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Chapter 1:

Introduction

1.1 Background

Representation theory is a field of study which examines groups, algebras and rings through the lens of linear

algebra. A representation is a description of all indecomposable modules within an algebra. A module is

a generalization of the notion of a vector space. Instead of scalars defined by a field, a module draws its

scalars from a ring. An indecomposable module is non-trivial and cannot be decomposed into a direct sum

of two non-trivial submodules.

Finite dimensional algebras have either finite or infinite representation type, referring to the number of

indecomposable modules which exist for that algebra. In 1972, P. Donovan and M.R. Freislich introduced

the dichotomy of tame and wild representation types, and posited that every finite dimensional algebra

with an infinite representation type belongs to one of these two disjoint classes [2]. Drozd confirmed their

conjecture in 1979, see [4]. For further reading on the tame-wild dichotomy and how each representation

type is defined, see [6] and [3].

Classification problems related to algebras of wild representation type contain the daunting problem of

classifying pairs of square matrices up to simultaneous similarity. That is, if A = (A1, A2) and B =

(B1, B2) are two pairs of N × N matrices, when does there exist a one-invertible matrix S such that

A1 = S−1B1S and A2 = S−1B2S ? I.M. Gel’fand and V.A. Ponomarev [5] proved that a solution to

this problem implies a solution to the problem of classifying d-tuples (for an arbitrarily chosen d) of square

matrices up to simultaneous similarity.

It has been shown by B. Shekhtman in [9] that when any d-tuple A = (A1, . . . , Ad) of pairwise commut-

ing N × N matrices is cyclic, A is simultaneously similar to the d-tuple of pairwise commuting N × N

matrices B = (B1, . . . , Bd) if and only if B is cyclic, and the sets of polynomials in d variables which

annihilate A and B are equivalent. This thesis offers a further generalization of this result for the case of

n-cyclic d-tuples of pairwise commuting N ×N matrices.
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1.2 Preliminaries

In this section, we introduce the notion of a matrix as the representation of a linear operator on a finite di-

mensional vector space, define matrix similarity, and prove the equivalence of norms on finite dimensional

vector spaces. First, we recall some elementary facts about linear transformations, particularly linear oper-

ators on finite dimensional vector spaces, see K. Hoffman and R. Kunze [7] for a thorough treatment of the

topic. We begin with a few key definitions.

DEFINITION 1.1. Let V and W be vector spaces over a field F. A function T : V → W is a linear

transformation if for any x, y ∈ V and α, β ∈ F

T (αx+ βy) = αT (x) + βT (y). (1.1)

A linear transformation from a vector space into itself is called a linear operator.

Let V and W be vector spaces over F, and denote the space of linear transformations from V into W by

L(V,W ). Since sums and scalar multiples of linear transformations are themselves linear transformations,

it follows that L(V,W ) is a vector space. Suppose that X is also a vector space over F, then it is easy to see

that the composition of linear transformations T : V → W and U : W → X , where UT (v) = U(T (v)) for

v ∈ V , is also a linear transformation from V into X .

REMARK 1.2. Clearly L(V, V ), the space of linear operators on V , is a vector space and the composition

of any two linear operators on V is itself a linear operator on V . It follows easily from these facts that for

any polynomial p in one or several variables, p(A), where A ∈ L(V, V ), is also a linear operator on V .

DEFINITION 1.3. The image of a linear transformation T : V → W , denoted by ImT , is the set of vectors

w ∈ W such that Tv = w for some v ∈ V . When V is a finite-dimensional vector space, the dimension of

the image of T is called the rank of T.

DEFINITION 1.4. The kernel of a linear transformation T : V → W , denoted by kerT , is the set of vectors

v ∈ V such that Tv = 0. When V is a finite-dimensional vector space, the dimension of the kernel of T is

called the nullity of T.

The Rank-Nullity Theorem is a standard and powerful result in linear algebra. The following proof is

closely adapted from [7].
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THEOREM 1.5. (The Rank-Nullity Theorem) Let V and W be vector spaces over a field F, where V is finite

dimensional. If T is a linear transformation from V into W , then

dimV = dim(ImT ) + dim(kerT ). (1.2)

Proof. Let n = dimV , r = dim(ImT ), and k = dim(kerT ) and suppose {v1, . . . , vk} is a basis of the

kernel of T . We may choose vectors vk+1, . . . , vn ∈ V , if necessary, such that {v1, . . . , vn} forms a basis

of V . We will show that the set {Tv1, . . . , T vn} forms a basis of the image of T .

Clearly the vectors Tv1, . . . , T vn span ImT . More precisely, the vectors Tvk+1, . . . , T vn span ImT

since Tvj = 0 for j ≤ k. Thus it is left to show that Tvk+1, . . . , T vn are linearly independent. Let ci be

scalars such that
n∑

i=k+1

ci(Tvi) = 0. (1.3)

It follows from the linearity of T that

T

(
n∑

i=k+1

civi

)
= 0. (1.4)

Put v =
n∑

i=k+1

civi. Clearly v ∈ kerT , and Since {v1, . . . , vk} is a basis of kerT by assumption, then there

exist scalars bi such that v =
k∑

i=1

bivi. Now it follows from (1.4) that

k∑
i=1

bivi −
n∑

i=k+1

civi = 0. (1.5)

Since {v1, . . . , vn} are linearly independent, bi = 0 for 1 ≤ i ≤ k and ci = 0 for k + 1 ≤ i ≤ n. Thus

by equation (1.3), {Tvk+1, . . . , T vn} is also a linearly independent set, and therefore a basis of ImT . This

implies that the rank of T is n− k. Thus r = n− k, which can be rearranged as n = r + k.

DEFINITION 1.6. A linear transformation T : V → W is called invertible if there exists a mapping

T−1 : W → V such that

T−1T = IV and TT−1 = IW , (1.6)

where IV : V → V and IW : W → W denote the identity mappings on V and W , respectively. T is

invertible if and only if it is one-to one and onto. T−1 is unique, and is itself a linear transformation (see

[7]).

3



LEMMA 1.7. If V and W are vector spaces over a field F and T is a linear transformation from V into W ,

then T is one-to-one if and only if the kernel of T is trivial; i.e., kerT = {0}.

Proof. First, suppose that T is one-to-one. Then there is at most one vector v ∈ V such that Tv = 0. By

the assumption that T is linear, T (0) = 0, so the kernel of T is {0}.

Suppose that the kernel of T is trivial, and let Tx = Ty for some x, y ∈ V . Clearly Tx−Ty = 0. By the

linearity of T , T (x− y) = 0, so x− y ∈ kerT . Since the kernel of T is trivial by assumption, x− y = 0,

which implies that x = y.

THEOREM 1.8. Let V and W be finite dimensional vector spaces over a field F, where dimV = dimW .

Let T be a linear transformation from V into W . Then the following are equivalent:

(1) T is invertible.

(2) T is onto.

(3) T is one-to one.

Proof. If T is invertible, (2) and (3) follow immediately by definition. It is therefore sufficient to show that

T is onto if and only if T is one-to-one.

Suppose that T is onto, which is to say that ImT = W . Then dim(ImT ) = dimW = dimV . It follows

from the Rank-Nullity Theorem that dim(kerT ) = 0 and thus kerT = {0}. Utilizing Lemma 1.7, one finds

that T is one-to-one.

