testy [ts id];
21 Train data = [tr x , tr y];
22 Test data = [ts x , ts y];
23 tr smote = SMOTE (Train data,N ,K); // N = 1000: amount of

oversampling (%), K = 5: number of nearest neighbors to

consider.

24 for iteration← 1 to num do
25 Load source model;
26 Update source model using training tr smote iteration;
27 Compute accuracy and loss function;

28 end for
29 if convergence then
30 Predict the labels of Test data using trained network;
31 Compute test accuracy ;

32 end if
33 accList.append(test accuracy);

34 end for
35 Acc = np.array(accList);
36 accuracyList.append(Acc);

37 end for

95

Table 5.1: Experimental results of sub-transfer and subject-specific learning models

Adult-ankle Dataset
Subject-28 (Minimum) Subject-31 (Maximum) Subject-27 (Median)

STLM SSLM SM STLM SSLM SM STLM SSLM SM
Training
data (%)

ACC ±STD
(%)

ACC ±STD
(%)

ACC ±STD
(%)

ACC ±STD
(%)

ACC ±STD
(%)

ACC ±STD
(%)

ACC ±STD
(%)

ACC ±STD
(%)

ACC ±STD
(%)

10 95.65±1.08 71.65 ± 9.78 99.03±0.74 73.56±9.25 96.75±1.73 71.50±11.22
25 96.62±1.08 88.11±4.06 98.92±0.83 86.08±4.72 96.78±2.14 87.38±5.11
50 96.82±2.01 88.96±3.42 88.41 99.04±0.45 96.14±0.89 98.71 97.22±3.93 90.69±2.55 95.65
75 98.28±2.20 91.93±3.83 99.68±0.63 95.52±2.16 99.08±1.17 94.45±3.83
90 98.29±2.39 95.10±3.60 99.70±0.96 98.35±2.34 1±0.0 92.18±6.34

Adult-wrist Dataset
Subject-6 (Minimum) Subject-31 (Maximum) Subject-33 (Median)

10 79.35±10.85 68.47±7.03 96.06±1.43 78.63±3.84 97.92±1.77 70.55±5.85
25 87.50±8.65 73.15±6.11 96.13±1.17 86.32±2.18 98.03±2.22 92.25±2.77
50 93.02±9.87 78.20±4.52 66.15 96.70±1.84 91.40±1.79 96.03 99.02±1.39 89.86±11.54 90.82
75 96.97±6.07 80.22±4.13 97.04±2.44 92.41±5.63 99.35±1.30 95.13±5.01
90 97.78±5.84 85.97±3.75 99.38±1.32 93.79±3.84 1±0.0 98.98±2.71

Youth-ankle Dataset
Subject-8 (Minimum) Subject-12 (Maximum) Subject-19 (Median)

10 83.53±11.52 56.06±10.62 96.46±1.57 66.24±11.21 84.99±6.02 72.10±6.72
25 89.18±6.07 70.69±5.85 96.89±1.85 83.20±6.57 89.79±4.01 81.12±5.62
50 92.97±6.74 78.31±0.48 58.87 96.91±2.92 85.05±10.93 95.88 90.30±3.96 84.57±0.93 89.14
75 96.39±5.24 79.70±1.85 97±4.76 87.78±6.10 95.50±5.1 87.13±0.84
90 98.33±2.99 80.28±6.48 98.29±2.56 89.07±3.90 97.83±4.38 84.19±7.09

Youth-wrist Dataset
Subject-3 (Minimum) Subject-20 (Maximum) Subject-11 (Median)

10 89.37±5.54 74.76±4.84 97.50±1.14 84.52±3.90 92.29±1.21 70.29±4.92
25 91.73±4.82 84.88±3.18 98.10±1.32 87.66±3.53 94.43±2.68 80.06±6.35
50 91.96±10.52 90.46±5.03 78.21 98.01±2.81 92.31±0.37 95.56 92.71±8.91 90.20±0.14 90.2
75 93.80±8.66 88.98±3.62 99.16±1.69 92.87±3.04 95.19±9.62 90.20±2.74
90 98.86±3.61 91.12±5.59 99.17±1.84 92.57±5.29 96.75±8.59 92.27±7.05

in most instances especially for the subjects with the lowest accuracies, STLM provides a

significant boost to the classification accuracy compared to both SM & SSLM. When the

subject specific accuracies are already good or median, the sub-transfer learning still provides

a better performance albeit less so when compared to the SM. Statistically speaking (more on

this in the next subsection), we can find statistically significant differences when the accuracy

is low, but not when the accuracy is high. More importantly, these gains in performance

are realized only when using a very small percentage of the subject specific samples (i.e.,

10% which generally means around 10 to 15 samples per subject) where SSLM fails to

compete with either approach. For the adult-wrist dataset, the most difficult dataset in

this study based on all previously published [49] results, STLM outperforms SM with LOSO

by a significant margin (almost 80% compared to 66%) for the lowest accuracy subject 6,

a robust margin (98% to 91%) for the median accuracy subject 33 while having the same

performance for the subject where the accuracy is already very high (96% in both cases)

96

10 25 50 75 90
Training Data (%)

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)
Adult-ankle

Learning Representation
STLM
SSLM

10 25 50 75 90
Training Data (%)

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Adult-wrist

Learning Representation
STLM
SSLM

10 25 50 75 90
Training Data (%)

