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Abstract 

Early detection of cancer is believed as one of the best solutions to improve the therapeutic 

outcomes and overall survival of cancer patients. Analysis of circulating nucleic acids in bodily 

fluids, referred to as “liquid biopsies”, is rapidly gaining prominence for this purpose. Cell-free 

DNA (cfDNA) methylation has emerged as a promising biomarker for early cancer detection, 

tumor type classification, and treatment response monitoring. Currently, most cfDNA methylation 

profiling technologies are based on bisulfite conversion, while enrichment-based methods such as 

cfMeDIP-seq are beginning to show potential. To expand the use of enrichment-based methods in 

cfDNA methylation profiling, here, we report an ultra-low input method based on methyl-CpG 

binding proteins capture, termed cfMBD-seq. We optimized the conditions of cfMBD capture by 

adjusting the amount of MethylCap protein along with using methylated filler DNA. Our data 

showed high genome-wide correlation between cfMBD-seq with 1 ng input and the standard 

MBD-seq (>1000 ng input). Compared with the most commonly used HM450K assay, our results 

showed that cfMBD-seq reliably detected 94% of the methylated CpG islands detected by 

HM450K, while correctly classifying 98% of non-methylated sites (AUC=0.995). We also found 

that cfMBD-seq outperforms cfMeDIP-seq in the enrichment of high-CpG-density regions such 

as CpG islands, which play an important role in the regulation of normal biological functions and 

diseases. To identify the clinical feasibility of cfMBD-seq, we applied cfMBD-seq to profile the 

cfDNA methylome using plasma samples from colorectal (N=13), lung (N=12), pancreatic (N=12) 

cancer patients, and non-cancer controls (N=16). We identified 1759, 1783, and 1548 differentially 

hypermethylated CpG islands (DMCGIs) in lung, colorectal, and pancreatic cancer patients, 

respectively. Interestingly, the vast majority of DMCGIs were overlapped with aberrant 
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methylation changes in the corresponding primary tumor tissues, indicating that DMCGIs detected 

by cfMBD-seq were mainly driven by tumor-specific DNA methylation patterns. From the 

overlapping DMCGIs, we carried out machine learning analyses and identified a set of 

discriminating methylation signatures that had robust performance in cancer detection and 

classification. Overall, our study demonstrates that cfMBD-seq is a powerful tool for sensitive 

detection of tumor-derived epigenomic signals in cfDNA. Our findings will help to expand on 

existing blood-based molecular diagnostic tests and identify novel methylation biomarkers for 

early cancer detection and classification. 
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Chapter 1: Overview of cell-free DNA methylation analysis (Literature review) 

Parts of this section were previously published by Cancers, a peer-reviewed, open access journal 

of oncology, published semimonthly online by MDPI.  

 [1] Huang, J.; Wang, L. Cell-Free DNA Methylation Profiling Analysis - Technologies and 

Bioinformatics. Cancers (Basel) 2019, 11, doi:10.3390/cancers11111741. 

1.1 Background 

1.1.1 Early cancer detection  

Cancer is one of the leading causes of death worldwide and the total number of diagnosed cancer 

cases keeps increasing globally [2]. The dismal mortality rates seen in patients with these 

malignancies are associated with advanced stage at the time of diagnosis. To improve the 

therapeutic outcomes and overall survival of this patient population, detection of cancer at an early 

stage is believed as one of the best solutions. Existing clinical interventions can be more effective 

for pre-invasive tumors before clinical symptoms appear. Medical interventions such as surgical 

resection are curative for most types of localized cancers that have not metastasized [2]. Successful 

examples of early cancer detection including mammography, Pap smear, colonoscopy/fecal test, 

and low-dose chest computed tomography have helped reduce the mortality of breast, cervical, 

colorectal, and lung cancer, respectively [3-6]. Despite these successes, recommendations for 

cancer screening in general populations continue to be debated due to the unacceptably high false 

positive rates of existing tests and potential overdiagnosis of nonlethal cancers. Prostate-specific 

antigen test, a widely used blood biomarker test for prostate cancer, is an example of the potential 

consequences of high false positives and unnecessary medical interventions [7,8]. As a result, most 

screening tests have limited ability to detect cancers in the general populations because they are 
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only practical when they are used to test individuals who have a high risk of developing the 

screened cancer. To overcome these limitations, several efforts have been made towards the 

investigation of novel assays that enable early cancer detection with high accuracy. Among those, 

the use of liquid biopsies is rapidly gaining prominence for minimally invasive cancer detection 

and management [9-11]. 

1.1.2 Liquid biopsies 

Tissue biopsies are the gold standards for the histological diagnosis and molecular characterization 

of cancers. However, these conventional sampling methods have shown limitations including the 

difficulty in obtaining biomaterial, sampling bias arising from tumor genetic heterogeneity, and 

even procedural complications [9]. Liquid biopsies, the minimally invasive sampling and analysis 

of analytes from blood or other body fluids, have emerged as a critical supplement to the tissue 

biopsies. Liquid biopsy analytes include circulating nucleic acids (cell-free DNA (cfDNA) as well 

as cell-free RNAs), circulating tumor cells (CTCs), extracellular vesicles, tumor-educated platelets, 

proteins, and metabolites. Since tumor-specific analytes can originate from different tissues, 

including metastatic tumor sites, liquid biopsies may represent a whole picture of a patient’s 

malignancy and mitigate the problem of tumor heterogeneity [12,13]. Early on, liquid biopsies were 

focus on the genomic analyses such as somatic mutations and copy number alterations in CTCs or 

cfDNA [14]. Recently, more attentions have been paid to the transcriptome [15], the epigenome 

[16,17], the proteome [18], and the metabolome [19]. Moreover, novel artificial-intelligence-based 

bioinformatics methodologies are moving the liquid biopsy field towards multiparametric and 

multi-omic analyses [20]. Many studies have shown that liquid biopsies have the potential to 

provide information about primary tumors or metastases that are meaningful for early cancer 
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detection, minimal residual disease monitoring, treatment selection, and response prediction 

[10,21,22].  

1.1.3 Cell-free DNA 

cfDNA in body fluids is a mixture of extracellular DNA fragments that are released from cells via 

apoptosis, necrosis, and active secretion [23]. The length of cfDNA is about 167 bp, corresponding 

to the unit size of a nucleosome (~147 bp) plus linker DNA associated with histone H1 [24,25]. 

cfDNA in the circulation has a short half-life between 16 minutes and 2.5 hours, enabling liquid 

biopsies as real-time and dynamic monitoring tools for the estimation of tumor burden [26]. A 

significantly higher level of cfDNA in cancer patients than in healthy individuals has been reported 

[26]. In addition, the increased cfDNA can decrease to a background level following surgery [27]. 

Results from these studies suggest that tumor cells-derived cfDNA is present in the blood of cancer 

patients. This tumor-derived cfDNA is called circulating tumor DNA (ctDNA). The concentration 

of ctDNA in plasma has been shown to correlate with tumor size and stage [28]. This association 

suggests the prognostic and predictive utility of ctDNA. Patients with detectable ctDNA have 

worse survival outcomes than those without [29,30]. Additionally, ctDNA has been found to be a 

significantly better prognostic predictor than commonly used tumor markers. Specifically, a higher 

level of ctDNA correlates with poorer clinical and radiological outcomes [31,32].  

In addition to prognosis and prediction, several studies have demonstrated the potential of cfDNA 

in noninvasive early diagnosis of cancer. For example, mutations in cfDNA have been detected in 

plasma up to 2 years before cancer diagnosis [33]. However, genomic analysis of cfDNA in early-

stage cancer is very challenging because cfDNA is often limited in yield and highly fragmented 

[34]. More importantly, ctDNA is extremely underrepresented in the high background of normal 

cfDNA [34]. The increasing availability and reliability of highly sensitive technologies, such as 
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digital PCR (dPCR) and next-generation sequencing (NGS), are facilitating the detection of the 

trace amount of ctDNA in early-stage cancer [35]. Currently, cfDNA-based approaches that focus 

on the detection of cancer-associated single-nucleotide variants (SNVs) and somatic copy number 

variants (CNVs) have been applied into clinical settings [36]. However, SNV assays have 

limitations associated with confounding signals from blood cells due to clonal hematopoiesis [37]. 

Similarly, CNV assays are limited by minor differences between cases and controls resulting in a 

need for increased sequencing depths, which translates into higher costs [38]. More importantly, 

these genomic variations have not yet demonstrated robust tissue of origin classification across a 

broad range of tumor types. In contrast, given the inherited ability of tracing tissue of origin, 

cfDNA methylation has become a promising biomarker in liquid biopsies. Therefore, detection of 

tumor-specific cfDNA methylation signatures is believed to be a more robust approach for early 

cancer diagnosis. 

1.1.4 DNA Methylation 

Cancer is defined by not only extensive genetic changes but also additional biological processes 

such as the immune microenvironment and epigenetics [39]. Epigenetics include any process that 

guides genomic function and activity without altering the DNA sequence [40]. DNA methylation 

is a common epigenetic modification that plays an important role in eukaryotes that has important 

implications for normal biological functions and diseases. De novo DNA methylation is achieved 

by adding a methyl group to the fifth carbon of cytosine (5-methylcytosine, 5mC) via DNA 

methyltransferases (DNMTs) (Figure 1). This modification occurs most frequently at cytosine 

residues in the sequence context of 5'-C-phosphate-G-3' (CpG) [41]. When located at gene 

promoters, DNA methylation is a repressive mark of gene expression. DNA methylation can also 

occur at the gene bodies of actively transcribed genes, which enhances gene expression [42]. The 
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current human genome build contains about 28 million CpGs, 60–80% of which are methylated 

[43]. In the mammalian genome, the majority of CpGs are methylated, except for CpG-rich regions 

called CpG islands (CGIs) and the nearby CpG shores (the region within 2 kb of the islands) [44]. 

On the contrary, the cancer methylome is characterized by global hypomethylation and CpG 

islands-specific hypermethylation [45,46]. Genome-wide DNA hypomethylation occurs 

predominantly at repetitive regions and causes chromosomal instability [47]. Hypermethylation in 

cancer cells is frequently observed in the transcriptional regulatory elements (promoters and 

enhancers) of tumor suppressor genes [48]. Beyond that, it has been reported that gene body DNA 

hypermethylation can activate the expression of oncogenes such as Homeobox genes [49]. These 

methylation aberrations can synergize with driver mutations to facilitate cancer development [50]. 

Growing evidence suggests that aberrant DNA methylation contributes to the tumorigenesis and 

tumor progression [51-54]. 

The detection of ctDNA methylation aberrations holds great promise as a blood-based test for 

cancer diagnosis for several reasons: First, aberrant DNA methylation occurs early during 

tumorigenesis and is abundantly present in the entire cancer process [55]. Second, in contrast to the 

highly heterogeneous nature of gene mutations, tumors of the same histological type tend to exhibit 

similar DNA methylation changes among different individuals [56]. Third, circulating components 

are shed from multiple body sites, while the methylation patterns of cfDNA are consistent with the 

tissues where they originated from [57]. All these advantages imply that cfDNA methylation may 

serve as feasible and reliable cancer biomarkers [58,59]. cfDNA methylation may be combined with 

traditional screening in primary diagnosis, choice of therapy, response to therapy prediction, 

minimal residual disease monitoring, and recurrence detection for better patient outcomes [60]. In 

this chapter, the technologies for DNA methylation analysis were summarized and their 
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feasibilities for liquid biopsy applications were discussed. A brief overview of the bioinformatic 

approaches for the analysis of DNA methylation sequencing data were also provided. Overall, this 

chapter provides informative guidance for the selection of experimental and computational 

methods in cfDNA methylation-based studies. 

1.2 Technologies for DNA methylation detection 

1.2.1 Restriction enzyme-based methods 

The use of methylation restriction enzymes (MREs) to cleave DNA at a specific nucleotide 

sequence is a classical method for methylation study. A pair of isoschizomers that recognizes the 

same sequence and cleavage point but exhibits different sensitivity toward the methylation state is 

used in these methods. Methylation-sensitive enzymes cleave only unmethylated DNA and leave 

the methylated DNA intact, while methylation-insensitive enzymes can cleave regardless the 

methylation status of the recognition sites (see Reference [61] for all available MREs). Based on 

this principle, array hybridization assays such as HpaII-tiny fragment enrichment by ligation-

mediated PCR (HELP) [62], comprehensive high-throughput arrays for relative methylation 

(CHARM) [63], and methyl-sensitive cut counting (MSCC) [42] have been developed for DNA 

methylation analysis. More recently, MRE digestion has been coupled with sequencing 

technologies (MRE-seq) to study the role of DNA methylation in regulating alternative promoters 

[64,65]. After MRE digestion, the resulting DNA fragments are directly used for library preparation 

and sequencing. The sequencing results reveal the locations of the methylated CpG sites 

(undigested sites) within the enzyme recognition sequences and allows the estimation of relative 

DNA methylation levels. However, due to the limited CpG-containing recognition sites in 

intergenic and distal regulatory elements, MRE-seq tend to exhibit low coverage toward the whole 

methylome. Importantly, the severely fragmented nature of cfDNA restricts the application of 
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MRE-seq for cfDNA methylation profiling as some restriction sites may have been destroyed. To 

address this issue, methylated DNA sequencing (MeD-seq), which takes advantages of the LpnPI 

restriction enzyme, has been developed [66]. Unlike other methylation-sensitive enzymes, LpnPI 

has less specific recognition sites and its activity is limited by a short template size. Therefore, 

LpnPI is suitable for detecting DNA methylation in both CpG-dense and CpG-poor regions. MeD-

seq has been applied for cfDNA methylation profiling and showed great potential in the discovery 

of novel methylation signatures and disease load monitoring [67]. 

1.2.2 Bisulfite conversion-based methods 

Bisulfite conversion-based methods are ideal for the detection of DNA methylation because they 

provide qualitative and quantitative information for methylation sites at single base-pair resolution. 

Upon sodium bisulfite treatment on denatured DNA, unmethylated cytosine (C) residues are 

deaminated to uracil (U) and eventually converted to thymine (T) via DNA amplification, while 

methylated C residues remain unchanged during the conversion process (Figure 1) [68]. Analysis 

of bisulfite-converted DNA was previously coupled with Sanger sequencing and microarray for 

the investigation of specific DNA sequences. Nowadays, by integrating high-throughput next-

generation sequencing (NGS), the entire methylome can be profiled in a single testing. However, 

bisulfite conversion causes substantial DNA degradation [69], which may result in loss of some 

critical information, especially for generally very trace amounts of cfDNA. Therefore, the library 

preparation and bisulfite treatment process should be optimized before implementation of bisulfite 

sequencing into cfDNA study. The key optimization is to perform end repair and methylated 

adapter ligation before bisulfite treatment, as this ensures the amplification of pre-ligated cfDNA 

(Figure 2). Other technical improvements include library preparation within a single tube and the 
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employment of Dynabeads for purification and size-selection. The main bisulfite conversion-based 

technologies are summarized below. 

1.2.2.1 Whole-genome bisulfite sequencing (WGBS) 

WGBS presents as the most comprehensive and informative DNA methylation profiling 

technology [70]. The first human genome-wide, single-base-resolution DNA methylation profile 

was mapped by WGBS [71]. The major advantage of WGBS is that the methylation state of all 

cytosines, including low CpG density regions and non-CpG sites (CpA, CpT, and CpC), can be 

detected. However, since the whole methylome is targeted, WGBS is expensive when producing 

high depth data. To address the increasing demands for low DNA input, optimized methods such 

as single-cell bisulfite sequencing (scBS-seq) [72] and single-cell whole-genome bisulfite 

sequencing (scWGBS) [73] have been developed. scBS-seq adopts a post-bisulfite adapter tagging 

(PBAT) protocol to reduce bisulfite-induced DNA loss and eliminate the need for global 

amplification [74].  This highly efficient PCR-free method can generate library starting from 125 

pg of DNA and is potentially applicable for cfDNA analyses [75]. On the other hand, scWGBS 

uses post-bisulfite single-stranded DNA library preparation [76]. WGBS has been attempted for 

mapping cancer-associated cfDNA methylation in metastatic breast cancer [77]. However, as the 

cost of large-scale WGBS is prohibitive, a sample pooling approach was adopted. As a result, a 

few prominent samples may overshadow the other samples and the complexity of the study is 

weakened. Fortunately, the costs of sequencing have continuously decreased in recent years, 

making WGBS more economically feasible. Most importantly, a large-scale WGBS study has been 

performed using cfDNA of 1493 cancer patients across more than fifty cancer types and 1135 non-

cancer controls by the Circulating Cell-free Genome Atlas (CCGA) project [78]. More than 
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1000000 CpG sites of interest have been identified by this study and a target panel has been 

designed for further investigation using targeted bisulfite sequencing in other cohorts. 