Now suppose that T is one-to-one. As a result of Lemma 1.7 we have kerT = {0}. The Rank-Nullity

Theorem then implies that dim(ImT ) = dimV . By the assumption that dimV = dimW , it follows that

dim(ImT ) = dimW . Since ImT is a subspace of W with the same dimension, clearly ImT = W .

We now examine the relationship between linear operators on the finite dimensional vector space CN and

N ×N matrices with complex entries. Let B = {e1, . . . , eN} be a basis of CN , v ∈ CN , and suppose T is

a linear operator on CN . We may express v as a unique linear combination of basis vectors v =
N∑
j=1

cjej or

as a coordinate vector with respect to B:

[v]B =


c1

c2
...

cN

 . (1.7)
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The image of each basis vector ej under T may itself be expressed as a linear combination

Tej =

N∑
i=1

ai,jei or coordinate vector with respect to B:

[Tej ]B =


a1,j

a2,j
...

aN,j

 . (1.8)

The matrix representing the linear operator T with respect to the basis B is


a1,1 a12 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...

aN,1 aN,2 · · · aN,N

 . (1.9)

This matrix, denoted by [T ]B, is an N × N matrix with complex entries. The jth column of [T ]B is given

by the coordinate vector [Tej ]B. We now observe, for the image of v under T ,

Tv = T

 N∑
j=1

cjej


=

N∑
j=1

cj(Tej)

=
N∑
j=1

cj

(
N∑
i=1

ai,jei

)

=

N∑
i=1

 N∑
j=1

cjai,j

 ei.

(1.10)

Each coefficient
N∑
j=1

cjai,j = c1ai,1 + . . .+ cNai,N represents a coordinate of the vector [Tv]B. But as we
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see below, this coordinate vector is precisely the column matrix [T ]B[v]B.

[T ]B[v]B =


a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...

aN,1 aN,2 · · · aN,N




c1

c2
...

cN



=


c1a1,1 + . . .+ cNa1,N

c1a2,1 + . . .+ cNa2,N
...

c1aN,1 + . . .+ cNaN,N

 .

(1.11)

Thus we have that [Tv]B = [T ]B[v]B for all v ∈ CN .

Now suppose that B′ = {e′1, . . . , e′N} is another basis of CN . Let d1, . . . , dN be the coordinates of v with

respect to B′. Then v =
N∑
j=1

cjej =
N∑
k=1

dke
′
k.

Each basis vector e′k for k = 1, . . . , N can also be expressed in terms of the original basis B as

e′k =
N∑
ℓ=1

bℓ,keℓ, where b1,k, . . . , bN,k are the coordinates of e′k. Then it follows that

N∑
j=1

cjej =
N∑
k=1

dk

(
N∑
ℓ=1

bℓ,keℓ

)

=
N∑
ℓ=1

(
N∑
k=1

dkbℓ,k

)
eℓ

(1.12)

and with a simple change of indices j → ℓ, we have

N∑
j=1

cjej =

N∑
j=1

(
N∑
k=1

dkbj,k

)
ej . (1.13)

Recall that the linear combination representing the vector v with respect to B is unique, so by equation

(1.13), each coordinate of v is given by cj = d1bj,1 + . . . + d1bj,N . Now consider the matrix with each

column given by [e′k]B for k = 1, . . . , N . This is the representation matrix with respect to B of the unique

6



linear operator which maps ek to e′k (see [7]). Denoting this linear operator by U , it follows that

[U ]B =


b1,1 b1,2 · · · b1,N

b2,1 b2,2 · · · b2,N
...

...
. . .

...

bN,1 bN,2 · · · bN,N

 . (1.14)

When [U ]B is multiplied by the coordinate vector of v with respect to B′, we obtain

[U ]B[v]B′ =


b1,1 b1,2 · · · b1,N

b2,1 b2,2 · · · b2,N
...

...
. . .

...

bN,1 bN,2 · · · bN,N




d1

d2
...

dN



=


d1b1,1 + . . .+ dNb1,N

d1b2,1 + . . .+ dNb2,N
...

d1bN,1 + . . .+ dNbN,N



=


c1

c2
...

cN



(1.15)

which is of course the coordinate vector of v with respect to B. That is, [U ]B[v]B′ = [v]B. We can summarize

the above observation in the following definition.

DEFINITION 1.9. If B = {e1, . . . , eN} and B′ = {e′1, . . . , e′N} are two bases of CN , then there exists an

N ×N matrix S such that

[v]B = S[v]B′ (1.16)

for all v ∈ CN . S is called a change of basis matrix.

A change of basis matrix is unique and invertible. In fact any linear operator is invertible if and only if its

representative matrix is invertible (see [7]). It is easy to see that [U ]B as defined above is a change of basis

matrix. Next, we illustrate the relationship between the representation matrices of a single linear operator

with respect to two different bases, and the change of basis matrix that exists for those bases. From this

7



relationship, the notion of matrix similarity emerges.

LEMMA 1.10. Let T be a linear operator on CN , and let B = {e1, . . . , eN} and B′ = {e′1, . . . , e′N} be

bases of CN . Let U be the invertible linear operator which maps ei 7→ e′i for i = 1, . . . , N . Then

[T ]B′ = [U ]−1
B [T ]B[U ]B. (1.17)

Proof. Let w ∈ CN . Then

([U ]−1
B [T ]B[U ]B)([w]B′) = ([U ]−1

B ([T ]B([U ]B[w]B′))

= [U ]−1
B ([T ]B[w]B)

= [U ]−1
B [Tw]B

= [Tw]B′

= [T ]B′ [w]B′ .

(1.18)

Since this holds for any w ∈ CN , [T ]B′ = [U ]−1
B [T ]B[U ]B.

DEFINITION 1.11. Let A and B be N × N matrices with complex entries. A is similar to B, denoted by

A ∼ B, if there exists an invertible matrix S such that

A = S−1BS. (1.19)

Clearly in definition 1.11, the similar matrices A and B represent the same linear operator on CN with

respect to two potentially different bases, and S represents a change of basis matrix.

It is easy to show that similarity is an equivalence relation. When A = B, let S = I where I is the

(invertible) identity map of CN . Of course A = I−1BI , and so similarity is reflexive. Whenever A ∼ B,

we have that A = S−1BS. Then B = SAS−1 as a consequence of the invertibility of S. Thus B ∼ A and

similarity is symmetric. Finally, suppose A, B, and C are N × N matrices such that A ∼ B and B ∼ C.

Then A = S−1BS for some S, B = R−1CR for some P , and

A = S−1BS

= (S−1R−1)C(RS)

= (RS)−1C(RS).

(1.20)

Thus A ∼ C and similarity is transitive.
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Matrices which are similar to each other share some important properties that arise from the common

linear operator that they represent. Notably, if A ∼ B, then A and B have the same determinant, rank,

trace, and eigenvalues (but not eigenvectors in general). They also share the same characteristic polynomial,

Jordan Canonical Form, and Weyr Canonical Form (see [7], [8]).

Before proceeding to the next chapter, we must also briefly review a few facts about norms on vector

spaces. First, recall the definition and properties of a norm.

DEFINITION 1.12. Let V be a vector space over a field F. A norm on V is a function || · || : V → R with

the following properties:

(1) ||v|| ≥ 0 for all v ∈ V .

