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ABSTRACT 

Harmful algal blooms are a natural phenomenon of growing global 

concern.  Dense blooms of single celled phytoplankton can have wide reaching 

effects on both the aquatic ecosystem and surrounding economies.  This study 

constructed artificial neural network models of the northern Indian River Lagoon, 

Florida, using an existing dataset.  Models attempted to both describe and 

predict chlorophyll a, as an indicator of total algal biomass, or Pyrodinium 

bahamense, a dinoflagellate known to bloom and produce the paralytic shellfish 

toxin saxitoxin in the lagoon.   Descriptive models used current data while 

predictive models used time-lagged data as input.  Further analyses were 

conducted on the best fitting descriptive models of chlorophyll a and P. 

bahamense in an attempt to elucidate driving factors of phytoplankton density 

within the ecosystem.   

Water samples were collected bimonthly for five years from six fixed sites 

in the northern Indian River Lagoon; a variety of environmental and hydrological 

parameters were collected and chemical and biological analyses done for each 

sample.  Additional descriptive and meteorological data were collected or 

calculated for each site and added to other input variables.  The dataset 

analyzed contained 645 samples, with at least 11 parameters recorded for each.   
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Models of total chlorophyll a were relatively successful in describing 

absolute values and trends, and the predictive model (NMSE = 0.135, r = 0.933) 

was slightly more accurate than the descriptive (NMSE = 0.167, r = 0.913).  

Further analysis using metadata from the best descriptive model, known as “gray 

box” analyses, indicated that total phosphorus had a relatively large impact on 

overall chlorophyll a content in the water column.   

Models of P. bahamense attempted to describe or predict varying 

descriptors of density, including absolute density, density in known positive 

samples, relative density (high, medium, low) in known positive samples, and 

presence/absence.  Only presence/absence classification models were relatively 

successful in describing or predicting P. bahamense density; descriptive models 

were accurate for 78.9% of samples while predictive models were accurate for 

73% of samples.  Further analysis of metadata from the best descriptive model 

offered very little insight beyond factors known to affect phytoplankton growth in 

laboratory based enrichment experiments.   
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INTRODUCTION 

Harmful Algal Blooms 

Although they are a natural occurrence, the frequency and awareness of 

harmful algal blooms (HABs) is widely regarded to be increasing over the past 

few decades (Anderson, Glibert and Burkholder 2002).  These blooms have 

complex and wide ranging cultural, ecological, and financial implications for the 

areas affected.  In some cases, bloom-forming organisms produce toxic 

compounds that can cause illness or death to marine life and humans; in others, 

the overgrowth of microscopic organisms causes a decrease in water quality and 

incident light, killing benthic plants necessary to the ecosystem or causing other 

trophic shifts (Van Dolah, Roelke and Greene 2001; Anderson, Glibert and 

Burkholder 2002).   

Financially, HABs cause losses to fishing and tourism industries, as well 

as to local governments.  Fisheries may be closed for months or years as a result 

of mortality to existing stock or ongoing toxicity of edible tissues, as is found in 

shellfish or puffer fish (Hoagland, et al. 2002).  In cases where nursery areas are 

affected, reduced catch rates in following years might also result in income 

losses (Hoagland, et al. 2002).  Some HABs produce toxins which aerosolize 

under certain conditions, causing respiratory irritation on or near beaches, and 

affecting tourism and beach-front businesses and properties (Van Dolah, Roelke 

and Greene 2001; Glibert, et al. 2005).  The cost of removing fish kills, scum, or 
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foam produced by some HABs often defaults to local governments, further 

impacting the local economy (Hoagland, et al. 2002).  The overall costs of these 

combined impacts are estimated to be in the millions each year (Hoagland, et al. 

2002). 

Algal blooms are often most noticeable in shallow coastal waters or 

embayments, and in many cases these areas are among the most sensitive to 

changing trophic structures (Anderson, Glibert and Burkholder 2002).  Blooms 

which do not produce toxins may cause a decrease in dissolved oxygen levels, 

resulting in anoxic regions and the production of anaerobic byproducts such as 

methane or hydrogen sulfide (Paerl 1988).  These chemical shifts, along with 

light attenuation, can cause the death of benthic macroalgae and seagrasses 

(Zingone and Enevoldsen 2000).  As shallow environments frequently serve as 

nesting or juvenile habitat, hypoxic conditions, loss of protective vegetation, loss 

of food sources, or increased levels of toxic byproducts can cause the death of 

large numbers of larvae and juvenile fish and shellfish (Anderson, Glibert and 

Burkholder 2002).  Aside from the risk to commercial fisheries, changes in 

primary producers and lower trophic levels will inevitably affect which upper level 

consumers will be successful, and how many of those consumers the ecosystem 

can support.   

Harmful Algal Blooms in Florida 

Residents of the state of Florida are familiar with HABs and their effects; 

fish kills and water discoloration have been documented on the west coast of the 

state for over 150 years (Steidinger and Joyce 1973; Steidinger 2009).  The 
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causative organism of many of these blooms, however, is known to be Karenia 

brevis (Davis 1948).  The result of this long standing familiarity is a 

comprehensive program for sampling both water and shellfish for the presence of 

K. brevis and its associated toxins, brevetoxins (Steidinger 2009).  This 

experience made initiating a second monitoring program easier when Quilliam, et 

al. (2004) traced, for the first time, the cause of several cases of human 

intoxication to saxitoxin found in the tissues of puffer fish harvested from the 

Indian River Lagoon (IRL).  

Environmental monitoring in the IRL has been ongoing since the late 

1980s (Sigua, Steward and Tweedale 2000).  As population and industry has 

grown up around the watershed, the water quality and ecological integrity of the 

lagoon has degraded (Sigua, Steward and Tweedale 2000).  This initial 

monitoring included several water chemistry parameters and chlorophyll data, but 

did not identify the species of algae present in the water column at the time of 

sampling (Sigua, Steward and Tweedale 2000).  Algal monitoring in the IRL was 

primarily event response at that point (Steidinger, et al. 1998). 

With the understanding that changing water quality conditions can give 

rise to changing algal communities, researchers at the University of Florida 

began two concurrent studies in 1997 (Phlips, Badylak and Grosskopf 2002; 

Phlips, et al. 2004; Badylak and Phlips 2004).  The first study, a five year 

investigation at a site near Titusville, found two species known to produce toxins, 

Pseudo-nitzschia pseudodelicatissima (Hasle) and Pyrodinium bahamense var. 

bahamense (Plate), the latter of which appeared to be increasing in abundance 
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(Phlips, et al. 2004).  The second study lasted two years and compared 

phytoplankton assemblages and community structure at eight sites throughout 

the IRL (Phlips, Badylak and Grosskopf 2002; Badylak and Phlips 2004).  This 

study also found the potentially toxic P. bahamense, and listed it among other 

species seen at bloom densities throughout the study (Badylak and Phlips 2004; 

Landsberg, et al. 2006).  

The cases of severe food poisoning traced back to puffer fish prompted 

researchers at the Florida Fish and Wildlife Conservation Commission to 

assemble a task force comprising researchers and experts from the University of 

Florida and St. Johns River Water Management District (SJRWMD), with 

assistance from Innovative Health Applications and the Ocean Research 

Conservation Association (Landsberg 2010).  Results of the phytoplankton 

surveys conducted in the late 1990s and early 2000s gave the task force 

valuable baseline and community structure data which helped shape a 

cooperative monitoring study.  This study was intended to address several areas 

of concern, including saxitoxin puffer fish poisoning, algal blooms, dolphin and 

turtle diseases, and possible threats to human health (Landsberg 2010).  

Funding through the Indian River Lagoon National Estuary Program (IRLNEP) 

and St. Johns River Water Management District (SJRWMD) allowed researchers 

to periodically sample water, picoplankton, phytoplankton, and sediment at six 

fixed stations in the northern portion of the IRL over the course of five years 

(Phlips, et al. 2011).  The resulting dataset, composed of over 600 samples with 
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at least 10 environmental or chemical parameters recorded for each, is known as 

the Core Data Set.   

