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Abstract

Anomaly detection in surveillance videos is attracting an increasing amount of attention.

Despite the competitive performance of several existing methods, they lack theoretical per-

formance analysis, particularly due to the complex deep neural network architectures used

in decision making. Additionally, real-time decision making is an important but mostly

neglected factor in this domain. Much of the existing methods that claim to be online,

depend on batch or offline processing in practice. Furthermore, several critical tasks such

as continual learning, model interpretability and cross-domain adaptability are completely

neglected in existing works. Motivated by these research gaps, in this dissertation we discuss

our work on real-time video anomaly detection, specifically addressing challenges encoun-

tered in a practical implementation. We begin by proposing a multi-objective deep learning

module along with a statistical anomaly detection module, and demonstrate its effectiveness

on several publicly available data sets. Furthermore, we consider practical challenges such

as continual learning and few-shot learning, which humans can easily do but remains to be a

significant challenge for machines. A novel algorithm designed for such practical challenges

is also proposed. For performance evaluation in this new framework, we introduce a new

dataset which is significantly more comprehensive than the existing benchmark datasets,

and a new performance metric which takes into account the fundamental temporal aspect

of video anomaly detection. Finally, learning from limited data in video surveillance is im-

portant for sustainable performance while adapting to new information in a scene over time

or adapting to a different scene. In a real-world scene, for an anomaly detection algorithm,

all possible nominal patterns and behaviors are not typically available immediately for a

single training session. In contrast, labeled nominal data patterns may become available

irregularly over a long time horizon, and the anomaly detection algorithm needs to quickly

vi



learn such new patterns from limited samples for acceptable performance. Otherwise, it

would suffer from frequent false alarms. Cross-domain adaptability (i.e., transfer learning

to another surveillance scene) is another task where the anomaly detection algorithm has to

quickly learn from limited nominal training data to achieve acceptable performance. Partic-

ularly, we study these three problems (few-shot learning, continual learning, cross-domain

adaptability) in a multi-task learning setting.
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Chapter 1: Online Anomaly Detection in Surveillance Videos with Asymptotic

Bounds on False Alarm Rate

1.1 Introduction

1The rapid advancements in the technology of closed-circuit television (CCTV) cam-

eras and their underlying infrastructural components such as network, storage, and process-

ing hardware have led to a sheer number of surveillance cameras implemented all over the

world, and estimated to go beyond 1 billion globally, by the end of the year 2021 [49]. Video

surveillance is an essential tool used in law enforcement, transportation, environmental mon-

itoring, etc. mainly for improving security and public safety. For example, it has become

an inseparable part of crime deterrence and investigation, traffic violation detection, and

traffic management. However, considering the massive amounts of videos generated in real-

time, manual video analysis by human operator becomes inefficient, expensive, and nearly

impossible, which in turn makes a great demand for automated and intelligent methods

for analyzing and retrieving important information from videos, in order to maximize the

benefits of CCTV.

One of the most important, challenging and time-critical tasks in automated video surveil-

lance is the detection of abnormal events such as traffic accidents and violations, crimes, and

natural disasters. Hence, video anomaly detection has become an important research prob-

lem in the recent years. Anomaly detection in general is a vast, crucial, and challenging

research topic, which deals with the identification of data instances deviating from nominal

1Portions of this chapter were published in Elsevier Pattern Recognition [18]. Copyright permissions from
the publishers are included in Appendix B.
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patterns. It has a wide range of applications, e.g., in medical health care[98], cyber-security

[94], hardware security [21], aviation [63], and spacecraft monitoring [34].

Given the important role that video anomaly detection can play in ensuring safety, secu-

rity and sometimes prevention of potential catastrophes, one of the main outcomes of a video

anomaly detection system is the real-time decision making capability. Events such as traffic

accidents, robbery, and fire in remote places require immediate counteractions to be taken

in a timely manner, which can be facilitated by the real-time detection of anomalous events.

Despite its importance, a very limited body of research has focused on online and real-time

detection methods. Moreover, some of the methods that claim to be online heavily depend

on batch processing of long video segments. For example, [52] performs a normalization step

which requires the entire video.

A vast majority of the recent state-of-the-art video anomaly detection methods depend on

complex neural network architectures [88]. Although deep neural networks provide superior

performance on various machine learning and computer vision tasks, such as object detection

[12], image classification [43], playing games [85], image synthesis[77], etc., where sufficiently

large and inclusive data sets are available to train on, there is also a significant debate on

their shortcomings in terms of interpretability, analyzability, and reliability of their decisions

[38]. For example, [69, 86] propose using a nearest neighbor-based approach together with

deep neural network structures to achieve robustness, interpretability for the decisions made

by the model, and as defense against adversarial attack. Additionally, to the best of the

our knowledge, none of the neural network-based video anomaly detection methods has been

analyzed in terms of performance guarantees. On the other hand, statistical and nearest

neighbor-based methods remain popular due to their appealing characteristics such as being

amenable to performance analysis, computational efficiency, and robustness [6, 28].

Motivated by the aforementioned domain challenges and research gaps, we propose a

hybrid use of neural networks and statistical k nearest neighbor (kNN) decision approach

2



for finding anomalies in video in an online fashion. In summary, our contributions in this

paper are as follows:

• We propose a novel framework composed of deep learning-based feature extraction

from video frames, and a statistical sequential anomaly detection algorithm.

• We derive an asymptotic bound on the false alarm rate of our detection algorithm, and

propose a technique for selecting a proper threshold which satisfies the desired false

alarm rate.

• We extensively evaluate our proposed framework on publicly available video anomaly

detection data sets.

The remainder of the paper is organized as: Related Work (Section 1.2), Proposed

Method (Section 1.3), Experiments (Section 1.4), and Conclusion (Section 1.5).

1.2 Related Works

Semi-supervised detection of anomalies in videos, also known as outlier detection, is a

commonly adopted learning technique due to the inherent limitations in availability of an-

notated and anomalous instances. This category of learning methods deals with learning a

notion of normality from nominal training videos, and attempts to detect deviations from

the learned normality notion. [7, 36]. There are also several supervised detection methods,

which train on both nominal and anomalous videos. The main drawback of such methods is

the difficulty in finding frame-level labeled, representative, and inclusive anomaly instances.

To this end, [88] proposes using a deep multiple instance learning (MIL) approach to train on

video-level annotated videos, in a weakly supervised manner. Although training on anoma-

lous videos would enhance the detection capability on similar anomaly events, supervised

methods typically suffer from unknown and novel anomaly types.

One of the key components of the video anomaly detection algorithms is the extraction of

meaningful features, which can capture the difference between the nominal and anomalous

3



events within the video. The selection of feature types has a significant impact on the

identifiability of types of anomalous events in the video sequences. Many early video anomaly

detection techniques and some recent ones focused on the trajectory features [2], which limits

their applicability to the detection of the anomalies related to the trajectory patterns, and

moving objects. For instance, [24] studied detection of abnormal vehicle trajectories such as

illegal U-turn. [65] extracts human skeleton trajectory patterns, and hence is limited to only

the detection of abnormalities in human behavior.

Motion and appearance features are another class of widely used features in this do-

main. [83] extracts motion direction and magnitudes, to detect spatio-temporal anomalies.

Histogram of optical flow [5, 10], and histogram of oriented gradients [13] are some other

commonly used hand-crafted feature extraction techniques used in the literature. Sparse

coding based methods [99] are also applied in detection of video anomalies. They learn a

dictionary of normal sparse events, and attempt to detect anomalies based on the recon-

structability of video from the dictionary atoms. [64] uses sparse reconstruction to learn

joint trajectory representations of multiple objects.

In contrary to the hand-crafted feature extraction, are the neural network based feature

learning methods. [95] learns the appearance and motion features by deep neural networks.

[56] utilizes Convolutional Neural Networks (CNN), and Convolutional Long Short Term

Memory (CLSTM) to learn appearance and motion features, respectively. Neural network

based approaches have been recently dominating the literature. For example, [74] trains

Generative Adversarial Network (GAN) on normal video frames, to generate internal scene

representations (appearance and motion), based on a given frame and its optical flow, and

detects deviation of the GAN output from the normal data, by AlexNet [43]. [82] trains a

GAN-like adversarial network, in which a reconstruction component learns to reconstruct the

normal test frames, and attempts to train a discriminator by gradually injecting anomalies

to it, while concurrently the discriminator (detector) learns to detect the anomalies injected

4



by the reconstructor. In [17, 16], a transfer learning based approach is used for continual

learning for anomaly detection in surveillance videos from a few samples.

1.3 Proposed Method

Generator
(U-Net)

𝑀𝑆𝐸

Object Detector
(YOLOv3)

Discriminator
(Real vs Fake)

[𝑋1	, 𝑋2	, … , 𝑋+,-]

𝑋𝑡	

Predicted: 𝑋0+

Sequential 
Anomaly 
Detection

𝑋+

Person

Neural Statistical

False Alarm 
Constraint

Online 
Decision

𝐶𝑒𝑛𝑡𝑒𝑟𝑥

𝐶𝑒𝑛𝑡𝑒𝑟𝑦

𝐴𝑟𝑒𝑎

𝑝(𝐶1)

𝑝(𝐶2)
.
.
.

𝑝(𝐶𝑛)

Figure 1.1: Proposed MONAD framework. At each time t, neural network-based feature
extraction module provides motion (MSE), location (center coordinates and area of
bounding box), and appearance (class probabilities) features to the statistical anomaly
detection module, which automatically sets its decision threshold to satisfy a false alarm
constraint and makes online decisions.

1.3.1 Motivation

Anomaly detection in surveillance videos is defined as the identification of unusual events

which do not conform to the expectation. We base our study on two important requirements

that a successful video anomaly detector should satisfy: (i) extract meaningful features which

can be utilized to distinguish nominal and anomalous data; and (ii) provide a decision making

strategy which can be easily tuned to satisfy a given false alarm rate. While existing works

partially fulfills the first requirement by defining various constraints on spatial and temporal

video features, they typically neglect providing an analytical and amenable decision strat-

5



egy. Motivated by this shortcoming, we propose a unified framework called Multi-Objective

Neural Anomaly Detector (MONAD2). Like monads provide a unified functional model for

programming, our proposed MONAD unifies deep learning-based feature extraction and an-

alytical anomaly detection by incorporating two modules, as shown in Fig. 1.1. The first

module consists of a Generative Adversarial Network (GAN) based future frame predictor

and a lightweight object detector (YOLOv3) to extract meaningful features. The second

module consists of a nonparametric statistical algorithm which uses the extracted features

for online anomaly detection. To the best of our knowledge, this is the first work to present

theoretical performance analysis for a deep learning-based video anomaly detection method.

Our MONAD framework is described in detail in the following sections.

1.3.2 Feature Selection

Most existing works focus on a certain aspect of the video such as optical flow, gradient

loss or intensity loss. This in turn restrains the existing algorithms to a certain form of

anomalous event which is manifested in the considered video aspect. However, in general,

the type of anomaly is broad and unknown while training the algorithm. For example,

an anomalous event can be justified on the basis of appearance (a person carrying a gun),

motion (two people fighting) or location (a person walking on the roadway). To account for

all such cases, we create a feature vector F i
t for each object i in frame Xt at time t, where

F i
t is given by [w1Fmotion,w2Flocation,w3Fappearance ]. The weights w1,w2,w3 are used to adjust

the relative importance of each feature category.

1.3.3 Frame Prediction

A heuristic approach for detecting anomalies in videos is by predicting the future video

frame X̂t using previous video frames {X1,X2, ... ,Xt−1}, and then comparing it to Xt through

mean squared error (MSE). Instead of deciding directly on MSE, we use MSE of video frame

2Monad is a philosophical term for infinitesimal unit, and also a functional programming term for minimal
structure.
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prediction to obtain motion features (Section 1.3.5). GANs are known to be successful in

generating realistic images and videos. However, regular GANs might face the vanishing

gradient problem during learning as they hypothesize the discriminator as a classifier with

the sigmoid cross entropy loss function. To overcome this problem, we use a modified version

of GAN called Least Square GAN (LS-GAN) [61]. The GAN architecture comprises of a

generator network G and a discriminator network D, where the function of G is to generate

frames that would be difficult-to-classify by D. Ideally, once G is well trained, D cannot

predict better than chance. Similar to [52], we employ a U-Net [80] based network for G and

a patch discriminator for D.

For training the generator G , we follow [52], and combine the constraints on intensity,

gradient difference, optical flow, and adversarial training to get the following objective func-

tion

LG = γintLint(X̂ ,X ) + γgdLgd(X̂ ,X )+

γof Lof (X̂ ,X ) + γadvLadv (X̂ ,X )

(1.1)

where γint , γgd , γof , γadv ≥ 0 are the corresponding weights for the losses.

• Intensity loss is the l1 or l2 distance between the predicted frame X̂ and the actual

frame X , which is used to maintain similarity between pixels in the RGB space, and

given by

Lint(X̂ ,X ) =
∥∥∥X̂ − X

∥∥∥2

. (1.2)

• Gradient difference loss is used to sharpen the image prediction and is given by

Lgd(X̂ ,X ) =
∑
i ,j

∥∥∥|X̂i ,j − X̂i−1,j | − |Xi ,j − Xi−1,j |
∥∥∥
1

+
∥∥∥|X̂i ,j − X̂i ,j−1| − |Xi ,j − Xi ,j−1|

∥∥∥
1

(1.3)

where (i , j) denotes the spatial index of a video frame.
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• Optical flow loss is used to improve the coherence of motion in the predicted frame,

and is given by

Lof (X̂t+1,Xt+1,Xt) =
∥∥∥f (X̂t+1,Xt)− f (Xt+1,Xt)

∥∥∥
1

(1.4)

where f is a pretrained CNN-based function called Flownet, and is used to estimate

the optical flow.

• Adversarial generator loss is minimized to confuse D as much as possible such that it

cannot discriminate the generated predictions, and is given by

Ladv (X̂ ) =
∑
i ,j

1

2
LMSE (D(X̂i ,j), 1) (1.5)

where D(X̂i ,j) = 1 denotes “real” decision by D for patch (i , j), D(X̂i ,j) = 0 denotes

“fake” decision, and LMSE is the mean squared error function.

1.3.4 Object Detection

Figure 1.2: Example video frames from the UCSD Ped2 dataset showing the extraction of
bounding box center (location) feature in nominal training data (top row) and test data
(bottom row). Columns from left to right correspond to the first, 30th, 150th, and the last
frame in all training videos (top row), and in a test video (bottom row). In the test video,
the unusual path of golf cart, shown with red dots, together with the class probability and
high prediction error (MSE) due to unusual speed of cart statistically contribute to the
anomaly decision. Best viewed in color.
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We propose to detect objects using a real-time object detection system such as You Only

Look Once (YOLO) [76] to obtain location and appearance features (Section 1.3.5). The

advantage of YOLO is that it is capable of processing higher frames per second on a GPU

while providing the same or even better accuracy as compared to the other state-of-the-art

models such as SSD and ResNet. Speed is a critical factor for online anomaly detection,

so we currently prefer YOLOv3 in our implementations. For each detected object in image

Xt , we get a bounding box (location) along with the class probabilities (appearance). As

shown in Fig. 1.2, we monitor the center of the bounding boxes to track paths different

objects might take in the training videos. Instead of simply using the entire bounding box,

we monitor the center of the box and its area to obtain location features. This not only

reduces the complexity, but also effectively avoids false positives in case the bounding box is

not tight. In a testing video, objects diverging from the nominal paths and class probabilities

will help us detect anomalies, as explained in Section 1.3.6.