1.2.2.2 Reduced-representation bisulfite sequencing (RRBS) 

To investigate the methylome more cost-effectively, RRBS was developed by integrating MspI 

digestion, bisulfite conversion, and NGS [79,80]. This method preferentially enriches CpG-rich 

regions and can detect more than 83% of CGIs in mammalian genome [81]. To apply this method 

for limited cfDNA, single-cell RRBS (scRRBS) has been developed and the input is significantly 

decreased [82]. To avoid DNA loss, scRRBS integrates all the key RRBS reactions into a single-

tube reaction so that DNA purification does not occur until the entire procedure is completed 

(Figure 2). This is achieved by modifying the buffer system and the reaction volumes to preserve 

the activities of different enzymes [83]. Capitalizing on these strategies, RRBS has been 

successfully used for methylation profiling of plasma cfDNA for the first time. Consequently, 

methylated haplotype analysis in plasma cfDNA has demonstrated the quantitative estimation of 

tumor load and tissue-of-origin mapping [84]. Methylation patterns identified by RRBS have 

shown 81.6% accuracy (49 out of 60 patients) in minimally invasive classification of pediatric 

solid tumors [85]. Like MRE-seq, RRBS has a relatively low coverage toward intergenic and distal 

regulatory elements because of the limited CpG-containing recognition sites. 

1.2.2.3 Methylated CpG tandems amplification and sequencing (MCTA-seq) 

MCTA-seq is a sensitive technique for detecting hypermethylated CGIs [86]. In this approach, a 

primer that consists of a semi-random sequence, a unique molecular identifier sequence, and an 

anchor sequence is used to amplify the bisulfite converted DNA at the 3’-end. Then, the methylated 

CpG tandem sites are selectively amplified using another primer containing the CpG tandem 

sequence CGCGCGG. Only fragments with methylated CpG can be further amplified and 
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sequenced (Figure 2). This approach allows as little as 7.5 pg cfDNA input achieved by multiple 

rounds of amplification. Application of the MCTA-seq in cfDNA has identified dozens of DNA 

hypermethylation markers for effective detection of hepatocellular carcinoma [86], colorectal 

cancer [87], and gastric cancer [88].  MCTA-seq has also identified 146 tissue-specific 

hypermethylation markers that revealed the tissue of origin of cfDNA in liver and pancreas disease 

patients [89]. These biomarkers, including known and novel, demonstrated a high sensitivity and 

specificity for disease detection. However, since MCTA-seq targets CGCGCGG-rich CpG sites 

and preferentially enriches high CpG density regions, it can miss some important methylation 

signals in low CpG density regions. 

1.2.2.4 Targeted bisulfite sequencing 

Although allowing for the discovery of novel DNA methylation alterations, the methods discussed 

above is not practical in clinical settings, where a rapid turn-around time, cost-efficient methods 

and high depth of sequencing coverage are required [90]. A better way is to focus on specific 

regions of interest using target enrichment strategies. Consequently, targeted bisulfite sequencing 

is more clinically pragmatic because it is scalable, economical, and allows for a higher sequencing 

depth. Depending on target enrichment manners, targeted bisulfite sequencing may be categorized 

into the following two groups: amplicon-based enrichment and hybrid capture enrichment (Figure 

2). The former uses specific PCR primers to amplify regions of interest after the bisulfite treatment, 

such as EFC#93 primers for disseminated breast cancer [91], or Vimentin and Fibulin 1 primers for 

hepatocellular carcinoma [92]. The latter is performed in solution using biotinylated oligos such as 

probes to capture complementary sequences from the bisulfite converted library. Namely, 5’-

biotinylated capture probes are used to specifically pull-down DNA fragments that contain target 

CpG sites. A comprehensive methylation sequencing assay targeting 9223 consistently 
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hypermethylated CpG sites in plasma cfDNA from 68 patients with advanced cancers and 66 non-

cancer controls has successfully detected the presence of cancer and classified cancer type with 

high accuracy (AUC = 0.969; Sensitivity: 83.8%; Specificity:100%) [93]. Additionally, using a 

target panel of 103456 distinct regions (17.2 Mb, 1116720 CpG sites) identified from WGBS, the 

CCGA project assessed the performance of cfDNA methylation signatures in the detection and 

localization of multiple cancer types across all stages at high specificity (Accuracy: 93%; 

Sensitivity: 55.2%; Specificity: 99.3%) [78]. Although targeted bisulfite sequencing has been 

investigated to have high clinical value, this method is constrained by the relatively complicated 

primer and probe design procedures, especially for bisulfite-converted sites. 

1.2.2.5 Methylation array 

Illumina Infinium HumanMethylation450 BeadChip (HM450K) contains predesigned probes for 

more than 450k methylation sites that cover 96% of the CGIs [94] and dominated as the method of 

choice for the cancer methylome studies before the prevalence of NGS [95]. Infinium 

MethylationEPIC BeadChip (HM850K), a further developed version, covers more than 850k CpG 

methylation sites, including almost all sites on the HM450K plus additional CpG sites in the 

enhancer regions [96]. Currently, a huge number of HM450K datasets have been archived on the 

Gene Expression Omnibus (GEO) [97] and The Cancer Genome Atlas (TCGA) [98].  They have 

become outstanding public resources for the discovery of novel DNA methylation markers [99,100] 

and the validation of new established DNA methylation assays [101]. As for liquid biopsies, the 

Infinium methylation array has been applied for the discovery of methylation biomarkers for 

colorectal cancer [102], hepatocellular carcinoma [103] and prostate cancer [104]. The methylation 

data have also been used for the deconvolution of the plasma methylome for the inference of tissue 
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origins of cfDNA [57]. However, all array-based methods have a drawback in poor genome-wide 

coverage of all CpG sites, resulting in the loss of methylation contexts. 

1.2.2.6 Methylation-specific PCR (MSP) 

MSP is based on the use of two distinct methylation-specific primer sets to detect the DNA of 

interest. The methylated primers can amplify both bisulfite-converted methylated DNA and 

untreated DNA, while the unmethylated primers are only specific for bisulfite-converted 

unmethylated DNA [105]. Taking advantage of real-time PCR, several quantitative MSP (qMSP) 

protocols [106-108] and methylation-sensitive high-resolution melting analysis (MS-HRM) [109] 

has been developed for DNA methylation analyses. These technologies have been widely used in 

the identification and validation of aberrant DNA methylation in cfDNA in breast cancer [110-112], 

pancreatic cancer [113], ovarian cancer [114], cholangiocarcinoma [115], hepatocellular carcinoma 

[116,117], prostate cancer [118], and lung cancer [119,120]. With the emergence of dPCR, digital 

methylation-specific PCR (dMSP) has also been developed for the screening and validation of 

cfDNA-based methylation biomarkers for breast cancer [121], prostate cancer [122], and colorectal 

cancer [123-125]. Yet, these individual markers only provided a limited picture of the whole tumor 

methylome. Therefore, a combination of multiple markers is highly recommended in the clinical 

settings to solve the problem of tumor heterogeneity and to ensure a high sensitivity and specificity. 

1.2.2.7 Oxidative bisulfite conversion 

Ten-eleven translocation (TET) enzymes can oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 

5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), which is known as DNA demethylation 

(Figure 1) [126,127]. Taking advantage of the fact that cytosines in 5fC and 5caC are not protected 

from deamination by sodium bisulfite (Figure 1), oxidative bisulfite sequencing (OxBS-seq) [128] 

and TET-assisted bisulfite sequencing (TAB-seq) [129] have been developed, respectively. 
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However, as longer bisulfite treatment and oxidative environment are needed for the efficient 

conversion of 5mC to 5fC or 5caC, more DNA degradation and DNA damage may occur [130]. 

Application of these methods in liquid biopsies need further investigation. 

1.2.3 Enrichment-based methods 

Enrichment-based methods are based on the use of antibodies or proteins to pull-down the 

methylated genomic regions for subsequent analysis, while the unmethylated fractions are 

excluded by stringent washing. Compared to WGBS, enrichment-based methods have not only 

shown a similar sensitivity and specificity [131], but also have many other advantages. They are 

cost-effective because only the enriched fragments are sequenced, therefore, many indexed 

samples can be pooled simultaneously for a single NGS run. Unlike bisulfite conversion-based 

methods, the enrichment approaches do not involve cytosine conversion, therefore keep DNA 

sequences intact. Furthermore, they can discriminate 5mC from 5hmC due to the protein-binding 

specificity. However, these methods have a relatively low resolution (100-300 bp), and therefore 

could not discriminate the exact methylation state of a single CpG site. Additionally, these methods 

tend to exhibit biases toward hypermethylated regions. As the standard protocol of these methods 

require relatively large amount of DNA input, further optimizations in the library preparation and 

methylation enrichment are needed to apply them in cfDNA-based studies.  

1.2.3.1 Methylated DNA immunoprecipitation sequencing (MeDIP-seq) 

MeDIP was originally developed as an approach for the immunoprecipitation of methylated DNA 

followed by a microarray analysis [132]. A low DNA input protocol has been reported to reduce 

the required input from 5000 ng to 50 ng DNA. However, using less than 50 ng DNA as an input 

was not recommended due to insufficient methylation enrichment [133]. To apply MeDIP-seq for 

low-input cfDNA in liquid biopsies, cell-free methylated DNA immunoprecipitation and high-
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throughput sequencing (cfMeDIP-seq) has been developed, where exogenous lambda DNA is used 

as a filler to increase the initial DNA input (Figure 3) [134]. The filler DNA ensures a constant 

antibody/DNA ratio and helps maintain a similar immunoprecipitation efficiency across different 

samples with different cfDNA yields, while minimizing non-specific binding and DNA loss [135]. 

With the help of filler DNA, the starting cfDNA can be reduced to 1-10 ng. Because the lambda 

DNA does not have sequencing adapters, and hence no subsequent amplification, the use of filler 

DNA would not interfere with the analysis of sequencing data. cfMeDIP-seq has shown high 

accuracy in the classification of a wide variety of cancer types [126]. cfMeDIP-seq has been 

applied in plasma cfDNA in renal cell carcinoma patients and the identified classifier performed 

accurate classification of patients across all stages [136]. Compared to cfDNA variant analysis, 

cfMeDIP-seq is significantly more sensitive for the detection of renal cell carcinoma [137]. The 

methylome profiled by cfMeDIP-seq revealed highly specific methylation signatures to detect and 

accurately discriminate common primary intracranial tumors that share cell-of-origin lineages [138]. 

1.2.3.2 Methyl-CpG binding domain protein capture sequencing (MBD-seq) 

Instead of immunoprecipitation, the methyl-CpG binding domain (MBD) of methyl-CpG binding 

proteins (MBD2 or MECP2) can be used to pull down methylated DNA fragments with the help 

of magnetic beads [139]. It has been shown that MBD-based enrichment outperforms MeDIP in 

regions with a higher CpG density and identifies the greatest proportion of CGIs [140]. Therefore, 

integrating MBD-seq with liquid biopsies may facilitate the discovery of CGIs-specific 

hypermethylation signatures. A study has described a low DNA input MBD-seq protocol by 

adjusting the DNA to beads ratio and using more incubation time and more stringent wash 

conditions [141]. Using this protocol, MBD-seq with a 15 ng DNA input detected 93% of the 

methylated loci that were reliably detected using WGBS (sensitivity) at similar levels of the false 
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positive rate (specificity). Even with as little as 5 ng DNA, MBD-seq had a 90% of sensitivity and 

equal levels of specificity relative to WGBS [141]. Therefore, this low-input technology may be 

suitable for liquid biopsy studies. Also, it is expected that the use of exogenous DNA as a filler to 

increase the initial input might increase the capture efficiency of MBD proteins as it does for 

immunoprecipitation. 

1.2.3.3 5-hydroxymethylation profiling 

Emerging evidence indicates that 5hmC not only acts as a relatively stable epigenetic marker in 

mammals [142] but also correlate with tumorigenesis and tumor progression [143]. Previously, 

studies have shown the reduced global 5hmC levels but increased regional 5hmC levels in various 

cancer tissues [144]. These observations suggest that 5hmC signatures may also be promising 

biomarkers for cancer diagnosis and prognosis. To profile hydroxymethylation in the trace amount 

of cfDNA, 5hmC-Seal (aka hMe-Seal) has been developed [145]. In 5hmC-Seal, an azide-modified 

glucose is first introduced by β-glucosyltransferase (β-GT) and subsequently biotinylated via click 

chemistry in selective chemical labeling (Figure 3). The biotinylated 5hmC is then enriched using 

streptavidin beads followed by NGS to determine the genomic distribution of 5hmC, where spike-

in probes are adopted to test the 5hmC capture efficiency during the 5hmC-Seal assay. The proof-

of-principle global analysis of hydroxymethylome in cfDNA has been reported [146]. Since then, 

the 5hmC-Seal has been used to identify a genome-wide pattern of cancer-associated 5hmC 

changes and tissue origins of such changes in plasma cfDNA from a patient-derived xenograft 

mouse model [147]. The method has also been used to detect aberrant 5hmC alternations in both 

gene bodies and promoter regions for non-small-cell Lung Cancer [148], colorectal cancer [149], 

hepatocellular carcinoma [150], and esophageal cancer [151].  
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1.3 Bioinformatics analyses of DNA methylation sequencing data 

The general workflow for the bioinformatics analysis of DNA methylation sequencing data 

includes data processing and quality control, data visualization, statistical analysis (identification 

of differential methylation between different groups), and data interpretation. Below, the analysis 

strategies for DNA methylation sequencing data are provided. All these strategies are highly 

compatible when cfDNA is used as a starting material. 

1.3.1 Quality controls and alignment 

Before alignment, it is highly recommended to perform some quality control checks to ensure that 

the raw data is in high quality. FastQC can provide a QC report which can spot problems that 

originate either from the starting library material or from the sequencer [152]. Trimming tools such 

as Trimmomatic [153], Trim Galore [154] can be used to trimmed off the low-quality base calls and 

sequencing adapter from the 3' end of the reads. For faster data processing, fastp, an all-in-one 

FASTQ preprocessor, is recommended. fastp can perform quality control, adapter trimming, 

quality filtering, and per-read quality pruning with a single scan of the FASTQ data and it is 2–5 

times faster than other FASTQ preprocessing tools [155]. 

Alignment of bisulfite sequencing data is challenging because the bisulfite converted DNA does 

not align to the reference genome. To address this issue, two algorithms have been developed: wild 

card algorithm (BSMAP [156], RRBSMAP [157], Pash [158], and GSNAP [159]) and three-letter 

algorithm (Bismark [160], BS Seeker 3 [161], and BRAT-BW [162]). The wild card algorithm allows 

both Cs and Ts in reads to map into Cs in the reference genome, while the three-letter algorithm 

converts all Cs in the reference genome and the reads into Ts, and thus standard aligners can be 

adopted [163]. Post-alignment quality control is important for bisulfite sequencing data to reliably 

quantify read counts and the methylation level per base. For example, base-calling quality should 
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be checked because miscalled bases can be counted as C-T conversions. Since the end repair step 

in library preparation may introduce either methylated or unmethylated Cs [164], low quality bases 

on sequence ends should be trimmed to minimize false C-T conversions. It is also critical to check 

the unique alignment rates and insert lengths after trimming because bisulfite treatment can cause 

substantial DNA degradation. Incomplete bisulfite conversion may cause false positive results as 

unconverted unmethylated Cs are considered as methylated. To address this issue, spike-in 

sequences are usually added to measure the bisulfite conversion rate. As the majority of CpGs with 

high inter-population differences contain common single nucleotide polymorphisms (SNPs) [165], 

filtering out known C/T SNPs is highly recommended. Additionally, removal of duplicate reads 

that align to the same genomic position arising from PCR amplification should be considered. 

However, this is problematic in RRBS because by design reads start at the same position even if 

they are not PCR duplicates. Instead, one can remove regions with unusually high read counts. 

Differing from bisulfite-based methods, standard aligner (bowtie2 [166], BWA [167]) can be 

directly used for the alignment of enrichment-based sequencing data, because no mutation is 

introduced during library preparation. In the cases of enrichment-based sequencing data, none of 

the post-alignment quality control issues regarding C-T conversions mentioned above need to be 

considered. Duplicate reads are increasingly likely to occur because reads are expected to align to 

a smaller methylation-enriched genome, where some duplicate reads occur by chance owing to the 

methylation enrichment, not the over-amplification. Poisson statistic has been used to determine 

the maximal number of duplicate reads allowed per genomic position [168]. 

1.3.2 DNA methylation calling 

After a series of post-alignment quality control, the methylation level (a number ranging from 0 to 

1) of individual CpG site can be calculated in the bisulfite sequencing data. This is simply done 
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by counting the number of C-T conversions and dividing the number of Cs by the sum of Cs and 

Ts for each C. As a relative ratio, the methylation level would normalize the coverage difference 

at each CpG site, which vary dramatically due to genomic feature and amplification differences. 

Thus, additional normalization across different samples is not needed for bisulfite sequencing data. 