Artificial Neural Networks 

Attempts to describe and predict bloom dynamics in Florida have been 

undertaken since the mid-twentieth century (Chew 1956).  These attempts relied 

on heuristic knowledge and the results of laboratory-based experimentation, 

which are unlikely, especially in initial stages, to account for complex ecological 

interactions and codependent variables (Doig, III and Martin 1974).  Even more 

recent and relatively complex models have difficulty incorporating all the factors 

that are now expected to affect the growth and transport of HABs (Walsh, et al. 

2001).  As a result, none of these models have yet been able to accurately 

describe processes that drive the spatial and temporal changes in development 

of HABs (Walsh, et al. 2001).  Machine learning techniques, such as artificial 

neural network (ANN) modeling, offer an alternative to traditional modeling 

methods, and have been used successfully in aquatic ecosystems to model 

water quality and other parameters (Recknagel, et al. 1997; Kuo, et al. 2007). 

A neural network is a mathematical learning model consisting of nodes, or 

neurons, designed to mimic human brain function (Goh 1995).  Each neuron 

represents a complex polynomial equation with a weighted term corresponding to 

each of the input variables or neurons in the previous layer.  The basic structure 

of a modern neural network includes an input layer, one or more hidden layers, 

and an output layer (Abdi 1994).  Once given the variables from the input layer, 

the neurons in the hidden layer determine their weighted relationships using a 
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variety of non-linear functions, and produce the output layer (Lippmann 1987).  

Back propagation, in which the predicted value is compared to the actual value 

and the weights and equations adjusted to produce greater accuracy, is 

frequently used to train the model (Goh 1995). 

Neural network research and development began in the 1940s with the 

goal of developing a machine learning algorithm that would function more like a 

human brain (Abdi 1994).  Early versions of neural networks, first used in the late 

1950s and early 1960s, were similar in structure to ones we now use, but could 

only learn associations between inputs and outputs if those associations were 

the result of linear relationships (Abdi 1994).  Additionally, these “models” used 

only binary inputs and outputs (Abdi 1994).  Advances in the late 1970s and early 

1980s, both in computers and in neural networks, introduced the use of non-

linear relationships and novel methods of training the hidden layer of neurons 

(Abdi 1994).   

Advances continue to be made, and ANNs are routinely used in 

disciplines as varied as stock market prediction, missile guidance and detonation, 

speech recognition, and drug development (Widrow, Rumelhart and Lehr 1994).  

Though initial scientific applications of ANNs focused on medicine and molecular 

biology, researchers began to investigate the usefulness of ANNs for ecological 

research in the early 1990s (Lek and Guegan 1999).  Subsequently, 

comparisons were drawn between results of ANN analyses and those produced 

by traditional linear modeling (Lek, Delacoste, et al. 1996).   The ability to 

calculate weighted and nonlinear relationships between variables and desired 
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outputs allowed ANN analyses to better describe ecological relationships and 

predict results than traditional linear methods (Lek, et al. 1996).  Artificial neural 

networks do not require the same assumptions about the data that parametric 

statistics do, namely that of a normal distribution, and may be used to classify or 

predict data based on inputs (NeuroDimension, Inc. 2012).  Additionally, they 

easily process very large data sets and do not require the researcher to artificially 

reduce the number of variables analyzed (NeuroDimension, Inc. 2012).   

Despite their superior performance and flexibility, ANNs lack the 

mathematical transparency of traditional linear and statistical models.  The 

hidden layers are computed and adjusted according to whichever software 

program is in use, often with little, if any, input from the researcher, and as such 

are commonly referred to as a “black box” (Millie, et al. 2012).  In a large 

environmental data set with many variables, this can obscure those factor(s) 

which may be causative agents of large, persistent, or more toxic phytoplankton 

blooms, and therefore limit the usefulness of the model in making management 

decisions (Young and Weckman 2010).   

Traditionally, multivariate linear regression (MLR) has been used to model 

algal blooms and environmental drivers, and while the method provides greater 

clarity throughout the process, it is not without drawbacks (Millie, et al. 2012).  As 

with all parametric models, assumptions regarding the distribution and variance 

of the variables are implicit in MLR, and because environmental data rarely 

meets these assumptions, the resulting model may have little or no value.  

Furthermore, MLR requires at least basic knowledge of which input variables are 
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appropriate predictors, and which are not, beforehand so that they may be 

included or excluded from the model (Millie, et al. 2012).  This also assumes that 

the researcher(s) are aware of all the factors influencing the model and have 

collected the necessary data to represent them.   

In an effort to find middle ground between inaccurate but mathematically 

transparent “white-box” models, such as linear regressions, and more accurate 

“black-box” models such as ANNs, researchers have begun developing “gray-

box” techniques (Young and Weckman 2010).  These techniques may be applied 

to existing trained ANNs to extract knowledge and build a less complex model 

that still explains the system but also allows insight into its driving factors (Young 

and Weckman 2010).  In the case of ANNs applied to ecological systems, this 

reduction of complexity may help researchers determine which environmental 

variables have the most impact on their target analyses, and help focus their 

research. 

There are several methods of extracting detailed knowledge from existing 

trained ANNs; decomposition investigates the internal “hidden” structure, 

whereas the pedagogical approach compares relationships between the input 

and output layers, and the eclectic approach combines the two (Young and 

Weckman 2010).  Though the eclectic method of creating a gray box for a given 

ANN appears rarely in practice, approaches to decomposition and pedagogical 

methods range from fairly simple Neural Interpretation Diagrams (NIDs) to 

complex response surfaces and decision trees (Young and Weckman 2010).  

The data to construct these analyses are generated by the computer program 
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used to generate and train the ANN, and may be accessed through metadata 

files (Millie and Weckman, pers. com. 2012). 

The goals of this project were to use ANN models to describe and predict 

key ecological concerns in the north IRL, specifically chlorophyll a levels and P. 

bahamense density.  Sensitivity analyses conducted using the modeling software 

would identify which input variable(s) would have the greatest effect on output, 

and, once best-fitting models were identified, metadata would be used to 

determine driving factors via gray box analyses using NIDs and connected 

weights analysis.  The results of the sensitivity and metadata analyses could then 

be compared and combined to determine which input variables are most likely to 

drive these regional concerns. 
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CHAPTER I: NEURAL NETWORK MODELING OF CHLOROPHYLL A 

IN THE INDIAN RIVER LAGOON 

 

Introduction 

The Indian River Lagoon (IRL) is one of a string of shallow interconnected 

lagoons that span over 150 miles of the eastern coast of Florida, from Ponce de 

Leon Inlet near New Smyrna Beach in Volusia County to Fort Pierce Inlet in St. 

Lucie County (Figure 1.1) (St. Johns River Water Management District 2010).  

The IRL is an estuarine habitat that supports over 4000 plant and animal species, 

35 of which are listed as threatened or endangered (Figure 1.2) (St. Johns River 

Water Management District n.d.).  Overall, the IRL supports the most biologically 

diverse estuarine ecosystem in the country (St. Johns River Water Management 

District 2010).  This diversity is supported in part by widely varying 50% renewal 

times, which range from over a year to just a few days, depending on location, 

precipitation, and tidal rhythms (Smith 1993).   In recent decades, the area has 

been subject to intense development, with both industrial and recreational uses 

putting pressure on the estuarine ecosystems (Badylak and Phlips 2004).   

Widespread growth of seagrasses is generally associated with ecosystem 

health and diversity. Primary and secondary production in seagrass beds is very 

high, and many commercially and recreationally valuable species spend at least 

part of their life cycle in such beds (Gillanders 2006).  Of the 60 seagrass species 
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found globally, at least 10% are historically found in the IRL, one of which, 

Johnson’s seagrass (Halophilia johnsonii Eiseman), is listed as threatened under 

the Endangered Species Act (Endangered and Threatened Species 1998; 

Virnstein and Carbonara 1985).  Seagrass coverage has been monitored in the 

IRL for decades via aerial photography, and transect studies which began in the 

mid-1980s have provided more specific data for several locales (St. Johns River 

Water Management District 2013).  Coverage near urban areas had dropped 

during the mid-1980s and early 1990s, a period which saw a great deal of growth 

in population and land use, likely indicating a negative anthropogenic influence 

(Sigua, Steward and Tweedale 2000; St. Johns River Water Management District 

2013).   Since that time, conservation initiatives such as storm water controls to 

reduce sediment influx and coastal wetland restoration projects have yielded an 

overall increase in coverage, until the past five years (Sigua, Steward and 

Tweedale 2000; St. Johns River Water Management District 2013). Since 2011, 

scientists at the St. Johns Water Management District have observed a 60% drop 

in coverage to the lowest levels recorded since monitoring began: less than 

30,000 acres within the IRL as far south as the Fort Pierce inlet (St. Johns River 

Water Management District 2013).    