60

70

80

90

100

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Youth-ankle

Learning Representation
STLM
SSLM

10 25 50 75 90
Training Data (%)

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

Youth-wrist

Learning Representation
STLM
SSLM

Figure 5.5: Boxplot distribution to compare the classification accuracies of sub-transfer
learning and subject-specific learning models on Adult-youth dataset

even when using only 10% of the samples from the test set. Interestingly, SSLM displays

a competitive performance with the SM for the lowest accuracy subjects, which highlights

the insufficiency of a large model trained on the general population on outlier subjects. For

these instances, subject-specific training has its own advantages as it is a much less resource-

intensive way to train the learning algorithm on a specific subject with associated trade-offs

in accuracy. Figure 5.5 displays the boxplot distributions for the classification accuracies of

STLM and SSLM for the outlier subjects on four datasets for a better statistical comparison.

97

Table 5.2: Statistical significance analysis between the performances of the learning
representations on twelve subjects of four datasets

Model Null Hypothesis (h) p-value (p) Interpretation
SM vs. STLM 1 0.0093 Significant
STLM vs. SSLM 1 4.88E-04 Significant
SM vs. SSLM 1 9.77E-04 Significant

5.4.1 Statistical Significance Analysis of the Classification Models

To compare the statistical significance of the performance of our proposed model com-

pared to the SM and SSLM, we conduct a statistical hypothesis test using the Wilcoxon

signed-rank test. To perform any statistical test, one should investigate the independence

of the observations, the homogeneity of the variance and the normality of the data tests to

make common assumptions about the experimental data which constitutes the average clas-

sification accuracies of the STLM, SSLM and SM models on the 10% train data. Since the

distributions of classification rates for these three models do not necessarily satisfy the above

assumptions for a standard statistical significance test, we apply a popular non-parametric

approach using a Wilcoxon signed-rank test for paired data. For two groups of dependent

paired data, the Wilcoxon signed-rank test ranks the absolute values of the differences be-

tween the paired observations and realizes whether the two dependent samples are chosen

from populations having the same distribution [25].

Table 5.2 clearly shows that for the Wilcoxon signed-rank test, the null hypotheses (h)

are statistically rejected in case of every paired comparison. Since the average classification

accuracies of STLM > SM > SSLM, we conclude that the STLM is statistically significantly

better than SM which in turn is better than SSLM.

5.5 Summary and Conclusions

In this chapter, we explore several approaches of learning representations to boost the

classification accuracies of HAR, especially for the low performing subjects and introduce a

novel learning technique, sub-transfer learning which reuses the knowledge from the previ-

98

ously trained source model. We demonstrate that our novel STLM can enhance the classi-

fication accuracies of the state-of-the-art 1D-CNN classifier especially for the outlier users

using a handful samples from the test data. Moreover, we provide a robust comparison of

our sub-transfer learning technique with subject-specific learning which has no prior training

experience and show that STLM performs statistically significantly better than SM which is

better than SSLM.

99

Chapter 6: Conclusions, Contributions and Future Work

The contributions to science detailed in each chapter is summarized below, followed by

a discussion on potential future work.

6.1 Deep Learning versus Feature Engineering

In this chapter, we have addressed some of the factors behind the inexact science of

choosing deep learning versus feature engineering specifically when it comes to temporal

time series for human activity recognition (HAR) from acceleration data. We develop an

extensive experimental framework, which uses a binary and a multiclass datasets (UniMIB

SHAR which is a publicly available and commonly used benchmark dataset) with different

characteristics to compare state-of-the-art domain specific features and raw temporal data

to train four different learning architectures across various topologies to ultimately arrive at

the conclusion that a recurrent neural network with long short term memory (RNN-LSTM)

classifier provides the highest recognition accuracy on a 9 activity class dataset whereas

a one-dimensional convolutional neural network (1D-CNN) classifier provides the highest

classification rate on a binary fall detection dataset both representing states-of-the-art in

the literature.

More specifically, we show that in an activity of daily living recognition task which con-

sists of 9 different motion classes, a black-box deep learning approach using raw temporal

data on a recurrent LSTM model outperforms the most recent results reported in the lit-

erature using domain specific features and achieves a state-of-the-art classification rate of

98.02%. On the contrary, for a deep feedforward neural network where conventional logic

would suggest better performance on raw temporal data, we observe that the domain-specific

100

features have a higher accuracy by a significant margin. This may suggest that to truly take

advantage of the time dependencies expressed in the raw temporal form of a moderately

sized dataset, the topology should be properly selected. Another conclusion is that if the

network topology allows for constructing a rich latent feature space from the raw input data

like the 1D-CNN, they can outperform expert features provided that there is sufficient data

to learn from. In this case, the front ends of both a 1D-CNN and an RNN-LSTM are able

to successfully adapt to these dependencies to achieve a better classification rate than using

expert features.

6.1.1 Contribution 1

We have provided an exhaustive framework to study the performance of human engi-

neered features (feature engineering) and latent features (feature learning) and demonstrated

that state-of-the-art performance can only be achieved on datasets with different character-

istics using different topologies and/or feature representations.