Moreover, the methylation level can be easily fit into many commonly used statistics models for 

differential methylation analysis as it is a continuous variable. However, the methylation level 

calculated from the CpG site with a low sequencing depth is less reliable.  

Unlike bisulfite sequencing data, data from enrichment-based methods are usually analyzed by 

comparing the relative abundance of fragments. Generally, the genome is divided into non-

overlapping adjacent windows of a specified width, and the number of reads in each window across 

all samples can be used for further analysis. For analysis involving multiple samples, data 

normalization is crucial to remove biases between samples or different batches. TPM (transcripts 

per million) and RPKM/FPKM (reads/fragments per kilobase of transcript per million reads 

mapped) are popular choices as they rescale read counts for differences in both the sequencing 

depth and fragment length [169]. However, TPM and RPKM/FPKM normalized data are not 

suitable for differential methylation analysis. Because the difference in biological methylation 

composition is not considered and the few hypermethylated regions between samples can skew the 

normalization. Instead, the trimmed mean of M-values (TMM) [170] and DESeq2 [171] 

normalization are highly recommended because they not only normalize the sequencing depth but 

also account for the methylation composition. They calculate a scaling factor via different 

algorithms and then read counts are normalized by the scaling factor. The genomic binning 

function and TMM normalization are implemented in the R package MEDIPS [168], while DESeq2 

normalization is implemented in the R package DESeq2. More recently, a Bayesian statistical 
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model that transforms the methylation enrichment read counts to absolute methylation levels has 

been developed and is implemented in the R package QSEA [172,173]. Additionally, a non-

parametric method that uses isolated CpGs to estimate sample-specific fragment size distributions 

for the estimation of the methylation level of each CpG site has also been developed and is 

implemented in the R package RAMWAS [174,175].  

While normalization is essential before differential expression analyses, visualization of data is 

also necessary whenever read counts between samples are compared. UCSC Genome Browser [176] 

and Integrative Genomics Viewer (IGV) [177] are usually used for data visualization. Methylation 

plotter [178] and Web Service for Bisulfite Sequencing Data Analysis (WBSA) [179] are specially 

designed for visualization DNA methylation sequencing data. 

1.3.3 Determination of differential methylation 

Following methylation calling, statistical tests can be employed to identify differential methylation 

between cases and controls. Differential methylation in cancer means CpG sites or regions that 

have different DNA methylation patterns between cancer patients and healthy individuals. For a 

comparative analysis of the methylation level (from 0 to 1) on a CpG site or region between 

multiple samples, statistical methods such as t-test, ANOVA, and nonparametric test (Mann–

Whitney U test and Kruskal-Wallis test) may be used. T-test is used to examine if two sets of 

samples have significantly different means (R package BSmooth [180] and Minfi [181]). It is a 

parametric test and requires the samples to be independent and normally distributed. ANOVA is 

based on linear models for a multiple-group comparison (R package Minfi). Thus, it is more 

flexible to incorporate multiple clinical covariates and to accommodate different study designs. 

Considering the distribution of methylation level among the study population is unknown, 

nonparametric test is a safer approach in methylation studies as it is free of distribution assumption 
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(R package limma [182]). The Mann–Whitney U test evaluates if two comparison samples have 

identical medians and thus it is less affected by outliers. However, nonparametric test has less 

power and will be problematic when the sample size is small.  

Bisulfite sequencing data can also be analyzed based on read counts. Read count is the number of 

methylated and unmethylated cytosines at a CpG site. Contingency table test (Fisher’s exact or 

chi-square test), clustered data analysis [183], logistic regression, and the beta-binomial model [184-

186] may be used for read counts based analyses. Contingency table test is the simplest method 

when replicates are not available, however, it does not take the variability of interindividual 

variation into consideration (R package COHCAP [187]). Clustered data analysis is an optimized 

version of the contingency table test as it incorporates the between-subject variability. This method 

can be considered as performing the chi-square test for independence in a series of contingency 

tables. However, large sample size is needed since the test is based on approximation. Logistic 

regression is a form of generalized linear model (GLM) for binary data (R package methylKit 

[188]). However, there are clearly more biological variability than the binomial assumption (only 

methylated and unmethylated) in the data. Regression methods allow adding covariates, such as 

age and sex into the tests, which are shown to be influential on the methylation level [189]. Among 

these models, the beta-binomial model is the best method for balanced sensitivity and specificity 

in differentially methylated cytosines (DMCs) detection (R package methylSig [185]) [190]. For 

enrichment-based read count data, well established RNA-seq data analysis R packages such as 

DESeq2 [191] and edgeR [192] can be directly applied to the normalized read count matrix for 

differential methylation analysis. 

As the methylation level between neighboring CpG sites are potentially positively correlated, a 

combination of multiple adjacent CpG sites into a defined region called differentially methylated 
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regions (DMRs) can reduce the number of hypothesis tests and thereby improve the statistical 

power [164]. DMRs can be determined by clustering nearby DMCs. DMRs can also be defined 

based on predefined regions, such as gene promoters and CpG islands, or adjacent CpG sites within 

user-defined non-overlapping windows across the whole genome [193]. To better measure weak 

methylation differences, increasing the biological replicates and sequencing depth present a good 

strategy to obtain more robust p-values. The inherent limitation of high dimensional data is false 

positive. Therefore, statistical results must be subjected to multiple testing corrections. Among all 

options, Bonferroni and false discovery rate (FDR) are the most commonly used multiple testing 

correction methods. Comprehensive evaluation of almost all tools and statistical methods for 

identifying DMRs for DNA methylation sequencing data has been summarized [190,194-198]. After 

the identification of DMRs, the regions of interest often need to be integrated with genome 

annotation datasets, which allows for determining whether the DMRs are related to genes and gene 

regulatory regions. The R package Genomation [199] and annotatr [200] are good annotation tools. 

1.3.4 Identification of tumor-specific methylation profile 

Due to the high background of normal cells-derived cfDNA, the ctDNA concentration in cfDNA 

is generally low in cancer patients. Therefore, it is challenging to identify ctDNA methylation, 

especially in early-stage cancer. One common strategy is to use the methylation profile of tumor-

free peripheral blood mononuclear cells (PBMCs) as a negative control. By comparing DMRs 

between cancer cfDNA and healthy cfDNA to DMRs between cancer cfDNA and PBMC genomic 

DNA, the shared regions are considered to be tumor specific DMRs. This strategy has been applied 

in many studies that identified the ctDNA methylation signatures [99,134,146,147]. Additionally, a 

reference-based deconvolution algorithm has been developed for correcting cell-type 

heterogeneity [201]. This algorithm allows for the recovery of the original signal from a mixture of 
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signal sources by using reference datasets. Therefore, it is suitable for the deconvolution of data 

from heterogeneous samples like cfDNA, using public available tissue-specific or cancer type-

specific methylation data. The deconvolution algorithm has been successfully applied to estimate 

ctDNA content and differentiate tissue-of-origin in cfDNA of patients with lung or colorectal 

cancer [84]. Recently, probabilistic models have been formulated to identify ctDNA methylation. 

CancerLocator, a tool for non-invasive cancer diagnosis and tissue-of-origin prediction, is based 

on such a model [202]. By using Infinium HM450K data from TCGA, CancerLocator identified 

many CpG cluster features that have significant methylation variation across cancer and normal 

samples, as well as modeled methylation levels in different cancer types. Thus, the ctDNA burden 

and the likelihood of the presence of a specific cancer type can be inferred based on the informative 

CpG clusters. A further developed version, CancerDetector, adopts the joint methylation states of 

multiple adjacent CpG sites on an individual sequencing read and jointly deconvolutes the tumor 

fraction across all markers, has achieved a high sensitivity and specificity in detecting ctDNA 

methylation [203]. The Bayesian hierarchical model and methylation haplotype analysis share a 

similar strategy that enables information sharing across a cluster of neighboring CpG sites in order 

to enhance the statistical power [84,172,184]. 

1.4 Current challenges and future directions 

In the early years, whole blood (buffy coat) DNA was preferentially used as a starting material for 

liquid biopsies. However, the high background of the hematopoietic cell genome may cause a false 

positive detection of tumor specific DMRs. Later, plasma was proven to be a superior source of 

cfDNA owing to the lower background levels of normal cfDNA [204]. Although superior, the 

cfDNA yield and ctDNA fraction are still limited in early-stage cancer plasma samples. To ensure 

successful and solid results, most biomarker studies are limited to plasma samples from metastatic 
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and late-stage cancer patients. However, biomarkers identified from advanced-stage disease are 

not fully applicable for early-stage cancer due to the dramatic methylation changes during disease 

progression. That’s why useful methylation signatures have yet not been fully established in 

clinical practice although cfDNA methylation profile in cancers has been known for a decade. One 

should be aware that if a certain region of DNA is not present in the sample, no target enrichment 

technique can retrieve it. Given the extremely low ctDNA content, the early-stage cancer plasma 

is expected to contain a low copy number of tumor genome equivalents. Therefore, the region with 

low sequencing read counts should be considered as a potential tumor-derived signal. 

Unfortunately, most analytical pipelines do not take such a scenario into consideration and filter 

out low-depth regions as part of routine quality control. Although most existing computational 

data analysis methods are applicable for cfDNA methylation sequencing data, further 

improvements in programing are still needed to detect the trace amount of tumor-derived 

methylation signal in early-stage cancer. 

The use of NGS in epigenetic studies has significantly facilitated the discovery of DNA 

methylation biomarkers. However, these studies also face some challenges, including the lack of 

a uniform pipeline for both experimental and computational methods. Thus, different laboratories 

may identify different set of biomarkers even from the same type of disease or the same set of 

samples. In some cases, different researchers may have different interpretations on the same 

datasets. To eliminate the inconsistency arising from tumor heterogeneity and distinctive technical 

and analytical methodologies, integration of different methylation assays may be considered as a 

strategy of choice. It is believed that the combination of various methylation assays will guarantee 

the generation of more reliable biomarkers. If a genomic region can be identified by different 

methylation assays in different patient cohorts, it will be believed as a robust biomarker. The 
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reliability of a novel detection assay can also be validated by existing assays. For example, the 

high consistency of methylation profile generated by cfMeDIP-seq was validated by comparing 

with traditional MeDIP-seq, RRBS, and WGBS [134]. Additionally, the combination of multiple 

methylation signatures will help to achieve a higher accuracy performance in a diagnostic or 

prognostic model. For instance, recent studies for the early detection of breast cancer and for the 

monitoring of treatment response in colorectal cancer used multiple methylation signatures to 

improve model prediction outcome [121,205]. Furthermore, the integration of cfDNA methylation 

analysis with other aberrant cfDNA alternations assays, such as copy number variations and point 

mutations, will also improve the diagnostic sensitivity and specificity.  

Although promising, the integrated strategy will produce more complicated data, which requires a 

more sophisticated analytical algorithm. With the rapid development of new computational 

technologies, the use of machine learning for diagnostic and therapeutic decision making is 

receiving more popularity. For example, artificial intelligence systems have been adopted for 

methylation analysis in recent studies [110,134,206]. It is expected that machine learning will allow 

for the identification of trends and cancer-specific patterns with ease. However, machine learning 

has many obstacles. First, machine learning analysis requires massive training data sets. However, 

studies aimed to prove the robustness of cfDNA biomarkers often possess inadequate sample size 

and statistical competency. Second, cohort information such as sex, age, cancer type and stage, as 

well as diverse preanalytical factors (sample collection and storage) are necessary. However, it is 

always difficult to collect comprehensive clinical information for all patients. Third, machine 

learning analysis is a complex and time-consuming process. Therefore, adept computer 

programing skill as well as statistical knowledge are required for scientists to comprehensively 
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analyze and interpret the vast amount of data. Significant efforts are still needed to fully apply 

cfDNA methylation signatures for cancer detection and outcome prediction in the clinical settings. 

Besides cfDNA methylation, other epigenetic biomarkers have also been explored for liquid 

biopsies. With the rapid development of cell sorting technologies, investigation of the methylome 

in circulating tumor cells (CTCs) has become possible [207]. A fundamental connection between 

phenotypic features of CTCs and DNA methylation dynamics in stemness and metastasis has been 

identified recently [208]. More knowledge regarding the CTC methylome remains to be further 

explored. Meanwhile, cell-free RNA methylation and cfDNA fragmentation patterns also deserve 

more research attentions in the future [209,210]. 
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Figure 1. The dynamic regulation of DNA methylation 

Cytosine variants and their products by bisulfite conversion. DNA methyltransferases (DNMTs) 
convert unmodified cytosine (C) to 5-methylcytosine (5mC) by adding a methyl group. Ten-eleven 
translocation (TET) enzymes oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine 
(5fC) and 5-carboxylcytosine (5caC). Thymine DNA glycosylase (TDG) and the base excision 
repair (BER) pathway allow for regeneration of C from 5fC and 5caC. Upon bisulfite treatment, 
unmethylated cytosine (C) is deaminated to uracil (U) and eventually converted to thymine (T) via 
DNA amplification, while methylated C remains unaffected. 5hmC also protects C from 
deamination, while 5fC and 5caC do not. 
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Figure 2. Schematic diagram of bisulfite-based methylation profiling technologies 
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Figure 3. Schematic diagram of enrichment-based methylation profiling technologies 
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Figure 4. Computational pipeline for DNA methylation sequencing data analysis 
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Table 1. Strengths and weaknesses of all major methylation assays for liquid biopsies 

Class Technology Strength Weakness Cost 

Restriction 
enzyme-based  -High CGI coverage  

-Low resolution  
-Limited to regions in proximity to restriction 
enzyme sites 

 

 qPCR or dPCR -Allows ultra-low DNA input  
-Easy primer design -Loci-specific studies only Low 

Bisulfite-
based  -Single-based resolution 

-Substantial DNA degradation during bisulfite 
treatment  
-Cannot discriminate between 5mC and 5hmC  

 

 WGBS -The most comprehensive profiling 
of the whole methylome -Relatively low sequencing depth  High 

 RRBS -High CGIs coverage -Limited to regions in proximity to restriction 
enzyme sites Moderate 

 MTCA-seq -High CGIs coverage -Limited to CGIs and might decrease other 
methylation backgrounds Moderate 

 Targeted -Detect target CpG sites at high 
coverage -Complicated primer or probe design Low 

 Microarray -Pre-designed panel covering 
hotspot methylation -Low genome-wide coverage of CpGs Low 

 qMSP or ddMSP -Allows ultra-low DNA input -Loci-specific studies only  
-Complicated primer or probe design Low 

Enrichment-
based  -No mutation introduced  -Low resolution 

-Biased toward hypermethylated regions   

 MeDIP-seq -Antibody is specific to 5mC -Less sensitive in regions with high CpG 
density than MBD-seq Moderate 

5hmC 
profiling  -Specific to 5hmC  -High sequencing depth is required as 5hmC 

has a low abundance  

 5hmC-Seal -Ensures accurate capture of DNA 
containing 5hmC -Low resolution Moderate 

 hmC-CATCH -Single-based resolution -Oxidative environment would cause DNA 
damage Moderate 
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Chapter 2: Optimization of MBD-seq for low input cell free DNA methylome profiling 

Parts of this section have been accepted for publication in Epigenetics, published by Taylor & 

Francis.  

[101] Huang, J.; Soupir, A.C.; Wang, L. Cell-free DNA methylome profiling by MBD-seq with 

ultra-low input. Epigenetics 2021, 1-14, doi:10.1080/15592294.2021.1896984. 

2.1 Introduction 

Currently, the majority of cell-free DNA (cfDNA) methylation profiling technologies are based 

on chemical treatment of the DNA with bisulfite [1]. Although whole-genome bisulfite sequencing 

(WGBS) of cfDNA has been attempted, this approach is not feasible for most clinical studies 

because of prohibitive cost and limited information recovery owing to the low genome-wide 

abundance of CpGs [211,212]. To address this issue, highly sensitive targeted assays such as 

targeted bisulfite sequencing and digital methylation-specific PCR have been developed [78,213]. 

The scalable and economical targeted bisulfite sequencing has been applied in large-scale cfDNA-

based clinical studies [78,93]. High accuracy diagnostic prediction models of hepatocellular 

carcinoma and colorectal cancer have been established from a large cohort of patients and healthy 

controls [214,215]. However, the target methylation markers of these studies were selected from 

Infinium HumanMethylation450 BeadChip (HM450K) data. This methylation array is known to 

have selection bias and poor genome-wide coverage of all methylation sites, which may result in 

omission of important targets [99]. Similarly, the applications of quantitative and digital 

methylation-specific PCR are restricted by their low throughput nature. Alternatively, enrichment-

based methylation profiling methods have shown a similar sensitivity and specificity when 

compared to bisulfite conversion-based methods [131]. Methylated DNA can be captured by 
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methyl-CpG binding proteins (MBD) or anti-5mC antibodies (MeDIP) that have high affinity 

toward methylated CpGs. One critical limitation of such methods for liquid biopsy applications is 

that a relatively large amount of input DNA (ideally >1000 ng) is required, while the yield of 

cfDNA is typically low (2~10 ng/ml plasma). To address this issue, Shen et al. optimized the 

MeDIP-seq protocol to allow methylome analysis of small quantities (1–10 ng) of cfDNA, termed 

cfMeDIP-seq [133-135].  