Loss of seagrass may have several causal factors, including incident light 

limitation, mechanical damage, and nutrient enrichment leading to trophic shifts 

(Deegan, et al. 2002; Duarte 2002).  The recent sharp decrease in seagrass 

coverage is thought to be the result of two dense, extensive, and long-lasting 

algae blooms which covered 130,000 acres of the IRL, from north of Titusville to 
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Eau Gallie (St. Johns River Water Management District 2013).  Sunlight 

availability is known to be a limiting factor to seagrass growth in the IRL, and it is 

believed that these algal blooms shaded out benthic flora, contributing to a 

decline in sea grass coverage (Sigua, Steward and Tweedale 2000). The first 

bloom comprised picoplanktonic green algae and cyanobacteria, and was 

observed from March through November 2011 with a maximum density of more 

than 106 cells ml-1 (Phlips and Badylak 2012).  The second, seen from June to 

August 2012, was a brown tide later identified as the pelagophyte Aureoumbra 

lagunensis (DeYoe), in densities as high as 3.3 x 106 cells ml-1 (DeYoe, et al. 

1997; Phlips and Badylak 2012).  This species, associated with an eight-year 

bloom which caused major ecological impacts in Texas, had not been known to 

bloom in the IRL prior to this event, though examination of historical samples 

confirmed its presence as far back as 2005 (Phlips and Badylak 2012). 

Chlorophyll a measurements have long been used to represent total 

phytoplankton abundance, and very high (171 µg L-1) levels measured during the 

peak of the brown tide support the use of this metric as an estimator of A. 

lagunensis density along with other species (Steele 1962; Phlips and Badylak 

2012).  Successful descriptive modeling of chlorophyll a, using other observed 

and measured environmental parameters as input, could yield insight into driving 

factors of increased plankton growth.  Predictive models, if possible, could make 

mitigation of the harmful effects of blooms more effective.  Information gained 

from either type of model could be very useful to researchers, in targeting their 

efforts, to policymakers in generating guidelines to increase the overall health of 
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natural resources, and to managers making decisions about public use or 

allocation. 

Use of Artificial Neural Networks to describe and predict Harmful Algal Blooms 

The use of Artificial Neural Networks (ANNs) to describe and predict the 

behavior of Harmful Algal Blooms (HABs) has been attempted in many different 

natural systems since the mid-1990s (Lee, et al. 2003; Singh, et al. 2009).  

These studies have mainly focused on lacustrine and riverine systems, with only 

a handful having been conducted on coastal areas (Lee, et al. 2003).  In general, 

freshwater studies have been successful in developing models that accurately 

describe seasonal variation in either target species abundance or chlorophyll 

levels, but their usefulness as a predictive tool has been limited by their design 

(Lee, et al. 2003).   

In the cases where ANNs have been used to describe or predict 

chlorophyll a or species abundance in coastal regions, model accuracy has been 

increasing over the past decade, presumably as technology advances and the 

ecosystems are better understood (Barciela, Garcia and Fernandez 1999; Velo-

Suarez and Gutierrez-Estrada 2007; Melesse, Krishnaswamy and Zhang 2008).  

Where models were built with varying numbers of input variables, models with a 

higher number were more accurate than those with fewer, supporting the high 

complexity of an ecosystem (Melesse, Krishnaswamy and Zhang 2008).  Thus, 

data sets comprising many variables over a long time scale are good candidates 

for analysis via ANN, and are likely to provide more accurate and robust models.   
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The Core Dataset is just such a candidate, spanning five years and 

containing multiple analyses for over 600 water samples.  To date, several 

analyses have been conducted on individual parameters, such as phytoplankton 

community analyses or nutrient change over time, but no study has attempted to 

use multiple parameters to describe the ecosystem more holistically (E. J. Phlips, 

et al. 2010; E. J. Phlips, et al. 2011; E. J. Phlips, et al. 2014).  Artificial neural 

networks provide a platform that may be able to encompass multiple widely 

varying parameters for each data point and visualize how the system as a whole 

functions and changes. 

To generate the Core Data Set, samples were collected twice monthly at 

six sites associated with a range of waterbody/watershed size ratios, site 

characteristics, and surrounding urbanization (Figure 1.1) (Phlips, et al. 2011).  

Average time between sampling was 15 days.  Salinity and temperature were 

measured in the field with either a YSI or Hach/Hydrolab multi-probe, and water 

samples were taken using an integrated tube sample to within 0.1 m of the 

bottom (Phlips, et al. 2011).  Samples were then split and preserved with either 

Lugol’s solution or gluteraldehyde, with unpreserved aliquots frozen for nutrient 

analysis (Phlips, et al. 2011).  Phytoplankton were enumerated in Lugol’s 

preserved samples using inverted phase contrast microscopy (Phlips, et al. 

2011).   

As water clarity, and therefore phytoplankton abundance, is a concern in 

the IRL, and ANNs provide a more flexible platform to include many variables, 

this study attempted to combine the two.  I used environmental and chemical 
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parameters from each sample, to build an ANN which endeavored to describe 

the chlorophyll a measurements from the same or future samples.  Where the 

network had sufficient input data and successfully described the system, the 

analysis of its structure provided insight into the driving factors of high chlorophyll 

a levels, and therefore phytoplankton abundance.   

Materials and Methods 

In addition to the Core Data Set, daily rainfall data were obtained from the 

St. Johns River Water Management District for each site.  These data are the 

result of an ongoing project by the SJRWMD using daily radar maps in 

comparison with in situ rainfall gauges.  Rainfall data from a network of 75 rain 

gauges are provided to a contractor, who then also creates a radar map from 

several overlapping National Weather Service radar stations (St. Johns River 

Water Management District n.d.).  The resulting radar map covers the SJRWMD 

area in totality, and is subdivided into pixels measuring 2 kilometers on each 

side.  Rain gauge and radar data are combined to derive a gauge-adjusted 

dataset, which is then delivered to the SJRWMD where is it quality checked and 

added to the district’s database (St. Johns River Water Management District 

n.d.).  Global positioning system (GPS) coordinates were overlaid with maps 

available from the St. Johns River Water Management District website 

(http://webapub.sjrwmd.com/agws10/ radrain/index.htm) to identify the pixel 

containing each sampling site.  Staff at St. Johns River Water Management 

district provided daily rainfall data for each pixel during the years when sampling 
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took place, and cumulative rainfall since most recent sample date was calculated 

for each sample, according to site.   

Additional calculations using total nitrogen (TN) and total phosphorus (TP) 

within the Core Data Set generated the TN/TP ratio.  Total depth at each 

sampling site was obtained from either the St. Johns River Water Management 

District or National Oceanographic and Atmospheric Administration (NOAA) 

depth charts, and then used with secchi depth data already in the Data Set to 

calculate relative secchi depth for each sample.  For predictive models, desired 

variables at each sample location were shifted by one sampling period such that 

data collected on one sample date would be used to predict the target variables 

on the following. 

Building the Artificial Neural Networks 

Both descriptive and predictive models were built using NeuroSolutions 

6.06 (NeuroDimension, Inc. 2010).   This platform allows the user to select from 

different model types and learning algorithms for each network built.  Multi-layer 

perceptrons (MLP) utilizing static backpropagation, a relatively basic type of 

neural network, were used in each case, and learning algorithms were varied to 

determine which would produce a model with the best correlation to in situ 

measurements.   

Models intended to describe and predict chlorophyll a using nutrient and 

environmental data from each sample as input were initially built using two 

hidden layers, with cross validation data, and trained using each of three learning 

algorithms commonly found in text (conjugate gradient, step, and momentum) 
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(Singh, et al. 2009; D. F. Millie, et al. 2013).  Samples were randomized (n = 645) 

and 60% were used as training exemplars, 15% was used for cross validation, 

and the remaining 25% for testing the model.  For each learning type, the 

number of processing elements (PEs) in each hidden layer was varied from 2 to 

16 as the network trained, to produce the most efficient and accurate model.  