(2) ||v|| = 0 if and only if v = 0.

(3) ||αv|| = |α|||v|| for all v ∈ V and all α ∈ F.

(4) ||u+ v|| ≤ ||u||+ ||v|| for all u, v ∈ V .

Let B be a basis of a vector space V , and let [v]B = (c1, . . . , cN ) ∈ V . The sup norm or maximum norm

|| · ||∞ : V → R is defined by

||v||∞ = max(|c1|, . . . , |cN |). (1.21)

We will verify that the maximum norm is indeed a norm. Let [v]B = (c1, . . . , cN ) ∈ V . If v is the zero

vector in V , then ci = 0 for i = 1, . . . , N . It follows that ||v||∞ = max(|0|, . . . , |0|) = 0. Conversely,

if ||v||∞ = 0, then |ci| ≤ 0 for all i = 1, . . . , N . But the absolute value is non-negative so |ci| = 0 and

therefore ci = 0 for all i = 1, . . . , N . Clearly v is the zero vector of V .

Now let [v]B = (c1, . . . , cN ) ∈ V and α ∈ F. Then αv = (αc1, . . . , αcN ) and |α| is clearly non-negative,

so
||αv||∞ = max(|αc1|, . . . , |αcN |)

= max(|α||c1|, . . . , |α||cN |)

= |α|max(|c1|, . . . , |cN |)

= |α|||v||∞.

(1.22)

Let [u]B = (b1, . . . , bN ) ∈ V and [v]B = (c1, . . . , cN ) ∈ V . We see that [u+v]B = (b1+c1, . . . , bN+cN ).

By definition, ||u+v||∞ = |bk+ck| for some 1 ≤ k ≤ N . By the triangle inequality, |bk+ck| ≤ |bk|+ |ck|,

so

||u+ v||∞ ≤ |bk|+ |ck|. (1.23)

9



But then of course |bk| ≤ ||u||∞ and |ck| ≤ ||v||∞, which gives

||u+ v||∞ ≤ ||u||∞ + ||v||∞. (1.24)

DEFINITION 1.13. A topology T on a space V is a collection of sets in V which satisfy the following

criteria:

(1) ∅ and V are elements of T .

(2) Any union of elements of T belongs to T .

(3) Any finite intersection of elements of T belongs to T .

DEFINITION 1.14. Let (V, T ) be a topological space. A set E ⊆ V is called open, or T -open, if E ∈ T . A

set F ⊆ V is called closed, or T -closed, if its complement in V is open.

DEFINITION 1.15. K ⊆ V is T -compact if for every collection C of open sets in T which covers K,

K ⊆
⋃
E∈C

E,

there exists a finite subcollection Cf ⊆ C of open sets which covers K,

K ⊆
⋃

E∈Cf

E.

The proofs of the next two results are standard. See J.B. Conway [1].

PROPOSITION 1.16. Let T1 and T2 be topologies on a vector space V , where T2 ⊆ T1. If a subset K ⊆ V

is T1-compact, then K is T2-compact.

PROPOSITION 1.17. If || · ||1 and || · ||2 are norms on a vector space V , then ||v||1 ≤ ||v||2 for all v ∈ V if

and only if ||v||1 < 1 whenever ||v||2 < 1.

DEFINITION 1.18. If || · ||1 and || · ||2 are norms on a vector space V and there exist constants c1, c2 > 0

such that

c1 ||v||2 ≤ ||v||1 ≤ c2 ||v||2 (1.25)

for all v ∈ V , then || · ||1 and || · ||2 are said to be equivalent.

Two equivalent norms on a vector space induce the same topology on that space.

THEOREM 1.19. Any two norms on a finite dimensional vector space are equivalent.

10



Proof. Let V be a finite dimensional vector space. It suffices to show that any norm || · || on V is equivalent

to the maximum norm || · ||∞. For v ∈ V , there are coordinates d1, . . . , dN such that v =
N∑
j=1

djej . By

property (3) of a norm (definition 1.12),

||v|| ≤ ||d1e1||+ . . .+ ||dNeN || (1.26)

and by property (2),

||v|| ≤ |d1|||e1||+ . . .+ |dN |||eN ||. (1.27)

Then, since |di| ≤ ||v||∞ for all i = 1, . . . , N ,

||v|| ≤ ||v||∞||e1||+ . . .+ ||v||∞||eN ||. (1.28)

Put c2 =
N∑
j=1

||ej ||. Then

||v|| ≤ c2 ||v||∞. (1.29)

Now, let T∞ be the topology on V induced by || · ||∞ and T the topology induced by || · ||. Let

B = {v ∈ V : ||v||∞ ≤ 1}. Equation (1.29) implies that T ⊆ T∞. B is T∞-compact, so by Proposition

1.16, B is T -compact. Thus the relative topological spaces (B, T∞) and (B, T ) agree.

Let D = {v ∈ V : ||v||∞ < 1}. The set D ⊂ B is T∞-open, and therefore open in (B, T∞). Then of

course D is open in (B, T ), thus must be some open set E in T such that E ∩ B = D. Clearly 0 ∈ E and

for some real r > 0, {v ∈ V : ||v|| < r} ⊆ E. Hence if ||v|| < r and ||v||∞ ≤ 1, then ||v||∞ < 1.

Now we show that ||v|| < r implies that ||v||∞ < 1. Let ||v|| < r and put β = ||v||∞. Then

1 =
1

β
||v||∞

= ||v/β||∞
(1.30)

which is to say that ||v/β||∞ ∈ B. Now suppose that β ≥ 1. Then

||v/β||α <
r

β
≤ r. (1.31)

Then it follows that ||v/β||∞ < 1. But this contradicts equation 1.30. Thus ||v||∞ < 1.
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By Proposition 1.17, ||v||∞ ≤ 1
r ||v||α for all v ∈ V . Putting c1 = r gives

c1 ||v||∞ ≤ ||v||α. (1.32)

DEFINITION 1.20. For a linear transformation T on a normed space (V, || · ||V ), set

||T || = sup{||Tv||V : v ∈ V and ||v||V ≤ 1}. (1.33)

This is called the operator norm. It is a norm on the space L(V, V ).

It is not always the case that the norm of a linear transformation T is finite. In fact ||T || is bounded if and

only if T is continuous. For the proof of the following result, see e.g. J.B. Conway [1].

PROPOSITION 1.21. If V is a finite dimensional normed space and W is a normed space. If T : V → W is

a linear transformation, then T is continuous.

It follows immediately from Proposition 1.21 that if V is a finite dimensional normed space, any linear

operator T in L(V, V ) is continuous and ||T || < ∞.

LEMMA 1.22. Suppose that V is a finite dimensional normed space. Let || · ||V be a norm on V and let || · ||

be the operator norm on L(V, V ). If T is a linear operator on V , then

||Tv||V ≤ ||T || ||v||V (1.34)

for all v ∈ V .