1.3.5 Feature Vector

Finally, for each object i detected in a frame, we construct a feature vector as:

F i
t =



w1MSE (Xt , X̂t)

w2Centerx

w2Centery

w2Area

w3p(C1)

w3p(C2)

...

w3p(Cn)



, (1.6)
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where MSE (Xt , X̂t) is the prediction error from the GAN-based frame predictor (Section

1.3.3); Centerx ,Centery ,Area denote the coordinates of the center of the bounding box and

the area of the bounding box (Section 1.3.4); and p(C1), ... , p(Cn) are the class probabilities

for the detected object (Section 1.3.4). Hence, at any given time t, with n denoting the

number of possible classes, the dimensionality of F i
t is given by m = n + 4.

1.3.6 Anomaly Detection

Our goal here is to detect anomalies in streaming videos with minimal detection delays

while satisfying a desired false alarm rate. We can safely hypothesize that any anomalous

event would persist for an unknown period of time. This makes the problem suitable for

a sequential anomaly detection framework [4]. However, since we have no prior knowledge

about the anomalous event that might occur in a video, parametric algorithms which require

probabilistic model and data for both nominal and anomaly cannot be used directly. Next, we

explain the training and testing of our proposed nonparametric sequential anomaly detection

algorithm.

The training procedure is given as follows. First, given a set of N training videos

V ≜ {vi : i = 1, 2, ... ,N} consisting of P frames in total, we leverage the deep learning mod-

ule of our proposed detector to extract M feature vectors FM = {F i} for M detected objects

in total such that M ≥ P . We assume that the training data does not include any anomalies.

These M vectors correspond to M points in the nominal data space, distributed according to

an unknown complex probability distribution. Following a data-driven approach we would

like to learn a nonparametric description of the nominal data distribution. Due to its at-

tractive traits, such as analyzability, interpretability, and computational efficiency [6, 28],

we use k nearest neighbor (kNN) distance, which captures the local interactions between

nominal data points, to figure out a nominal data pattern. Given the informativeness of

extracted motion, location, and appearance features, anomalous instances are expected to

lie further away from the nominal manifold defined by FM . Consequently, the kNN distance
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Figure 1.3: The ROC curves of the proposed MONAD algorithm and the online version of
Liu et al. [52] for a practical range of false alarm rate in the UCSD Ped 2 (left) and
ShanghaiTech (right) data sets.
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Figure 1.4: Actual false alarm periods vs. derived lower bounds for the UCSD Ped.2 (top
left), ShanghaiTech (top right), and Avenue (bottom) data sets.
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of anomalous instances with respect to the nominal data points in FM will be statistically

higher as compared to the nominal data points. The training procedure of our detector is

given as follows:

1. Randomly partition the nominal dataset FM into two sets FM1 and FM2 such that

M = M1 +M2.

2. Then for each point Fi in FM1 , we compute the kNN distance di with respect to the

points in set FM2 .

3. For a significance level α, e.g., 0.05, the (1 − α)th percentile dα of kNN distances

{d1, ... , dM1} is used as a baseline statistic for computing the anomaly evidence of test

instances.

4. The maximum value of kNN distances {d1, ... , dM1} is used as an upper bound (ϕ) for

δt , given by Eq. (1.7), which is then used for selecting a threshold h, as explained in

Section 1.3.7.

During the testing phase, for each object i detected at time t, the deep learning module

constructs the feature vector F i
t and computes the kNN (Euclidean) distance d i

t with respect

to the training instances in FM2 . The proposed sequential anomaly detection system then

computes the instantaneous frame-level anomaly evidence δt :

δt = (max
i
{d i

t})m − dm
α , (1.7)

where m is the dimensionality of feature vector F i
t . Finally, following a CUSUM-like proce-

dure [4] we update the running decision statistic st as

st = max{st−1 + δt , 0}, s0 = 0. (1.8)
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For nominal data, δt typically gets negative values, hence the decision statistic st hovers

around zero; whereas for anomalous data δt is expected to take positive values, and successive

positive values of δt will make st grow. We decide that a video frame is anomalous if the

decision statistic st exceeds the threshold h. After st exceeds h, we perform some fine tuning

to better label video frames as nominal or anomalous. Specifically, we find the frame st

started to grow, i.e., the last time st = 0 before detection, say τstart . Then, we also determine

the frame st stops increasing and keeps decreasing for n, e.g., 5, consecutive frames, say τend .

Finally, we label the frames between τstart and τend as anomalous, and continue testing for

new anomalies with frame τend + 1 by resetting sτend = 0.

1.3.7 Threshold Selection

If the test statistic crosses the threshold when there is no anomaly, this event is called

a false alarm. Existing works consider the decision threshold as a design parameter, and

do not provide any analytical procedure for choosing its value. For an anomaly detection

algorithm to be implemented in a practical setting, a clear procedure is necessary for selecting

the decision threshold such that it satisfies a desired false alarm rate. The reliability of an

algorithm in terms of false alarm rate is crucial for minimizing human involvement. To

provide such a performance guarantee for the false alarm rate, we derive an asymptotic

upper bound on the average false alarm rate of the proposed algorithm.

Theorem 1. The false alarm rate of the proposed algorithm is asymptotically (as M2 → ∞)

upper bounded by

FAR ≤ e−ω0h, (1.9)

where h is the decision threshold, and ω0 > 0 is given by

ω0 = vm − θ − 1

ϕ
W

(
−ϕθe−ϕθ

)
, (1.10)

θ =
vm

evmdm
α
.
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In (1.10), W(·) is the Lambert-W function, vm = πm/2

Γ(m/2+1)
is the constant for the m dimen-

sional Lebesgue measure (i.e., vmd
m
α is the m dimensional volume of the hyperball with radius

dα), and ϕ is the upper bound for δt.

Proof. See Appendix.

Although the expression for ω0 looks complicated, all the terms in (1.10) can be easily

computed. Particularly, vm is directly given by the dimensionality m, dα comes from the

training phase, ϕ is also found in training, and finally there is a built-in Lambert-W function

in popular programming languages such as Python and Matlab. Hence, given the training

data, ω0 can be easily computed, and based on Theorem 1, the threshold h can be chosen to

asymptotically achieve the desired false alarm period as follows

h =
− log(FAR)

ω0
. (1.11)

1.4 Experiments

1.4.1 Datasets

We evaluate our proposed method on three publicly available video anomaly data sets,

namely the CUHK avenue dataset [54], the UCSD pedestrian dataset [59], and the Shang-

haiTech [57] campus dataset. Each data set presents its own set of challenges and unique

characteristics such as types of anomaly, video quality, background location, etc. Hence, we

treat each dataset independently and present individual results for each of them. Here, we

briefly introduce each dataset that are used in our experiments.

• UCSD: The UCSD pedestrian data set is composed of two parts, namely Ped1 and

Ped2. Following the work of [36, 30], we exclude Ped1 from our experiments due to

its significantly lower resolution of 158 x 238 and a lack of consistency in the reported

results as some recent works reported their performance only on a subset of the entire

data set. Hence, we present our results on the UCSD Ped2 dataset which consists of
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16 training and 12 test videos, each with a resolution of 240 x 360. All the anoma-

lous events are caused due to vehicles such as bicycles, skateboarders and wheelchairs

crossing pedestrian areas.

• Avenue: The CUHK avenue dataset consists of 16 training and 21 test videos with

a frame resolution of 360 x 640. The anomalous behaviour is represented by people

throwing objects, loitering and running.

• ShanghaiTech: The ShanghaiTech Campus dataset is one of the largest and most chal-

lenging datasets available for anomaly detection in videos. It consists of 330 training

and 107 test videos from 13 different scenes, which sets it apart from the other available

datasets. The resolution for each video frame is 480 x 856.

1.4.2 Comparison with Existing Methods

We compare our proposed algorithm in Table 1.1 with state-of-the-art deep learning-

based methods, as well as methods based on hand-crafted features: MPPCA [39], MPPC +

SFA [59], Del et al. [14], Conv-AE [29], ConvLSTM-AE [56], Growing Gas [89], Stacked RNN

[57], Deep Generic [30], GANs [73], Liu et al. [52]. A popular metric used for comparison in

anomaly detection literature is the Area under the Receiver Operating Characteristic (Au-

ROC) curve. Higher AuROC values indicate better performance for an anomaly detection

system. For performance evaluation, following the existing works [11, 36, 52], we consider

frame level AuROC.

1.4.3 Implementation Details

In the prediction pipeline, the U-NET based generator and the patch discriminator are

implemented in Tensorflow. Each frame is resized to 256 x 256 and normalized to [-1,1]. The

window size t is set to 4. Similar to [52], we use the Adam optimizer for training and set the

learning rate to 0.0001 and 0.00001 for the generator and discriminator, respectively. The
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object detector used is YOLOv3 which is based on the Darknet architecture and is pretrained

on the MS-COCO dataset. During training, we extract the bounds which have a confidence

level greater than 0.6, and for testing we consider confidence levels greater than or equal to

0.4. The weights w1,w2 and w3 are set to 1, 0.4 and 0.9 respectively. The sequential anomaly

detection algorithm is implemented in Python.

1.4.4 Impact of Sequential Anomaly Detection

To demonstrate the importance of sequential anomaly detection in videos, we implement a

nonsequential version of our algorithm by applying a threshold to the instantaneous anomaly

evidence δt , given in (1.7), which is similar to the approach employed by many recent works

[52, 88, 36]. As Figure 1.5 shows, instantaneous anomaly evidence is more prone to false

alarms than the sequential MONAD statistic since it only considers the noisy evidence

available at the current time to decide. Whereas, the proposed sequential statistic handles

noisy evidence by integrating recent evidence over time.

1.4.5 Results

We compare our results to a wide range of methods in Table 1.1. Recently, [36] showed

significant gains over the rest of the methods. However, their methodology of computing the

AuROC gives them an unfair advantage as they calculate the AuROC for each video in a

dataset, and then average them as the AuROC of the dataset, as opposed to the other works

which concatenate all the videos first and then determine the AuROC as the dataset’s score.

As shown in Table 1.1 we are able to outperform the existing results in the avenue

and UCSD dataset, and achieve competitive performance in the ShanghaiTech dataset. We

should note here that our reported result in the ShanghaiTech dataset is based on online

decision making without seeing future video frames. A common technique used by several

recent works [52, 36] is to normalize the computed statistic for each test video independently,

including the ShanghaiTech dataset. However, this methodology cannot be implemented in
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Figure 1.5: The advantage of sequential anomaly detection over single-shot detection in
terms of controlling false alarms.

an online (real-time) system as it requires prior knowledge about the minimum and maximum

values the statistic might take.

Hence, we also compare our online method with the online version of state-of-the-art

method [52]. In that version, the minimum and maximum values of decision statistic is

obtained from the training data and used for all videos in the test data to normalize the

decision statistic, instead of the minimum and maximum values in each test video separately.

AuROC value, which is the most common performance metric in the literature, considers

the entire range (0, 1) of false alarm rates. However, in practice, false alarm rate must satisfy

an acceptable level (e.g., up to 10%). In Figure 1.3, on the UCSD and ShanghaiTech data

sets, we compare our algorithm with the online version of [52] within a practical range of

false alarm in terms of the ROC curve (true positive rate vs. false positive rate). As clearly
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Table 1.1: AuROC result comparison on three datasets.

Methodology CUHK Avenue UCSD Ped 2 ShanghaiTech
MPPCA [39] - 69.3 -

MPPC + SFA [59] - 61.3 -
Del et al. [14] 78.3 - -
Conv-AE [29] 80.0 85.0 60.9

ConvLSTM-AE [56] 77.0 88.1 -
Growing Gas [89] - 93.5 -
Stacked RNN [57] 81.7 92.2 68.0
Deep Generic [30] - 92.2 -

GANs [74] - 88.4 -
Liu et al. [52] 85.1 95.4 72.8

Ours 86.4 97.2 70.9

seen in the figures, the proposed MONAD algorithm achieves much higher true alarm rates

than [52] in both datasets while satisfying practical false alarm rates.

Finally, in Figure 1.4, we analyze the bound for false alarm rate derived in Theorem 1.

For the clarity of visualization, the figure shows the logarithm of false alarm period, which

is the inverse of the false alarm rate. In this case, the upper bound on false alarm rate

becomes a lower bound on the false alarm period. The experimental results corroborate the

theoretical bound and the procedure presented in Section 1.3.7 for obtaining the decision

threshold h.

1.4.6 Computational Complexity

In this section we analyze the computational complexity of the sequential anomaly de-

tection module, as well as the average running time of the deep learning module.

• Sequential Anomaly Detection: The training phase of the proposed anomaly detection

algorithm requires computation of kNN distances for each point in FM1 to each point

in FM2 . Therefore, the time complexity of training phase is given by O(M1M2m). The

space complexity of the training phase is O(M2m) since M2 data instances need to be

saved for the testing phase. In the testing phase, since we compute the kNN distances

of a single point to all data points in FM2 , the time complexity is O(M2m).
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• Deep Learning Module: The average running time for the GAN-based video frame

prediction is 22 frames per second. The YOLO object detector requires about 12

milliseconds to process a single image. This translates to about 83.33 frames per

second. The running time can be further improved by using a faster object detector

such as YOLOv3-Tiny or a better GPU system. All tests are performed on NVIDIA

GeForce RTX 2070 with 8 GB RAM and Intel i7-8700k CPU.

1.5 Conclusion

For video anomaly detection, we presented an online algorithm, called MONAD, which

consists of a deep learning-based feature extraction module and a statistical decision making

module. The first module is a novel feature extraction technique that combines GAN-based

frame prediction and a lightweight object detector. The second module is a sequential

anomaly detector, which enables performance analysis. The asymptotic false alarm rate

of MONAD is analyzed, and a practical procedure is provided for selecting its detection

threshold to satisfy a desired false alarm rate. Through real data experiments, MONAD

is shown to outperform the state-of-the-art methods, and yield false alarm rates consistent

with the derived asymptotic bounds. For future work, we plan to focus on the importance

of timely detection in video [60] by proposing a new metric based on the average delay and

precision.
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Chapter 2: A Modular and Unified Framework for Detecting and Localizing

Video Anomalies

2.1 Introduction

3With the increasing demand for security, increasing storage and processing capabilities,

and decreasing cost of electronics, surveillance cameras have been widely deployed [100]. Due

to the exponential increase in the number of CCTV cameras, the amount of video generated

far surpasses our ability to manually analyze it. Automated detection of anomalies in video

is challenging since the definition of “anomaly” is ambiguous – any event that does not

conform to “normal” behaviors can be considered as an anomaly. For example, a person

riding a bike is usually a nominal behavior, however, it may be considered as anomalous if

it occurs in a restricted space.