Intrigued by the low-input improvements in cfMeDIP-seq, we optimized MBD-seq [139] to enable 

as little as 1 ng cfDNA input and termed this ultra-low input protocol cfMBD-seq. We first 

optimized the methylation capture reaction in a 100 ng DNA mixture (10 ng cfDNA + 90 ng filler 

DNA) by adjusting the amount of MethylCap protein and protein-binding Dynabeads. We then 

tested the effect of the methylation status of filler DNA in the methylation enrichment. We also 

compared the methylome profile generated by cfMBD-seq across different DNA input (1-100 ng) 

with the one generated by standard MBD-seq (1000 ng DNA input). Additionally, we investigated 

if using more filler DNA, applying double wash, or using elution buffer with different salt 

concentration can further improve the methylation enrichment. To verify if the methylation signals 

captured by cfMBD-seq are real, we compared cfMBD-seq with most existing methylation 

profiling assays including HM450K, WGBS, reduced representation bisulfite sequencing (RRBS), 

and cfMeDIP-seq. All the results we showed below demonstrate that this novel bisulfite-free ultra-

low input technology is promising in non-invasive, highly sensitive, and cost-effective methylation 

profiling. 
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2.2 Material and methods 

2.2.1 DNA extraction 

Pooled human plasma (IPLAWBK3E50ML) was purchased from Innovative Research (Novi, MI, 

USA). Whole blood (K3 EDTA tube) was collected from donors in an FDA-approved collection 

center. Plasma was frozen immediately after isolation. After thawing, additional centrifugation on 

3000 rpm for 10 mins was performed to ensure complete depletion of cell debris. cfDNA was 

extracted using the QIAamp Circulating Nucleic Acid Kit (Qiagen; Hilden, Germany) and 

quantified with a Qubit Fluorometer using the iQuant™ NGS-HS dsDNA Assay Kit (Genecopoeia; 

Rockville, MD, USA). The average cfDNA yields from 1 ml plasma was ~7.5 ng. Colorectal 

carcinoma cell line HCT116 was purchased from ATCC (CCL-247™) and cultured according to 

the recommended cell culture method. HCT116 DNA was extracted using the QIAamp DNA 

Blood Mini Kit (Qiagen) and quantified with Nanodrop (NanoDrop Technologies; Wilmington, 

Delaware, USA). gDNA was sheared to 160 bp using a Covaris ME220 Focused-Ultrasonicator to 

mimic the fragment size of cfDNA. HCT116 was chosen because of the availability of public DNA 

methylation data. 

2.2.2 Filler DNA generation 

To generate filler DNA, Enterobacteria phage λ DNA was polymerase chain reaction (PCR) 

amplified with the GoTaq Master Mix (Promega; Madison, WI, USA). Primer sequences are as 

follows: Forward primer 5’- CGATGGGTTAATTCGCTCGTTGTGG-3’, reverse primer 5’-

GCACAACGGAAAGAGCACTG-3’. The 274 bp amplicons were treated with CpG 

methyltransferase (M.SssI; Thermo Fisher Scientific) to methylate amplicons. Methylated 

amplicons were purified by the DNA Clean & Concentrator-5 Kit (ZYMO Research; Irvine, CA, 

USA) and quantified by Qubit Fluorometer. CpG methylation-sensitive restriction enzyme 
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HpyCH4IV (New England BioLabs; Ipswitch, MA, USA) digestion followed by agarose gel 

electrophoresis was performed to ensure complete methylation of filler DNA. 

2.2.3 Library preparation 

DNA was subjected to end repair/A-tailing and adapter ligation using the KAPA Hyper Prep Kit 

(Kapa Biosystems; Wilmington, MA, USA) with the sequencing adapter from NEBNext Multiplex 

Oligos for Illumina (New England BioLabs; Ipswitch, MA, USA). The amount of adapter used in 

the reaction was adjusted according to an adapter:insert molar ratio of 200:1. Adapter ligated DNA 

were purified with 0.8x SPRI Beads (Beckman Coulter; Pasadena, CA, USA) and digested with 

the USER enzyme (New England BioLabs) followed by purification with the DNA Clean & 

Concentrator-5 Kit (ZYMO Research; Irvine, CA, USA). Adapter ligated DNA was first combined 

with methylated filler DNA to ensure that the total amount of input for methylation enrichment 

was 100 ng, which was further mixed with 0.2 ng of methylated and 0.2 ng of unmethylated A. 

thaliana DNA from the DNA Methylation control package (Diagenode, Seraing, Belgium). 

2.2.4 cfMBD-seq 

The DNA mixture was then subjected to methylation enrichment using the MethylCap Kit 

(Diagenode) following the manufacture’s protocol with some modifications. The total volume 

brought up by Buffer B was reduced from 141.8 μl to 136 μl to minimize DNA waste. The amount 

of MethylCap protein and magnetic beads were decreased proportionally according to the 

recommended DNA to protein and beads ratio (0.2 μg protein and 3 μl beads per 100 ng DNA 

input). Single fraction elution with the High Elution Buffer was applied. The eluted fraction was 

purified by the DNA Clean & Concentrator-5 Kit. The purified DNA was divided into two parts, 

one for qPCR (PowerUp™ SYBR™ Green Master Mix, Thermo Fisher) quality control, another 

for library amplification. The recovery of spiked-in methylated and unmethylated control can be 
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calculated based on the cycle threshold (Ct) value of the enriched sample and input control. The 

specificity can be calculated by (1 - [recovery of unmethylated control DNA over recovery of 

methylated control DNA]) × 100). The methylation-enriched DNA libraries were amplified as 

follows: 95 °C for 3 min, followed by 12 cycles of 98 °C for 20 s, 65 °C for 15 s and 72 °C for 30 

s and a final extension of 72 °C for 1 min. During the amplification, unique index from primer was 

added to the sequencing adapter for each sample. The amplified libraries were purified using 1x 

SPRI Beads followed by a dual size selection (0.6x followed by 1.2x) to remove any adapter dimers. 

All final libraries were first quantified with both Qubit assay and qPCR-based quantification using 

the KAPA Library Quantification Kit (Kapa Biosystems). Then they were submitted to Moffitt 

Cancer Center Molecular Genomics Core for the D1000 ScreenTape Assay (Agilent; Santa Clara, 

CA, USA). Sequencing was performed on the NextSeq 550 platform (Illumina; San Diego, CA, 

USA) with high-output 75 bp single-end read, multiplexed as ~12-15 samples per run. The 

sequencing data are available on GEO under accession number GSE161331. 

2.2.5 Data processing 

After sequencing, pre-alignment quality control was performed for the raw sequenced reads using 

fastp (Version 0.20.1) [155] with the default settings. The sequenced reads were then aligned to the 

human genome (hg19) using Bowtie-2 (Version 2.4.2) [166] with the default settings. The 

generated sam files were converted to bam files, followed by sorting, indexing, duplicate read 

removal, and read count extractions on chr1 - chr22 using SAMtools (Version 1.11) [216] ‘sort’, 

‘index’, ‘markdup’, and ‘view’ command lines, respectively. R (Version 4.0.3 or greater) package 

RaMWAS (Version 1.12.0) [175] was used for quality control of the overall mapping quality and 

calculation of average non-CpG/CpG ratio and coverage by CpG density. To ensure the 

comparability between different conditions, bam files from the same experimental condition were 
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merged together, and 30 million sequenced reads were randomly extracted 

(https://github.com/ACSoupir/MiscProcessingScripts) from each condition for the plotting of 

coverage by CpG density plot. R package MEDIPS (Version 1.40.0) [168] was then applied for 

saturation analysis and calculation of correlations of genome wide short read counts profiles 

between samples based on counts per 1000 bp non-overlapping window. Normalized data were 

exported as wiggle files for visualization on the Integrative Genomics Viewer [177].  

Genome-wide CpG annotations reference was obtained from R package annotatr (Version 1.16.0). 

BEDtools (Version 2.28.0) [217] ‘coverage’ command line was used to call the depth of features 

according to the CpG annotations reference. TPM (Transcripts Per Kilobase Million) 

normalization was performed before comparing the read counts of CpG annotations regions 

between different samples. Data from low-input MBD-seq and cfMeDIP-seq were reprocessed 

from raw data (fastq level) using the same workflow. R package minfi (Version 1.36.0) was used 

to call and annotate (hg19) methylation signal from Infinium HM450K data. Average beta-values 

of each CpG site among different samples was first calculated. Methylation status of CpG islands 

was then determined by the average beta-values of adjacent CpG sites within the same CpG island 

(<0.5 as unmethylated and ≥0.5 as methylated). Logistic regression model was built using 

normalized read counts from cfMBD-seq and methylation status (methylated as 1 and 

unmethylated as 0) from microarray. R package ROCR (Version 1.0-11) was used to generate 

receiver operating characteristic curve. All data and R images were imported into GraphPad Prism 

8 for the preparation of figures. Detailed bioinformatics analysis pipeline was coded in git bash 

and is available in GitHub (https://github.com/LiangWangLab/cfMBD-seq). 
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2.3 Results 

2.3.1 Characterization of cfMBD-seq technology 

The standard protocol for MBD methylation enrichment requires a minimum input of 1000ng 

DNA. Since the yield of cfDNA is extremely low (2-10 ng per ml plasma), the current protocol is 

not suitable for cfDNA methylation analysis. To guarantee amplification of methylation-enriched 

cfDNA, we added sequencing adapters to cfDNA by end repair/A-tailing and ligation before the 

methylation enrichment. Since newly synthesized DNA are not methylated, library amplification 

was not performed until the methylation enrichment is done. To meet the high input requirement 

for methylation enrichment, we added exogenous Enterobacteria phage λ DNA (filler DNA) to the 

adapter-ligated cfDNA to increase the final DNA input to 100 ng. The filler DNA ensures a 

constant MethylCap protein/DNA ratio and helps maintain a similar methylation enrichment 

efficiency across different samples with different cfDNA yields, while minimizing non-specific 

binding and DNA loss. Since the filler DNA is not adapter ligated, thus it is not amplified and 

sequenced, it will not interfere with the analysis of sequencing data. Beside filler DNA, we also 

added methylated and unmethylated A. thaliana DNA as spike-in controls to verify the specificity 

of methylation enrichment. Unlike genome wide sequencing, cfMBD-seq captures only a fraction 

of the genome (methylated DNA) and thus allows adequate sequencing depth from less total reads. 

Therefore, it enables pooling of multiple uniquely indexed samples for a single sequencing run. 

This makes cfMBD-seq a cost-effective method for methylome-wide association analysis in a 

large-scale study (for more details, see Methods and Figure 5a).  

2.3.2 Reduced MethyCap protein improves methylation enrichment 

Based on the use of filler DNA, we performed extensive benchmarking to identify an optimal 

methylation enrichment condition. One of the key adaptions for this purpose is to determine an 
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appropriate amount of MethylCap protein to bind the input DNA mixture. If the amount of protein 

is too high, non-specific binding will occur due to extra binding sites on the protein. If too low, a 

portion of methylated fragments will not be captured. Using a mixture of 10 ng adapter ligated 

cfDNA and 90 ng filler DNA as input, we tested across different ratios of MethylCap protein and 

magnetic beads to the input DNA. When we kept the same MethylCap protein/DNA ratio as 

recommended by the manufacturer’s protocol, where 2 μg MethylCap protein is used for 1 μg 

DNA (2:1 ratio), the captured CpG islands reached up to 58.65% of all mapped reads (Figure 6a). 

Since methylation differences sometimes occur at a short distance away from the CpG islands [218], 

we also calculated the sum of captured reads from CpG islands/shores/shelves regions. Under the 

recommended 2:1 ratio, 94.56% of reads were mapped into the extended regions, while these 

regions only account for 6.72% of the entire genome (Figure 5b, 6b). We then plotted the genome-

wide coverage (average number of fragments covering CpGs) against CpG density (number of 

CpGs per fragment). The curve showed that the number of sequence reads was relatively low in 

CpG-poor regions and ultra-dense regions, while peaks in regions with moderate CpG density. As 

the peak represents CpG-rich regions such as CpG islands, the higher coverage at the peak 

indicates the better methylation enrichment (Figure 6c). To better characterize these distributions, 

we termed the CpG density at the point of the highest coverage as “peak”. We also used the term 

“noise” to illustrate the ratio of average non-CpG/CpG coverage. Consistently, the 2:1 ratio gives 

the highest peak and the lowest noise values (Figure 6d). Unlike the tremendous impact from 

MethylCap protein, the amounts of magnetic beads had less impact on the methylation enrichment. 

Given redundant beads may increase the risk of unspecific binding, we determined 0.2 μg protein 

and 3 μl beads as the best enrichment condition for 100ng DNA input.  
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2.3.3 Methylated filler DNA is needed to increase enrichment efficiency 

In MBD methylation enrichment, the typical yields of methylated DNA are 3-20% of the input 

DNA mass. Since cfDNA only accounts for a small fraction (<10%) in the mixture of cfDNA and 

filler DNA, the tiny amount of methylated cfDNA may not be able to fill all binding sites on the 

MethylCap proteins. If the filler DNA is not methylated, the risk of unspecific binding may be 

increased. To test the potential impact of filler DNA methylation status on the enrichment 

efficiency, we used different methylation status of filler DNA for cfMBD-seq, including: 1. 

Treated with CpG methyltransferase; 2. The mixture of the treated and untreated (1:1 ratio); and 

3. Untreated. When the filler DNA is methylated, we observed better enrichment of sequence reads 

in both the CpG islands and CpG islands/shores/shelves regions. The sequence reads percentage 

of these regions were decreased with the reduction of filler DNA methylation level (Figure 7a,7b). 

Specifically, the percentage of sequence reads on CpG islands was 58.65%, 40.05%, and 20.53% 

when methylation level of filler DNA was 100%, 50%, and 0%, respectively. The extended regions 

showed the same trend. The coverage by CpG density plot (Figure 7c) and peak/noise plot (Figure 

7d) further showed the importance of fully methylated filler DNA. Since the methylated filler 

DNA can block the extra binding sites on the MethylCap protein, it is not difficult to explain why 

the specificity of the reaction was enhanced.  

2.3.4 Pre-sequencing quality controls 

As we empirically found that the library yields from different experiment conditions are different, 

we hypothesized that a non-specific methylation capture would generate a higher library yield. To 

test this, we examined final library concentration and the quality of methylation enrichment. We 

found that the optimal condition tended to have a lower library yield while the suboptimal 

conditions generated more final library DNA when under the same PCR amplification cycles 
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(Figure 8a, 8b). This can be explained by the high specificity of the optimal methylation 

enrichment that only captures methylated DNA. Beside library concentration, real-time PCR 

(qPCR) often provides a more accurate pre-sequencing quality control. Since cfDNA is highly 

fragmented, the use of large amplicon is not recommended. Thus, the methylated control TSH2B 

(170 bp) provided in the kit is not an optimal spike-in control. On the other hand, qPCR has a 

limited sensitivity to detect the provided unmethylated control GAPDH in a successful enrichment 

due to low input. Therefore, instead of the TSH2B and GAPDH control pair provided in the kit, 

we used methylated and unmethylated A. thaliana DNA as spike-in controls to estimate the 

enrichment efficiency. We observed a significant enrichment of methylated DNAs when compared 

the spike-in controls before and after the capture reaction. Under the optimal condition, the 

specificity of capturing methylated control DNA was ≥99%. Additionally, the recovery rate of 

the methylated and unmethylated control should be ~50%-90% and <1%, respectively. (Figure 8c, 

8d).  

2.3.5 1ng input achieved high quality results like 1000ng input DNA 

To investigate if the methylome from low-input cfMBD-seq is equivalent to the one from standard 

MBD-seq (>1000 ng input), we sheared colorectal cancer cell line HCT116 DNA into small 

fragments with a peak of ~167 bp to mimic cfDNA and tested the efficiency of methylation 

enrichment across different DNA input (1, 10, 100, and 1000 ng). For 1 ng and 10 ng HCT116 

DNA, we used methylated filler DNA to increase the final DNA input to 100 ng and followed the 

cfMBD-seq protocol. For 100 ng HCT116 DNA, we directly applied the cfMBD-seq protocol 

without filler DNA. For 1000 ng HCT116 DNA, standard MBD-seq protocol was used. Saturation 

analysis of sequencing result showed a high saturation correlation across different DNA input 

(Figure 9a-d). Specifically, the saturation correlation is 0.91 when the DNA input is only 1 ng, 
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indicating that 1 ng DNA is sufficient to generate a saturated and reproducible coverage profile of 

the reference genome. The saturation correlations of 5 ng cfDNA input are consistent with the 10 

ng genomic DNA (gDNA) input (Figure 9e-f). Additionally, the results showed robust genome-

wide inter-replicate Pearson correlation (Figure 10a). Together, these results suggest that cfMBD-

seq can generate a high quality methylome that is equivalent to standard MBD-seq while allowing 

ultra-low DNA input.  