6.2 Empowering Deep Feature Learning in HAR

Our contribution in this chapter is an in-depth look into how two fundamentally different

approaches to HAR: using state-of-the-art, subject agnostic and human engineered features

and automated deep feature learning compare on a real life dataset. We have demonstrated

for the first time that a two-dimensional convolutional neural network (2D-CNN) classi-

fier provides the highest recognition accuracy on all four partitions of the Stanford motion

dataset by outperforming the previous state-of-the-art using subject agnostic features. Fur-

thermore, we have found out that not all feature learners perform at the same level as the

learning representation takes an important role where a spectrotemporally represented data

on a 2D-CNN outperforms the standard unsupervised feature extraction technique using an

autoencoder with deep feedforward neural network model. Finally, null hypothesis tests to

study the statistical significance comparison of the results for deep learning and feature engi-

101

neering algorithms have clearly demonstrated a statistically significantly higher classification

performance for our proposed learning technology using spectrograms.

6.2.1 Contribution 2

We have introduced a novel feature learning representation for human activity recognition

using spectrograms to demonstrate state-of-the-art performance on a foundational dataset

where the best previously reported algorithm is using human engineered subject agnostic

features.

6.3 Sub-transfer Learning for Retuning the Outlier User Accuracy

The main contribution of this chapter is the analysis and significant boosting of the clas-

sification accuracies for the outlier subjects for HAR using a black-box deep learning model

for motion-sensitive applications. We perform an in-depth analysis of two different learn-

ing representations while using a data augmentation technique to artificially increase the

training data and provide an extensive comparison between the classification performances

of these two training methods. For subject-based classification tasks, we clearly and sta-

tistically significantly demonstrate that our novel sub-transfer learning representation can

enhance the classification accuracies of the state-of-the-art 1D-CNN classifier substantially

especially for the outlier subjects only using a handful samples from the test data. Here,

the knowledge transferred from a source model to the sub-transfer model helps to optimize

the model parameters which results in higher classification accuracies. In real-world applica-

tions of HAR, a user can train the sub-transfer learning model using just 10-15 observations

to achieve the best classification performance compared to the state-of-the-art model. On

the other hand, subject-specific learning with no prior experience will provide a competitive

performance for a classification task with inadequate resources. To explore the statistical

significance between the performances of each learning representations, we have performed a

non-parametric Wilcoxon signed-rank test which demonstrates that our proposed sub trans-

102

fer learning model using prior training knowledge provides the statistically significantly better

classification performance compared to the other learning representations.

6.3.1 Contribution 3

We have introduced sub-transfer learning model to improve the practical performance by

boosting the limited sample space of outlier and difficult subjects and sub-transferring from

a source model to achieve unprecedented performance on human activity recognition with

demonstrable statistical significance.

6.4 Future Work

Although this dissertation has made significant contributions to knowledge in how HAR

applications benefit from different learning representations, exciting work remains in prop-

erly formulating several rules-of-thumb when it comes to choosing correct topologies and

learning representations. Specifically, future work should look at the different data reposito-

ries with different sizes, number of classes and observations per class labels to identify the

complex statistical relationship between the performance of the learning algorithm and the

specifications of the dataset. Although our study reinforces a significant argument that the

performance of deep learning algorithms can be improved by applying the data augmenta-

tion techniques specifically when the accuracy is lower than conventional approaches, future

work can investigate other learning representations such as including the augmented sam-

ples in the training of the first source model for a more challenging comparison. Practically

speaking, this is impossible for a real-world application since the developers do not have

access to the user data prior to marketing the product. However, as more outlier users are

added to the system, their data can potentially be used to further boost the performance of

the algorithm with and without augmentation.

103

References

[1] What is machine learning: Definition, types, applications and examples. Technical

report.

[2] Technologies for long-term care and home healthcare: Global markets. Technical Re-

port HLC079D, November 2018.

[3] Global ai in healthcare market: Analysis and forecast, 2021-2030. Technical Report

6028794, February 2021.

[4] Maryam Abo-Tabik, Nicholas Costen, John Darby, and Yael Benn. Towards a smart

smoking cessation app: a 1d-cnn model predicting smoking events. Sensors, 20(4):1099,

2020.

[5] Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra Thapa, Seyit A Camtepe, Yan-

song Gao, Hyoungshick Kim, and Surya Nepal. Can we use split learning on 1d cnn

models for privacy preserving training? arXiv preprint arXiv:2003.12365, 2020.

[6] Sizhe An, Ganapati Bhat, Suat Gumussoy, and Umit Ogras. Transfer learning for

human activity recognition using representational analysis of neural networks. arXiv

preprint arXiv:2012.04479, 2020.

[7] Itamar Arel, Derek C Rose, and Thomas P Karnowski. Deep machine learning-a

new frontier in artificial intelligence research [research frontier]. IEEE computational

intelligence magazine, 5(4):13–18, 2010.

104

[8] James Bartlett, Vinay Prabhu, and John Whaley. Acctionnet: A dataset of human

activity recognition using on-phone motion sensors. In Proceedings of the 34th Inter-

national Conference on Machine Learning (Sydney, Australia, 2017), 2017.

[9] Smaranda Belciug. Artificial intelligence in cancer: Diagnostic to tailored treatment.

Academic Press, 2020.

[10] JD Bermúdez, P Achanccaray, ID Sanches, L Cue, P Happ, and RQ Feitosa. Evaluation

of recurrent neural networks for crop recognition from multitemporal remote sensing

images. In Anais do XXVII Congresso Brasileiro de Cartografia, pages 800–804, 2017.

