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Abstract

Pancreatic cancer is one of the most deathly disease and becoming an increasingly

common cause of cancer mortality. It continues giving rise to massive challenges to clini-

cians and cancer researchers. The combined five-year survival rate for pancreatic cancer is

extremely low, about 5 to 10 percent, owing to the fact that a large number of the patients

are diagnosed at stage IV when the disease has metastasized. Our study investigates if there

exists any statistical significant difference between the median survival times and also the

survival probabilities of male and female pancreatic cancer patients at different cancer stages,

and irrespective of stages. Also, we investigated if there exists any parametric probability

distribution function that best fits the male and female patient survival times in different

stages of cancer , irrespective of stages , and performed the parametric survival analysis by

using SEER cancer database.

We also have developed a data-driven survival model to predict the survival times of indi-

vidual pancreatic patients using extreme gradient boosting, which was done based the NIH

PLCO (Prostate, Lung, Colorectal and Ovarian ) cancer data. Most importantly, we have

identified ten risk factors that contribute significantly to the survival of the patient diagnosed

with pancreatic adenocarcinoma. Once we identify these risk factors, we rank them with

respect to the percentage of contribution to pancreatic cancer. For example, the top three

most contributing risk factors of pancreatic adenocarcinoma are the age of the patient (35.5

%), current body mass index (BMI) (24.3 %), and the number of years smoking cigarette

(14.93 %). The proposed predictive analytical model is 96.42% accurate. This model has

been statistically tested to give excellent predictions.

We have developed a stochastic model that is a function of Stochastic growth intensity factor

(SGIF) and a Survival Index SI, that we have introduced. The SI identifies the survival



rate of pancreatic cancer patients as a function of time, and SGIF monitors the behavior of

pancreatic cancer patients at a specific time. The SI is an important decision-making indi-

cator that conveys three important conditions of the pancreatic cancer patients at a specific

time.

• The patients’ survival time is increasing.

• The patients’ survival remains the same.

• The patients’ survival time is decreasing.

The SI offers a number of important uses on the subject matter. For example, in the case

of pancreatic cancer patients, they have three different treatments.

• Chemotherapy only (C)

• Radiation only (R)

• Chemotherapy and Radiation both (C+R)

The proposed SI can be used to evaluate the effectiveness of the administered treatment to

a given patient. That is, if the treatment worsens the patient’s cancer, the treatment has

no effect on cancer, or the treatment is effective on the cancer. To our knowledge, there is

no such analytical model that offers this important evaluation of different treatments. The

flexibility of our model lies in the fact that it can incorporate any number of additional

treatments. Furthermore, our study categories pancreatic cancer patients from three race

groups, Caucasian, African American, and other in utilizing the proposed analytical model.

In addition, our analysis is performed at four different stages of pancreatic cancer and three

different age groups, 40 to 59, 60 to 79, and 80 and older.

Our statistical analysis includes some other important findings. For example, are there any

significant differences in the survival rate between male and female pancreatic cancer pa-

tients? We have also found that the Generalized Pareto probability distribution function

xvi



best characterizes the survival times of pancreatic cancer patients. This finding is impor-

tant in obtaining a more powerful measurement/estimation of the survival analysis of the

subject patients. That is, it gives more accurate results than the classical methods that are

commonly used.

We also built predictive models for healthcare business segment (HBS) by utilizing the S&P

500 stock data. We identified the most significant financial and economic indicators, along

with the significant interactions, that affect the stock return of the segment by ranking

those. We identified the optimum levels of the financial indicators for which the stock price

is maximized via analytical modeling. Finally, we developed an analytical procedure that

can monitor and predict the Average Weekly Percentage Return (AWPR) of the HBS.

We also developed a data-driven analytical predictive model to predict the subjective well

being (SWB)/happiness score by utilizing the world happiness data. The developed analyt-

ical model predicts the happiness of an individual based on certain socio-economic factors.

After building the model, we ranked the attributable factors, and significant interacting ef-

fects according to the percentage of contribution of the happiness score. Finally, we have

implemented clustering algorithm to categorize individual countries of the world in three

different clusters based on their predicted happiness score. We have compared the happiness

scores for different clusters and have done some exploratory data analysis to understand

which indicators contribute the most to each cluster. Finally, we validated our clustering

mechanism based on three popular machine learning classification algorithms and obtained

excellent accuracy.
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Chapter 1: A Modern Approach of Survival Analysis of Patients with

Pancreatic Cancer

Journal article: “A modern approach of survival analysis of patients with pancreatic

cancer,” by Chakraborty A, Tsokos CP. Am J Cancer Res. 2021 Oct 15;11(10):4725-4745.

PMID: 34765290; PMCID: PMC8569348.Copyright 2021 by Copyright Holder. Used with

permission.

1.1 Introduction

Pancreatic Adenocarcinoma is one of the most fatal human cancers and continues to be

a major unsolved health problem at the start of the 21st century. It has been estimated

that this disease causes 30,000 deaths per year in the USA [89]. It is the fourth lead-

ing cause of cancer death in the USA and leads to an estimated 227,000 deaths per year

worldwide. The incidence and number of deaths caused by pancreatic tumours have been

gradually increasing, even as incidence and mortality of other common cancers have been

declining. Despite developments in detection and management of pancreatic cancer, only

about 4% of patients will live 5 years after diagnosis, [134]. The normal pancreas consists

of digestive enzyme-secreting acinar cells, bicarbonate-secreting ductal cells, centro-acinar

cells that are the geographical transition between acinar and ductal cells, hormone-secreting

endocrine islets and relatively inactive stellate cells. The majority of malignant neoplasms

of the pancreas are adenocarcinomas. Rare pancreatic neoplasms include neuroendocrine

tumours (which can secrete hormones such as insulin or glucagon) and acinar carcinomas

(which can release digestive enzymes into the circulation).Specifically, ductal adenocarci-

noma is the most common malignancy of the pancreas; this tumour (commonly referred to
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as pancreatic cancer) presents a substantial health problem, with an estimated 367,000 new

cases diagnosed worldwide in 2015 and an associated 359,000 deaths in the same year[80][47].

After the detection of pancreatic cancer, doctors usually perform some additional tests to

understand better if cancer has been spread or the locations of spreading areas of the cancer.

Imaging tests, such as a PET scan, help doctors identify the presence of cancerous growths.

With these tests, doctors try to establish cancer’s stage of a given patient with pancreatic

cancer. Staging helps explicate the advancement of cancer. It also assists doctors in deciding

treatment options. Once a diagnosis has been made, the doctor allocates the patient a stage

based on the following test results:

1. Stage I: Tumors exist solely in the pancreas.

2. Stage II: Tumors have spread to adjacent abdominal tissues or lymph nodes.

3. Stage III: The cancer has spread to major blood vessels and lymph nodes.

4. Stage IV: Tumors have spread to other organs, such as the liver, lung, bone, etc.

Although in most of the cases, pancreatic cancer disease remains irremediable, most re-

searches studying this type of cancer, have focused on how to improve the survival times

of patients diagnosed with pancreatic cancer in different stages. The Kaplan-Meier (KM)

method has been widely used for analyzing cancer survivorship data in recent times due

to the simplicity of its usage. It is often used to compare the survival difference of several

groups of patients based on the log-rank test of the null hypothesis that there is no significant

difference among the groups. Our study presents a parametric and non-parametric survival

analysis of the survival times of patients diagnosed with Pancreatic Cancer. We believe that

finding the unique probability distribution that characterizes the probabilistic behavior of

the survival times is important so that we can proceed to obtain the survival function that

is driven by the given data. Such an analysis is more powerful than the non-parametric ap-

proach. Feigl and Zelen,[46] have shown that assumption of exponential distribution works
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well for studying some of the survival of cancer-related studies, [141][140][70]. However, as-

suming such a probability distribution without justification might lead to misleading results.

Thus, it is important to identify the correct probability distribution of the survival times of

patients among any number of groups (for male/female, different age groups,etc.). In the

present study, we identify the probability distribution that fits the survival times the best

and proceed to obtain the survival function of male and female patients in four different

stages. We also compare our results with the commonly used Kaplan-Meier (KM) method.

The structure of the paper will be as follows: In Section 2.1, we provide the data discussion

and perform the non-parametric Wilcoxon test to investigate if there exist any significant

difference between the male and female patients at any individual stages. In section 2.2, we

discuss the stage based descriptive analysis with graphical representation. In section 3, we

discuss in detail the parametric survival analysis of pancreatic cancer patients at different

stages. In section 4, we investigate the significant difference of overall survival times of male

and female patients by log-rank test [97][81] , and discuss in detail about the overall para-

metric survival analysis of patients irrespective of stages. We also describe elaborately the

parameter estimation procedure of GP probability distribution in Section 4.3. In Section 5

we present the KM estimate and compare the median survival times of patients using the

descriptive, parametric, and non-parametric methods. In Section 6, we compare the survival

probability estimates of patients using the Generalized Pareto (GP) probability distribu-

tion and non-parametric KM estimates. Sections 7 and 8 provide results & discussion, and

conclusion, respectively.
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Figure 1.1: Pancreatic Cancer Data Sorted by Gender and Stages

1.2 Methodology

1.2.1 Data Description

The data for our study has been extracted from the Surveillance, Epidemiology and

End Results (SEER) database. The data contains information on patients diagnosed with

pancreatic adenocarcinoma . We are concerned with the survival time (in months) and

cause-specific death (deaths due to pancreatic cancer) for each patient. The survival time

of patients is one of the most crucial factors used in all cancer research. It is necessary to

evaluate the severity of cancer, which helps to decide the prognosis and help identify the

correct treatment methods. We considered a random sample of 10,000 patients diagnosed

with pancreatic cancer including male and female. A schematic diagram of the data used in

this study with additional details is shown in Figure 1.2, below. As the following schematic

diagram illustrates, in our dataset, we have information on survival times regarding 5,100

male and 4,900 female patients diagnosed with pancreatic cancer.
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Before we proceed with performing the parametric analysis of the survival times of pa-

tients, we need to investigate whether there is a difference in the true median survival times

of genders, i.e., male and female patients in different stages of cancer. For this purpose, We

use the two-samples Wilcoxon Rank Sum test using the following hypothesis.

H0: There is no significant difference between the true median survival times of male

(µM) and true median survival times of female (µF ) patients at stage i.i = 1, 2, 3, 4. That

is, µM = µF

Vs.

H1: Differences exist between male and female median survival times at stage i. That is,

µM ̸= µF .

After we analyze the data for male and female patients in each stages, we proceed to

perform the combined analysis for all stages, classified by gender. The following Table 1.1

illustrates the test results along with the p-values in different stages for male and female

pancreatic cancer patients.

Table 1.1: Wilcoxon Test Results for Different Stages, Classified by Gender

Stages P-Values Result

I 0.75 Difference does not Exist

II 0.25 Difference does not Exist

III 0.84 Difference does not Exist

IV 0.001 Difference Exists

As, results of the above Table 1.1 suggests, there does not exist significant difference

between the male and female pancreatic cancer patient survival times in stage I, stage II

, and stage III. However, in stage IV, the difference is significant. In the next section, we
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proceed to identify the parametric probability distributions and survival functions of the

survival times of patients along with some important descriptive statistics.

1.2.2 Descriptive Analysis of Pancreatic Cancer Patients in Different Stages-A Gender

Based Classification

We plotted the histogram and probability density function (pdf) to investigate the distri-

bution of the survival times of patients in different stages, as shown in the following Figures.

We see that the probability distribution of the survival times are right-skewed. The following

Table 1.2, illustrates the different descriptive statistics for male and female patients in four

different stages.

Table 1.2: Descriptive Statistics of Survival Time (in month) of Pancreatic Cancer Patients
Classified by Gender in Different Stages.

Gender Mean Median Std. Dev. Skewness Kurtosis Std. Error

Combined (Stage I) 30.6 20 31.5 1.33 1.14 0.76

Combined (Stage II) 21.44 14 23.50 2.14 5.10 .33

Combined (Stage III) 16.92 8 14.71 3.73 20.01 .37

Male (Stage IV) 6.7 3 12.73 4.78 30.44 .18

Female (Stage IV) 7.50 3.11 13.67 4.63 27.80 .20

We now proceed to identify the most appropriate probability distributions that drives the

survival times of patients in different stages (I , II, III , and IV), classified by gender. We came

to know from last section that there does not exist any significant difference between male

and female survival times in stages I, II, and III. However, we found significant difference in

survival times of male and female patients in stage IV. We have obtained the best fits for each

stages and estimated their individual parameter estimates. Identification of the most suitable
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probability distribution is crucial, since it gives the better survival probability estimates for

both male and female patients in each of the stages that is driven by the specific probability

distribution. Once, we obtain the parameter estimates from the probability distributions

at each of the stages, we can obtain the probability density functions (pdfs), cumulative

distribution functions (cdfs), and parametric survival function (S(t)) driven by the specific

probability distribution for male and female patients individually.

1.2.3 Parametric Analysis of Pancreatic Cancer Survival Time for Different Stages

Johnson (1949) [74] proposed systems of different frequency curves based on transforma-

tions of the following form

z = γ + δf
(x− ζ

λ

)
,

where z is a unit Normal variable, f is a function taking different forms SL, SB, and SU . Our

data in Stage I follows Johnson SB probability distribution with parameters γ (shape pa-

rameter), δ (shape parameter), ζ (location parameter), and λ (scale parameter). In Stage II,

and Stage III, the data follows a generalized extreme value (GEV) probability distribution.

Chakraborty & Tsokos [28] describes in detail about the parameter estimation procedure of

acute myeloid leukemia cancer data modeled by GEV probability distribution using prob-

ability weighted moment (pwm). In Stage IV , the data follows a generalised pareto (GP)

probability distribution. In section 4.3, we discuss in detail about the parameter estimation

procedure of generalized pareto (GP) probability distribution for overall survival times of

the patients. We now proceed to discuss the parameter estimation process of the Johnson SB

distribution in Stage I. SFIEKIERS [119] has given a brief summary about the parameter

estimation procedure of Johnson SB probability distribution using moments of transformed

values of a random Variable. Let T be a random variable denoting the survival times of

patients in Stage I. Then, the p.d.f of T is given by,

f(t) =
δ√
2π

λ

(t− ζ)(λ+ ζ − t)
exp

[
− 1

2

(
γ + δln

( t− ζ

λ+ ζ − t

))2]
,
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where

ζ < t < ζ + λ , −∞ < ζ < ∞ , λ > 0 , −∞ < γ < ∞ , δ > 0.

From the data, the extreme order statistics tmin and tmax are determined. In our case, in

Stage I, tmin = 0, and tmax = 155. Since, ζ , and λ are the location and spread parameters

respectively, ζ̂ = tmin = 0 (since, the minimum value of the survival time t is 0) , and

λ̂ = (tmax − tmin) = (155− 0) = 155 = tmax.

Given the estimated values, ζ̂, and λ̂, we proceed with the following transformation, that is,

the values of ti are transformed to:

fi = ln
( ti − ζ̂

λ̂+ ζ̂ − ti

)
.

The estimates of the other parameters γ̂ , and δ̂ take the following form:

γ̂ = − f̄

Sf

and

δ̂ =
1

Sf

,

where f̄ =
∑

i fi
n

, and Sf =

√∑
i(fi−f̄)2

n
.

The validity of the model assumptions are justified using the goodness of fit tests.

Soukissian [122] fitted a Johnson SB probability distribution to the wind speed data and

used Kolmogorov–Smirnov (K–S), and Anderson–Darling (A–D) tests to to justify good-

ness of fit assumptions. We followed the same approach using Kolmogorov–Smirnov (K–S),

Anderson–Darling (A–D) , and Cramér–von Mises (CVM) goodness of fit tests.

The following Table 1.3, provides the goodness of fit tests results along with the p-values

for all probability distributions in the four different stages.
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Table 1.3: Goodness of Test for Four Stages.

Stages Gender Prob. Distribution GOF Tests p-Values

I Combined Johnson SB A-D .11

K-S .13

II Combined GEV A-D .27

K-S .21

III Combined GEV A-D .09

K-S .1

IV Male GPD CVM .22

K-S .18

IV Fenale GPD CVM .19

K-S .17

Table 1.4: Probability Distributions and Parameter Estimates of Survival Time (in month)
of Pancreatic Cancer Patients for Different Stages.

Stages Gender Probability Distributions Parameter Estimates

I Combined 4-P Johnson SB γ̂ = 1.2, δ̂ = 0.62, λ̂ = 155, ζ̂ = 0

II Combined Gen. Extreme Value (GEV) µ̂ = 10.18, σ̂ = 10.83, k̂ = 0.32

III Combined Gen. Extreme Value (GEV) µ̂ = 5.54, σ̂ = 6.07, k̂ = 0.37

IV Male 3-P Gen. Pareto (GP) µ̂ = 0, σ̂ = 4.12, k̂ = 0.25

IV Female 3-P Gen. Pareto (GP) µ̂ = 0, σ̂ = 4.63, k̂ = 0.41

As the p-values shown in Table 1.3 of the given data, we fail to reject the fact, that the

observations (survival times) follow the specified probability distributions in each of the four

stages. The following Table 1.4, provides the specific probability distributions in each stages

and their individual parameter estimates (approximate), classified by gender.
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The following Table 1.5, illustrates the analytical forms of the probability density func-

tions of male and female patients for the different stages, with the parametric estimates.

Table 1.5: Probability Distributions with their Parameter Estimates of the Survival Times
(in months) of Pancreatic Cancer Patients Classified by Gender for Different Stages.

Gender Analytical Forms

Combined (I) f(t) = .62√
2π

155
t(155−t)

exp
[
− 1

2

(
1.2 + .62ln

(
t

155−t

))2]
Combined (II) f(t) = 1

10.83
exp

[
−
(
1− .32

(
t−10.18
10.83

))3.125](
1− .32

(
t−10.18
10.83

))2.125
Combined (III) f(t) = 1

6.07
exp

[
−
(
1− .32

(
t−5.54
6.07

))2.7](
1− .32

(
t−5.54
6.07

))1.7
Male (IV) f(t) = 1

4.12

[
1− .25

(
t

4.12

)]3
Female (IV) f(t) = 1

4.63

[
1− .34

(
t

4.63

)]1.44

The following Figure illustrates the probability density function (pdf) and cumulative

distribution function (cdf) of the patients in stage I.

Figure 1.2: Histogram, cdf and Probability Density of Survival Times of Pancreatic Cancer
Patients in Stage I

The following Figure 1.3 shows the histogram, pdf and cdf plots of stage II pancreatic

cancer patients.
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Figure 1.3: Histogram, cdf and Probability Density of Survival Times of Pancreatic Cancer
Patients in Stage II

The following Figure 1.4 shows the histogram, pdf and cdf plots of stage III pancreatic

cancer patients.

Figure 1.4: Histogram, cdf and Probability Density of Survival Times of Pancreatic Cancer
Patients in Stage III

The following two figures (Figure 1.5 and Figure 1.6) describe the histogram, pdf, and

cdf of male and female survival time respectively in stage IV.
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Figure 1.5: Histogram, cdf and Probability Density of Survival Times of Male Pancreatic
Cancer Patients in Stage IV

Figure 1.6: Histogram, cdf and Probability Density of Survival Times of Female Pancreatic
Cancer Patients in Stage IV

1.3 Parametric Survival Analysis for Different Stages

Once we have the analytical structures of the survival times of patients in different stages,

driven by different parametric probability distributions, we can express the survival function

S(t) analytically as a function of the cumulative distribution function (cdf). Now we proceed

to express the analytical forms of the survival functions for the four different stages. The
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estimate of the parametric survival function of patients diagnosed with pancreatic cancer in

Stage I is given by

Figure 1.7: Parametric Survival Plot of Pancreatic Cancer Patients in Stage I

ŜI(t; ζ̂ , λ̂, γ̂, δ̂) = 1− F̂I(t; ζ̂ , λ̂, γ̂, δ̂)

= 1− Φ
[
γ̂ + δ̂ln

( t− ζ̂

λ̂− t+ ζ̂

)]
= 1− Φ

[
1.2 + .62ln

( t

155− t

)]
, t ≥ 0.

(1.1)

where Φ(·) is the cdf of a standard normal probability distribution and F̂I(t; ζ̂ , λ̂, γ̂, δ̂) is

the estimated cdf of Johnson SB probability distribution. The survival function Ŝ(·; ·) can

be used to estimate the probability that a patient diagnosed with pancreatic cancer would

survive beyond time t, which is denoted by P (T ≥ t). For example, we can compute the

probability that a male patient diagnosed with pancreatic cancer would survive beyond 30
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months. For example, for t = 40 in equation (1.1), we estimate the probability is 0.29

approximately. Thus, we can infer that a randomly chosen patient classified in Stage I with

pancreatic cancer has a 29% chance of survival beyond 40 months, as shown by Figure 1.7.

Similarly, the estimate of parametric survival function of patients, driven by GEV prob-

ability distribution function diagnosed with pancreatic cancer in Stage II is given by

ŜII(t; µ̂, σ̂, k̂) = 1− F̂II(t; µ̂, σ̂, k̂)

= 1− exp
[
−
(
1− k

(t− µ̂

σ̂

)) 1
k
]

= 1− exp
[
−
(
1− .32

(t− 10.18

10.83

)) 1
.32
]
, t ≥ 10.18.

(1.2)

As the following survival plot for Stage II patients illustrates, patients in stage II have

comparatively lower survival probability than stage I patients, which is quite natural. With

reference to the last example, we can predict the survival probability as 13% for a Stage II

patient, surviving beyond 40 months.

Figure 1.8: Parametric Survival Plot of Pancreatic Cancer Patients in Stage II
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Now we proceed to express the GEV in analytical form for the stage III patients in a

similar manner. The survival function at stage III can be given by,

ŜIII(t; µ̂, σ̂, k̂) = 1− F̂III(t; µ̂, σ̂, k̂)

= 1− exp
[
−
(
1− k

(t− µ̂

σ̂

)) 1
k
]

= 1− exp
[
−
(
1− .37

(t− 5.54

6.07

)) 1
.37
]
, t ≥ 5.54.

(1.3)

From the following Figure 1.9, we see that the survival probability is decreasing and it is

approximately 5% for a randomly chosen patient who will survive beyond t = 40 months

after the patient is diagnosed with pancreatic cancer, Stage III.

Figure 1.9: Parametric Survival Plot of Pancreatic Cancer Patients in Stage III

Results from Table 1.1, suggested that there is a significant difference between the true

mean survival times of stage IV patients, classified by gender. Thus, we now proceed to

express the analytical forms of the survival times for male and female patients separately

at Stage IV. The parametric survival function, driven by GPD, at stage IV male patients is
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expressed as,

ŜIV (t; µ̂, σ̂, k̂) = 1− F̂IV (t; µ̂, σ̂, k̂)

= 1−
[
1−

([
1 + k̂

(t− µ̂

σ̂

)]− 1

k̂
)]

=
([

1 + .25
( t

4.12

)]− 1
.25
)

, t ≥ 0.

(1.4)

Figure 1.10: Parametric Survival Plot of Male Pancreatic Cancer Patients in Stage IV

Similarly, The parametric survival function, driven by GPD, at stage IV female patients

is given by,

ŜIV (t; µ̂, σ̂, k̂) = 1− F̂IV (t; µ̂, σ̂, k̂)

= 1−
[
1−

([
1 + k̂

(t− µ̂

σ̂

)]− 1

k̂
)]

=
([

1 + .41
( t

4.63

)]− 1
.41
)

, t ≥ 0.

(1.5)
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As, the following two figures indicates, the survival probabilities are extremely low (2%

for male patients and 3% for female patients) for surviving beyond t = 40 months after the

diagnosis at Stage IV.

Figure 1.11: Parametric Survival Plot of Female Pancreatic Cancer Patients in Stage IV

In the next section, we will discuss in detail the combined analysis of male and female

patients irrespective of stages.

1.4 Parametric Analysis of The Survival Times of Patients with Pancreatic

Cancer-A Combined Analysis

So far, we discussed about the parametric analytical forms of the survival times of patients

in different stages. We also computed the survival functions of patients in different stages.

We found that there is no significant different in the survival times of male and female

patients except stage IV. We now proceed to do the same for the combined data, irrespective

of stage. At first, we will check if there exists significant difference between the true mean
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survival times of male and female pancreatic cancer patients. For this purpose, we use the log

rank test and found that there is insufficient sample evidence to reject the hypothesis that

the distribution of mean survival times between the Male and Female patients diagnosed

with pancreatic cancer is the same. The following Figure 1.12 illustrates the behavior of

overall survival curves of male and female patients. The male and female survival curves are

highlighted in blue and yellow, respectively.

Figure 1.12: Log-rank Test for Difference in Survival Times of Gender.

As the above Figure 1.12 illustrates, the survival curve of males (skyblue) and the sur-

vival curve of females (red), are almost identical which implies that they exhibit similar

characteristics.

1.4.1 Descriptive Statistics of the Survival Times of Pancreatic Cancer Patients

In this section, we proceed to analyze the combined survival data descriptively. We

plotted the histogram and probability density function (pdf) to investigate the probability

distribution of the survival times of pancreatic cancer patients. We can see that the probabil-
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ity distribution of the overall survival time is right-skewed. Table 1.6 displays the descriptive

statistics of the overall survival times for pancreatic cancer patients. We see that the mean

(average) survival times patients diagnosed with pancreatic cancer is 18 months. It implies

that a randomly chosen patient diagnosed with pancreatic cancer is expected to survive for

18 months on an average. Also, the median survival time is nine months, which implies

that the probability/chance of survival of a male or female patient beyond nine months, is

approximately 50%. A negative (less than zero) skewed value implies that data distribution

is left or negatively skewed, and a positive skewed value suggests that data is right or pos-

itive skewed. Thus, the positive skewed value of 3.07, as shown in Table 1.6, for patients

diagnosed with pancreatic cancer, is further evidence to support the right-skewed behavior

of the data, as shown in Figure 14 above. Kurtosis supports the assessment of the extreme

values of the data, and its positive value illustrates a leptokurtic behavior of the distribution.

In contrast, a negative value shows a platykurtic behavior of the data distribution. Thus,

the kurtosis value of 12.67 in Table 1.6 attests to the leptokurtic behavior of the survival

data.

Figure 1.13: Histogram and Probability Density of Survival Times of Combined Pancreatic
Cancer Patients
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Table 1.6: Descriptive Statistics of Survival Time (in month) of Overall Pancreatic Cancer
Patients Classified.

Descriptive Statistics Measures

Mean 10.87

Median 6

Std. Dev. 14.63

Skewness 3.07

Kurtosis 12.67

Std. Error .24

Table 1.6, above illustrates the different descriptive statistics for survival times of all

patients combined, diagnosed with pancreatic cancer.

1.4.2 Three Parameter Generalized Pareto (GP) Probability Estimation of The Survival

Times of Patients with Pancreatic Cancer

We perform a parametric analysis of the survival times of patients diagnosed with pan-

creatic cancer to identify the underlying probability distribution, which characterizes the

probabilistic behavior of the survival times of patients (both genders). In the attempt to

obtain the best-fitted probability distribution, a number of classical distributions were tested

to fit the data. We used the famous Anderson-Darling test [3] and Cramér–von Mises test

[33] identify the best probability distribution function that characterizes the probabilistic

behavior of the survival times patients. Also, we estimate the expected survival times and

median survival times that is driven by the best fitted probability distribution. The best-

fitted probability distribution that characterizes the probabilistic behavior of the survival

times of the male and female patients accurately is the three parameter (3-P) Generalized

Pareto (GP) probability distribution. Table 1.7 below shows the goodness of fit (GOF)

results of the 3-P GPD distribution.
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Table 1.7: Goodness-of-fit Test of the GPD of the Survival Times of Male and Female.

Statistical Tests P-Values Male P-Values Female

Kolmogorov-Smirnov 0.27 .38

Cramér–von Mises 0.22 .18

The above results show that we fail to reject the null hypothesis that the subject data

(survival times for males and females) follow a GP probability distribution. In this section, we

define the probability density function (pdf) of the Generalized Pareto distribution (GPD)

and the statistical approach to obtain approximate estimates of its parameters. In the

domain of probability theory and statistics, the GPD is a family of continuous probability

distributions developed based on the extreme value theory,[38]. The GPD is a generalization

of the Pareto distribution (PD). The PD was studied extensively by Arnold (1983), and the

problem of estimation in the PD was considered by Arnold and Press (1989) [4]. It has

been used broadly by several researchers to model data arising from several fields. Hosking

and Wallis [66] used the GPD to model the annual maximum flood of the River Nidd at

Hunsingore, England. Grimshaw [58] used it to model tensile strength data from a random

sample of nylon carpet fibers. Other estimation procedures and uses of the GPD in extreme

value analysis using numerical optimization have been illustrated by Castillo and Daoudi [39].

Let T be a random variable following GPD with location parameter µ , scale parameter σ > 0

and shape parameter k. That is, T ∼ GPD(µ, σ, k) with the domain µ ≤ x ≤ µ− σ
k
, when

k < 0 and µ ≤ t < ∞, when k ≥ 0. Then, the probability density function (pdf) of T is

given as follows:

fGPD(t;µ, σ, k) =


1
σ

([
1 + k

(
t−µ
σ

)]− 1
k
−1)

, k ̸= 0

1
σ
exp

(
− (t−µ)

σ

)
, k = 0

(1.6)
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The corresponding cumulative distribution function (cdf) is given as follows:

FGPD(t;µ, σ, k) =


1−

([
1 + k

(
t−µ
σ

)]− 1
k
)

, k ̸= 0

1− exp
(
− (t−µ)

σ

)
, k = 0

(1.7)

There are several methods for estimating the parameters µ, σ, and k of the GP distribution.

