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0e Kadomtsev–Petviashvili equation is one of the well-studied models of nonlinear waves in dispersive media and in mul-
ticomponent plasmas. In this paper, the coupled Alice-Bob system of the Kadomtsev–Petviashvili equation is first constructed via
the parity with a shift of the space variable x and time reversal with a delay. By introducing an extended Bäcklund transformation,
symmetry breaking soliton, symmetry breaking breather, and symmetry breaking lump solutions for this system are presented
through the established Hirota bilinear form. According to the corresponding constants in the involved ansatz function, a few
fascinating symmetry breaking structures of the presented explicit solutions are shown.

1. Introduction

0e localized excitations in nonlinear evolution equations
have been studied widely, which were originated from many
scientific fields, such as fluid dynamics, plasma physics,
superconducting physics, condensed matter physics, and
optical problems. Explicitly, the inverse scattering method
[1], the Darboux transformation and the Bäcklund trans-
formation [2, 3], the Painlevé analysis approach [4–6], the
Hirota bilinear method [7, 8], and the generalized bilinear
method [9] are among important approaches for studying
these structures, especially solitary waves and solitons.

Owing to the idea of the parity-time reversal (PT)
symmetry, the nonlinear Schrödinger (NLS) equation

iAt + Axx ± A
2
B � 0,

B � 􏽢fA � 􏽢P􏽢CA � A
∗
(− x, t),

(1)

(where the operators 􏽢P and 􏽢C are the usual parity and charge
conjugation) was introduced and investigated [10]. Based on
this, the revolutionary works, which named the Alice-Bob
(AB) systems to describe two-place physical problems, were
made by Lou recently [11, 12]. 0e technical approach
originated from the so-called 􏽢P-􏽢T-􏽢C principle with 􏽢P (the
parity), 􏽢T (time reversal), and 􏽢C (charge conjugation)
[11–25]. From this, a general Nth Darboux transformation
for the AB-mKdV equation was constructed [13]. By using
this Darboux transformation, some types of 􏽢P􏽢T symmetry
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breaking solutions including soliton and rogue wave solu-
tions were explicitly obtained. Combined with their Hirota
bilinear forms, prohibitions caused by nonlocality for
nonlocal Boussinesq-KdV type systems were investigated
[14]. 0e two/four-place nonlocal Kadomtsev–Petviashvili
(KP) equation were also explicitly solved for special types of
multiple soliton solutions via a 􏽢P-􏽢T-􏽢C symmetric-anti-
symmetric separation approach [15]. From the viewpoint of
physical phenomena in climate disasters, a special ap-
proximate solution was applied to theoretically capture the
salient features of two correlated dipole blocking events in
atmospheric dynamical systems and the original two-vortex
interaction was given to describe two correlated dipole
blocking events with a lifetime through the models estab-
lished from the nonlinear inviscid dissipative and equivalent
barotropic vorticity equation in a b-plane [21, 22]. Also, a
concrete AB-KdV system established from the nonlinear
inviscid dissipative and barotropic vorticity equation in a
β-plane channel was applied to the two correlated monople
blocking events, which were responsible for the snow di-
saster in the winter of 2007/2008 that happened in Southern
China [18]. Meanwhile, the expression

f � 􏽘
]{ }

K ]{ } cosh
1
2

􏽘

N

i�1
]iξi

⎛⎝ ⎞⎠, (2)

plays a crucial role in constructing analytical group invariant
multisoliton solutions of the AB systems, including the
KdV-KP-Toda type, mKdV-sG type, NLS type, and discrete
H1 type AB systems [11–16, 18].

In this paper, we consider the KP equation (3) as an
illustrative example, which is one of the well-studied models
of nonlinear waves in dispersive media [26, 27] and in
multicomponent plasmas [28]. In the immovable laboratory
coordinate frame, it can be presented in the form

ut + cux + αuux + βuxxx( 􏼁x +
c

2
uyy � 0, (3)

where c is the velocity of long linear perturbations and α and
β are the nonlinear and dispersive coefficients which are
determined by specific types of wave and medium
properties.