As the 1000 ng input has the highest genome-wide inter-replicate correlation, we further 

investigated if an increased amount of filler DNA can enhance the performance of the reaction. 

We thus increased the DNA input by adding more filler DNA, with the quantity of cfDNA 

unchanged (in total 100, 500, 1000 ng). However, we didn’t observe an improved methylation 

enrichment even when the amounts of MethylCap protein and beads were adjusted accordingly. In 

fact, the higher amount of filler DNA reduced the performance of CpG-islands-centered 

methylation enrichment (Figure 10b-c) and increased background noise (Figure 10d). These 

results can be explained by the increased amount of methylated filler DNA overshadowed the trace 

amount of methylated cfDNA. Thus, we decided 100 ng as an optimal DNA input, due to the 

robust recovery of CpG-islands-centered regions with low noise.  

2.3.6 Additional wash and elution did not improve enrichment 

Given the confirmed MethylCap protein to DNA ratio and amount of methylated filler DNA, we 

evaluated other experimental conditions to see if the methylation enrichment performance can be 

further improved. First, we examined the effect of a more stringent wash condition on non-specific 

binding. However, double wash did not significantly increase the percentage of CpG island reads 

when compared to the standard wash. The additional wash also did not decrease the percentage of 

sequence reads on the open sea regions, where non-specific bindings are most likely to occur 
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(Figure 11a). Likewise, there was no significant difference on the peak and noise between the 

standard wash and double wash (Figure 11b). Since the additional wash can take much more time, 

we will not consider it as an optimization. 

Second, we examined the effect of the elution buffer salt concentration on methylation enrichment. 

We performed single fraction elution using the three different elution buffers (High, Medium, Low) 

provided in the MethylCap kit. Theoretically, an increased salt concentration may preferentially 

enrich regions with higher CpG density [219]. However, we did not observe a notable shift on the 

coverage by density plot, nor sequence reads percentage difference on each CpG annotations 

(Figure 12a-c). For example, the signals at the CpG island MGAT3 showed no difference among 

the three elution buffers (Figure 12d). The finding that MethylCap protein (MeCP2) is not 

sensitive to the salt concentration of elution buffer has been reported previously [220,221]. We also 

investigated multiple fractions elution, that is, sequential elution with low, medium, and high salt 

elution buffer from one capture reaction. The coverage by density plot illustrated robust 

methylation enrichment in both the first fraction (low salt elution buffer) and the pool of three 

fractions (Figure 12e). But the second fraction (medium salt), the third fraction (high salt), and 

the pool of the second and third fractions had very low coverage (Figure 12e). These results 

demonstrated the importance of the first fraction of elution, no matter the salt concentration of 

elution buffer, due to the intrinsic limitation of ultra-low DNA input. In summary, our results 

suggest an optimal condition for low input methylation enrichment includes 0.2 μg MethylCap 

protein and 3 μl beads for 100 ng DNA mixture (cfDNA + methylated filler DNA), standard wash, 

and single fraction elution. 
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2.3.7 Comparison of cfMBD-seq with other technologies 

To evaluate the methylation capture accuracy of cfMBD-seq, we calculated its sensitivity 

(proportion of methylated CpG islands detected) and specificity (1 - proportion of non-methylated 

CpG islands detected). We used Infinium HM450K data (Gene Expression Omnibus (GEO): 

GSE55491, peripheral blood mononuclear cell (PBMC) from N=5 healthy controls) as a standard 

to determine whether a CpG island was methylated or non-methylated. It is known that the 

methylation level between neighboring CpG sites is positively correlated. Therefore, to obtain a 

comparable measurement between cfMBD-seq and methylation array, we averaged the beta-values 

of adjacent CpG sites within each CpG island and defined the methylation status of that CpG island. 

We then built a logistic regression model for all CpG islands on the microarray using normalized 

read counts from cfMBD-seq and methylation status from microarray (AUC=0.995, Figure 13a). 

At the cutoff of 13.25, derived from the intersection of the specificity and sensitivity curves 

translated to normalized read counts, the sensitivity of cfMBD-seq is 0.94 and the specificity is 

0.98. Namely, at this threshold, cfMBD-seq detected 94% of the methylated CpG islands that were 

reliably detected by Infinium methylation array, while correctly classifying 98% of non-

methylated sites. 

To determine the performance of cfMBD-seq over existing methylation enrichment assays, we 

compared cfMBD-seq with a previously published low input MBD-seq protocol (N=4 from GEO: 

GSM2593327-GSM2593330) that did not use filler DNA [141]. Different from cfMBD-seq, this 

low input MBD-seq protocol has a very low recovery rate of the CpG island regions (median 19.95% 

[(Q1) 19.25%-(Q3) 20.11%]) and a relatively high recovery rate of the open sea regions (14.30% 

[14.24%-14.49%]) (Figure 13b-c). Worst of all, the overall coverage is low, which makes it 

difficult to discriminate methylated fragments from non-specific fragments (Figure 13d). We next 
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compared cfMBD-seq with cfMeDIP-seq (N=24 cancer-free individuals from published dataset) 

which showed adequate performance on capturing tumor-specific methylation in cfDNA [133-135]. 

According to the summary QC from the RaMWAS package, we observed a higher percentage of 

reads that passed the filter in cfMBD-seq (83.15% [82.93%-83.68%]) than in cfMeDIP-seq (74.90% 

[74.53%-75.45%]) and a lower duplicate rate (3.45% [3.40%-3.90%] vs. 12.00% [9.00%-

19.23%]). Taken together, cfMBD-seq generated higher quality and more informative sequencing 

data than cfMeDIP-seq (79.60% [79.15%-80.43%] vs. 62.65% [55.60%-66.65%]) (Table 1). For 

the CpG annotation-based results, cfMBD-seq showed a significantly higher recovery rate at CpG 

islands (60.13% [58.78%-60.81%] vs. 38.16% [37.21%-41.28%], Figure 13b) and a slightly 

higher recovery rate at combined CpG islands/shores/shelves (94.81% [94.61%-94.98%] vs. 90.90% 

[90.91%-91.55%], Figure 13c), suggesting that cfMBD-seq preferentially enriches CpG islands, 

while cfMeDIP-seq has more signal on CpG shores and CpG shelfs. This finding is consistent with 

the coverage by CpG density plot, where cfMBD-seq peaks at higher CpG density than cfMeDIP-

seq (29.98 [29.54-30.33] vs. 22.88 [22.37-23.50], Figure 13d). The comparison between cfMBD-

seq, low input MBD-seq, and cfMeDIP-seq was summarized in Table 1. To better demonstrate 

the reproducibility of cfMBD-seq, we showed a snapshot of a genomic region with consecutive 

CpG islands (chr8:86,703,816-86,880,439). We observed peaks with high similarity among 

cfMBD-seq (1 to 100 ng input DNA), standard MBD-seq (1000 ng), cfMeDIP-seq (1 to 10 ng), 

and standard MeDIP-seq (100 ng) (Figure 14). We then compared the signal peaks among 

different methylation profiling technologies. We showed that cfMBD-seq also recapitulated 

methylation profiles from RRBS (1000 ng) and WGBS (2000 ng) (Figure 15). All these findings 

suggest that cfMBD-seq, allowing ultra-low DNA input as starting material, can reliably detect 

genome-wide DNA methylation signal with high accuracy. These features demonstrate that 
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cfMBD-seq is a promising tool in the discovery of novel biomarkers for cancer detection and 

management. 

2.4 Discussion 

In this study, we further optimized the MBD-seq protocol to enable methylation enrichment from 

ultra-low DNA input. The most critical modification for this purpose is to decrease the amount of 

MethylCap protein proportionally according to the MethylCap protein/DNA ratio recommended 

by the manufacturer’s protocol. The 2:1 MethylCap protein/DNA ratio ensures a high specificity 

of methylation capture (Figure 6). Unlike MethylCap protein, the amounts of magnetic beads had 

less impact on the methylation enrichment. By comparing across different methylation status of 

filler DNA, we showed that methylated filler DNA is also indispensable to ensure the specificity 

of methylation capture (Figure 7). Using as little as 1 ng DNA input, cfMBD-seq is able to 

generate a saturated and reproducible coverage profile of the reference genome (Figure 9). Also, 

the methylome from 1 ng DNA generated by cfMBD-seq is highly correlated to the methylome 

from 1000 ng DNA generated by standard MBD-seq (Figure 10). However, other attempts such 

as using more filler DNA, applying double wash, or using elution buffer with different salt 

concentration cannot improve the performance of methylation enrichment (Figure 11,12). To 

evaluate if the methylation signals captured by cfMBD-seq are real, we compare our sequencing 

data with the most commonly used HM450K assay by a logistic regression model. The results 

showed that cfMBD-seq detected 94% of the methylated CpG islands detected by HM450K, while 

correctly classifying 98% of non-methylated sites (AUC=0.995) (Figure 13a). cfMBD-seq also 

performs better than a previously published low input MBD-seq protocol in the methylation 

enrichment of CpG islands-centered regions [141]. Most importantly, cfMBD-seq outperforms 
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cfMeDIP-seq in the enrichment of fragments with higher CpG density such as CpG islands (Figure 

13b-d).  

The differences between standard MBD-seq and standard MeDIP-seq have been described in a 

previous study: MeDIP commonly enriches methylated regions with a low CpG density, while 

MBD captures a broad range of CpG densities and identifies the greatest proportion of CpG islands 

[140]. It is known that CpG-rich fragments do not undergo complete denaturation into single 

stranded DNA which is required for an efficient MeDIP capture and may explain why MeDIP-seq 

is less sensitive toward fragments with high CpG density. In contrast, MBD capture does not 

require DNA denaturation because the MethylCap protein is sensitive toward double stranded 

DNA. Therefore, temperature control of DNA-protein mixture during MBD capture is less strict 

than MeDIP capture. In addition, MBD enrichment in cfMBD-seq can be finished within 5 hours 

(including 3 hours of incubation), while cfMeDIP enrichment needs overnight incubation. Thus, 

the reaction of MBD enrichment is less time-consuming. Overall, both cfMBD-seq and cfMeDIP-

seq are reliable ultra-low input methylation profiling assays. cfMBD-seq is a method of choice for 

interrogating regulation of gene expression (methylation changes in CpG islands), while cfMeDIP-

seq would be preferable in investigating transcriptional regulation of non-coding RNAs 

(methylation changes in gene bodies and CpG shores). 

There are a few caveats to ensure successful cfMBD-seq. First, the quality of the MethylCap 

protein is very important. We notice that the use of MethylCap protein that has experienced 

multiple freeze–thaw cycles can negatively impact the data quality. Because the MethylCap 

protein is used with 10-fold dilution before adding to the reaction, it can be used for much more 

reactions than the standard MBD capture. Therefore, we recommend splitting the MethylCap 

protein into multiple aliquots to minimize the freeze-thaw cycles and using fresh diluted protein 



 

47 
 

for each batch. Second, the success of the methylation enrichment reaction must be validated by 

qPCR to detect recovery of spiked-in control. The specificity of the reaction should be ≥99% 

before proceeding to the next step. Third, accurate library quantification is critical. As methylated 

filler DNA is used in the methylation enrichment, fluorometer-based library quantification 

methods may inevitably count filler DNA. Therefore, qPCR-based library quantification is 

recommended because it will only quantify the amounts of amplifiable DNA (adapter ligated 

cfDNA). Lastly, adequate sequencing depth is crucial for high quality data. Based on the saturation 

analysis, at least 30 million mapped reads are required to generate a saturated and reproducible 

coverage profile. The cost of the entire cfMBD-seq workflow, starting from cfDNA extraction 

through the generation of sequencing data (single-end and pooling 12-15 indexed libraries using 

the Illumina NextSeq 550 platform), is less than $300 per sample. This cost-effective feature 

allows large-scale methylome-wide association analysis that is crucial for the establishment of a 

prediction model with high accuracy. 

It is worth mentioning that the current study also has some limitations. First, it is well known that 

the methylation status is different between individuals. The differences observed among cfMBD-

seq, low-input MBD-seq, and cfMeDIP-seq could be partly attributed to the difference in different 

plasma samples that were used. Thus, further validation is required. Second, the main application 

of cfMBD-seq is to identify cancer biomarkers in cfDNA. However, current study was limited to 

technology development and optimization. Further study in patient’s plasma samples is needed to 

test the feasibility of cfMBD-seq in clinical settings, in particular to elaborate how well this 

technology can differentiate the tumor-derived cfDNA methylation signals from the high 

background cfDNA from normal blood cells. 
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Overall, our study demonstrates the potential benefits of using cfMBD-seq to profile the 

methylome of cfDNA with ultra-low DNA input. Current results provide justification for further 

validation using case and control plasma samples from different malignancies to perform 

differential methylation analyses. Since enrichment-based methods are analyzed by comparing the 

relative abundance of sequenced fragments, cfMBD-seq shares similar data analysis workflows 

with cfMeDIP-seq for the identification of DMRs and other downstream machine learning 

analyses. Another potential for cfMBD-seq is the use in other methylome-wide investigations that 

are limited by DNA yield. We confidently believe that cfMBD-seq, being non-invasive and cost-

effective, has a great potential in identifying biomarkers for cancer detection and management. 
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Figure 5. Schematic diagram of cfMBD–seq and CpG annotations 

a) Schematic workflow of cfMBD–seq protocol. From cfDNA extraction to generation of 
methylation profile. b) Schematic diagram of CpG annotations. Numbers on the left (in brackets) 
represent the percentage of the CpG features in the human genome. For example, CpG islands 
account for only 0.7% of the human genome. Numbers on the right represent total number of 
features. For example, there are 28,691 CpG islands in the hg19 reference genome. 
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Figure 6. Reduced MethyCap protein improves low-input methylation enrichment 

a) & b) Percentage of sequence reads mapped on CpG islands and CpG islands/shores/shelves 
across different amount of MethyCap protein and magnetic beads. (N=4 for the first condition, 
N=3 for other conditions. Mean with the standard error of the mean (SEM).) c) Coverage by CpG 
density plot across different amount of MethyCap protein and magnetic beads. Coverage is defined 
as average number of fragments covering CpGs. CpG density is number of CpGs per fragment. d) 
CpG density at peak and noise under different MethyCap protein and magnetic beads. CpG density 
at peak is CpG density at the point of highest coverage on the ‘coverage by CpG density plot’ (left 
y-axis). Noise is the ratio of average non-CpG coverage to average CpG coverage (right y-axis). 
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Figure 7. Methylated filler DNA is needed for low input methylation enrichment 

a) & b) Percentage of sequence reads mapped on CpG islands and CpG islands/shores/shelves 
across different methylation status of filler DNA. (N=4 for the first condition, N=3 for other 
conditions. Mean with SEM.) c) Coverage by CpG density plot across different methylation status 
of filler DNA. d) The CpG density at peak (left y-axis) and noise (right y-axis) of different 
methylation status of filler DNA. 
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Figure 8. Important pre-sequencing quality controls 

a) & b) Library concentration (ng/μl) measured by Qubit assay across different conditions. c) & d) 
Specificity of methylation enrichment measured by qPCR, using methylated and unmethylated 
spiked-in A. thaliana DNA control. 
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Figure 9. Saturation analysis across different DNA input 

Saturation analysis from the MEDIPS R package for the sequencing result of cfMBD-seq using 
different HCT116 DNA input (1, 10, 100, and 1000 ng) (a-d) and 3 ng cfDNA input (e-f). The 
saturation analysis determines if the given set of mapped reads is sufficient to generate a saturated 
and reproducible coverage profile of the reference genome. 
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Figure 10. Different amount of input DNA in cfMBD-seq 

a) Genome-wide Pearson correlations of normalized read counts between cfMBD-seq signal for 
1-1000 ng of input HCT116 DNA (2 technical replicates per concentration). The input control is 
from an input library of a ChIP-seq study (ENCODE: ENCFF280GWX). Log transformed counts 
were used in the scatter plots. b) & c) Percentage of sequence reads mapped on CpG islands and 
CpG islands/shores/shelves across different mixture of cfDNA and filler DNA. (N=4 for the first 
condition, N=2 for other conditions. Mean with SEM.) d) CpG density at peak (left y-axis) and 
noise (right y-axis) of different mixture of cfDNA and filler DNA. 
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Figure 11. Additional wash does not improve methylation enrichment 

a) Percentage of sequence reads mapped on different CpG annotations across different wash 
conditions. (N=4 for each condition. Mean with SEM.) b) CpG density at peak (left y-axis) and 
noise (right y-axis) of different wash conditions. 
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Figure 12. Effect of elution buffer in cfMBD capture 

a) Coverage by CpG density plot across elution buffers with different salt concentration. b) CpG 
density at peak (left y-axis) and noise (right y-axis) of different elution buffers. c) Percentage of 
sequence reads mapped on different CpG annotations across different wash conditions. (Mean with 
SEM.) d) Genome Browser snapshot of cfMBD-seq signal at the CpG island of MGAT3, which is 
used as an example in the manual of MethylCap kit. Data were processed by MEDIPS package for 
RPKMs normalization and were exported as wiggle files for visualization. e) Coverage by CpG 
density plot across multiple fractions of elution conditions. 
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Figure 13. Comparison of cfMBD-seq with low input MBD-seq and cfMeDIP-seq  

a) Receiver operating characteristic curve and corresponding area under the ROC curve for 
methylation status of CpG islands from Infinium HM450K data predicted by cfMBD-seq 
normalized read counts. b) & c) Percentage of sequence reads mapped on different CpG 
annotations (b) and CpG islands/shores/shelves (c) of cfMBD-seq (N=8), cfMeDIP-seq (N=24), 
and low input MBD-seq (N=4). (Mean with SEM.) d) Coverage by CpG density plot of cfMBD-
seq, cfMeDIP-seq, and low input MBD-seq.  
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Figure 14. cfMBD-seq shares similar methylation profile with cfMeDIP-seq 