Proof. Let v ∈ V and put ||v||V = α. Clearly α ≥ 0. Then ||v/α||V = 1, and so by definition of the

operator norm, ||Tv/α||V ≤ ||T ||. This implies that

||Tv/α||V α ≤ ||T ||α. (1.35)

Then clearly

||Tv||V ≤ ||T ||α. (1.36)
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And since ||v||V = α,

||Tv||V ≤ ||T || ||v||V . (1.37)

In Chapter 2, we introduce the concepts of simultaneous similarity and cyclicity, before reproducing and

expanding upon the final result in [9]. Notably, we add another equivalent statement to the theorem by

proving that two pairs of A and B of pairwise commuting N ×N matrices with respective cyclic vectors u

and v are simultaneously similar if and only if for any polynomial p in d variables, ||p(A)u|| and ||p(B)v||

differ only by a constant factor. Chapter 3 then defines n-cyclicity and generalizes the main result of chapter

two to n-cyclic d-tuples of commuting matrices.
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Chapter 2:

Simultaneous Similarity of Pairs of Cyclic Commuting Matrices

In this chapter, we examine the necessary and sufficient conditions for pairs of cyclic commuting matrices

to be simultaneously similar. Chapter 1 defines similarity for two N ×N matrices, but we must expand the

notion of similarity to two finite sequences, or d-tuples, of matrices.

DEFINITION 2.1. Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be d-tuples of commuting N×N matrices

with complex entries. A is simultaneously similar to B, denoted by A ∼ B, if there exists an invertible

matrix S such that

Aj = S−1BjS (2.1)

for j = 1, . . . , d.

The following lemma is a consequence of the simultaneous similarity of two d-tuples of matrices. Denote

the algebra of polynomials in d variables with complex coefficients by C[x] = C[x1, . . . , xd].

LEMMA 2.2. Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be d-tuples of commuting N ×N matrices and

suppose that A ∼ B. Then

p(A) = S−1p(B)S (2.2)

for all polynomials p ∈ C[x].

Proof. By the assumption that A ∼ B, there exists an invertible matrix S such that Aj = S−1BjS for

j = 1, . . . , d. For k ≥ 0, it is clear that

Ak
j = Aj . . . Aj

= (S−1BjS) . . . (S
−1BjS)

= S−1(Bj . . . Bj)S

= S−1Bk
j S.

(2.3)
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Thus for any k1, . . . , kd ≥ 0

Ak1
1 . . . Akd

d = (S−1Bk1
1 S) . . . (S−1Bkd

d S)

= S−1(Bk1
1 . . . Bkd

d )S.
(2.4)

Now, choose p ∈ C[x] and let m denote the degree of p. For the d-tuple of variables x = (x1, . . . , xd), let

ℓ1 . . . ℓd be the (non-negative) exponents associated with each corresponding variable. Put ℓ = ℓ1+ . . .+ℓd.

Then p(x) can be represented using a multi-index summation notation, as follows:

p(x) =
∑
ℓ≤m

cℓ(x
ℓ1
1 . . . xℓdd ). (2.5)

It follows from (2.4) and (2.5) that

p(A) =
∑
ℓ≤m

cℓ(A
ℓ1
1 . . . Aℓd

d )

=
∑
ℓ≤m

cℓ(S
−1Bℓ1

1 . . . Bℓd
d S)

= S−1

∑
ℓ≤m

cℓ(B
ℓ1
1 . . . Bℓd

d )

S

= S−1p(B)S.

(2.6)

Recall from remark 1.2 that a polynomial of linear operators is itself a linear operator on the same space.

In other words, the above lemma states that when A ∼ B, then for any p ∈ C[x], p(A) and p(B) represent

the same linear operator on CN under a change of basis defined by the matrix S.

DEFINITION 2.3. Let A = (A1, . . . , Ad) be a d-tuple of commuting N × N matrices. A is cyclic if there

exists a vector u ∈ CN such that

{p(A)u : p ∈ C[x]} = CN . (2.7)

The vector u is called a cyclic vector for A. Equivalently, we may say that A is cyclic if each vector in CN

is a linear combination of vectors of the form (Ak1
1 . . . Akd

d )(u) where k1, . . . , kd ≥ 0.

DEFINITION 2.4. Denote the set of polynomials in d variables which annihilate A as:

JA = {p ∈ C[x] : p(A) = 0}. (2.8)
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In other words, JA contains those polynomials which, when applied to the d-tuple of linear operators A,

result in the zero operator in L(CN ,CN ).

The main result of this chapter is a theorem adapted from [9]. The original theorem applies to d-tuples of

commuting N × N matrices with complex entries, where d is an arbitrary integer. In this chapter we only

consider the case of pairs (2-tuples) of commuting matrices, but it is easy to generalize the argument from

pairs to d-tuples.

Another notable difference in the theorem as presented in this chapter is the addition of the equivalent

statement (2). We show that statements (1) and (3) hold if and only if, for any p ∈ C[x], the norms of the

vectors p(A)u and p(B)v, where u is a cyclic vector for A and v is a cyclic vector for B, differ only by a

constant factor.

THEOREM 2.5. Let A = (A1, A2) and B = (B1, B2) be pairs of N × N commuting matrices. Suppose

that A is cyclic with a cyclic vector u. Then the following are equivalent:

(1) A ∼ B.

(2) B is cyclic, and there exists a cyclic vector v for B and a constant c > 0 such that

1

c
||p(B)v|| ≤ ||p(A)u|| ≤ c ||p(B)v|| (2.9)

for any polynomial p in C[x].

(3) B is cyclic and JA = JB .

Proof. To show that (1) implies (2), suppose that A ∼ B, and let S be the change of basis matrix which

satisfies the definition of simultaneous similarity. By assumption, A has a cyclic vector u. Put v = Su.

Clearly v ∈ CN and {p(B)v : p ∈ C[x]} ⊆ CN since for any polynomial p and vector v, p(B)v ∈ CN .

Let w0 ∈ CN . The matrix S is an invertible linear map on CN and is therefore onto. Thus there exists

some w ∈ CN for which S(w) = w0. By the assumption that A is cyclic, w = p(A)u for some p ∈ C[x].

Application of Lemma 2.2 yields:

w = p(A)u

= S−1p(B)Su

= S−1p(B)v.

(2.10)
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It follows that:
w0 = S(w)

= SS−1p(B)v

= p(B)v.

(2.11)

Since w0 is an arbitrarily chosen vector in CN , it is clear that CN ⊆ {p(B)v : p ∈ C[x]}. Therefore,

CN = {p(B)v : p ∈ C[x]}. That is, B is cyclic with cyclic vector v.

Let || · || be a norm on CN . The choice of norm does not matter, as any norm on CN is equivalent by

Theorem 1.19. Then
||p(A)u|| = ||S−1p(B)Su||

= ||S−1p(B)v||

≤ ||S−1|| ||p(B)v|| by ineq. (1.34).

(2.12)

That is to say the norm of a vector p(A)u in CN is less than or equal to the operator norm of S−1 times the

norm of the image of p(A)u under S−1, which is the vector p(B)v. Similarly,

||p(B)v|| = ||Sp(A)S−1v||

= ||Sp(A)S−1Su||

= ||Sp(A)u||

≤ ||S|| ||p(A)u|| by ineq. (1.34)

(2.13)

which implies that
1

||S||
||p(B)v|| ≤ ||p(A)u|| (2.14)

.

Clearly ||S|| ≠ 0, and ||S−1|| ≠ 0, as S is an invertible and therefore non-zero matrix by the definition

of simultaneous similarity. Set c = max{||S||, ||S−1||}. Then c > 0, and by inequalities (2.12) and (2.14),

1

c
||p(B)v|| ≤ ||p(A)u|| ≤ c ||p(B)v|| (2.15)

Thus inequality (2.9) holds.