0e rest of this paper is organized as follows. In Section
2, an AB-KP system is constructed based on equation (3) and
its Hirota bilinear form is presented through an extended
Bäcklund transformation. In Section 3, symmetry breaking
soliton, symmetry breaking breather, and symmetry
breaking lump solutions are generated through the estab-
lished Hirota bilinear form, according to the corresponding
constants of the involved ansatz function. Some conclusions
are given in the final section.

2. An AB-KP System and Its Bäcklund
Transformation and Bilinear Form

Based on the principle of the AB system in Refs. [11, 12],
after substituting u � 1/2(A + B) into equation (3), the AB-
KP initial equation is

Axt + Bxt +
1
2
α Ax + Bx( 􏼁

2
+ c +

1
2
α(A + B)􏼔 􏼕 Axx + Bxx( 􏼁

+ β Axxxx + Bxxxx( 􏼁 +
c

2
Ayy + Byy􏼐 􏼑 � 0,

(4)

which can be split into the coupled equations

Axt +
α
4

Ax + Bx( 􏼁
2

+ cAxx +
α
4

(A + B) Axx + Bxx( 􏼁

+ βAxxxx +
c

2
Ayy + G(A, B) � 0,

(5a)

Bxt +
α
4

Ax + Bx( 􏼁
2

+ cBxx +
α
4

(A + B) Axx + Bxx( 􏼁

+ βBxxxx +
c

2
Byy − G(A, B) � 0,

(5b)

where B is related to A through B � 􏽢P
x

s
􏽢TdA �

A(− x + x0, y, − t + t0) (􏽢P
x

s
􏽢Td expresses parity with a shift of

the space variable x and time reversal with a delay), and
G(A, B) is an arbitrary function of A and B, but should be
􏽢P

x

s
􏽢Td invariant. 0at is, G(A, B) � 􏽢P

x

s
􏽢TdG(A, B). Although

there are infinitely many functions satisfying this, we take a
nontrivial function G(A, B) as

G(A, B) �
α
2

A
2
x + AAxx − B

2
x − BBxx􏼐 􏼑, (6)

at present, and equation (5) is reduced to the following AB-
KP system:

Axt +
α
4

Ax + Bx( 􏼁 3Ax − Bx( 􏼁 +
α
4

(A − B)Bxx

+
α
4

(3A + B) + c􏼔 􏼕Axx + βAxxxx +
c

2
Ayy � 0,

(7a)

Bxt −
α
4

Ax + Bx( 􏼁 Ax − 3Bx( 􏼁 −
α
4

(A − B)Axx

+
α
4

(A + 3B) + c􏼔 􏼕Bxx + βBxxxx +
c

2
Byy � 0.

(7b)

In fact, this AB-KP system can also be derived as a special
reduction of the coupled KP system:

At + c1A + c2B( 􏼁x + c3A + c4B( 􏼁xxx + c5A + c6B( 􏼁Ax􏼂

+ c7A + c8B( 􏼁Bx]x + c9Ayy � 0,

(8a)

Bt + c1B + c2A( 􏼁x + c3B + c4A( 􏼁xxx + c5B + c6A( 􏼁Bx􏼂

+ c7B + c8A( 􏼁Ax]x + c9Byy � 0,

(8b)

by taking the reduction condition B � 􏽢P
x

s
􏽢TdA � A(− x + x0,

y, − t + t0) and letting the arbitrary constants
ci(i � 1, 2, . . . , 9) with
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c1 � c,

c2 � c4 � 0,

c3 � β,

c5 �
3α
4

,

c6 � c7 �
α
4

,

c8 � −
α
4

,

c9 �
c

2
.

(9)

Now, we introduce an extended Bäcklund
transformation:

A �
12β
α

(lnf)xx + b1(lnf)xxx + b2(lnf)xxt,

B �
12β
α

(lnf)xx − b1(lnf)xxx − b2(lnf)xxt,

(10)

where b1 and b2 are arbitrary constants and f ≡ f(x, y, t) is
a new function of variables x, y, and t, satisfying the in-
variant condition

f(x, y, t) � 􏽢P
x

s
􏽢Tdf(x, y, t) � f − x + x0, y, − t + t0( 􏼁.