Genome Browser snapshot of different input of HCT116 DNA signal by cfMBD-seq and cfMeDIP-seq across a region with consecutive 
CpG islands (chr8:86,703,816-86,880,439). Data were processed by MEDIPS package for RPKMs normalization and were exported as 
wiggle files for visualization. 
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Figure 15. cfMBD-seq recapitulates methylation profiles from other technologies  

Genome Browser snapshot of HCT116 cfMBD-seq signal across chr8:145,095,942-145,116,942, at different starting DNA input (1 to 
100 ng), compared with cfMeDIP-seq (Gene Expression Omnibus (GEO): GSE79838), RRBS (ENCODE: ENCSR000DFS), and 
WGBS (GEO: GSM1465024) data. For cfMBD-seq and cfMeDIP-seq, the y axis indicates RPKMs normalized reads; for RRBS, red 
and green blocks represent hypermethylated and hypomethylated CpGs, respectively. For WGBS track, peak heights indicate 
methylation level.
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Table 2. Comparison among cfMBD-seq, Low input MBD-seq, and cfMeDIP-seq 

  
 

cfMBD-seq (N=8) Low input MBD-
seq (N=4) 

cfMeDIP-seq (N=24) 

Experiment  
Filler DNA Methylated DNA only No filler Mixture of methylated 

and unmethylated DNA 

DNA Denaturation Not required Not required Required 

Capture protein MeCP2 MBD2 Anti-5mc 

Capture time 
5 hours (including 3 

hours incubation) 
5 hours (including 

3 hours 
incubation) 

23 hours (including 17 
hours overnight 

incubation) 

Quality Control 
 

Reads passed filter 83.15% 
[82.93%-83.68%] 

85.40% 
[85.03%-85.70%] 

74.90% 
[74.53%-75.45%] 

Duplicate rate 3.45% 
[3.40%-3.90%] 

2.65% 
[2.60%-2.78%] 

12.00% 
[9.00%-19.23%] 

Used reads 79.60% 
[79.15%-80.43%] 

82.75% 
[82.25%-83.10%] 

62.65% 
[55.60%-66.65%] 

Methylation Enrichment  
Reads on CpG 

islands 
60.13% 

[58.78%-60.81%] 
19.95% 

[19.25%-20.11%] 
38.16% 

[37.21%-41.28%] 
Reads on CpG 

islands/shores/shelves 
94.81% 

[94.61%-94.98%] 
85.70% 

[85.51%-85.76%] 
90.90% 

[90.91%-91.55%] 

CpG density at peak 29.98 
[29.54-30.33] 

15.76 
[15.41-15.88] 

22.88 
[22.37-23.50] 

Median along with [first quartile (Q1) - third quartile (Q3)] are shown.
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Chapter 3: Cancer detection and classification by hypermethylated CpG islands 

This section was previously published by Cancers, a peer-reviewed, open access journal of 

oncology, published semimonthly online by MDPI.  

[222] Huang, J.; Soupir, A.C.; Schlick, B.D.; Teng, M.; Sahin, I.H.; Permuth, J.B.; Siegel, E.M.; 

Manley, B.J.; Pellini, B.; Wang, L. Cancer Detection and Classification by CpG Island 

Hypermethylation Signatures in Plasma Cell-Free DNA. Cancers (Basel) 2021, 13, 

doi:10.3390/cancers13225611. 

3.1 Introduction 

Lung and colorectal cancer are among the most common causes of cancer-related deaths in the US, 

while pancreatic cancer is the deadliest form of solid malignancy with an alarming 10% five-year 

survival rate [223]. Detection of cancer at an early stage before metastasis can significantly reduce 

the mortality of these malignances. Methylation in cfDNA is a promising biomarker for the early 

detection of cancer. CpG islands-specific hypermethylation is a key characteristic of the cancer 

methylome [45]. Hypermethylation of CpG island can affect the cell cycle, DNA repair, 

metabolism, cell-to-cell interaction, apoptosis, and angiogenesis, all of which are involved in 

tumorigenesis and cancer progression [224]. CpG island hypermethylation has been described in 

almost every tumor type [45]. One of the most well-studied DNA methylation signatures is the 

methylation of SEPT9 promoter, which is an FDA-approved biomarker for colorectal cancer 

detection [225]. A blood-based test for methylated SEPT9 (Epi proColon) has been applied to 

plasma cfDNA in patients undergoing colorectal cancer screening, however this test has a 

relatively low sensitivity for the detection of early-stage colorectal cancer [226]. Additionally, Epi 

proLung is another plasma-based DNA methylation test that detects methylated PTGER4 and 
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SHOX2 promoters for the detection of lung cancer. Most recently, GRAIL lunched a methylation-

based blood test called Galleri that could detect a range of cancers. The trail results from in a small 

number of studies showed that Galleri was able to detect over 50 types of cancer even at an early 

stage. Galleri has so far been promising, but it needs to be tested further in larger trials. Overall, 

CpG island hypermethylation has demonstrated its great versatility and potential for the detection 

and management of cancer [227]. 

Enrichment-based methylation profiling methods such as methyl-CpG-binding domain sequencing 

(MBD-seq) and methylated DNA immunoprecipitation sequencing (MeDIP-seq) have shown 

similar sensitivity and specificity for the detection of differentially methylated regions (DMRs) 

when compared to bisulfite conversion-based methods [131]. Nonetheless, such technologies are 

restricted to tumor tissue application due to the need of high amounts of DNA input. To address 

this issue, Shen et al. optimized the MeDIP-seq protocol to allow methylome analysis of small 

quantities of cfDNA, termed cfMeDIP-seq [134,135]. cfMeDIP-seq has shown high accuracy in the 

classification of a wide variety of cancer types [134] and characterization of renal cell carcinoma 

patients across all stages [136,137]. To expand the use of enrichment-based methods in cfDNA, we 

optimized the MBD-seq protocol for low input cfDNA methylation profiling, termed cfMBD-seq 

[101]. We previously showed that cfMBD-seq provides higher sequencing data quality with more 

sequenced reads passing filter and a lower duplicate rate than cfMeDIP-seq. cfMBD-seq also 

outperforms cfMeDIP-seq in the enrichment of high CpG density regions (i.e., CpG islands) [101]. 

However, the clinical feasibility of cfMBD-seq is unknown. Based on our previous findings, we 

hypothesized that cfMBD-seq can identify hypermethylated CpG islands as biomarkers for cancer 

detection and classification. In this study, we applied cfMBD-seq to the plasma samples of patients 

with advanced lung, colorectal, and pancreatic cancer and cancer-free individuals to determine 
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whether cfMBD-seq can reliably identify differentially methylated regions (DMRs) between cases 

and controls. We also investigated whether these DMRs enable accurate discrimination between 

different cancer types (Figure 16). 

3.2 Material and methods 

3.2.1 Sample acquisition and clinical cohort 

The study subjects were recruited at Moffitt Cancer Center following Total Cancer Care protocol 

(https://moffitt.org/research-science/total-cancer-care/). A total of 53 subjects including colorectal 

(N=13), lung (N=12), pancreatic (N=12) cancer patients, and non-cancer controls (N=16) were 

used in this study (Clinical demographic characteristics in Table 3). All cancer patients had 

metastatic disease at the time of sample collection. Most cancer patients had adenocarcinoma 

histology: 11 of 13 were colorectal adenocarcinoma; 9 of 12 were lung adenocarcinoma; and 10 

of 12 were pancreatic adenocarcinoma. Subjects in the non-cancer cohort were specifically 

negative for any form of cancer. Samples were randomized and blinded during cfDNA extraction, 

library preparation, and sequencing. Samples were unblinded during data analysis. All patients 

provided written informed consent. The study was approved by Institutional Review Boards (IRB# 

00000971) of H. Lee Moffitt Cancer Center & Research Institute (MCC 20563). 

3.2.2 Plasma sample collection 

Moffitt Cancer Center Total Cancer Care followed standard operating procedure for blood 

sampling: Whole blood specimens were obtained by routine venous phlebotomy and collected in 

Purple top EDTA blood tubes. Plasma was isolated from whole blood at the time of subject 

enrollment. Centrifugation of whole blood was performed at 1300 x g for 10min at room 

temperature. Plasma layer was transferred into 1.5 ml cryovials and stored as three 1mL aliquots. 

Plasma samples were frozen immediately at -80 ℃ after isolation.  
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3.2.3 cfDNA extraction 

Plasma samples were thawed and centrifuged at 3,000g for 15 mins to ensure complete depletion 

of cell debris. cfDNA was extracted using the QIAamp Circulating Nucleic Acid Kit (Qiagen; 

Hilden, Germany) following the manufacturer’s protocol, except for the addition of carrier RNA 

in Buffer AVE. All cfDNA eluates were quantified by a Qubit Fluorometer using the iQuant™ 

NGS-HS dsDNA Assay Kit (Genecopoeia; Rockville, MD, USA) and then submitted to Moffitt 

Cancer Center Molecular Genomics Core for D1000 ScreenTape Assay (Agilent; Santa Clara, CA, 

USA) to ensure the absence of high molecular weight DNA contamination from white blood cell 

lysis.  

3.2.4 Filler DNA generation 

To generate filler DNA, Enterobacteria phage λ DNA was polymerase chain reaction (PCR) 

amplified with the GoTaq Master Mix (Promega; Madison, WI, USA). Primers sequences are as 

follows: Forward primer 5’- CGATGGGTTAATTCGCTCGTTGTGG-3’, reverse primer 5’-

GCACAACGGAAAGAGCACTG-3’. The 274 bp amplicons were treated with CpG 

methyltransferase (M.SssI; Thermo Fisher Scientific) to methylate amplicons. Methylated 

amplicons were purified by the DNA Clean & Concentrator-5 Kit (ZYMO Research; Irvine, CA, 

USA) and quantified by Qubit Fluorometer. CpG methylation-sensitive restriction enzyme 

HpyCH4IV (New England BioLabs; Ipswitch, MA, USA) digestion followed by agarose gel 

electrophoresis was performed to ensure complete methylation of filler DNA. 

3.2.5 Library preparation 

cfDNA was subjected to end repair/A-tailing and adapter ligation using the KAPA Hyper Prep Kit 

(Kapa Biosystems; Wilmington, MA, USA) with the sequencing adapter from NEBNext Multiplex 

Oligos for Illumina (New England BioLabs). The amount of adapter was adjusted to an adapter: 
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insert molar ratio of 200:1. Adapter-ligated DNA were purified with 0.8 x SPRI Beads (Beckman 

Coulter; Pasadena, CA, USA) and digested with USER enzyme (New England BioLabs) followed 

by purification with the DNA Clean & Concentrator-5 Kit. Adapter ligated DNA was first 

combined with methylated filler DNA to ensure that the total amount of input for methylation 

enrichment was 100 ng, which was further mixed with 0.2 ng of methylated and 0.2 ng of 

unmethylated spike-in A. thaliana DNA from the DNA Methylation control package (Diagenode, 

Seraing, Belgium). 

3.2.6 cfMBD methylation capture 

The DNA mixture was subjected to methylation enrichment using the MethylCap Kit (Diagenode) 

following the manufacture’s protocol with some modifications. Total volume brought up by Buffer 

B was reduced from 141.8 μl to 136 μl to minimize DNA waste. The amount of MethylCap protein 

and magnetic beads were decreased proportionally according to the recommended input DNA to 

protein and beads ratio (0.2 μg protein and 3 μl beads per 100 ng DNA input). MethylCap protein 

was 10-fold diluted to 0.2 μg/μl using Buffer B. Single fraction elution with High Elution Buffer 

was applied. The eluted fraction was purified by DNA Clean & Concentrator-5 Kit. The purified 

DNA was divided into two parts, one for qPCR (PowerUp™ SYBR™ Green Master Mix, Thermo 

Fisher) amplification of spiked-in DNA for methylation enrichment quality control, another for 

library amplification. Recovery of the spiked-in methylated and unmethylated controls can be 

calculated based on cycle threshold (Ct) value of the enriched and unenriched samples. Specificity 

of the capture reaction can be calculated by (1 - [recovery of unmethylated control DNA over 

recovery of methylated control DNA]) × 100). The specificity of the reaction should be ≥99% 

before proceeding to the next step. 
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3.2.7 DNA sequencing and alignment 

Methylation-enriched DNA libraries were amplified as follows: 95 °C for 3 min, followed by 12 

cycles of 98 °C for 20 s, 65 °C for 15 s and 72 °C for 30 s and a final extension of 72 °C for 1 min. 

During the amplification, unique indexes from primer (NEBNext Multiplex Oligos for Illumina) 

were added to the sequencing adapter of each sample. The amplified libraries were purified using 

1 x SPRI Beads followed by a dual size selection (0.6 x followed by 1.2 x) to remove any adapter 

dimers. All final libraries were first quantified with the Qubit assay and qPCR-based assay using 

the NEBNext® Library Quant Kit for Illumina® (New England BioLabs) and then submitted to 

Moffitt Cancer Center Molecular Genomics Core for D1000 ScreenTape Assay for the 

measurement of fragment size. Libraries were sequenced on the NextSeq 550 platform (Illumina; 

San Diego, CA, USA), high-output 75 bp single-end read, multiplexed as 12 samples per run. After 

sequencing, quality control for raw sequence reads was performed using fastp (Version 0.20.1) 

[155] with the default settings. The sequence reads were then aligned to the human genome (hg19) 

using Bowtie-2 (Version 2.4.2) [166] with default settings. After the alignment, the generated sam 

files were converted to bam files, followed by sorting, indexing, removal of duplicate reads, and 

extraction of read count on chr1 - chr22 using SAMtools (Version 1.11) [216] ‘view’, ‘sort’, ‘index’, 

and ‘markdup’ command lines. 

3.2.8 Quality control of methylation enrichment 

R (Version 4.0.3 or greater) package RaMWAS (Version 1.12.0) [175] with default parameters was 

used for quality control of overall mapping quality and calculation of non-CpG reads percentage, 

non-CpG/CpG coverage (noise), and CpG density at peak. CpG annotation reference was obtained 

from R package annotatr (Version 1.16.0): annots='hg19_cpgs'. BEDtools (Version 2.28.0) [217] 

‘coverage’ command line was used to call the number of sequenced reads on each CpG feature. 
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Read counts of each CpG feature and each sample was combined as a count matrix. Transcripts 

per kilobase million (TPM) normalization was performed before comparing the percentage of CpG 

feature read counts between different groups.  

3.2.9 Differential methylation analysis of cfMBD-seq data 

Rows with inter CpG regions and zero read count among all samples were filtered out from CpG 

feature raw count matrix. Filtered matrix were further subset for single cancer type and non-cancer 

control and fit a negative binomial model to call DMRs at Benjamini-Hochberg false discovery 

rate (BH-FDR) <0.1 (Wald test) using R package DESeq2 (Version 1.32.0) [191]. R package 

EnhancedVolcano (Version 1.10.0) [228] was used for visualization of fold change and BH-FDR 

(q value) for all CpG islands and extended CpG islands. Unsupervised hierarchical clustering was 

performed on Partek genomics suite (Version 7.0) for visualization of DMCGIs, using log 

transformed DESeq2 normalized values, z scores, Euclidean distance, and Ward Clustering. R 

package pcaExplorer (Version 2.18.0) [229] was used for principal component analysis of DESeq2 

normalized values of top 1,000 differentially hypermethylated CpG islands (DMCGIs) selected by 

highest row variance. The 95% confidence ellipses for the case and control were displayed. Plasma 

derived DMCGIs with fold change >2 were used for intersection with tissue derived DMCGIs. 