Next, to prove that (2) implies (3). B is cyclic by assumption, so it is sufficient to show that JA = JB .

Let p ∈ JA ; i.e., p(A) = 0. It follows that p(A)u = 0, and thus ||p(A)u|| = 0.
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Using inequality (2.9), we get
1

c
||p(B)v|| ≤ ||p(A)u|| = 0. (2.16)

Since 1
c > 0, (2.16) implies ||p(B)v|| = 0 and therefore p(B)v = 0. Because it is a cyclic vector, clearly v

is non-zero, so we must have p(B) = 0; i.e., p ∈ JB . Conversely, let q ∈ JB . Then ||q(B)v|| = 0 and again

by inequality (2.9),

||q(A)u|| ≤ c ||q(B)v|| = 0. (2.17)

This implies that q(A)u = 0, and thus q(A) = 0; i.e., q ∈ JA. Therefore JA = JB .

Finally, we show that (3) implies (1). Since both A and B are cyclic by assumption, there exist cyclic

vectors u and v such that

{p(A)u : p ∈ C[x]} = CN and {p(B)v : p ∈ C[x]} = CN . (2.18)

Define the mapping S : CN → CN by Sp(A)u = p(B)v.

To show that S is well-defined, suppose that p(A)u, q(A)u ∈ CN such that p(A)u = q(A)u. Then

(p − q)(A)u = 0 and since u is a non-zero cyclic vector, it follows that (p − q)(A) = 0. Thus the

polynomial p− q is an element of JA. By assumption, p− q ∈ JB as well, so we must have (p− q)(B) = 0

which implies that (p− q)(B)v = 0. The last equality implies p(B)v = q(B)v ; i.e., Sp(A)u = Sq(A)u.

To show that S is linear, let p(A)u, q(A)u ∈ CN and α, β ∈ C. Then

S(αp(A)u+ βq(A)u) = S([αp+ βq](A)u)

= [αp+ βq](B)v

= αp(B)v + βq(B)v

= αSp(A)u+ βSq(A)u.

(2.19)

Let p(B)v ∈ CN . Then p(B)v = Sp(A)u where p(A)u ∈ CN . That is to say, ImS = CN . By Theorem

1.8, since S is a linear operator on the finite dimensional vector space CN and is onto, S is invertible.
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Finally, let w ∈ CN . Since A is cyclic, w = p(A)u , for some p ∈ C[x]. Then, for j = 1, 2:

SAjw = SAjp(A)u

= S(xjp)(A)u

= (xjp)(B)v

= Bjp(B)v

= BjSp(A)u

= BjSw.

(2.20)

This holds for all w ∈ CN , so SAj = BjS on CN for j = 1, 2. That is, A ∼ B.

We now proceed to the case of a d-tuple of pairwise commuting matrices which does not have a single

cyclic vector, but has some collection of n vectors which generate cyclic subspaces of CN . The existence of

multiple cyclic vectors creates a new set of problems when attempting to find the necessary and sufficient

conditions for simultaneous similarity of two such d-tuples. We examine how the equivalent statements

must be modified to generalize Theorem 2.5 in Chapter 3.
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Chapter 3:

Simultaneous Similarity of d-tuples of n-cyclic Commuting Matrices

Now we take a closer look at the notion of cyclicity of d-tuples of N × N commuting matrices. Theorem

2.5 applies only to d-tuples with a single cyclic vector. Therefore, we need a general definition of cyclicity.

First, we require some notation. Let V be a vector space and let E1, . . . , En ⊆ V . We denote the sum of

these subsets by

+n
i=1Ei =

{
n∑

i=1

ei : ei ∈ Ei

}
.

Note that this is not necessarily a direct sum. That is to say, two or more of the subsets E1, . . . , En may

intersect non-trivially. This implies that the sum of vectors representing each element of +n
i=1Ei may not

necessarily be unique.

DEFINITION 3.1. A d-tuple of commuting N × N matrices A = (A1, . . . , Ad) is called n-cyclic if there

exists an n-tuple of vectors u = (u1, . . . , un) such that

+n
i=1{p(A)ui : p ∈ C[x]} = CN . (3.1)

and

+n−1
i=1 {p(A)uki : {k1, . . . , kn−1} ⊆ {1, . . . , n} and p ∈ C[x]} ≠ CN (3.2)

The n-tuple u = (u1, . . . , un) is called a cyclic n-tuple for A.

It should be mentioned that the above definition requires n to be the least integer for which (3.1) holds for

this particular choice of n-tuple u = (u1, . . . , un). That is, no choice of n − 1 vectors from {u1, . . . , un}

can serve as a cyclic n− 1-tuple for A. In the special case when n = 1, we simply say that A is cyclic; this

is the same notion of cyclicity from definition 2.3.

However, our definition of minimality in the sense of 3.1 and 3.2 does not prevent an n-cyclic d-tuple A

from also being m-cyclic with some cyclic m-tuple v = (v1, . . . , vm), where m ̸= n and 1 ≤ m ≤ N . It is

important to note that {v1, . . . , vm} ̸⊆ {u1, . . . , un} and {u1, . . . , un} ̸⊆ {v1, . . . , vm}.

For the sake of clarity, we give a few examples.
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EXAMPLE 3.2. Consider the the 2× 2 matrix

A =

1 0

0 2

 (3.3)

and the 2-tuple of vectors u = (u1, u2) where

u1 =

1
0

 and u2 =

0
1

 . (3.4)

Denote the standard basis of C2 by {e1, e2}. Let w = αe1 + βe2 ∈ C2. Put p1(t) = αt0 and p2(t) = βt0.

We see that

p1(A)u1 + p2(A)u2 = α

1
0

+ β

0
1


= w.

(3.5)

That is to say, u = (u1, u2) is a cyclic 2-tuple for A. Now we consider the vector

v =

1
1

 . (3.6)

Set p(t) = (2α− β) t0 + (β − α) t. It follows easily that

p(A)v = (2α− β)

1
1

+ (β − α)

1 0

0 2

1
1


= (2α− β)

1
1

+ (β − α)

1
2


=

 (2α− β) + (β − α)

(2α− β) + 2 (β − α)


= w.

(3.7)

Hence we see that A is also cyclic, with cyclic vector v.
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EXAMPLE 3.3. Similar to the previous example, consider the 2-tuple A = (A1, A2), where

A1 =

1 0

0 0

 and A2 =

0 0

0 2

 . (3.8)

Let the vector v and 2-tuple u = (u1, u2) be defined as in example 3.2, and let w = αe1 + βe2 ∈ C2. If we

put p1(s, t) = αs and p2(s, t) =
1
2βt, then

p1(A)u1 + p2(A)u2 = α

1 0

0 0

1
0

+
1

2
β

0 0

0 2

0
1


= α

1
0

+
1

2
β

0
2


= w.

(3.9)

If we put p(s, t) = αs+ 1
2βt, then

p(A)v = α

1 0

0 0

1
1

+
1

2
β

0 0

0 2

1
1


= α

1
0

+
1

2
β

0
2


= w.

(3.10)

That is, A is both cyclic and 2-cyclic.

It should also be noted that for an n-cyclic d-tuple of matrices A, it is not necessarily the case that A is

m-cyclic for any 1 ≤ m ≤ n. The following is a simple counterexample.