(11)

When b1 � 0 and b2 � 0, equation (10) becomes the
standard Bäcklund transformation of equation (3).
Substituting the transformation equation (10) into equation
(7), we obtain a bilinear form of equation (7) as follows:

DxDt + cD
2
x + βD

4
x +

c

2
D

2
y􏼒 􏼓(f · f) � 0, (12)

whereD4
x and D2

y are the Hirota bilinear derivative operators
defined by [7, 8]

D
m
x D

n
yD

l
t(f · g) �

z

zx
−

z

zx′
􏼠 􏼡

m
z

zy
−

z

zy′
􏼠 􏼡

n
z

zt
−

z

zt′
􏼠 􏼡

l

× f(x, y, t)g x′, y′, t′( 􏼁|x′�x,y�y′ ,t′�t.

(13)

According to the properties of the Hirota bilinear op-
erator, equation (12) reads

2 ffxt − fxft( 􏼁 + 2c ffxx − f
2
x􏼐 􏼑

+ 2β ffxxxx − 4fxfxxx + 3f
2
xx􏼐 􏼑 + c ffyy − f

2
y􏼐 􏼑 � 0,

(14)

which is also the Hirota bilinear form of equation (3).
As we know, the Hirota bilinear method is direct and

effective for constructing exact solutions, in which a given
nonlinear equation is converted to a bilinear form through
an appropriate transformation. With different types of
ansatz for the auxiliary function, a variety of soliton, rational,

and periodic solutions of the nonlinear equation can be
derived.

3. Symmetry Breaking Soliton, Breather, and
Lump Solutions

In this section, we turn our attention to the Hirota bilinear
form (12) of the AB-KP systems (7a) and (7b) to derive
symmetry breaking soliton, symmetry breaking breather,
and symmetry breaking lump solutions.

3.1. Symmetry Breaking Soliton Solutions. Based on the bi-
linear form (12), we can first determine symmetry breaking
soliton solutions through the Bäcklund transformation (10)
of the AB-KP systems (7a) and (7b) with the function f being
written as a summation of some special functions
[11–16, 18]:

f � fN � 􏽘
]{ }

K ]{ } cosh
1
2

􏽘

N

i�1
]iξi

⎛⎝ ⎞⎠,

ξi � ki x −
x0

2
􏼒 􏼓 + piy − c + k

2
i β +

cp2
i

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣 + ηi0,

(15)

where ]{ } � ]1, ]2, . . . , ]N􏼈 􏼉, with vi � ±1, and
ki, pi, ηi0(i � 1, 2, . . . , N), c, x0, and t0 are undetermined
constants, while

K ]{ } � 􏽙
N

i<j

������������������������

c pi − pj􏼐 􏼑
2

− 6β ki − ]i]jkj􏼐 􏼑
2

􏽲

. (16)

For N � 1, equation (15) takes the form

f � f1 � cosh
ξ1
2

􏼠 􏼡,

ξ1 � k1 x −
x0

2
􏼒 􏼓 + p1y − c + k

2
1β +

cp2
1

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣 + η10.

(17)

However, the invariant condition (11) of this function f
(17) is not satisfied for the constants k1, p1, c, x0, t0, and η10
being not all zero. It means that it is impossible to get any
nontrivial symmetry breaking single soliton solution of
equation (12) through (10).

0e same circumstance happens when N � 3, in which
the function f of equation (15) is

f � f3 � K{} cosh
1
2

ξ1 + ξ2 + ξ3( 􏼁􏼚 􏼛

+ K 1{ } cosh
1
2

ξ1 − ξ2 − ξ3( 􏼁􏼚 􏼛

+ K 2{ } cosh
1
2

ξ1 − ξ2 + ξ3( 􏼁􏼚 􏼛

+ K 3{ } cosh
1
2

ξ1 + ξ2 − ξ3( 􏼁􏼚 􏼛,

(18)

Complexity 3



where

K{} � a
−
12a

−
13a

−
23,

K 1{ } � a
+
12a

+
13a

−
23,

K 2{ } � a
+
12a

−
13a

+
23,

K 3{ } � a
−
12a

+
13a

+
23,

(19a)

ξi � ki x −
x0

2
􏼒 􏼓 + piy − c + k

2
i β +

cp2
i

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣 + ηi0,

aij
±

�

����������������������

c pi − pj􏼐 􏼑
2

− 6β ki ± kj􏼐 􏼑
2

􏽲

, i, j � 1, 2, 3.