Some of these methods include elemental percentile method (EPM) proposed by Castillo

and Hadi [23]. Grimshaw [58] proposed an algorithm for computing the maximum likelihood

estimation (MLE) of the parameters of the GPD. Hosking & Wallis [66] derived a parameter

and quantile estimation mechanism based on Probability-weighted moments (PWM). Zhang

[143] proposed an improved maximum likelihood estimation using the empirical Bayesian

method to overcome the non-existence problem of the PWM estimator. Castillo and Hadi

[24] proposed a more efficient optimization algorithm for estimators of the GPD parameters

where the proposed estimators are defined for all possible values of the parameters. The per-

formance of the estimators were found to be better than the method of moments (MOM) and

Probability-Weighted Moments (PWM) estimates. Pham, Tsokos, & Choi [105] proposed a

GP parameter estimation method for censored data and validated their results using sen-

sitivity and specificity test. Singh & Gao [120] developed a parameter estimation method

using the principle of maximum entropy (POME) for 3-P GPD. Since, we have enough data

to analyze, we can choose any well known method for our parameter estimation purpose.

In the next subsection, we discuss briefly about the parameter estimation procedure of 3-P

GPD by pwm method.

1.4.3 Parameter Estimation of 3-P GPD Using the Method of Probability-Weighted Mo-

ments (PWM)

The probability-weighted moments (PWM) of a random variable T with cumulative dis-

tribution function F (t) = P (T ≤ t) is given by,
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Mp,r,s = E[T p{F (t)}r{1− F (t)}s] , (1.8)

where p, r, and s are real numbers. Probability-weighted moments can be expressed as a

function of the the inverse distribution function F−1(t) = t(F ) in closed form by,

Mp,r,s =

∫ 1

0

{t(F )}pF r{1− F}s] . (1.9)

The two special cases of Mp,r,s which are commonly used are

αs = M1,0,s = E[T{1− F (t)}s] , (s = 0, 1, 2, ...)

and

βr = M1,r,0 = E[T{F (t)}r] , (r = 0, 1, 2, ...) ,

(1.10)

where T inside the E[·] is the inverse distribution of T , denoted by t(F ). To estimate

the parameters of GPD , we use αs = M1,0,s = E[T{1 − F (t)}s] according to the approach

used by Singh & Gao [120].

From (1.7) we can solve for T to obtain the inverse cdf, t(F ). The inverse distribution

function is given by,

t(F ) =


µ+ σ

k
{1− (1− F k)} if k ̸= 0

µ− σlog(1− F ) if k = 0 .

(1.11)

The analytical form of αs for the 3-P GPD is given as follows. Using expressions (1.10)

and (1.11). From (1.10), we have

αs = M1,0,s

=

∫ 1

0

[
µ+

σ

k
{1− (1− F k)}

]
[1− F s]dF

=
1

s+ 1

(
µ+

σ

k

)
− σ

k

( 1

k + s+ 1

)
, (s = 0, 1, 2, ...). (1.12)

23



Thus, for k ̸= 0, the probability-weighted moments (PWM) of the 3-P GP distribution is

given by (12). In equation (1.12) , substituting s = 0, r = 1, and r = 2 we can obtain explicit

expressions of α0, α1, and α2 in terms of µ, σ and k. That is,

α0 =
(
µ+

σ

k

)
− σ

k

( 1

k + 1

)
, (1.13)

α1 =
1

2

(
µ+

σ

k

)
− σ

k

( 1

k + 2

)
, (1.14)

and

α2 =
1

3

(
µ+

σ

k

)
− σ

k

( 1

k + 3

)
. (1.15)

The PWM estimates of the parameters (µ̂, σ̂, k̂) can be obtained by solving the equations

(1.13), (1.14) and (1.15) for µ, σ, and k. After solving the above three equations, we obtain

the explicit expressions of the PWM estimates [120] as follow:

k̂ =
α0 − 8α1 − 9α2

−α0 + 4α1 − 3α2

. (1.16)

σ̂ =
(α0 − 2α1)(α0 − 3α2)(−4α1 + 6α2)

(−α0 + 4α1 − 3α2)2
. (1.17)

and

µ̂ =
2α0α1 − 6α0α2 + 6α1α2

−α0 + 4α1 − 3α2

. (1.18)

Table 1.8 below shows the approximate parameter estimates of survival times driven by 3-P

GP probability distribution.
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Table 1.8: Parameter Estimates of 3-P GP Probability Distribution of the Survival Times
of Pancreatic Cancer Patients.

Estimates Measures

Location (µ̂) .65

Scale (σ̂) 8.9

Shape (k̂) 0.22

Now substituting the parameter estimates of µ, σ, k in (1.6) to obtain the analytical form of

the probability density function (pdf) of patients’ survival times. The analytical form of the

GP probability density function (pdf) for combined pancreatic cancer survival time is given

by:

fCombined(t) =
1

8.9

[
1 + .22

(
t− .22

8.9

)]−5.54

, t ≥ .22. (1.19)

The above probability density function characterize the probabilistic behavior of the overall

survival times of male and female patients with pancreatic cancer.

We now proceed to calculate the expected survival times E(T ) of patients driven by GP

probability distribution. Using estimates given in Table 1.8, we can find the expectations

and median survival times for the patients that follow GPD(.65, 8.9, 0.22) distribution.

The expected value of a random variable T following GPD(µ, σ, k) is given by

E(T ) = µ̂+
σ̂

1− k̂
, k̂ < 1. (1.20)

Using equation (1.20), the expected survival time for pancreatic cancer patients following

GPD(.65, 8.9, 0.22) is
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E(T ) = .65 +
8.9

1− .22
= 12.06 months.

The median of the survival time T of GPD(µ, σ, k) is given by,

MedGPD(t;µ, σ, k) = µ̂+
σ̂(2k̂ − 1)

k̂
(1.21)

From equation (1.21), the overall median survival times of male and female pancreatic pa-

tients together is given by,

Med(T ) = .65 +
8.9(2.22 − 1)

.22
= 7.31 months.

Figure 1.14: cdf Plot for the Survival Times of overall Pancreatic Cancer Patients

Once we have the analytical forms of the pdf , we can obtain the cumulative distribution

functions (cdf) of the the random variable T . The analytical form of the GPD cdf is given
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by:

FCombined(t) = 1−
[
1 + .22

(
t− .65

8.9

)−4.54]
, t ≥ .65. (1.22)

The Figure 1.14 illustrates the cdf plot of the overall survival times.

As the above figure illustrates, the cdf plot is very helpful to estimate the probabilities

that a certain male or female patient diagnosed with pancreatic cancer will survive up to a

specific point of time. For example, from Figure 1.14 above, the probability that a randomly

diagnosed patient will survive up to time t = 30 months is approximately 91.5%. In the

next section, we will present the parametric survival analysis of the overall survival times of

pancreatic cancer patients, which is one of the most important aspects of this study.

1.4.4 Parametric Survival Analysis

Estimation of a parametric survival function is a process to evaluate the survival proba-

bilities of male or female pancreatic cancer patients as a function of the survival time. We

have determined the cdf of the survival times for patients diagnosed with pancreatic cancer

patients in Equation (1.22). Now, we can proceed to estimate the survival function S(t).

Thus, the parametric survival function of patients, irrespective of stages, diagnosed with

pancreatic cancer is given by,

Ŝ(t; µ̂, σ̂, k̂) = 1− F̂ (t; µ̂, σ̂, k̂)

=

[
1 + .22

(
t− .65

8.9

)−4.54]
, t ≥ .65.

(1.23)

The survival function Ŝ(·; ·) can be used to estimate the probability that a randomly

selected patient diagnosed with pancreatic cancer would survive beyond time t, which is

denoted by P (T ≥ t). For example, we can compute the probability that a patient diagnosed

with pancreatic cancer would survive beyond 30 months. That is, for t = 30 in equation

(1.23), we estimate the probability as 0.09. Thus, we can infer that a randomly chosen
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pancreatic cancer patient has a 9% chance of survival beyond 30 months. Figure 1.15 below,

describes the parametric survival plot for pancreatic cancer patients, generated using GP

probability distribution.

Figure 1.15: Parametric Survival Plot of Overall Pancreatic Cancer Patients

In the next section, we discuss briefly the non-parametric Kaplan-Meier Survival function

for pancreatic cancer .

1.5 Kaplan-Meier Estimation of Survival Probability of the Survival Times of

Patients with Pancreatic Cancer

The most frequently used parametric estimation methods for distributions of lifetimes

are probably the fitting of a normal probability distribution to the observations or their

logarithms by calculating the mean and variance and fitting an exponential distribution by

estimating the mean alone. Such assumptions about the form of the distribution are naturally

advantageous insofar as they are correct; the estimates are simple and relatively efficient,

and a complete distribution is obtained even though the observations may be restricted in

range. However, non-parametric estimates have the important functions of suggesting or
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confirming such assumptions and of supplying the estimate itself in case suitable parametric

assumptions are not known. The Kaplan–Meier (KM) estimator [15], also known as the

product-limit estimator, is a non-parametric statistic used to estimate the survival function

from data related to survival time. In health science, it is generally used to measure the

fraction of patients living for a certain amount of time after treatment. It was developed by

Edward L. Kaplan and Paul Meier (1958). It is defined as the product over the failure times

of the conditional probabilities of surviving to the next failure time. Formally, it is given by,

Ŝ(t) =
∏
ti≤t

(1− q̂i) =
∏
ti≤t

(
1− di

ni

)
, (1.24)

where ni is the number of patients at risk at time ti, and di is the number of individual

patients who fail(die) at that time.

The following Figure 1.16, demonstrates the overall non-parametric survival curve for

patients diagnosed with pancreatic cancer.

Figure 1.16: Overall KM Survival Plot for Pancreatic Cancer Patients
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1.5.1 Median Survival Using KM Estimate

Median survival time is a statistic that indicates how long a group of patients will survive

with an illness in general or after a specific treatment has been implemented. It is usually

expressed in months or years. Median survival time is when half the patients who are

susceptible to a certain disease are anticipated to be alive. It signifies that the probability

of surviving beyond that specific time is 50%. It gives an approximate indication of survival

and the prognosis of a group of patients with cancer. Median survival is frequently reported

in almost every cancer treatment studies. Generally, the median survival time is defined as,

t̂med = inf{t : Ŝ(t) ≤ 0.5} (see [123] for details). It means that it is the smallest t such

that the estimated survival function Ŝ(t) is less than or equal to 0.5. The median survival

times, computed using non-parametric KM estimator, for the pancreatic cancer patients are

given as six which is evident from above Figure 17. It is very interesting to note that the

median survival time we obtained by the descriptive method (Table 5) is exactly same as

what we obtained from non-parametric method. However, the median survival times we

obtained using the parametric method (implementing the GPD) is significantly higher than

the descriptive and non-parametric methods. The following Table 1.9 compares the median

survival times for all patients diagnosed with pancreatic cancer, computed using the three

methods.

Table 1.9: Table of Comparison of the Median Survival Times for All Pancreatic Cancer
Patients.

Methods Median Survival Time

Descriptive 6

Parametric 7.31

Non-Parametric 6
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1.6 Comparison of GP Probability Distribution with the Kaplan-Meier (KM)

Estimation of the Survival Function

In the parametric analysis (section 4.2), we found that patients’ survival times (both

male and female) with pancreatic cancer follows a Generalized Pareto (GP) distribution.

In section 5, we performed a non-parametric analysis using the Kaplan-Meier to estimate a

randomly selected patients’ survival probability.

Table 1.10: Table of Comparison of Estimated Survival Probabilities of Pancreatic Cancer
Patients Computed Using Parametric and Non-Parametric Procedures.

t ŜP (t) ŜKM(t)

0 .96 .88

1 .87 .77

2 .81 .69

3 .77 .62

4 .7 .57

5 .63 .52

6 .57 .47

7 .51 .44

8 .47 .4

9 .43 .36

10 .39 .33

We now compare the survival probability estimates obtained from GP probability dis-

tribution with the non-parametric Kaplan-Meier survival estimates of the survival times of

the pancreatic cancer patients. The importance of the survival function of the two methods

is to estimate the survival probability of a patient diagnosed with pancreatic cancer beyond

a given time. The survival probabilities corresponding to a specific time (in months) are

shown in Table 1.10 for comparison purposes. We observe that the probability estimates
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computed by the GP survival function are significantly higher than that of Kaplan-Meier

probability estimates. Since parametric methods are more powerful, robust, and efficient

than non-parametric methods, we must use the parametric estimates of the probabilities as

the most accurate estimates.

In the above Table 1.10, ŜP (t) is the parametric survival probability estimates for pan-

creatic cancer patients using GP probability distribution. ŜKM(t) is the non-parametric

survival probability estimates for pancreatic cancer patients using the non-parametric KM

estimate.

1.7 Results and Discussions

Given the risk posed by pancreatic cancer in the past several years, it is imperative

to investigate the prognosis and enhance the therapeutic/treatment strategy of pancreatic

cancer. The primary treatment for most types of pancreatic cancer is chemotherapy, some-

times, along with a targeted therapy drug. A stem cell transplant might follow this. Surgery

and radiation therapy do not fall under crucial treatments for pancreatic cancer, but they

might be used in exceptional circumstances. Also, the treatment approach for children with

pancreatic cancer can be slightly different from that used for adults. Different research ap-

proaches and methodologies have been developed to treat pancreatic cancer patients to boost

their survival times. Chakraborty & Tsokos [28] performed a data-driven research on Acute

Myeloid Leukemia (AML) by doing some parametric and non-parametric analysis to improve

the survival probabilities of patients of different gender groups. In our present study,

• We analyzed a total of 10,000 patient information and have shown that there was no

significant difference between the overall survival times of male and female pancreatic

cancer patients.

• We identified a well-defined probability distribution that characterizes the survival

times of a total of 10,000 patient (5,100 male and 4,900 female) diagnosed with pan-
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creatic cancer and used the information to estimate the parametric survival function

driven by generalized Pareto (GP) probability distribution.

• We have tested if there is any significant difference between the mean survival times

of male and female patients in each of the four stages.

• We have identified the probability distributions of male and female survival times in

four different cancer stages, and derived their analytical forms. Also we derived the

parametric survival functions in each stages, driven by different parametric probability

distributions.

• We compared the median survival times of patients using descriptive, parametric, and

non-parametric methods and obtained very consistent results.

• We calculated the overall survival probabilities utilizing the frequently used non-

parametric Kaplan-Meier (KM) cancer survivorship analysis method and compared

those estimates with the parametric probability estimates obtained from GP probabil-

ity distribution.

In the first part of our analysis, we tried to investigate if there exits any statistically sig-

nificant difference between the survival times of male and female pancreatic cancer patients

in each stages using Wilcoxon test. We found that there exists significant difference only in

stage IV. Then, we proceed to find the most appropriate probability distributions in each

stages that best characterize the survival time data and estimated the parameters of the

distributions. We then compute the analytical structures of the survival functions in each

stages driven by several probability distribution. This is one of the most important aspects

of our study, as, the survival function predicts the probability of surviving a randomly se-

lected patient beyond a particular time at a specific stage after diagnosed by pancreatic

cancer, which is crucial. We believe that finding the most accurate probability distribution

that represents the probabilistic behavior of the survival times for a given cancer patient can
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lead to estimating the survival probability with much more accuracy and efficiency. After

we analyzed the data from individual stages we proceed to analyze the combined survival

data irrespective of stages. After we analyzed the survival data for individual stages, we

wanted to verify if there is any statistical significant difference between the overall male and

female survival time. For that purpose we used the the Log-Rank test. We found that there

does not exist any statistical significant difference between the survival times of both males

and females diagnosed with pancreatic cancer. So, we proceed to perform the analysis of

the overall patient survival times, irrespective of cancer stages. We found that a GP prob-

ability distribution best characterizes the overall survival time’s probabilistic behavior. We

found that the GP distribution most often estimates higher survival probabilities compared

to the KM survival function, given by Table 1.10. We know that KM estimates are very

frequently and commonly used tool to analyze the cancer survivorship data, but they are

not the best estimates. Statistically, the parametric techniques are considered to be more

robust and efficient than the non-parametric counterpart. Therefore, our finding of the para-

metric GP probability distribution gives better results in estimating the survival probability

of the patients diagnosed with pancreatic cancer than the Kaplan-Meier. By obtaining the

best parametric probability distribution that characterizes the survival times, we can find

the survival function and estimate the survival rate and compare the results of two or more

entities with a high degree of accuracy.

1.8 Conclusion

We have determined the survival probability of patients diagnosed with pancreatic cancer

using different statistical methods; the parametric Generalized Pareto (GP) distribution ,

and the non-parametric Kaplan-Meier (KM) estimation. We found the parametric method

to give often higher estimates of the survival probabilities than the non-parametric KM

method. The parametric survival analysis’s difficulty is the fundamental inherent assump-

tion that the survival times under study follow a specific probability distribution. But if
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we can overcome such restriction, we can obtain a more robust and efficient result from

the parametric analysis, which has greater statistical power. We can also evaluate the haz-

ard function, which determines the rate at which patients die with pancreatic cancer, after

finding the most appropriate parametric distribution. Depending on the two different meth-

ods utilized for estimating the probability of survival of patients diagnosed with pancreatic

cancer, we impart the following important recommendations.

• Given the information regarding male and female cancer patients’ survival times, it

is customary to investigate first if there exists any statistically significant difference

between the male and female patients’ true median survival times. If the difference

is significant, we must perform a separate analysis for each of the two groups. In the

present study, we found that there is no significant difference between overall survival

times of male and female patients diagnosed with pancreatic cancer.

• After identifying the appropriate probability distributions of male and female cancer

patients, if we have further data available regarding the different stages, it is essential

to identify the analytical forms of the probability distributions that drive the survival

data in each of the four individual stages.

• If we have information available, then the stage by stage analysis most appropriate

reflects the survival probability of patients in individual stages.

• If the only information provided about the patient is the survival time, then estimating

the survival probability using the parametric technique will yield more accurate, robust,

and efficient results than the commonly used non-parametric Kaplan-Meier survival

estimate.

• However, if there is no unique or well-defined parametric probability distribution are

found, we propose using the kernel density estimate or Kaplan-Meier (KM) estimate

of the survival probabilities.
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Although the use of non-parametric Kaplan-Meier survival analysis may, in certain circum-

stances, result in a similar or higher probability estimate of the survival rate (if we include

the censored observations in our study), the parametric analysis remains more powerful, ro-

bust, and efficient when there is no information about the censored individuals. Hence, the

parametric analysis must be considered the first stage of data analysis of any given cancer

survivorship data. This study provides a more effective and plausible method for estimat-

ing the survival probability and analysis of cancer survivorship data to further enhance the

therapeutic/treatment process of pancreatic cancer.
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Chapter 2: Survival Analysis for Pancreatic Cancer Patients using

Cox-Proportional Hazard (CPH) Model

Journal article: “Survival Analysis for Pancreatic Cancer Patients using Cox-Proportional

Hazard (CPH) Model,” by Chakraborty, A., & Tsokos, C, 2021, Global Journal Of Medi-

cal Research. doi:10.34257/GJMRFVOL21IS3PG29 CC-BY-NC 2021 by Copyright Holder.

Used with Permission.

2.1 Introduction

The incidence and number of deaths caused by pancreatic tumors have been gradually

increasing, even as incidence and mortality of other common cancers have been declining.

Despite developments in detection and management of pancreatic cancer, only about 4% of

patients will live five years after diagnosis, [134]. The normal pancreas consists of digestive

enzyme-secreting acinar cells, bicarbonate-secreting ductal cells, centroacinar cells that are

the geographical transition between acinar and ductal cells, hormone-secreting endocrine

islets and relatively inactive stellate cells. The majority of malignant neoplasms of the

pancreas are adenocarcinomas. Rare pancreatic neoplasms include neuroendocrine tumors

(which can secrete hormones such as insulin or glucagon) and acinar carcinomas (which can

release digestive enzymes into the circulation). Particularly, ductal adenocarcinoma is the

most frequent kind of malignancy of the pancreas; this tumor (commonly referred to as

pancreatic cancer) presents a substantial health problem, with an estimated 367,000 new

cases diagnosed worldwide in 2015 and an associated 359,000 deaths in the same year[80].

After the detection of pancreatic cancer, doctors usually perform some additional tests to

understand better if cancer has been spread or the spreading area of cancer. Different imaging
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tests, such as a PET scan, can help doctors identify the presence of cancerous growths. With

these tests, doctors try to establish cancer’s stage. Staging helps explicate how advanced the

cancer is. It also assists doctors in deciding the treatment options. The following are the

description of the stages used in our dataset according to the definition of the Surveillance,

Epidemiology, and End Results (SEER) database.

1. Localized: There is no sign that the cancer has spread outside of the pancreas.

2. Regional: The cancer has spread from the pancreas to nearby structures or lymph

nodes.

3. Distant: The cancer has spread to distant parts of the body such as the lungs, liver

or bones.

Although, in most cases, pancreatic cancer remains incurable, researchers have focused on

how to improve the survival times of patients diagnosed with pancreatic cancer. Cox pro-

portional hazard model/ Cox model [37] has been used extensively in the literature of cancer

research to address the hazard of an individual patient with respect to specific risk fac-

tors. It is also useful to assess the association between different treatments and the survival

time of patients. Perera and Tsokos [102] developed a statistical model with Non-Linear

Effects and Non-Proportional Hazards for Breast Cancer Survival Analysis. In their study,

the authors have identified the effects of age and breast cancer tumor size at diagnosis on

the hazard function, which have a non-linear effect. Also, they have addressed the different

assumptions of the proportional hazard model. Asano, Hirakawa, and Hamada [5] used an

imputation-based receiver operating characteristic curve (AUC) to evaluate the predictive

accuracy of the cure rate from the PH cure model. They also illustrated the estimation of

the imputation-based AUCs using breast cancer data. Yong & Tsokos [140] have evaluated

the effectiveness of widely used Kaplan-Meier (KM) model, non-parametric Kernel density

(KD) models with the Cox PH model, using both Monte Carlo simulations on the breast

cancer data. Du, Li et al. (2018) [45] compared a flexible parametric survival model (FPSM)
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and Cox model using Markov transition probabilities from a cohort study data investigating

ischemic stroke outcomes in Western China. The FPSM produced hazard ratio and baseline

cumulative hazard estimates similar to those obtained using the Cox proportional hazards

model. Mamudu & Tsokos developed a semi-parametric Cox model for Multiple Myeloma

Cancer (MMC) patients and addressed the validity of the assumptions of the model.

In our study, we used the semi-parametric Cox-PH survival analysis of the survival times

to estimate the survival rate of patients diagnosed with pancreatic cancer. We utilized the

Cox-PH model to analyze the proportion of survival time, taking into account the fifteen risk

factors that are identified in section 2.1. We assessed the relationship between the propor-

tion of survival time as a function of the attributable risk factors and two-way interactions

based on the Cox proportional hazard (PH) model. The significant attributable risk factors

identified were meticulously investigated and selected based on the step-wise model selection

method, with the final model representing the model with the least AIC. The final Cox-PH

model was validated to satisfy all the main assumptions of the Cox-PH model.

2.2 Methodology

2.2.1 Data Description

The data for our study has been obtained from The Prostate, Lung, Colorectal, and Ovar-

ian (PLCO) Cancer Screening Trial system of the National Cancer Institute (NIH) database.

The data contains information on patients diagnosed with pancreatic adenocarcinoma. We

are concerned with the survival time (in days) and cause-specific death (deaths due to pan-

creatic cancer) for each patient. The survival time of patients is one of the most important

factors used in all cancer research. It is important to evaluate the severity of cancer, which

helps to decide the prognosis and help identify the correct treatment methods. There were

a total of 677 patient information in our study after eliminating the missing observations for

which several risk factors were missing. In our study, the response variable is the survival

time of patients (in days). There are a total of fifteen risk factors used in our survival model.
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Twelve of them are categorical, and three of them are numeric variables. The description of

the risk factors is as follows.

1. Age (Numeric) (X1): Age of diagnosis of the patient.

2. Stage (Categorical) (X2): Pancreatic Cancer Stages, categorized as a) localized, b)

regional, and c) distant

3. Aspirin (Categorical) (X3): Does the person use Aspirin Regularly?

4. Ibuprofen (Categorical) (X4): Does the person use Ibuprofen Regularly?

5. Relatives (Categorical) (X5): The number of first-degree relatives with pancreatic

cancer.

6. Diabetes (Categorical) (X6): Did the patient ever have diabetes?

7. Heart attack (Categorical) (X7): Did the participant ever have coronary heart disease

or a heart attack?

8. Emphysema (Categorical) (X8): Did the patient ever have emphysema?

9. Sex (Categorical) (X9): Sex of the individual.

10. BMI (numeric) (X10): Current Body Mass Index (BMI) at Baseline (In lb/in2)

11. Cigarette Years (numeric) (X11) : The total number of years the patient smoked.

12. Diverticulosis (Categorical) (X12): Did the participant ever have diverticulitis or di-

verticulosis?

13. Smoke (Categorical) (X13): Has the patient ever smoked cigarettes regularly for six

months or longer?

14. Gallbladder (Categorical) (X14): Did the individual ever have gall bladder stones or

inflammation?
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15. Hypertension (Categorical) (X15): Did the individual ever have high blood pressure?

A schematic diagram of the data used in our study with the description of risk factors is

shown in Figure 2.1, below.

Figure 2.1: Pancreatic Cancer Data with Relevant Risk Factors

As the above Figure illustrates, we see that twelve out of fifteen risk factors are categor-

ical, having two or more categories. Before we proceed with our main analysis, it is very

important to investigate if there is any statistically significant difference between the sur-

vival times of male and female patients diagnosed with pancreatic cancer. If any significant

differences are found, separate analyses for each gender should be performed. To answer this

question, we used the non-parametric Wilcoxon rank-sum test with continuity correction

and obtained a p-value of .47, indicating that there is not enough sample evidence to reject

the following null hypothesis (H0) at a 5% level of significance.

H0: There is no statistically significant difference between the survival times of male and

female patients.

Thus we proceeded with our analysis and modeling by combining the male and female data

together to constitute our sample size.
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2.3 Brief Description of Cox Proportional Hazard (CPH) Model

The CPH model, proposed by Sir David Cox, is a statistical method that can be used for

survival-time (time-to-event) outcomes on one or more risk factors and their interactions. In

survival analysis, the Cox model has been widely recommended for semi-parametric modeling

of the survival time relationship as a function of the risk factors. Kleinbaum & Klein [81]

gives a good introductory review of the background and methodology, and more detailed

descriptions have been provided by Kalbeisch , and Prentice [76]. In this section, we give

a brief review of the Cox proportional hazards model. An important aspect of the Cox PH

model is the hazard function h(t). It measures the rate of the event of occurrence (death)

as a function of time t. We define the hazard function as follows; Let random variable T

denotes the survival time with cumulative density function FT (t), given by

FT (t) = P (T ≤ t) =

∫ t

0

f(t)dt ,

where f(t) = dFT (t)
dt

is the probability density function (pdf) of the random variable T . The

survival function at time t is defined as:

S(t) = P (T ≥ t) = 1− FT (t) =

∫ ∞

t

f(t)dt . (2.1)

S(t) gives the probability that a specific individual would survive beyond time t. Since S(t)

is a probability, 0 ≤ S(t) ≤ 1 and S(0) = 1, for T ≥ 0 from (1) we have,

f(t) =
dFT (t)

dt
= −dS(t)

dt
. (2.2)

For continuous survival data, the hazard function plays a very important role. It aims to

quantify the instantaneous risks that an event will occur at time t. It is defined as the
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follows:

h(t) = lim
∆t→0

P{t ≤ T < t+∆t | T ≥ t}
∆t

= lim
∆t→0

P{t ≤ T < t+∆t}
∆t

1

S(t)

=
f(t)

S(t)
.

(2.3)

Combining (2) and (3), we obtain,

h(t) = − d

dt
log{S(t)} . (2.4)

Integrating both sides of equation (4) gives an expression for the survival function S(t) in

terms of the hazard function h(t). That is,

S(t) = exp
[
−
∫ t

0

h(u)du
]
. (2.5)

Now, from (3) and (5) we can express the pdf f(t) as a function of S(t) and h(t) given by,

f(t) = h(t)exp
[
−
∫ t

0

h(u)du
]
. (2.6)

From (3) the cumulative hazard function H(t) can be expressed as:

H(t) =

∫ t

0

h(u)du = −lnS(t) . (2.7)

Now, suppose Xi = (Xi1, Xi1, . . . , Xip) are the realized values of the risk factor for the

ith subject. Then, the Cox PH model (not including time-dependent risk factors or non-

proportional hazards) can be expressed in term of the hazard as:

hi(t) = λ0(t)exp
[ p∑

j=1

βjXij +
∑
j ̸=k

ηjkXijXik

]
, j, k = 1, 2, . . . , p. (2.8)
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In the above expression, λ0 is called the baseline hazard which can be thought of as the

hazard function for an individual for which all value of the risk factors are 0. βj measures

the impact of Xij on hi(t). ηjk is the interaction coefficient between jth and kth risk factor

of the ith individual and measures the impact of XijXik on hi(t). From (8), it is clear that

the individual hazard is a function of the risk factors and their interactions and is connected

through baseline hazard. From (8), we can write,

ln
{ hi(t)

hk(t)

}
=

[ p∑
j=1

βjXij +
∑
j ̸=k

ηjkXijXik

]
j ̸= k (2.9)

From the above expression we see that the ratio of log hazard of the ith and kth individual

is constant over time. Thus, the name proportional in the Cox PH model. We interpret the

hazard ratio (HR) in the following ways:

1. HR = 1; implies that there is no hazard effect. Thus, the risk factors have no relation-

ship with the event probability, thus, no influence on the length of survival.