EXAMPLE 3.4. Let A be the 3× 3 matrix 
0 0 0

0 0 0

1 1 0

 . (3.11)

We claim that A cannot be cyclic with a single cyclic vector. Denote the standard basis of C3 by {e1, e2, e3}

and let w = αe1 + βe2 + γe3 ∈ C3. It is easy to see that Aw = αe3 + βe3 and A2w = 0. Let p ∈ C[x],
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which has the form p(t) = a0 + a1 t+ a2 t
2 . . . . It follows that

p(A)w = a0w + a1Aw + a2A
2w . . .

= a0 (αe1 + βe2 + γe3) + a1 (αe3 + βe3).
(3.12)

But the vectors αe1 + βe2 + γe3 and αe3 + βe3 together do not form a linearly independent basis of C3,

which implies that there is no w ∈ C3 such that {p(A)w : p ∈ C[x]} = C3. That is, A is not cyclic. Now,

consider the vectors

u1 =


1

0

0

 and u2 =


0

1

0

 . (3.13)

Observe that u1 = e1, u2 = e2, and Au1 = Au2 = e3. Again let w = αe1 + βe2 + γe3 ∈ C3. Put

p1(t) = αt0 + γt and p2(t) = βt0. We see that

p1(A)u1 + p2(A)u2 = αu1 + γAu1 + βu2

= αe1 + βe2 + γe3

= w.

(3.14)

Thus A is n-cyclic for n = 2, but not for n = 1.

DEFINITION 3.5. If A = (A1, . . . , Ad) is a d-tuple of commuting N ×N matrices which is n-cyclic with

a cyclic n-tuple u = (u1, . . . , un), we set

Ui = {p(A)ui : p ∈ C[x]} (3.15)

where i = 1, . . . , n. We call Ui a cyclic set for A corresponding to the vector ui.

For n ≥ 2, note that the space CN is not itself spanned by vectors of the form (Ak1
1 . . . Akd

d )(u), where u

is a single cyclic vector for A. Instead any vector in CN may be represented by a sum of vectors, each an

element of a set spanned by vectors of the form (Ak1
1 . . . Akd

d )(ui), where ui belongs to a cyclic n-tuple for

A and kj ∈ N ∪ {0} for 1 ≤ j ≤ d.

The advantage of condition (3.2) in our definition of n-cyclicity is that it ensures that the vectors

u1, . . . , un in a cyclic n-tuple u are necessarily linearly independent.

PROPOSITION 3.6. If A = (A1, . . . , Ad) is a d-tuple of commuting N × N matrices with a cyclic n-tuple

u = (u1, . . . , un), the n vectors u1, . . . , un are linearly independent.
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Proof. Enumerating if necessary, suppose that un is a dependent vector; i.e., there are constants c1, . . . , cn−1

such that

un = c1u1 + . . .+ cn−1un−1. (3.16)

If w ∈ CN , then it follows from the definition of n-cylicity (3.1) that w =
n∑

i=1

pi(A)ui for some

(p1, . . . , pn). Since each matrix Aj is a linear transformation for 1 ≤ j ≤ d, it follows that pi(A) is a

linear transformation for each 1 ≤ i ≤ n (see remark 1.2). Then we have that

wn =

(
n−1∑
i=1

pi(A)ui

)
+ pn(A)un

=

(
n−1∑
i=1

pi(A)ui

)
+

(
pn(A)

n−1∑
i=1

ciui

)

=

n−1∑
i=1

pi(A)ui +

n−1∑
i=1

cipn(A)ui

=

n−1∑
i=1

(pi + cipn)(A)ui

(3.17)

Put qi = pi + cipn. Clearly qi is a polynomial in d variables for 1 ≤ i ≤ n − 1. Thus we have that

w =

n−1∑
i=1

qi(A)ui for the arbitrarily chosen vector w ∈ CN , which contradicts condition (3.2). Therefore

u1, . . . , un are linearly independent.

Finally, it should be noted that the main result of this chapter holds regardless of condition (3.2).

We now wish to generalize Theorem 2.5 to the case of n-cyclic d-tuples. It is easy to see that we are

no longer able to compare the norms of the vectors p(A)u and p(B)v for cyclic vectors u and v and some

polynomial p (see Theorem 2.5 (2)). We must now compare the norms of the vectors
n∑

i=1

pi(A)ui and

n∑
i=1

pi(B)vi for cyclic n-tuples (ui, . . . , un) and (vi, . . . , vn) and an n-tuple of polynomials (pi, . . . , pn).

Next, we generalize definition 2.4 to n-cyclic d-tuples of commuting matrices. Observe that if A is a

1-cyclic d-tuple with cyclic vector u, then for any p ∈ C[x], p(A) = 0 if and only if p(A)u = 0. This

follows immediately from the fact that cyclic vectors are non-zero. Using the same reasoning, it can easily

be seen that when A is an n-cyclic d-tuple with a cyclic tuple u = (u1, . . . , un), for any p ∈ C[x] and

1 ≤ i ≤ n, then p(A) = 0 if and only if p(A)ui = 0.
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DEFINITION 3.7. Let A = (A1, . . . , Ad) be a d-tuple of commuting N ×N matrices with a cyclic n-tuple

u = (u1, . . . , un). For i = 1, . . . , n, define:

JA,ui = {p ∈ C[x] : p(A)ui = 0}. (3.18)

LEMMA 3.8. Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be d-tuples of commuting N × N matrices.

Suppose that A and B are n-cyclic with cyclic n-tuples u = (u1, . . . , un) and v = (v1, . . . , vn), respectively.

For any 1 ≤ i ≤ n, if JA,ui = JB,vi , then dimUi = dimVi.

Proof. Suppose that JA,ui = JB,vi for some 1 ≤ i ≤ n. Put dimUi = ℓ and dimVi = m, and without

loss of generality, suppose dimUi > dimVi (i.e., ℓ > m). Let {p1(A)ui, . . . , pℓ(A)ui} be a basis of

Ui. Consider {p1(B)vi, . . . , pℓ(B)vi} ⊆ Vi, the set consisting of the same polynomials p1, . . . , pℓ on B,

times the corresponding cyclic vector vi. There can be at most m linearly independent vectors in this set,

since dimVi = m. Therefore, there exists some k such that 1 ≤ k < ℓ and pk(B)vi is equal to a linear

combination of p1(B)vi, . . . , pk−1(B)vi. Then

pk(B)vi =

k−1∑
j=1

cjpj(B)vi. (3.19)

Subtracting pk(B)vi from each side of equation (3.19) gives

0 =

k−1∑
j=1

cjpj(B)vi

− pk(B)vi. (3.20)

Now we may combine the terms of equation (3.20) into a single sum where ck = −1 to obtain

0 =
k∑

j=1

cjpj(B)vi. (3.21)

The linear combination of polynomials
k∑

j=1

cjpj is itself a polynomial in C[x], so by equation (3.21),

k∑
j=1

cjpj ∈ JB,vi . By assumption, JA,ui = JB,vi , so
k∑

j=1

cjpj ∈ JA,ui . It then follows that

0 =
k∑

j=1

cjpj(A)ui. (3.22)
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After separating the kth term from the sum in equation (3.22) (recalling that by ck = −1), we obtain

0 =

k−1∑
j=1

cjpj(A)ui

− pk(A)ui; (3.23)

or equivalently,

pk(A)ui =

k−1∑
j=1

cjpj(A)ui. (3.24)

In other words, pk(A)ui is a linear combination of vectors p1(A)ui, . . . , pk−1(A)ui. But this contra-

dicts the assumption that {p1(A)ui, . . . , pℓ(A)ui} is a linearly independent set of vectors in Ui. There-

fore dimUi ≤ dimVi, and by an identical argument, dimUi ≥ dimVi. Thus dimUi = dimVi for

i = 1, . . . , n.