(19b)

Furthermore, one can verify that, for any odd N � 2n − 1
(n is a positive integer), the function f (15) does not satisfy
the invariant condition in equation (11). In other words,
symmetry breaking soliton solutions of odd orders for the
AB-KP systems (7a) and (7b) are prohibited.

For N � 2, equation (15) becomes

f � f2 � K{} cosh
ξ1 + ξ2( 􏼁

2
􏼠 􏼡 + K 1{ } cosh

ξ1 − ξ2( 􏼁

2
􏼠 􏼡,

(20)

where

K{} �

����������������������

c p1 − p2( 􏼁
2

− 6β k1 − k2( 􏼁
2

􏽱

,

K 1{ } �

����������������������

c p1 − p2( 􏼁
2

− 6β k1 + k2( 􏼁
2

􏽱

.

(21)

By fixing the real parameters,

k2 � ±k1,

p2 � − p1,

η20 � ∓η10,

(22)

the invariant condition in equation (11) is satisfied. Cor-
respondingly, by writing

f � f2 �

���

cp2
1

􏽱

cosh k1 x −
x0

2
􏼒 􏼓 − c + k

2
1β +

cp2
1

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣􏼨 􏼩

+

���������

cp2
1 − 6βk2

1

􏽱

cosh k1p1y + η10( 􏼁,

(23)

a symmetry breaking two-soliton solution of equations (7a)
and (7b) are expressed as

A �
12β
α

lnf2( 􏼁xx + b1 lnf2( 􏼁xxx + b2 lnf2( 􏼁xxt,

B �
12β
α

lnf2( 􏼁xx − b1 lnf2( 􏼁xxx − b2 lnf2( 􏼁xxt.

(24)

Figure 1 shows the symmetry breaking two-soliton
structure of solution (24) with the parameters being taken as

α � k1 � p1 � 1,

β �
1
6
,

c � 4,

x0 � t0 � η10 � 0.

(25)

Meanwhile, Figure 1(a) describes a standard two-soliton
structure (b1 � b2 � 0) for solution (24) at time t � 0. Under
this special condition, the solution A coincides with the
solution B exactly. Figures 1(b) and 1(c) are two symmetry
breaking two-soliton structures for solution (24) with the
selected parameters b1 � b2 � 10 at time t � 0. Obviously,
Figure 1(c) depicts a reversal structure of Figure 1(b) by the
solution B which is 􏽢P

x

s
􏽢Td symmetry of the solution A for the

AB-KP systems (7a) and (7b). 0is corresponds to the
phenomenon that the shifted parity and delayed time re-
versal are applied to describe two-place events [11, 12].0ese
structures are realized via the symbolic computation soft-
ware Maple efficiently.