After the models were trained, each was tested and performance metrics were 

produced by the software.  The most accurate version, as determined by the 

given metrics, was then re-trained as many as ten times to further refine the 

algorithm, and the best of these replicates was retained for sensitivity testing.  

Sensitivity testing is part of the NeuroSolutions software, and the program will 

vary the values of each of the input variable independently of the others and 

record the change in output for analysis.  The user may specify the range of 

variation for each variable; in this case, I used both one and two standard 

deviations about the mean.  Gray box analysis was performed only on the most 

accurate descriptive model in an effort to visualize influences contributing to 

chlorophyll a values in real time. 

Descriptive models of chlorophyll a were built using the following variables 

as input: temperature, salinity, dissolved oxygen, pH, ratio of secchi depth to total 

depth (relative secchi depth), total nitrogen, total phosphorus, TN/TP and rainfall 

since last sample.   Predictive models attempted to describe chlorophyll a using 

the variables described above collected from the previous sample in addition to 

the previously measured chlorophyll a value. 
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Gray Box Analysis 

Gray box analysis resulting in a neural interpretation diagram and 

connected weights analysis was based on an Excel template provided by Dr. 

Gary Weckman (Russ College of Engineering and Technology, Ohio University) 

and used in his teaching.  Using a metadata file with file extension “.bst” (“best” 

files), each term of the complex polynomials used to construct the model can be 

recreated.  This file contains weights generated by the software during training 

for each input representing the contribution of that input to the next layer of the 

model.  The use of multiple spreadsheets within Excel can allow the user to trace 

the relative importance of each input through the web of equations produced by 

the model and generate a NID or other graphical representation of the input 

variables.  In this case, I generated both an NID, depicting the relative 

contribution of each variable to each node in each layer, and a pie chart of 

connected weights showing the relative contribution of each input variable to the 

output layer.   

Results 

The conjugate gradient learning algorithm produced the most accurate 

descriptive model initially, and re-training produced the most accurate model in 

the sixth iteration (MSE = 70.12, NMSE = 0.167, r = 0.913; Figure 1.3, Table 1.1).  

The final model contained two hidden layers with 5 nodes in the first and 12 

nodes in the second.  Sensitivity analysis performed using the NeuroSolutions 

software determined that relative secchi depth, total phosphorus, and 

temperature had the greatest impacts on chlorophyll a concentrations (Figure 
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1.4, Table 1.2).  Gray box analysis produced an NID showing how each node in 

one layer relates to each in the following layer, as well as pie chart of connected 

weights indicating the relative importance of each input variable; connected 

weights analysis indicated the three most important variables were total 

phosphorus, relative secchi depth, and TN/TP (Figures 1.5 and 1.6). 

The momentum learning algorithm produced the most accurate predictive 

model of chlorophyll a, and re-training produced the most accurate model in the 

fourth iteration (MSE = 48.76, NMSE = 0.135, r = 0.933; Figure 1.7 and Table 

1.3).  The final model contained two hidden layers, the first consisting of 7 nodes 

and the second of 14.  Sensitivity analysis performed using the NeuroSolutions 

software determined that the three input variables which contributed most to 

future chlorophyll a amounts were chlorophyll a measurements from the previous 

sample, TN/TP, and temperature (Figure 1.8, Table 1.4). 

Discussion 

Though the use of descriptive models to gain insight into the driving forces 

of HABs is promising, it is not without pitfalls.  The ability of a neural network to 

encompass a great many input variables means that it is less likely to miss 

trends or important influences, however, the strength and accuracy of models is 

greatly increased by large quantities of data, which may be difficult for 

researchers to collect consistently.  Furthermore, understanding changing 

influences in ecosystems requires collection of data over relatively large time 

scales, which might be impractical to collect due to funding or other reasons.   
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The variables collected as part of the Core Data Set as a whole included 

several which were not included in the models, such as total phytoplankton 

communities and sediment analyses.  These data were not included as inputs 

into the chlorophyll models because the overall goals of these models were to 

estimate future chlorophyll levels and determine driving factors of present 

chlorophyll levels using variables which can be collected remotely and 

transmitted to researchers wirelessly.  Had these data been included in the 

models, they might have provided more insight into the effects of different 

grazing and recruitment from cyst populations on chlorophyll a, both elements 

suspected or known to affect phytoplankton communities (Phlips, Badylak and 

Grosskopf 2002). 

The individual sample sites used for data collection in the Core Data Set 

were chosen for their variety over a number of defining characteristics.  In this 

case, though the data set in its entirety was large, the number of samples 

collected at any one site was insufficient to generate a robust model.  For this 

reason, all samples were analyzed together, and the model generated describes 

generalities of the northern IRL as a whole, but may not accurately reflect all the 

influences acting on smaller regional scales.   

Results of the sensitivity analysis included in the NeuroSolutions software 

and those from the connected weights analysis emphasize the need for heuristic 

knowledge and the laboratory-based experiments that preceded the development 

of artificial intelligence.  Though the two do not agree completely on which 

variables are most likely to be driving factors, they both emphasize the 
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importance of relative secchi depth and total phosphorus.  However, secchi 

depth is affected by the presence of chlorophyll a producing phytoplankton, and 

therefore this does not represent a causal relationship in the manner represented 

by the model.  Thus, the estimation of a causal effect resulting from changes in 

phosphorus concentrations is the more valuable datum resulting from the model, 

indicating that the northern part of the estuary may be phosphorus limited.  This 

conclusion is further supported by calculation of TN/TP, the mean of which was 

20.53 for all samples, and in excess of the Redfield ratio (16:1 for N:P; Howarth 

1988).   

Phlips, et al. (2002) also found that phosphorus was likely to be the 

limiting nutrient in this region of the IRL when they analyzed both phytoplankton 

samples and bioassay results.  However, in subsequent analyses Phlips, et al. 

(2010) found that temperature and nitrogen were driving factors of total 

phytoplankton abundance at a site not far from Core Site 2.  Differences in 

results between Phlips’ two studies, and between those and the ANNs, are likely 

to arise from the differing analyses used in each case.  In 2002, Phlips, et al. 

used Pearson’s Correlation Analyses alongside bioassays, while Phlips, et al. 

(2010) built several restricted all-possible-models regressions.  These results not 

only underscore the value of laboratory based research, but emphasize the 

importance of model choice.  It should also be noted that Phlips, et al. (2002; 

2010) indicated that salinity, as influenced by both retention time and rainfall, 

affected phytoplankton density, while the ANN models did not identify either 

salinity or rainfall as strong drivers. 
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The greatest predictor of future chlorophyll a levels, by a large margin, 

was the chlorophyll a value.  As it is uncommon for blooms to appear or dissipate 

in the space of two weeks, this seems intuitive, if not especially insightful into 

driving factors of bloom formation or of the ecosystem as a whole.  Indeed, this is 

a common result seen in predictive models of phytoplankton production, and 

some researchers have used either time-lagged chlorophyll a or species 

abundance as the sole input for their models (Melesse, Krishnaswamy, & Zhang, 

2008; Velo-Suarez & Gutierrez-Estrada, 2007).  The next most influential variable 

on future chlorophyll a concentrations is TN/TP, which supports the conclusion 

drawn from the descriptive model that limiting nutrients are a driving force in 

phytoplankton abundance.   

Interestingly, the descriptive model found that rainfall amounts between 

sample dates were a moderately important variable, while the predictive model 

found the same variable to have very little impact.  This may indicate that nutrient 

influx from run-off has an immediate impact that does not last much beyond a 

week or two, and that other sources of nutrient enrichment in the environment, 

such as ground water influx, should be considered important as well.  

Furthermore, learning that the northern IRL is primarily phosphorus limited can 

help managers focus on specific types of pollution in addition to modes of 

pollution transport.   

The Core Data Set provides a much broader view of the northern IRL than 

previous data sets have been able to, merely because of the amount of data 

collected from each sample.  The ANNs built using this 5 year data set have 
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highlighted the processes that influence phytoplankton abundance on that 

relatively short time scale.  While this information can be beneficial in day to day 

or year to year management, decade scale changes will only be observed 

through decade scale data.  Networks built using a longer term data set will be 

required to elucidate processes active over large time scales. The short term 

processes revealed by these networks may be compared with others, as 

determined using analyses of either subsequent short term data sets or 

combined long term data sets, and managers will have a much more complete 

tool box for improving the long term health of this critical estuary. 
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Figure 1.1: Sampling locations and bathymetry for Core Data Set sites in the 
Indian River Lagoon. The Indian River Lagoon in relation to the east coast of 
Florida (A); colored dots represent sampling sites while graduated colored lines 
mark depth (B). 