Let A be a d-tuple with a cyclic n-tuple u = (u1, . . . , un). Consider an n-tuple of polynomials for which
n∑

i=1

pi(A)ui = 0. Note that it is not necessary that pi(A)ui = 0 for all (or any) 1 ≤ i ≤ n. With this

observation in mind, we make the following definition.

DEFINITION 3.9. Define:

JA,u =

{
(p1, . . . , pn) ∈ C[x] :

n∑
i=1

pi(A)ui = 0

}
. (3.25)

Our motivation for defining a set in this way will become clear shortly.

LEMMA 3.10. Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be d-tuples of commuting N × N matrices.

Suppose that A and B are n-cyclic with cyclic n-tuples u = (u1, . . . , un) and v = (v1, . . . , vn), respectively.

If JA,u = JB,v, then JA,ui = JB,vi for all i = 1, . . . , n.

Proof. Fix 1 ≤ k ≤ n and let q ∈ JA,uk
. Let p = (0, . . . , q, . . . , 0) with q as the kth term. It follows by

definition 3.9 that p ∈ JA,u. Since JA,u = JB,v by assumption, we have that p ∈ JB,v. It is easily seen that

q ∈ JB,vk . Thus JA,uk
⊆ JB,vk . By an identical argument, JB,vk ⊆ JA,uk

. Since k was arbitrarily chosen,

JB,vi = JA,ui for all i = 1, . . . , n.

REMARK 3.11. The converse of Lemma 3.10 is not true in general. For p = (p1, . . . , pn) ∈ JA,u it is not

necessarily the case that each pi ∈ JA,ui .

EXAMPLE 3.12. Let A be the 2-cyclic 3× 3 matrix from example 3.4, with the same cyclic 2-tuple
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u = (u1, u2). If p1(t) = t and p2(t) = −t, then

p1(A)u1 + p2(A)u2 = Au1 −Au2

= e3 − e3

= 0

(3.26)

That is, (p1, p2) ∈ JA,u but p1(A)u1 ̸= 0 and p2(A)u2 ̸= 0.

What follows is an immediate corollary of Lemma 3.8 and Lemma 3.10.

COROLLARY 3.13. Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be d-tuples of commuting N × N

matrices. Suppose that A and B are n-cyclic with cyclic n-tuples u = (u1, . . . , un) and v = (v1, . . . , vn),

respectively. If JA,u = JB,v, then dimUi = dimVi for all i = 1, . . . , N .

We may now proceed to the main result of the chapter.

THEOREM 3.14. Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be d-tuples of N ×N commuting matrices.

Suppose that A is n-cyclic with a cyclic n-tuple of vectors u = (u1, . . . , un). Then the following are

equivalent:

(1) A ∼ B.

(2) B is n-cyclic and there exists a cyclic n-tuple v = (v1, . . . , vn) for B and a constant c > 0 such that

1

c

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(A)ui

∣∣∣∣∣
∣∣∣∣∣ ≤ c

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ (3.27)

for any n-tuple of polynomials (p1, . . . , pn) such that pi ∈ C[x] for i = 1, . . . , n.

(3) B is n-cyclic and there exists a cyclic n-tuple v = (v1, . . . , vn) for B such that JA,u = JB,v.

Proof. First we show (1) implies (2). Suppose that A ∼ B. By assumption, A has a cyclic n-tuple

u = (u1, . . . , un). Put vi = Sui for i = 1, . . . , n. We will demonstrate that v = (v1, . . . , vn) is a cyclic

n-tuple of vectors for B.

It is easily seen that +n
i=1Vi ⊆ CN . Let w0 ∈ CN . S is onto, so there exists some w ∈ CN for which

S(w) = w0. By the assumption that A is n-cyclic, w = w1 + . . . + wn, where wi ∈ Ui for i = 1, . . . , n.
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Each vector wi = pi(A)ui for some polynomial pi. Then, applying Lemma 2.2,

w =

n∑
i=1

pi(A)ui

=

n∑
i=1

S−1pi(B)Sui

=

n∑
i=1

S−1pi(B)vi

= S−1
n∑

i=1

pi(B)vi.

(3.28)

The last step follows from the linearity of S−1. As a consequence, we have

w0 = S(w)

= S

(
S−1

n∑
i=1

pi(B)vi

)

=
n∑

i=1

pi(B)vi.

(3.29)

Of course pi(B)vi ∈ Vi for i = 1, . . . , d. Since w0 was an arbitrarily chosen vector in CN , CN ⊆ +n
i=1Vi.

Therefore, B is n-cyclic with cyclic n-tuple v = (v1, . . . , vn).

Let || · || be a norm on CN . Then∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(A)ui

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

S−1pi(B)Sui

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

S−1pi(B)vi

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣S−1

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣

≤ ||S−1||

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ by ineq. (1.34).

(3.30)
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Similarly, ∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Spi(A)S−1vi

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Spi(A)S−1Sui

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

Spi(A)ui

∣∣∣∣∣
∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣S

n∑
i=1

pi(A)ui

∣∣∣∣∣
∣∣∣∣∣

≤ ||S||

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(A)ui

∣∣∣∣∣
∣∣∣∣∣ by ineq. (1.34)

(3.31)

which implies that,
1

||S||

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(A)ui

∣∣∣∣∣
∣∣∣∣∣ . (3.32)

Since S is invertible, ||S|| and ||S−1|| are non-zero. Set c = max{||S||, ||S−1||}. Then c > 0, and by

inequalities (3.30) and (3.32),

1

c

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(A)ui

∣∣∣∣∣
∣∣∣∣∣ ≤ c

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ . (3.33)

Next to prove (2) implies (3). Since B is n-cyclic by assumption, it suffices to show that JA,u = JB,v.

Let (p1, . . . , pn) ∈ JA,u; that is,
n∑

i=1

pi(A)ui = 0. Thus ||
∑n

i=1 pi(A)ui|| = 0, and by inequality (3.27),

1

c

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(A)ui

∣∣∣∣∣
∣∣∣∣∣ = 0. (3.34)

Since 1
c > 0, it follows that

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

pi(B)vi

∣∣∣∣∣
∣∣∣∣∣ = 0. Thus

n∑
i=1

pi(B)vi = 0; i.e., (p1, . . . , pn) ∈ JB,v.