For N � 4, the function f of equation (15) can be re-
written regularly as

f � f4 � K{} cosh
1
2

ξ1 + ξ2 + ξ3 + ξ4( 􏼁􏼚 􏼛 + K 1{ } cosh
1
2

− ξ1 + ξ2 + ξ3 + ξ4( 􏼁􏼚 􏼛

+ K 2{ } cosh
1
2

ξ1 − ξ2 + ξ3 + ξ4( 􏼁􏼚 􏼛 + K 3{ } cosh
1
2

ξ1 + ξ2 − ξ3 + ξ4( 􏼁􏼚 􏼛

+ K 4{ } cosh
1
2

ξ1 + ξ2 + ξ3 − ξ4( 􏼁􏼚 􏼛 + K 23{ } cosh
1
2

ξ1 − ξ2 − ξ3 + ξ4( 􏼁􏼚 􏼛

+ K 24{ } cosh
1
2

ξ1 − ξ2 + ξ3 − ξ4( 􏼁􏼚 􏼛 + K 34{ } cosh
1
2

ξ1 + ξ2 − ξ3 − ξ4( 􏼁􏼚 􏼛,

(26)
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where

K{} � a
−
12a

−
13a

−
14a

−
23a

−
24a

−
34,

K 1{ } � a
+
12a

+
13a

+
14a

−
23a

−
24a

−
34,

K 2{ } � a
+
12a

−
13a

−
14a

+
23a

+
24a

−
34,

K 3{ } � a
−
12a

+
13a

−
14a

+
23a

−
24a

+
34,

K 4{ } � a
−
12a

−
13a

+
14a

−
23a

+
24a

+
34,

K 23{ } � a
+
12a

+
13a

−
14a

−
23a

+
24a

+
34,

K 24{ } � a
+
12a

−
13a

+
14a

+
23a

−
24a

+
34,

K 34{ } � a
−
12a

+
13a

+
14a

+
23a

+
24a

−
34,

ξi � ki x −
x0

2
􏼒 􏼓 + piy − c + k

2
i β +

cp2
i

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣 + ηi0,

aij
±

�

����������������������

c pi − pj􏼐 􏼑
2

− 6β ki ± kj􏼐 􏼑
2

􏽲

, i, j � 1, 2, 3, 4.

(27)

After finishing some detailed analysis, there are two
independent real parameter selections of the symmetry
breaking four-soliton solution for (7a) and (7b), which are

k3 � ±k1,

k4 � ±k2,

p3 � − p1,

p4 � − p2,

η30 � ∓η10,

η40 � ∓η20,

(28)

with B � 􏽢Ps
􏽢TdA � A(− x + x0, y � y, − t + t0). Based on

these restrictions in (28), we have

a23
±

� a14
±

,

a34
±

� a12
±

,

K 3{ } � K 1{ },

K 4{ } � K 2{ }.

(29)

At this time, the symmetry breaking four-soliton solu-
tion of the AB-KP systems (7a) and (7b) is

A �
12β
α

lnf4( 􏼁xx + b1 lnf4( 􏼁xxx + b2 lnf4( 􏼁xxt,

B �
12β
α

lnf4( 􏼁xx − b1 lnf4( 􏼁xxx − b2 lnf4( 􏼁xxt,

(30)
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Figure 1: 0e symmetry breaking two-soliton solution (24) of the AB-KP systems (7a) and (7b), with the selecting parameters b1 and b2 are
(a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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where

f4 � K{} cosh ζ+
1 + ζ+

2( 􏼁 + K 1{ } cosh ζ −
1 + ζ+

2( 􏼁 + cosh ζ −
1 − ζ+

2( 􏼁􏼂 􏼃

+ K 2{ } cosh ζ+
1 + ζ −

2( 􏼁 + cosh ζ+
1 − ζ −

2( 􏼁􏼂 􏼃

+ K 23{ } cosh ζ −
1 − ζ −

2( 􏼁 + K 24{ } cosh ζ+
1 − ζ+

2( 􏼁

+ K 34{ } cosh ζ −
1 + ζ −

2( 􏼁,

(31)

with

ζ1
±

�
1
2

ξ1 ± ξ3( 􏼁,

ζ2
±

�
1
2

ξ2 ± ξ4( 􏼁.

(32)

If setting α� k1 � p1 � 1, β� 1/6, c � − 5,k2 � − p2 � 6/5,
and x0 � t0 � η10 � η20 � 0, we can depict the abovementioned
symmetry breaking four-soliton structure in (Figure 2). 0e
similar situation is as follows: Figure 2(a) is the standard four-
soliton structure (b1 � b2 � 0) for the solution A � B at time
t � 0. Figures 2(b) and 2(c) are two symmetry breaking four-
soliton structures for the solution A and B, respectively, with
the selected parameters b1 � b2 � 10 at time t � 0.