 

A 
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Figure 1.2: Known nesting sites and foraging areas of several protected species 
within the study area, demonstrating the density of critical habitats within the IRL. 
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Figure 1.3: Chlorophyll a descriptive model performance: predicted values are 
plotted against observed values, red line has the equation 𝑦 = 𝑥 and is shown for 
reference. 

 

 

Figure 1.4: Sensitivity analysis results for Chlorophyll a descriptive model; each 
variable was altered by 1 and then 2 standard deviations around the mean value 
while other variables were held constant; changes to the model output are 
represented by the bar graph below. 
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Figure 1.5: Neural Interpretation Diagram for Chlorophyll a descriptive model, generated using metadata produced 
by NeuroDimensions software in the course of training the ANN. 
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Figure 1.6: Connected weights pie chart for Chlorophyll a descriptive model 
showing contribution of each input variable to output result as determined by 
tracing the weights of each layer through the ANN. 

 

 

Figure 1.7: Chlorophyll a predictive model performance: predicted values are 
plotted against observed values, red line has the equation 𝑦 = 𝑥 and is shown for 
reference. 
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Figure 1.8: Sensitivity analysis results for Chlorophyll a predictive model; each 
variable was altered by 1 and then 2 standard deviations around the mean value 
while other variables were held constant; changes to the model output are 
represented by the bar graph below. 
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Table 1.1: Chlorophyll a descriptive model performance metrics; MSE = mean 
squared error, NMSE = normalized mean squared error, MAE = mean absolute 
error.   

 

Performance Chl a 
MSE 70.11705506 
NMSE 0.167310819 
MAE 5.893172361 
Min Abs Error 0.018140696 
Max Abs Error 36.39797849 
r 0.91300188 

 

Table 1.2: Sensitivity analysis results for Chlorophyll a descriptive model; 
numerical values calculated to describe sensitivity of the model output to 
changes within 1 and 2 standard deviations of the mean for each input variable. 

 

 

 

 

 

 

 

 

 

  

Sensitivity 1 SD 
around mean Chl a 
TEMP 1.236817804 
SALINITY 0.685720596 
DISSOLVED_O2 0.030549802 
pH 0.127367292 
sechhi:total depth 1.927409241 
TP (mg/L) 1.579842633 
TN (mg/L) 0.308209417 
TN:TP 0.648790715 
Rainfall (since last 
sample, inches) 

0.753631954 

Sensitivity 2 SD 
around mean Chl a 
TEMP 2.601655056 
SALINITY 1.414581405 
DISSOLVED_O2 0.076471032 
pH 0.262769831 
sechhi:total depth 4.495305491 
TP (mg/L) 3.271331235 
TN (mg/L) 0.623704303 
TN:TP 1.313219392 
Rainfall (since last 
sample, inches) 1.547770059 
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Table 1.3: Chlorophyll a predictive model performance metrics; MSE = mean 
squared error, NMSE = normalized mean squared error, MAE = mean absolute 
error.   

 

Performance 
Chl a next 

sample 
MSE 48.76381201 
NMSE 0.134985059 
MAE 5.256872977 
Min Abs Error 0.046971993 
Max Abs Error 28.6687964 
r 0.932963157 

 

Table 1.4: Sensitivity analysis results for Chlorophyll a predictive model; 
numerical values calculated to describe sensitivity of the model output to 
changes within 1 and 2 standard deviations of the mean for each input variable. 
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CHAPTER 2: USING ARTIFICIAL NEURAL NETWORKS TO DESCRIBE 

AND PREDICT PYRODINIUM BAHAMENSE BLOOMS IN THE INDIAN RIVER 

LAGOON 

 

Introduction 

Pyrodinium bahamense 

Pyrodinium bahamense, a bioluminescent photosynthetic dinoflagellate 

found in tropical and subtropical marine environments, was first described from a 

sample collected in the Bahamas in 1906 (Seliger, et al. 1970; Plate 1906). Since 

then, P. bahamense has been divided into two varieties based on morphology: 

var. compressum and var. bahamense (Steidinger, Tester and Taylor 1980).  The 

two varieties of P. bahamense do not appear to have overlapping geographical 

ranges; P. bahamense var. compressum has only been collected from the Pacific 

Ocean, while P. bahamense var. bahamense is primarily found in the western 

Atlantic (Balech 1985). 

Since the early 1970s, Pyrodinium bahamense var. compressum has 

been known to produce saxitoxins, which can accumulate in shellfish and cause 

Paralytic Shellfish Poisoning (PSP) (Worth, Maclean and Price 1975).  Cases of 

human intoxication via contaminated shellfish were first recorded in Papua New 

Guinea, but have since spread to many other countries in the Indo-Pacific region 

(Azanza and Taylor 2001; Worth, Maclean and Price 1975).  Saxitoxin presents a 
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serious health risk: mild cases of poisoning cause symptoms within 30 minutes, 

and extreme cases may cause death by respiratory paralysis anywhere from two 

to 24 hours after exposure (Azanza and Taylor 2001).  Between 1976 and 1999, 

over 3100 cases of PSP were reported in south-east Asia, with at least 178 

fatalities (Azanza and Taylor 2001).  In culture, an isolate of P. bahamense var. 

compressum collected from Malaysia produced five saxitoxin variants, the 

quantities of which varied with salinity, temperature, and light intensity (Usup, 

Kulis and Anderson 1994).   

Persistent dense blooms of P. bahamense var. bahamense have been 

found in the West Indies, Bahamas, and Puerto Rico for over sixty years, and the 

ongoing bioluminescence has even become a tourist attraction (Seliger, et al. 

1970).  However, despite the close relationship between the two varieties, until 

2002 toxicity had only been attributed to P. bahamense var. compressum, and 

PSP toxicity from P. bahamense was not a concern in the Atlantic (Azanza and 

Taylor 2001).   

Pyrodinium bahamense in the Indian River Lagoon 

Food poisoning incidents and the subsequent discovery of potentially toxic 

HAB species spurred the cooperative project which produced the Core Data Set.  

Between the start of 2002 and mid-year 2004, 28 cases of food poisoning were 

linked to puffer fish harvested in the Indian River Lagoon, on the eastern coast of 

Florida (Landsberg, et al. 2006).  The symptoms were identical to those of 

traditional puffer fish poisoning (PFP), common to Japan, caused by tetrodotoxin 

(TTX) naturally found in some species of puffer fish (Landsberg, et al. 2006).  
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Analysis of the remainder of one of the fillets associated with a poisoning event 

by liquid chromatography-mass spectrometry (LC-MS) revealed the presence of 

the paralytic shellfish poisoning (PSP) toxins saxitoxin (STX), 

decarbamoylsaxitoxin (dcSTX), and gonyautoxin-5 (GTX5), but failed to yield any 

TTX (Quilliam, et al. 2004).  However, these are some of the same toxins found 

in the culture of P. bahamense var. compressum studied by Usup, et al. (1994).  

Puffer fish harvesting in the IRL was subsequently banned by the Florida Fish 

and Wildlife Conservation Commission (FWC) (Landsberg, et al. 2006).  Further 

monitoring of wild-caught puffer fish that spanned three years revealed lasting 

toxicity in multiple tissues.  Captive-held fish also maintained toxicity of skin 

secretions for over a year (Landsberg, et al. 2006).   

Because saxitoxins had not previously been found in Florida marine 

environments, a rigorous survey of potential toxin producing organisms was 

initiated in the IRL (Landsberg, et al. 2006).  From phytoplankton collected during 

this survey, eleven P. bahamense cultures were established and, when tested, 

provided evidence of the source of the toxins identified previously as responsible 

for the cases of human intoxication (Landsberg, et al. 2006).  Concurrent with 

Landsberg’s study was a five year effort by Phlips et al. (2004) to characterize 

phytoplankton species and dynamics in the IRL.  In addition to what appeared to 

be an increasing abundance of P. bahamense, the diatom Pseudo-nitzschia 

pseudodelicatissima was also found (E. J. Phlips, et al. 2004).   P. 

pseudodelicatissima is known to produce the neurotoxin domoic acid (DA), the 

cause of amnesiac shellfish poisoning (ASP), elsewhere in the United States, 
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and was found in several samples at concentrations high enough to exceed risk 

guidelines set forth in several other countries (E. J. Phlips, et al. 2004).  Though, 

much like saxitoxin prior to 2002, there is no evidence to date to support the 

production of domoic acid in the IRL.   