2. HR> 1 (i.e. equivalently βi > 0), implies an increase in hazard. That is, the risk factors

have a positive association with the event probability, thus, a negative association with

the length of survival (bad prognostic factor).

3. HR < 1(i.e. equivalently βi < 0), implies a decrease in hazard. That is, the risk factors

are negatively associated with the probability of the event, thus, positively associated

with the length of survival (good prognostic factor).

A detailed description of the hazard ratio have been provided in [112] [22].

2.4 Statistical Data Analysis and Survival Modeling

We now proceed to develop our most parsimonious statistical model using Cox PH. We

initially started by fitting the Cox-PH model to the survival times t as a function of all

fifteen risk factors given in Figure 2.2 together with their two-way interactions. So, there
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were fifteen risk factors and
(
15
2

)
= 105 two-way interaction terms. We used a stepwise

model selection procedure to select the best model with the minimum Akaike information

criterion (AIC = 2ln(L) + 2k, where L is the value of the maximum likelihood function of

the model and k represents the number of estimated model parameters)[2]. AIC gives an

estimation of the relative amount of information missing in the model; hence, the smaller

the AIC value, the better the quality of the model. It also deals with the risk associated

with overfitting or under-fitting the model. One of the most important assumptions of the

Cox PH is proportionality. Initially, all of the risk factors and two-way interactions except

age satisfied the assumption.

Figure 2.2: The Estimated Survival Curve for the Two different Age Groups

The range of the variable age was [50-90). So, we divided the range into two categories,

say [50,70), and [70,90). Now, we use stratification on the variable age. Stratification is one of

the tools used by researchers when one of the risk factors does not satisfy the proportionality

assumption. The stratification will produce hazard ratios for all other risk factors in the

presence of two hazards intrinsic to the level of age. Since age violated the proportional
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hazards assumption, stratifying it will help meet the PH assumption and provide more valid

estimates for all other risk factors. The stratified model allows the baseline hazard λ0(t)

to vary between strata but controls the effect of the risk factors to be the same for each

stratum. For each subject in strata s, s = 1, 2, we have from (8),

hi(t) = λ0s(t)exp
[ p∑

j=1

βjXij +
∑
j ̸=k

ηjkXijXik

]
, j, k = 1, 2, . . . , p. (s = 1, 2) (2.10)

However, it is not possible to get an estimate of the risk factor (age) separately after

stratification. The following Figure 2.2 illustrates the survival curve for the two age groups.

We observe from Figure 2.2 that the age group [70,90) (highlighted in pink) is much more

vulnerable than the age group [50,70) (highlighted in blue) in terms of survival probabilities.

That is, a randomly selected patient in the age group [50,70) has a higher survival probability

than a patient in the group [70,90), which is quite plausible.

The cumulative hazard function, H(t), of the two age groups is given below by Figure 2.4.

Figure 2.3: Cumulative Hazard Functions of the Two Age Groups
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Table 2.1: Table Showing the Count of Different Categories of Risk Factors

Risk Factors Count

Stage

Localized 135

Regional 178

Distant 364

Aspirin
Yes 333

No 344

Ibuprofen
Yes 168

No 509

Relatives
Yes 650

No 27

Diabetes
Yes 83

No 594

Heart attack
Yes 84

No 593

Emphysema
Yes 19

No 658

Sex
Male 388

Female 289

BMI 677

Cigarette Years 677

Diverticulosis
Yes 41

No 636

Smoke
Yes 404

No 273

Gallbladder
Yes 98

No 579

Hypertension
Yes 256

No 421
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Figure 2.3 suggests that the cumulative hazard for patients in the age group [70,90) is

more than patients belonging to [50,70). We see that the cumulative hazard is the same

for two age groups, almost up to t = 1000 days. After that, the cumulative hazard is

exponentially increasing for the age group [70,90). However, for the age group [50,70), the

cumulative hazard has an increasing pattern up to t = 5800 days approximately. After that,

the graph has a steady pattern. The step-wise procedure produced seven out of fourteen

significant risk factors and ten two-way interaction terms. There were some risk factors

that did not contribute to the hazard individually, but, interacting with other risk factors,

their effect was significant. Thus, we added those risk factors in our proposed model. That

is why there are thirteen individual risk factors and ten interactions in the model (11).

In the following model (11), we denote ”Y” to indicate yes of a specific answer of a risk

factor. That is, the specific category possesses the characteristic. For example, to answer the

question ”does the patient ever have diabetes?” the individual answers ”yes.” To describe

any particular category of the risk factor stage, we use L, R, and D which are the first letters

of Localized, Regional, and Distant. To describe male and female category of the variable

Sex, we use the letters M and F, respectively. The most parsimonious model that we found

after removing the insignificant (p− value ≥ 0.05) term from the model is given as follows:

̂
ln
[hi(t)

λ0(t)

]
=



0.3X2R + .5X2D − .53X3Y

+.61X4Y − .37X15Y + .87X6Y

−.6X5Y − .7X8Y

−.35X9F + .0037X11 − .51X12Y + .15X13Y

+.28X14Y − .56X4YX13Y + .41X3YX9F

+.6X3YX15Y + .01X2RX11 + .68X12YX9F

+.32X15YX9F − .47X15YX14Y

−.52X2RX4Y + 2.18X2RX8Y + .8X15YX12Y

(2.11)
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Thus, the proposed statistical model consists of thirteen individual risk factors and ten

interactions that contributes to the hazard.

2.4.1 Estimating The Survival Function

The above equation (10) can be written as:

hi(t;Xij, XijXik) = h0s(t)exp
[ p∑

j=1

β̂jXij +
∑
j ̸=k

η̂jkXijXik

]
, j ̸= k (2.12)

We can express the Cox-PH model (11) in the form of the survival function, S(t), by em-

ploying equation (5) from Section 3. Thus, the survival function of the Cox-PH model can

be expressed as;

Ŝi(t;Xij, XijXik) = exp
[
−

∫ t

0

hi(t;Xij, XijXik)dt
]

= exp
[
−

∫ t

0

h0s(t)exp
[ p∑

j=1

β̂jXij +
∑
j ̸=k

η̂jkXijXik

]
dt
]

= exp
[
exp

[ p∑
j=1

β̂jXij +
∑
j ̸=k

η̂jkXijXik

](
−
∫ t

0

h0s(t)dt
)]

= exp
(
−

∫ t

0

h0s(t)dt
)[∑p

j=1 β̂jXij+
∑

j ̸=k ˆηjkXijXik

]

=
[
S0s(t)

][∑p
j=1 β̂jXij+

∑
j ̸=k ˆηjkXijXik

]

(2.13)

where Ŝis(t;Xij, XijXik) is the survival function at time t for ith individual and sth, (s = 1, 2)

stratum. S0s(t) is the baseline survivor function for each stratum s = 1, 2. After the

estimation of β̂ and η̂jk by partial likelihood [56], S0s(t) can be estimated by a non-parametric

maximum likelihood method [48]. The co-efficient estimates of parameters β̂ and η̂jk are given

in the third column of Table 2.2.

Table 2 below displays the estimates of the model coefficients/parameters, their hazard ratios

(HR) (exp(β̂)), standard error of coefficients, statistical significance, and 95% confidence
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interval. We proceed to rank the significant contributing risk factors and their significant

interactions based on the prognostic effect on the survival times of patients diagnosed with

pancreatic cancer using the hazard ratio (HR). Thus, we rank from the most contributing

risk factor to the least contributing risk factor to pancreatic cancer patient’s death or survival

times.

Table 2.2: Ranking of the Significant Contributing Risk Factors and Interactions Based on
Prognostic Effect to the Survival Time Using the Hazard Ratios

Rank Risk Factors coeff(β̂) HR [exp(β̂)] [S.E(β̂)] Lower 95% Upper 95%

1 X2RX8Y 2.18 8.84 .96 1.32 59.1

2 X6Y .87 2.39 .33 1.2 4.6

3 X15YX12Y .8 2.28 .38 1.07 4.87

4 X12YX9F .68 1.98 .39 .92 4.25

5 X4Y .61 1.834 .25 1.27 2.62

6 X3YX15Y .6 1.831 .18 1.11 3.02

7 X2D .5 1.63 .17 1.16 2.3

8 X3YX9F .41 1.5 .18 1.06 2.13

9 X15YX9F .32 1.37 .18 .96 1.96

10 X2RX11 0.01 1.01 .007 .99 1.05

11 X9F -.35 .7 .13 .54 .91

12 X15Y -.37 .69 .16 .5 .95

13 X15YX14Y -.47 .63 .26 .42 .94

14 X13YX4Y -.46 .63 .2 .42 .94

15 X3Y -.53 .6 .13 .45 .77

16 X2RX4Y -.52 .59 .3 .33 1.05

17 X5Y -.6 .55 .2 .35 .84

The above Table describes different information, including the hazard ratio of all seven

significant risk factors and all ten significant interactions used in the model. A positive

estimated coefficient/weight (β̂ > 0) implies higher hazard rate, and thus a bad prognostic

factor. on the contrary , a negative estimated coefficient/weight (β̂ < 0) implies a lower

hazard rate, and thus a good prognostic factor. For example, β̂9F = −0.35 from Table 2,

implies females are good prognostic of the survival time of pancreatic cancer; thus, females

have a lower risk of death (higher survival rates) of cancer than males. The exp(β̂) is the
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hazard ratio (HR). Thus, exp(−0.35) = .7 < 1 for gender female means being a female

has a reduced risk of dying with pancreatic cancer than being a male. The ranking of the

significant risk factors from Table 2, based on the HR, shows that the interaction between

cancer stage (Regional) and patient having Emphysema (X2RX8Y ) is the highest

prognostic factor to the survival of pancreatic cancer, followed by patients having diabetes

(X6Y ), and Relatives who have pancreatic cancer (X5Y ) is the least prognostic factor. We

also provide the 95% confidence interval of the hazard ratios (HR) corresponding to the risk

factors; that is,

P [UCL ≤ HR ≤ LCL] ≥ 95%

where UCL and LCL are the upper and lower confidence limits and we are at least 95%

confident that the hazard ratios will fall into the limits. The following Table provides the

three popular global tests of significance which our model is based on. As, the following

table shows, our proposed model (2.11) is highly significant based on all the three statistical

tests.

Table 2.3: Global Statistical Significance of the Model

Test Test Statistics Value df p-value

Likelihood Ratio Test 96.6 34 7 ∗ 10−8

Wald Test 100.8 34 2 ∗ 10−8

Score (log-rank) Test 109.9 34 6 ∗ 10−10

2.5 Assumptions of Cox PH Model and Validation of the Proposed Model

In order to apply the CPH model, we must verify that the following three key assumptions

are satisfied, prior to its implementation. Failure to satisfy these assumptions will bring

about inaccurate decisions about the subject matter.

1. Proportional hazard (PH) assumption: The proportional hazard assumption of

the Cox model can be validated depending on formal statistical tests. A non-statistical
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significance of all risk factors along with the interactions in the model with the global

test is an evidence that the PH assumption is well-grounded. Another way to verify

the PH assumption is by investigating the plot of scaled Schoenfeld residuals [138]

against the transformed time. The Schoenfeld residuals are independent of time; a

non-random pattern against time is evidence of a violation of the PH assumption. We

calculate the Schoenfeld residuals for each of the risk factors and all interactions.

The data consists of times T1, T2, . . . , Tn which are either observed survival times or

censored times with censoring indicators δ1, δ2, . . . , δn. δi = 1 implies Ti is observed,

and δi = 0 implies Ti is censored. Suppose there are p fixed covariates/risk factors

Z1, Z2, . . . , Zn and Ri be the risk set at time Ti denoted as Ri = {j : Tj ≥ Ti}. Given

the setup, the partial likelihood, proposed by Cox (1975) is defined by:

L(β) =
n∑

i=1

δi

[
βTZi − log

[ ∑
j∈Ri

exp(βTZj)
]]

. (2.14)

Let β̂ be the usual estimator of β that minimizes L(β) in (13). Also, let t(i) be the ith

ordered observed survival time and Z(i) and Ri the corresponding covariate vector and

risk set. Then Schoenfeld’s residuals are defined as follows:

r̂i = Z(i) −
∑

j∈Ri
Zjexp(β̂

TZj)∑
j∈Ri

exp(β̂TZj)
. (2.15)

The following Figures 2.4 and 2.5 illustrate the plot of the scaled Shoenfeld residual

against time for all risk factors and interaction terms used in the model (11), respec-

tively. It shows that there is no pattern as a function of time. Thus, the residuals are

randomly scattered with no systematic departures from the horizontal fitted smoothing

spline deep line (that is, the residuals are independent of times).
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Figure 2.4: Testing Proportional Hazard Assumption For Individual Risk Factors

Figure 2.5: Testing Proportional Hazard Assumption For All Interactions

A formal test for the PH assumption is given in the following Table.The covariates and

the global test are non-statistically significant given by the large p-values. This is a

further justification of the validity of the PH assumption for our proposed model.
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Table 2.4: Testing Proportional Hazard Assumption

Risk Factors χ2 p-value

X2 .66 .72

X3 .01 .91

X4 2.05 .15

X15 .14 .71

X7 3.39 .1

X6 1.5 .21

X8 1.3 .25

X12 .02 .88

X14 2.37 .12

X13 .05 .82

X11 .32 .56

X10 2.56 .11

X5 2.16 .34

X9 1.19 .27

X4

⋂
X13 1.94 .16

X3

⋂
X9 .25 .61

X3

⋂
X15 .71 .4

X2

⋂
X11 .04 .36

X12

⋂
X9 .008 .93

X15

⋂
X9 .23 .63

X15

⋂
X14 .14 .7

X2

⋂
X4 .47 .79

X2

⋂
X8 1.2 .55

X15

⋂
X12 .12 .73

GLOBAL 44.17 .1
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We have included all fourteen risk factors and ten interaction terms in the table. The

number of terms in Table 2.4 is greater than Table 2.2 since we have included all of

the fourteen individual risk factors used in our analysis in Table 2.5.1.

2. Linear Functional Form of continuous Risk Factors: Often, many researchers

assume that the continuous risk factors in the Cox PH model have a linear form.

However, one should verify this assumption before implementation of the model. Rep-

resenting the Martingale residuals against continuous covariates is a graphical form,

is a common approach to identify the nonlinearity or, in other words, to assess the

functional form of a covariate. For a given continuous covariate, the plot patterns

may suggest that the variable is not properly fit. Nonlinearity is not a problem for

categorical risk factors. So we only investigate plots of martingale residuals against the

only continuous covariate X11. Sometimes, these plots can help select the appropriate

functional forms of the risk factors in the Cox model. The martingle residual, proposed

by Therneau and Grambsch [129] is given by,

M̂i = δi − Γ̂0(ti)exp
[ p∑

j=1

β̂jXij +
∑
j ̸=k

η̂jkXijXik

]
, j ̸= k. ,

where δi denotes the event indicator for ith observation, Γ̂0(ti) is the estimated cumu-

lative hazard at the final follow-up time for the ith observation. Martingale residuals,

Mi, have a skewed distribution.

We have, M̂i = 1 for for maximum possible values and M̂i = −∞ for minimum possible

values. Positive values of M̂i indicate those patients expired too early compared to

expected survival times.

On the contrary, negative values of M̂i correspond to patients who were alive for a long

time.
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Figure 2.6: Validating the Linearity Assumption of the Continuous Covariate

As shown in the Figure 2.6, the data points are fairly linear for almost all points except

around X11 = 10. The continuous covariate X11 is the number of cigarette smoking

years of an individual patient. There are several patients who did not smoke at all

(indicated by the points around zero). If we omit these observations, the pattern of

the graph is fairly linear and increasing.

3. Testing influential observations and Outliers: Often influential observations can

cause problems with modeling results. In order to check the influential observations,

we visualized the dfbeta values. The dfbeta values estimates the influence of the ith -

patient observation on the regression coefficients βj. A high value of dfbeta must be

investigated carefully.

Another method for checking influential observations is by assessing the deviance resid-

uals (symmetric/normalized transformation of the Martingale residuals) plot. The
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deviance residual is defined by

di = sin(M̂i)
√
2

√
−M̂i − δilog(δi − M̂i).

In the above equation, M̂i implies di = 0. The square root shrinks the large negative

martingale residuals, while the logarithm transformation expands those residuals that

are close to zero. The distribution of the residuals must approximately be symmetrical

around mean zero and standard deviation of one. A very large/small/distant deviance

residual values indicate influential observations or outliers. Figure 2.7 below implies

that none of the observations is exceedingly influential individually, on average.

Figure 2.7: Assessing Influential Observations in the Model by dfbeta

The following Figure 2.8 plots the deviance residual and the residual pattern looks

fairly symmetrical around zero. The mean deviance residual for our model is .2 which

is very small.

57



Figure 2.8: Assessing Influential Observations in the Model by Deviance Residual

2.6 Results and Discussions

Given the risk posed by pancreatic cancer in the past few years, it is imperative to inves-

tigate the clinical diagnosis and enhance the therapeutic/treatment strategy of pancreatic

cancer. The primary treatment for most types of pancreatic cancer is chemotherapy. Some-

times, with chemotherapy, specific therapy drugs are used. Usually, surgery and radiation

therapy do not fall under crucial treatments for pancreatic cancer, but they might be used in

exceptional circumstances. Also, the treatment approach for children with pancreatic cancer

can be slightly different from that used for adults. Several research approaches and statisti-

cal methodologies [27] [28] have been developed to cure pancreatic cancer patients and boost

their survival times. Chakraborty & Tsokos [28] performed data-driven research on pancre-

atic cancer patients by performing parametric analysis to improve the survival probabilities

of patients of different cancer stages. In the present study, we initially investigated if there

exists any statistically significant difference between the true mean survival times of the

male and female pancreatic cancer patients using the Wilcoxon two-sample rank-sum test.
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The p-value (.47 > .05) of the test result suggests that there is no evidence of a significant

difference between the true mean survival times of the males and the females. Hence, we

proceed to perform to develop the Cox-PH (CPH) model with the combined information of

male and female patients. While developing the CPH model, it is very important to justify

the model assumptions. In the preliminary analysis, we found that all of the risk factors

except age (X1) did not satisfy the proportional hazard assumption. Thus, we introduced

stratification in our model by dividing the covariate age into two groups. By doing strat-

ification, we obtained more valid estimates of the other covariates, and the proportional

hazard assumption was satisfied for all risk factors, including age. Performing stratification,

we restrict the effect of the covariates to be the same for each stratum. Our final devel-

oped Cox-PH model given by equation (2.11) identified all the significant risk factors along

with all the significant interaction terms as contributing to the hazard. After building our

model, we proceed to rank all significant individual risk factors and all possible significant

interactions according to the hazard ratio, as shown in Table 2.2. From Table 2.2, we ob-

serve that X6Y (patients having diabetes), X4Y (patients taking ibuprofen regularly), X2D

(patients who are in stage distant (Cancer has spread to distant parts of the body)), X9F

(sex), and X15Y (hypertension) are the most contributing risk factors individually to the

survival of patients with a hazard ratio (HR) of 2.39, 1.83, 1.63, .7, and .7, respectively. For

the risk factor X6Y , HR = 2.39 indicates a strong association between the patients having

diabetes and increased risk of death due to pancreatic cancer. Keeping the other covariates

constant, being a diabetic patient has a 2.39-fold increase in the hazard of death; that is,

2.39-fold increased risk (or decreased survival). It is important to note that according to the

American Cancer Society, one of the main risk factors of pancreatic cancer is diabetes which

is supported by our study. Also, we have found that those who take ibuprofen regularly

have an increased risk of 1.83-fold than those who do not take the medication on a regular

basis. Also, being a female has approximately 30% less hazard than a male patient. Among

the most significant interactions we have X2RX8Y , X15YX12Y , X12YX9F , X3YX15Y , X3YX9F ,
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X15YX9F , and X2RX11 with hazard ratio 8.84, 2.28, 1.98, 1.83, 1.5, 1.37, and 1.01 respec-

tively. The most contributing risk factor is an interaction term (X2RX8Y ) (patients with

emphysema and cancer stage regional with HR = 8.84). However, they do not contribute

significantly to survival. We see that X15Y (hypertension) has a lower risk of survival (HR

= .79). However, interacting with X12Y (diverticulosis), it has a hazard ratio of 2.28. Also,

interacting with X3Y (person who uses Aspirin Regularly), it has a hazard ratio of 2.28. It

is also important to note that X3Y individually has lower risk (better survival) with HR =

.6. Although X12Y (diverticulosis) and X9F (female) has a hazard ratio less than one, their

combined effect remains significant with HR = 1.98.

2.7 Conclusion

In this study, we have estimated the survival probabilities of patients diagnosed with

pancreatic cancer using the semi-parametric Cox proportional hazard (CPH) model. We

believe the proposed Cox-PH model given by equation (2.11) gives an accurate estimate of

the survival probability of patients diagnosed with pancreatic cancer. The stratification of

the age produced more reliable estimates of the risk factor included in the CPH model. We

identified seven significant risk factors and ten significant interaction terms as contributing to

the survival probability of patients diagnosed with pancreatic cancer, as described in Table

2.2. We also ranked those risk factors and their interactions based on the hazard ratio.

There have not enough studies been done in the literature that incorporates the significant

interaction effect of two risk factors. Interaction effects play a major role as a prognostic

factor in addition to the individual risk factors in the CPH model. We found some of the

risk factors used in our study individually have hazard less than one, but by combining

with some other risk factor, the hazard was more than 1.5, and the combined effect was

significant. Our final proposed Cox-PH model is of very high quality, robust, and efficient,

given by the fact that it satisfies all the major assumptions described in Section 5. The

stepwise model selection procedure was utilized to carefully assess and select the risk factors
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and the interaction term based on their statistical significance to the survival probability.

Depending on the survival analysis of the survival times based on the CPH model of the

pancreatic cancer patients, we recommend the following.

1. Besides the survival time of patients, if any additional details regarding some of the

potential risk factors are known, then use of the Cox proportional hazard (CPH) model

can reflect a better picture of covariate effect on survival via hazard ratio.

2. Before implementing the developed CPH model, one should be careful about the fact

that the CPH model assumptions are satisfied. In our present analysis, we justified

the key assumptions of the CPH model.

3. The significant two-way interaction effects of the risk factors in the CPH model should

not be excluded because they can significantly influence the prediction accuracy of

the model and survival rate of pancreatic cancer patients, which might lead to serious

clinical and therapeutic/treatment issues.

4. The ranking of the individual and interacting risk factors can be wisely used in pan-

creatic cancer research to improve the treatment options.
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Chapter 3: A data-driven Predictive Model for Pancreatic Cancer Patients

Using Extreme Gradient Boosting

3.1 Introduction

This study focuses on building a efficient survival model based on the risk factors and

identify the most contributing factors influencing the survival times of patients diagnosed

with pancreatic cancer. In this study, we developed a real data-driven machine learning

predictive model with 800 pancreatic cancer patients’ information and ten risk factors to

predict their survival times. To check the validity of the model, we compared the model’s

performance with ten deep neural network models, grown sequentially with different acti-

vation functions and optimizers. We also constructed an ensemble model using Gradient

Boosting Machine (GBM). Our proposed XGBoost model outperformed all competing mod-

els we considered with regards to root mean square error (RMSE). After developing the

model, we ranked all the individual risk factors according to their individual contribution to

the response predictions, which is extremely important for pancreatic research organizations

to spend their resources on the risk factors causing/influencing the particular type of cancer.

The three most influencing risk factors affecting the survival of pancreatic cancer patients are

found to be the age of the patient, current BMI, and cigarette smoking years with contribut-

ing percentages 35.5%, 24.3%, and 14.93%, respectively. Our proposed predictive model is

approximately 96.42% accurate in predicting the survival times of the patients diagnosed

with pancreatic cancer and performs excellently on test data. The analytical model can be

implemented for prediction purposes for the survival times of pancreatic cancer patients,

given a set of risk factors.
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The response variable of our study is the survival time (in years). Although in most cases,

pancreatic cancer remains incurable, researchers have concentrated on how to enhance the

survival rates of individuals with pancreatic cancer.

In our study, we developed a non-linear predictive model using Extreme Gradient Boosting

(XGBoost) to estimate the survival time of patients diagnosed with pancreatic cancer. Given

a set of risk factors (described in Section 2.2), our model predicts the survival of patients

with a high degree of accuracy. We also compared our proposed model’s accuracy (in terms

of RMSE) with Gradient Boosting Machines (GBM) and different deep learning models. In

recent years, researchers are prone to using sophisticated machine learning and deep learning

algorithms in cancer research because of their high predictive power and learning abilities

from data [26][35][27] [28]. There is an increased tendency in the studies published in recent

years that applied semi-supervised ML techniques for modeling cancer survival which ad-

dress both labeled and unlabeled data.[101]. Kourou, Exarchos, et al., 2015 [84] presented

a detailed review about the most recent ML research methods applicable to cancer predic-

tion/prognosis with case studies. Ahmad, Eshlaghy, et al., [1] used different ML and DL

algorithms like Decision Tree (DT), Support Vector Machine (SVM), and Artificial Neural

Network (ANN) and compared their performance to predict the recurrence of breast cancer

using 10-fold cross-validation. Hayward, Alvarez, et al., [63] developed different predictive

models for the clinical performance of pancreatic cancer patients based on machine learning

methods. The predictive performance of machine learning (ML) is compared with linear and

logistic regression techniques. According to their study, ML offers techniques for improved

prediction of clinical performance, and thus, these techniques can be considered as valuable

alternatives to the conventional multivariate regression methods in clinical research. Wang

& Yoon [90] suggested an online gradient boosting (GAOGB) model based on a genetic al-

gorithm for incremental breast cancer (BC) prognosis. Their proposed GAOGB model was

evaluated on the SEER database in terms of accuracy, the area under the curve (AUC),

sensitivity, specificity, retraining time, and variation at each iteration. Ma, Meng, et al.,[91]

63



suggested a classification model that uses the power of extreme gradient boosting (XGBoost)

in complicated multi-omics data to focus on early-stage and late-stage malignancies sepa-

rately. Their XGBoost model was applied to four types of cancer data downloaded from

The Cancer Genome Atlas (CGA), and the model’s performance was compared with other

popular machine learning methods (ML) methods. The authors investigated the efficacy

of XGBoost on the diagnostic categorization of malignancies in their study and found XG-

Boost as a robust predictive algorithm. Chen, Jia, et al.,[32] proposed a non-parametric

model for survival analysis that utilizes an ensemble of regression trees to determine the

variation of hazard functions with respect to the associated risk factors. The scientists used

GBMCI (gradient boosting machine for concordance index) software to develop their model

and tested its effectiveness against other conventional survival models using a large-scale

breast cancer prognostic dataset. In their study, they found the GBMCI to be consistently

outperforming other methods based on a number of covariate settings.

3.2 Materials and methods

3.2.1 Data Description

The study data has been obtained from National Cancer Institute (NIH). The data

contains information on patients diagnosed with pancreatic adenocarcinoma. We treated the

survival time (in days) as the response in developing our model and considered cause-specific

death (deaths due to pancreatic cancer) for each patient. Patient survival time is one of the

most crucial factors in all cancer studies. It is critical to assess the severity of cancer since

it helps to determine the prognosis and find the best treatment options. There were a total

of 800 patient information in our study after eliminating the missing observations for which

several risk factors were missing. In our study, the response variable is the survival time of

patients (in days). There are a total of ten risk factors used in our predictive analysis. Seven

of those are categorical in nature, and three of them are numeric variables. The descriptions

of the risk factors are as follows.
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1. panc exitage (Numeric) (X1): Age of diagnosis of the patient.

2. Stage (Categorical) (X2): Pancreatic Cancer Stages, categorized as a) localized, b)

regional, and c) distant

3. asp (Categorical) (X3): Does the person use Aspirin Regularly?

4. ibup (Categorical) (X4): Does the person use Ibuprofen Regularly?

5. fh Cancer (Categorical) (X5): The number of first-degree relatives with any type of

cancer.

6. Sex (Categorical) (X6): Sex of the individual.

7. BMI (numeric) (X7): Current Body Mass Index (BMI) at Baseline (In lb/in2)

8. Cigarette Years (numeric) (X8): The total number of years the patient smoked.

9. gallblad f (Categorical) (X9): Did the individual ever have gall bladder stones or in-

flammation?

10. hyperten f (Categorical) (X10): Did the individual ever have high blood pressure?

A schematic diagram of the data used in our study with the description of risk factors

is shown in Figure 3.1 below. As Figure 3.1 illustrates, seven out of ten risk factors are

categorical, having two or more categories.

