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Explicit rational-exponential solutions for the Kadomtsev-Petviashvili-II equation with a self-consistent source (KPIIESCS) are 
studied by the Hirota bilinear method. One typical feature for this hybrid type of solutions is that they contain two arbitrary functions 
of time variable � which affect the amplitudes and propagation trajectories. �e dynamics of solutions are demonstrated by the 
three-dimensional figures. �e method used here is quite general and can be applied to other equations with self-content sources.

1. Introduction

�e Kadomtsev-Petviashvili (KP) equation with self-consist-
ent sources arose in the pioneering work of Mel’nikov for 
describing the interaction of waves on the �푥, �푦 plane [1]. A�er 
that, the study of the KP equation with self-consistent sources 
has become a subject of intense investigation [2–11]. For 
example, the �-soliton solution was obtained by the Wronskian 
technique [12] and the generalized binary Darboux transfor-
mation method [13]. �e source generation procedure was 
applied to construct and solve a hybrid type of KP equations 
with self-consistent sources [14]. �e general high-order rogue 
waves and lump-type solutions were derived via the Hirota 
bilinear method [15–17].

Ablowitz and Satsuma obtained rational solutions of cer-
tain nonlinear evolution equations by choosing the phase 
constants appropriately and taking the long-way limit [18]. 
However, the procedure of choosing the phase constants as 
definite singular functions of physical parameters is unknown 
and, in fact, is not solvable, even for three- and four-soliton 

solutions. �en Johnson and �ompson employed the method 
of separation of variables to solve the appropriate scalar 
Gelfand–Levitan equation and introduced a new rational-ex-
ponential solution (a�erwards referred as RE solutions) for 
the KP equation [19]. And Pöppe obtained new types of RE 
solutions, corresponding to multipe poles in the scattering 
data for the hyperbolic sine-Gordon (sG) and Korteweg-de 
Vries (KdV) equations using the Fredholm determinant 
method [20]. Later, Bezmaternih and Borisov presented a new 
approach to the construction of RE solutions for nonlinear 
partial differential equations based on the formal perturbation 
theory in Hirota’s bilinear form with another choice of starting 
solution [21]. �ese solutions are the rational functions of 
polynomials multiplied by exponents. �e proposed proce-
dure was applied to the elliptic sine-Gordon, the Korteweg-de 
Vries (KdV), the Kadomtsev-Petviashvili (KP), and the 
Landau–Lifshitz (L–L) equations [22].

In our present work, we will construct RE solutions of the 
Kadomtsev-Petviashvili-II equation with one source 
(KPIIESCS)
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based on its Hirota bilinear forms and the method suggested 
in [21]. Equation (1) is a member of the KP hierarchy with 
self-consistent sources and admits some interesting solutions 
[13]. �e paper is arranged as follows. We first present its bilin-
ear forms in Section 2. �en the representation of RE solutions 
which contains two arbitrary functions of one independent 
variable is obtained. Furthermore, we will investigate the 
dynamic behaviors of the RE solutions. At last, a few conclud-
ing remarks will be given in the final section.

2. RE Solutions to KPIIESCS

In the following, we shall construct RE solutions of the 
KPIIESCS by virtue of the Hirota method.

With the help of the dependent variable transformations

the KPIIESCS can be transformed into the bilinear forms

where � is the well-known operator defined as in [23]

Consequently the soliton solutions of KPIIESCS can be 
derived through the standard Hirota’s approach by expanding 
�퐹, �퐺,�퐻 as the series

and finding each coefficient successively and truncating the 
expansion at an appropriate finite order.

For example, assuming that �퐺(1), �퐻(1) take the form

which leads to

(1)
[�푢� + 6�푢�푢� + �푢��� + 8(�훷�훹)�]� + 3�푢�� = 0,
�훷� = �훷�� + �푢�훷,
�훹� = −�훹�� − �푢�훹,

(2)
�푢 = 2(ln�퐹)��,�훷 = �

� ,�훹 = �
� ,

(3)

(�퐷�푥�퐷�푡 + �퐷4
�푥 + 3�퐷2

�푦)�퐹 ⋅ �퐹 + 8�퐺�퐻 = 0,
(�퐷�푦 − �퐷2

�푥)�퐺 ⋅ �퐹 = 0,
(�퐷�푦 + �퐷2

�푥)�퐻 ⋅ �퐹 = 0,

(4)
�퐷�푚

�푡 �퐷�푛
�푥�퐺 ⋅ �퐹 = ( �휕

�휕�푡 −
�휕
�휕�푡�耠)

�푚
( �휕
�휕�푥 − �휕

�휕�푥�耠)
�푛

⋅ �퐺(�푥, �푡)�퐹(�푥�耠, �푡�耠)|�푥�=�푥,�푡�=�푡� .