The cases of PSP linked to puffer fish prompted the formation of a task 

force and the subsequent decision to begin a cooperative study to investigate 

algal blooms in the area and their relation to saxitoxin puffer fish poisoning, 

dolphin and turtle diseases, and possible threats to human health (J. Landsberg 

2010).  The surveys conducted by Landsberg, et al. (2006) and Phlips, et al. 

(2004) provided valuable information and guidance for the cooperative study.  

The result of this study is the Core Data Set, a collection of over 600 water 

samples spanning five years and comprising at least 10 environmental or 

chemical parameters for each sample. 

To generate the Core Data Set, samples were collected twice monthly at 

six sites associated with a range of waterbody/watershed size ratios, site 

characteristics, and surrounding urbanization (Figure 2.1) (E. J. Phlips, et al. 

2011).  Average time between sampling was 15 days.  Salinity and temperature 

were measured in the field with either a YSI or Hach/Hydrolab multi-probe, and 

water samples were taken using an integrated tube sample to within 0.1 meter of 

the bottom (E. J. Phlips, et al. 2011).  Samples were then split and preserved 

with either Lugol’s solution or gluteraldehyde, with unpreserved aliquots frozen 

for nutrient analysis (E. J. Phlips, et al. 2011).  Phytoplankton were enumerated 
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in Lugol’s preserved samples using inverted phase contrast microscopy (E. J. 

Phlips, et al. 2011).   

Toxin-producing blooms of P. bahamense can threaten human health and 

have negative effects on local industry.  As such, the ability to describe the 

dynamics of this species within a complex ecosystem is highly desirable, and 

would allow preemptive measures to minimize such impacts.  While the Core 

Data Set is large and diverse enough to support analysis using any number of 

model types, Artificial Neural Network (ANN) modeling requires very little data 

manipulation prior to application and does not require variables to fit 

assumptions, such as normality.  Additionally, because the model determines the 

weight of each input variable, little to no knowledge of the ecological system as a 

whole is required of the user prior to building the model (Millie, et al. 2012).  

Though remote monitoring was not used in generating the Core Data Set, much 

of the ecological and chemical data in the dataset could have been collected 

remotely via autonomous sampling platforms, as in Millie, et al. (2013), and 

transmitted using a satellite uplink to researchers off-site.  Thus, I have used 

ANNs to estimate current P. bahamense density, using input variables which 

could be available remotely, as well as future density, using time-lagged data as 

input. 

Materials and Methods 

Samples for phytoplankton enumeration were collected as described 

previously; briefly, water was collected at each site using a vertical integrating 

tube sampler to within 0.1 m of the bottom, split and immediately preserved with 
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either Lugol’s solution or gluteraldehyde for later analysis (E. J. Phlips, et al. 

2011).  Lugol’s preserved samples were settled in cylindrical chambers (diameter 

= 19mm) and analyzed using a Leica phase contrast inverted microscope 

(Phlips, et al., 2011; Figure 2.2).  Phytoplankton were identified and enumerated 

at 400x; a minimum of 30 grids were counted and if 100 cells of a single taxon 

were not identified, and counting continued until either 100 cells were observed 

or 100 grids were counted, whichever occurred first (E. J. Phlips, et al. 2011).  If 

identification was difficult at 400x, additional techniques, such as the squash 

method and scanning electron microscopy, were used (Phlips, et al., 2011; 

Figure 2.2).  P. bahamense (Figure 2.2) enumeration data for each sample were 

used, along with nutrient and environmental data, to build the ANNs. 

Ongoing phytoplankton surveys, in contrast to event response data, are 

often zero-heavy and therefore fail tests for normal distribution; in the Core Data 

Set, P. bahamense cells were absent from 56% of samples (E. J. Phlips, et al. 

2004).  For further confirmation, basic descriptive statistics were generated for P. 

bahamense count data using SPSS Statistics 22 (IBM Corporation 2013). 

Building the Artificial Neural Networks 

Both descriptive and predictive models of P. bahamense were 

constructed.  Models intended to describe densities of P. bahamense concurrent 

with nutrient and environmental data from each sample were initially built using 

either one or two hidden layers, both with and without cross validation data, and 

trained using each of the four learning algorithms most commonly found in text 

(Levenberg-Marquart, conjugate gradient, step, and momentum) (Singh, et al. 
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2009; Millie, et al. 2013).  Going forward, the more complex model structure with 

two hidden layers was used, along with cross validation data sets, and three of 

the four learning algorithms (conjugate gradient, step, and momentum) were 

tested for each model in an attempt to find the greatest agreement.  Samples 

were randomized (n = 650) and 60% used for training the model, 15% for cross-

validation, and 25% for testing the model’s performance.  For each model, the 

number of processing elements (PEs) in each hidden layer was varied from 2 to 

16 as the network trained, to produce the most efficient and accurate model.  

After the models were trained, each was tested and performance metrics were 

produced by the software.  The most accurate version, as determined by the 

given metrics, was then re-trained as many as ten times to further refine the 

algorithm, and the best of these replicates was retained for sensitivity testing.  

Sensitivity testing is included in the software, and the program will vary the 

values of each of the input variables independently of the others and record the 

change in output for analysis; when used on a model that describes the dataset 

well, this will show which input variable(s) have the greatest impact on the output.  

The user may specify the range of variation for each variable; as before, I used 

both one and two standard deviations about the mean.  Gray box analysis was 

performed only on the most accurate descriptive model in an effort to visualize 

influences contributing to P. bahamense density in real time. 

Descriptive models of P. bahamense counts were built using the following 

variables as input: temperature, salinity, dissolved oxygen, pH, ratio of secchi 

depth to total depth, total nitrogen (TN), total phosphorus (TP), ratio of total 
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nitrogen to total phosphorous (TN/TP), chlorophyll a, and rainfall since last 

sample.  As models often have difficulty describing zero-heavy datasets, a 

classification network was also built in an attempt to describe the simple 

presence/absence of P. bahamense cells.  Another model deleted the zero count 

values from the data set, reducing it by roughly half (n = 286), in an effort to use 

the same input variables to describe cell density.  Finally, the data set, less the 

zero values, was binned into low, medium, and high cell densities (low = 333-

1,000 c/L, medium = 1,001-12,600 c/L, high = 12,601-1,451,300 c/L), each 

designation containing approximately one third of the samples, and a 

classification network built to describe the resulting dataset.   

Predictive models used the more complex structure with two hidden layers 

and cross-validation data, and followed the same development as descriptive 

models.  As before, the desired output was shifted one sample period, such that 

models attempted to describe counts using the chemical and environmental data 

from the previous sample date, less P. bahamense counts.  Average time 

between samples at each site was 15 to 16 days.  Predictive models were 

developed for all alternate datasets constructed for descriptive models 

(presence/absence, counts only, binned counts). 

Gray Box Analysis 

Gray box analysis was done only for the descriptive presence/absence 

classification model.  Gray box analysis was adapted from an Excel template 

provided by Dr. Gary Weckman (Russ College of Engineering and Technology, 

Ohio University) to suit the new model structure: two output variables instead of 
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one.  The “best” file, with weights for each input as it relates to the next model 

layer, was used to reconstruct the complex web of interactions within the model.  

I generated both a Neuro Interpretation Diagram (NID), depicting the relative 

contribution of each variable to each node in each layer, and a pie chart showing 

the relative contribution of each input variable to the output layer.   

Results 

Values for skewness and kurtosis were positive (11.3 and 178.4, 

respectively; Table 2.1) and varied substantially from those expected when the 

data is normally distributed, supporting the use of a distribution-free modeling 

method such as an ANN. 