3.2. Symmetry Breaking Breather Solutions. When taking
p1 � p0I (p0 is a real constant and I is the imaginary unit,
I2 � − 1), a symmetry breaking breather solution of the AB-
KP systems (7a) and (7b) can read

A �
12β
α

lnfb( 􏼁xx + b1 lnfb( 􏼁xxx + b2 lnfb( 􏼁xxt,

B � 􏽢P
x

s
􏽢TdA � A − x + x0, y, − t + t0( 􏼁,

(33)

with the ansatz function

f � fb �

����

− cp2
0

􏽱

cosh k1 x −
x0

2
􏼒 􏼓 − c + k

2
1β −

cp2
0

2
􏼠 􏼡 t −

t0

2
􏼒 􏼓􏼢 􏼣􏼨 􏼩

+

����������

− cp2
0 − 6βk2

1

􏽱

cosh k1p0Iy + η10( 􏼁,

(34)

from equation (23).
By some constraints to the parameters in this solution, a

family of analytical breather solutions can be generated. For
example, when taking the real constants

c � − 4,

α � k1 � 1,

β �
1
6
,

p0 � 2,

x0 � t0 � η10 � 0,

(35)

equation (34) becomes

f � fb � 4 cosh x −
25
6

t􏼒 􏼓 +
��
15

√
cos(2y), (36)

according to Euler’s formula. 0is function indicates that the
solution has two wave components, that is, a regular solitary
wave with the propagating speed − 25/6 and a periodic wave
with period π. Figure 3 is a density plot of the breathers
defined by equation (36) with the parameters in (35).
Figure 3(a) is the standard first-order breather structure (b1 �

b2 � 0) for the solution A � B � 8(
��
15

√
cos(2y)coshx + 4)/

(4 coshx +
��
15

√
cos(2y))2 at time t � 0. Figures 3(b) and 3(c)

are two symmetry breaking breather structures for the so-
lution A, B � 8(

��
15

√
cos(2y)cos hx+ 4)/(4 coshx +

��
15

√
cos

(2y))2 ± 95 sinhx(32 + 4
��
15

√
cos(2y)coshx − 15 cos2(2y))/

(4 coshx +
��
15

√
cos(2y))3, with the selected parameters b1 �

b2 � 10 at time t � 0. As these solutions combine the trigo-
nometric cosine function with hyperbolic sine/cosine func-
tions, the property of these functions describes the symmetry
breaking breather structures [29, 30].

In the abovementioned situation, when taking the constants

c � − 4,

α � 1,

β �
1
6
,

k1 � I,

p0 � 2,

x0 � t0 � η10 � 0,

(37)

equation (34) has the expression

f � fb �
��
16

√
cos x −

23
6

t􏼒 􏼓 +
��
17

√
cosh(2y). (38)

Figure 4 is a density plot of the breathers described
according to equation (38) under the parameter selection
(37). 0at is, when the parameter k1 also takes the imaginary
unit I, the x-periodic symmetry breaking breathers of the
AB-KP systems (7a) and (7b) are formed.

0e abovementioned idea can be extended to solution
(30). After setting the parameters

c � − 5,

α � k1 � 1,

β �
1
6
,

k2 �
1
2
,

p1 � I,

p2 � − 2I,

x0 � t0 � η10 � η20 � 0,

c � − 4,

α � 1,

β �
1
6
,

k1 � p1 � − p2 � I,

k2 � − 2I,

x0 � t0 � η10 � η20 � 0,

(39)
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Figure 2:0e symmetry breaking four-soliton solution (30) of the AB-KP systems (7a) and (7b), with the selecting parameters b1 and b2 are
(a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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Figure 3: Continued.
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the y-periodic and x-periodic second-order breather so-
lutions can be derived, which are symmetry breaking
(Figures 5 and 6, respectively).