Before starting our analysis of the data, one important question is if there is any statistically

significant difference between the survival times of male and female patients diagnosed with

pancreatic cancer. To answer this question, we used the non-parametric Wilcoxon rank-sum

test with continuity correction and obtained a p-value of .47, which suggests that there is

no statistically significant difference between the true mean survival times of patients from

both genders at 5% level of significance. Therefore, we performed our analysis by combining

the information of males and females.
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Figure 3.1: Pancreatic Cancer Data with Relevant Risk Factors

3.3 A Brief Overview of Gradient Boosting Machine (GBM) and Extreme Gra-

dient Boosting (XGBoost)

In the literature of machine learning, ‘Boosting’ is a collection of algorithms that trans-

forms the ensemble of a weak learner to strong learners iteratively. Boosting is an ensem-

ble method for improving the model predictions of any given learning algorithm.Gradient

boosting machines (GBM), as introduced by Friedman (2001) [50], are a prominent family

of machine-learning (ML) algorithms that have demonstrated significant success in a wide

range of applied and experimental fields. They are highly customizable to the specific re-

quirement of the application and can be implemented with respect to different loss functions.

In this section, we will go through the theoretical notions of gradient boosting briefly.

Let us assume the problem of classical supervised learning problem where we have n risk

factors X = (x1, x2, . . . , xn) and y as a continuous response variable. Given the data, train-

ing of the model is performed by obtaining the optimal model parameters θ that best fit

the training data xi and response yi. To train the model, we define the following objective

function to quantify how well the model fits the training data.

O(θ) = L(θ) + ϱ(θ) (3.1)
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where L(θ) =
∑n

i=1(yi − ŷi)
2 is the training loss (mean square error) function that measures

the predictive power of our model is with respect to the training data. ϱ(θ) is the regu-

larization term that helps to prevent model overfitting and controls the complexity of the

model.

3.3.1 Decision Tree Ensembles

In our study, we use boosted decision tree ensemble method to train our model. Boosting

combines a learning algorithm in an additive manner to achieve a strong learner from many

sequentially connected weak learners. A decision tree’s major goal is to partition the input

space variables into similar rectangular sections using a tree-based rule system. Each tree

split corresponds to an if-then rule applied to a single input variable. A decision tree’s

structure naturally stores and represents the interactions between predictor variables (risk

factors). The number of splits, or equivalently, the interaction depth, is typically used to

parameterize these trees. It is also possible to have one of the variables split numerous times

in a row. A tree stump is a special example of a decision tree with just one split (i.e., a

tree with two terminal nodes). As a result, if one wishes to fit an additive model using tree

base-learners, the tree stumps can be used. Small trees and tree stumps produce remarkably

accurate results in many real-world applications.

3.3.2 Model Structure

Mathematically, we can write our analytical model in the form:

ŷ = f̂(x) =
K∑
i=1

f̂i(x), f̂i ∈ F (3.2)

where F is the collection of all possible regression trees, K is the number of regression trees,

and f̂i are the additive functions (additive trees) in F .

f(x) = wq(x)(q : Rm −→ {1, 2, . . . , T}, w ∈ RT ). Here, q indicates the tree structure that
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maps an input to the relevant leaf index at which it finishes up. The number of leaves in the

tree is denoted by T . Individual regression trees accommodate a continuous score on each

of its leaves. wi represents the score on ith leaf. The tree structures of f̂i are intractable to

learn at once. Hence, we use the following additive strategy. Let ŷi
(t) be the predicted value

of the ith observation at step t. Then,

ŷi
(0) = 0

ŷi
(1) = f̂1(xi) = ŷi

(0) + f̂1(xi)

ŷi
(2) = f̂1(xi) + f̂2(xi) = ŷi

(1) + f̂2(xi)

...

ŷi
(t) =

t∑
j=1

f̂j(xi) = ŷi
(t−1) + f̂t(xi).

(3.3)

Now we have introduced the model; our goal is to define an objective function mathematically

and proceed to minimize it. From Equation (1) in Section (3), we have

O(θ) =
n∑

i=1

l(yi, ŷi) +
K∑
j=1

ϱ(f̂j), (3.4)

where l(·, ·) is a convex differentiable function that measures the difference between actual

yi and predicted ŷi. ϱ(f̂j) = γT + 1
2
λ(|| w ||)2. T is the number of leaves in the tree. γ and λ

are the model hyper-parameters. From Equation (3) and Equation (4), at the tth iteration,

the objective function can be written as

O(t) =
n∑

i=1

l(yi, ŷi
(t)) +

t∑
i=1

ϱ(f̂i)

=
n∑

i=1

l(yi, (ŷi
(t−1) + f̂t(xi))) +

t∑
i=1

ϱ(f̂i)

(3.5)
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Since, we use mean-square error loss function, the above equation takes the following form:

O(t) =
n∑

i=1

(yi − (ŷi
(t−1)) + f̂t(xi))

2 +
t∑

i=1

ϱ(f̂i)

=
n∑

i=1

(yi − ŷi
(t−1))2 +

n∑
i=1

(f̂t(xi))
2

− 2
n∑

i=1

(yi − ŷi
(t−1))f̂t(xi) +

t∑
i=1

ϱ(f̂i)

=
n∑

i=1

(yi − ŷi
(t−1))2 +

n∑
i=1

(f̂t(xi))
2

− 2
n∑

i=1

(yi − ŷi
(t−1))f̂t(xi) +

t−1∑
i=1

ϱ(f̂i) + ϱ(f̂t)

= −2
n∑

i=1

(yi − ŷi
(t−1))f̂t(xi) +

n∑
i=1

(f̂t(xi))
2 + ϱ(f̂t)︸ ︷︷ ︸

function of t

+c

(3.6)

where c =
∑n

i=1(yi − ŷi
(t−1))2 +

∑t−1
i=1 ϱ(f̂i) is a constant term (not a function of t). From

the above expression, the optimal weights of the leaf can be computed that minimizes the

objective function. For details, see [32], [121]. In the next section, we discuss briefly the

hyper-parameters for Gradient Boosted Machines (GBMs).

3.3.3 Model Tuning Gradient Boosted Machine (GBM)

Although GBMs are highly flexible, they can take significant time to tune and find the

optimal combination of hyperparameters. If the learning algorithm is not applied properly

with the optimal combination of the hyperparameters, the model is prone to overfitting

the data; this suggests that it will predict the training data rather than the functional

relationship between the risk factors and response variables. The following are the most

typical hyperparameters seen in most GBM implementations:
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3.3.3.1 Number of trees

It represents the total number of trees required to match the model. GBMs frequently

necessitates a large number of trees. However, GBMs, unlike random forests, can overfit.

Hence, the goal is to use cross-validation to estimate the appropriate number of trees that

minimize the loss function of interest.

3.3.3.2 Depth of Trees

The complexity of the boosted ensemble is determined by the number of splits in each

tree. It is in charge of the depth of the individual trees. Naturally, numbers range from 3 to

8; however, it is not uncommon to have a tree depth of 1. [61].

3.3.3.3 Shrinkage

The introduction of regularization by shrinkage is the traditional strategy to controlling

model complexity. Shrinkage is employed in the context of GBMs to reduce or decrease the

influence of each additionally fitted base-learner. It decreases the number of incremental

steps, penalizing the significance of each successive iteration. The idea behind this strategy

is to take many modest steps to improve a model rather than taking a few enormous steps.

If one of the boosting iterations is found to be incorrect, the adverse impact can be simply

addressed in the following steps. The shrinking effect is usually denoted as the parameter

λ ∈ (0, 1] and is applied to the final step in the gradient boosting algorithm. [67].

3.3.3.4 Subsampling

The subsampling approach has been demonstrated to increase the model’s generaliza-

tion features while minimizing the required computation resources. The objective of this

approach is to incorporate some unpredictability into the fitting procedure. Only a random

subset of the training data is used to fit a consecutive base-learner at each learning iteration.

Frequently, training data is sampled without replacement (SWOR). Using less than 100% of
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the training observations implies the implementation of stochastic gradient descent (SGD).

This helps to reduce overfitting and keep the loss function gradient from being trapped in a

local minimum or plateau.

Extreme Gradient Boosting (XGBoost) performs in a similar mechanism as GBM using

ensemble additive training. Both XGBoost and GBM follow the principle of gradient boost-

ing. However, XGBoost uses some more regularized model parameters to reduce overfitting

and obtain the bias-variance trade-off, which improves the performance of the model. For

more theoretic and practical applications, see [18] [55]. In the next section, we discuss the

statistical data analysis and results.

3.4 Statistical Analysis and Results

One of the most important goals of our study is to predict the survival times of pancreatic

cancer patients with the highest degree of accuracy. For that purpose, a number of machine

learning (ML) and deep learning (DL) models have been tested and validated on our data.

We used Feed forward Deep Learning Models [98] [125] with different layers, optimizer, and

activation functions [88]. The best deep learning model that we have obtained is a dense

feed-forward network with RMSE .38 on the test data. However, our proposed XGBoost

model does the prediction task with significantly lower RMSE .04 on test data.

As described in Section 2.1, in our data, we have seven categorical and three numeric risk

factors. Usually, most of the ML and DL algorithms do not accept categorical/factor in-

puts. This implies that the categorical risk factors must be converted to a numerical form.

However, in our case, 70% of the risk factors are non-numeric in nature. To overcome this

problem, we used a sophisticated technique, termed as ”one-hot-encoding” [114]. It is a

tool to convert the categorical predictors to numeric in ML algorithms to do a better job

in prediction. After we convert the risk factors to numeric scale, we perform Min-Max nor-

malization on the set of risk factors. Min-Max normalization is a tool used in ML tasks to

adjust the predictors and response when they are in different scale. Usually, it make all the

71



predictors to fall into [0,1]. It is defined as follows:

y∗ =
y −min(y)

max(y)−min(y)
(3.7)

where y and y∗ are the original response value, and the normalized value of response re-

spectively. After training the XGBoost model, we can back transform to get the original

prediction of the response. In our data set, the minimum and maximum responses are .21

years and 21 years respectively. Hence, min(y) = .21 years, max(y) = 21 years, and max(y) -

min(y) = (21 - .21) = 20.79 years. Now, we can back transform (7) in the following manner:

y = min(y) + y∗[max(y)−min(y)]

= .21 + 20.79y∗
(3.8)

We also performed the z-score standardization with the data but, the min-max normalization

provided better performance with XGBoost. After normalizing the data, we divided the data

into 70% training and 30% test data.

At first, we perform the GBM algorithm on the data. In order to find the best combination

of hyperparameters, we performed grid search mechanism [12] that iterates through every

possible combination of hyperparameter values and enables us to select the most suitable

combination. To perform a grid search, we create our grid of hyper-parameter combinations.

We searched across 54 models with varying learning rates (shrinkage), tree depth (interac-

tion.depth), and the minimum number of observations allowed in the trees’ terminal nodes

(n.minobsinnode). We also introduced stochastic gradient descent (SGD) in the grid search

(bag.fraction < 1).

The following Table 3.1 shows the combinations of the hyperparameters (abbreviated by

S, I.D, N.M, and B.F, respectively) we used for the grid search to obtain 54 models.
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Table 3.1: Hyper-parameters and Their Combinations in the Grid Search

Hyper-parameters Value Combination

Shrinkage (S) (.01, .1, .3)

interaction.depth (I.D) (2, 3, 5)

n.minobsinnode (N.M) (5, 10)

bag.fraction (B.F) (.65, .8, 1)

We loop through each hyperparameter combination and apply the grid search on 1,000

trees. After around 30 minutes, our grid search completes, and we the estimated hyper-

parameters for all 54 models. The following Table 3.2 shows top ten models (ascending

order of RMSE ) with the particular choices of the hyper-parameters.

Table 3.2: Top 10 Models with Hyper-parameters for GBM

S I.D N.M B.F O.T min RMSE

.3 5 5 .8 47 0.03217434

.3 5 10 1 87 0.03354224

.1 5 5 .8 140 0.03358716

.1 3 5 .8 232 0.03376142

.1 3 5 1 413 0.03376934

.3 5 10 .65 126 0.03377321

.1 5 10 .8 206 0.03380464

.1 2 5 .65 603 0.03382063

.01 5 5 .65 1000 0.03382830

.3 3 10 1 76 0.03386993

From the above table, we see that, while training the model, we obtain the minimum

RMSE (0.03217434) for the following optimal values of the hyper-parameters in the model:
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• shrinkage (S): 0.3

• interaction.depth (I.D): 5

• n.minobsinnode (N.M): 5

• bag.fraction (B.F): 0.8

• optimal trees (O.T): 47

Now we have the optimal values of the hyper-parameters, we utilize 5-fold cross-validation

to train our model with the hyper-parameters. The RMSE we obtained in the test data set

using GBM is 0.04222367.

Now we proceed to perform the data analysis with XGBoost, which is more sophisticated than

GBM and has more options to set the hyper-parameters to reduce overfitting. It has several

hyperparameters options to train the model. We shall describe briefly the hyperparameters

we used for training the model according to the definition given in the R software module

[117].

• nrounds: Controls the maximum number of iterations.

• eta: Controls the learning rate, or how quickly the model learns data patterns.

• max depth (MW): The depth of the tree is controlled by this variable. Typically,

the greater the depth, the more complex the model grows, increasing the likelihood of

overfitting.

• min child weight (MCW): It denotes the smallest number of instances required in

a child node in the context of a regression problem. It aids in preventing overfitting

by avoiding potential feature interactions.

• subsample (SS): It regulates the number of samples (observations) provided to a

tree.
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• colsample bytree (CSBT): It controls the number of predictors given to a tree.

Similar to GBM, we perform a grid search with different combinations of hyperparameters.

We trained 243 different hyper-parameter combinations to model. The following Table shows

top ten models (ascending order of RMSE ) with the particular choices of the hyperparam-

eters.

Table 3.3: Top 10 Models with Hyper-parameters for XGBoost

eta M.D MCW SS CSBT OT min RMSE

.05 7 1 .8 .8 158 .0304000

.05 7 3 1 .8 182 0.0305060

.01 7 1 .8 .65 713 0.0305134

.05 7 3 .8 .8 141 0.0306156

.05 7 3 1 .8 134 0.0306568

.01 7 1 .65 .65 762 0.0307100

.01 7 1 .8 .65 725 0.0307280

.05 7 1 .65 .8 174 0.0307378

.01 7 1 .65 .8 725 0.0307526

.01 7 1 1 .8 816 0.0307682

From the above table we see that the mimimum RMSE (.0304) was achieved while

training the data when

• eta = 0.05

• max depth (MD) = 7

• min child weigh (MCW) = 1

• subsample (SS) = 0.8

• colsample bytree (CSBT) = 0.8
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• optimal trees (OT) = 158

Therefore, our final XGBoost ensemble model can be expressed as follows

ŷ∗ = f̂(x) =
158∑
i=1

f̂i(x), f̂i ∈ F (3.9)

where F is the collection of all possible regression trees and f̂i are the additive functions (ad-

ditive trees) in F . Our analytical model provides the best results with the optimal values of

the six hyper-parameters mentioned above. With the optimal values of the hyper-parameters,

we train our model with 5-fold cross-validation and obtained an RMSE of 0.04127676 in

test data, which is better than what we obtained using GBM.

We can provide the algorithm to obtain the best analytical model with the optimal hyper-

parameters in the following manner:

Algorithm for Obtaining Optimal Analytical Model

Input

• Input Vector: X = (x1, x2, . . . , xn).

• response y as output.

• Number of iteration T decided by the researcher.

• Mean Square Error Loss Function L(θ) =
∑n

i=1(yi − ŷi).

• Decision tree as base (weak) learner to be combined in the ensemble.

Algorithm

• for t = 1 to T do

1. Initially, a decision tree is fitted to the data: f̂1(x) = y.

2. Next, the subsequent decision tree is fitted to the prior tree’s residuals: d1(x) =

y − f̂1(x)
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3. The latest tree is then added to the algorithm : f̂2(x) = f̂1(x) + d1(x).

4. The succeeding decision tree is fitted to the residuals of f̂2 : d2(x) = y − f̂2(x).

5. The new tree is then added to our algorithm: f̂3(x) = f̂2 + d2(x)

6. Use cross-validation while training the model to decide the stopping criteria of

the training process.

7. Create a hyper-parameter grid with some user provided values and perform grid

search mechanism to find optimal combination of the hyper-parameters.

8. The final analytical model is the sum of all the decision tree base learners with

optimal values of the hyper-parameter along with optimal number of trees T ∗:

f̂ =
∑T∗

i=1 f̂i.

• end.

3.4.1 Validation of the Proposed Model

After developing our proposed analytical model, it is most important to validate the

model so that we can implement it to obtain the best results. In developing the model, we

used 70% of the training data and obtained an RMSE of .034. It is a usual tendency of a

good model to have a predictive performance in the test data set close to the training data

set. When we implement our model on the test data set, we obtained an RMSE of .0422,

which is very close to what we have obtained in the training set, implying that our model

performs well on the unseen/future data set. We can predict the survival times (in years) by

back-transforming the scaled response using equation (8) from Section 4 and compare how

good the prediction is. The following Table 3.4 shows the actual and estimated predictions

of the pancreatic survival times (in years).
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Table 3.4: Predicted and Actual Response

Predicted Response Actual Response

1.5849055 1.7806254

2.1938655 2.0418507

2.3095083 2.0542900

2.5678812 2.1577326

2.1382802 2.3273000

3.5089106 3.7427615

3.2106355 3.3957704

2.4213239 2.5643014

1.2646362 1.6215333

1.5551881 1.8559159

2.1867148 2.4340161

2.9590347 3.2622116

From the above table, we see that the predictions are very close to the actual response.

To validate our prediction accuracy, we also performed Wilcoxon’s rank-sum test with con-

tinuity correction to check if the actual and predicted responses are significantly different.

The test produced a p-value of .5 (> .05), implying that there is insufficient sample evidence
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to reject the null hypothesis that both actual and predicted responses are the same. Thus,

the test suggests there is no significant difference between the actual and predicted responses

at a 5% level of significance.

3.4.2 Comparison with Different Models

The XGBoost method performed really well and was about 96% accurate. We compared

the proposed boosted regression tree (using XGBoost) model with different deep learning

models to validate its performance. Deep learning models are efficient with a large amount of

data to train to address the complex structure of features. We used activation functions like

rectified linear unit (ReLU), Exponential Linear Unit (ELU), scaled exponential linear units

(SELU), and Hyperbolic Tangent (tanh) in different layers of the deep network and used op-

timizer like stochastic gradient descent (SGD), Root Mean Square Propagation (RMSprop),

and Adam (derived from adaptive moment estimation). In some models, we introduced

dropouts and batch normalization, and in some models, we did not. Adding dropouts [51]

and batch-normalization usually prevents overfitting in the networks and boosts the perfor-

mance. The theoretical details and applications of the optimizer and activation functions

can be found in [32]. Each of the models is trained using 300 epochs and batch size =

32. Table 3.4.6 compares different deep learning models in terms of root mean square error

(RMSE) and mean absolute error (MAE) in the test data. In the following table, the acti-

vation function, optimizer, dropout, and batch normalization are abbreviated as AF, OPT.,

DROP., and BN , respectively. We considered ten deep learning sequential models with three

dense layers containing units 100, 90, and 50, respectively. As Table 6 illustrates, the best

deep learning model (DL6) with minimum RMSE (.378) is the model where we use tanh

activation function in each of the three hidden layers, use optimizer Adam, use dropout with

batch-normalization. The following Figure 3.2 illustrates the graph of RMSE and MAE of

DL6 while training.
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Figure 3.2: RMSE and MAE of DL6 for Training and Validation Data

The following Table 3.5 compares the boosted regression tree model using GBM and

XGBoost in terms of RMSE and MAE in test data.

Table 3.5: Comparison of Different GBM & XGBoost Models in Terms of RMSE and MAE
in Test Data

MODEL RMSE MAE

XGBoost .0412 .034

GBM .0422 .039

As the above Table 3.4.5 illustrates, the XGBoost performs the best with the minimum

RMSE.

3.4.3 Ranking of Risk Factors and Prediction of the Survival Time

Once we have found the best-performing model, it is important to rank the pancreatic

risk factors according to their relative importance. We rank the contributing risk factor in
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Table 3.6: Comparison of Different Deep Learning Models in Terms of RMSE and MAE in
the Test Data

Model Unit AF OPT. DROP. BN RMSE MAE

DL1 (100,90,50) (tanh,tanh,relu) RMSprop yes yes .381 .26
DL2 (100,90,50) (ReLU,ReLU,ReLU) Adam yes yes .391 .24
DL3 (100,90,50) (ReLU,ReLU,ReLU) SGD yes yes .9 .255
DL4 (100,90,50) (ReLU,ReLU,ReLU) RMSprop Yes Yes .391 .25
DL5 (100,90,50) (ReLU,ReLU,ReLU) Adam No No .39 .26
DL6 (100,90,50) (tanh,tanh,tanh) Adam Yes Yes .378 .249
DL7 (100,90,50) (ELU,ELU,ReLU) Adam Yes Yes .388 .234
DL8 (100,90,50) (ReLU,SELU,ELU) Adam Yes Yes .385 .232
DL9 (100,90,50) (ReLU,ReLU,ReLU) Adam No Yes .49 .4
DL10 (100,90,50) (ReLU,ReLU,ReLU) Adam No No .51 .3

survival time using the measure Gain [118]. The gain denotes the relative impact of a certain

risk factor to the model, which is computed by considering each predictor’s contributions

to each tree in the model. A higher value of this metric for a specific risk factor, compared

to another risk factor, implies that the risk factor with a higher gain is more important for

generating a prediction. From Figure 3.3, we see that the top five most contributing risk

factors in the model are age, current bmi, the number of years a patient smoked cigarette,

people who have family history of cancer, and people who took aspirin on a regular basis.

Table 3.7 illustrates the percentage contributions of the risk factors to the response survival

times. From Table 3.4.7, see that the risk factors explains 96.42% of the total variation of

the response.

3.5 Conclusion

In cancer research, one of the most important aspects is to estimate the survival times

of the patients. It results in improved management, more efficient use of resources, and the

provision of specialized treatment alternatives. It is imperative to investigate the clinical

diagnosis and enhance the therapeutic/treatment strategy of pancreatic cancer. Pancreatic

cancer is one of the deadliest cancer, and most of the cases, detected in later stages (stage III

/IV). Once a patient is diagnosed with pancreatic cancer, he/she or his/her family members
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Figure 3.3: The Relative Importance of Risk Factors Used in the XGBoost Model

would be interested in knowing how long is the expected/predicted survival. This question

is usually asked by patients with a terminal illness to their doctors. However, it is impossible

to provide the exact answer to these questions; doctors provide an answer which is mainly

subjective. If we have a model based on real data that answer the questions given a particular

choice of risk factors, it would be very helpful to the doctors and medical professionals.

Also, if we have some more relevant risk factors, we can incorporate those in this model.

This would be very helpful for healthcare professionals and patients with terminal illnesses.

Given a collection of risk factors, we can build a questionnaire (attached in Appendix I) that

can address the patient information who are diagnosed with pancreatic cancer. Based on

their response, the estimate of the survival times can be obtained very accurately. To our

knowledge, there is no such model that is as accurate as our predictive analytical model. In

this study,

1. We have developed a boosted ensemble regression tree model using XGBoost that is

very accurate and performs well on test data set, given a collection of risk factors

(numeric and categorical).
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Table 3.7: Risk Factors and Their Percentage of Contribution to The Response

Risk Factors % Contribution

panc exitage 35.5
bmi curr 24.3
cig years 14.93

fh cancer 1 3.76
asp 1 3.6

hyperten f 1 3.1
stage 1 2.82
ibup 1 2.29
stage 3 1.96
sex 1 1.73

gallblad f 1 1.6
stage 2 1.57
ibup 2 .83

hyperten f 2 .61
fh cancer 2 .45
gallblad f 2 .4

sex 2 .29
asp 2 .28

2. We ranked all the risk factors according to their relative importance in the boosted

model. This ranking provides the percentage of contribution of the individual risk

factors to the response, survival time.

3. We have compared the performance of the XGBoost model with the GBM model

and other ten deep learning sequential models with different activation functions and

optimizers. The XGBoost model produced an RMSE and MAE of .0412 and .034

which is the smallest on the test data compared to all of the other models.

4. Our proposed analytical model can be implemented to any future data set containing

information on different risk factors relating to the subject study to obtain very good

predictive performance.
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Chapter 4: A Stochastic Model for Monitoring the Behavior of Pancreatic

Cancer Patients at Different Stages as a function of time

In this study, we have introduced a modern analytical approach using Survival Index (SI)

to monitor and evaluate the behavior of survival times pancreatic cancer patients. We have

considered survival times of patients from three race groups (Caucasian, African-American,

and Others) at four different cancer stages, categorized in three different age groups ([40-59),

[60-79), and [80-above)). There are a total of 108 patient groups who received three different

treatments; only chemotherapy (C), only radiation (R), and a combination of chemotherapy

and radiation (C + R). Our analytical method is helpful to predict the pattern of survival

intensities based on the Survival Index (SI) as a function of time t; which necessarily provides

information if the specific treatment has been useful for the particular patient group. We also

introduced the concept of Relative Change in Intensities (RCI) for patients diagnosed with

the subject cancer, which gives the approximate change in the stochastic growth intensity

function (SGIF) ζ(t), for each unit time change. Finally, we have developed an analytical

algorithm to compare the survival intensities for any two specific groups out of a total

of 108 patient groups without actually computing the stochastic growth intensities. Our

analytical methodology based on Survival Index (SI) and stochastic growth intensity

function ζ(t) is useful and effective for any subject cancer and can be implemented as a

modern approach to monitor and evaluate cancer mortality rate as a function of time. The

adaptability of our technique stems from the fact that our algorithm may be used to any

number of patient groups of any age, of any race, at any specific cancer stage, and receiving

any unique treatment or combination.
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4.1 Introduction

Given the destructive nature of pancreatic cancer, it remains one of the major threats

devastating human existence. However, there are various treatment options (chemotherapy,

radiation, surgery, immunotherapy, targeted therapy) to cure the lethal carcinogenic disease;

very few studies have been conducted to understand at which stage a particular treatment

option is the most effective. Also, it is crucial to understand how the treatment options are

affecting the mortality of patients from a specific race belonging to a particular age group,

at different cancer stages; which essentially means by applying a particular treatment of

interest or combination of both if the mortality of a patient from a specific race at a specific

stage is increasing, decreasing, or staying the same. There are several data-driven research in

the literature to understand the nature of pancreatic cancer at different stages and what risk

factors are the major cause of this type of cancer, [26] [80]. In our study, we have introduced

a new analytical approach by defining the Survival Indicator (SI) to monitor the behavior

of the cancer survivorship for patients from different age groups, different cancer stages, and

from different races, as a stochastic realization of time. The present study uses data from the

Surveillance, Epidemiology, and End Results (SEER) database, which contains information

on patients diagnosed with pancreatic adenocarcinoma. The analytical model we propose is

based on the survival times (in months) and cause-specific death (deaths due to pancreatic

cancer) for each patient. The survival times of patients are one of the most pivotal factors

used in all cancer research. It is necessary to evaluate the severity of cancer, which helps to

determine the prognosis and help identify the correct treatment options. We have extracted a

sufficiently large random sample of patients diagnosed with pancreatic adenocarcinoma from

different races (white, black, others), and four cancer stages which contain the information

of different treatment options (chemotherapy (C), radiation (R), combination of both (C +

R)). We have categorized the information for three different age groups; 40 to 59, 60 to 79,

and 80 and above. The schematic diagrams of the data used in this study for different races,

cancer stages, and age groups are shown in Table 4.1, Table 4.2, and Table 4.3 below.
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Table 4.1: Showing the Number of Patients for White Population in Different Cancer
Stages, Categorized by Age Groups

WHITE

Age: [40 - 59)

Stages C R C+R

I 148 12 123

II 1206 52 1351

III 514 33 663

IV 5070 123 556

Age: [60 - 79)

Stages C R C+R

I 568 75 490

II 3406 249 3268

III 1286 117 1358

IV 11263 305 869

Age: [80 - Above)

Stages C R C+R

I 237 118 162

II 704 144 478

III 281 451 210

IV 1783 132 120
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Table 4.2: Showing the Number of Patients for Black Population in Different Cancer
Stages, Categorized by Age Groups

BLACK

Age: [40 - 59)

Stages C R C+R

I 34 3 29

II 211 14 249

III 104 13 126

IV 1000 45 101

Age: [60 - 79)

Stages C R C+R

I 88 15 82

II 394 45 391

III 212 15 203

IV 1476 68 113

Age: [80 - Above)

Stages C R C+R

I 18 18 5

II 61 15 33

III 17 4 11

IV 157 15 10
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Table 4.3: Showing the Number of Patients for Other (American Indian/AK Native,
Asian/Pacific Islander) Race Groups in Different Cancer Stages, Categorized by Age
Groups

OTHERS

Age: [40 - 59)

Stages C R C+R

I 16 1 12

II 118 10 104

III 44 6 65

IV 461 16 62

Age: [60 - 79)

Stages C R C+R

I 50 9 37

II 263 22 244

III 149 18 147

IV 918 34 101

Age: [80 - Above)

Stages C R C+R

I 25 14 6

II 63 16 43

III 27 6 21

IV 134 16 20
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4.2 Methodology

4.2.1 Analytical Method for Developing the Survival Indicator (SI)

In the context of pancreatic cancer research, research scientists would like to investigate

the survival rate pattern as a function of time for patients belonging to a specific race, age

group, cancer stages, and specific treatments they received. For example, researchers would

be interested in monitoring and evaluating if the failure rate of survival time of a patient

belonging to the Caucasian race receiving chemotherapy from age group [60-79) at Stage IV

shows an increasing or decreasing trend. As a result, it is critical to track how the survival

rate changes over time as a result of the application of a certain treatment. In this regard,

We define stochastic growth intensity factor (SGIF) that measures the rate of change of

a survival time as a stochastic realization of time. The analytical structure of the SGIF

function is:

ζ(t;SI;ϕ) = SI
ϑ

(
t

ϕ

)SI−1

, SI > 0, ϑ > 0, t > 0 , (4.1)

Where SI and ϕ are the shape and scale parameters, respectively, and t denotes the time

behavior of the incident under investigation.