3.2.10 Methylation analyses for tumor tissue specific DMCGIs 

HM450K data of primary tumors and adjacent normal tissues from patients with colon 

adenocarcinoma (COAD) (35 pairs), lung adenocarcinoma (LUAD) (21 pairs), and pancreatic 

adenocarcinoma (PAAD) (10 pairs) were acquired from TCGA. HM450K data of non-cancer 

individuals’ PBMCs (N=61) from GEO (non-smoker controls in GSE53045) were also used to 

deconvolute clonal hematopoiesis effect. R package minfi (Version 1.36.0) [181] was used to call 

DMCs (Mean of delta beta value >0.2 and BH-FDR <0.1) between primary tumor and normal 
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tissue / non-cancer PBMCs. R package EnhancedVolcano was used for visualization of delta beta 

value and q value (FDR) for all HM450K CpG sites. To make tissue derived DMCs comparable 

with plasma derived DMRs, all DMCs were annotated to a hg19 HM450K annotation file and their 

corresponding CpG islands were identified for intersection. Tissue-derived DMCGIs were 

identified by intersecting DMCGIs from plasma cases vs controls, primary tumors vs. normal 

tissues, and primary tumors vs. PBMCs. Tissue-specific DMCGIs were identified by intersecting 

colorectal, lung, and pancreas-derived DMCGIs. Venn diagrams were used for visualization of the 

intersection.  

3.2.11 Machine learning analyses 

Two independent cohorts were used for machine learning analyses: cfMeDIP-seq cohort and 

HM450K cohort. cfMeDIP-seq data of lung cancer patients (N=80) and non-cancer individuals 

(N=86) were used for evaluation of early cancer detection in plasma cfDNA. An independent 

HM450K cohort including primary tumors from TCGA (N=210 for COAD, N=385 for LUAD, 

and N=162 for PAAD) was used for evaluation of cancer classification performance. HM450K 

data were converted to a CpG islands beta value matrix by calculating the mean beta values of 

CpG sites annotated to the same CpG island. R package Caret (Version 6.0-88) [230] was used to 

partition the discovery cohort data into 100 class-balanced independent training and testing sets in 

an 80–20% manner. Top overlapping DMCGIs between cfMBD-seq and HM450K datasets were 

selected for predictive modeling analyses. R package glmnet (Version 4.1-2) [231] was used to 

preform regularized logistic regression model on the training sets. LASSO regularization method 

(alpha=1) with 10-fold cross validation was applied to determine minimum lambda penalty value. 

The entire process was repeated 100 times to prevent training-set biases. DMCGIs with non-zero 

coefficient across all repeats were determined as cancer classifiers. Performance of the predictive 
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models was evaluated on the held-out testing set using ROC statistics. R package Rtsne (Version 

0.15) [232] was used for generation of t-sne plot to visualize cancer classification in cfMBD-seq, 

cfMeDIP-seq, and HM450K data sets.  

3.2.12. Data availability statement 

R scripts and git bash used to generate the results in this study are available on GitHub 

(https://github.com/LiangWangLab/cfMBD-seq-clinical). The cfMBD-seq next-generation 

sequencing data of patient plasma samples are available upon request from the author to comply 

with institutional ethics regulations. Deidentified cfMBD-seq raw read count matrices for all CpG 

islands are available in https://www.mdpi.com/article/10.3390/cancers13225611/s1. The 

cfMeDIP-seq sequencing data are available upon request from the Shen et al. group [134]. The 

HM450K dataset is publicly available in The Cancer Genome Atlas and Gene Expression Omnibus. 

Primary tumor and adjacent normal tissue data can be acquired using the manifest in 

https://www.mdpi.com/article/10.3390/cancers13225611/s1. Peripheral blood mononuclear cell 

data can be found in GSE53045 (non-smoker controls). 

3.3 Results 

3.3.1 Significant enrichment of methylated CpG islands in cfDNA 

To study the clinical feasibility of cfMBD-seq, we retrospectively profiled cfDNA methylome of 

53 blood samples from patients with metastatic carcinoma of the colon/rectum (N=13), lung 

(N=12), and pancreas (N=12), and from cancer-free individuals (N=16). We quantified cfDNA 

concentration from plasma samples and showed that cancer patients had higher cfDNA yield than 

non-cancer controls (Figure 17a). To investigate methylation capture efficiency of cfMBD-seq, 

we compared spiked-in controls between methylated and unmethylated A. thaliana DNA in the 

capture reaction and observed a median specificity at 99.3% [99.16% (Q1) - 99.43% (Q3)] across 
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all samples (Figure 17b). From sequencing data, we filtered out duplicate reads and reads with 

low alignment scores from total sequence reads (41.62 [38.75 - 44.43] million) and obtained 35.33 

[32.77 - 37.37] million high-quality reads (Figure 17c). We then investigated genome-wide 

methylation enrichment and found that the number of captured fragments without any CpG tandem 

accounted for only 1.47% [1.33% - 1.59%] of high-quality reads (Figure 17d). The coverage ratio 

of fragments without any CpG tandem to fragments with at least one CpG, known as noise, was 

0.15 [0.13 - 0.17] (Figure 17e). The median CpG density of fragments with the highest read 

coverage was 25.2 [24.2 - 25.7] (Figure 17f), corresponding to high-CpG density regions - CpG 

islands. Intrigued by the high sequencing coverage on CpG islands, we further studied the 

distribution of sequence reads by calculating the percentage of normalized reads on different CpG 

annotation features (i.e., CpG islands, CpG shores, CpG shelves, and inter CpG regions). We found 

a median of 42.16% [39.47 - 45.15] of reads mapped to CpG islands, when CpG islands only 

account for 0.7% of the hg19 reference genome (Figure 18a&d). Since methylation alterations 

may occur at a short distance away from the CpG islands [218], we also calculated the sum of reads 

mapped to extended CpG islands (i.e., CpG islands, CpG shores, and CpG shelves). A median of 

91.46% [90.89% - 92.13%] of reads were mapped to the extended CpG islands, which accounts 

for only 6.72% of the reference genome (Figure 18b-d). These results demonstrate that most of 

the sequence reads captured by cfMBD-seq were significantly enriched on CpG island-centered 

regions, illustrating successful cfMBD-seq methylation enrichment and library construction across 

all samples.  

3.3.2 Differential methylation analyses between cases and controls 

To identify differences in methylation patterns between cases and controls, we generated a read 

count matrix for each cancer type versus non-cancer control. In this matrix, each row represents a 
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different CpG feature, and each column represents a unique individual sample. We then removed 

rows annotated as inter CpG and rows with 0 read count across all samples and obtained 115459 

genomic regions. Next, we performed differential methylation analysis based on a negative 

binomial model of feature counts at a significance level of 0.1 using Benjamini-Hochberg false 

discovery rate (BH-FDR) and identified 2722, 3033, and 2831 DMRs for colorectal, lung, and 

pancreatic cancer, respectively (Figure 19a-c). We further filtered these DMRs using a more 

stringent criteria: absolute fold change >2, which resulted in 2009 DMRs (2007 hypermethylated 

and 2 hypomethylated) in colorectal cancer, 1818 DMRs (1814 hypermethylated and 4 

hypomethylated) in lung cancer, and 1488 DMRs (1482 hypermethylated and 6 hypomethylated) 

in pancreatic cancer. As the majority of the remaining DMRs were hypermethylated, and most of 

them were CpG islands (97%, 85%, and 93% in colorectal, lung and pancreatic cancer patients, 

respectively), to enhance computational efficiency, we reduced our dataset to 26441 CpG islands 

and applied the same criteria for differential methylation analysis (BH-FDR<0.1 and fold 

change >2). This optimized analysis identified 1759, 1783, and 1548 differentially 

hypermethylated CpG islands (DMCGIs) in colorectal, lung, and pancreatic cancer, respectively 

(Figure 19d-f). Unsupervised hierarchical clustering of the top 100 hypermethylated CpG islands 

ranked by p-value well distinguished cancer patients from non-cancer individuals by dividing these 

groups into two clusters (Figure 20). Principal component analysis (PCA) using the top 1000 

DMCGIs revealed partitioning of cancer patients from the non-cancer controls (Figure 21). In the 

PCA plots, non-cancer samples clustered tightly together, while cancer samples were not clustered, 

which may be attributed to tumor heterogeneity. These combined findings suggest that cfMBD-

seq can reliably identify DMCGIs between the plasma cfDNA of cancer patients and non-cancer 

controls.  
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3.3.3 Overlap between tissue-derived and cfDNA-derived DMCGIs 

To explore whether the DMCGIs detected by cfMBD-seq were originated from tumor tissues, we 

acquired Infinium HumanMethylation450 BeadChip (HM450K) data of primary tumors and 

matched adjacent normal tissues from the same patients, including colon adenocarcinoma (COAD, 

35 pairs), lung adenocarcinoma (LUAD, 21 pairs), and pancreatic adenocarcinoma (PAAD, 10 

pairs) from The Cancer Genome Atlas (TCGA) (Figure 22a). We identified 21274, 7635, and 

7458 hypermethylated differentially methylated CpG sites (DMCs) (Mean of Dbeta value >0.2, 

BH-FDR<0.1, F-test) between primary tumors and matched normal tissues of COAD, LUAD, and 

PADD, respectively (Figure 22b-d). To make HM450K results comparable to cfMBD-seq, we 

excluded the DMCs that were not annotated to CpG islands and kept the remaining 94.05%, 

84.44%, and 90.73% of DMCs in the three cancer types. After further removal of duplicated CpG 

islands, we obtained 4630, 2588, 2478 unique DMCGIs for COAD, LUAD, and PAAD, 

respectively. As non-tumor-derived cfDNA is mostly released from peripheral blood mononuclear 

cells (PBMCs), we conducted an analysis to determine whether the DMCGIs identified by cfMBD-

seq were not derived from clonal hematopoiesis differences between cases and controls. For this 

purpose, we performed similar differential methylation analyses between HM450K data of 

primary tumors and cancer-free individuals’ PBMCs (N=61 from Gene Expression Omnibus 

(GEO), non-smoker controls in GSE53045) and identified a set of DMCs for each cancer type 

(Figure 22e-g). After annotation and exclusion of DMCs, we obtained 7838, 4906, and 5613 

unique DMCGIs for COAD, LUAD, and PAAD, respectively. Intersection analyses of three sets 

of DMCGIs showed that 84.5% of colorectal (1486/1759), 52.7% of lung (939/1783), and 57.9% 

of pancreatic (896/1548) cancer DMCGIs detected by cfMBD-seq overlapped with not only 

DMCGIs between primary tumor and adjacent normal tissue, but also DMCGIs between primary 
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tumor and PBMCs (Figure 22h). These findings suggest that plasma derived DMCGIs detected 

by cfMBD-seq were mainly driven by tumor-specific DNA methylation patterns rather than by 

background noise of cell composition in the tumor microenvironment. 

3.3.4 Differentially methylated CpG islands for lung cancer detection 

Since most HM450K data are originated from early-stage cancer tumor tissue samples, we 

hypothesized that the identified overlapping DMCGIs can be used for the early cancer detection. 

To test this hypothesis, we acquired an additional cohort of 166 plasma samples including 80 lung 

cancer patients (N=22 with early-stage disease) and 86 non-cancer individuals from a previous 

cfMeDIP-seq study [134] (Figure 23a). t-distributed stochastic neighbor embedding (t-sne) plot 

using the 939 overlapping lung cancer DMCGIs identified a clear separation between lung cancer 

and non-cancer individuals in the cfMeDIP-seq cohort, and only 5 individuals were misclassified 

(Figure 23b). To rigorously evaluate the utility of these overlapping DMCGIs for cancer detection, 

we selected the top 300 lung cancer DMCGIs based on their rank on fold change in the cfMBD-

seq results and carried out a set of machine learning analyses on the cfMeDIP-seq cohort. We 

randomly split these samples into balanced training (80%) and testing (20%) sets. To select the 

most discriminating markers, we trained a series of case-versus-control binomial generalized linear 

models (logistic regression) with least absolute shrinkage and selection operator (LASSO) 

regularization using these top features on the training sets. The process was repeated 100 times to 

prevent training-set biases. Eventually, we identified 3 DMCGIs (chr1:243646395-243646888, 

chr8:99985734-99986983, and chr21:38068194-38073891) that had non-zero coefficients across 

all repeats and selected those as cancer classifier. The normalized sequence reads of the 3 DMCGIs 

were significantly higher in lung cancer patients than in non-cancer individuals (Figure 23c). To 

evaluate the performance of the classifier, we fit the predictive model on the testing dataset and 
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used receive operating characteristic (ROC) statistics to calculate area under the ROC curve (AUC) 

for evaluation. The results showed that the model can predict lung cancer in the testing set with 

high accuracy (AUC=0.949 [0.929-0.982]) (Figure 23d). Using only the 3 DMCGIs for t-sne plot, 

all samples were correctly classified (Figure 23e). These results suggest that early cancer detection 

is possible when using tissue-specific DMCGIs identified by cfMBD-seq. 

3.3.5 Differentially methylated CpG islands for cancer classification 

To further investigate the candidate DMCGIs shared between cfDNA and tumor tissue, we 

intersected the three sets of selected DMCGIs for colorectal (N=1486), lung (N=939), and 

pancreatic (N=896) cancer. We identified a total of 1271 cancer type specific DMCGIs, including 

738 for colorectal cancer, 370 for lung cancer, and 163 for pancreatic cancer. Also, a total of 266 

DMCGIs were shared by these three cancer types (Figure 24a). To rigorously evaluate the 

performance of these cancer-type specific DMCGIs in cancer classification, we acquired an 

additional independent TCGA HM450K data cohort including primary tumors for COAD (N=210), 

LUAD (N=385), and PAAD (N=162) (Figure 24b). To convert HM450K data to CpG islands-

based beta value, we filtered out CpG sites that weren’t annotated to CpG islands from 485577 

HM450K locus and used the remaining 309465 CpG sites for subsequent analysis. Given the 

methylation level between neighboring CpG sites are positively correlated, we calculated the mean 

beta values of CpG sites annotated to the same CpG island and generated a beta value matrix for 

all CpG islands. We then performed similar machine learning analyses on the HM450K cohort 

using the top 100 cancer type-specific DMCGIs. The analyses consisted of 4:1 sample partition, 

LASSO regularization, and logistic regression modeling. Rather than a case-versus-control model, 

here we built a one-versus-all-others model for each cancer type. After 100 repeats of the training 

process, we identified 3 colorectal, 16 lung, 6 pancreatic specific DMCGIs (non-zero coefficients) 
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as cancer type classifier. Again, we fit the predictive model on the held-out testing set and applied 

ROC statistics for evaluation. The results showed great performance in the prediction of cancer 

type (median AUC=1 for COAD, 1 for LUAD, and 0.989 for PAAD). Methylation levels of cancer 

type specific DMCGIs are higher in its specific cancer type than in other cancer types (Figure 

24c). To better visualize the classification performance, we generated t-sne plot using these cancer 

type classifiers and observed clear separation by tumor type in the cfMBD-seq plasma cohort 

(Figure 24d). This separation was notably reproduced in the HM450K cohort of 757 cancer tissue 

and 61 blood cell samples (Figure 24e). These results indicate the robust ability of cfMBD-seq to 

recover tumor tissue-derived methylation profiles in cfDNA across a range of cancer types and 

enable cancer type classification. 

3.3.6 Gene annotation of differentially methylated CpG islands 

To gain an understanding of the biological process behind cancer type specific DMCGIs, we linked 

these DMCGIs to their associated genes (Table 4). Some DMCGIs were annotated to gene 

promoter regions. We found that several genes with promoter CpG island hypermethylation are 

implicated in immune response, which is generally downregulated in cancer [233]. For example, 

the protein encoded by PTGER4 is a member of the G-protein coupled receptor family that can 

activate T-cell factor signaling [234]. We not only identified DMCGIs in gene promoter regions, 

but also found DMCGIs in gene bodies and intergenic regions. (Table 4). In contrast to promoter 

CpG islands hypermethylation that prevents gene expression, hypermethylation in gene body CpG 

islands can enhance gene expression levels [235]. Consistent with our findings, several genes with 

gene body hypermethylation were associated with the regulation of developmental processes. For 

example, the protein encoded by WNT6 and HOXB8 has been implicated in oncogenesis and in 

several developmental processes such as embryogenesis. Overexpression of both WNT6 and 



 

76 
 

HOXB8 plays key roles in carcinogenesis [236,237]. These results suggest that cfMBD-seq can 

capture tumor relevant biological signals in the plasma cfDNA methylome. Taken together, our 

results indicate that DMCGIs in cfDNA are useful in cancer detection and classification, 

suggesting that tumor-derived epigenomic signals are retained in the cfDNA methylome profiled 

by cfMBD-seq. 