The most accurate description of count values, including all zero values, 

was produced using the step learning algorithm with two hidden layers and 

cross-validation data; both hidden layers in this model contained 16 nodes (MSE 

= 11,032,919,172, NMSE = 0.601, r = 0.640; Figure 2.3 and Table 2.2).  The 

trends observed in this first model were used as a basis for building all following 

models: two hidden layers described the data better than one, and the use of a 

cross-validation data set improved model performance.  Despite these aids, 

attempts to describe both specific count and zero values were largely 

unsuccessful.  This was seen also in the predictive models, in which case the 

best correlation was obtained using the momentum learning algorithm, having 16 

nodes in each of the two hidden layers (MSE = 1,574,486,616, NMSE = 1.036, r 

= 0.385; Figure 2.4 and Table 2.3). 
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Greater success was obtained when the count data was reduced to 

presence/absence values and modeling was attempted using a classification 

structure.  The momentum learning algorithm produced the most accurate 

descriptive model in the fourth iteration, having 10 nodes in the first hidden layer 

and 8 in the second (Present: MSE = 0.160, r = 0.597, % correct = 74.67; 

Absent: MSE = 0.160, r = 0.598, % correct = 84.09; Table 2.4 and Table 2.5).  

Sensitivity analysis done using the NeuroSolutions software indicated that the 

three input variables that most affected both the presence and absence of P. 

bahamense were temperature, pH, and dissolved oxygen (Figure 2.5 and Table 

2.6).  Gray box analysis produced an NID showing how each input and node 

relates to the following layer, as well as a pie-chart of connected weights 

indicating the relative importance of each input variable to the output layer 

(Figure 2.6).  In contrast to the sensitivity analysis performed within 

NeuroSolutions, the analysis of connected weights indicated that the most 

important influences on the final output were relative secchi depth, pH, dissolved 

oxygen, and the TN/TP ratio (Figure 2.7).  

Predictive models using the presence/absence classification dataset were 

also relatively successful, achieving 65.7% and 78.5% correct values for 

presence and absence, respectively.  These results were obtained using the 

momentum learning algorithm in the seventh iteration; the resulting model had 

eleven nodes in the first hidden layer and seven in the second (Present: MSE = 

0.185, r = 0.532, % correct = 65.7; Absent: MSE = 0.185, r = 0.531, % correct = 

78.5; Table 2.7 and Table 2.8). 



48 
 

When zero values were eliminated and the model attempted to describe 

only samples in which P. bahamense are present, efforts were largely 

unsuccessful.  For both descriptive and predictive models, MSE was high and r 

values indicated that the model did not follow the data trends well.  The 

conjugate-gradient learning algorithm produced the most accurate descriptive 

model, having 18 nodes in the first layer and three in the second (MSE = 

4,689,232,952, NMSE = 0.784, r = 0.686; Figure 2.8 and Table 2.9).  The most 

accurate predictive model was produced by the same algorithm, with 15 nodes in 

the first hidden layer and 13 in the second (MSE = 3,347,175,751, NMSE = 

1.122, r = 0.662; Figure 2.9 and Table 2.10).  

Removing zero values and binning P. bahamense counts into low, 

medium, and high ranges (low = 333-1000 cells/L, n = 98; medium = 1001-

12,600 cells/L, n = 93; high = 12,601-1,451,300 cells/L, n = 95), then using a 

classification model structure produced better results, but still did not describe 

the data very well.  The step learning algorithm based model which produced the 

best fit had 14 nodes in each of the two hidden layers (Low: MSE = 0.180, r = 

0.515, % correct = 59.3; Medium: MSE = 0.210, r = 0.202, % correct = 50.0; 

High: MSE = 0.184, r = 0.411, % correct = 60.9; Table 2.11 and Table 2.12).  The 

most accurate predictive model was produced by the momentum learning 

algorithm and had six nodes in the first hidden layer and 16 in the second (Low: 

MSE = 0.190, r = 0.380, % correct = 42.9; Medium: MSE = 0.233, r = 0.125, % 

correct = 53.8; High: MSE = 0.159, r = 0.537, % correct = 70.8; Table 2.13 and 

Table 2.14).   
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Discussion 

These results indicate that attempting to describe the dynamics of an 

individual species within a complex ecosystem, even with a relatively large data 

set, is not simple.  The parameters measured and calculated as part of the Core 

Data Set were determined by heuristic knowledge, which may be incomplete in 

this case.  The input variables did not include any measurements or observations 

of lateral or higher trophic levels, and therefore cannot account for predation or 

competition pressure.  Philps, et al. (2010) also found poor model agreement (R2 

= 0.43) when using similar input variables in an all-possible-models regression of 

total dinoflagellate biovolume.  Input parameters for the ANN models were 

chosen based on those which may be collected remotely via an autonomous 

monitoring platform and transmitted wirelessly back to researchers, or those 

available using other forms of remote sensing.  Additionally, different sampling 

sites may have different factors influencing the density and growth rate of P. 

bahamense, as demonstrated by Phlips, et al. (2010), that these larger scale 

models do not accurately represent.   

Despite these limitations, one of the models, that which described whether 

P. bahamense was present or absent from samples, was remarkably accurate, 

producing the correct answer for 75% and 84% of exemplars, present and 

absent, respectively (Table 2.5).  While the model cannot determine how dense 

the population will be, the ability to remotely estimate presence and absence 

would be of immense value to managers in targeting sampling efforts.   
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Sensitivity analysis for this classification model indicated that primary 

factors influencing the presence or absence of P. bahamense are temperature, 

pH, and dissolved oxygen.  Gray box analysis produced connected weights that 

suggest the primary influencers are relative secchi depth, pH, and dissolved 

oxygen.  Similarly, restricted all-possible-models regressions identified 

temperature and secchi depth for total dinoflagellate biovolume at a site near 

Core Site 2 (E. J. Phlips, et al. 2010).  These results provide little novel insight 

into driving factors of P. bahamense presence or density.  Laboratory-based 

enrichment experiments have demonstrated that dinoflagellate growth is limited 

by temperature and pH; that this is found as a primary influence merely indicates 

that, in the sample areas, these environmental parameters occasionally deviate 

from those optimal for logarithmic growth (Usup, Kulis and Anderson 1994; 

Hansen, Lundholm and Rost 2007).  Relative secchi depth and dissolved oxygen 

may both be affected by high densities of phytoplankton, so rather than 

illustrating a causal relationship between those inputs and P. bahamense 

densities, these analyses more likely indicate a correlation.  Interestingly, factors 

found by other studies to impact phytoplankton abundance were not identified as 

drivers by these models: Phlips, et al. found that weather conditions and nutrient 

availability in the IRL were most likely to impact phytoplankton community 

structure and abundance (2002), and total dinoflagellate biovolume (2010).  It is 

most likely these differences are a result of the different analyses and modeling 

techniques that were used for each study, as well as differing input variables. 
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In my attempt to build models based on parameters which can be 

collected remotely, I omitted several variables from the input layer that were 

collected as part of the Core Data Set.  Among these were total plankton 

community counts and cyst data from sediment samples, which could have 

provided an estimate of zooplankton grazing or recruitment. Phlips et al. found 

that grazing and competition affect total phytoplankton biomass (2002) and total 

dinoflagellate biovolume (2010) in the IRL, and P. bahamense resting spores, or 

cysts, have long been known to contribute to pelagic communities (Wall and Dale 

1969). 

Though none of the factors indicated as influential by sensitivity or gray 

box analyses are likely to be so, the model is still relatively accurate.  In all 

likelihood, this is because the driving factor(s) that remain hidden are either 

driven by or covary with those inputs which were identified as significant.  This 

may also indicate why one model type, the presence/absence classification, was 

more accurate than any other which attempted to describe or predict P. 

bahamense densities. These results, when viewed together, indicate that further 

research is necessary to begin to understand P. bahamense bloom dynamics, 

and that in doing so, researchers must look beyond parameters traditionally 

considered important to phytoplankton growth to find underlying driving factors. 
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Figure 2.1: Core Data Set fixed sampling locations, showing the range of water 
body sizes, relation to areas of high population density, and relation to saltwater 
inputs. 
 



53 
 

               

Figure 2.2: Light and Scanning Electron Microscope images of Pyrodinium 
bahamense var. bahamense (images courtesy Florida Fish & Wildlife 
Conservation Commission) 
 

 

Figure 2.3: P. bahamense count descriptive regression model performance: 
predicted values are plotted against observed values; red line has the equation 
𝑦 = 𝑥 and is shown for reference. 
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Figure 2.4: P. bahamense count predictive regression model performance: 
predicted values are plotted against observed values; red line has the equation 
𝑦 = 𝑥 and is shown for reference. 
 