For n survival times, t1 < t2 < . . . < tn, (where t1 < t2 < . . . < tn are the observed and

successive), the joint probability density function, f(t1, . . . , tn) can be expressed in terms of

ζ(t;SI;ϕ) as follows,

f(t1, . . . , tn) =
n∏

i=1

(
ζ(ti

)
exp

[
−
∫ tn

0

ζ(y)dy

]
=

n∏
i=1

SI
ϕ

(
ti
ϕ

)SI−1

exp

[
−
∫ tn

0

AI
ϕ

(
y

ϕ

)SI−1

dy

]
=

SIn

ϕnSI

( n∏
i=1

)SI−1

exp

[
−
(
tn
ϕ

)SI]
,

where t1 < t2 < . . . < tn.

(4.2)
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Implementing the method of Maximum Likelihood Method (MLE) of parameter estimation,

we can estimate the parameters SI and ϕ from (4).The likelihood function for (4) when

T1 = t1;T2 = t2, . . . , Tn = tn can be expressed as

L = L(t;SI;ϕ) =
n∏

i=1

fi(t | t1, . . . , ti−1)

=

(
SI
ϕ

)n n∏
i=1

(
ti
ϕ

)SI−1

exp

[
−
(
tn
ϕ

)SI]
.

(4.3)

The parameter, SI is a function of tn, the maximum failure time or the largest value of the

phenomenon of interest. We compute the estimate of SI by equating the partial derivative

of L with respect to SI and setting it equal to zero, then solving for SI, given by,

∂L

∂I
= 0; ŜI =

n∑n
i=1 log

(
tn
ti

) . (4.4)

The parameter ϕ is a function of SI. In a similar way, as above, the estimate of ϕ is computed

by equating the partial derivative of L with respect to ϕ to zero and then, substituting the

estimate of SI, given by,

∂L

∂ϕ
= 0; ϕ̂ =

tn

n
1
Î

. (4.5)

In the context of cancer survivorship, we formally define the Survival Indicator (SI) as

follows.

Definition 4.2.1. The Survival Indicator (SI) for a patient group belonging to a particular

race, from a specific age group is an index based on the survival time, that determines the

improvement or deterioration of survival of that particular group at a specified cancer stage

when any definite treatment or a combination of more than one treatment is administered.

Mathematically, it can be expressed as follows.
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SI lm
jk =

nlm
jk∑n

i=1 log

(
(tn)lmjk
(ti)lmjk

) (4.6)

where SI lm
jk is the SI of the jth, (j = 1 = C, 2 = R, 3 = C + R) treatment group, at Stage

k, k = 1, 2, 3, 4, for age group l, (l = 1 = [40− 59), 2 = [60− 79), 3 = [80− above)) belonging

to race m, (m = 1 ≡ white , 2 ≡ black, and 3 ≡ others).

The term (tn)
lm
jk is the largest time to death, and nlm

jk is the number of patients.

For example, SI12
32 represents the index indicator value for the black patient group, under

age group [80 - above) at Stage II who received only chemotherapy. Now, we can express

the stochastic growth intensity function (SGIF) for any specific group in the following way:

ζ(t;SI lm
jk ;ϕ) =

SI lm
jk

ϕ

(
t

ϕ

)SIlm
jk −1

, SI lm
jk > 0, ϕ > 0, t > 0 . (4.7)

We will show that how SI lm
jk depends on the interpretation of the SGIF ζ.

• Case 1: ζ(t) is decreasing with time,that is, the patient survival rate is

improving as a function of time t

For ζ(t) being a decreasing function of t, we have,

ζ(t) < ζ(t− 1) , for t− 1 < t

⇒
SI lm

jk

ϕ

(
t

ϕ

)SIlm
jk −1

<
SI lm

jk

ϕ

(
t− 1

ϕ

)SIlm
jk −1

⇒
(
t

ϕ

)SIlm
jk −1

<

(
t− 1

ϕ

)SIlm
jk −1

⇒
(
t− 1

t

)SIlm
jk −1

> 0

Replacing t with (t− 1), in the above inequality, we have ( t−2
t−1

)SI
lm
jk −1 > 0. Again, replacing

(t − 1) with (t − 2), in above inequality gives us ( t−2
t−2

)SI
lm
jk −1 > 0. Proceeding in a similar

manner, we end up with ( t1
t0
)SI

lm
jk −1 > 0, where t0 is the initial time of death.
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Arranging all the above inequalities and expressing them in product form gives us,

[(
t− 1

t

)SIlm
jk −1(

t− 2

t− 1

)SIlm
jk −1

. . .

(
t2
t1

)SIlm
jk −1(

t1
t0

)SIlm
jk −1]

> 0

⇒
(

1

tt0

)SIlm
jk −1

> 0

Since, t, t0 > 0 , in order to satisfy the above inequality, SI lm
jk must satisfy, SI lm

jk − 1 < 0 ⇒

SI lm
jk < 1.

• Case 2: ζ(t) is increasing with time, That is, the patient survival rate is

deteriorating as a function of time t.

For V (t) being a increasing function of t, proceeding with the similar logic, we end up with

SI lm
jk > 1.

• Case 3: ζ(t) is constant; that is, the patient survival rate is constant.

For ζ(t) being an independent function of t, proceeding with a similar argument, we end up

having SI lm
jk = 1.

Now, provided the estimates of SI lm
jk and θ, we can calculate the value of the SGIF, zeta(·)

(given in (7)), which is utilized in modeling the survival growth of a specific patient group,

receiving any treatment or combination at any given time t. ζ(t) is a measure of the rate of

change in survival growth as a function of time when a patient deteriorates/improves with

the use of any given treatment (radiation/chemotherapy/combination of both). A decrease

in ζ(t) implies that SGIF is decreasing or an improvement in the survival rate of a patient

diagnosed with pancreatic cancer as a function of time. This means that SI < 1. A rise

in ζ(t) suggests that SGIF is increasing, implying that SI > 1 . This means that the

survival rate is decreasing with respect to time. When there is no change in ζ(t), it implies

that SI = 1; thus death rate is constant, and the NHPP becomes a homogeneous Poisson

process (HPP) (Rigdon & Basu, 2010). Therefore, the behavior of the change in the cancer
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survival growth model is dependent on SI of the intensity function. That is, we can use SI

to monitor the survival rate of patients as a function of time.

4.2.2 Analytical Method for Developing the Relative Change in Intensity (RCI)

The SGIF (ζ(t)) plays a major role in deciding the pattern of the mortality rate of a

group of patients as a function of time under the application of a specific treatment group.

Depending upon the values of the Survival Indicator (SI) (⪋ 1), it can predict that if the

survival rate increases, decreases, or staying constant. However, what can be said about the

SGIF s of two groups of patients receiving two different treatments where both the Survival

Indicator (SI) is less than 1, or greater than 1? In this section, we investigate how the the

SGIF changes for two different (SI), where both (SI) is ≤ 1 or > 1.

For any two different groups (can be of a different race, age-group, cancer stage, or treatment

group) let SI1, and SI2 (for calculation simplicity, we use only one suffix, instead of four)

be the survival indicator for two different groups, and ϕ1 and ϕ2 be the corresponding scale

parameters. The corresponding SGIF s be ζ1(t), and ζ2(t), respectively.

• Case 1: SI1 < SI2

From Equation (4.9), we have,

ζ1(t)

ζ2(t)
=

(
SI1

SI2

)(
θSI2
2

θSI1
1

)
︸ ︷︷ ︸

Constant

t(SI1−SI2)

= Ct(SI1−SI2).

(4.8)

From (10), we see that ζ1(t)
ζ2(t)

is a decreasing function of time, since SI1 ¡ SI2. Let

h(t) = ζ1(t)
ζ2(t)

. Then we have,
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h′(t) =
ζ2(t)ζ1(t)

′ − ζ1(t)ζ2(t)
′

(ζ2(t))2
< 0

=⇒ ζ2(t)ζ1(t)
′ < ζ1(t)ζ2(t)

′

=⇒ ζ1(t)
′

ζ1(t)
<

ζ2(t)
′

ζ2(t)

=⇒ t
ζ1(t)

′

ζ1(t)
< t

ζ2(t)
′

ζ2(t)
.

(4.9)

The term t ζ(t)
′

ζ(t)
in the above expression can be expressed as:

t
ζ(t)′

ζ(t)
= lim

x→t

[
ζ(x)− ζ(t)

x− t

t

ζ(t)

]
= lim

x→t

[
ζ(x)− ζ(t)

ζ(t)

t

x− t

]
= lim

x→t

1− ζ(x)
V (t)

1− x
t

∼=
%∆ζ(t)

%∆t
.

In the above expression %∆ζ(t)
%∆t

is the ratio of relative percent change in ζ(t) with respect

to relative percent change in t. It can also be thought of as the approximate change in the

SGIF ζ(t) for each unit time change. We define the term as Relative Change in Intensity

(RCI). Thus,

RCI = t
ζ(t)′

ζ(t)
(4.10)

From (11), it can also be noted that,

RCI = t
ζ(t)′

ζ(t)

=

[ ζ(t)′

ζ(t)

1
t

]

=
d
dt
logζ(t)
d
dt
logt

(4.11)
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Hence, we can also see RCI as the rate of change of the intensity function ζ(t) in the

logarithmic scale with respect to the rate of the chance of time in the logarithmic scale. Now

we proceed to define the Relative Change in Intensity (RCI) formally.

Definition 4.2.2. RCI is the the ratio of the relative percent change in the death rate ζ(t)

with respect to relative percent change in the survival time t.

Definition 4.2.3. RCI can also be defined as the ratio of the SGIF ζ(t) and the rate of the

survival time in logarithmic scale.

In this context, it is important to note that,

ζ(t)′

ζ(t)
=

d

dt
lnζ(t) (4.12)

Equation (4.12) is the exact rate of change of the log of the intensity function ζ(t) with

respect to time t. From Equation (4.11), we have RCI1 < RCI2, when 0 < SI1 < SI2.

That is, if we have prior knowledge about the survival indicator SI for any two different

patient groups where one is less than the other, we can conclude that the relative change in

intensity (RCI) for the patient group, for which SI is less, is smaller than the competitive

group.

• Case 2: SI1 > SI2:

Following a similar approach as in Case 1, we have RCI1 > RCI2. That is, the relative

change in intensity (RCI) for the patient group which has greater SI index, is greater than

the competitive group.

• Case 3: SI1 = SI2:

Following the similar approach as in Case 1, we have RCI1 = RCI2. That is, the relative

change in intensity (RCI) for two patient groups are the same if they have the same survival

index SI.
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4.2.3 Deriving the Criterion for the stochastic growth intensity ζ(t) and Time t Based on

the Survival Indicator (SI)

Now, we have derived the criterion on relative change in intensity (RCI), we can also

determine the range of time t under Case 1; that is, when SI1 < SI2 assuming ζ1(t) ≤ ζ2(t)

and ζ1(t) ≥ ζ2(t). We have,

ϕSI2
2

ϕSI1
1

=
tn2

(n2)1/ϕ
(n1)

1/ϕ1

tn1

. (4.13)

Combining Equation (4.10) and (4.15), we have

ζ1(t)

ζ2(t)
=

(
SI1

SI2

)
tn2

(n2)1/β2

(n1)
1/β1

tn1

t(SI1−SI2)

= δt(SI1−SI2),

(4.14)

where

δ =
SI1

SI2

tn2

(n2)1/SI2

(n1)
1/SI1

tn1

is a constant quantity. We will now proceed to find the range if t under the following

assumption

ζ1(t) ≤ ζ2(t), and SI1 < SI2.

By writing the above expression, we are assuming that, while comparing any two patient

groups, the group that has the lesser SI index value, has also the lesser decease/death rate

ζ(t). Let us consider the following.

ζ1(t) ≤ ζ2(t)

⇐⇒ ζ1(t)

ζ2(t)
≤ 1

⇐⇒ δt(SI1−SI2) ≤ 1, (from (16))

⇐⇒ t(SI1−SI2) ≤ 1

δ
(as δ > 0)

⇐⇒ (SI1 − SI2)logt ≤ log

(
1

δ

)

96



⇐⇒ logt ≥
log(1

δ
)

(SI1 − SI2)

=
−logδ

(SI1 − SI2)

=
logδ

(SI2 − SI1)
, as (SI1 − SI2) < 0

⇐⇒ t ≥ e
logδ

(SI2−SI1)

=
(
elogδ

) 1
(SI2−SI1)

= δ
1

(SI2−SI1)

(4.15)

Hence, from (4.15),

ζ1(t) ≤ ζ2(t) ⇐⇒ t ∈ [δ
1

(SI2−SI1) ,∞).

Now, let us consider the case when, ζ1(t) ≥ ζ2(t). Then, proceeding in a similar manner as

the previous case, we obtain,

ζ1(t) ≥ ζ2(t) ⇐⇒ t ∈ (0, δ
1

(SI2−SI1) ].

The above conditions are the necessary and sufficient conditions for comparing any two

intensities ζ1(t) and ζ2(t) and obtaining the range of the survival time t. That is, if we

have the prior information about the range of the survival time t of any two specific patient

groups, we can compare their death intensities ζ1(t) and ζ2(t) at time t. Conversely, if we

have the knowledge that the SGIF ζ(t) of any specific patient group is less/more than the

other, we can find the range of the survival time (time to death) for both of the patient

groups. This approach can be extended to more than one patient groups for comparison

purpose.
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4.3 Results

The following tables (Table 4.A, Table 4.B, and Table 4.C) shows the SI values for

Caucasian race group at the four cancer Stages, categorized by three age groups ([40-59),

[60-79), and [80-above)), who receive three treatment options (only chemotherapy (C), only

radiation (R), and the combination of both (C+R)).

Table 4.A: Showing the SI and ϕ Values for the Caucasian Race Groups in Different
Cancer Stages, for Age Group [40-59)

WHITE

Age: [40 - 59)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .54 .007 1.09 1.94 .47 .004

Stage II .45 1.5× 10−5 .41 .008 .36 2.4× 10−7

Stage III .39 1.4× 10−5 .48 .03 .42 .001

Stage IV .33 7.2× 10−10 .29 5.28× 10−6 .37 4.19× 10−6

Table 4.B: Showing the SI and ϕ Values for the Caucasian Race Groups in Different
Cancer Stages,for Age Group [50-79)

WHITE

Age: [60 - 79)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .4 1.74× 10−5 .52 .01 .41 4.2× 10−5

Stage II .4 2.15× 10−7 .37 4.2× 10−5 .46 2.8× 10−6

Stage III .37 4.8× 10−7 .33 7.8× 10−5 .42 2.8× 10−6

Stage IV .3 4.3× 10−12 .32 9.6× 10−7 .43 9.65× 10−6
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Table 4.C: Showing the SI and ϕ Values for the Caucasian Race Groups in Different
Cancer Stages, for Age Group [80-above)

WHITE

Age: [80 - Above)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .37 4.39× 10−5 .41 .0008 .4 .0004

Stage II .4 8.2× 10−6 .43 .0007 .46 .0001

Stage III .4 6.4× 10−4 .5 .02 .53 .002

Stage IV .33 2.2× 10−8 .32 1.5× 10−5 .4 .0004

Figure 4.1: Showing the Failure Intensities for Caucasian Race at Stage I, Under Age
Group [40-59), Who Received Only Chemotherapy, and the group who received
Chemotherapy & Radiation
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From Table 4.A, we see that, at Stage I, for age group [40-59), the SI is .47 for the

patient who received chemotherapy and radiation (C+R) together, which is less than the

SI (.54) of the patient group who received only chemotherapy (C). As a consequence, we

can infer that, the Relative Change in Intensity (RCI) for C+R group is less than the only

C group, which follows from Equation (4.11). In other words, the approximate change in

the failure intensity V (t), for each unit time change for group C+R at Stage I, for age group

[40-59) is less than the group who receive only C for Caucasian race, which implies that

chemotherapy together with radiation has been more effective at Stage I for the particular

age group which is also evident from Figure 4.1 above. It is also important to note that, the

SI = 1.09(> 1) for only radiation (R) group at Stage I implying that the survival intensity

is decreasing with time for the particular age group receiving radiation therapy only which

is not effective with respect to the survival. The importance of our analytical method is,

it can be implemented for any chosen group at any given cancer stage, from any particular

age group receiving any specific treatment. The following tables (Table 5.A, Table 5.B, and

Table 5.C) shows the SI values for Black race group at the four cancer Stages, categorized

by three age groups ([40-59), [60-79), and [80-above)), who receive three treatment options

(only chemotherapy (C), only radiation (R), and the combination of both (C+R)).

Table 5.A: Showing the SI and ϕ Values for the Black Race Groups in Different Cancer
Stages, for Age Group [40 - 59)

BLACK

Age: [40 - 59)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .12 .6 4.52 12.01 .56 .19

Stage II .54 .004 .91 1.15 .48 .001

Stage III .4 .001 .83 1.18 .5 .005

Stage IV .36 4.45× 10−7 .41 .005 .38 .0004
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Table 5.B: Showing the SI and ϕ Values for the Black Race Groups in Different Cancer
Stages, for Age Groups [60-79)

BLACK

Age: [60 - 79)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .4 .0016 1.08 1.19 .43 .005

Stage II .42 .00005 .38 .0046 .53 .001

Stage III .42 .00024 1.19 1.03 .65 .014

Stage IV .35 7.67× 10−8 .32 .0001 .64 .02

Table 5.C: Showing the SI and ϕ Values for the Black Race Groups in Different Cancer
Stages, for Age Groups [80-above)

BLACK

Age: [80 - Above)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .78 .69 .65 .36 1.21 8.19

Stage II .65 .06 .73 .61 .48 .05

Stage III 1.31 1.95 1.39 6.31 .74 1.49

Stage IV .43 .0005 .81 .35 1.2 2.05

From the above Table 5, we notice that the survival index (SI) is greater than 1 for

African-American patients from age group [40-59), at Stage I receiving only radiation therapy

(SI = 4.52), patients from age group [60-79), at Stage I receiving only radiation therapy

(SI = 1.08), patients from age group [60-79), at Stage III receiving only radiation therapy

(SI = 1.19), patients from age group [80-above), at Stage I receiving both chemotherapy

and radiation (SI = 1.21), patients from age group [80-above), at Stage III receiving only
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chemotherapy (SI = 1.31) and, only radiation therapy (SI = 1.39). We also note that at

Stage IV, under the age group [80-above), patients who received both chemotherapy and

radiation (C+R), the SI is 1.2. These results raise red flags regarding implementing the

specific treatments to the specific patient groups of African-American race for which SI is

more than 1, implying that the survival rate is deteriorating for these patients.

Figure 4.2: Showing the Comparison between the Failure Intensities for African-American
Race at Stage I, Under Age Group [60-79), Who Received Only Radiation, and the group
who received Chemotherapy & Radiation at Stage IV, under age group [80-above)

We compared the intensities of two specific groups of African-American patients via

Figure 4.2 above. From the figure, we see that the failure intensity curve of the patients

who received chemotherapy and radiation (C+R) together at Stage IV, under age group

[80-above) lies below than the patients who received only radiation (R) at Stage I, under

age group [60-79). However, the SI (1.2) for C+R group is greater than that of SI (1.08)

for R group, the intensity graph for C+R group lies below the graph of R; which necessarily

means SI1 < SI2 does not imply ζ1(t) < ζ2(t) as ζ(t;SI, ϕ) depends on the time t and

another parameter ϕ. However, as Equation (4.11) suggests, RCI1 < RCI2 if SI1 < SI2.
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In our example, SI1 = 1.08 < SI2 = 1.2. Suppose, we are interested RCI1 and RCI2 for

time t = 3. Then we have

RCI =
ζ ′(t)

ζ(t)
= t(SI − 1)t−1

From the above equation, RCI1(t) = RCI1(3) = 3 × (1.08−1)
3

= .078 and RCI2(3) =

3 × (1.2−1)
3

= .201 > RCI1(3). Hence the relative percentage change in the failure inten-

sity for the patients who received only R at Stage I with respect to the relative percent

change in t = 3 months is approximately 7.8%. On the other hand, the relative percentage

change in the failure intensity for the patients who received both C+R at Stage IV with

respect to the relative percent change in t = 3 months approximately 20%.

The following tables (Table 6.A, Table 6.B, and Table 6.C) shows the SI values for Other

(American Indian/AK Native, Asian/Pacific Islander) race group at the four cancer Stages,

categorized by three age groups ([40-59), [60-79), and [80-above)), who receive three treat-

ment options (only chemotherapy (C), only radiation (R), and the combination of both

(C+R)).

Table 6.A: Showing the SI and ϕ Values for Other (American Indian/AK Native,
Asian/Pacific Islander) Race Groups in Different Cancer Stages, for Age Group [40-59)

OTHERS

Age: [40 - 59)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .55 .74 - - .5 .98

Stage II .59 .02 .96 2.6 .66 .07

Stage III .63 .14 1.44 5.76 .7 .12

Stage IV .35 2.62× 10−6 .33 .02 .54 .02
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Table 6.B: Showing the SI and ϕ Values for Other (American Indian/AK Native,
Asian/Pacific Islander) Race Groups in Different Cancer Stages for Age Group [60-79)

OTHERS

Age: [60 - 79)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .65 .13 .57 .93 .58 .15

Stage II .52 .002 .5 .17 .5 .002

Stage III .51 .003 .5 .13 .61 .01

Stage IV .31 3.4× 10−8 .67 .06 .41 .004

Table 6.C: Showing the SI and ϕ Values for Other (American Indian/AK Native,
Asian/Pacific Islander) Race Groups for Age Group [80-above)

OTHERS

Age: [80 - Above)

Treatment C R C+R

Parameter SI ϕ SI ϕ SI ϕ

Stage I .7 .42 .69 .67 .84 3.19

Stage II .5 .02 .72 .49 .72 .18

Stage III .6 .18 1.75 1.1 1.26 1.96

Stage IV .42 .0003 .77 .3 1.41 1.31

In Table 6.A, the ”-” in Stage I, for age group [40-59) implies that there are insufficient

data points to calculate the SI and ϕ values. From Table 4.3 in Section 4.1, we see that

there is only a single observation that falls under the category. Since any inference based on

a single observation is misleading, we did not calculate the SI and ϕ values for the specific

group of patients. We see that under the age group [40-59) at Stage III, the patients who

received only radiation therapy the SI is 1.44, an indication that the failure intensity is
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increasing. Also, we see the same scenario for the patients belonging to the age group [80-

above) at Stage III who received only radiation (SI = 1.75), for the patients who received

chemotherapy and radiation together (SI = 1.26), and for the patients at Stage IV who

received chemotherapy and radiation together (SI = 1.41).

4.4 Conclusion

In this study, we focused two main aspects.

• Analytical Development in the subject area.

• Data Analysis and Monitoring the survival Time of a specific group of patients.

In Section 2.1, we have defined the Survival Indicator (SI) and explained how it could be

implemented in the survival data of pancreatic cancer patients. We have computed the

Survival Indicators (SI) for all the all cancer stages, categorized by races and age three age

groups. These SI values play a vital role in deciding the mortality rate of patients as a

function of time. We also derived a criterion for the relative change in intensity (RCI) based

on SI. The analytical process determines the behavior of RCI when any two SI ≤ 1 or

≥ 1 for any two specific groups of patients. Finally, in Section 2.3, we have determined the

range of the study time t based on the SGIF ζ(t) of two groups as a function of SI. Our

analytical method is useful for determination of the order of any two SGIF s ζ1(t) and ζ2(t)

(which one is greater than other) based on the time range (0, δ
1

(SI2−SI1) ] or [δ
1

(SI2−SI1) ,∞).

In our study, there are thirty-six groups of patients for each race, totaling (36 × 3 = 108)

patient groups. A comparison of the SGIF s can be made between any two groups knowing

the time range without actually computing the SGIF s. Conversely, if we don’t have the

information regarding the specific survival time t but we know two SGIF s ζi(t) and ζj(t) for

any two specific groups i and j, (i ̸= j = 1, 2, . . . , 108 ) out of 108 groups, we can estimate

the interval for the specific time to death. The whole process can be summarized in an

algorithmic form using the following steps:
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1. Determine the specific two groups (i and j , i ̸= j = 1, 2, . . . , 108) as per requirement.

2. Determine the number of individuals ni and nj for the i
th and jth groups, respectively.

3. Arrange the observations from the lowest to highest in each groups.

4. Determine the highest observations in each groups tni
and tnj

.

5. Compute SI i and SIj using Equation (4.6).

6. Compute δ = SIi

SIj

tnj

(nj)
1/SIj

(ni)
1/SIi

tni
.

7. ζi(t) ≤ ζj(t) ⇐⇒ t ∈ [δ
1

(SIj−SIi) ,∞) and ζi(t) ≥ ζj(t) ⇐⇒ t ∈ (0, δ
1

(SIj−SIi) ], where

ζi(t) and ζj(t) are the SGI s for ith and jth groups at time t.

8. SGF1(t) ≤ SGF2(t) ⇐⇒ t ∈ [δ
1

(SI2−SI1) ,∞)

SGF1(t) ≥ SGF2(t) ⇐⇒ t ∈ (0, δ
1

(SI2−SI1) ]
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Chapter 5: S&P 500: Real Data-Driven Analytical Predictive Model For

Health Business Segment (HBS).

The S&P consists of 500 large-cap companies that are selected based on size, liquidity,

and industry. It is very important to all investors in the stock market. S&P consists of

eleven business segments, which are classified according to the type of industry. Investors

look at S&P 500 to assess the overall behavior of the stock market. We are concerned with

the HBS of the S&P 500, which consists of 59 large-cap health companies. The HBS is the

second largest segment that constitutes the S&P 500, about 14.6% of all large-cap health

companies. The HBS incorporates businesses that supply medical services, manufacturing

medical equipment, development of drugs, provide health insurance, etc. It is one of the

important sectors and contributes significantly to the U.S economy, approximately a fifth of

the overall gross domestic product (GDP). Thus, healthcare stock behavior has an enormous

impact on the global economy; our objective is to develop a non-linear predictive model

to predict the weekly average stock price of the 59 stocks. We utilize the average Weekly

Closing Price (WCP) of all the HBS from August 2017 to December 2019. In building our

analytical model, we have identified six financial and four economic indicators along with

thirty-one interactions of the indicators that contribute significantly to the WCP of the HBS

stocks. We rank all forty-one indicators as to the percentage of contribution to the WCP.

Furthermore, we utilize an analytical optimization process to determine the actual values of

these indicators that will maximize the WCP. The proposed analytical model was evaluated

by several statistical methods, and it is of very high quality, approximately 96.47% efficient.
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5.1 Introduction

Stock price maximization is one of the most significant attributes for value maximization

objectives. Stock prices are the most distinguishable of all financial measures that can

be used to evaluate the performance of a number of companies. The firms persistently

update their information regarding the stock price to reflect any new financial details. Thus,

managers are repeatedly judged about their actions, with the benchmark being the stock

price performance. Stock prices reflect the long term movement of business decisions of a

firm. When firms’ stock prices are maximized, investors can realize capital gains instantly by

selling their shares of the company. An increase in the stock price is frequently attributed to

management’s value creation performance. The stock price oscillates over time by showing

some dramatic ups and downs. To stay on top of their assets, some investors like to regularly

watch these movements. However, if one doesn’t keep a track of the stocks on daily basis,

keeping track of the net change percentage over time is vital to sustain a prosperous portfolio.

Healthcare is a major requirement for everyone, or at least almost everyone needs it at

some point in their lives, and when there is something that everybody requires, there’s a

massive opportunity for the investors. More than 7.8 trillion is spent on healthcare globally.

Approximately half of that total, 3.5 trillion, is spent in the U.S.Because the healthcare

sector is developing at a higher rate than the global economy, these figures will presumably

be considerable by the end of the decade. The indicators we have included in our model have

significant relevance in the literature of finance. We have considered six financial indicators

and four economic indicators in our proposed model, which will be described in detail in

the next section. Many researchers and business analysts strongly believe that dividend

yield plays a crucial role in stock returns. Stocks with high dividend yields usually enjoy

attractive return advantages over their lower-yielding counterparts. One of the most crucial

indicators to influence the return is the price to earnings ratio. Studies[85] have found

a direct relationship of price to earnings ratio(P/E ratio) with the stock return, and the

returns were changed more by P/E ratio than Price/Earnings-to-Growth(PEG ratio), and
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thus, stock returns of firms are more affected by the P/E ratio than PEG ratio. Lemmon and

Portniaguina[87] have shown that consumer’s confidence exhibits forecasting power for the

stock return. Tang and Shum[126] have found a significant relationship between the ups and

downs of individual stock and the beta risk. We have also considered the US GDP and US

personal saving rate as our indicators in the development process of our model as personal

saving rate and GDP of a country are vital for a nation as a whole[52]. This is because

the current saving rate influences the future consumption and investment in financial assets.