3.4 Discussion 

Blood-based assays that can identify the tissue of origin associated with cfDNA fragments could 

be instrumental in detecting and classifying malignancies based on histological subtypes. In this 

study, we highlight the potential of hypermethylated CpG islands in cancer detection and 

classification. Generally, sequencing data from methylation enrichment-based methods are 

analyzed by comparing the relative abundance of captured fragments. The genome is divided into 

non-overlapping adjacent genomic windows of a specified width and the number of sequencing 

read counts is called for each window. Taking 300 bp window as an example, there will be more 

than 10 million genomic regions which requires a significant amount of computing memory. In 

this study, instead of genomic windows, we called read counts according to CpG annotation 

features. This is because MBD methylation enrichment has bias toward hypermethylation on high 

CpG density regions [140]. We found that 42.16% of the sequence reads in this study were mapped 

to CpG islands, and that 91.46% of the reads were mapped to the extended CpG islands, which 

account for only a small fraction of the human genome (Figure 18). Therefore, by excluding the 

large fraction of low value inter CpG regions, the computational efficiency was significantly 

enhanced. Additionally, well established RNA-seq data analysis packages such as DESeq2 can be 

directly applied to the CpG features read count matrix. Together, this CpG island-centered strategy 

is a preferred data analysis method for cfMBD-seq.  
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Differential methylation analysis based on a negative binomial model of CpG island read counts 

identified overwhelming differentially hypermethylated CpG islands (Figure 19). This is 

consistent with the fact that the tumor methylome is characterized by DNA methylation alterations 

with CpG islands-specific hypermethylation. Unlike genomic DNA from primary tumor tissue that 

can perfectly discriminate from non-cancer specimens, cfDNA in blood has much lower tumor-

derived signal and much higher confounding signals from normal cells. Additionally, pre-

analytical factors such as plasma collection and cfDNA library preparation can also affect the 

identification of methylation signatures. These factors may partially explain why both clustering 

and principal component analysis didn’t perfectly segregate cancer and non-cancer specimens 

(Figure 21). In this study, confounding factors such as age and gender were not well matched 

between the cases and controls, which may result in false positive DMCGIs. To assess whether 

the DMCGIs identified by cfMBD-seq represented tumor-derived DNA methylation changes, we 

compared our findings against the HM450K primary tumor tissue data. We first identified a set of 

DMCGIs between paired primary tumor tissues and adjacent normal tissues. Since non-tumor-

derived cfDNA released from blood cells can also lead to false positive results, we then identified 

a set of DMCGIs between primary tumor tissues and non-cancer PBMCs to deconvolute the clonal 

hematopoiesis effect. In our intersection analysis, the majority of the DMCGIs identified in plasma 

using cfMBD-seq were consistent with tumor tissue-derived DMCGIs across all analyzed cancer 

types (Figure 22h).  

The main limitation of this study is the small sample size which prevented us from building 

prediction models using cfMBD-seq dataset. Instead, we selected to use the cfMeDIP-seq and 

HM450K datasets for predictive modeling. In the LASSO regularized logistic regression analysis 

using overlapping lung cancer DMCGIs in cfMeDIP-seq dataset, the model was able to 
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discriminate lung cancer patients and non-cancer controls in the testing set with high accuracy 

(Figure 23d). However, when we tried fitting the model to our cfMBD-seq dataset for validation 

purpose, the prediction performance was relatively poor (data not shown). Although the 

methylation capture principle and data analysis pipelines of these two technologies are highly 

similar, the capture efficiencies on fragments with different CpG density are different. cfMeDIP-

seq preferentially enriches methylated regions with a modest CpG density, while cfMBD-seq 

captures a broad range of CpG densities and identifies a larger proportion of CpG islands [101]. 

These differences may explain the inferior performance of the classifier in our study cohort. 

Additionally, it is important to note that HM450K and cfMBD-seq are completely different 

technological platforms. Unlike bisulfite conversion-based HM450K, cfMBD-seq is an 

enrichment-based method that cannot provide the absolute methylation level at each CpG site. 

Taking advantage of the fact that the methylation level between neighboring CpG sites is positively 

correlated, we transformed the CpG sites beta value matrix into a CpG islands beta value matrix. 

This transformation not only mitigates the disadvantage that HM450K has poor coverage of all 

CpG sites, but also makes HM450K data comparable with cfMBD-seq DMCGIs. However, since 

HM450K data are derived from tumor tissue genomic DNA, cancer type classifiers identified from 

the predictive models cannot be directly applied for cancer classification on plasma cfDNA-based 

methylation data. Future studies with larger patient cohorts are needed to validate our findings. 

The potential clinical application of cfMBD-seq is worth discussing. Currently, PCR-based assays 

such as Epi proColon have been approved by FDA for clinical detection of cancer. However, PCR-

based assays are restricted by their low throughput nature and thus is only suitable for the detection 

of a specific cancer type. On the other hand, sequencing-based assays are more feasible for pan-

cancer screening. GRAIL takes advantages of targeted bisulfite sequencing by combining 
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methylation signatures of different cancer types and achieves high accuracy in multi-cancer early 

detection. Adela is a recently established company that is focused on the detection of cancer by 

means of cfMeDIP-seq, another enrichment-based cfDNA methylation profiling method. Adela 

debuts with $60 million in Series A financing and is ready to translate to the clinic. The success of 

Adela gives promise to cfMBD-seq since it outperforms cfMeDIP-seq in many aspects. cfMBD-

seq is capable of efficiently capturing and preferentially targeting the methylated CGIs from the 

entire methylome using ultra-low input of plasma cfDNA. Unlike targeted bisulfite sequencing, 

this enrichment-based profiling method shows robust cancer detection and classification 

performance without the need of complicated primer and probe design procedures for the bisulfite-

converted sites. For the detection of a specific cancer type, although cfMBD-seq is cost-efficient 

among sequencing-based assays, it is still less competitive in price compared to PCR-based assays. 

Nonetheless, for a minimally invasive early cancer detection test applied in the general populations, 

pan-cancer screening is preferred. Overall, cfMBD-seq has a promising future in translation to 

clinic, but reliable classifiers for more cancer types remain to be identified. 

In this proof of principle study, we provide important insights into the possible future clinical 

applications of cfMBD-seq. Highlights of the study include: 1) cfMBD-seq enables the 

identification of cancer-associated DMCGIs from plasma cfDNA in cancer patients; 2) the 

identified DMCGIs are mainly driven by tumor-specific DNA methylation patterns and 

demonstrate promise for future studies using this technology for cancer detection and classification; 

3) the most discriminating DMCGIs selected by our prediction models are associated with 

important biological processes that are contribute to carcinogenesis. In summary, cfMBD-seq is a 

non-invasive, cost-effective, bisulfite-free, and sensitive methylation profiling method for 

capturing of hypermethylated CpG islands in cfDNA. This study demonstrates potential clinical 
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feasibility of cfMBD-seq. The current results provide considerably strong justification for future 

biomarker discovery and validation in large-scale patient populations. Our findings underscore the 

utility of differentially hypermethylated CpG islands in cfDNA for accurate cancer detection and 

multi-cancer classification. 
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Figure 16. Workflow chart of data generation and analysis 

BH-FDR, Benjamini-Hochberg false discovery rate; DMRs, differentially methylated regions; 
DMCGIs, differentially methylated CpG islands; LASSO, least absolute shrinkage and selection 
operator. 
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Figure 17. Quality controls of cfMBD-seq 

a. cfDNA concentration (ng cfDNA per ml plasma) from colorectal cancer (N=13), lung cancer 
(N=12), pancreatic cancer (N=12) patients, and non-cancer controls (N=16). b. Specificity of MBD 
methylation capture reaction across different groups (i.e., Healthy, non-cancer individuals; 
Colorectal, colorectal cancer patients; Lung, lung cancer patients; Pancreas, pancreatic cancer 
patients) calculated using qPCR Ct value of meth-ylated and unmethylated spiked-in A. thaliana 
DNA. c. Total sequence reads and high-quality sequence reads across different groups. d. 
Percentage of sequence reads that doesn’t contain any CpG tandem across different groups. e. 
Ratio of average non-CpG coverage to average CpG coverage across different groups. Non-CpG 
coverage is defined as the average coverage of fragments without any CpG tandem. CpG coverage 
is defined as the average coverage of fragments with no less than one CpG tandem. f. CpG density 
at peak across different groups. CpG density is defined as number of CpG tandems per fragment. 
Peak is defined as fragments with highest coverage.  
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Figure 18. Quality controls of CpG islands-centered enrichment 

a. Percentage of transcripts per million (TPM) normalized reads on CpG islands across different 
groups. b. Percentage of TPM normalized reads on CpG islands/shores/shelves across different 
groups. For all box plots, the extremes of the boxes represent the upper and lower quartiles, and 
the center lines define the median. Whiskers indicate 1.5x interquartile range. c. Percentage of 
sequencing coverage across different CpG annotation features (i.e., CpG islands, CpG shores, CpG 
shelves, and inter CpG regions) for all samples. d. Percentage of different CpG annotation features 
in base pair size in hg19 human genome. For all box plots, the extremes of the boxes represent the 
upper and lower quartiles, and the center lines define the median. Whiskers indicate 1.5x 
interquartile range.  
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Figure 19. Differentially methylated regions between cases and controls 

a-c. Volcano plots of differentially methylated regions (DMRs) at extended CpG islands (CGI) 
(i.e., CpG islands, CpG shores, and CpG shelves) between colorectal cancer (N=13) (a) / lung 
cancer patients (N=12) (b) pancreatic cancer (N=12) (c) and non-cancer controls (N=16). Black 
dots indicate non-significant regions. Blue and red dots indicate statistical significance at 
Benjamini-Hochberg false discovery rate (FDR) < 0.1 (negative binomial model, Wald test). Red 
dots also indicate regions with absolute fold change (FC) >2. d-f. Volcano plots of DMRs at CpG 
islands between colorectal cancer (d) / lung cancer patients (e) pancreatic cancer (f) patients and non-
cancer controls.  
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Figure 20. Heatmap of cfMBD-seq DMRs between cases and controls 

a-c. Unsupervised hierarchical clustering (z scores normalization of DESeq2 normalized counts, Euclidean 
distance, and Ward Clustering) of the top 100 differentially hypermethylated CpG islands between 
colorectal cancer (a) / lung cancer (b) / pancreatic cancer (c) patients and non-cancer controls. Dendrogram 
shows separation by sample type (case or control).  
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Figure 21. Principal component analysis of DMRs detected by cfMBD-seq  

a-c. Principal component analysis using DESeq2 normalized counts of top 1,000 differentially 
hypermethylated CpG islands between colorectal cancer (a) / lung cancer (b) / pancreatic cancer (c) 
patients and non-cancer controls. The 95% confidence ellipses for the case and control are 
displayed. d-f. Proportion of variance explained by each principal component.
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Figure 22. HM450K DMCs between primary tumors and normal tissues / blood cells 

a. Pathology stage (according to the AJCC/UICC 7th Edition) in the HM450K cohort including N=66 paired primary tumors and adjacent 
normal tissues, and N=61 non-cancer peripheral blood mononuclear cells (PBMCs). Early-stage consists of stage I and II. Late-stage 
consists of stage III and IV. b-d. Volcano plots of DMCs between primary tumors and adjacent normal tissues for COAD (N=35) (b) 
LUAD (N=21) (c) or PAAD (N=10) (d) from HM450K data. e-g. Volcano plots of DMCs between primary tumors and PBMCs for 
COAD (e), LUAD (N=21) (f), or PAAD (g). For all volcano plots, black dots indicate non-significant regions. Blue and red dots indicate 
regions significant at Benjamini-Hochberg false discovery rate (BH-FDR) < 0.1 (F-test). Red dots also indicate regions with mean of 
�beta value >0.2. h. Venn diagram showing the number of overlapping regions between plasma-derived differentially methylated CpG 
islands (DMCGIs) from cfMBD-seq and tissues-derived DMCGIs from HM450K in three cancer types (i.e., C, colorectal cancer; L, 
lung cancer; P, pancreatic cancer.
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Figure 23. Differentially methylated CpG islands in lung cancer detection 

a. Pathology stage (according to the AJCC/UICC 7th Edition) in the cfMeDIP-seq cohort. Early-
stage consists of stage I and II. Late-stage consists of stage III and IV. b. t-distributed stochastic 
neighbor embedding (t-sne) plot using all 939 lung DMCGIs that are overlapped between cfMBD-
seq and HM450K data for the entire cfMeDIP-seq plasma samples (N=166). c. Predictive 
modeling using LASSO regularized logistic regression case-versus-control models on cfMeDIP-
seq cohort including lung cancer patients (N=80) and non-cancer controls (N=86). ROC curve for 
20% of held-out testing set is shown. AUC values represent median and interquartile range for 100 
repeats of the model. d. t-sne plot using the top 3 lung cancer specific DMCGIs identified from 
training set for plasma samples of the entire cfMeDIP-seq cohort. e. Log transformed transcripts 
per kilobase million (TPM) sequence reads of the classifier from the cfMeDIP-seq training set. 
The extremes of the boxes define the upper and lower quartiles, and the center lines define the 
median. Whiskers indicate 1.5x interquartile range.
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Figure 24. Differentially methylated CpG islands in cancer classification 

a. Venn diagram showing the number of tissue specific DMCGIs for each cancer type and the number of DMCGIs that are common in 
all three cancer types. b. Pathology stage (according to the AJCC/UICC 7th Edition) in the TCGA HM450K cohort of different tumor 
(N=757). Early-stage consists of stage I and II. Late-stage consists of stage III and IV. c. Predictive modeling using LASSO regularized 
logistic regression one-versus-all-others models on the HM450K cohort including 210 colon adenocarcinoma (COAD) samples, 385 
lung adenocarcinoma (LUAD) samples, and 162 pan-creatic adenocarcinoma (PAAD) samples. Area under the curve (AUC) values are  
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Figure 24. (Continued) calculated from 20% of held-out testing set. Boxplots represent median and interquartile range for 100 repeats 
of the models. d & e. t-sne plot using cancer type specific classifiers identified from training set for the entire cfMBD-seq plasma cohort 
(N=53) (d) and HM450K tissue cohort (N=757 primary tumor and N=61 non-cancer PBMCs) (e). f. Beta value of cancer type specific 
classifiers (Colorectal cancer specific: chr2:29337984-29338909; Lung cancer specific: chr7:27265159-27265493; Pancreatic cancer 
specific: chr10:11059443-11060524) across COAD, LUAD, PAAD, and PBMC samples. The extremes of the boxes define the upper 
and lower quartiles, and the center lines define the median. Whiskers indicate 1.5x interquartile range.
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Table 3 Clinical demographic characteristics of patients in the cfMBD-seq cohort  

Type Non-cancer Colorectal cancer  Lung cancer  Pancreatic cancer  

Age  

Mean 49.38 67.88 58.33 61.25 

Median 52.5 72.5 57.5 62.5 

Range 42.5-52.5 47.5-82.5 42.5-67.5 42.5-67.5 

Gender 
Male 5 11 9 8 

Female 11 2 3 4 

Race 

Caucasian 15 11 12 11 

African 

American 
0 2 0 1 

Asian 1 0 0 0 

Pathological Stage 
 I-II \ 0 0 0 

III-IV \ 13 12 12 

Histology 
Adenocarcinoma \ 11 9 10 

Others \ 2 3 2 
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Table 4. Annotation of the most discriminating cancer type specific DMCGIs 

CpG islands Size (bp) Gene Location 
Colorectal cancer 
 chr2:29337984-29338909 926 CLIP4  Promoter 
 chr2:100937780-100939059 1280 LONRF2  Promoter 
 chr6:125283125-125284389 1265 RNF217 Promoter 
Lung cancer 
 chr2:66672432-66673636 1205 MEIS1  Gene body 
 chr2:71503548-71504233 686 ZNF638  Promoter 
 chr2:219736133-219736592 460 WNT6  Gene body 
 chr4:140655963-140657135 1173 MGST2  Gene body 
 chr4:174427892-174428192 301 \ Intergenic 
 chr5:40679503-40682081 2579 PTGER4  Promoter 
 chr7:27265159-27265493 335 \ Intergenic 
 chr7:65037625-65037864 240 \ Intergenic 
 chr8:124172801-124173541 741 \ Intergenic 
 chr9:96108467-96108992 526 C9orf129 Promoter 
 chr12:54408427-54408713 287 \ Intergenic 
 chr12:58021295-58022037 743 B4GALNT1  Gene body 
 chr13:28549840-28550246 407 \ Intergenic 
 chr17:46691521-46692097 577 HOXB8 Gene body 
 chr17:59539363-59539834 472 TBX4 Gene body 
 chr17:70112825-70114271 1447 SOX9  Promoter 
Pancreatic cancer 
 chr1:44883137-44884272 1136 RNF220  Gene body 
 chr1:50798668-50799536 869 \ Intergenic 
 chr5:92939796-92940216 421 \ Intergenic 
 chr10:11059443-11060524 1082 CELF2  Promoter 
 chr11:20177609-20178824 1216 DBX1  Gene body 
 chr12:114881650-114881937 288 \ Intergenic 
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