[11] Daniel Berrar and Werner Dubitzky. Deep learning in bioinformatics and biomedicine,

2021.

[12] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[13] Tomas Brezmes, Juan-Luis Gorricho, and Josep Cotrina. Activity recognition from

accelerometer data on a mobile phone. In International Work-Conference on Artificial

Neural Networks, pages 796–799. Springer, 2009.

[14] Jason Brownlee. How to calculate nonparametric statistical hypothesis tests in python,

2018.

[15] Jason Brownlee. Understand the impact of learning rate on neural network perfor-

mance. Machine Learning Mastery, 2019.

[16] Vitaly Bushaev. Adam — latest trends in deep learning optimization. Towards Data

Science, 2018.

[17] Jacinto Carrasco, Salvador Garćıa, MM Rueda, Swagatam Das, and Francisco Herrera.

Recent trends in the use of statistical tests for comparing swarm and evolutionary com-

puting algorithms: Practical guidelines and a critical review. Swarm and Evolutionary

Computation, 54:100665, 2020.

105

[18] Girish Chandrashekar and Ferat Sahin. A survey on feature selection methods. Com-

puters & Electrical Engineering, 40(1):16–28, 2014.

[19] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelligence

research, 16:321–357, 2002.

[20] Heeryon Cho and Sang Min Yoon. Divide and conquer-based 1d cnn human activity

recognition using test data sharpening. Sensors, 18(4):1055, 2018.

[21] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in

unsupervised feature learning. In Proceedings of the fourteenth international conference

on artificial intelligence and statistics, pages 215–223, 2011.

[22] L Minh Dang, Kyungbok Min, Hanxiang Wang, Md Jalil Piran, Cheol Hee Lee, and

Hyeonjoon Moon. Sensor-based and vision-based human activity recognition: A com-

prehensive survey. Pattern Recognition, 108:107561, 2020.

[23] Li Deng and Dong Yu. Deep learning: methods and applications. Foundations and

trends in signal processing, 7(3–4):197–387, 2014.

[24] Gulustan Dogan, Sinem Sena Ertas, and İremnaz Cay. Human activity recognition

using convolutional neural networks. In 2021 IEEE Conference on Computational

Intelligence in Bioinformatics and Computational Biology (CIBCB), pages 1–5. IEEE,

2021.

[25] A Durango and C Refugio. An empirical study on wilcoxon signed rank test. J. Negros

Orient. State Univ.,(December), 2018.

[26] Levent Eren, Turker Ince, and Serkan Kiranyaz. A generic intelligent bearing fault

diagnosis system using compact adaptive 1d cnn classifier. Journal of Signal Processing

Systems, 91(2):179–189, 2019.

106

[27] Muhammad Farooq and Edward Sazonov. Feature extraction using deep learning for

food type recognition. In International Conference on Bioinformatics and Biomedical

Engineering, pages 464–472. Springer, 2017.

[28] Alberto Fernández, Salvador Garcia, Francisco Herrera, and Nitesh V Chawla. Smote

for learning from imbalanced data: progress and challenges, marking the 15-year an-

niversary. Journal of artificial intelligence research, 61:863–905, 2018.

[29] Hongmin Gao, Shuo Lin, Yao Yang, Chenming Li, and Mingxiang Yang. Convolution

neural network based on two-dimensional spectrum for hyperspectral image classifica-

tion. Journal of Sensors, 2018, 2018.

[30] Felix A Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In Pro-

ceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.

IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Mil-

lennium, volume 3, pages 189–194. IEEE, 2000.

[31] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[32] Piyush Gupta and Tim Dallas. Feature selection and activity recognition system us-

ing a single triaxial accelerometer. IEEE Transactions on Biomedical Engineering,

61(6):1780–1786, 2014.

[33] Sojeong Ha and Seungjin Choi. Convolutional neural networks for human activity

recognition using multiple accelerometer and gyroscope sensors. In 2016 International

Joint Conference on Neural Networks (IJCNN), pages 381–388. IEEE, 2016.

[34] Ali Haidar and Brijesh Verma. Monthly rainfall forecasting using one-dimensional deep

convolutional neural network. IEEE Access, 6:69053–69063, 2018.

107

[35] Nils Y Hammerla, Shane Halloran, and Thomas Plötz. Deep, convolutional, and

recurrent models for human activity recognition using wearables. arXiv preprint

arXiv:1604.08880, 2016.

[36] Jeff Heaton. An empirical analysis of feature engineering for predictive modeling. In

SoutheastCon 2016, pages 1–6. IEEE, 2016.

[37] Vincent Hernandez, Tomoya Suzuki, and Gentiane Venture. Convolutional and re-

current neural network for human activity recognition: Application on american sign

language. PloS one, 15(2):e0228869, 2020.

[38] Yaoshiang Ho and Samuel Wookey. The real-world-weight cross-entropy loss function:

Modeling the costs of mislabeling. IEEE Access, 8:4806–4813, 2019.

[39] Chaoqun Hong, Jun Yu, Dacheng Tao, and Meng Wang. Image-based three-

dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE

Transactions on Industrial Electronics, 62(6):3742–3751, 2014.

[40] Chaoqun Hong, Jun Yu, Jian Wan, Dacheng Tao, and Meng Wang. Multimodal

deep autoencoder for human pose recovery. IEEE Transactions on Image Processing,

24(12):5659–5670, 2015.