In our developed analytical model, the dependent variable is the average weekly closing

price for the 59 healthcare stocks, thus, the developed analytical model contains significant

contributable variables (indicators) and significant interactions of the indicators. Also, we

ranked the indicators according to their percentage of contribution to the response. The

validation and quality of our proposed analytical model have been statistically evaluated

using R square (R2), R square adjusted (R2
adjusted), and root mean square error (RMSE).

We also performed residual analysis (section 2.3) to validate our proposed model. To the

best of our knowledge, no such statistical model has been constructed to predict the weekly

percentage change in healthcare stocks using the proposed logical framework. Therefore,

having an appropriate statistical model for the prediction of the weekly average stock price

of HBS is important.

5.2 Methodology

5.2.1 The Data and Description of The Indicators

The data of HBS of the S&P 500 that was used to build our analytical model was ob-

tained from the following sources:

1. yahoo finance (https://finance.yahoo.com/)

2. U.S Bureau of Economic Analysis (https://www.bea.gov/)
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3. US Bureau of Labor Statistics (https://www.bls.gov/).

Our database that can be summarized by the following schematic diagram.

Figure 5.1: Price Chart of The 59 Health Care Stocks

There were 315 pieces of information related to the top 59 healthcare stocks. In struc-

turing the data matrix in a meaningful way, we took the average of all 59 stocks for all the

indicators and response, WCP. Our data contains average weekly (five days) information.

Our data includes the information from October 2nd, 2017 to December 31st, 2018. We have

collected data based on six financial indicators and four economical indicators. A five day

period moving average (MA) method was used for each of the indicators to structure our

data. One of the main goals of our study is to understand what indicators and their in-

teractions significantly affect the variation of the stock price of the healthcare management

system as a whole.

We have ten indicators and thirty-one interactions that drive the average of WCP

(Weekly Closing Price) as a measure of the response.

The description of the attributable variables (indicators) that the data was collected on is

given below.
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5.2.1.1 Financial Indicators

The six financial indicators that we have found significantly contribute to WCP are:

1. Div Yield(X1): The dividend yield is a financial measure that demonstrates how

much a company disburses in dividends each year with respect to its stock price. It

is the annual dividend rate divided by the current share price. It is expressed in a

percent form. For instance, if the current stock price is $50, and the annual dividend

is $1, the dividend yield is 2 percent.

2. Beta(X2): Beta is a risk measure of a stock’s volatility of return with respect to the

overall market. In general, a stock with a higher beta value tends to have a higher risk

and also higher expected returns. It is defined as follows:

Beta = Cov(RI ,RM )
V ar(RM ) ,

where RI is the return on an individual stock, and RM is the return on the overall

market. Cov(·, ·) is the covariance between RI and RM , i.e., how the changes in stock

return are related to the changes in the market return, V ar(·) is the variance measure

implying how far apart the market data is scattered from their average market return.

3. PE(X3): The Price-to-Earnings Ratio (P/E ratio) is the ratio that measures the cur-

rent share price of a stock with respect to its earning per share (EPS). It is defined as

follows:

P/ERatio = Market value per share
Earning per share .

4. FSCORE(X4): The Piotroski F Score or Piotroski Score was developed by Chicago

Accounting Professor Joseph Piotroski, who devised a scale, according to some spe-

cific aspects of the company’s financial statements. The Piotroski score is a discrete

numerical score between 0 to 9 that reflects nine criteria used to decide the strength
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of a firm’s financial stability. The score is utilized to determine the best value stocks,

with nine being the best and zero being the worst. The nine criteria are as follows:

• Positive return on assets in the present year (1 point).

• Positive operating cash flow in the present year (1 point).

• Higher return on assets (ROA) in the current period compared to the ROA in the

previous year (1 point).

• Cash flow from operations is higher than Net Income (1 point)

• Lower ratio of long term debt to the current period compared value in the previous

year (1 point).

• The higher current ratio in the current year relative to last year (1 point).

• No new shares were issued in the previous year (1 point).

• A higher gross margin in contrast to the previous year (1 point).

• A higher asset turnover ratio compared to last year (1 point).

The company’s profit potential is evaluated with the first four criteria. The fifth and

sixth criteria focus is on the solvency (including debt) of the company. The last two

rules look at the operational efficiency of the company. Companies with an F score of

2 or lower are deemed to be very weak in performance, and companies that score 8 or

9 are considered stable and influential to the financial market.

5. EBITDA(X5): EBITDA, or Earnings Before Interest, Taxes, Depreciation, and Amor-

tization, is a measure of a company’s overall financial performance and is used as an

alternative to simple earnings or net income in some circumstances. EBITDA is fre-

quently used to measure corporate profitability. It is defined as follows:

EBITDA = NI + I + T +DE + AE = OP +DE + AE,

112



where, NI = Net Income, I = Interest, T = Taxes, DE = Depreciation expense, AO

= Amortization expense and OP = NI + I + T .

6. FCF(X6): Free Cash Flow(FCF)(in Billions) characterizes the generated cash of a

company after deducting away the purchase of assets such as property, equipment, and

other major investments from its operating cash flow. Free cash flow is a key mea-

surement since it describes how productive a company is at generating cash. Investors

utilize free cash flow to measure whether a company might have sufficient cash, after

all the capital expenditures, to pay investors through dividends and share buybacks.

5.2.1.2 Economic Indicators

The four economic indicators that we have found to significantly contribute to WCP are:

1. US GDP(X7): Gross domestic product of the United States (in trillons).

2. US ICS(X8): The Index of Consumer Sentiment, ICS, or economic well-being was

developed at the University of Michigan Survey Research Center to measure the confi-

dence or optimism (pessimism) of consumers in their future well-being and upcoming

economic conditions. The index measures short and long-term expectations of business

conditions and the individual’s perceived economic well-being. Evidence[69] indicates

that the ICS is a leading indicator of economic activity as consumer confidence seems

to pave the way for major spending decisions.

3. US PSR(X9): The U.S. Personal Saving Rate PSR is personal savings as a percentage

of disposable personal income. In other words, it’s the percentage of people’s incomes

left after they pay the essential expenses. The U.S. Bureau of Economic Analysis

(BEA) publishes this rate.

4. US INFL(X10): The Inflation Rate, INFL, is defined as the percentage increase or

decrease in prices(value of a currency) in the course of a given time period, generally, a
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month or a year. The percentage indicates how quickly prices rose during the specified

period. For instance, if the inflation rate for a gallon of gasoline is 2.5% per year,

then gasoline prices will be 2.5% higher next year. Inflation [131] is one of the major

metrics used by the US Federal Reserve to estimate the health of the economy and

globalization.

In developing the proposed analytical model for the average stock price of the health segment

as a function of the different indicators, one of the main assumptions is that the response

variable WCP should follow the Gaussian probability distribution. From the following Q-Q

plot in Figure 5.2, we see that the values of the response WCP is positively skewed and does

not entirely follow a Gaussian probability distribution.

Figure 5.2: Q-Q Plot Of The Response WCP

We have also shown through goodness-of-fit testing (Shapiro-Wilk normality test, a p-

value = 6.4×10−11) that the subject data does not follow the normal probability distribution

as well. Thus, we must address this issue.
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5.2.2 Development of the Analytical Model

In developing the analytical model, our main goal is to express our response variable

WCP in terms of a non-linear mathematical function of all indicators with a high degree of

accuracy. Thus, we proceed to develop the statistical model which is given by the average

weekly stock price as a function of the ten indicators which we will show that make a

significant contribution to the WCP and all possible interactions as previously discussed. The

general analytical form of such model that includes all possible indicators and interactions

can be expressed by:

WCP = β0 +
∑
i

αixi +
∑
j

γjkj + ϵ ,

where β0 is the intercept of the model, αi are the coefficients (weights) of the ith indi-

vidual attributable variable xi, γj is the coefficient of jth interaction term kj and ϵ denotes

the random disturbance or residual error of the model. One of the main assumptions in

constructing our model is that the response variable WCP should follow the Gaussian prob-

ability distribution. As we illustrated above, the dependent variable WCP does not support

the Gaussian probability distribution. Therefore, we apply a non-linear transformation to

the response variable to determine if the transformation can adjust the data of the response

to follow a normal probability distribution. We used the Johnson SB transformation[106] to

address the problem which results in equation 5.1, below:

z = γ + δln
(

x−ϵ
λ+ϵ−x

)
, ϵ < x < ϵ+ λ

and

TWCP = .18 + 0.5ln
( x− 96.55

56.63 + 96.55− x

)
. (5.1)
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Here, TWCP represents the new response variable(transformed) after Johnson’s Trans-

formation has been applied. The transformed data were tested and indeed follow the Gaus-

sian probability distribution. Thus, we proceed to estimate the coefficients (weights) of the

actual indicators for the transformed data as shown in equation 1. To develop our statistical

model, we initially begin with the full statistical model, which included all ten indicators

as previously defined and all possible interactions between each pair of indicators. Thus,

at first, we start structuring our model with
(
n
k

)
= 45(n = 10, k = 2) potential interaction

terms and ten indicators. While we began with the full statistical model, as we mentioned

above, we have applied the process to determine the most significant contributions of both

the individual indicators and interactions by eliminating the less important indicators and

interactions gradually. We used the backward elimination method for this purpose, which

is deemed one of the best traditional methods for a small set of feature vectors to tackle

the problem of overfitting and perform feature selection. To get better accuracy, we use the

log transformation of the indicator PE (X3) to reduce its high variability. Our statistical

analysis has shown that all ten indicators significantly contribute to the response, WCP. We

now proceed to identify the significant interactions of all ten indicators. Testing the 45 pos-

sible interactions of the indicators we found that 31 among them to significantly contribute

to the response. Thus, the best proposed statistical model with every significant indicator

and interaction that accurately estimates the response WCP are ten indicators individually

that significantly contribute and thirty-one interaction terms. Hence, the best preferred an-
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alytical model with all significant indicators and interactions that accurately estimates the

weekly average stock price of HBS along with estimates of the corresponding weights is given

by the following analytical model.

̂TWCP =



.0003− 0.002X1 + .038X2 − .04log(X3)

−0.03X4 − 0.0001X5 + .0034X6 − 0.04X7

−0.26X8 − 0.03X9 − 0.02X10 + .51X1X3

+.01X1X5 − .54X1X6 + .29X1X7 + 8.2X1X8

−.36X1X9 − .35X1X10 − .33X2X3 + .25X2X4

−.88X2X6 − .014X2X10 + .9X3X5 − .2X3X7

+4.96X3X8 + .38X4X5 − .2X4X6 + 5.91X4X7

+1.1X4X8 − 8.38X4X9 − .12X4X10 + .02X5X7

+.33X5X8 + .015X5X9 − .72X6X7 − .13X6X8

−.54X6X9 + .32X6X10 − 5.74X7X8

+9.8X7X10 − 2.2X8X9 + .36X9X10

(5.2)

The TWCP estimate is obtained from equation (5.2) above and is based on the Johnson

transformation of the data; thus, we will utilize the anti-transformation on equation (3) to

estimate the desired, predicted value of the average weekly stock price (WCP) as follows:
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ŴCP = ϵ̂+
λ̂

1 + exp
(

̂TWCP−γ̂

δ̂

) .

ŴCP = 96.55 +
56.63

1 + exp
(

̂TWCP−0.18
0.5

) .

(5.3)

The proposed analytical model will help social researchers, economists, and financial ana-

lysts to understand how the weekly stock price varies when any one of the ten indicators is

varied, keeping the other indicators fixed. Similarly, with the significant interactions. Most

commonly, it will estimate the predicted estimates of the response of WCP given the indi-

cators fixed at a specified level. For example, given, X1 = 1.36, X2 = 1.1, X3 = 48.33, X4 =

6.27, X5 = 3.88, X6 = .94, X7 = 21.046, X8 = 94.04, X9 = 7.86, X10 = 1.694, we obtain

the predicted response value as 97.03 (from equation (3)). So, given all the values of the

indicators, fixed at a particular level, the weekly average stock price for all healthcare stocks

is $97.03. Furthermore, we illustrate the percentage that the indicators and the interactions

contribute to the response , WCP, as we rank them according to their importance (weights),

which is shown below in Table 5.1.

The ranking of the indicators that drive the WCP of the HBS is important to the investor.

That is, monitoring the behavior of the indicators with respect to current existing data can

predict the direction of WCP. Also, the individual health companies that constitute the

HBS can utilize the information to increase their company’s stock value by concentrating on

improving the indicators that contribute most to the WCP. It would also be interesting to

compute the percentage of contribution of each indicator individually, combining it with the

other indicators, and rank them with respect to the contribution of the response, WCP with

reference to Table 5.1. Based on the number of occurrences of each of the ten indicators and

their interactions in model 2, we add the contribution percentage to the response, WCP. The

total sum of the fourth column of Table 5.2 is more than 100 since we have considered the

repeated terms (for example, while determining the percentage of contribution of GDP (X7),
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Table 5.1: Ranking of the Indicators and the Interactions with Respect to the Percentage
of Contribution to the Response WCP

Rank Indicators Contr.(%)

1 FCF ∩ US ICS 4.53

2 FSCORE ∩ US INFL 4.15

3 EBITDA ∩ US ICS 3.89

4 GDP ∩ US ICS 3.63

5 PE ∩ US ICS 3.41

6 US PSR ∩ US INFL 3.34

7 FSCORE 3.34

8 EBITDA 3.27

9 BETA ∩ US INFL 3.07

10 FCF 3.05

11 FCF ∩ US INFL 3.03

12 DIV Y IELD 2.86

13 US ICS 2.71

14 EBITDA ∩ US PSR 2.69

15 BETA 2.66

16 US ICS ∩ US PSR 2.62

17 DIV Y IELD ∩ US ICS 2.51

18 BETA ∩ FSCORE 2.49

19 PE ∩ EBITDA 2.48

20 DIV Y IELD ∩ EBITDA 2.47

Rank Indicators Contr.(%)

21 DIV Y IELD ∩ PE 2.41

22 PE 2.35

23 DIV Y IELD ∩ FCF 2.27

24 BETA ∩ PE 2.24

25 BETA ∩ FCF 2.20

26 GDP 2.18

27 FSCORE ∩ US PSR 2.14

28 US PSR 2.10

29 US INFL 2.07

30 US ICS ∩ FSCORE 2.02

31 DIV Y IELD ∩GDP 1.97

32 PE ∩GDP 1.95

33 DIV Y IELD ∩ US PSR 1.92

34 FSCORE ∩ EBITDA 1.87

35 FSCORE ∩ FCF 1.84

36 DIV Y IELD ∩ US INFL 1.82

37 GDP ∩ US INFL 1.75

38 FSCORE ∩GDP 1.72

30 FCF ∩ US PSR 1.63

40 EBITDA ∩GDP 1.62

41 FCF ∩GDP 1.59
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we considered the interaction term X7X1 and other interaction terms with X7 present in

model 2. Also, while determining the percentage of contribution of DIV Y IELD(X1), we

considered the interaction term X1X7 and other interacting terms with X1 present in model

2. We did the same for all other indicators.

Table 5.2: Ranking of the Indicators With Respect to The Percentage of Contribution to
The Response Considering the Number of Occurrence in Model (2), Individually, and
Interacting with Other Indicators

Rank Indicators No. of Occurrence Contr.(%)

1 US ICS(X8) 8 25.32

2 FCF (X6) 8 20.14

3 FSCORE(X4) 8 19.57

4 US INFL(X10) 7 19.23

5 EBITDA(X5) 7 18.29

6 DIV Y IELD(X1) 8 18.23

7 US PSR(X9) 7 16.44

8 GDP (X7) 8 16.41

9 PE(X3) 6 14.84

10 BETA(X2) 5 12.66

To assess the quality of the proposed analytical model, we use both the coefficient of

determination, R2, and adjusted R2, which are the critical criteria to evaluate the model

accuracy. The regression sum of squares (SSR) measures the variation that is explained by

our proposed model. The sum of squared errors (SSE), also termed as the residual sum of

squares, is the variation that remains unexplained. We always try to minimize this error in

a model The total sum of squares is defined as (SST) = SSE + SSR. R2, the coefficient of
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determination is defined as the proportion of the total response variation that is explained

by the proposed model, and it measures how well the regression process approximates the

real data points. Thus, R2 is given by

R2 = 1− SSE
SST .

However, R2 itself does not consider the number of variables in the model and also, there

is the problem of the ever-increasing R2. To address these issues, we use the adjusted R2,

which considers the number of parameters and is given by

R2
adj = 1−

[
(1−R2)(n−1)

n−k−1

]
,

where n is the number of points in our data sample, k is the number of independent regressors,

i.e., the number of indicators in the model, excluding the constant term. For our final

statistical model, the R squared is 96.74%, and R squared adjusted 96.03%. Both R

squared and adjusted R squared is very high and very close to each other in our model.

That is, the developed statistical model explains approximately 97% of the variation in

the response variable, a very high-quality statistical model. Similarly,the indicators that we

have included in the model, along with the relevant interactions, estimates approximately

97% of the total variation in the response variable WCP. The Residual Standard Error

(RSE) represents the approximate difference between the observed and predicted outcomes

in the proposed model. We obtained an RSE of .21, which implies that the observed response

value differs from the predicted response value by .21 on the average. In Table 1, we rank the

individual risk factors and interactions(a total of forty-one terms excluding the intersection

from equation (3)) with respect to their percentage of contribution to the estimated response

WCP by our proposed non-linear analytical model.

121



5.2.3 Residual Analysis

Once the statistical model has been developed, it is important to check the model assump-

tions by performing residual analysis. In our case, we have proposed a multiple non-linear

statistical model, which is very useful and accurately conveys some important information

on the subject matter.

5.2.3.1 Mean Residual

The residual error of the proposed model, that is,

ϵ̂ = residual = observed value-predicted value = y − ŷ ,

where y and ŷ are the observed and predicted response. ê is the estimated residual error from

the linear fit. The sum of the residuals equals zero, assuming that the regression function

is actually the “best fit.” In our case, the mean residual is 3.8 ∗ 10−18, implying that it is

almost zero as required and attests to the quality of the developed model.

Figure 5.3: Normality of Studentized Residual Plot
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5.2.3.2 Normality of the Residuals

One important assumption of our developed model is that the residuals follow the Gaus-

sian probability distribution. From Figure 5.3, we see that the studentized residuals follows

a normal pattern.

5.3 Validation of The Proposed Model

We developed our analytical model on 80% training data and validated the model based

on 20% testing data. In the testing data(validation data), the test error is the average error

that occurs from using the analytical method to predict the response on a new observation.

That is a measurement that was not used in training the method. The test error addresses

the consistency and accuracy of the analytical model.

Moreover, we performed repeated ten-fold repeated cross-validation(10 times) for our

validation testing. The primary objective is that we will use 10-fold cross-validation, then we

repeated cross-validation ten times, where each of the repetition folds are split differently. In

10-fold cross-validation, the training set is divided into ten equal subsets. One of the subsets

is taken as the testing set in turn, and (10-1) = 9 subsets are taken as a training set in the

proposed model. The mean square error E1 is computed for the held out set.

This procedure is repeated 10 times; each time, a different group of observations is treated

as a validation set. This process results in 10 estimates of the test error, Ei, i = 1, . . . 10.

The average error of each set throughout the cross-validation process is termed as a cross-

validated error. The Figure 5.4 below, illustrates briefly the idea of 10 fold repeated cross-

validation, where Ei, i = 1, . . . 10 is the mean square error (MSE) in each iteration and

ACVE is the average cross-validated error.
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Figure 5.4: Brief Illustration Of Repeated Ten Fold Cross Validation

In the validation stage, a high R2 and low RMSE attests to the good quality of a model.

Also, it is expected that the cross-validated error (RMSE) and the accuracy (R2) remains

consistent throughout different repeated folds. The following Figure 5, illustrates how the

R2 and RMSE varies in the different folds of the test data.

Figure 5.5: Variation of R2 and RMSE in Different Folds

The above Figure 5.5, illustrates that our R2 is high and RMSE remains low for different

repeated cross-validated folds as expected. Hence, we can conclude that the accuracy of the

proposed model is very consistent.
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Thus, we have developed a non-linear analytical predictive model for all the fifty-nine

healthcare stocks with a high degree of accuracy, which is a function of the combination

of the financial and economic indicators along with the significant interactions of indicators

that drive the ups and downs of the health segment of S&P 500. In the next section,

we will present some methods which will optimize(maximize) our model response(objective

function). We will also find the optimum values of all contributing indicators that lead to

the optimization of WCP of all the healthcare segment.

5.4 Analytical Method to Optimize the WCP of the Health Business Segment

Once we have developed a high-quality model that identifies the financial and economic

indicators and their interactions that predicts the WCP, we proceed to determine the values

of the indicators that will maximize the response, WCP. The analytical process is discussed

below.

5.4.1 Analytical Approach Using the Desirability Function

We shall use the process of the desirability function for the optimization of the response,

WCP, of our proposed model. The desirability functions approach, initially was proposed by

Harrington (1980)[60], and have been introduced in the literature with respect to Response

Surface Methodology (RSM). The desirability function transforms each of the estimated

response Yi(x) to a desirability value di(Yi), where 0 ≤ di ≤ 1. For an individual response

Yi(x), a desirability function di(Yi) takes on values within [0,1]. di(Yi) = 0, represents

entirely an undesirable response Yi and di(Yi) = 1, represents a completely desirable or ideal

response. The value of di(Yi) increases as the ”desirability” of the corresponding response

increases. The individual desirabilities are then merged together using the geometric mean,

which gives the overall desirability function, that is,

D = [
∏k

i=1 di(Yi)]
1
k ,

125



where k denotes the number of responses. In our model, k = 1, the WCP.

Depending on whether a particular response Yi is to be maximized, minimized, or assigned a

target value, different desirability functions di(Yi) can be used. A useful class of desirability

functions was proposed by Derringer and Suich,[42]. Let Li, Ui and Ti be the lower, upper,

and target values, respectively, that are desired for response Yi, with Li ≤ Ti ≤ Ui.

If there is a specific target set up for the response, then its desirability function is given by,

di(Ŷi) =



0 , if Ŷi(x) < Li(
Ŷi(x)−Li

Ti−Li

)s

, if Li ≤ Ŷi(x) ≤ Ti(
Ŷi(x)−Ui

Ti−Ui

)t

, if Ti ≤ Ŷi(x) ≤ Ui

1 , if Ŷi(x) > Ui ,

(5.4)

where s and t in the above equation determines how important it is to hit the target.

For t = s = 1,the desirability function increases linearly towards the direction of Ti. For

s < 1, t < 1, the desirability function is convex, and for s > 1, t > 1, the desirability function

is concave[42]. Our objective is to maximize the response, WCP; Thus, the individual

desirability function will be,

di(Ŷi) =



0 , if Ŷi(x) < Li(
Ŷi(x)−Li

Ti−Li

)s

, if Li ≤ Ŷi(x) ≤ Ti

1 , if Ŷi(x) > Ti ,

(5.5)
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where Ti and Li are chosen by the investor. We propose the following five step algorithm to

optimize the response, WCP based on the desirability function method:

1. Develop the statistical model that very accurately predicts the response, WCP, driven

by a set of significant indicators.

2. Obtain the constraints on input indicators, for a < Yi < b and c < Xi < d; Y being

the response and x being the indicators.

3. Define the desirability function(s) di(Yi) for the response(s) based on the optimization

objective.

4. Obtain the optimal values of the response by maximizing the desirability function with

respect to the controllable input indicators.

5. Validate the optimization process based on the coefficient of variation R2 and the

R2
Adjusted.

5.4.2 Numerical Results

Our data-driven non-linear analytical model is a function of six financial indicators and

four economic indicators along with 31 interactions of the indicators. After developing the

predictive model with high accuracy, our goal is to maximize the response WCP and find

the optimum values of the indicators at which the response is being maximized. We proceed

to maximize WCP (within its domain) in the model (5.3), Section 5.2.2. The analytical

method of optimization requires the constraints of optimization, as defined in Table 5.3 for

the ten indicators. These constraints are the lower and upper boundaries of each of the ten

individuals that are used in the modeling. In our optimization technique, we want to make

sure that the optimized value of the response WCP falls within its domain, given the specific

values of the indicators. All the numerical computations of the analytical optimization have

been done using Minitab 19.2.0 software.
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Table 5.3: Constraints On The Indicators Showing the Lower and Upper Limits

Indicators Constraints

Div Y ield(X1) 1.02 < X1 < 1.45

Beta(X2) .84 < X2 < 1.28

PE(X3) 36.57 < X3 < 90.5

FSCORE(X4) 3.55 < X4 < 6.67

EBITDA(X5) 3.88 < X5 < 4.24

FCF (X6) .55 < X6 < 1.11

US GDP (X7) 19.8 < X7 < 21.15

US ICS(X8) 91.2 < X8 < 101.4

US PSR(X9) 6.7 < X9 < 8.3

US INFL(X10) 1.55 < X10 < 2.95

Table 5.4: Estimated Maximized Response with Optimum Values of the Indicators

Response & Indicators Optimum Values

WCP (Estimated) $155

Div Y ield 1.24

Beta 1.06

PE 63.53

FSCORE 5.11

EBITDA 4.06

FCF .832

US GDP 20.5

US ICS 96.3

US PSR 7.5

US INFL 2.61
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Table 5.3, above, provides the lower and upper limits of all ten indicators used in our

study. Next, using equation (5) of Section 4.1, we will maximize the estimated response

from the model (2) and obtain the optimum values of all ten indicators. The following Table

5.4 provides the estimated maximum response WCP along with the optimum values of the

indicators.

Thus, with these values of economic and financial indicators, we are at least 95% certain

that the response WCP will be maximum. Furthermore, we can tract the numerical behav-

ior of the indicator to determine the direction of WCP. The following Table 5.5 provides

the values of R2, R2
Adjusted and desirability value along with the 95% confidence and 95%

prediction interval of the estimated response, WCP.

Table 5.5: Some Useful Results Related to The Optimized Response

Estimated Maximized Value $155

Desirability 1

R2 98.84%

R2
Adjusted 97.85%

95% CI (139.57, 170.43)

95% PI (139.06, 170.94)

Thus, with 98% accuracy we have estimated the optimum values of the individual indi-

cators for which the estimated response in $155. Also, we are at least 95% certain that the

maximum WCP is in between $140 and $170. Thus, this analytical process in estimating

the WCP with very high degree of accuracy is very important to the investors to develop

desired strategies by monitoring the behaviors of the financial and economic indicators of

Health Segment of the S&P 500.
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5.4.3 Graphical Visualization of the Optimization Results

One important aspect of the optimization results is to assist investors to obtain three-

dimensional views of the directional behaviors of the identified indicators as they affect the

response, WCP. We obtained response surface plots (contour and surface plots) that are very

useful in order to obtain desired values of the response and optimum conditions for any two

indicators keeping the others fixed at the desired level. In a contour plot, the response surface

is observed as a two-dimensional plane where all the points that have a similar response are

connected to create contour lines of constant responses. A surface plot generally exhibits a

three-dimensional view that may provide a clearer picture of the response’s behavior (WCP).

Since, the four economic indicators are not controllable, we will not include those plots and

only focus on the combination of six financial indicators included in model (5.3) of Section

5.2.2. In this section, we will illustrate different contour and surface plots that will help

investors to understand the nature of the relationship between any of the two indicators and

the response (WCP). The following six figures (Figure 5.6-Figure 5.11) describe the variation

of the estimated response WCP as any single or two indicators varies, keeping the others

fixed at a particular level. The usefulness of these visual representations can be interpreted

as follows:

Maximizing stock prices and maximizing corporate profit are the essential goals for any

company. Both are needed for a company to flourish, and both reflect the overall health

and future prosperity of the company. The objective of health companies is to maximize

the price of their stocks to comply with their share holders’ wishes. The stock price is the

discounted sum of all future cash flows. Thus, it reflects all consequences of any decision a

company takes at present. Even if it is a current measure, it also reflects the future. So,

stock price maximization is vital for shareholders’ wealth. Any financial investor willing to

invest in the health care segment of S&P 500 may use the following visual representations to

select the stocks based on the interacting behavior of any two financial indicators keeping the

other fixed at the desired level. Since maximizing stock price account for the maximization
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of shareholders’ wealth, financial managers of a particular health care company of S&P 500

may be interested in looking at the specific ranges of the indicators at which the response,

WCP, is maximized. The plots also provide the numerical ranges of the indicators within

which the response WCP has increasing/decreasing behavior. These pieces of information

are vital to the managers and financial analysts of the companies to make strategic decisions

regarding the overall financial health and long term viability of the company.

Figure 5.6: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as Div Yield and PE Varies Keeping Other Indicators Fixed at a Specific
Level

Figure 5.7: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as Div Yield and FCF Varies Keeping Other Indicators Fixed at a
Specific Level
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From the Figure 5.6, we see that the estimated response, WCP, is maximized when

Div Yield is more than approximately 1.3, and PE is more than approximately 82, keeping

all other indicators fixed at a desired level. Also, as we keep on decreasing the Div Yield

up to 1.1 and keep increasing the PE up to 70, WCP keeps on increasing. This finding

may be explained by the fact that with the increase in price-to-earnings (PE) ratio, the

price-to-dividends ratio rises as well, thus lowering the dividend yield.