Specifically, due to the important role video anomaly detection plays in ensuring safety,

security, and sometimes prevention of potential catastrophes, a major functionality of a

video anomaly detection system is the real-time decision making capability. While there

is a lot of prior work on anomaly detection in surveillance videos, they mainly focus on

offline localization of anomaly in video frames following an instance-based binary hypothesis

testing approach and ignoring the online (i.e., real-time) detection of anomalous events.

For example, most of the existing works, e.g. [36, 52, 100], employ a video normalization

technique that requires an entire video segment for computation. They also typically depend

on the assumption that there is an anomaly in the video segment. In practice, this assumption

either will not hold for short video segments (on the order of minutes) or will cause long

3Portions of this chapter were published in IEEE/CVF Winter Conference on Applications of Computer
Vision [19]. Copyright permissions from the publishers are included in Appendix B.
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delays in detecting anomalous events for sufficiently long video segments (on the order of

days).

The automated video surveillance literature lacks a clear distinction between online

anomalous event detection and offline anomalous frame localization [52, 36, 71, 68, 62].

While the commonly used frame-level AUC (area under the ROC curve), which is borrowed

from the instance-based binary hypothesis testing, might be a suitable metric for localizing

the anomaly in video frames, it ignores the temporal nature of videos and fails to capture

the dynamics of detection results, e.g., a detector that detects a late portion of an anomalous

event and alarms the user after a long delay can achieve the same frame-level AUC as the

detector that quickly detects the anomalous event and timely alarms the user but misses

some anomalous frames afterwards. While minimizing the delay in detecting an anomalous

event is critical [60], it is also necessary to control the false alarm rate. Hence, a video

anomaly detector should aim to judiciously raise alarms in a timely manner.

For practical implementations, it is unrealistic to assume the availability of sufficient

training data such that it encompasses all possible nominal events/behaviors. Thus, a prac-

tical framework should also be able to perform few-shot adaptation to new nominal scenarios

over time. This presents a novel challenge to the current approaches discussed in Section

3.2 as their decision functions heavily depend on Deep Neural Networks (DNNs) [17]. DNNs

typically require a large amount of training data to learn a new nominal pattern or exhibit

the risk of catastrophic forgetting with incremental updates [40].

Another limitation of existing methods is the lack of interpretability due to the inclination

towards end-to-end deep learning based models, leading to a semantic gap between the visual

features and the real interpretation of events [65]. While such models perform well on some

benchmark datasets, i.e., they are easily able to detect a certain category of anomalies, they

cannot adequately generalize to other types of anomalies. For example, [65, 79, 62] propose a

pose estimation based framework, and hence are only able to detect human-related anomalies.
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Moreover, there is no straightforward way to modify such methods to target a different class

of anomaly since they are based on intricately designed neural networks.

Our goal in this paper is to present a more systematic framework for video anomaly

detection and localization, and tackle practical challenges such as few-shot adaptation, which

is largely unexplored in the existing literature. In summary, our contributions in this paper

are as follows:

• We present a systematic unified framework for online event detection and offline frame

localization for video anomalies, and propose a new performance metric for online event

detection.

• We propose a modular transfer learning based anomaly detection architecture which

can be easily modified to target specific anomaly categories and can easily adapt to

new scenarios using a few samples (cross-domain adaptivity).

• We introduce a statistical technique for the selection of detection threshold to satisfy

a desired false alarm rate.

2.2 Related Works

There is a fast-growing body of research investigating anomaly detection in videos. A key

component of computer vision problems is the extraction of meaningful features. In video

surveillance, the extracted features should be capable of capturing the difference between

nominal and anomalous events within a video [17]. While some methods use supervised

learning to train on both nominal and anomalous events [51, 44], the majority of existing

research is concentrated on semi-supervised learning due to the limitations in the availabil-

ity of annotated anomalous instances. Early anomaly detection methods used handcrafted

approaches which extract different types of motion information in the form of histogram of

oriented gradients (HOGs) [5, 10] and optical flow. Another category is sparse coding-based

methods [99], which were used to learn a dictionary of normal sparse events, and attempt
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to detect anomalies based on the reconstructability of video from the dictionary atoms. For

example, [64] uses sparse reconstruction to learn joint trajectory representations of multiple

objects. These approaches, while computationally inexpensive, often fail to capture complex

anomalous patterns. The recent literature however has been dominated by Convolutional

Neural Network (CNN) based methods [29, 30, 57, 75, 82, 95, 62, 71, 36] due to their signif-

icantly superior detection performance. Recently, transfer learning based object detection

methods have also been frequently used [16, 17, 36, 25] to learn appearance features. The

neural network-based methods can be broadly segregated into reconstruction-based methods

[29, 74, 9, 36] and prediction-based methods [52, 55, 81]. However, these CNNs require a

significant amount of training to adapt to a new scenario. Hence, recently few-shot learning

has been gaining attention in the computer vision literature [41, 90, 87, 92, 53, 55]. However,

no significant progress has been made yet in few-shot scene adaptation for video surveillance.

Hence, in this work, we primarily compare our few-shot adaptation performance with [55],

which proposes a meta-learning algorithm for cross-domain adaptivity.

2.3 Proposed Method

2.3.1 Motivation

In the recent anomaly detection literature, most of the proposed methods consist of

training a deep neural network on available nominal samples. However, such an approach

has several shortcomings. First, the applicability of such a method is limited to a few

scenarios where there is a drastic change in the appearance or motion of an object. In

[16], it is shown that modifying the benchmark datasets results in a significant drop in the

performance of state-of-the-art algorithms. Second, to the best of our knowledge, there is

no existing method that can be easily modified or extended to a new category of anomalies.

For example, even recent algorithms such as [97, 52, 70] cannot detect (or be modified to

detect) anomalies pertaining to changes in human poses. Third, because of the extensive use

of end-to-end learning in recent algorithms, the models lack interpretability. While there are
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Figure 2.1: Proposed MOVAD framework. At each time t, neural network-based feature
extraction module provides location (center coordinates and area of bounding box),
appearance (class probabilities), global motion (optical flow), and local motion (pose
estimation) features to the statistical anomaly detection module, which computes kNN
distance for anomaly evidence using a fully connected neural network, and sequentially
decides for anomalous events using an RNN. In human pose estimation, the single person
pose estimation (SPPE) is converted to multi-person pose features.

certain supervised methods, e.g., [88], which are capable of recognizing the type of anomaly,

they depend on the availability of anomalous data. Finally, existing methods also lack a clear

procedure for incorporating new knowledge, and would likely necessitate significant changes

to the existing architecture.

Motivated by these shortcomings, we propose a modular framework, called Modular On-

line Video Anomaly Detector (MOVAD), consisting of deep learning-based feature extraction

and statistical anomaly detection, as shown in Fig. 2.1. In particular, transfer learning based

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are used to

extract informative features, followed by a novel kNN-based neural network and RNN-based

sequential anomaly detector.
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The choice of separating feature extraction module and decision module also enables

theoretical performance analysis and a closed-form expression for the detection threshold.

In the following sections, we discuss our framework in detail.

2.3.2 Transfer Learning-Based Feature Extraction

In general, the end-to-end training of DNNs for video anomaly detection necessitates

focusing on a particular aspect in which anomalies may occur, such as object appearance

or motion or pose, and extracting only those features. However, even in the same scene,

anomalous events may be manifested in different aspects. Hence, advanced video anomaly

detectors should utilize features from multiple aspects together. For instance, biological

vision systems extracts different features in the visual cortex such as appearance, global

motion, and local motion [1]. To this end, we propose a flexible feature extraction module

that can work with various modalities, which enables a plug-and-play modular architecture.

This means although appearance, global motion, and local motion features are considered

in this paper, the proposed framework can be easily modified to add new feature extractors

or remove existing ones. Furthermore, entirely retraining a video anomaly detector for new

scene/domain is typically not necessary since most domains share the same feature types

(appearance, global motion, local motion, etc.). As a result, to significantly reduce the

training computational complexity, a transfer learning approach is utilized in the proposed

framework. We next explain the considered feature extractors, which work in parallel as

shown in Fig. 2.1.

• Object Appearance: A pre-trained object detection system is used to detect objects

and extract appearance and spatial features. Since we do not assume any prior knowl-

edge about the type of anomalies, and hence by extension the object classes, we use a

model trained on the MS-COCO dataset. For online anomaly detection, the real-time

operation is a critical factor, and hence, we currently prefer the You Only Look Once

(YOLO) [76] algorithm, specifically YOLOv4, in our implementations. It should be
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noted that the choice of the object detector is not critical for the proposed framework,

and can be adjusted according to the application. Using the object detector, we ex-

tract the bounding box (location) as well as the class probabilities (appearance) for

each object detected in a given frame. Instead of directly using the bounding box

coordinates, we instead compute the center and area of the box and leverage them as

our spatial features. During testing, any object belonging to a previously unseen class

and/or deviating from the known nominal paths contributes to an anomalous event

alarm.

• Global Motion: Apart from spatial and appearance features, capturing the motion of

different objects is also critical for detecting anomalies in videos. Hence, to monitor

the contextual motion of different objects, we propose using a pre-trained optical flow

model such as Flownet 2 [35]. We hypothesize that objects with an unusually high/low

optical flow intensity would exhibit an anomalous behavior. Thus, the mean and

variance are for each detected object are used as our global motion features.

• Local Motion: To study the social behavior in a video, it is an important factor to

study the human motion closely. For inanimate objects like cars, trucks, bikes, etc.,

monitoring the optical flow is sufficient to judge whether they portray some sort of

anomalous behavior. However, with regard to humans, we also need to monitor their

poses to determine whether an action is anomalous or not. Hence, using a pre-trained

multi-person pose estimator such as AlphaPose [22] is proposed to extract skeletal

trajectories.

2.3.3 Statistical Anomaly Detection

• Anomaly Evidence: Given the various extracted features, the next step in the pro-

posed framework is to compute an anomaly evidence score for each video frame in an

online fashion. Due its favorable characteristics, such as interpretability and theoret-
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ical tractability, we use k-nearest-neighbor (kNN) distance as an anomaly evidence.

For a feature vector Xt,i ∈ Rm representing each object i in frame t, our objective is

to compute its Euclidean distance Dt,i to the kth nearest feature vector in the nomi-

nal training set. Since kNN distance computation becomes expensive with increasing

training size, for scalability, we propose training a fully connected neural network with

parameters θ, which takes Xt,i as the input and gives an accurate approximation D̃t,i(θ)

to Dt,i . The objective function for training the kNN neural network is given by

min
θ

1

N

N∑
j=1

(Dj − D̃j(θ))
2 + λf (θ), (2.1)

where N is the number of feature vectors in the training set, λf (θ) is the regularization

term. The number of neighbors k determines a trade-off between sensitivity to anoma-

lies and robustness to nominal outliers. While smaller k values makes the system more

sensitive to real anomalies, it may also make the system more vulnerable to nominal

outliers. However, the choice of k is not critical for the detection performance since

the proposed sequential detection module does not directly decide on the anomaly evi-

dences. As shown next, through the internal memory of the RNN structure, it gathers

the evidences to detect anomalous events, hence does not typically raise an alarm due

to a single evidence due to an outlying frame.

• Online Anomaly Detection: To accommodate the temporal continuity of video data and

detect anomalous events in an online fashion, a sequential statistical decision making

method based on RNN is proposed. The anomaly evidence scores (i.e., kNN distances)

from streaming video frames provide an informative time series data which typically

takes large values when the anomalous event starts. However, to avoid false alarms

due to outlying large evidences from nominal frames, the proposed framework does

not decide using individual evidences, but instead utilizes the temporal information

inherent in the evidence time series (i.e., an anomalous event consists of a number of
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successive anomalous frames). Specifically, it takes the streaming kNN distances {D̃t}

as input and updates an internal state, which is then passed through ReLU activation

function to yield the decision statistic st . The time series {D̃t} is obtained by taking

the largest kNN distance among objects in each frame, i.e., D̃t = maxi D̃t,i . The output

neuron in RNN compares st with a threshold h to raise an alarm if st ≥ h or continue

with the next frame otherwise. Note that the RNN structure can be expanded to accept

multiple time series (in addition to kNN distances) and to have deeper layers if desired.

While kNN distances are available for the nominal class, there is no such scores for the

anomaly class to train RNN in the considered semi-supervised setup. Synthetic kNN

distances are generated uniformly in the interval (Dα, 2Dmax) where α is a statistical

significance level (e.g., α = 0.05), Dα is the (1− α) percentile of nominal distances in

the training set, and Dmax is the maximum nominal distance in the training.

To circumvent the training with synthetic data, and obtain a closed-form expression

for the threshold h, we also propose a simplified decision rule. Motivated by the

resemblance of the memory (internal state) and ReLU operations of RNN with the

minimax optimum sequential change detection algorithm CUSUM [4], we consider

fixing the RNN weights to obtain the simplified decision statistic s̃t = max{s̃t−1+δt , 0}.

In this update rule, the weights of internal state and input are set to one, where the

input δt = D̃m
t − Dm

α is the normalized kNN distance, where m is the dimensionality

of feature vectors Xt,i . In our experiments, the simplified detector gave very similar

results to the general RNN detector. With the weights set to one, there is no need to

train the RNN, and the simplified decision statistic s̃t lends itself to theoretical analysis

to derive a closed-form expression for the threshold h, as explained next.

Corollary 1. As the training size grows (N → ∞), the false alarm rate of the proposed

simplified detector based on s̃t is upper bounded by FAR ≤ e−ω0h and the threshold h

can be set as

h =
− log β

ω0
(2.2)
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to asymptotically satisfy a desired false alarm constraint FAR ≤ β. The constant ω0 is

computed from the training data and given by

ω0 = vm − θ − 1

ϕ
W

(
−ϕθe−ϕθ

)
, (2.3)

θ =
vm

evmDm
α
,

where W(·) is the Lambert-W function, vm = πm/2

Γ(m/2+1)
is the constant for the m-

dimensional Lebesgue measure (i.e., vmd
m
α is the m-dimensional volume of the hyperball

with radius dα), and ϕ is the upper bound for δt.

Proof. During the testing phase when there is no anomaly, the feature vector with the

maximum kNN distance is independently distributed due to the appearance vector of

a randomly detected object. Hence, the i.i.d assumption from Theorem 1 still holds.

The rest follows the proof of Theorem 1.

Although the expression for ω0 looks complicated, all the terms in Eq. (2.3) can be

easily computed. Particularly, vm is directly given by the number of features m, Dα

comes from the training phase, ϕ is also found in training, and finally there is a built-in

Lambert-W function in popular programming languages such as Python and Matlab.

Hence, given the training data, ω0 can be easily computed, and the threshold h can be

chosen using Eq. (2.2) to asymptotically achieve the desired false alarm rate β ∈ (0, 1).

Decision threshold h is a key parameter that is common to all existing anomaly detec-

tion algorithms, and yet is often overlooked. Since an alarm is raised when the test

statistic crosses the threshold, choosing an appropriate threshold is critical for con-

trolling the number of false alarms and minimizing the need for human involvement.