[41] Shuzhan Huang, Jian Tang, Juying Dai, and Yangyang Wang. Signal status recognition

based on 1dcnn and its feature extraction mechanism analysis. Sensors, 19(9):2018,

2019.

[42] Faisal Hussain, Muhammad Basit Umair, Muhammad Ehatisham-ul Haq, Ivan Miguel

Pires, Tânia Valente, Nuno M Garcia, and Nuno Pombo. An efficient machine learning-

based elderly fall detection algorithm. arXiv preprint arXiv:1911.11976, 2019.

108

[43] Tâm Huynh and Bernt Schiele. Analyzing features for activity recognition. In Proceed-

ings of the 2005 joint conference on Smart objects and ambient intelligence: innovative

context-aware services: usages and technologies, pages 159–163, 2005.

[44] Chie Ikeda, Karim Ouazzane, Qicheng Yu, et al. A new framework of feature engi-

neering for machine learning in financial fraud detection. 2020.

[45] Stephen S Intille, Fahd Albinali, Selene Mota, Benjamin Kuris, Pilar Botana, and

William L Haskell. Design of a wearable physical activity monitoring system using

mobile phones and accelerometers. In 2011 Annual International Conference of the

IEEE Engineering in Medicine and Biology Society, pages 3636–3639. IEEE, 2011.

[46] Lishuai Jiang, Yang Zhao, Naser Golsanami, Lianjun Chen, and Weichao Yan. A novel

type of neural networks for feature engineering of geological data: case studies of coal

and gas hydrate-bearing sediments. Geoscience Frontiers, 11(5):1511–1531, 2020.

[47] Yang Jiang, Nigel Bosch, Ryan S Baker, Luc Paquette, Jaclyn Ocumpaugh, Juliana

Ma Alexandra L Andres, Allison L Moore, and Gautam Biswas. Expert feature-

engineering vs. deep neural networks: which is better for sensor-free affect detection?

In International Conference on Artificial Intelligence in Education, pages 198–211.

Springer, 2018.

[48] Ria Kanjilal and Ismail Uysal. The future of human activity recognition: Deep learning

or feature engineering? Neural Processing Letters, 53(1):561–579, 2021.

[49] Ria Kanjilal and Ismail Uysal. Rich learning representations for human activity recog-

nition: How to empower deep feature learning for biological time series. Journal of

Biomedical Informatics, 2022 - Under Revision.

[50] Jack Kelly. New survey shows that up to 47% of u.s. healthcare workers plan to leave

their positions by 2025. Technical report, April 2022.

109

[51] Udayan Khurana, Horst Samulowitz, and Deepak Turaga. Feature engineering for

predictive modeling using reinforcement learning. In Thirty-Second AAAI Conference

on Artificial Intelligence, 2018.

[52] Ozsel Kilinc, Alexander Dalzell, Ismail Uluturk, and Ismail Uysal. Inertia based recog-

nition of daily activities with anns and spectrotemporal features. In 2015 IEEE 14th

International Conference on Machine Learning and Applications (ICMLA), pages 733–

738. IEEE, 2015.

[53] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and

Daniel J Inman. 1d convolutional neural networks and applications: A survey. arXiv

preprint arXiv:1905.03554, 2019.

[54] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and

Daniel J Inman. 1d convolutional neural networks and applications: A survey. Me-

chanical systems and signal processing, 151:107398, 2021.

[55] Muhammed Kucuk and Ismail Uysal. Performance analysis of neural network topolo-

gies and hyperparameters for deep clustering. In 2020 International Joint Conference

on Neural Networks (IJCNN), pages 1–6, 2020.

[56] Ilya Kuzovkin. Understanding information processing in human brain by interpreting

machine learning models. arXiv preprint arXiv:2010.08715, 2020.

[57] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity recognition using

cell phone accelerometers. ACM SigKDD Explorations Newsletter, 12(2):74–82, 2011.

[58] Jeff Lagasse. Continuous monitoring tools could save hospitals $20,000 per bed, report

says. Technical report, August 2016.

110

[59] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional

deep belief networks for scalable unsupervised learning of hierarchical representations.

In Proceedings of the 26th annual international conference on machine learning, pages

609–616, 2009.

[60] Chih-Ting Liu, Yi-Heng Wu, Yu-Sheng Lin, and Shao-Yi Chien. Computation-

performance optimization of convolutional neural networks with redundant kernel re-

moval. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 1–5. IEEE, 2018.

[61] Alexander Selvikv̊ag Lundervold and Arvid Lundervold. An overview of deep learning

in medical imaging focusing on mri. Zeitschrift für Medizinische Physik, 29(2):102–127,

2019.

[62] Sayf A Majeed, Hafizah Husain, Salina Abdul Samad, and Tariq F Idbeaa. Mel fre-

quency cepstral coefficients (mfcc) feature extraction enhancement in the application

of speech recognition: a comparison study. Journal of Theoretical and Applied Infor-

mation Technology, 79(1):38, 2015.

[63] Andrea Mannini, Stephen S Intille, Mary Rosenberger, Angelo M Sabatini, andWilliam

Haskell. Activity recognition using a single accelerometer placed at the wrist or ankle.

Medicine and science in sports and exercise, 45(11):2193, 2013.