3.3. Symmetry Breaking Lump Solutions. As we know, the
lump solution is expressed by the rational function which is
localized in all directions in the space. Based on the long-wave
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(c)

Figure 3: 0e density plot of the y-periodic symmetry breaking breathers of the AB-KP systems (7a) and (7b), with the selected parameters
b1 and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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Figure 4:0e density plot of the x-periodic symmetry breaking breather of the AB-KP systems (7a) and (7b), with the selected parameters b1
and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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Figure 5: 0e y-periodic symmetry breaking density plot of the second-order breathers of the AB-KP systems (7a) and (7b), with the
selected parameters b1 and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.

–8

–6

–4

–2

0

2

4

6

8

y

–10 –5 0 5 10
x

(a)

–8

–6

–4

–2

0

2

4

6

8

y

–10 –5 0 5 10
x

(b)

Figure 6: Continued.
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limit idea of generating lump solutions to nonlinear equa-
tions, we derive this kind of solutions of the AB-KP systems
(7a) and (7b) by taking a long-wave limit. After putting

k1 � δ1ϵ1,

k2 � δ2ϵ2,

η10 � η20 � Iπ,

(40)

into the bilinear function (20) and setting the limit
ϵ1⟶ 0, ϵ2⟶ 0, the function f can be obtained:

f � fl � δ1δ2 x −
x0

2
+ p1y − c 1 +

p2
1
2

􏼠 􏼡 t −
t0

2
􏼒 􏼓􏼢 􏼣

· x −
x0

2
+ p2y − c 1 +

p2
2
2

􏼠 􏼡 t −
t0

2
􏼒 􏼓􏼢 􏼣 +

24δ1δ2β
c p1 − p2( 􏼁

2.

(41)

When letting

p1 �
a2 + a5I

δ1
,

p2 �
a2 − a5I

δ2
,

δ1 � a1 + a4I,

δ2 � a1 − a4I,

(42)

equation (41) can be arranged in

f � fl � g
2

+ h
2

+ a7,

g � a1 x −
x0

2
􏼒 􏼓 + a2y + a3 t −

t0

2
􏼒 􏼓,

h � a4 x −
x0

2
􏼒 􏼓 + a5y + a6 t −

t0

2
􏼒 􏼓,

(43)

where ai(1≤ i≤ 7) are all real parameters to be determined.
Note that the function f in equation (43) is positive if the
parameter a7 > 0. Combining equation (43) with equations
(11) and (12), the constraining relations of these parameters
are

a3 �
a1c a2

2 − 2a2
4( 􏼁

2a2
4

,

a5 � −
a1a2

a4
,

a6 �
c a2

2 − 2a2
4( 􏼁

2a4
,

a7 � −
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

,

(44)

where all the denominators are nonzero.
0is time, solution (10) becomes

A �
12β
α

ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xx

+ b1 ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xxx

+ b2 ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xxt

,

(45a)

B �
12β
α

ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xx

− b1 ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xxx

− b2 ln g
2

+ h
2

−
6a2

4β a2
1 + a2

4( 􏼁

a2
2c

􏼠 􏼡􏼢 􏼣
xxt

,
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Figure 6: 0e x-periodic symmetry breaking density plot of the second-order breathers of the AB-KP systems (7a) and (7b), with the
selected parameters b1 and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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where the functions g and h are given as follows:

g � a1 x −
x0

2
􏼒 􏼓 + a2y +

a1c a2
2 − 2a2

4( 􏼁

2a2
4

t −
t0

2
􏼒 􏼓,

h � a4 x −
x0

2
􏼒 􏼓 −

a1a2

a4
y +

c a2
2 − 2a2

4( 􏼁

2a4
t −

t0

2
􏼒 􏼓,

(46)

with c, a1, a2, a4, x0, and t0 being some free real constants.
Obviously, this set of solution (45a) and (45b) represents
solitary waves in the form of rational structures, which is a
family of two-wave solutions with different velocities and
directions due to the linear functions g and h of the three
variables x, y, and t.