In a practical setting, without a clear procedure for selecting the decision threshold,

an exhaustive empirical process is needed to calibrate the threshold for an acceptable

false alarm rate.
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• New Performance Metric for Online Detection: Low detection delay is a crucial re-

quirement in most video-related applications such as autonomous driving [50] and au-

tomated video surveillance. However, the detection delay, which is the time required

by an algorithm to detect an anomalous event, is largely unexplored in the field of

video anomaly detection. The popular performance metric in the video anomaly de-

tection literature, AUC, cannot effectively evaluate the performance of online anomaly

detection algorithms [45]. Hence, we present a new performance metric called APD

(Average Precision as a function of Delay), which is based on average detection delay

and precision. The proposed delay metric is given by

APD =

∫ 1

0

P(γ) dγ, (2.4)

where γ denotes the normalized average detection delay, and P denotes the precision.

The average detection delay is normalized by the largest possible delay either defined

by a performance requirement or the length of natural cuts in the video stream such

as the video segments in the benchmark datasets (See Sec. 2.4.1).

• Offline Localization: Once an anomalous event is detected, the detection instance is

marked as the starting point, and the decision statistic is updated as usual to determine

the end point. When the decision statistic drops consecutively for a number of frames

(e.g., five frames is found to be a good number in our experiments), the beginning of

the drop window is marked as the end point. Finally, the frames between the start

and end points are labeled as anomalous.

• Implementation Details: In our implementation, we fix the number of neighbors as

k = 10. However, as indicated in Section 2.3.3, the choice of k is not sensitive and

does not significantly affect the performance of the detector. The detection perfor-

mance is controlled by the decision threshold h, which can be mathematically set by

following Eq. (2.3). For the kNN regression network, we use a fully connected deep
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neural network with 3 hidden layers consisting of 20 neurons each. We empirically

chose the simplest network that gave a sufficiently low prediction error. The feature

vector is 18-dimensional for each detected object, and consists of 15 class probabilities

(appearance), mean and variance of optical flow in the bounding box (global motion),

and prediction error of pose if human (local motion). Global and local motion features

are normalized to [0,1] using the min and max values from the training data.

2.4 Experiments

In this section, we first briefly discuss the benchmark datasets and the evaluation metrics.

Then, we provide a detailed comparison between the proposed algorithm and the state-of-

the-art algorithms in terms of online detection and offline localization. We also evaluate our

few-shot adaptation performance.

2.4.1 Datasets

We consider four publicly available benchmark datasets, namely the CUHK Avenue

dataset, the UCSD pedestrian dataset, the ShanghaiTech campus dataset, and the UR fall

dataset.

• UCSD Ped 2: The UCSD pedestrian dataset is one of the most widely used video

anomaly detection datasets. Due to the low resolution of the UCSD Ped 1 videos, we

only consider the UCSD Ped 2 dataset. The Ped 2 dataset consists of 16 training videos

and 12 test videos. The anomalous events are caused due to vehicles such as bicycles,

skateboards and wheelchairs. Despite being widely used as a benchmark dataset, most

anomalies are obvious and can be easily detected from a single frame.

• CUHK Avenue: Another popular dataset is the CUHK Avenue dataset, which consists

of short video clips taken from a single outdoor surveillance camera looking at the side
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of a building with a pedestrian walkway in front of it. It contains 16 training and 21

test videos with a frame resolution of 360 × 640.

• ShanghaiTech: The ShanghaiTech dataset is one of the largest and most challenging

datasets available for anomaly detection in videos. It consists of 330 training and

107 test videos from 13 different scenes, which sets it apart from the other available

datasets. The resolution for each video frame is 480 × 856.

• UR Fall: While the UR fall dataset is not popularly used for video anomaly detec-

tion, it has recently been proposed for testing the generalization capability of anomaly

detection algorithms [55]. This dataset contains 70 depth videos collected with a Mi-

crosoft Kinect camera in a nursing home and the anomalies consist of a person falling

in a closed room.

2.4.2 Results

• Online Detection: Since the proposed online detection formulation is event-based as

compared to frame-based, it only considers an anomaly as a single event irrespective

of the duration over which it occurs. In this setup, we present our results only on the

ShanghaiTech dataset as the UCSD and CUHK Avenue datasets have fewer than 50

anomalous events, which is not enough for a reliable average performance comparison.

A common technique used by several recent works [52, 36, 65, 70] is to normalize

the computed statistic for each test video independently, including the ShanghaiTech

dataset. However, this methodology cannot be implemented in an online (real-time)

system as it requires the prior knowledge of the minimum and maximum values the

statistic might take. Moreover, many recent methods [36, 55, 68] do not have their

implementation details/code publicly available, while others are end-to-end [68, 71, 79]

and cannot be implemented to work in an online fashion. Hence, we compare our

method with the online versions of [52, 65, 58]. As shown in Fig. 2.2, our proposed
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algorithm achieves a better performance than the other algorithms in terms of quick

detection and achieving high precision in alarms. This result is also summarized in

Table 4.1 in terms of the APD values.

Figure 2.2: Comparison of the proposed and the state-of-the-art algorithms Liu et al. [52]
and Morais et al. [65] in terms of online detection capability. The proposed algorithm has
a significantly higher precision for any given detection delay.

Table 2.1: Online detection comparison in terms of the proposed APD metric on the
ShanghaiTech dataset. Higher APD value represents a better online anomaly detection
performance.

Online Detection

Methodology APD

Liu et al. [52] 0.504
Morais et al. [65] 0.324
Luo et al. [58] 0.447

Ours 0.705

• Threshold Selection: We next evaluate the non-asymptotic use of the asymptotic

threshold expression given in Eq. (2.2). As shown in Fig. 2.3, even with the limited

data size of the CUHK Avenue dataset, the derived expression satisfies the desired
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Figure 2.3: Threshold selected according to Eq. (2.2) satisfies the desired lower bound on
false alarm period (i.e., upper bound on false alarm rate) even in the non-asymptotic
regime with the finite sample size of the CUHK Avenue dataset.

upper bound on the false alarm rate, which corresponds to a lower bound on the false

period (inverse rate) in the figure.

• Offline Localization: To show the offline localization capability of our algorithm, we

also compare our algorithm to a wide range of state-of-the-art methods, as shown in

Table 4.2, using the frame-level AUC criterion. The pixel-level criterion, which focuses

on the spatial localization of anomalies, can be made equivalent to the frame-level

criterion through simple post-processing techniques [71]. Hence, for offline anomaly

localization, we consider frame-level AUC criterion. While [36] recently showed sig-

nificant gains over the other algorithms, their methodology of computing the average

AUC over an entire dataset gave them an unfair advantage. Specifically, as opposed

to determining the AUC on the concatenated videos, first the AUC for each video

segment was computed and then those AUC values were averaged. As shown in Ta-
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Table 2.2: Offline anomaly localization comparison in terms of frame-level AUC on three
datasets.

Offline Localization

Methodology CUHK Avenue UCSD Ped 2 ShanghaiTech

MPPCA [39] - 69.3 -
Del et al. [14] 78.3 - -
Conv-AE [29] 80.0 85.0 60.9

ConvLSTM-AE[56] 77.0 88.1 -
Growing Neural Gas [89] - 93.5 -

Stacked RNN[57] 81.7 92.2 68.0
Deep Generic [30] - 92.2 -

GANs [73] - 88.4 -
Future Frame [52] 85.1 95.4 72.8

Skeletal Trajectory [65] - - 73.4
Multi-timescale Prediction [79] 82.85 - 76.03
Memory-guided Normality [70] 88.5 97.0 70.5

Ours 88.7 97.2 73.62

ble 4.2, our proposed algorithm outperforms the existing algorithms on the UCSD

Ped 2 and CUHK Avenue datasets, and performs competitively on the ShanghaiTech

dataset. The multi-timescale framework [79] is the only one that outperforms ours on

the ShanghaiTech dataset since the anomalies are mostly caused by previously unseen

human poses and [79] extensively monitors them using a past-future trajectory pre-

diction based framework. However, this causes their performance to severely degrade

on the CUHK Avenue dataset, and similar to [65], they cannot work on the UCSD

dataset.

• Few-Shot Scene Adaptation: Our goal here is to compare the few-shot scene adaptation

capability of the proposed algorithm and see how well it can generalize to new scenarios.

In this case, we only use a few scenes from a specific scenario to adapt. However, few-

shot scene adaptation is mostly unexplored and to the best of our knowledge only [55]

discusses it. Hence, following the experimental setup defined in [55], we use K-shots to

adapt to a new scenario, where 1-shot is a sequence of 10 frames. From [55], we consider

the Pre-trained baseline that learns the model from videos available during training
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Table 2.3: Few-shot scene adaptation comparison of the proposed and the state-of-the-art
[55] algorithms in terms of frame-level AUC. The proposed algorithm is able to quickly
adapt to new scenarios.

Target Methods 1-shot (K=1) 5-shot (K=5) 10-shot (K=10)

UCSD Ped 2 Pre-trained (ShanghaiTech) 81.95 81.95 81.95
Pre-trained (UCF Crime) 62.53 62.53 62.53
r-GAN (ShanghaiTech) 91.19 91.8 92.8
r-GAN (UCF Crime) 83.08 86.41 90.21

Ours 93.19 95.91 96.01
CUHK Avenue Pre-trained (ShanghaiTech) 71.43 71.43 71.43

Pre-trained (UCF Crime) 71.43 71.43 71.43
r-GAN (ShanghaiTech) 76.58 77.1 78.79
r-GAN (UCF Crime) 72.62 74.68 79.02

Ours 80.18 80.21 80.68
UR Fall Pre-trained (ShanghaiTech) 64.08 64.08 64.08

Pre-trained (UCF Crime) 50.87 50.87 50.87
r-GAN (ShanghaiTech) 75.51 78.7 83.24
r-GAN (UCF Crime) 74.59 79.08 81.85

Ours 86.11 88.7 91.28

and then directly applies the model in testing without any adaptation. Moreover, we

also compare with a few-shot scene-adaptive anomaly detection model using a meta-

learning framework proposed in [55] called r-GAN. They use a GAN-based framework

similar to [52] and MAML algorithm for meta-learning.

As compared to the pre-trained and r-GAN models, which need considerable training on

either the ShanghaiTech or UCF Crime [88] dataset, our transfer learning based algorithm

(pre-trained on generic datasets such as MS-COCO) is able to leverage our optical flow

model which requires minimal computation to establish a baseline and adapt the decision

parameter h to a new scene. Due to the lack of available training data, we are unable to

use the local motion and appearance features meaningfully, and hence our features are only

dependant on the optical flow statistics. However, as shown in Table 2.3, we are still able to

outperform the compared methods in terms of the frame-level AUC.
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(a) CUHK Avenue

(b) UCSD

Figure 2.4: The proposed model is able to interpret the cause of the anomaly correctly.

2.4.3 Ablation Study

In Table 2.4, we present the results for each module of the proposed MOVAD framework

on the ShanghaiTech dataset. While it is clear that optical flow is the major contributor

among all the modules in this dataset, each module serves a specific purpose. In this dataset,

although several recent works perform closely to the proposed framework, a distinguishing

advantage of MOVAD is its interpretability. By leveraging the statistical nature of our

Table 2.4: Performance of each module in terms of the frame-level AUC on the
ShanghaiTech dataset.

ShanghaiTech

Module AUC

Object Detection 0.594
Optical Flow 0.703

Pose Estimation 0.652
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Figure 2.5: The advantage of sequential anomaly detection over a single-shot detector. It is
seen that a sequential detector can significantly reduce the number of false alarms.

decision making module, it is possible to determine the cause of increase in the decision

statistic. In Fig. 2.4, we present a sample scenario from the CUHK Avenue and UCSD

datasets, in which the proposed detector is able to evaluate the statistics from each module

and justify the cause of the anomaly. However, since there is no ground truth available

in terms of the description of the anomaly, we were unable to quantitatively evaluate the

interpretability performance of MOVAD.

• Impact of Sequential Detection: To emphasize the significance of the proposed se-

quential detection method, we compare a nonsequential version of our algorithm by

applying a threshold to the instantaneous anomaly evidence δt (Sec. 2.3.3), which is

similar to the approach employed by many recent works [52, 88, 36]. As shown in

Fig. 2.5, the proposed sequential statistic handles noisy evidence by integrating recent

evidence over time. On the other hand, the instantaneous anomaly evidence is more

prone to false alarms since it only considers the noisy evidence available at the current
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time to decide. Specifically, without sequential detection, the APD presented in Table

2.1 for the proposed framework reduces to 0.673.

2.5 Conclusion and Discussions

For video anomaly detection, we presented a modular framework called MOVAD, which

consists of an interpretable transfer learning based feature extractor, and a novel kNN-RNN

based sequential anomaly detector. Mathematical analysis was provided for false alarm rate

and threshold selection. Following the timely detection requirement in practical settings,

MOVAD first detects anomalous events in an online fashion, and then deals with localizing

the anomalous video frames. Online detection of anomalous events is largely overlooked in

the video anomaly detection literature, thus a new performance metric was also introduced

to compare algorithms in terms of online anomaly detection in videos. Through exten-

sive testing on the benchmark datasets, we show that MOVAD significantly outperforms

the state-of-the-art methods for online detection while performing competitively for offline

localization.

While being able to capture anomalies in various video aspects, such as object appearance

and motion, the proposed method currently is not optimized for specific anomaly types. For

instance, it is not able to detect unexpected human poses as the optical flow does not

change significantly (see Appendix A). For future work, we plan to focus on continual and

self-supervised learning for MOVAD.
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Chapter 3: Rethinking Video Anomaly Detection

3.1 Introduction

With an ever-increasing number of closed-circuit television (CCTV) cameras and the

subsequent amount of video data generated continuously in real-time, it has now become

inefficient and nearly impossible for human operators to manually analyze the collected

data. Even though automated video surveillance has attracted much research interest in

recent years, learning continually from new data remains largely unexplored. While the vast

majority of recent anomaly detection methods perform competitively on the three popular

benchmark datasets (UCSD Pedestrian [47], CUHK Avenue [54], and ShanghaiTech Campus

[52]), we believe that progress in this domain has become stagnant. This can be attributed

to several factors, such as a flawed problem formulation, lack of a comprehensive dataset,

and an inadequate evaluation criterion.

4Traditionally, the video anomaly detection (VAD) problem is formulated as detecting

behaviors or patterns that are previously unseen in the training data. However, such a

formulation has an underlying assumption that the training data includes all possible nominal

patterns, which is impractical. The main challenge in VAD is the “open set” nature of the

nominal class for behaviors and patterns. Since the data domain of VAD is the real-world

behaviors and patterns, it is not possible to confine the nominal class to a static (i.e., fixed)

training set even for a specific scene (e.g., a static camera monitoring a particular street).

A more realistic problem formulation can be provided by the Continual Learning framework

4Portions of this chapter were published in IEEE/CVF Winter Conference on Applications of Computer
Vision [20]. Copyright permissions from the publishers are included in Appendix B.
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Figure 3.1: The proposed continual learning framework. Training data consists of a
number of splits, used to update the algorithm and knowledge base. After each update, the
model is evaluated on the entire test set.

[53]. A practical VAD algorithm must continually train 5 on new nominal video data arriving

irregularly over time. As opposed to the standard classification setup, where training on a

fixed dataset is followed by testing, in the continual learning setup, training and testing

episodes are interleaved, resulting in an ever-growing training dataset, as shown in Fig.