(5)
�퐹 = 1 + �퐹(2)�휖2 + �퐹(4)�휖4 + . . . ,
�퐺 = �퐺(1)�휖 + �퐺(3)�휖3 + . . . ,
�퐻 = �퐻(1)�휖 + �퐻(3)�휖3 + . . . ,

(6)

�퐺(1) = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)�푒�휉1−�훽1(�푡), �휉1 = �푘1�푥 + �푘21�푦 − 4�푘31�푡 + �휉(0)1 ,

�퐻(1) = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)�푒�휂1−�훽1(�푡), �휂1 = �푞1�푥 − �푞21�푦 − 4�푞31�푡 + �휂(0)1 ,

(7)
�퐹(2) = �푒�휉1+�휂1−2�훽1(�푡), �퐹(�푗) = 0, �푗 = 4, 6, . . . ,
�퐺(�푖) = 0, �퐻(�푖) = 0, �푖 = 3, 5, . . . ,

where �푘1( ̸= ±�푞1), �푞1 are arbitrary constants, and �훽1(�푡) is an 
arbitrary differentiable function, we can make the infinite 
expansion truncate with a finite number of terms and get the 
exact one-soliton solution

Next, let us discuss the two-soliton solution by choosing

where

and so the two-soliton solution is

It appears that by choosing the phase constants as definite 
singular functions of physical parameters and performing an 
appropriate limiting procedure, the two-soliton solution 
reduces to the simplest RE solution [18]. Here, based on the 
RE solutions of the KP equation [21] and the two-soliton solu-
tion obtained above, we construct a definite type of RE solu-
tions for the KPIIESCS as follows

with

(8)

�푢 = 2[ln(1 + �푒�휉1+�휂1−2�훽1(�푡))]�푥�푥,

�훷 = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)�푒�휉1−�훽1(�푡)

1 + �푒�휉1+�휂1−2�훽1(�푡)
,

Ψ = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)�푒�휂1−�훽1(�푡)

1 + �푒�휉1+�휂1−2�훽1(�푡)
.

(9)

�퐺(1) = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)�푒�휉1−�훽1(�푡),

�퐺(3) = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)

(�푘1 − �푘2)
(�푘1 + �푞2)

�푒�휉1−�훽1(�푡)+�휉2+�휂2 ,

�퐻(1) = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)�푒�휂1−�훽1(�푡),

�퐻(3) = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)

(�푞1 − �푞2)
(�푞1 + �푘2)

�푒�휂1−�훽1(�푡)+�휉2+�휂2 ,

�퐺(�푖) = 0, �퐻(�푖) = 0, �푖 = 5, 7, . . .
�퐹(2) = �푒�휉1+�휂1−2�훽1(�푡) + �푒�휉2+�휂2 ,

�퐹(4) = �퐴12�푒�휉1+�휂1+�휉2+�휂2−2�훽1(�푡), �퐴12 =
(�푘1 − �푘2)(�푞1 − �푞2)
(�푘1 + �푞2)(�푞1 + �푘2)

,

�퐹(�푗) = 0, �푗 = 6, 8, . . . ,

(10)
�휉2 = �푘2�푥 + �푘22�푦 − 4�푘32�푡 + �휉(0)2 ,
�휂2 = �푞2�푥 − �푞22�푦 − 4�푞32�푡 + �휂(0)2 ,

(11)

�푢 = 2[ln(1 + �푒�휉1+�휂1−2�훽1(�푡) + �푒�휉2+�휂2 + �퐴12�푒�휉1+�휂1+�휉2+�휂2−2�훽1(�푡))]�푥�푥,

�훷 = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)

�푒�휉1−�훽1(�푡)[1 + (�푘1 − �푘2)/(�푘1 + �푞2)�푒�휉2+�휂2]
1 + �푒�휉1+�휂1−2�훽1(�푡) + �푒�휉2+�휂2 + �퐴12�푒�휉1+�휂1+�휉2+�휂2−2�훽1(�푡)

,

Ψ = 1
2
√2(�푘1 + �푞1)�̇훽1(�푡)

�푒�휂1−�훽1(�푡)[1 + (�푞1 − �푞2)/(�푞1 + �푘2)�푒�휉2+�휂2]
1 + �푒�휉1+�휂1−2�훽1(�푡) + �푒�휉2+�휂2 + �퐴12�푒�휉1+�휂1+�휉2+�휂2−2�훽1(�푡)

.

(12)
�퐹 = 1 + �푄(�푥, �푦, �푡)�푒�휉+�휂 + �푅(�푡)�푒2(�휉+�휂),
�퐺 = �퐺1(�푥, �푦, �푡)�푒�휉 + �퐺2(�푡)�푒2�휉+�휂,�퐻 = �퐻1(�푥, �푦, �푡)�푒�휂 + �퐻2(�푡)�푒�휉+2�휂,
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A�er careful calculations, the substitution of Equation (13) 
into Equation (3) yields

(13)
�휉 = �푘�푥 + �푘2�푦 − 4�푘3�푡 − �훽(�푡) + �휉(0),
�휂 = �푞�푥 − �푞2�푦 − 4�푞3�푡 − �훽(�푡) + �휂(0).