[64] Andrea Mannini, Mary Rosenberger, William L Haskell, Angelo M Sabatini, and

Stephen S Intille. Activity recognition in youth using single accelerometer placed

at wrist or ankle. Medicine and science in sports and exercise, 49(4):801, 2017.

[65] J McCarthy, M Minsky, N Rochester, and CL Shannon. The dartmouth summer

research project on artificial intelligence. Artificial intelligence: past, present, and

future, 1956.

111

[66] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar, Eric Bat-

tenberg, and Oriol Nieto. librosa: Audio and music signal analysis in python. In

Proceedings of the 14th python in science conference, volume 8, 2015.

[67] Richard Meyes, Johanna Donauer, Andre Schmeing, and Tobias Meisen. A recurrent

neural network architecture for failure prediction in deep drawing sensory time series

data. Procedia Manufacturing, 34:789–797, 2019.

[68] Daniela Micucci, Marco Mobilio, and Paolo Napoletano. Unimib shar: A dataset

for human activity recognition using acceleration data from smartphones. Applied

Sciences, 7(10):1101, 2017.

[69] Shubham Mittal and Yasha Hasija. Applications of deep learning in healthcare and

biomedicine. In Deep Learning Techniques for Biomedical and Health Informatics,

pages 57–77. Springer, 2020.

[70] Abdulmajid Murad and Jae-Young Pyun. Deep recurrent neural networks for human

activity recognition. Sensors, 17(11):2556, 2017.

[71] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[72] Ronald Mutegeki and Dong Seog Han. A cnn-lstm approach to human activity recog-

nition. In 2020 International Conference on Artificial Intelligence in Information and

Communication (ICAIIC), pages 362–366. IEEE, 2020.

[73] Godwin Ogbuabor and Robert La. Human activity recognition for healthcare using

smartphones. In Proceedings of the 2018 10th international conference on machine

learning and computing, pages 41–46, 2018.

[74] Jangsoo Park, Jongseok Lee, and Donggyu Sim. Low-complexity cnn with 1d and 2d

filters for super-resolution. Journal of Real-Time Image Processing, pages 1–12, 2020.

112

[75] Schalk Wilhelm Pienaar and Reza Malekian. Human activity recognition using lstm-

rnn deep neural network architecture. In 2019 IEEE 2nd Wireless Africa Conference

(WAC), pages 1–5. IEEE, 2019.

[76] Syed Jahanzeb Hussain Pirzada and Ayesha Siddiqui. Analysis of edge detection algo-

rithms for feature extraction in satellite images. In 2013 IEEE International Conference

on Space Science and Communication (IconSpace), pages 238–242. IEEE, 2013.

[77] Mikaela Pisani. Machine learning – chapter 1 – introduction. Technical report, 2011.

[78] Yinghui Quan, Xian Zhong, Wei Feng, Jonathan Cheung-Wai Chan, Qiang Li, and

Mengdao Xing. Smote-based weighted deep rotation forest for the imbalanced hyper-

spectral data classification. Remote Sensing, 13(3):464, 2021.

[79] Sebastian Raschka. Chapter 1: Introduction to machine learning and deep learning,

2020.

[80] Kenneth D Roe, Vibhu Jawa, Xiaohan Zhang, Christopher G Chute, Jeremy A Ep-

stein, Jordan Matelsky, Ilya Shpitser, and Casey Overby Taylor. Feature engineering

with clinical expert knowledge: A case study assessment of machine learning model

complexity and performance. PloS one, 15(4):e0231300, 2020.

[81] Alireza Roshanzamir, Hamid Aghajan, and Mahdieh Soleymani Baghshah.

Transformer-based deep neural network language models for alzheimer’s disease risk

assessment from targeted speech. BMC Medical Informatics and Decision Making,

21(1):1–14, 2021.

[82] William R Rowley, Clement Bezold, Yasemin Arikan, Erin Byrne, and Shannon Krohe.

Diabetes 2030: insights from yesterday, today, and future trends. Population health

management, 20(1):6–12, 2017.

113

[83] Furqan Rustam, Aijaz Ahmad Reshi, Imran Ashraf, Arif Mehmood, Saleem Ullah,

Dost Muhammad Khan, and Gyu Sang Choi. Sensor-based human activity recognition

using deep stacked multilayered perceptron model. IEEE Access, 8:218898–218910,

2020.

[84] Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep boltzmann ma-

chines. In Proceedings of the thirteenth international conference on artificial intelligence

and statistics, pages 693–700, 2010.

[85] Arthur L Samuel. Some studies in machine learning using the game of checkers.

ii—recent progress. IBM Journal of research and development, 11(6):601–617, 1967.

[86] Guto Leoni Santos, Patricia Takako Endo, Kayo Henrique de Carvalho Monteiro, Elis-

son da Silva Rocha, Ivanovitch Silva, and Theo Lynn. Accelerometer-based human fall

detection using convolutional neural networks. Sensors, 19(7):1644, 2019.

[87] Allah Bux Sargano, Xiaofeng Wang, Plamen Angelov, and Zulfiqar Habib. Human

action recognition using transfer learning with deep representations. In 2017 Interna-

tional joint conference on neural networks (IJCNN), pages 463–469. IEEE, 2017.