3.1. The main challenge in this setup is to incrementally learn new nominal patterns from

sequentially arriving new training data without forgetting the past knowledge obtained from

previous training data.

The current practice for performance evaluation in VAD also follows the standard binary

classification setup. Considering each video frame as an independent instance to be classified

as nominal or anomalous, the existing performance criterion uses the area-under-the-curve

(AUC) metric, which computes the area under the ROC curve (true positive rate (TPR) vs.

false positive rate (FPR)). This commonly used frame-level AUC metric is not adequate to

evaluate the overall VAD performance. In real-world scenes, usually the main objective is to

5Not continuously. In CL, it is natural to have gaps between training episodes. The key point is the
ability to incrementally train on sequential data arriving over a long time horizon without forgetting the
past.
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detect anomalous activities rather than anomalous frames. Even though both tasks might

seem similar, they each serve a different purpose. While anomalous activity detection is

crucial for raising an alarm in a timely manner, and hence must be online, anomalous frame

localization on the other hand is used to capture anomalous activities for future analysis,

and thus can be offline. The existing VAD literature lacks a clear distinction between the

anomalous activity detection and anomalous frame localization tasks [52, 36, 79, 65]. The

standard frame-level AUC metric is only suitable for anomalous frame localization. For

online activity detection, it is imperative to evaluate the performance in terms of activities

and also consider the detection delay in performance evaluation. An ideal VAD algorithm

should minimize the average delay in detecting anomalous activities and avoid false alarms

as much as possible.

Figure 3.2: Simple optical flow method performs close to the state-of-the-art methods
[55, 71, 52, 17, 65, 96] on the three popular benchmark datasets in terms of the frame-level
AUC metric.

The popular benchmark datasets in VAD are prepared for the traditional classification

setup based on static training, whose shortcomings are explained above. In these datasets,

anything not seen in the training data is labeled as anomalous, which causes a very limited

nominal class and a superficial definition for anomaly. For example, in the UCSD [47], Avenue

[54], and ShanghaiTech [52] datasets, the nominal behaviors mainly consists of walking

people. Such a limited nominal class enables optical flow based approaches to perform
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increasingly well on these datasets. In Fig. 3.2, we compare the performance of the recent

state-of-the-art methods [55, 71, 52, 17, 65, 96] on these benchmark datasets with respect to a

simple optical flow based algorithm, which only computes the average optical flow in a frame.

Even such a rudimentary approach is able to perform competitively with respect to the state-

of-the-art models, demonstrating the skewness in the benchmark datasets. Furthermore, in

these datasets, a person using a bike or skateboard is always considered as anomalous. Even

in the more recent Street Scene dataset [71], certain activities like loitering and dog walking

on the sidewalk are considered anomalous irrespective of their context. However, in real life,

such activities are fairly common and would be considered anomalous only under certain

circumstances, such as riding a bike against the flow of traffic or loitering after midnight.

Finally, none of the existing datasets/algorithms take into consideration practical challenges

such as different weather and lighting conditions, shifts in the activity levels based on the

day and time, and adapting to different views due to a moving camera. Hence, for the

advancement of VAD, a significantly more comprehensive dataset that can shift the focus to

evaluating the continual learning performance of VAD algorithms is required.

Another important limitation of the current state-of-the-art methods is the inherent

assumption that each test video segment includes an anomalous activity. In practice, for

this assumption to hold, the length of video segments may need to be extremely long since

in real-world scenes anomalous activities typically occur infrequently. On the contrary, the

video segments in the existing benchmark datasets are a few minutes long and always labeled

by some anomlaous frames, which do not necessarily correspond to real-world anomalies.

Thus, most of the existing methods are designed to find anomalous frames in each video

segment, which will result in many false alarms in a real-world scenario.

Motivated by the above research gaps in VAD, in this paper, we

• design a framework for continual learning and propose a new performance metric based

on detection delay and alarm precision;

• introduce a new comprehensive dataset for continual learning in VAD;
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• propose a novel algorithm that significantly outperforms the state-of-the-art methods

in online activity detection and continual learning, and provide guidance for future

algorithm design.

3.2 Related Work

Anomaly detection in videos has been extensively studied for several years. While early

approaches focused on using handcrafted motion features such as histogram of oriented

gradients (HOGs) [5, 10, 47], Hidden Markov Models [42, 32], sparse coding [99, 64], and

appearance features [11, 47], recent approaches have been completely dominated by deep

learning based algorithms. Recent algorithms can be broadly classified into reconstruction

based approaches [26, 29, 57, 67, 70], which try to classify frames based on the reconstruction

error, and prediction based approaches [52, 46, 15, 18], which attempt to predict a future

frame, primarily by using generative adversarial networks (GANs) [27]. More recently, skele-

tal trajectory based approaches [65, 79] have been proposed since a large proportion of

anomalies in the benchmark datasets involve anomalous poses. In such algorithms, an RNN

architecture is typically used to learn nominal human poses, and estimation error is used

during testing to detect the level of abnormality. Apart from these approaches, [72] proposed

a Siamese network to learn spatio-temporal patches and detect an anomaly using the dis-

similarity between patches. While these methods perform competitively on the benchmark

datasets, they are completely dependant on complex neural networks and mostly end-to-end

trained. This makes them notoriously difficult to train on new data, which is crucial in

complex temporal applications such as VAD. Furthermore, there is no clear procedure for

these methods to adapt to different nominal baselines.

Continual learning has been recently gaining increased research interest [41, 90, 87, 92,

53]. However, not a lot of progress has been made yet in continual learning for VAD. In

[17], a modular transfer learning based architecture is proposed to extract appearance and

motion features, and a CUSUM based approach is used to continually learn nominal patterns.
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However, it is only briefly discussed and the algorithm is evaluated only in terms of the false

alarm rate on a single YouTube video. Furthermore, the algorithm uses an object-centric

framework similar to [36, 30], which treat each object independently, and fails to capture

the intricate relationship between different objects. Whereas, our proposed method tracks

each object while also capturing spatial information relative to other objects in the frame.

3.3 Continual Video Anomaly Detection

Ideally, when a video anomaly detection system acquires new information, it should

be capable of updating its definition of nominal patterns/behaviors to avoid false alarms.

However, this is not straightforward with the existing algorithms since they are extensively

dependant on end-to-end trained deep neural networks that are prone to catastrophic for-

getting when trained incrementally, i.e., they tend to forget previously learned information

when trained sequentially on a new task [53]. Hence, we first carefully define a framework for

continual learning in the context of video anomaly detection. Then, we propose a new metric

for assessing the online activity detection performance that, and an effective algorithm for

continual VAD. We believe the new problem formulation and the new dataset, introduced

in Sec. 3.4, will help guide the future VAD research towards practical and reproducible

solutions.

3.3.1 Problem Formulation

Although a stream of video frames F = {f1, f2, ... } is a standard data structure for

general video processing, for anomaly detection, a video frame is not a natural data unit due

to two main reasons: lack of temporal continuity and interpretability. Firstly, the task of

classifying video frames as nominal or anomalous ignores the temporal continuity in video

frames, which is the main characteristic that differentiates video from a sequence of images.

Activities happening in a video are the cause of temporal continuity, e.g., running person,

falling object, etc. Also, since humans perceive a visual environment in terms of activities,
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the results of classifying video activities are much more interpretable than frame classification

results. Therefore, we consider a data structure of streaming video activities X = {x1, x2, ...}.

An activity xi can be typically defined in terms of action, e.g., playing basketball, or

object(s)-action pair, e.g., car crashing. An activity may involve multiple objects, e.g.,

people walking. The index i denotes the order of activity xi in terms of starting time. If

multiple activities start at the same frame, they can be ordered randomly. In a given frame,

there can be multiple activities or no activity.

While we use activity as a data unit, it should be noted that for the anomaly detection

task there is no need to explicitly recognize the activities in a video, setting it apart from the

activity recognition task. Two competing objectives make VAD a meaningful and challenging

problem: raise an alarm as soon as possible when an anomalous activity takes place, and

raise an alarm only when it is relevant.

• Detection Delay: The first objective of quickly detecting anomalous activities can

be mathematically written as minE1[Ti − τi ], where E1 denotes the expectation with

respect to the probability distribution of anomalous activities, τi is the starting time of

anomalous activity i , and Ti ≥ τi is the alarm time. Empirically, the average detection

delay can be computed as

ADD =
1

N

N∑
i=1

(Ti − τi), (3.1)

with N denoting the number of anomalous activities. Considering a longest tolerable

delay δmax, if there is no alarm within the duration [τi , τi+δmax] after anomalous activity

i happens, the delay is set to be the maximum value, i.e., Ti − τi = δmax. Note that

the considered objective of minimizing the average detection delay covers as a special

case the traditional classification objective of minimizing false negative rate (a.k.a.

misdetection rate), 1
N

∑N
j=1 1{Ti ≥ τi}. The indicator function 1{A} takes the value 1

when the condition A holds, otherwise 0. Minimizing the false negative rate (FNR)

is the same as its more popular version, maximizing the true positive rate (TPR), as
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FNR = 1 − TPR. Instead of using the generic cost of 1 for each missed anomalous

activity, i.e., 1{Ti ≥ τi}, ADD assigns the specific cost of detection delay δi = Ti − τi .

Figure 3.3: Definitions of true alarm and false alarm. The anomalous activity i is
successfully detected with alarm time Ti = T j+1, whereas the anomalous activity i + 1 is
missed.

• Alarm Precision: The second objective of alarming only when necessary is equivalent

to the well-known precision metric of binary classification. Maximizing the alarm

precision means maximizing the ratio of Number of true alarms/Number of all alarms.

As illustrated in Fig. 3.3, an alarm j is a true alarm if it is raised within the relevant

duration of an anomalous activity, i.e., T j ∈ ∪[τi , τi + δmax], otherwise it is a false

alarm. We combine close anomalous activities into a single one, e.g., car crashing

and people are running, such that the anomalous activity intervals do not overlap,

i.e., [τi , τi + δmax] ∩ [τi+1, τi+1 + δmax] = ∅,∀i . If multiple alarms are raised within an

anomalous activity interval, only the first one is considered as true alarm, and the rest

is ignored. Mathematically, we want to maximize the probability (T j ∈ ∪[τi , τi+δmax]),

which gives the alarm precision. Empirically, the alarm precision is computed as

P =
1

M

M∑
j=1

1{T j ∈ ∪[τi , τi + δmax]}, (3.2)

where M = |{T j}| is the number of all alarms and | · | denotes the cardinality of a set.

Note that the alarm precision is much easier to calculate than false alarm/positive rate

(FPR), another commonly used metric in binary classification. While the normalization

termM in precision, i.e., number of all alarms, is easy to know, false alarm rate requires

the number of all nominal activities, which is not easy to find.
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• Average Precision Delay: In order to obtain a single metric for conveniently comparing

VAD algorithms, we propose a new metric called Average Precision Delay (APD),

which combines average detection delay and alarm precision. Similar to the way the

popular AUC metric summarizes TPR and FPR, APD measures the area under the

Precision vs. normalized ADD (NADD) curve. To map ADD into [0, 1], we normalize

it by the maximum delay, i.e., NADD = ADD/δmax. Mathematically, APD is given by

APD =

∫ 1

0

P(α) dα, (3.3)

where α denotes NADD, and P denotes the precision. A highly successful algorithm

with an APD value close to 1 must have high precision and low delay in its alarms.

As compared to the APD metric defined in Eq. (2.4) for instance based detections,

here we consider event based detections.

Figure 3.4: Proposed VAD algorithm. Object tracking features and spatio-temporal object
features form the feature vector, whose kNN distance with respect to the nominal vectors
is used to make an anomaly decision within an RNN structure. The use of kNN distances
facilitates effective continual learning.
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• Continual Learning: In the proposed continual learning framework, the VAD algorithm

is trained in multiple sessions over time using several batches of nominal data, called

splits (Fig. 3.1). In practice, training splits may arrive irregularly with varying sizes.

Following the common practice in VAD, no labels are provided with the training splits.

Although training data is assumed to be nominal, some level of contamination with

anomalous activities may be tolerated depending on the robustness of the VAD algo-

rithm to outliers. The objective in the continual learning setup is to improve the APD

performance consistently with each training split k , i.e.,

APDk ≥ APDk−1,∀k . (3.4)

The APD value is measured after each training split using all the available test data. As-

sessing the performance on a comprehensive test dataset is important to see if the algorithm

suffers from catastrophic forgetting. If the algorithm is not suitable for continual learning, it

may start to lose performance although more training data and accordingly more knowledge

becomes available. On the contrary, a successful continual VAD algorithm will consistently

improve its APD performance with more training splits.

3.3.2 Continual VAD Algorithm

Due to the the tendency of deep neural networks to forget previously learned informa-

tion when the network is trained sequentially on multiple tasks, end-to-end trained VAD

models are not suitable when it comes to continual learning. Even though experience re-

play has shown promising results on toy examples recently, it still cannot be scaled up to

problems with complex tasks since constantly retraining on all previously learned tasks is

highly inefficient, and the amount of data that would have to be stored quickly becomes

unmanageable [91]. However, in this work, we show that this challenge can be addressed by

treating continual learning with a two-stage approach: by first extracting a low dimensional
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feature embedding for each frame using end-to-end deep learning models and then employing

k-Nearest-Neighbors (kNN) based RNN model to prevent catastrophic forgetting.

As shown in Fig. 3.4, we first detect objects in each frame by using a pretrained object

detector, such as YOLO-v4 [76]. Then, we use the extracted bounding boxes to construct

a feature embedding to represent the spatio-temporal activities observed in the frame. Par-

ticularly, we monitor the number of objects detected per object class, the number of object

classes observed, the day of the week and the time of the day the video frame belongs to.

To limit the computational complexity, we discretize the day dimension into two categories

as weekday and weekend. Similarly, we discretize the time of the day into four categories as

active and inactive times of day and night. In addition, to extract more intricate features

from each detected object, we also employ a re-identification and tracking algorithm called

DeepSORT [93], which performs real-time path tracking of each detected object. The ex-

tracted object paths are provided to an RNN to make predictions about the future path.

The prediction errors for all object paths are then stacked into a feature vector together with

the spatio-temporal features.

Next, the kNN distance of the feature vector is computed with respect to the set of

nominal feature vectors stored in the memory module. As explained next, we consider two

different ways of computing the kNN distance for continual learning purposes. The single-

dimensional time series of kNN distances provides evidence for anomalies since the frames

from anomalous activities typically lie farther away in the feature space from the nominal

frames. However, to leverage the temporal continuity among frames, we do not directly

decide for each frame using its kNN distance; we use an RNN structure to capture the

temporal dependency in kNN distances and decide using that sequential information. To

train the RNN with anomalous frames, we use synthetic kNN distances generated uniformly

between the 95th percentile of nominal kNN distances and its double.