 

Figure 2.5: Sensitivity analysis results for descriptive classification model.  Each 
variable was altered by 1 and then 2 standard deviations around the mean value 
while other variables were held constant; changes to the model output are 
represented by the bar graph below. 
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Figure 2.6: Neural Interpretation Diagram for descriptive presence/absence model generated using metadata 
produced by NeuroDimensions software in the course of training the ANN. 
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Figure 2.7: Connected weights pie chart for descriptive presence/absence model 
showing contribution of each input variable to output result as determined by 
tracing the weights of each layer through the ANN. 
 

 

Figure 2.8: P. bahamense zero-removed counts descriptive regression model 
performance: predicted values are plotted against observed values; red line has 
the equation 𝑦 = 𝑥 and is shown for reference. 
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Figure 2.9: P. bahamense zero-removed counts predictive regression model 
performance: predicted values are plotted against observed values; red line has 
the equation 𝑦 = 𝑥 and is shown for reference. 
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Table 2.1: Descriptive statistics generated for all P. bahamense count values.  
High positive values for skewness and kurtosis indicate deviation from a normal 
distribution. 
 

 
 
Table 2.2: P. bahamense count descriptive regression model performance 
metrics; MSE = mean squared error, NMSE = normalized mean squared error, 
MAE = mean absolute error. 
 
Performance Count 
MSE 1103291972 
NMSE 0.600863602 
MAE 18514.98776 
Min Abs Error 16.64680134 
Max Abs Error 174281.5936 
r 0.639872115 

 
  

Statistic Std. Error
Count Mean 17927.17 3096.735

Lower Bound 11846.36
Upper Bound 24007.99

5% Trimmed Mean 5846.03
Median 0
Variance 6.243E+09
Std. Deviation 79012.265
Minimum 0
Maximum 1451300
Range 1451300
Interquartile Range 2000
Skewness 11.344 0.096
Kurtosis 178.407 0.191

95% Confidence 
Interval for Mean
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Table 2.3: P. bahamense count predictive regression model performance 
metrics; MSE = mean squared error, NMSE = normalized mean squared error, 
MAE = mean absolute error. 
 

Performance 
Count at next 
sample date 

MSE 1574486616 
NMSE 1.035728648 
MAE 19436.21704 
Min Abs Error 42.12807662 
Max Abs Error 282419.8915 
r 0.385469674 

 
Table 2.4: Output vs. Desired results of descriptive classification model; desired 
values are in columns, model predicted values are in rows.  Model prediction is 
correct for 79.8% of samples. 
 

  Desired: Present Desired: Absent 
Output: Present 56 14 
Output: Absent 19 74 

 
Table 2.5: Performance metrics of descriptive classification model; MSE = mean 
squared error, NMSE = normalized mean squared error, MAE = mean absolute 
error. 
 
Performance 

 
Present 

 
Absent 

MSE 
 

0.160312423 
 

0.160126533 
NMSE 

 
0.645354662 

 
0.644606342 

MAE 
 

0.312350685 
 

0.308842543 
Min Abs Error 

 
0.00097396 

 
0.00696486 

Max Abs Error 
 

1.030765554 
 

1.029867956 
r 

 
0.596867716 

 
0.597941272 

Percent Correct 
 

74.66666667 
 

84.09090909 
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Table 2.6: Sensitivity analysis results for descriptive classification model; 
numerical values calculated to describe sensitivity of the model output to 
changes within 1 and 2 standard deviations of the mean for each input variable. 
 
Sensitivity 1 SD 
around mean Present Absent 

TEMP 0.155040267 0.160030225 
SALINITY 0.056822164 0.087636136 
DISSOLVED_O2 0.092953591 0.103365106 
pH 0.149867694 0.171482146 
sechhi:total depth 0.048361016 0.04462895 
TP (mg/L) 0.035110689 0.024204439 
TN (mg/L) 0.011152582 0.010602528 
TN:TP 0.005797622 0.017332029 
CHLa est (ug/L) 0.065911198 0.095786105 
Rainfall (since last 
sample, inches) 

0.04936855 0.047455105 

 

Sensitivity 2 SD 
around mean Present Absent 

TEMP 0.260227977 0.267216609 
SALINITY 0.093270542 0.142770228 
DISSOLVED_O2 0.17627705 0.19485387 
pH 0.255003834 0.284816976 
sechhi:total depth 0.138606999 0.136602685 
TP (mg/L) 0.071410903 0.050334828 
TN (mg/L) 0.034503226 0.035631222 
TN:TP 0.01759006 0.02302226 
CHLa est (ug/L) 0.120913401 0.17123185 
Rainfall (since last 
sample, inches) 

0.09753528 0.094160839 

 

Table 2.7: Output vs. Desired results of predictive classification model; desired 
values are in columns, model predicted values are in rows.  Model prediction is 
correct for 73.0% of samples. 
 

 
Desired: present Desired: absent 

Output: present 46 20 
Output: absent 24 73 
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Table 2.8: Performance metrics of predictive classification model; MSE = mean 
squared error, NMSE = normalized mean squared error, MAE = mean absolute 
error. 
 
Performance present absent 
MSE 0.184800606 0.18500588 
NMSE 0.754219249 0.755057023 
MAE 0.302513393 0.301382952 
Min Abs Error 0.002894105 0.000516863 
Max Abs Error 1.002910177 0.996266062 
r 0.53233458 0.530819039 
Percent Correct 65.71428571 78.49462366 

 
Table 2.9: P. bahamense zero-removed counts descriptive regression model 
performance metrics; MSE = mean squared error, NMSE = normalized mean 
squared error, MAE = mean absolute error. 
 
Performance Count 
MSE 4689232952 
NMSE 0.783686942 
MAE 30925.85216 
Min Abs Error 58.38421847 
Max Abs Error 315353.3774 
r 0.685841923 

 
Table 2.10: P. bahamense zero-removed counts predictive regression model 
performance metrics; MSE = mean squared error, NMSE = normalized mean 
squared error, MAE = mean absolute error. 
 

Performance 
count at next 
sample date 

MSE 3347175751 
NMSE 1.122395325 
MAE 41219.13204 
Min Abs Error 1113.274814 
Max Abs Error 222732.858 
r 0.662484184 
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Table 2.11: Output vs. Desired results of descriptive binned counts classification 
model; desired values are in columns, model predicted values are in rows.  
Model prediction is correct for 56.9% of samples. 
 

 
Desired: Low Desired: Mid Desired: High 

Output: Low 16 4 2 
Output: Mid 4 11 7 
Output: High 7 7 14 

 

Table 2.12: Performance metrics of descriptive binned counts classification 
model; MSE = mean squared error, NMSE = normalized mean squared error, 
MAE = mean absolute error. 
 
Performance Low Mid High 
MSE 0.17960198 0.210296879 0.183737797 
NMSE 0.766301783 0.991071835 0.845161261 
MAE 0.326472983 0.414795133 0.367586985 
Min Abs Error 0.006736412 0.081347739 0.006113535 
Max Abs Error 0.984232019 0.878320082 0.948885766 
r 0.514621675 0.201607425 0.411171822 
Percent 
Correct 59.25925926 50 60.86956522 

 
Table 2.13: Output vs. Desired results of predictive binned counts classification 
model; desired values are in columns, model predicted values are in rows.  
Model prediction is correct for 56.3% of samples. 
 

 
Desired: low Desired: mid Desired: high 

Output: low 9 6 1 
Output: mid 10 14 6 
Output: high 2 6 17 

 

  



63 
 

Table 2.14: Performance metrics of predictive binned counts classification model; 
MSE = mean squared error, NMSE = normalized mean squared error, MAE = 
mean absolute error. 
 
Performance low mid high 
MSE 0.189676055 0.232988136 0.159349371 
NMSE 0.910625708 1.003840338 0.712127817 
MAE 0.307199183 0.441045704 0.319086521 
Min Abs Error 0.002407694 0.043941965 0.000942164 
Max Abs Error 0.958516836 0.841595932 1.013773925 
r 0.379798083 0.12516893 0.537496042 
Percent Correct 42.85714286 53.84615385 70.83333333 
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