[88] Jonathan Schmidt, Mário RG Marques, Silvana Botti, and Miguel AL Marques. Recent

advances and applications of machine learning in solid-state materials science. npj

Computational Materials, 5(1):1–36, 2019.

[89] Fatemeh Serpush, Mohammad Bagher Menhaj, Behrooz Masoumi, and Babak Karasfi.

Wearable sensor-based human activity recognition in the smart healthcare system.

Computational Intelligence and Neuroscience, 2022, 2022.

[90] Muhammad Hameed Siddiqi, Rahman Ali, Md Rana, Een-Kee Hong, Eun Soo Kim,

Sungyoung Lee, et al. Video-based human activity recognition using multilevel wavelet

decomposition and stepwise linear discriminant analysis. Sensors, 14(4):6370–6392,

2014.

114

[91] Ahsan Raza Siyal, Zuhaibuddin Bhutto, Syed Muhammad Shehram Shah, Azhar Iqbal,

Faraz Mehmood, Ayaz Hussain, and Saleem Ahmed. Still image-based human activity

recognition with deep representations and residual learning. International Journal of

Advanced Computer Science and Applications (IJACSA), 11(5):471–477, 2020.

[92] Lin Sun, Daqing Zhang, Bin Li, Bin Guo, and Shijian Li. Activity recognition on

an accelerometer embedded mobile phone with varying positions and orientations.

In International conference on ubiquitous intelligence and computing, pages 548–562.

Springer, 2010.

[93] Muhammad Syafrudin, Ganjar Alfian, Norma Latif Fitriyani, and Jongtae Rhee. Per-

formance analysis of iot-based sensor, big data processing, and machine learning model

for real-time monitoring system in automotive manufacturing. Sensors, 18(9):2946,

2018.

[94] Wensi Tang, Guodong Long, Lu Liu, Tianyi Zhou, Jing Jiang, and Michael Blumen-

stein. Rethinking 1d-cnn for time series classification: A stronger baseline. arXiv

preprint arXiv:2002.10061, 2020.

[95] Amirsina Torfi, Rouzbeh A Shirvani, Yaser Keneshloo, Nader Tavvaf, and Edward A

Fox. Natural language processing advancements by deep learning: A survey. arXiv

preprint arXiv:2003.01200, 2020.

[96] Farman Ullah, Asif Iqbal, Ajmal Khan, Rida Gul Khan, Laraib Malik, and Kyung Sup

Kwak. An image-based human physical activities recognition in an indoor environ-

ment. In 2020 International Conference on Information and Communication Technol-

ogy Convergence (ICTC), pages 588–593. IEEE, 2020.

[97] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. Recognizing detailed human

context in the wild from smartphones and smartwatches. IEEE pervasive computing,

16(4):62–74, 2017.

115

[98] Vladimir Vapnik. The nature of statistical learning theory. Springer science & business

media, 1999.

[99] Alireza Abedin Varamin, Ehsan Abbasnejad, Qinfeng Shi, Damith C Ranasinghe, and

Hamid Rezatofighi. Deep auto-set: A deep auto-encoder-set network for activity recog-

nition using wearables. In Proceedings of the 15th EAI International Conference on

Mobile and Ubiquitous Systems: Computing, Networking and Services, pages 246–253,

2018.

[100] Vijay Kumar Verma, Wen-Yen Lin, Ming-Yih Lee, and Chao-Sung Lai. Levels of

activity identification & sleep duration detection with a wrist-worn accelerometer-

based device. In 2017 39th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society (EMBC), pages 2369–2372. IEEE, 2017.

[101] Abdul Wahab, Hilal Tayara, Zhenyu Xuan, and Kil To Chong. Dna sequences per-

forms as natural language processing by exploiting deep learning algorithm for the

identification of n4-methylcytosine. Scientific reports, 11(1):1–9, 2021.

[102] Huan Wang, Zhiliang Liu, Dandan Peng, and Yong Qin. Understanding and learn-

ing discriminant features based on multiattention 1dcnn for wheelset bearing fault

diagnosis. IEEE Transactions on Industrial Informatics, 16(9):5735–5745, 2019.

[103] Zhiping Wang, Cundong Tang, Xiuxiu Sima, and Lingxiao Zhang. Research on appli-

cation of deep learning algorithm in image classification. In 2021 IEEE Asia-Pacific

Conference on Image Processing, Electronics and Computers (IPEC), pages 1122–1125.

IEEE, 2021.

[104] Zachary J Ward, Sara N Bleich, Angie L Cradock, Jessica L Barrett, Catherine M

Giles, Chasmine Flax, Michael W Long, and Steven L Gortmaker. Projected us state-

level prevalence of adult obesity and severe obesity. New England Journal of Medicine,

381(25):2440–2450, 2019.

116

[105] Przemyslaw Woznowski, Rachel King, William Harwin, and Ian Craddock. A human

activity recognition framework for healthcare applications: Ontology, labelling strate-

gies, and best practice. In IoTBD, pages 369–377, 2016.

[106] Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi. Con-

volutional neural networks: an overview and application in radiology. Insights into

imaging, 9(4):611–629, 2018.

[107] Rui Yao, Guosheng Lin, Qinfeng Shi, and Damith C Ranasinghe. Efficient dense la-

belling of human activity sequences from wearables using fully convolutional networks.

Pattern Recognition, 78:252–266, 2018.