• Continual Learning: We propose two approaches for continual learning, which are

based on two different ways of computing the kNN distance. The first one is based
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on exact kNN distance computation and is particularly useful for continually learning

nominal behaviors when the amount of training data is still tractable. In this approach,

we incrementally update the memory module with the kNN distance of new features

from each training split. However, with many training splits over a long time horizon,

the exact computation of kNN distance may be prohibitive as the nominal training set

grows. For long-term scalability, we propose a second approach which estimates the

kNN distance using a fully-connected deep neural network (k-DNN). To continually

update k-DNN, we use experience replay, i.e., in addition to the most recent feature

vector and its kNN value, previous feature vectors and kNN values are also used to

update k-DNN. The second approach has the advantage of being computationally

efficient during testing, especially when the training set is large.

• Implementation Details: For the kNN regression network (k-DNN), we use a fully-

connected deep neural network with 3 hidden layers consisting of 20 neurons each. We

empirically chose the simplest network that gave a sufficiently low prediction error. A

single hidden layer LSTM with a two input time steps is used for the decision RNN.

The YOLO object detector is trained on the MS-COCO dataset with 80 classes, and

the DeepSORT object tracker is trained on the MOT16 dataset. For path prediction,

an LSTM with three hidden layers with 20 input time steps is used. We remove

trajectories which last for less than 50 frames. All the features are normalized to [0, 1]

using the maximum and minimum values from training. The entire pipeline is able to

run at approximately 18 fps on a RTX 2070 GPU, which can be significantly improved

by using a better GPU or more lightweight models. Moreover, to maintain real-time

performance, the videos can also be analyzed at lower fps. For the maximum detection

delay, we set a limit of 5 minutes, which we believe is sufficient for detecting any type

of anomaly.
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Table 3.1: Comparison of existing and proposed VAD datasets. Ground truth refers to the
type of anomaly labeling.

Dataset Total Training Testing Ground Resolution Note
Frames Frames Frames Truth

UCSD Ped1 14,000 6800 7200 Spatial, Temporal 238 x 158 –
UCSD Ped2 4560 2550 2010 Spatial, Temporal 360 x 240 –
Subway 125,475 22,500 102,975 Temporal 512 x 384 2 scenes

CUHK Avenue 30,652 15,328 15,324 Spatial, Temporal 640 x 360 –
UMN 3,855 N/A N/A Temporal 320 x 240 Frames not directly available

ShanghaiTech 317,398 274,515 42,883 Spatial, Temporal 856 x 480 13 scenes
Street Scene 203,257 56,847 146,410 Spatial, Temporal 1280 x 720 –

NOLA (proposed) 1,440,000 990,000 450,000 Spatial, Temporal 1280 x 720 Audio also available

3.4 Dataset for Continual VAD

The popular benchmark datasets (UCSD, Avenue, ShanghaiTech) in VAD are not suf-

ficiently comprehensive for the continual learning framework. There is a recent multi-scene

dataset, UCF Crime [88], which is significantly larger and more complex than the popular

benchmarks. However, having been collected from various YouTube videos this multi-scene

dataset is also not suitable for continual learning since the sheer heterogeneity in the dataset

causes incompatibility issues [71]. For instance, an obvious anomalous activity in one scene

cannot be detected since a very similar activity has appeared as nominal in a quite differ-

ent scene. Hence, instead of a multi-scene setup with spatial richness (i.e., comprehensive

data over various scenes), we focus on a single-scene setup with a new dataset that provides

temporal richness (i.e., comprehensive data over time).

3.4.1 Existing Datasets

The three popular benchmark datasets for VAD are discussed below.

• UCSD Ped 2: The UCSD Pedestrian dataset is one of the most widely used VAD

datasets. Due to the small resolution of the UCSD Ped 1 videos, most recent works

only consider the UCSD Ped 2 dataset. The Ped 2 dataset consists of 16 training videos

and 12 test videos. The anomalous activities are caused by vehicles such as bicycles,
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skateboards and wheelchairs. Despite being widely used as a benchmark dataset, most

anomalies are obvious and can be easily detected from a single frame.

• CUHK Avenue: Another popular dataset is the CUHK Avenue dataset, which consists

of short video clips taken from a single outdoor surveillance camera. It contains 16

training and 21 test videos with a frame resolution of 360 × 640. While it is more

challenging than the UCSD dataset, the anomalies are staged and the labeling of the

anomalous instances is not consistent.

• ShanghaiTech: The ShanghaiTech dataset is one of the largest and most challenging

datasets available for anomaly detection in videos. It consists of 330 training and

107 test videos from 13 different scenes, which sets it apart from the other available

datasets. The resolution for each video frame is 480 × 856. However, the videos are

captured from 13 different cameras, which makes it a multi-scene formulation. On the

other hand, treating it as 13 different datasets severely limits the number of available

training frames for each scene.

3.4.2 New Dataset: NOLA

We introduce a new dataset which consists of 110 training video segments in 11 splits

and 50 test segments captured over an entire week from a single moving camera6 from a

famous street in New Orleans, Louisiana, USA. To maintain consistency and avoid unrealistic

normalization assumptions, all the training and testing video segments are clipped at 9000

frames, extracted at 30 frames per second. Overall, the dataset consists of 990,000 training

frames and 450,000 testing frames, making it significantly larger than any other available

dataset, as shown in Table 3.1. The dataset was manually collected, cleaned and annotated

by the authors. The training set is split into 11 smaller batches to evaluate the performance

in terms of continual learning, as described in Section 3.3.1. One split is used for initial

6https://www.earthcam.com/usa/louisiana/neworleans/bourbonstreet/?cam=catsmeow2
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Table 3.2: Performance of the proposed detector and recent state-of-the-art approaches
across different continual learning splits in terms of the proposed APD metric.

Method CL-1 CL-2 CL-3 CL-4 CL-5 CL-6 CL-7 CL-8 CL-9 CL-10
Future Frame Prediction [52] 0.137 0.149 0.173 0.205 0.211 0.232 0.202 0.22 0.245 0.271

MNAD [70] 0.162 0.21 0.219 0.262 0.251 0.289 0.311 0.271 0.295 0.28
Ours 0.235 0.239 0.243 0.296 0.317 0.323 0.325 0.375 0.377 0.401

training, and the rest 10 splits are used to evaluate the continual learning performance (Fig.

3.1).

In contrast to existing datasets, the proposed dataset consists of videos captured during

day and night, as well as on various days of the week. This information is also provided in the

form of metadata, which we believe is especially crucial since the expected amount of activity

is directly related to the day and time. The proposed dataset is especially challenging because

the anomalies are contextual in nature and require a deeper understanding of the videos.

For example, loitering is considered as nominal during daytime, but anomalous during night.

Other examples of anomalous events include a person carrying a snake, a vehicle moving in

the wrong direction, sudden appearance of several bikes, etc. as anomalous. To detect such

an anomaly, an algorithm will need to understand the behaviors with respect to the day and

time. Also, since the camera alternates between two different views of the same street, each

with an independent nominal baseline, it is challenging to adapt to such contextual changes.

There is also audio data available in the NOLA dataset, which is not used in this work but

may be helpful in future studies by providing extra information.

3.5 Experiments

In this section, we compare the continual learning capability of the proposed algorithm

and state-of-the-art VAD methods. While there are a few approaches [17, 66] which at-

tempt to continuously learn nominal behaviors from a toy dataset, their objective is to

minimize the false alarm rate by updating their baseline model without considering the de-

tection delay or TPR performance. However, to the best of our knowledge, since there is no
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existing approach that is designed for continual VAD, we modify two existing state-of-the-

art approaches, namely the Future Frame Prediction method [52] and the Memory guided

Normality (MNAD) method [70]. The future frame prediction method proposes a GAN

architecture to learn appearance and motion features and aims to predict the future frames.

Its detection is based on the assumption that a previously unseen activity causes a higher

prediction error. On the other hand, the MNAD approach proposes a reconstruction based

approach using autoencoders. We chose these two algorithms since their codes were readily

available, and they could be tweaked to learn both incrementally and in batches. We also

attempted to implement a more recent algorithm proposed in [36] since they also propose

an object-centric approach more akin to our proposed algorithm; however, our version was

unable to achieve a score close to their reported results.

Figure 3.5: Comparison of the proposed and state-of-the-art algorithms Liu et al. [52] and
Park et al. [70] in terms of learning from few samples on the ShanghaiTech (top) and
UCSD (bottom) datasets.

• Results on the Proposed NOLA Dataset: We first study the continual learning per-

formance of the proposed and benchmark algorithms on the new NOLA dataset using

the setup introduced in Sec. 3.3.1. In this experiment, we use the k-DNN and ex-

perience replay based version of our algorithm. From Table 3.2, we can see that the

proposed algorithm clearly outperforms the two benchmark algorithms across all splits.
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Particularly, the proposed algorithm performs well at detecting anomalous activities

such as a vehicle moving in the wrong direction and a person loitering after midnight.

Since the initial training data consists mainly of videos captured during a weekday, we

first see several false alarms caused due to test videos from weekend, which exhibits

a significantly higher activity level. These false alarms gradually decrease after each

split as we continually learn new baselines. In contrast, we see performance decrease

for the benchmark algorithms on several splits, indicating that they suffer from catas-

trophic forgetting. For instance, although the future frame prediction algorithm has

shown competitive performance on the existing benchmark datasets, we see that it is

not capable of predicting more complex scenarios. Specifically, even after training on

several thousand frames of people using a bicycle, the algorithm gives a high prediction

error whenever it sees a similar activity in the test videos. This result shows why it is

imperative for VAD algorithms to be evaluated on more comprehensive datasets.

• Results on Existing Benchmark Datasets: To further analyze the performance of our

model and to provide a fair comparison with the benchmark algorithms, we also provide

performance evaluation results on the benchmark datasets using the popular frame-

level AUC metric. However, since these datasets are significantly smaller, it is not

possible to split them similar to the continual learning framework proposed in Sec.

3.3.1. Hence, we design a specific scenario in which the objective is to learn a new

activity type which was unavailable in the training dataset. Specifically, we choose a

person riding a bicycle as our new nominal activity, since it is the only anomalous case

which is common in UCSD Ped 2 and ShanghaiTech datasets that occurs several times.

Fig. 3.5 shows that our proposed algorithm outperforms the benchmark algorithms

even with the classical metric on the existing benchmark datasets. Since the datasets

are relatively small here, we employ the incremental version of the proposed algorithm

based on exact kNN distances.
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3.5.1 Discussion

While the proposed detector is able to detect several kinds of anomalies, it is tuned to

learn continuously and reduce the number of false alarms rather than analyze each frame

intricately. Hence, we analyze a few cases in which the proposed detector is unable to raise

an alarm. In the first case, the anomaly is due to a person carrying a snake in a crowded

street. In the second one, we see a person deliberately stopping a car by dancing in front of

it. Finally, in the third one, we see a couple arguing with the restaurant owners. To detect

such anomalies, a VAD algorithm needs to have a much deeper understanding of the intricate

relationships between each detected object and how it affects its surroundings. Nevertheless,

this also presents the richness of the proposed NOLA dataset, and how it can help improve

future VAD algorithms.

3.6 Conclusion

We presented a new framework and a new comprehensive dataset for continual learning

in video anomaly detection. We hope the new problem formulation (Sec. 3.3) and the new

dataset (Sec. 3.4) will help guide the future VAD research towards practical and reproducible

solutions. We also presented a novel video anomaly detector capable of learning continu-

ously both incrementally and through experience replay. Through extensive testing on the

proposed NOLA dataset and available benchmark datasets, we show that the proposed al-

gorithm outperforms two of the state-of-the-art approaches in continual learning, as well as

in terms of the standard frame-level AUC metric. For future work, we plan on leveraging

audio and video in a multi-modal setup for improved detection performance.
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Chapter 4: Multi-Task Learning for Video Surveillance with Limited Data

4.1 Introduction

With an ever-increasing number of closed-circuit television (CCTV) cameras and the

subsequent amount of video data generated continuously in real-time, it has now become

inefficient and nearly impossible for human operators to manually analyze the collected data.

Particularly, the ability to detect events in real-time is critical for prevention of potential

catastrophes. Hence, video anomaly detection has been attracting an increasing amount

of research interest, with most of the recent approaches heavily dependent on end-to-end

trained complex deep learning based approaches [52, 18, 70].

In the literature, the video anomaly detection problem is formulated as detecting activi-

ties or events that diverge from those typically seen in the training data. This is particularly

challenging due to the fact that most anomalies are contextual in nature, making it almost

impossible to obtain a fairly representative set of anomalies. Hence, conventional super-

vised learning approaches are not feasible in video anomaly detection. For example, in the

popular UCSD [47] and ShanghaiTech [52] video anomaly detection benchmark datasets, a

person riding a bike is considered as anomalous; however, in the recently released Street

Scene [71] dataset, it is considered as nominal. Hence, most of the existing approaches

[72, 71, 3, 7, 15, 29, 37, 16, 17, 52, 68, 100, 65] focus on learning an all-encompassing notion

of normality, and detect events that deviate from it.

A crucial task which is neglected by almost all existing algorithms is cross-domain adapt-

ability, where a trained model is able to perform reasonably well on a completely new surveil-

lance scene without requiring any additional training. While a similar task was discussed in

[55], the proposed approach still required some training data from the new scene to fine-tune
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its model using meta-learning. This approach might not always be feasible since it requires

a human operator to manually collect a representative set of nominal frames which also in-

cludes new activities pertaining to the surveillance scene, which is not ideal. Furthermore,

this cannot be automated by using pretrained activity recognition models since each video

sequence consists of several different activities occurring at once, which even the current

state-of-the-art approaches cannot detect accurately.

Moreover, in the traditional formulation with a single training session, the inherent as-

sumption that the training data includes all possible nominal activities is unrealistic. Even

while considering a single scene (e.g., a static camera monitoring a particular street) setup, it

is not possible to capture all possible nominal activities in a single training session. Rather,

it would be more realistic to treat the nominal class as an “open set”, as in continual learning

[53]. As opposed to the standard classification setup, where training on a fixed dataset is

followed by testing, in the continual learning setup, training and testing episodes are inter-

leaved, resulting in an ever-growing training dataset. However, unlike humans, deep learning

based approaches are unable to learn incrementally from new incoming data without suf-

fering from catastrophic forgetting [40], or learn a new pattern from only a few samples.

Furthermore, current approaches require training a model from scratch for each scene, even

when the objective and most data patterns remain the same (e.g., for a different camera

view monitoring a similar street).

For practical implementations, it is also unreasonable to assume the availability of suffi-

cient training data for all nominal events/behaviors. This presents a novel challenge to the

current approaches discussed in Section 4.2 as their decision functions heavily depend on

Deep Neural Networks (DNNs) [17]. In the existing benchmark datasets, several frames are

available for all nominal activities, which makes it relatively straightforward for recent meth-

ods to learn them. However, almost all recent approaches neglect analyzing the performance

of their models in absence of sufficient training data for a certain activity.
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To summarize, our contributions in this paper are as follows:

• We propose the first multi-task learning framework capable of cross adaptability, few-

shot learning, and continual learning for video anomaly detection with limited data.

• We propose the first semantic embedding based approach for video anomaly detection

using deep metric learning, which significantly reduces the memory and computational

requirements.

• We extensively evaluate our proposed approach on each task using publicly available

datasets and show that we can transition effectively between them.