(14)

�퐺1(�푥, �푦, �푡) = (�푥 + 2�푘�푦 − 12�푘2�푡 + �퐶3)�퐹1(�푡),
�퐻1(�푥, �푦, �푡) = (�푥 − 2�푞�푦 − 12�푞2�푡 + �퐶2)�퐹2(�푡),

�퐺2(�푡) = �퐶1�푒2�훽(�푡)�퐹1(�푡), �퐻2(�푡) = �퐶1�푒2�훽(�푡)�퐹2(�푡),
�푅(�푡) = �푒4�훽(�푡)

(�푘 + �푞)2 [�푅0�푒−4�훽0(�푘 + �푞)2 − 4�퐶1∫
�푡

0
�퐹1(�푠)�퐹2(�푠)�푒−2�훽(�푠)�푑�푠],

�푄(�푥, �푦, �푡) = �퐶1(�푘 + �푞)�푒2�훽(�푡) + 2
�퐶1(�푘 + �푞)�푒2�훽(�푡) +

Δ
�퐶1�푒2�훽(�푡)

,

where

Here �퐶1, �퐶2, �퐶3 are arbitrary constants, and �퐹1(�푡), �퐹2(�푡) are two 
arbitrary functions provided that all formulas are well defined 
and the analyticity of the solutions is guaranteed. �is gener-
ates a class of general RE solutions to the KPIIESCS equation 
in Equation (1) through the transformation of Equation (2). 

(15)

Δ = (�푘 + �푞)�푥2 − 4�푞�푘(�푘 + �푞)�푦2 + 144�푘2�푞2(�푘 + �푞)�푡2

+ 2(�푘2 − �푞2)�푥�푦 − 12(�푘2 + �푞2)(�푘 + �푞)�푥�푡
+ 24�푞�푘(�푘2 − �푞2)�푦�푡 + (�푘 + �푞)[(�퐶2 + �퐶3)�푥
+ (�푘�퐶2 − �푞�퐶3)�푦 + (�푘2�퐶2 + �푞2�퐶3)�푡 + �퐶2�퐶3]
− 2�푥 + (�푞 − �푘)�푦 − (�푘2 + �푞2)�푡 − 2�퐶2.
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Figure 1: Line-soliton solution of the KPIIESCS for �푡 = 0 and �퐹1(�푡) = 0, �훽(�푡) = �퐹2(�푡) = �푡, �푘 = 2, �푞 = −1, �휉0 = �휁0 = �푅0 = 0.
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Figure 2: Mixed RE solution of the KPIIESCS for �푡 = 0 and �퐹1(�푡) = �퐹2(�푡) = 1, �훽(�푡) = �푡, �푘 = 1/2, �푞 = −1/4, �휉0 = �휁0 = �푅0 = 0.
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Furthermore, this family of solutions contains two arbitrary 
functions of time variable � and there are a variety of shapes. 
If we further set

we can recreate the mixture of exponential and rational solu-
tions of the KPIIESCS presented in [13].

Moreover, without loss of generality, we can normalize 
�퐶1 = 1, �퐶2 = �퐶3 = 0 due to the translation and scaling invari-
ance. For illustration, the dynamical features of some RE solu-
tions are shown via three-dimensional figures.

In Figure 1, we take �퐹1(�푡) = 0, �훽(�푡) = �퐹2(�푡) = �푡, �푘 = 2,
�푞 = −1, �휉0 = �휁0 = �푅0 = 0, which leads to

Under this case, the RE solution reduces to a usual line 
one-soliton of the KP equation without source.

Whereas, in Figure 2, we take �퐹1(�푡) = �퐹2(�푡) = 1, �훽(�푡) = �푡,
�푘 = 1/2, �푞 = −1/4, �휉0 = �휁0 = �푅0 = 0 which results in

In this case, the solution describes a soliton which exhib-
its both exponential and rational properties. �e shape and 
motion of the RE solution presents a time-dependent effect. 
Indeed, the insertion of a source may cause the variation of 
the velocity of a solution, the amplitudes and trajectories 
vary with time, and this time dependence is an effect of the 
source.

3. Results and Discussion

In this paper, we studied RE solutions to the KPIIESC equa-
tion. Several constraint conditions for the existence of such 
RE solutions were given. �e proposed method here permits 
one to obtain RE solutions directly in an explicit form and an 
entirely analogous technique can be used to obtain more com-
plicated RE solutions.
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