Figure 5.7 above describes how the response WCP changes with the variation of Div Yield

and FCF. The response WCP is maximized (light green region, $120-$160) where FCF

remains approximately within the interval [.9,1] throughout the range of Div Yield. The

WCP has an increasing pattern with the increase of FCF. Any financial investor willing to

invest in the health care segment of S&P 500 may use the above visual representation to

select the stocks whose FCF falls within the specified range.

Figure 5.8: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as Beta and PE Varies Keeping Other Indicators Fixed at a Specific Level

Figure 5.8 above describes how the response WCP changes with the variation of Beta

and PE. The response WCP is maximized ($140-$160) where Beta remains approximately

less than .95 and PE remains approximately more than 71. There is an increasing pattern

in WCP with increasing PE ratio and decreasing Beta risk. Hence, we can infer that the

response is maximized when the Beta risk is low and the PE ratio is high.
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From the following Figure 5.9, we see that the estimated response WCP is maximized

in the region where Beta lies approximately below .91 and FSCORE lies approximately 5.5

and below. Also, WCP has an increasing pattern as we keep on decreasing Beta gradually.

Figure 5.9: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as Beta and FSCORE Varies Keeping Other Indicators Fixed at a
Specific Level

From the following Figure 5.10, we see that the estimated response WCP is maximized in

the region where Beta lies approximately below 1.17 and FCF lies approximately within the

interval [.8,1]. WCP keeps on increasing with the increase of FCF, and it gets maximized

Beta risk decreases.

Figure 5.10: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as Beta and FCF Varies Keeping Other Indicators Fixed at a Specific
Level
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Figure 5.11 below describes how the response WCP changes with the variation of FS-

CORE and FCF, keeping other indicators at the desired level. The response WCP is maxi-

mized, where FCF remains approximately within the interval [.95,1.05] throughout the range

of FSCORE. WCP attains its minimum value in the region where both FSCORE and FCF

are low (deep blue). Gradually it increases with the increase in both the indicators as desired.

Figure 5.11: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as FSCORE and FCF Varies Keeping Other Indicators Fixed at a
Specific Level

5.5 Discussion

In the present study, we have developed a non-linear analytic model that identifies the

most significant indicators and the associated interactions responsible for the ups and downs

of the 59 healthcare stocks very accurately. After obtaining the significant indicators, along

with their significant interactions, we rank them with respect to the percent of contribution

to the WCP, as shown in Table 5.1. The highest contributing indicator is the combination

of the indicators FCF(X6) and US ICS(X8), contributing 4.53% of the total variation to the

response, WCP. The next most significant contribution is also an interaction term that is

the combined effect of FSCORE(X4) and the US INFL(X10) with a contribution of 4.15%

to the response, WCP. Numbers 3, 4, and 5 are respectively the combined interaction effect

of EBITDA (X5) and US ICS(X8), interaction between GDP(X7) and US ICS(X8), and
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interaction between PE(X3), US ICS(X8) with the contribution of 3.89%, 3.63%, and 3.41%,

respectively. Hence, summing these indicators up, we identify that they explain more than

96% of the total variability to the response, WCP. Furthermore, utilizing an optimized

analytical process to determine the actual values of six financial and four economic indicators

in our proposed model will maximize the response, WCP. The R2 and R2
Adjusted from Table

5.5 attests the fact that the optimized model results are very accurate. The desirability

value from Table 5.5 indicates that the estimated fit is most desirable/ideal. The following

Table 5.6 demonstrates the list of the observed and predicted responses from our data-driven

non-linear analytical model. It can be seen clearly that the predictions are very close to the

actual observed values and thus, attests to our model’s high accuracy and predictive power.

Table 5.6: The List of Observed and Predicted Values of The Response WCP

Observations Observed Predicted

1 155 156

2 152 150

5 151 149

6 148 148

13 141 145

19 144 145

20 143 146

28 139 144

29 138 144

36 149 145

37 150 144

38 149 145

39 152 148

40 153 148

41 153 155

Observations Observed Predicted

63 136 141

64 135 137

72 153 148

73 154 148

81 143 147

82 142 147

83 140 141

127 131 131

148 123 126

212 111 111

213 111 112

252 104 104

255 104 107

256 105 104

272 98 100
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Finally, we have developed an analytical predictive model consisting of ten individual

and thirty-one interacting financial and economic indicators that drive the behavior of WCP

of the health segment that consists of fifty-nine companies. The proposed model can be used

by financial portfolio managers, investors, etc. to select stocks from the health segment of

S&P 500 in accordance with the wishes of their clients. In what follows, we will be more

specific on the overall findings and usefulness of our innovation.

5.6 Conclusion

We have developed a real data-driven analytical model that very accurately predicts the

WCP and identifies some very useful findings of what drives the weekly stock prices of the

healthcare segment of the S&P 500. We summarize the important in formations and useful-

ness that the proposed model offers with a high degree of accuracy.

1. We have identified the individual financial and economic indicators that significantly

contribute to the price behavior of the health segment of S&P 500, which consists of

fifty-nine stocks.

2. We have identified the significant interactions of the financial, economic, and other

indicators that contribute to the WCP of the fifty-nine health stocks.

3. We have ranked the ten individual and thirty-one interactions of the indicators with

respect to their percentage of contribution to the WCP of the health stocks of S&P

500.

4. We have developed a non-linear analytical model consisting of ten individual and thirty-

one interacting indicators that predict the WCP of the health segment with a 97%

accuracy.
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5. We compared the original and the estimated response WCP using our analytical model

and found that they are very close to each other, indicating the high accuracy of our

model.

6. We utilized an analytical optimization process to determine the optimal values of the

indicators that will maximize the WCP of the health segment. These values were

determined with at least 95% accuracy.

7. We have developed two and three-dimensional contours and surface plots, based on the

behavior of the values of the indicators that maximize the WCP of the health stocks.

These plots can be used strategically to monitor the behavior of WCP as the significant

values of the indicators change.

The above information is important to individual investors, portfolio managers, financial in-

stitutions that invest in the health stock of S&P 500. Individual health companies can utilize

the usefulness of the proposed model for their strategic planning, their competitive stand-

ing among the health segment companies, monitoring and predicting their financial status,

among other uses. The proposed analytical model is very accurate, 96.74% in estimating the

various findings as stated above that drive the WCP of the 59 health companies. Finally, the

derived usefulness of the proposed model is essential for constructive and accurate decision

making concerning the financial and economic aspects of the health industry.
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Chapter 6: A stock optimization problem in finance: Understanding the

financial and economic indicators through analytical predictive modeling

6.1 Introduction

The healthcare sector incorporates businesses that supply medical services, manufacture

medical equipment or drugs, provide medical insurance, and facilitate healthcare provision to

patients. It is one of the immense sectors and contributes significantly to the U.S. economy,

accounting for approximately a fifth of overall gross domestic product(GDP). Since health-

care stock change has an enormous impact on the global economy affecting its overall GDP

and other financial factors, we tried to build an analytical prediction model to predict the

yearly percentage change of the stocks. The non-linear analytical model we developed in-

cludes five essential findings. The proposed model’s response is the Average Weekly Closing

Price (AWCP) of healthcare stock AbbVie Inc.(ABBV) starting from August 1st, 2017, to

December 31st, 2019. In addition to predicting the Weekly Stock Price, our model identifies

the individual indicators and their corresponding interactions that significantly contribute

to the response. We rank these indicators in accordance with their percentage of contribu-

tions to the response. We then performed a response surface analysis to find the appropriate

values of the indicators that optimize(maximize) the response. Also, we have monitored the

optimal ranges of any two indicators that affects the response AWCP with visual illustration.

Finally, we compared the original and the predicted responses of AWCP using our analytical

model, and found the two set of observations very close to each other testifying the high

accuracy of our model. The proposed model offers other useful information on the subject

area. Our analytical model has been validated and tested to be of high quality, and our pre-

diction of the weekly stock price is with a high degree of accuracy. The stock price oscillates
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over time by showing some dramatic ups and downs. Some investors prefer to monitor these

changes closely to stay on top of their investments. But even if one doesn’t watch the stocks

daily, monitoring the net change percentage over time is essential to maintaining a successful

portfolio.

While building the statistical model, the response variable is the percentage weekly clos-

ing price of ABBV stock; hence, we develop an analytical model containing significant

contributable variables and other significant interactions. The proposed statistical model

depends on several assumptions, such as linearity, multicollinearity, homoscedasticity, and

different assumptions concerning statistical methodology. Our dataset shows that none of

the risk factors are highly correlated except for US GDP and dividend yield, as shown in

Figure 6.4. This is good for building our model. Our proposed statistical model is useful in

predicting individual stock change, given significant risk factors. Also, we ranked the risk

factors according to their percentage of contribution to the response. The validation and

quality of our proposed analytical model have been statistically evaluated using R square

(R2), R square adjusted (R2
adj), Mean Absolute Error (MAE) and root mean square error

(RMSE). Eventually, its usefulness has been illustrated by utilizing different combinations

of various risk factors. From 59 healthcare stocks, we selected the stock ABBV based on

specific criteria, which will be described in the next section. Best of our knowledge, no

such statistical model has been developed under the proposed logical structure to predict

the yearly percentage change in healthcare stocks. Therefore, searching for an appropriate

statistical model in the prediction of the weekly stock price is imperative.

6.2 Methodology

6.2.1 Selection Of Appropriate Stock

The data has been obtained from Yahoo finance and some other financial and reliable

websites. Then, the whole data set has been combined with our analysis. We collected

information for the healthcare sector(XLV) of the S&P 500 stock. There were 59 pieces

139



of information related to the top 59 healthcare stocks. One of our study’s main goals is

to select one stock from the list of 59 healthcare stocks based on a certain meaningful

criterion. Initially, our data contained yearly information. Our model’s risk factors were

based on trailing 12 months (TTM) average starting from December 31st, 2018, to December

31st, 2019. To select the appropriate stock, we performed the K-means clustering algorithm.

We performed the clustering based on the following three steps.

Figure 6.1: Schematic Diagram of Stock Clustering Mechanism

1. Cluster the stocks in three groups(low, medium and high) based on the risk factor

beta.

2. After we got the three clusters (high beta, medium beta and low beta), each cluster is

further grouped into three categories (low, medium and high) based on the risk factor

dividend yield.
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3. In the final stage of clustering, we again clustered each group of dividend yield clusters

based on the yearly percentage return of stocks.

The following Figure 6.1, demonstrates the schematic diagram of the clustering mecha-

nism.

The above clustering mechanism produced a total of twenty-seven possible clusters to

choose from. To select the appropriate stock meaningfully, we focused on the specific cluster

comprised of the stocks having low beta risk, high dividend yield, and high yearly percentage

return. The following Figure 6.2 shows the stocks having such characteristics.

Figure 6.2: Stocks With Low Beta risk, High Dividend Yield and High Yearly Percentage
Return

The above Figure tells us, there are three stocks namely ABBV, AMGN and BMY that

matches our selection criterion. Since, our goal is to build an analytical model for one stock

we have chosen ABBV, which has the highest dividend yield (5.4%) among the three. Also,

AbbVie Inc.(ABBV) is one of the very popular American publicly traded bio-pharmaceutical

company. While the company’s total revenue for 2019 grew by only 1.6%, U.S. sales of its
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blockbuster drug, Humira (best selling drug in the world for several years), were up by 8.6%,

and worldwide sales of another popular drug, Imbruvica, were up more than 30%.

6.2.2 The Data and Description of The Indicators

After we select ABBV as the appropriate stock, we collect information on different indi-

cators for the stock. Our data includes the information from August 1st, 2017 to December

31st, 2019. We have collected data based on three financial attributes and three economical

attributes. A five day period moving average (MA) method was used for each indicators

to structure our data. One of the main goals of our study is to understand what indica-

tors significantly affect the weekly stock price of ABBV. We have six indicators and the

AWCP(Average Weekly closing price) as a measure of response.

The description of the attributable variables (indicators) that the data data was collected

on are given below.

6.2.2.1 Financial indicators

1. Div Yield(X1):The dividend yield is a financial measure that demonstrates how

much a company disburses in dividends each year with respect to its stock price. It is the

annual dividend rate divided by the current share price. It is expressed as a percent form.

For instance, if the current stock price is $50 and the annual dividend is $1, the dividend

yield is 2 percent.

2. Beta(X2): Beta is a risk measure of a stock’s volatility of return with regards to the

overall market. In general, a stock with higher beta value tends to have a higher risk and

also higher expected returns. It is defined as follows:

Beta = Cov(RI ,RM )
V ar(RM ) ,
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where RI is return on an individual stock and RM is the return on the overall market.

Cov(.,.) is the covariance between RI and RM , i.e, how the changes in stock return are

related to the changes in the market return, Var(.) is the Variance measure implying how

how far the market data is scattered from their average market return.

3. PE(X3):The price-to-earnings ratio (P/E ratio) is the ratio that measures the current

share price of a stock with respect to its earning per share(EPS). It is defined as follows:

P/ERatio = Market value per share
Earning per share .

6.2.2.2 Economical indicators

4. US GDP(X4): Gross domestic product of the United States (in trillon).

5. US ICS(X5): The Index of Consumer Sentiment (ICS) or economic well-being—was

developed at the University of Michigan Survey Research Center to measure the confidence

or optimism (pessimism) of consumers in their future well-being and coming economic con-

ditions. The index measures short and long-term expectations of business conditions and

the individual’s perceived economic well-being. Evidence indicates that the ICS is a lead-

ing indicator of economic activity as consumer confidence seems to pave the way for major

spending decisions.

6. US PSR(X6): The U.S. personal saving rate is personal saving as a percentage of

disposable personal income. In other words, it’s the percentage of people’s incomes left after

they pay taxes and spend money. The U.S. Bureau of Economic Analysis (BEA) publish

this rate.
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In developing the proposed statistical model for stock price as a function of the at-

tributable variables, one of the main assumptions is that the response variable Change should

follow the Gaussian probability distribution. From the following Figure 6.3, we see that the

values of the response AWCP is positively skewed and does not entirely follow a Gaussian

Probability distribution.

Figure 6.3: Q-Q Plot Of The Response WCP

We have also shown through goodness-of-fit testing (Shapiro-Wilk normality test, A

p-value = 2.265 × 10−8) that the subject data does not follow the normal probability dis-

tribution as well. Therefore, the Q-Q plot supports the fact that natural phenomena, such

as the weekly average stock price not following the Gaussian probability distribution. The

correlation matrix plot comprising the attributable variables is shown in Figure 6.4, where

we see that no two variables are highly correlated, and the degree of linear association be-

tween any two variables is not high except for Div Y ield(X1) and log(US GDP ). We also

considered US consumer Price Index(CPI) initially in our model, but we had to drop it as it

was highly correlated (almost perfect correlation with a correlation coefficient of .99) with

GDP.
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Figure 6.4: Correlation Matrix of The Risk Factors

6.2.3 Development of Statistical Model

In developing a statistical model, our main goal is to express our response AWCP in

terms of a non-linear mathematical function of all indicators with a high degree of accuracy.

Thus, we proceed to develop the statistical model which is given by the average weekly

stock price as a function of the six attributable variables (which we believe has a significant

contribution to the response) and all possible interactions as previously discussed. One of

the pure forms of a model with all possible interactions and additive error structure, in the
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present situation, could be expressed as follows:

AWCP = β0 +
∑
i

αixi +
∑
j

γjkj + ϵ , (6.1)

where β0 is the intercept of the model, αi is the coefficient of ith individual attributable

variable xi, γj is the coefficient of jth interaction term kj and ϵ denotes the random distur-

bance or residual error of the model following a normal distribution with zero mean and

constant variance.

One of the main assumptions to construct the above model is that the response variable

CLOSE should follow the Gaussian probability distribution. As we illustrated above, the

dependent variable Change does not support the Gaussian probability distribution. There-

fore, we must apply a non-linear transformation to the response to see if the transformation

can adjust the scale of the response to follow a normal probability distribution. We used

Johnson transformation[106] for our response which results in equation 6.2, below:

z = γ + δln(x− ϵ) , δ > 0,−∞ < γ < ∞,−∞ < ϵ < ∞, x > ϵ

and

ATWCP = −120.5 + 21.87ln(x+ 159.83) . (6.2)

Here, TWCP represents the new response variable(transformed) after Johnson’s Transforma-

tion has been applied. Thus, we proceed to estimate the coefficients (weights) of the actual

contributable variables for the transformed data in equation 6.2. To develop our statistical

model, we initially begin with the full statistical model, which included all six attributable
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variables as previously defined and five possible interactions between each pair. Thus, at first,

we start structuring our model with
(
n
k

)
= 15(n = 6, k = 2) potential interaction terms and

six indicator terms. While we began with the full statistical model (twenty-one), as we men-

tioned above, we have applied the process to determine the most significant contributions of

both the individual attributable variables and interactions by eliminating the less important

indicators gradually. Moreover, backward elimination is deemed one of the best traditional

methods for a small set of feature vectors to tackle the problem of overfitting and perform

feature selection. To get better accuracy, we took the log transformation of the indicators

GDP (X4) to reduce its high variability. However, our statistical analysis has shown that six

out of six indicators significantly contribute to and twelve interaction terms. The method

eliminated three unimportant interaction terms. Thus, the best proposed statistical model

with every significant indicators and interactions that estimates accurately the response

AWCP are six indicators individually that significantly contribute and twelve interaction

term. Hence, the best preferred statistical model with all significantly attributable variables

and interactions that estimates the weekly average stock price given by equation (6.3) below.

̂TAWCP =



−.083− 0.12X1 − .37X3 + 5.3X2 + .0029log(X4)

+1.85X5 + 6.2X6 + .186X1X2 + .22X1X4 + .035X1X5+

.39X1X6 + .0073X2X3 − .023X3X4 + .006X3X5+

.036X3X6 − .22X2X4 − .2X2X5 − .1X5X4 − .41X4X6

(6.3)

147



The TAWCP estimate is obtained from equation (6.3) and is based on the Johnson trans-

formation of the data.

Thus, we will utilize the anti-transformation on equation (6.3) to estimate the desired,

actual average weekly stock price as follows:

ÂWCP = −159.83 + exp
( ̂TAWCP + 120.5

21.87
) . (6.4)

The proposed model will help social researchers, economists and financial analysts to un-

derstand how the weekly stock price varies when any one of the six attributable variables is

varied, keeping the other attributable variables fixed.

Similarly, with the significant interactions. Most commonly, it will estimate the condi-

tional expectation of the response of AWCP given the indicators fixed at a particular level.

As for example, given, X1 = 4.8, X2 = .9, X3 = 31.5, X4 = 22, X5 = 99.4 and X 6 = 7.7, we

got our predicted response value as 89.31(from equation (6.4)).

So, given all the values of indicators, fixed at a particular level, the weekly average stock

price for ABBV is 89.31$. Furthermore, we illustrate the percentage that the indicators and

the interactions contribute to the yearly percentage change in stock as we rank them.

To assess the quality of the proposed analytical model, we use both the coefficient of

determination, R2, and adjusted R2, which are the critical criteria to evaluate the model

accuracy.

The regression sum of squares (SSR), measures the variation that is explained by our

proposed model. The sum of squared errors (SSE), also termed as the residual sum of

squares, is the variation that remains unexplained. We always try to minimize this error in

a model The total sum of squares (SST) = SSE + SSR. R2, the coefficient of determination

is defined as the proportion of the total response variation that is explained by the proposed
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model, and it measures how well the regression process approximates the real data points.

Thus, R2 is given by

R2 = 1− SSE
SST .

However, R2 itself does not consider the number of variables in the model. Also, there is the

problem of the ever-increasing R2.

To address these issues, we have the adjusted R2 which considers the number of param-

eters and is given by

R2
adj = 1−

[
(1−R2)(n−1)

n−k−1

]
,

where n is the number of points in our data sample, k is the number of independent regressors,

i.e., the number of indicators in the model, excluding the constant. For our final statistical

model, the R squared is 98.89%, and R squared adjusted 98.85%. Both R squared and

adjusted R squared is very high and very close to each other in our model.

That is, the developed statistical model explains more than 93% of the variation in the

response variable, a very high-quality model. Similarly, the indicators that we included in

the the model, along with the relevant interactions, estimates more than 98% of the total

variation in the response variable AWPR.

The Residual Standard Error (RSE), represents the approximate difference between the

observed and predicted outcomes in the model. We got a The Residual Standard Error

(RSE) of 0.1 from our model, which implies that the observed response value differs from

the predicted response value by .1 unit on an average.

In Table 6.1, below, we rank the individual significant attributable variables and inter-

actions with respect to their percentage of contribution to the response AWCP.
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Table 6.1: Rank of The Most Significant Indicators and Their Interactions According to
The Percentage of Contribution to The Response AWCP

Rank Indicators Contribution(%)

1 Div Y ield 8.95

2 Div Y ield ∩ US PSR 7.85

3 PE ∩ US ICS 7.81

4 log(US GDP ) 7.79

5 US ICS ∩ US GDP 6.8

6 US ICS 6.54

7 Div Y ield ∩ US ICS 6.13

8 PE ∩ US PSR 5.11

9 BETA ∩ US PSR 4.76

10 Div Y ield ∩BETA 4.42

11 BETA 4.35

12 Div Y ield ∩ US GDP 4.31

13 BETA ∩ US GDP 3.75

14 PE ∩ US GDP 3.67

15 US PSR ∩ US GDP 3.37

16 US PSR 2.65

17 PE 2.45

18 PE ∩BETA 1.63

The ranking is important, given the fact that in a survey or experiment if the group of

experimenters or surveyors know beforehand the most important variables which account for

the response, they might collect information on those important variables only which will

be economical and less time-consuming as they might not be interested in the insignificant

variables which contribute very minimum to the response or do not contribute at all. The
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following Figure 6.5 gives a pictorial representation of all risk factors and interactions that

significantly contribute to the response.

Figure 6.5: Importance plot of The Risk Factors and Interactions According to Their
Contributions to The Response

6.2.4 Residual Analysis

Once the statistical model has been developed, it is necessary to check the model assump-

tions by performing residual analysis. In our case, we have proposed a multiple non-linear

regression model, which is very useful and accurately conveys some important information

on the subject matter.

6.2.4.1 Mean residual should be zero

When one performs multiple linear regression (or any other type of regression analysis),

one gets a line that best fits the data. The entire data points usually don’t fall exactly on this

regression equation line; they are scattered around. A residual is a vertical distance between

a data point and the regression line. Each data point has one residual. The residuals are
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positive if they are above the regression line and negative if they are below the regression

line. If the regression line perfectly passes through the point, the residual at that point is

zero. The residual(error) is defined as:

residual = observed value-predicted value = y − ŷ ,

where y and ŷ are the observed and predicted response. ê is the estimated residual error

from the linear fit.The sum of the residuals equals zero assuming that the regression line is

actually the line of “best fit.” In our case, the mean residual is 1.97 ∗ 10−18 implying that it

is almost zero.

6.2.4.2 Normality of residual

One important assumption of our model is normality of residual. From Figure 6.6, we

see that the studentized residual follows a normal pattern.

Figure 6.6: Normality of Studentized Residual Plot
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6.3 Validation and Prediction Accuracy of The Proposed Model

We developed our analytical model on 80% training data and validated the model based

on 20% testing data. In the testing data(validation data) the test error is the average error

that occurs from using the analytical method to predict the response on a new observa-

tion.That is, a measurement that was not used in training the method. The test error gives

an idea about the consistency of the analytical model. We obtained an ac-curacy of 98.7%

in terms of R2 in our validation(testing) set Moreover, we performed repeated ten-fold re-

peated cross-validation(10 times) for our validation testing.The primary objective is that

we will use 10-fold cross-validation, then we repeated cross-validation ten times, where each

of the repetition folds are split differently. In 10-fold cross-validation, the training set is

divided into ten equal subsets. One of the subsets is taken as the testing set in turn, and

(10-1) = 9 subsets are taken as a training set in the proposed model. The error mean square

error E1 is computed for the held out set. This procedure is repeated 10 times; each time,

a different group of observations is treated as a validation set. This process results in 10

estimates of the test error, Ei, i = 1, . . . 10. The average error of each set, throughout

the cross-validation process is termed as a cross-validated error. The following Figure 8,

illustrates briefly the idea of 10 fold repeated cross-validation, where Ei, i = 1, . . . 10 is the

mean square error(MSE) in each iteration and ACVE is the average cross-validated error.

Figure 6.7: Brief Illustration Of Repeated Ten Fold Cross Validation
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The R2, Root Mean Square Error(RMSE) and Mean Absolute Error(MAE) for our model

for the test data set are 98.7 , 0.1 and 0.07 respectively. The following Figure 8 illustrates

how the R2 and RMSE varies in the different folds of test data.

Figure 6.8: Variation of R2 and RMSE in different folds

The above Figure 6.8 illustrates that the R2 remains very high(around 98%) and RMSE

remains low(around 0.1) for different repeated cross-validated folds the test(validation) data.

Hence, we can conclude that, the accuracy of the model is pretty consistent. We have ob-

tained a non-linear analytical model for ABBV weekly stock price with high accuracy, which

is a function of the combination of some financial and economic indicators that drive the ups

and downs of this particular stock. In the next section, we will be discussing some techniques

which will optimize (maximize) our model response (objective function). We will also find

the optimum values of the all six factors that lead to the optimization of the weekly response

of ABBV stock.

6.4 Response Surface Analysis-A method to optimize The Average Weekly

Closing Price For AbbVie Inc.

In the literature of mathematical statistics, response surface methodology (RSM)[42] ex-

plores the association between several indicators and one or more response variables. The

main idea of RSM is to find the optimum(maximum or minimum) response using an ap-
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propriate statistical model. It is also advantageous in finding the optimum values of the

indicators used in the model to optimize the response.

6.4.1 A Formal Analytical Approach For The Response Surface Model Using Desirability

Function

The concept of desirability function is one of the most frequently used methods in the

industry for the optimization of one or more responses. The desirability functions approach,

initially proposed by Harrington (1980)[60], are popular in the literature of Response Surface

Methodology (RSM). The desirability function transforms each of the estimated response

Yi(x) to a desirability value di(Yi), where 0 ≤ di ≤ 1.

For individual response Yi(x), a desirability function di(Yi) takes on values within [0,1].

di(Yi) = 0 represents a entirely undesirable value of response Yi and di(Yi) = 1 represents a

completely desirable or ideal response value. The value of di(Yi) increases as the ”desirabil-

ity” of the corresponding response increases. The individual desirabilities are then merged

together using the geometric mean, which gives the overall desirability D:

D = [
∏k

i=1 di(Yi)]
1
k ,

where k denotes the number of responses. In our study, k = 1.

Depending on whether a particular response Yi is to be maximized, minimized, or assigned

a target value, different desirability functions di(Yi) can be used.

A useful class of desirability functions was proposed by Derringer and Suich (1980)[42].

Let Li, Ui and Ti be the lower, upper, and target values, respectively, that are desired for

response Yi, with Li ≤ Ti ≤ Ui.

If there is a specific target set up for the response, then its desirability function is given

by,
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di(Ŷi) =



0 if Ŷi(x) < Li(
Ŷi(x)−Li

Ti−Li

)s

if Li ≤ Ŷi(x) ≤ Ti(
Ŷi(x)−Ui

Ti−Ui

)t

if Ti ≤ Ŷi(x) ≤ Ui

1 if Ŷi(x) > Ui ,

(6.5)

where s and t in the above equation determines how important it is to hit the target.

For t = s = 1,the desirability function increases linearly towards the direction of Ti. For

s < 1, t < 1, the desirability function is convex, and for s > 1, t > 1, the desirability function

is concave. If want the response to be maximized, the individual desirability is given as,

di(Ŷi) =


0 if Ŷi(x) < Li(

Ŷi(x)−Li

Ti−Li

)s

if Li ≤ Ŷi(x) ≤ Ti

1 if Ŷi(x) > Ti ,

(6.6)

where Ti is interpreted as a large enough value for the response. Finally, if we want to

minimize a response, the desirability function is given as,

di(Ŷi) =


1 if Ŷi(x) < Ti(

Ŷi(x)−Li

Ti−Ui

)s

if Ti ≤ Ŷi(x) ≤ Ui

0 if Ŷi(x) > Ui ,

(6.7)

where Ti is interpreted as a small value for the response.

The desirability function approach consists of the following steps:

1. Given the data, fit response models for all k responses (in our study, we have single

response, so, k = 1) ;

2. Define individual desirability functions for each responses;

3. Optimize the overall desirability D with respect to the controllable indicators.
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6.4.2 Numerical Results

In our study, we started developing a data-driven non-liner analytical model with three

financial indicators and three economic indicators. After developing the predictive model

with high accuracy, our goal is to maximize the response AWCP and find the optimum

values of the indicators at which the response is being maximized. We now proceed to

maximize AWCP (within its domain) in model (6.4) in section 6.2.3. The analytical method

of optimization, requires the constraints of optimization. The following Table 2 presents the

constraints on the ten indicators.

Table 6.2: Constraints On The Indicators Showing the Lower and Upper Limits

Indicators Lower Upper

Div Yield 2.212 6.506

Beta -.9 2.3

PE 16.55 41.42

US GDP 19.6 21.9

US ICS 89.8 101.4

US PSR 6.7 8.8

Table 6.2 provides the lower and upper limits of all ten indicators used in our study.