4.2 Related Work

Anomaly detection in videos has been extensively studied for several years. While early

approaches focused on using handcrafted motion features such as histogram of oriented gra-

dients (HOGs) [5, 10, 47], Hidden Markov Models (HMMs) [42, 32], sparse coding [99, 64],

and appearance features [11, 47], recent approaches have been completely dominated by

deep learning based algorithms. Recent algorithms can be broadly classified into recon-

struction based approaches [26, 29, 57, 67, 70], which try to classify frames based on the

reconstruction error, and prediction based approaches [52, 46, 15, 18], which attempt to pre-

dict a future frame, primarily by using generative adversarial networks (GANs) [27]. More

recently, skeletal trajectory based approaches [65, 79] have been proposed since a large pro-

portion of anomalies in the benchmark datasets involve anomalous human poses. In such

algorithms, an RNN architecture is typically used to learn nominal poses, and estimation

error is used during testing to detect the level of abnormality. Apart from these approaches,

[72] proposed a Siamese network to learn spatio-temporal patches and detect an anomaly

using the dissimilarity between patches. While these methods perform competitively on the

benchmark datasets, they are completely dependent on complex neural networks and mostly

end-to-end trained.
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Several recent works propose using a GAN for detecting anomalies in videos. For example,

[52] proposes a future frame prediction network which attempts to predict the future frame

based on a sequence of input frames, and computes the prediction error in terms of the peak

signal to noise ratio. However, such an approach cannot be practically implemented since

GANs are notoriously difficult to train on few samples. Moreover, retraining a GAN from

scratch to offset catastrophic forgetting is computationally infeasible.

Hence, continual learning has been recently gaining increasing research interest [41, 90,

87, 92, 53]. However, not a lot of progress has been made yet in continual learning for video

anomaly detection. In [17], a modular transfer learning based architecture is proposed to

extract appearance and motion features, and a CUSUM based approach is used to continually

learn nominal patterns. However, it is only briefly discussed and the algorithm is evaluated

only in terms of the false alarm rate on a single YouTube video. Furthermore, the algorithm

uses an object-centric framework similar to [36, 30], which treat each object independently,

and fails to capture the intricate relationship between different objects.

4.3 Multi-Task Video Surveillance

In the existing video anomaly detection literature, the singular goal is to detect frames

or behaviors which are not previously seen in the training data. However, for a detector

to be applicable in a real-world scenario, a single model needs to be able to perform mul-

tiple tasks such as knowledge sharing among different scenes, and continually learning new

behaviors from a few samples. Thus, we next carefully define a multi-task problem setup

for video anomaly detection, which we believe should guide future research towards more

comprehensive approaches.

4.3.1 Problem Setup

In the recent literature, most detectors train a reconstruction or prediction based deep

learning model on a batch of video frames, typically in an end-to-end fashion to learn nominal
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appearance or motion features. However, we argue that for general video surveillance, such a

setup is not optimal since learned visual embeddings are exceedingly dependant on conditions

such as illumination, view point variation, occlusion, etc. Also, the standard framework

implicitly assumes that sufficient training data is available for each activity from the target

scene where the detector will be deployed [55]. Such an assumption requires a human to

manually annotate hours of videos from each scene to generate an anomaly-free training

dataset, which is far from ideal. Motivated by these observations, we propose a general

video surveillance framework which consists of the following tasks in addition to anomaly

detection.

• T1: Cross-Domain Adaptability: Given videos from different scenes but a similar

environment, it is fair to assume that the type of nominal activities remains consistent.

Then, a model trained on one scene should be able to adapt to other scenes without

needing any additional training. For example, in the benchmark video surveillance

datasets discussed in Section 4.4, the same type of nominal activities are shared.

• T2: Few-Shot Learning: For a more realistic setup, we assume that the training set

consists of limited samples for some nominal activities, and thus a single model should

also be capable of learning patterns from those few samples. This task is particularly

essential since most recent methods are deep learning based, which are notoriously

difficult to train on a few samples.

• T3: Continual Learning: Finally, it is crucial for a detector to learn new nominal ac-

tivities without suffering from catastrophic forgetting. Specifically, the detector should

not lose performance while training on new nominal data.

Recently, [55] proposed a few-shot scene adaptation framework using meta-learning. How-

ever, it collects images during testing to calibrate the model to the new scene, which we argue

is not ideal since it again requires human supervision to make sure that it does not include

any anomalous activity in training. Furthermore, the approach in [55] is based on the future
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frame prediction model [52], which uses a GAN and thus is unable to perform tasks T1

and T3. Another recent work, [17] considered T3 as a necessary objective for a practical

video anomaly detector. A kNN based approach was proposed, which requires the detector

to store all the extracted visual embeddings from the training data in memory, and during

testing find the Euclidean distance to it. While this allows for a rehearsal-free approach, it

quickly becomes infeasible since the size of the memory required grows exponentially with the

number of objects detected. Also, due to the high dimensionality of the visual embeddings,

using clustering based approaches to limit the memory is computationally too expensive. To

the best of our knowledge, this paper is the first to propose a multi-task framework which

addresses all three tasks simultaneously and to consider zero-shot cross-domain adaptability.

We next present our proposed approach.

Figure 4.1: Proposed video anomaly detection framework. At each time t, neural
network-based feature extraction module provides location, appearance and global motion
labels, and local motion (pose estimation) reconstruction error, which is then used to form
a semantic embedding which represents the detected activity. This is then used to train a
deep neural network using metric learning, which outputs the anomaly score.
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4.3.2 Proposed Approach

Since humans perceive a visual environment in terms of activities, we believe that it is

more natural and efficient to learn video activities semantically rather than storing entire

frames in buffer or learning high-dimensional visual embeddings. Motivated by the human

visual cortex system [1] which consists of six regions of cortical hierarchy (V1-V6), we first

extract the spatial information (as in V1 & V2) from the scene by using a using a semantic

segmentation model. This is followed by the global motion (as in V3), i.e., the direction and

speed with which different objects travel, which is extracted using an optical flow model.

Finally, we recognize basic objects (as in V4) using an object detector, and form relationships

between the different modalities (as in V5 & V6).

However, unlike the existing approaches, instead of using the extracted features as a visual

embedding to perform the tasks (T1-T3), we propose using the labels {location, appearance,

motion} to extract a semantic embedding by using a Word2Vec model, as shown in Fig. 4.1.

Such transformation has several advantages. Firstly, it is significantly easier to cluster similar

labels as compared to high-dimensional visual embeddings, thus reducing the computational

complexity. Secondly, this allows us to generalize better to different nominal activities, since

in the Euclidean space, two similar activities such as a “person walking on the sidewalk”

and a “person walking on the road” are quite apart, however, in the semantic space they

are quite close. Finally, this also allows us to transfer knowledge between different scenarios

since semantic embeddings are independent of spatial information. For example, a change

in the location of road would render the learned visual features useless, whereas it would not

affect the learned semantic features.

4.3.3 Deep Learning-Based Feature Extraction

In general, the end-to-end training of DNNs for video anomaly detection necessitates

focusing on a particular aspect in which anomalies may occur, such as object appearance

or motion or pose, and extracting only those features. However, even in the same scene,
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anomalous events may be manifested in different aspects. Hence, advanced video anomaly

detectors should utilize features from multiple aspects together. For instance, biological

vision systems extracts different features in the visual cortex such as appearance, global

motion, and local motion [1]. To this end, we propose a flexible feature extraction module

that can work with various modalities, which enables a plug-and-play modular architecture.

This means although appearance, global motion, and local motion features are considered

in this paper, the proposed framework can be easily modified to add new feature extractors

or remove existing ones. Furthermore, entirely retraining a video anomaly detector for new

scene/domain is typically not necessary since most domains share the same feature types

(appearance, global motion, local motion, etc.). As a result, to significantly reduce the

training computational complexity, a transfer learning approach is utilized in the proposed

framework. We next explain the considered feature extractors, which work in parallel as

shown in Fig. 4.1.

• Object Appearance: Object detection has received a lot of attention in recent years.

Broadly, object detectors can be classified into single-stage and two-stage detectors.

In single-stage object detectors such as YOLO (You Only Look Once) [76] and SSD

(Single Shot Multibox Detector), the object detection task is treated as a simple re-

gression problem, and directly outputs the bounding box coordinates. On the other

hand, two-stage detectors such as Faster R-CNN [78] use a region proposal network

first to generate regions of interest and then do object classification and bounding box

regression. These methods are typically slower and take considerably longer, but are

much better at detecting small objects. While single stage detectors are more efficient,

we noticed that removing the false detections due to the lower accuracy accrues addi-

tional computational overhead, thus negating the advantage of using such detectors.

To this end, following [48], we train a Faster R-CNN model which uses a Squeeze and

Excitation Network (SENet) [33], since they generalize extremely well across different

scenarios. SENet has a depth of 152 and uses a K-means clustering algorithm to cluster
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anchors, with the distance metric defined as:

D(box , centroid) = 1− IoU(box , centroid),

where IoU denotes the intersection of union. Using the object detector, we extract the

bounding box (location) as well as the class probabilities (appearance) for each object

detected in a given frame. Instead of directly using the bounding box coordinates,

we instead compute the center and area of the box and leverage them as our spatial

features. During testing, any object belonging to a previously unseen class and/or

deviating from the known nominal paths contributes to an anomalous event alarm.

• Global Motion: Apart from spatial and appearance features, capturing the motion

of different objects is also critical for detecting anomalies in videos. We propose a

novel modification of an optical flow model known as perspective based optical flow.

Optical flow is widely used in the existing literature to extract motion features. While

computing the optical flow from frames, it is a common occurrence that objects closer

to the camera covers a larger portion and hence even a slight movement by such an

object results in a significantly larger optical flow. Since in video surveillance large

optical flow values essentially mean an anomaly, any object close to the camera could

cause unnecessary false alarms. To prevent such occurrences, we propose a perspective-

based optical flow approach which leverages object detection to normalize the optical

flow. While perspective mapping has been widely used for detecting vehicles, crowds,

and license plates, to the best of our knowledge, it has yet to be used for optical

flow mapping. For obtaining the perspective-based optical flow, we assume that the

difference between the actual heights of people detected in the videos is negligible.

Then, the optical flow can be written as a function of the width and height of the

bounding box, given by

O1 = f

(
w1 ∗ h1
H1

)
,
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where O1 is the optical flow intensity for a detected person, H1 is the actual height, w1

and h1 are the width and height of the bounding box, respectively. Then, assuming

H1 to be constant for each detected person, we compute the normalized optical flow

intensity as

On1 =
O1

w1 ∗ h1
. (4.1)

To also account for cases where the size of the detected person is too small and optical

flow might not be very accurate, we set the minimum size of the person that can be

detected in the image as 10. In Fig. 4.2, we see that in the first case there is an

unusually high optical flow intensity because of a person passing near the camera,

which would lead to false alarms. However, as shown in the second case, by using the

perspective-based optical flow, we successfully reduce the intensity of the optical flow.

(a) Optical flow
without perspective

mapping.

(b) Optical flow
with perspective

mapping.

Figure 4.2: Objects closer to the camera have a significantly higher optical flow intensity
even when they are moving at a nominal speed, which leads to false alarms. By using
perspective-based optical flow, we successfully normalize such cases and prevent false
alarms.

• Local Motion: To study the social behavior in a video, it is an important factor to

study the human motion closely. For inanimate objects like cars, trucks, bikes, etc.,

monitoring the optical flow is sufficient to judge whether they portray some sort of

anomalous behavior. However, with regard to humans, we also need to monitor their

poses to determine whether an action is anomalous or not. Hence, using a pre-trained
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multi-person pose estimator such as AlphaPose [22] is proposed to extract skeletal

trajectories.

• Location: Generalizing to different locations is a crucial step for seamless cross-domain

adaptability. Specifically, activities occurring at similar locations need to be grouped

together, or else it can lead to false alarms. For example, if the training data con-

siders a person walking on the road as nominal, a similar activity such as walking

on the sidewalk should not be considered as anomalous during inference. Hence, to

recognize different background locations, we use a hierarchical multi-scale semantic

segmentation model trained on the Cityscapes dataset 7. The model uses HRNet-OCR

as backbone and is more memory efficient than other approaches. It uses an attention

based approach to combine multi-scale predictions.

• Semantic Embedding: Finally, we define each detected activity for every frame in the

form of its output label from each model. This simple transformation allows for several

advantages. First, due to its small dimensionality, clustering similar semantic labels is

significantly easier compared to clustering visual embeddings. This reduces the com-

putational and memory cost, which is one of the issues [17] suffers from. Furthermore,

it also allows for easy interpretability of the detected activity, which is a missing as-

pect in almost all recent works. Finally, practical challenges such as few-shot learning

and continual learning can be easily implemented in the proposed approach. Hence,

given semantic labels for each detected activity, we generate its corresponding semantic

embedding by using a Word2Vec model and then average across them to form a 300-

dimensional semantic feature vector. The reconstruction error is then concatenated

with the semantic feature vector, to form the semantic label embedding for each de-

tected activity. We also generate semantic embeddings for pseudo-abnormal activities,

which are then used to determine if an activity is nominal or anomalous, by learning

a new distance metric.

7https://github.com/NVIDIA/semantic-segmentation
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4.3.4 Anomaly Detection

• Deep Metric Learning: Annotating anomalous frames in videos is a particularly chal-

lenging task. On the other hand, describing nominal and anomalous behaviors using

semantic labels is relatively straightforward. Hence, we propose to learn a distance

metric using a fully connected deep neural network. As shown in Fig. 4.1, in our

proposed approach, we pose anomaly detection as a regression problem. We want the

anomalous semantic video embeddings to have higher anomaly scores than the normal

embeddings. To this end, we propose training a fully connected neural network with

a custom loss function to learn a distance metric. The loss function is based on the

triplet loss [31] and is defined as:

L = max(0,m + ∥f (a)− f (p)∥ − ∥f (a)− f (n)∥), (4.2)

where f (·) represents the semantic embedding function, a, p, n are the anchor, positive

and negative semantic labels respectively. The margin m is used to determine the

boundary after which the negative samples contribute to the loss.

On the other hand, localizing the anomalies temporally or spatially is not a time

sensitive task and hence can be performed in an offline fashion. However, in previous

works [52, 36, 71, 68, 62], there is a lack of distinction between online detection and

offline localization. The majority of existing works are not suitable for online detection

as they perform batch processing [68, 71, 79, 55, 52]. Some recent works [79, 56]

use online methods like LSTM networks, but also require a normalization of decision

statistic over a video segment, which prevents online detection. Moreover, as discussed

in [45], traditional metrics such as precision and recall cannot effectively evaluate the

performance of online anomaly detection algorithms. Hence, a new performance metric

is needed for online anomalous event detection in videos.
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• Implementation Details: In our implementations, we use SENet for object detection,

Flownet 2 for optical flow, AlphaPose for pose estimation and HRNet for semantic

segmentation. The semantic embeddings are extracted using a Word2Vec model, and

then input to a deep neural network with 3 layers consisting of 10 neurons each. The

DNN is trained using a triplet loss. Global and local motion features are normalized

to [0,1] using the min and max values from the training data.