Conversely, let (q1, . . . , qn) ∈ JB,v. It follows that

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

qi(B)vi

∣∣∣∣∣
∣∣∣∣∣ = 0. Once again by inequality (3.27),

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

qi(A)ui

∣∣∣∣∣
∣∣∣∣∣ ≤ c

∣∣∣∣∣
∣∣∣∣∣

n∑
i=1

qi(B)vi

∣∣∣∣∣
∣∣∣∣∣ = 0. (3.35)

This implies that
n∑

i=1

qi(A)ui = 0 (i.e., (q1, . . . , qn) ∈ JA,u). Thus JA,u = JB,v.
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Finally to show (3) implies (1), fix 1 ≤ i ≤ n and define the map Si : Ui → Vi by

Sip(A)ui = p(B)vi. (3.36)

Since {p(A)ui : p ∈ C[x]} = Ui and {p(B)vi : p ∈ C[x]} = Vi, clearly Si is defined on Ui.

To show that Si is well-defined, suppose that p(A)ui = q(A)ui. Then (p−q)(A)ui = 0. The assumption

that JA,u = JB,v implies that JA,ui = JB,vi by Lemma 3.10. Since p − q ∈ JA,ui , it follows that p − q ∈

JB,ui . That is, (p − q)(B)vi = 0, which implies that p(B)vi = q(B)vi. Therefore Sip(A)ui = Siq(A)ui

by the definition of Si.

To show that Si is linear, let p(A)ui, q(A)ui ∈ Ui and α, β ∈ C. Then consequently,

Si(αp(A)ui + βq(A)ui) = Si([αp+ βq](A)ui)

= [αp+ βq](B)vi

= αp(B)vi + βq(B)vi

= αSip(A)ui + βSiq(A)ui.

(3.37)

Let p(B)vi ∈ Vi. By the definition of Si, p(B)vi = Sip(A)ui where p(A)ui ∈ Ui. Thus for any

arbitrarily chosen vector in Vi, there exists some element of Ui which maps to that vector. In other words,

Si is onto. Since JA,u = JB,v by assumption, Corollary 3.13 implies that dimUi = dimVi. Therefore, by

Theorem 1.8, Si is invertible.

Now let wi ∈ Ui. It follows that wi = p(A)ui for some p ∈ C[x]. Then for j = 1, . . . , d:

SiAjwi = SiAjp(A)ui

= Si(xjp)(A)ui

= (xjp)(B)vi

= Bjp(B)vi

= BjSip(A)ui

= BjSiwi.

(3.38)

As a result, SiAj = BjSi on Ui for j = 1, . . . , d. Since i was arbitrarily chosen, this holds for all

i = 1, . . . , n.

We must now show that there exists an invertible linear operator S on CN for which SAj = BSj for
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j = 1, . . . , d. Since A is n-cyclic by assumption, any vector in CN can be expressed as
n∑

i=1

pi(A)ui where

each term pi(A)ui ∈ Ui. Define S : CN → CN by

S

(
n∑

i=1

pi(A)ui

)
=

n∑
i=1

Sipi(A)ui

=
n∑

i=1

pi(B)vi.

(3.39)

Since B is also n-cyclic,
n∑

i=1

pi(B)vi ∈ CN where pi(B)vi ∈ Vi for i = 1, . . . , n. Thus, S is defined on

CN . To show that S is well-defined, let
n∑

i=1

pi(A)ui =
n∑

i=1

qi(A)ui. It follows that

n∑
i=1

pi(A)ui −
n∑

i=1

qi(A)ui = 0. (3.40)

Combining the terms of (3.40) yields

n∑
i=1

pi(A)ui − qi(A)ui = 0. (3.41)

We may then consider each pi − qi as a single polynomial on A. It follows that the n-tuple

(p1 − q1, . . . , pn − qn) ∈ JA,u. That is,

n∑
i=1

(pi − qi)(A)ui = 0. (3.42)

Since JA,u = JB,v by assumption,
n∑

i=1

(pi − qi)(B)vi = 0. (3.43)

Which is to say that (p1 − q1, . . . , pn − qn) ∈ JB,v. Rewriting equation (3.43) implies

n∑
i=1

pi(B)vi =
n∑

i=1

qi(B)vi. (3.44)

Then by the definition of the mapping Si for each i,

n∑
i=1

Sipi(A)ui =

n∑
i=1

Siqi(A)ui. (3.45)
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Using the definition of S, we have that the image of
n∑

i=1

pi(A)ui and
n∑

i=1

qi(A)ui under S are equal:

S

(
n∑

i=1

pi(A)ui

)
= S

(
n∑

i=1

qi(A)ui

)
. (3.46)

Therefore S is well-defined.

The linearity of S follows from the linearity of S1, . . . , Sn. Let
n∑

i=1

pi(A)ui,
n∑

i=1

qi(A)ui ∈ CN and

α, β ∈ C. Then

S

(
α

n∑
i=1

pi(A)ui + β

n∑
i=1

qi(A)ui

)
= S

(
n∑

i=1

αpi(A)ui +

n∑
i=1

βqi(A)ui

)

= S

(
n∑

i=1

αpi(A)ui + βqi(A)ui

)

= S

(
n∑

i=1

[αpi + βqi](A)ui

)

=
n∑

i=1

Si[αpi + βqi](A)ui

=
n∑

i=1

α(Sipi(A)ui) + β(Siqi(A)ui)

= α
n∑

i=1

Sipi(A)ui + β
n∑

i=1

Siqi(A)ui

= αS

(
n∑

i=1

pi(A)ui

)
+ βS

(
n∑

i=1

qi(A)ui

)
.

(3.47)

To show that S is invertible, let w0 ∈ CN . Since B is n-cyclic, there are polynomials q1, . . . , qn ∈ C[x]

such that

w0 =

n∑
i=1

qi(B)vi

=
n∑

i=1

Siqi(A)ui

= S

(
n∑

i=1

qi(A)ui

)
.

(3.48)

Clearly
n∑

i=1

qi(A)ui ∈ CN since A is n-cyclic, with cyclic n-tuple (u1, . . . , un). Therefore S is onto and

Theorem 1.8 implies that S is invertible.
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Finally, let w ∈ CN . Since A is n-cyclic, then w =
n∑

i=1

pi(A)ui for some p1, . . . , pn ∈ C[x].

For j = 1, . . . , d, it follows that:

SAjw = SAj

(
n∑

i=1

pi(A)ui

)

= S

(
n∑

i=1

Ajpi(A)ui

)

= S

(
n∑

i=1

(xjpi)(A)ui

)

=
n∑

i=1

Si(xjpi)(A)ui

=

n∑
i=1

(xjpi)(B)vi

=
n∑

i=1

Bjpi(B)vi

= Bj

n∑
i=1

pi(B)vi

= Bj

n∑
i=1

Sipi(A)ui

= BjS

(
n∑

i=1

pi(A)ui

)

= BjSw.

(3.49)

This implies that SAj = BjS on CN for j = 1, . . . , d. That is, A ∼ B.

3.1 Conclusion

In summary, we have identified the necessary and sufficient conditions for the simultaneous similarity of

n-cyclic d-tuples of commuting N ×N matrices with complex entries.

The careful definition of JA,u and JB,v in chapter 3 is the crucial piece which makes the generalization

of Theorem 2.5 to Theorem 3.14 possible. This construction specifically ensures, in the final part of the

theorem, that the linear operator S is well-defined even when two or more cyclic sets of A (and B) have a

non-trivial intersection.

An interesting possibility for further research would be generalizing this theorem to d-tuples of linear

operators on infinite dimensional vector spaces. Statement (2) of Theorem 3.14, regarding the comparability

of norms, will likely be a useful condition for exploring this case.
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