[108] Jun Yu, Min Tan, Hongyuan Zhang, Dacheng Tao, and Yong Rui. Hierarchical deep

click feature prediction for fine-grained image recognition. IEEE transactions on pat-

tern analysis and machine intelligence, 2019.

[109] Lei Yu and Huan Liu. Feature selection for high-dimensional data: A fast correlation-

based filter solution. In Proceedings of the 20th international conference on machine

learning (ICML-03), pages 856–863, 2003.

[110] Bin Zeng, Ivan Sanz-Prieto, and Ashish Kr Luhach. Deep learning approach to auto-

mated data collection and processing of video surveillance in sports activity prediction.

Annals of Operations Research, pages 1–20, 2021.

[111] Jian Zhang, Jun Yu, and Dacheng Tao. Local deep-feature alignment for unsupervised

dimension reduction. IEEE transactions on image processing, 27(5):2420–2432, 2018.

[112] Mi Zhang and Alexander A Sawchuk. Motion primitive-based human activity recog-

nition using a bag-of-features approach. In Proceedings of the 2nd ACM SIGHIT

International Health Informatics Symposium, pages 631–640, 2012.

117

[113] Yong Zhang, Yu Zhang, Zhao Zhang, Jie Bao, and Yunpeng Song. Human activity

recognition based on time series analysis using u-net. arXiv preprint arXiv:1809.08113,

2018.

[114] Kai Zhao. Feature extraction using principal component analysis — a simplified visual

demo. Technical report, 2019.

[115] Naifan Zhuang, Guo-Jun Qi, The Duc Kieu, and Kien A Hua. Differential recurrent

neural network and its application for human activity recognition. arXiv preprint

arXiv:1905.04293, 2019.

118

Appendix A: Copyright Permissions

The copyright permission below is for the reproduction of material in Chapter 1, Chapter

3 and Chapter 6 [48]

Permissions
Get permission to reuse Springer Nature content
Springer Nature is partnered with the Copyright Clearance Center to meet our customers' licensing and permissions needs.
Copyright Clearance Center’s RightsLink® service makes it faster and easier to secure permission for the reuse of Springer Nature content
to be published, for example, in a journal/magazine, book/textbook, coursepack, thesis/dissertation, annual report, newspaper, training
materials, presentation/slide kit, promotional material, etc.
Simply visit SpringerLink and locate the desired content;
Go to the article or chapter page you wish to reuse content from. (Note: permissions are granted on the article or chapter level, not on the
book or journal level). Scroll to the botton of the page, or locate via the side bar, the "Reprints and Permissions" link at the end of the
chapter or article.
Select the way you would like to reuse the content;
Complete the form with details on your intended reuse. Please be as complete and specific as possible ao as not to delay your permission
request;
Create an account if you haven’t already. A RightsLink account is different than a SpringerLink account, and is necessary to receive a
licence regardless of the permission fee. You will receive your licence via the email attached to your RightsLink receipt;
Accept the terms and conditions and you’re done!
For questions about using the RightsLink service, please contact Customer Support at Copyright Clearance Center via phone +1-855-
239-3415 or +1-978-646-2777 or email springernaturesupport@copyright.com.

How to obtain permission to reuse Springer Nature content not available online on SpringerLink
Requests for permission to reuse content (e.g. figure or table, abstract, text excerpts) from Springer Nature publications currently not
available online must be submitted in writing. Please be as detailed and specific as possible about what, where, how much, and why you
wish to reuse the content.

Your contacts to obtain permission for the reuse of material from:
- books: bookpermissions@springernature.com

- journals: journalpermissions@springernature.com

Author reuse
Please check the Copyright Transfer Statement (CTS) or Licence to Publish (LTP) that you have signed with Springer Nature to find further
information about the reuse of your content.
Authors have the right to reuse their article’s Version of Record, in whole or in part, in their own thesis. Additionally, they may reproduce
and make available their thesis, including Springer Nature content, as required by their awarding academic institution. Authors must
properly cite the published article in their thesis according to current citation standards.

Material from: 'AUTHOR, TITLE, JOURNAL TITLE, published [YEAR], [publisher - as it appears on our copyright page]’
If you are any doubt about whether your intended re-use is covered, please contact journalpermissions@springernature.com for
confirmation.

Self-Archiving
- Journal authors retain the right to self-archive the final accepted version of their manuscript. Please see our self-archiving policy for full
details:

https://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
- Book authors please refer to the information on this link:

https://www.springer.com/gp/open-access/publication-policies/self-archiving-policy

119

The copyright permission below is for the reproduction of material in Chapter 1, Chapter

4 and Chapter 6 [49].

120

About the Author

Ria Kanjilal is a Ph.D. candidate in Electrical Engineering at the University of South

Florida (USF), FL, USA. Since 2019, she has been a Research Assistant with the USF,

Florida, USA. She received her B.S and M.S. degrees in Electronics and Communication

Engineering from West Bengal University of Technology, West Bengal, India in 2009 and

2014. Her research interests include supervised and unsupervised feature learning using

deep learning algorithms, specifically the applications of machine learning in healthcare,

food supply chains and computational bioinformatics.

	Deep Learning and Feature Engineering for Human Activity Recognition: Exploiting Novel Rich Learning Representations and Sub-transfer Learning to Boost Practical Performance
	Scholar Commons Citation

	tmp.1663687082.pdf.0Zu1F