If the constants are taken as a1 � a4 � − 1, a2 � c �

α � 1, β � 1/6, and x0 � t0 � 0, equation (43) becomes

f � fl � x − y −
t

2
􏼒 􏼓

2
+ x + y −

t

2
􏼒 􏼓

2
− 2, (47)

according to equation (44). Figure 7 is a density plot of the
lumps by equation (36) under the abovementioned pa-
rameter selection. Figure 7(a) is a normal first-order lump
structure (b1 � b2 � 0) for the solution A � B � − 4(x2 −

y2 + 1)/(x2 + y2 − 1)2 at time t � 0. Figures 7(b) and 7(c)
are two symmetry breaking lump structures for the solution
A, B � − 4(x2 − y2 + 1)/(x2 + y2 − 1)2 ± 20x(x2 + 3x − 3y2)/
(x2 + y2 − 1)3, with the selected parameters b1 � b2 � 10, at
time t � 0. As these solutions are all rational functions, the
property of these functions describes symmetry breaking
lump structures.

Furthermore, if we take ki � δiϵi, ηi0 � πI, i � 1, 2, 3, 4,
and

p1 � 1 + I,

p2 � 1 − I,

p3 � − p1,

p4 � − p2,

δ3 � δ1,

δ4 � δ2,

(48)

after setting the limit ϵi⟶ 0, i � 1, 2, 3, 4, the function f
(26) can be simplified into
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Figure 7: 0e density plot of the symmetry breaking lumps of the AB-KP systems (7a) and (7b), with the selected parameters b1 and b2 are
(a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 10, at time t � 0.
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f � fl � c
2

x −
x0

2
􏼒 􏼓

4
+ 4y

4
+ 4c

4
t −

t0

2
􏼒 􏼓

4
􏼢 􏼣

− 4c
3

x −
x0

2
􏼒 􏼓

3
t −

t0
2

􏼒 􏼓 + 8c
4

x −
x0

2
􏼒 􏼓

2
t −

t0
2

􏼒 􏼓
2

− 4c
2

x −
x0

2
􏼒 􏼓 t −

t0

2
􏼒 􏼓 2c

3
t −

t0

2
􏼒 􏼓

2
− 2cy

2
− 3β􏼢 􏼣

− 4c
3 2cy

2
+ 3β􏼐 􏼑 t −

t0

2
􏼒 􏼓

2
− 36cβy

2
+ 81β2.

(49)

Figure 8 shows the second-order lump structures when
c � − 4, α � 1, β � 1/6, and x0 � t0 � η10 � η20 � 0, which
are symmetry breaking.

4. Conclusion

As everyone knows, the two-place correlated physical events
widely exist in the field of natural science, and the discussed
AB physics (two-place physics) has a profound influence on
other scientific fields. In this work, by establishing a special

AB-KP system via the parity with a shift of the space variable
x and time reversal with a delay, some group invariant
solutions, such as symmetry breaking soliton, symmetry
breaking breather, and symmetry breaking lump solutions
have been presented through introducing an extended
Bäcklund transformation and the established Hirota bilinear
form. At the same time, the corresponding symmetry
breaking structures of these explicit solutions are depicted
according to the ansatz functions.

In fact, these are the following few open problems.
Firstly, we may investigate more local and nonlocal sym-
metry breaking structures, such as the cnoidal wave and
rogue wave through expression (2). Secondly, the arbitrary
function G(A, B) of A and B (which should be 􏽢P

x

s
􏽢Td in-

variant) is diverse, although we take G(A, B) � (α/2)(A2
x +

AAxx − B2
x − BBxx) in this paper. 0irdly, algebraic struc-

tures involving the related Lie point symmetry and Lie-
Bäcklund symmetry reductions, and Bäcklund transfor-
mations determined by residual symmetries may be dis-
cussed mathematically for the AB-KP systems (7a) and (7b).
Finally, the 􏽢P

x

s
􏽢Td symmetry of this paper could be gener-

alized to other nonlinear systems by taking the specific el-
ements of the larger 􏽢Ps

􏽢Td
􏽢C symmetry group [15].
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Figure 8: 0e symmetry breaking density plot of the second-order lumps of the AB-KP systems (7a) and (7b), with the selected parameters
b1 and b2 are (a) b1 � b2 � 0 and (b) and (c) b1 � b2 � 5, at time t � 0.
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