4.4 Experiments

In this section, we present the performance of the proposed approach on the tasks defined

in Section 4.3.1. We first present the performance of our model in terms of the online anomaly

detection and anomalous frame localization on the three benchmark datasets. Then, we

evaluate the cross-domain adaptability performance on the ShanghaiTech Campus dataset,

which is the largest publicly available dataset for video anomaly detection, and consists of

videos captured from 13 different cameras, and the CUHK Avenue dataset. To evaluate the

first task of cross-domain adaptability, we use the learned model from the first camera in the

ShanghaiTech dataset and test it on the data from all the other cameras from ShanghaiTech,

as well as the CUHK Avenue dataset. For the second task of few-shot learning, we analyze

the performance of the proposed approach with respect to the number of frames required to

learn the new patterns. Finally, for the third task of continually learning new patterns, we

check whether the performance of the proposed algorithm consistently improves with each

training session. We also present the performance of our combined model on a real-world

dataset.

4.4.1 Datasets

We consider three publicly available benchmark datasets, namely the CUHK Avenue

dataset, the UCSD pedestrian dataset, and the ShanghaiTech campus dataset.
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• UCSD Ped 2: The UCSD pedestrian dataset is one of the most widely used video

anomaly detection datasets. Due to the low resolution of the UCSD Ped 1 videos,

we only consider the UCSD Ped 2 dataset. The Ped 2 dataset consists of 16 training

videos and 12 test videos.

• CUHK Avenue: Another popular dataset is the CUHK Avenue dataset, which consists

of short video clips taken from a single outdoor surveillance camera looking at the side

of a building with a pedestrian walkway in front of it. It contains 16 training and 21

test videos with a frame resolution of 360 × 640.

• ShanghaiTech: The ShanghaiTech dataset is one of the largest and most challenging

datasets available for anomaly detection in videos. It consists of 330 training and

107 test videos from 13 different scenes, which sets it apart from the other available

datasets.

For online detection, we evaluate existing approaches using the Average Precision Delay

(APD) metric proposed in [19], which computes the area under the precision and

average detection delay curve. For offline localization, we leverage the traditional Area

under the ROC Curve metric (AUC).

4.4.2 Results

• Online Detection: Since the proposed online detection formulation is event-based as

compared to the classical frame-based formulation, it only considers an anomaly as a

single event irrespective of the duration over which it occurs. In this setup, we present

our results only on the ShanghaiTech dataset as the UCSD and CUHK Avenue datasets

have fewer than 50 anomalous events, which is not enough for a reliable average perfor-

mance comparison. A common technique used by several recent works [52, 36, 65, 70]

is to normalize the computed statistic for each test video independently, including the

ShanghaiTech dataset. However, this methodology cannot be implemented in an online
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(real-time) system as it requires the prior knowledge of the minimum and maximum

values the statistic might take. Moreover, many recent methods [36, 55, 68] do not

have their implementation details/code publicly available, while others are end-to-end

[68, 71, 79] and cannot be implemented to work in an online fashion. Hence, we com-

pare our method with the online versions of [52, 65, 58]. Our proposed algorithm

achieves a better performance than the other algorithms in terms of quick detection

and achieving high precision in alarms, as indicated by Table 4.1 in terms of the APD

value.

Table 4.1: Online detection comparison in terms of the proposed APD metric on the
ShanghaiTech dataset. Higher APD value represents a better online anomaly detection
performance.

Online Detection

Method APD

Liu et al. [52] 0.504
Morais et al. [65] 0.324
Luo et al. [58] 0.447

Ours 0.675

• Anomalous Frame Localization: To show the anomaly localization capability of our

algorithm, we also compare our algorithm to a wide range of state-of-the-art methods,

as shown in Table 4.2, using the commonly used frame-level AUC criterion. The pixel-

level criterion, which focuses on the spatial localization of anomalies, can be made

equivalent to the frame-level criterion through simple post-processing techniques [71].

Hence, for anomaly localization, we consider the frame-level AUC criterion. As shown

in Table 4.2, our proposed algorithm outperforms the existing algorithms on the UCSD

Ped 2 and CUHK Avenue datasets, and performs competitively on the ShanghaiTech

dataset. The multi-timescale framework [79] is the only one that outperforms ours on

the ShanghaiTech dataset since the anomalies are mostly caused by previously unseen

human poses and [79] extensively monitors them using a past-future trajectory pre-

diction based framework. However, this causes their performance to severely degrade
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on the CUHK Avenue dataset, and similar to [65], they cannot work on the UCSD

dataset.

Table 4.2: Offline anomaly localization comparison in terms of frame-level AUC on three
datasets.

Anomaly Localization (AUC)

Method CUHK Avenue UCSD Ped 2 ShanghaiTech

MPPCA [39] - 69.3 -
Del et al. [14] 78.3 - -
Conv-AE [29] 80.0 85.0 60.9

ConvLSTM-AE[56] 77.0 88.1 -
Growing Neural Gas [89] - 93.5 -

Stacked RNN[57] 81.7 92.2 68.0
Deep Generic [30] - 92.2 -

GANs [73] - 88.4 -
Future Frame [52] 85.1 95.4 72.8

Skeletal Trajectory [65] - - 73.4
Multi-timescale Prediction [79] 82.85 - 76.03
Memory-guided Normality [70] 88.5 97.0 70.5

Ours 86.4 95.6 70.12

• Cross Domain Adaptability: In this case, we only train our model on the training

videos from a single camera in the ShanghaiTech dataset and evaluate its performance

on the test videos from the rest of the cameras, and also on the Avenue dataset. Cross-

domain scene adaptation is mostly unexplored and to the best of our knowledge only

[55] discusses a similar few-shot adaptation concept. However, the proposed approach

discussed in [55] requires several anomaly-free video frames for adapting their model to

the new scene, which might not always be feasible. Particularly, in [55], a GAN-based

framework is used in [55] similar to [52], and MAML algorithm [23] is used for meta-

learning. As shown in Tables 4.3–4.5, considering zero-shot adaptability the proposed

approach is able to outperform the state-of-the-art methods in terms of the frame-

level AUC, as well as the proposed APD metric. In both of the considered datasets,

behaviors that are considered anomalous are the same, which satisfies our inherent

assumption.
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Table 4.3: Performance of the proposed detector in terms of frame-level AUC for
cross-domain adaptability on different cameras from the ShanghaiTech Dataset.

Method Cam-1 Cam-2 Cam-3 Cam-4 Cam-5 Cam-6 Cam-7 Cam-8 Cam-9 Cam-10 Cam-11 Cam-12
Stacked RNN [57] 0.6412 0.6083 0.6116 0.6231 0.6834 0.6951 0.6482 0.6294 0.6867 0.6789 0.6924 0.6485

Future Frame Prediction [52] 0.6780 0.6178 0.6632 0.6588 0.6984 0.7351 0.6814 0.6186 0.6743 0.6789 0.6548 0.6509
Ours 0.7529 0.7065 0.7613 0.6813 0.7843 0.8137 0.7888 0.6258 0.7064 0.663 0.7531 0.7193

Table 4.4: Performance of the proposed detector in terms of event-level APD for
cross-domain adaptability on different cameras from the ShanghaiTech Dataset.

Method Cam-1 Cam-2 Cam-3 Cam-4 Cam-5 Cam-6 Cam-7 Cam-8 Cam-9 Cam-10 Cam-11 Cam-12
Stacked RNN [57] 0.401 0.442 0.4874 0.5012 0.4378 0.4275 0.487 0.5031 0.4145 0.4612 0.4365 0.4457

Future Frame Prediction [52] 0.4730 0.4356 0.4647 0.4537 0.512 0.5832 0.5534 0.5203 0.5043 0.4989 0.4762 0.4831
Ours 0.6482 0.5671 0.6743 0.6980 0.6944 0.5963 0.6175 0.5958 0.5734 0.61 0.6482 0.6725

• Few-Shot Learning: Unlike the original UCSD and ShanghaiTech datasets, where an

individual riding a bike is considered abnormal, we presume that this is a nominal

activity with few training samples in this case. However, the remaining anomalous

events in the UCSD dataset, such as a skateboarder or a cart passing by, are still

considered anomalous. Our goal here is to compare the few-shot learning capability

of the proposed and state-of-the-art algorithms and see how well they adapt to new

patterns. In this case, together with the available training data, we also train on a few

samples of a person riding a bike. In Fig. 4.3, it is seen that the proposed algorithm

clearly outperforms the state-of-the-art algorithms [16, 52, 57] in terms of few-shot

learning performance. It is important to note that for video applications, 10 shots

(i.e., frames) correspond to less than a second in real time.

Table 4.5: Overall performance of each model in terms of frame-level AUC for
cross-domain adaptability when trained on camera 1 from the ShanghaiTech dataset and
tested on the entire ShanghaiTech and Avenue datasets.

Frame-level AUC

Approach ShanghaiTech Avenue

Stacked RNN [57] 0.643 0.724
Future Frame Prediction [52] 0.652 0.749

Skeletal Trajectory [65] 0.683 -

Ours 0.689 0.79
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Figure 4.3: Comparison of the proposed and state-of-the-art algorithms Liu et al. [52], Luo
et al. [57] and Doshi et al. [16] in terms of few-shot learning. Together with the original
training data, some frames for bike riding are used to train the algorithms. The proposed
algorithm achieves high performance even with one shot.

• Continual Learning: Due to the lack of existing benchmark datasets for continual learn-

ing in surveillance videos, we follow the same modification to the original ShanghaiTech

dataset as in the few-shot learning scenario, and presume that riding a bike is a nom-

inal behavior. Our aim is to compare the proposed and state-of-the-art algorithms’

continuous learning capabilities for video surveillance to see how well they respond to

new trends. The algorithms are initially trained on the original training data, and

then incrementally updated using the bike frames. In Figure 4.4, it is seen that the

proposed algorithm clearly outperforms the state-of-the-art algorithms [17, 52, 57] in

terms of continual learning performance. Note that the proposed method does not use

the local motion reconstruction error for the UCSD dataset since pose estimation does

not work well with low quality videos.
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Figure 4.4: Comparison of the proposed and the state-of-the-art algorithms Liu et al. [52],
Luo et al. [57] and Doshi et al. [16] in terms of continual learning capability. Different than
few-shot learning, here the new data (bike frames) are used to incrementally update the
algorithms after the initial training on the training data. While training with new samples,
the proposed algorithm maintains superior performance compared to the state-of-the-art
methods.

4.5 Conclusion

For video anomaly detection, we present a multi-task framework, which consists of cross-

domain adaptability, few-shot learning, and continual learning. A modular method which

consists of an interpretable transfer learning based feature extractor, and a novel anomaly

detector using semantic embedding and deep metric learning was proposed. The proposed

method first detects anomalous events in an online manner, and then deals with localizing

the anomalous video frames, following the necessity for timely detection in realistic settings.

Since online detection of anomalous events is widely ignored in the video anomaly detection

literature, a new performance metric for comparing algorithms in terms of online detection

was developed. Through extensive testing on the benchmark datasets, we show that the
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proposed approach significantly outperforms the state-of-the-art methods in cross-domain

adaptability, few-shot learning, and continual learning.
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4.5. CONCLUSION
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Appendix A: Proof of Theorem 1

In [4][page 177], for CUSUM-like algorithms with independent increments, a lower bound

on the average false alarm period is given as follows

E∞[T ] ≥ eω0h,

where h is the detection threshold, and ω0 ≥ 0 is the solution to E [eω0δt ] = 1.

To analyze the false alarm period, we need to consider the nominal case. In that case,

since there is no anomalous object at each time t, the selection of object with maximum kNN

distance in δt = (maxi{d i
t})m − dm

α does not necessarily depend on the previous selections

due to lack of an anomaly which could correlate the selections. Hence, in the nominal case,

it is safe to assume that δt is independent over time.

We firstly derive the asymptotic distribution of the frame-level anomaly evidence δt in

the absence of anomalies. Its cumulative distribution function is given by

P(δt ≤ y) = P((max
i
{d i

t})m ≤ dm
α + y).

It is sufficient to find the probability distribution of (max
i
{d i

t})m, the mth power of the

maximum kNN distance among objects detected at time t. As discussed above, choosing the

object with maximum distance in the absence of anomaly yields independent m-dimensional

instances {Ft} over time, which form a Poisson point process. The nearest neighbor (k = 1)

distribution for a Poisson point process is given by

P(max
i
{d i

t} ≤ r) = 1− exp(−Λ(b(Ft , r)))
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where Λ(b(Ft , r)) is the arrival intensity (i.e., Poisson rate measure) in the m-dimensional

hypersphere b(Ft , r) centered at Ft with radius r [8]. Asymptotically, for a large number of

training instances as M2 → ∞, under the null (nominal) hypothesis, the nearest neighbor

distance maxi{d i
t} of Ft takes small values, defining an infinitesimal hyperball with homoge-

neous intensity λ = 1 around Ft . Since for a homogeneous Poisson process the intensity is

written as Λ(b(Ft , r)) = λ|b(Ft , r)| [8], where |b(Ft , r)| = πm/2

Γ(m/2+1)
rm = vmr

m is the Lebesgue

measure (i.e., m-dimensional volume) of the hyperball b(Ft , r), we rewrite the nearest neigh-

bor distribution as

P(max
i
{d i

t} ≤ r) = 1− exp (−vmr
m) ,

where vm = πm/2

Γ(m/2+1)
is the constant for the m-dimensional Lebesgue measure.

Now, applying a change of variables we can write the probability density of (maxi{d i
t})m

and δt as

f(maxi{d i
t})m(y) =

∂

∂y
[1− exp (−vmy)] , (A.1)

= vm exp(−vmy), (A.2)

fδt (y) = vm exp(−vmd
m
α ) exp(−vmy) (A.3)

Using the probability density derived in (A.3), E [eω0δt ] = 1 can be written as

1 =

∫ ϕ

−dm
α

eω0yvme
−vmdm

α e−vmydy , (A.4)

evmd
m
α

vm
=

∫ ϕ

−dm
α

e(ω0−vm)ydy , (A.5)

=
e(ω0−vm)y

ω0 − vm

∣∣∣∣∣
ϕ

−dm
α

, (A.6)

=
e(ω0−vm)ϕ − e(ω0−vm)(−dm

α )

ω0 − vm
, (A.7)
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where −dm
α and ϕ are the lower and upper bounds for δt = (maxi{d i

t})m − dm
α . The upper

bound ϕ is obtained from the training set.

As M2 → ∞, since the mth power of (1 − α)th percentile of nearest neighbor distances

in training set goes to zero, i.e., dm
α → 0, we have

e(ω0−vm)ϕ =
evmd

m
α

vm
(ω0 − vm) + 1. (A.8)

We next rearrange the terms to obtain the form of eϕx = a0(x + θ) where x = ω0 − vm,

a0 = evmdmα

vm
, and θ = vm

evmdmα
. The solution for x is given by the Lambert-W function [84] as

x = −θ − 1
ϕ
W(−ϕe−ϕθ/a0), hence

ω0 = vm − θ − 1

ϕ
W

(
−ϕθe−ϕθ

)
. (A.9)

Finally, since the false alarm rate (i.e., frequency) is the inverse of false alarm period

E∞[T ], we have

FAR ≤ e−ω0h,

where h is the detection threshold, and ω0 is given above.
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