Next, using the equation (6.3) of section 6.2.3, we will maximize the estimated response

from model (6.4) and obtain the optimum values of all ten indicators. The following Table

6.3, provides the estimated maximum response AWCP along with the optimum values of the

indicators.
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Table 6.3: Estimated maximized Response With Optimum Values of Indicators

Response & Indicators Optimum Values

AWCP (Response) 120$

Div Yield 4.36

Beta .7

PE 39.56

US GDP 19.6

US ICS 101.4

US PSR 8.8

The following Table 6.4, provides the values of R2 , R2
Adjusted and desirability value along

with the 95% confidence and 95% prediction interval of the estimated response WCP.

Table 6.4: Some Useful Results Related to The Optimized Response

Estimated Maximized Value 120$

Desirability 1

R2 98.61%

R2
Adjusted 98.57%

95% CI (110.71, 129.29)

95% PI (110.28, 129.72)

6.4.3 Graphical Visualization of The Estimated Response surface

One important aspect of the response surface methodology is that, it helps the researchers

understand the variation of the response in three dimensional plot in the presence of any

two risk factors, keeping the rest of the risk factors fixed at a particular level. Response

surface plots (contour and surface plots) are very useful in order to obtain desired values

of the response, and optimum conditions for any two indicators keeping the others fixed at
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a particular level. In a contour plot, the response surface is observed as a two-dimensional

plane where all the points that have the similar response are connected to create contour

lines of constant responses. A surface plot generally exhibits a three dimensional view that

may provide a clearer picture of the response’s behavior. Since, the three economic indicators

are not controllable, we won’t be including those plots and only focus on the combination

of three financial indicators included in model (3) of section 2.3. In this section, We will

illustrate different contour and surface plots that will help researchers to understand the

nature of the relationship between any the two indicators and the response (AWCP). The

following three figures (Figure 6.9-Figure 6.11) describe the variation of the estimated re-

sponse AWCP as any single or two indicators varies keeping the others fixed at particular

level.

Figure 6.9: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as Div Yield and Beta Varies Keeping Other Risk Factors Fixed at a
Specified Level

From the above Figure 6.9, we see that the estimated response is maximized (greater

than 110) for any positive beta when dividend yield is less than approximately 2.5 keeping

all other indicators at a constant level.
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Figure 6.10: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as PE and Beta Varies Keeping Other Risk Factors Fixed at a Specified
Level

From the above Figure 6.10, we see that the estimated response is maximized (greater

than 90) when PE is greater than approximately 40 and beta is approximately greater than

1.7, keeping all other indicators at a constant level.

Figure 6.11: Showing the Contour Plot(left) and Surface Plot(right) of The Estimated
Response Surface as PE and Div Yield Varies Keeping Other Risk Factors Fixed at a
Specified Level

The above Figure 6.11, demonstrates that the estimated response is maximized (greater

than 110) when PE is greater than approximately 17 and Div Yield is approximately less

than 2.5, keeping all other indicators at a constant level.
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Table 6.5: The List of Observed and Predicted Values of The Response AWCP

Observations Observed Predicted

1 88.1 88.5

246 89.1 90.2

247 89.2 90.4

308 93.5 96.4

373 96.4 100.1

374 96.2 99

375 95 99.5

376 94 98.5

377 93 97.5

378 92.7 96

379 92.3 95

435 92 95.5

436 92 96.5

437 91.8 96.4

438 91.2 96.1

439 91.4 96.1

440 92.4 94.1

449 109.8 106

450 113.2 107.8

451 114.5 102

452 115.9 112

Observations Observed Predicted

452 115.9 111.8

453 117 113.5

454 118.2 115.2

459 115.4 118.3

460 114.8 118.4

473 112.6 115.8

474 111.3 115.2

475 111.4 114.9

476 111.3 114.4

477 111.8 113.8

482 116.4 111

483 117.9 111

484 116.4 109.4

485 115 108.9

486 113 108.5

496 99.8 102.9

497 100 102.9

504 97.8 97.7

505 97.7 96.6

506 98 97

507 98 97

6.5 Discussion

In our study, we have developed an analytic model, which describes the significant indi-

cators and the and associated interactions responsible for the ups and downs of the stock
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ABBV very accurately. After obtaining the significant indicators, along with their significant

interactions, we rank them with respect to the percent of contribution to the stock price, as

shown in figure 5. The highest contributing risk factor is DividendY ield(X1), contributing

8.95% of the total variation to the response CLOSE. The next most significant contribution

is an interaction term that is the combined effect of DividendY ield(X1) and the US Personal

Saving Rate(X6) with a contribution of 7.85% to the response. Numbers 3, 4, and 5 are re-

spectively the combined interaction effect of PE ∩ US ICS(X3 ∩X5), US GDP (X4), and

interaction between US ICS ∩ US GDP (X5 ∩X4) with the contribution of 7.81%, 7.79%,

and 6.8%, respectively. Hence, summing these contribution of indicators up, we identify that

they explain more than 98% of the total variability in the ABBV stock price. The following

Table 6.5 demonstrates the list of the observed and predicted responses from our data driven

non-linear analytical model. From the Table 5, we can see clearly that the predictions are

very close to the actual observed values and thus, testify for our model’s high accuracy and

predictive power.

Moreover, we have performed response surface analysis to maximize the estimated re-

sponse from our developed analytical model and also obtained the optimum values for the

three financial and three economic indicators. The R2 and R2
Adjusted from Table 4, attests

the fact that the optimized model is good in terms of accuracy. Also, we have obtained

almost similar accuracy in terms of R2 and R2
Adjusted that we obtained from our analytical

model (4). The desirability value 1 from table 4 indicates that the estimated fit is most

desirable/ideal. We can address the usefulness and importance of the proposed model in the

subject area in six important categories.

These categories are enumerated below:

1. We have identified and tested the individual attributable variables(indicators) respon-

sible for increase or decrease of ABBV stock price.

2. We have identified the significant interactions that influence the response AWCP, in

our model.
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3. we have ranked the individual attributable variables and interactions as a percentage

of contribution to the response.

4. We can obtain excellent predictions of the weekly closing price for the healthcare stock

ABBV from our analytical model with a high degree of accuracy.

5. We compared the original and the estimated response AWCP using our analytical

model and found that they are very close to each other, indicating the high accuracy

of our model.

6. We have performed response surface analysis, for this stock ABBV to maximize the

predicted response, Average Weekly Closing Price (AWCP) and identified the optimum

levels of the risk factors that maximize the predicted response with high degree of

accuracy.

7. We have calculated the 95% confidence interval and 95% prediction interval for the

estimated response.

6.6 Conclusion

We have developed a real data-driven analytical model that very accurately identifies the

following very useful findings concerning the weekly stock price of Abbvie Inc.(ABBV):

• Identifies the significant attributable variables (indicators) that drive the degree to

which the particular stock changes(%).

• Identifies the significant interactions of the indicators that contribute to the weekly

stock price.

• We rank the individual and interactions of the indicators with respect to their percent-

age of contribution to the response AWCP.
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• The developed analytical model predicts the response change accurately for the speci-

fied values of a set of indicators.

• The developed analytical model can be used strategically to increase profit margin by

working with the identified indicators.

• Furthermore, we have performed surface response analysis to identify the indicators’

target values that maximizes the Weekly Stock Price(AWCP) based on the identified

values of the indicators.

The developed analytical model has been evaluated by several statistical methods that in-

clude the R2 and R2
adjusted that attest to its high quality. Investment bankers and financial

analysts usually keep track of a company’s stock price and percentage increase in stock price

to measure a company’s financial solvency, market performance, and general viability. A

steadily rising stock price indicates that a company is moving to the direction of money-

making. Besides, if the stockholders are happy, and the company is on its way towards

prosperity, the executives are likely to retain their positions with the company. Conversely,

if a company is bending over backward, as reflected by a deteriorating stock price, a com-

pany’s board of directors may decide to fire its top operatives. Thus, decreasing stock price

isn’t good for a company’s higher-ups and financial health as a whole. Our study’s findings

suggest that financial analysts and quantitative researchers might need to pay more attention

to different significant financial and economic attributes, as our research suggests, that will

maximize the stock price. One can build a similar model based on other stocks depending

on the research interest. Also, since, the individual ups and downs of the stock price of an

organization has a positive correlation with current and future increases in the productivity

growth rate at business cycle, our proposed statistical model can be used for firms’ promotion

policies, and they may be useful for managers and human resources professionals. Financial

analysts can use our model to predict the individual company’s percentage change in stock

price by using the significant indicators. It will help the different financial firms to identify
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their financial health, as the higher a stock price is, the more likely a company’s prospects

become. Identifying those financial institutions are essential as the increased stock price is

correlated with an increase in productivity. Finally, our proposed statistical model is highly

useful for decision making and strategic planning on controlling the factors responsible for

the company’s long-term viability.
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Chapter 7: A Stochastic Analytical Model that Monitors the Profit Structure

of Healthcare Business Segment (HBS) of S&P 500 as a Function of Real Time.

7.1 Introduction

The healthcare business segment (HBS) incorporates businesses that supply medical ser-

vices, manufacture medical equipment or drugs, provide medical insurance, and facilitate

healthcare provision to patients. It is one of the immense sectors and contributes signifi-

cantly to the U.S. economy, accounting for approximately a fifth of overall gross domestic

product (GDP). Healthcare stock change has an enormous impact on the global economy

affecting its overall GDP and other financial factors. In our present study, we created a data-

driven stochastic analytical method based on average weekly percentage return (AWPR) of

healthcare stocks. Our data contains the information of fifty-nine heath care and pharma-

ceutical stocks from S&P 500. We introduce and define a function called stochastic growth

function (SGF), depending on an indicator called index-indicator (I) for the stocks that

monitors and predicts the profit returns as a function of real time of the whole HBS or

any single business. The index-indicator, (I), is calculated using the profit returns and

will result in one of the three estimates, I > 1, I ≈ 1, and I < 1. Our analytical method

found the estimated I for HBS as a whole to be I = 2.12 > 1 implying that the average

profitable returns are increasing as a function of time. Also, we selected a particular stock

(AbbVie Inc.) from S&P 500 based on the high dividend, high return, and low beta risk

and found the index indicator (I) to be I = .97 ≈ 1, which says that the particular stock

is performing approximately the same. Our proposed analytical methodology can be im-

plemented to any single business firm or a whole business sector, that provides improved

strategy for monitoring, assessing, and evaluating the profit structure pattern of any given
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industry as a stochastic realization of time. In the following sections, we proceed to discuss

the analytical structure and stochastic methodology for developing such a model to monitor

the profitability returns of a firm in real time.

7.2 Methodology

7.2.1 Structure of the Data

We have collected the weekly stock return for all the 59 stocks from the healthcare and

pharmaceutical industry. The duration period is from 08-01-2016 to 30-12-2019. All total,

we have information for 209 weeks. At first, we computed the weekly return for each of 59

stocks for the time period and then we took the average of all 59 stocks for the 209 weeks.

After computing the weekly average return, we multiplied these observation by 100 to obtain

the Average Weekly Percentage Return (AWPR). Thus, AWPR gives the percentage gain

or loss of an investor on weekly basis. The method that we use to compute the Weekly

Percentage Return (WPR) for individual stocks is as follows:

WPRt =
Pt−Pt−1

Pt−1
∗ 100 , t = 1, 2, . . . , 209.

where WPRt is the Weekly Percentage Return at week t. Pt and Pt−1 are respectively the

closing price of an individual stock at week t and week t− 1, respectively.

Once we have the Weekly Percentage Return(WPR), we can compute the Average Weekly

Percentage Return (AWPR) for all the 209 weeks by taking the average across the 59 stocks.

The method for AWPR is as follows:

AWPRt =
1
59

∑59
j=1WPR(t)j , j = 1, 2, . . . , 59.

where AWPRt is the Average Weekly Percentage Return at week t and WPR(t)j is the

Weekly Percentage Return(WPR) for the jth stock and tth week. j = 1, 2, . . . , 59, and
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t = 1, 2, . . . , 209. The following Figure 7.1, provides the data network diagram for better

understanding of the scenario.

Figure 7.1: Network Diagram for Calculating AWPR

Table 7.1: Showing ten arbitrary AWPR for HBS

Date AWPR

26-02-2016 2.02

03-06-2016 1.20

09-12-2016 1.92

13-10-2017 -0.91

01-12-2017 1.66

12-01-2018 2.24

16-02-2018 4.5

06-04-2018 -2.39

25-10-2019 0.64

06-12-2019 1
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7.2.2 The Stochastic Process that Drives the Data

Our data can be thought as a stochastic realization at time t. It is the weekly percentage

return for 59 stocks as a function of time. Mathematically, the stochastic process can be

represented as {Rt}t∈T where Rt the set of AWPR values of HBS and T is a time index such

that T = [0,∞). The following Table 7.1 illustrates ten random AWPR from 209 weeks for

HBS.

In the next section, we proceed to describe briefly the method of developing the index-

indicator (I) of AWPR.

7.2.3 Developing the Index-Indicator (I)

In the context of finance, different firms in the healthcare and pharmaceutical industry

would be interested in having a method to monitor and evaluate the profitability structure

as a function of real time. For instance, a healthcare firm in HBS would like to monitor the

investment trend based on whether they are making a profit or loss with respect to specific

period of time. Thus, it is crucial to monitor how an investment is progressing as a function

of time. In this regard, We define stochastic growth function (SGF) that measures the rate of

change of a profitability process as a stochastic realization of time. The analytical structure

of the SGF function is:

Ω(AWPRt; I;ϑ) =
I
ϑ

(
AWPRt

ϑ

)I−1

, I > 0, ϑ > 0, t > 0 , (7.1)

Where I and ϑ are the shape and scale parameters, respectively, and AWPRt denotes return

component which is the stochastic realization of time. [8] [11]. For n AWPRs, AWPR1 <

AWPR2 < . . . < AWPRn, (where AWPR1 < AWPR2 < . . . < AWPRn are the observed

and successive), the joint probability density function, f(AWPRt1 , . . . , AWPRtn) can be
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expressed in terms of Ω(AWPRt; I;ϑ) as follows,

f(AWPRt1 , . . . , AWPRtn) =
n∏

i=1

(
Ω(AWPRti

)
exp

[
−
∫ AWPRtn

0

Ω(y)dy

]
=

n∏
i=1

I
ϑ

(
AWPRti

ϑ

)I−1

exp

[
−
∫ AWPRtn

0

I
ϑ

(
y

ϑ

)I−1

dy

]
=

In

ϑnI

( n∏
i=1

)I−1

exp

[
−
(
AWPRtn

ϑ

)I]
,

where AWPR1 < AWPR2 < . . . < AWPRn.

(7.2)

Implementing the method of Maximum Likelihood Method (MLE) of parameter estimation,

we can estimate the parameters I and ϑ from (7.3). The log-likelihood function is

L = L(AWPRt; I;ϑ) = nlnI − nIlnϑ+ (I − 1)
n∑

i=1

ln(AWPRti)−
(AWPRtn

ϑ

)I
(7.3)

The parameter, I is a function of AWPRtn , the largest return value. We compute the

estimate of I by equating the partial derivative of L with respect to I and setting it equal

to zero, then solving for I, given by,

∂L

∂I
= 0; Î =

n∑n
i=1 log

(AWPRtn

AWPRti

) . (7.4)

The parameter ϑ is a function of I. In a similar way, as above, the estimate of ϑ is computed

by equating the partial derivative of L with respect to ϑ to zero and then, substituting the

estimate of I, given by,

∂L

∂ϑ
= 0; ϑ̂ =

AWPRtn

n
1
Î

. (7.5)

In the context of financial modelling, we define the index-indicator (I) as follows:

I =
n∑n

i=1 log
(AWPRtn

AWPRti

) (7.6)
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where AWPRtn is the largest AWPR for the HBS. Now, we will show that how I depends

on the interpretation of the stochastic growth function Ω(AWPRt).

• Case 1: Ω(AWPRt) is decreasing with time

For Ω(AWPRt) being a decreasing function of t, we have,

Ω(AWPRt) < Ω(AWPRt−1) , for t− 1 < t

⇒ I
ϑ

(
AWPRt

ϑ

)I−1

<
I
ϑ

(
AWPRt−1

ϑ

)I−1

⇒
(
AWPRt

ϑ

)I−1

<

(
AWPRt−1

ϑ

)I−1

⇒
(
AWPRt−1

AWPRt

)I−1

> 0

Replacing AWPRt with AWPRt−1, the above inequality results in

(AWPRt−2

AWPRt−1
)I−1 > 0.

Replacing AWPRt−1) by AWPRt−2, in above inequality we have,

(AWPRt−3

AWPRt−2
)I−1 > 0.

Proceeding in a similar manner, results in (AWPRt1

AWPRt0
)I−1 > 0, where AWPRt0 is the initial

AWPR in the data.

Arranging all the above inequalities and expressing in a product form , we have,

[(
AWPRt−1

AWPRt

)I−1(
AWPRt−2

AWPRt−1

)I−1

. . .

(
AWPRt2

AWPRt1

)I−1(
AWPRt1

AWPRt0

)I−1]
> 0

⇒
(

1

(AWPRt)(AWPRt0)

)I−1

> 0

Since, AWPRt, AWPRt0 > 0 (With respect to our discussion previously, we made all the

returns positive by adding a constant C, as returns can be positve and negative also, and

the formula of I involves logarithm), in order to satisfy the above inequality, I must satisfy,

I − 1 < 0 =⇒ I < 1. (Bad for investment).

• Case 2: Ω(AWPRt) is increasing with time
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For Ω(AWPRt) being an increasing function of t, proceeding with the similar logic, we end

up having I > 1. (Good for investment).

• Case 3: Ω(AWPRt) is constant

For Ω(AWPRt) being an independent function of t, proceeding with the similar argument,

we end up getting I ≈ 1.

We can now estimate the value of the stochastic growth factor Ω(AWPRt) (given in

(7.1)) used in the analytical modeling of the profitability structure as a function of t, given

the estimates of parameters I and ϑ. Ω(AWPRt) is a time-dependent measure of the rate of

change in AWPR. A decrease in Ω(AWPRt) implies that AWPR is decreasing as a function

of time or an deterioration in the overall profit structure. This means that I < 1. A rise

in Ω(AWPRt) suggests that there is an improvement pattern in AWPR as a function of

time , implying that I > 1 . This means that the HBS is performing well as a whole, and

no precautionary measures maybe required to boost the profit structure. When there is no

change in Ω(AWPRt), it implies that I ≈ 1 thus the profitability growth is constant as a

function of time. Thus, the behavior of the change in the AWPR of a business segment of

S&P 500 is dependent on I of the stochastic growth function (SGF ) Ω(AWPRt). That is,

we can use I to evaluate and monitor the profit structure of HBS as a function of time. In

the following section, we explain and demonstrate how I of the SGF can be used to monitor

and evaluate the behavior of AWPR.

7.3 Using the index-indicator I to Monitor and Analyze the Behavior of Port-

folio HBS Returns based on AWPR

In this section, we use the index-indicator I to monitor, assess and evaluate the Behavior

of Portfolio Return Based on Average Weekly Percentage Return (AWPR). A portfolio return

is concerned with how much profit or loss an investment portfolio incurred containing various

investments, over a time period. Since, we have information of AWPR on different stocks for

209 weeks, we can think of this data as a stochastic realization of time. Our main goal for
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the study to evaluate and monitor if the investment is progressing or regressing with respect

to time. Notice that, AWPRt in section 7.2.1 is a function of time.

Figure 7.2: Showing the Behavior of AWPR as a function of time

In general, we can see that the AWPR of healthcare business segment (HBS) has high

volatility over the 209 weeks period as the series wriggles back and forth. Now, given the

nature of the AWPR, we ranked the AWPR from the smallest to the largest. This is given

by Figure 2 with the week time index on the horizontal axis and weekly return on vertical

axis. The probabilistic behavior of AWPR can be thought as a stochastic realization of

time which has similarity with the non-homogeneous Poisson process (NHPP) [132]. Thus,

the stochastic process is given by AWPR1 < AWPR2 < . . . < AWPR209. This allow

us to compute the stochastic growth function of AWPR Ω̂(AWPRt, Î, ϑ̂), by estimating I

and ϑ from equation (7.5) and (7.6). Since, there are some positive and negative values

of AWPR (as shown in Table 7.2.1), we added a constant value C = 8.15 (the minimum

value to make the maximum negative AWPR positive) to the numerator and denominator
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in the domain of log( tn
ti
) in equation (7.6). We implemented this to make the domain of the

logarithmicfunction positive. Thus, the new modified formula for index-indicator (I)

becomes:

I∗ =
n∑n

i=1 log
(
tn+C
ti+C

)
I∗ =

n∑n
i=1 log

( t∗n
t∗i

) (7.7)

It is also important to investigate if the largest observation t∗n is an outlier. If it is an outlier,

then we need to omit it from our analysis or adopt any other suitable mechanism. An

alternate to remove data observation is to replace it by the average of last three observations.

Since, the value of index-indicator (I∗) is dependent on t∗n, the largest observation, and our

main analysis is dependent on I∗, we need to make sure that t∗n is not an outlier, otherwise,

the analysis might be biased. We perform the outlier detection analysis in this regard.

Figure 7.3: Showing the Initial Data Distribution

As the above Figure 7.3 shows, the largest observation (t∗n) is an outlier. Next, we will

apply the interquartile range (IQR) criterion to check validity of the above figure. The IQR
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criterion tells that all observations falling beyond the range R = [Q1−1.5IQR,Q3+1.5IQR]

are potential outliers, where IQR = third quartile (Q3) - first quartile (Q1).

Table 7.2: Summary Measure of the AWPR

Min Q1 Q2 Q3 Max

0 7.25 8.58 9.74 13.51

From the above table, we see that the largest observation is 13.51.

R = [Q1 − 1.5IQR,Q3 + 1.5IQR]

= [(7.25− 3.735), (3.515− 3.735)]

= [3.515, 13.485]

We see that the largest observation t∗n is falling beyond the range R and hence is an outlier.

We now propose an analytical approach to solve the problem. We take the average of the

last three observations and treat the average as our largest observation.

Also, we eliminate the minimum observation (t∗1 = 0) from our data to apply the Equation

(7.7) (otherwise (7.7) would be undefined). We have now information of 206 weeks and we

can denote it by t∗1, t
∗
2, . . . , t

∗
206.

To obtain the new largest observation (t∗largest = t∗206), we take the arithmetic mean of

t∗207, t
∗
208, and t∗209.

t∗largest =
t∗207 + t∗208 + t209

3
=

12.64 + 12.85 + 13.51

3
= 13
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Figure 7.4: Boxplot Showing That Largest Observation is not an Outlier

As the above figure shows, the new largest observation t∗206 = 13 is not an outlier anymore.

We can now analyse the profit structure by looking at the behavior or changes in I∗. Now,

we estimate the I∗ of the 206 weeks of AWPR, given by Table 7.3, from Equation (7.7).

We see that I∗ = 206
97.16

= 2.12 > 1, which indicates that the stochastic growth function of

AWPRt, Ω(AWPRt, Î∗, ϑ̂) is increasing or the HBS is performing well as a function of time.

Table 7.3: Evaluating the Profit Structure for HBS based on I

Estimates Values

Î 2.12

ϑ̂ 1.05

This finding suggests that the AWPR of heath care business segment are increasing with

respect to time and there is no need to make the necessary adjustments/changes in business

strategies. This justifies the high quality and efficiency of our analysis of monitoring the

AWPR of HBS using the analytic procedure. Given the values of Î and ϑ̂, from Table 7.3,
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we can estimate the intensities Ω̂(AWPRt, Î, ϑ̂)) using equation (7.1).

Ω̂(AWPRt, Î, ϑ̂) =
Î
ϑ̂

(
AWPRt

ϑ̂

)Î−1

=
2.12

1.05

(
AWPRt

1.05

)2.12−1

= 2.02

(
AWPRt

1.05

)1.12

, AWPRt ≥ 0

(7.8)

The following Figure 7.5, describes the behaviour of the SGF Ω̂(·) as a function of time.

Figure 7.5: Stochastic Growth Function Curve of AWPR with Respect to Time

It is clearly shown that the SGFs ˆΩ(AWPRt) of AWPR is increasing with respect to

time implying that the profit margin is increasing.

Table 7.4 illustrates the arrangements of AWPRt and the SGFs Ω̂(·) as a function of

time.
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Table 7.4: Describing the AWPR and SGFs as a Function of Time

Time (Week) AWPRt Ω̂(·)

1 1.71 3.66

2 2.4 5.35

3 2.43 5.43

4 3.01 6.9

...
...

...

206 13 35.49

Now, we have the point estimate of for our index-indicator (I), we proceed compute the

95% confidence interval of I. I has a chi-square distribution with 2(n−1) degrees of freedom

[132]. Which implies,

Î ∼ 2nI
χ2

2(n−1);α
2

. From the above result, an exact 100(1− α)% confidence interval for I is given by:

[ Î
2n

χ2
2(n−1); 1−α

2
,
Î
2n

χ2
2(n−1);α

2

]
(7.9)

where χ2
γ;v is the 1 − γ percentile of the chi-square distribution with v degrees of freedom.

Plugging the estimate of I from Table 7.3, we obtain the 95% confidence interval of I to

be [1.93, 2.47] which is precise. It implies that if we select observations randomly from our

data for sufficiently large number of times, at least 95% of the cases, the interval [1.93, 2.47]

contains the true index-indicator I. To validate our results, we have considered values of

AWPR for five random consecutive weeks and computed the estimates of I and ϑ, which is

given in the following Table 7.5.
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Table 7.5: Evaluating Five Consecutive Weeks of AWPR for Health-care Business Segment
(HBS) based on I

I ϑ̂

3.04 2.46

3.56 3.04

2.7 2.62

2.97 2.9

3.17 3.09

From the above Table 7.5, we see that for all of the five weeks, I > 1 implying that the

SGFs are increasing with respect to time.

Figure 7.6: Showing Weekly Returns for ABBV

7.4 Monitoring The Behavior of a Particular Stock

In Section 7.3, we have analyzed the overall average weekly returns for the healthcare

business segment (HBS) of S&P 500 and have shown that the performance is falling apart in

terms of the index-indicator I. Chakraborty & Tsokos (to be published) developed a data-
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driven analytical model for a particular healthcare stock (AbbVie Inc.) which was selected

based on high dividend yield, high return, and low beta risk. The non-linear analytic model

is based on three financial and three economic indicators. In this section, we will discuss

about the process of monitoring the stock (ABBV) based on I as a function of time.

As the above Figure 7.6 shows, the weekly returns of ABBV has high volatility in some

particular years.

Figure 7.7: Cumulative Weekly Return of ABBV

The above Figure 7.7 illustrates that the cumulative weekly return has an increasing

pattern on an average. However, there is a decreasing pattern from the beginnings of 2019

until the end of 2020. After that it increases periodically.

The stock return data for ABBV is a stochastic realization of time and we now proceed

to estimate the parameters of the stochastic growth function (SGF), I and ϑ in a similar

manner. The following Table 7.6 provides the estimates of I and ϑ. We see that I ≈ 1,

implying that the stock ABBV is performing approximately the same/constant as a function

of time.
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Table 7.6: Evaluating Profit Structure of ABBV based on I

Estimates Values

I .97

ϑ̂ .08

Given the values of I and ϑ̂, from Table 7.6, we can estimate the SGFs for ABBV

(Ω̂(ABBVt, Î, ϑ̂)) using equation (1).

Ω̂(ABBVt, Î, ϑ̂) =
Î
ϑ̂

(
ABBVt

ϑ̂

)Î−1

=
.97

.08

(
t

.08

).97−1

= 12.125

(
t

.08

)−0.03

, t ≥ 0

(7.10)

7.5 Conclusion

In this article We proposed an analytical method for tracking, assessing, and evaluating

the performance of health care business segment (HBS) utilizing the information of S&P

500, as a stochastic realization of time. Our analytical model is based on the average weekly

percentage return (AWPR) of 59 health care stocks. We have shown that our analytical

method is functionally efficient and productive to monitor the ups and downs of the particular

business segment. The stock return monitoring process based on the AWPR of HBS is a more

robust version of the tradition stochastic models as the analytical method can model the

stochastic growth function (SGF) of the profit structure of a business segment. As discussed

in Section 7.3, the stochastic growth function Ω(·) is a function of index-indicator (I) that

decides if a particular business segment/firm is growing in business, performing the same ,

or deteriorating as a function of time. In our study, we found (I) to be 2.12 > 1 implying

that the whole health care business segment is performing well (average percentage returns

of the profit structure is declining) as a function of time. In other words, the SGF of AWPR
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of HBS is increasing. We also computed the 95% confidence interval for the index-indicator

(I) which happens to be precise in terms of capturing the true information of (I) in long

run. The resulting information of the behavior of the (I) of proposed stochastic model is

very important to the managers to make constructive and corrective decisions in monitoring

the stock returns. For example, if (I) < 1 , the average weekly returns are increasing, and

hence change is required in the ongoing implemented business strategy; In our study, we

have found that the pharmaceutical company AbbVie Inc. (ABBV). The I = .97 ≈ 1 for

ABBV implies that the company is performing more or less the same in terms of returns, as a

function of time . I = 1 implies that the SGFs of AWPR remain unchanged (constant); and

I > 1, is the indication that the SGFs of AWPR are increasing with time. Managers may

consider changes in the values of I that drives the profit structure to increase the revenue

and necessary process adjustments are to be taken. The health care and pharmaceutical

firms can be directly involved in the monitoring process since they control the significant

financial indicators and the interactions. Thus, these firms under S&P 500 can determine

what modifications and adaptations needs to be taken to increase the returns based on the

estimated I of a particular time period. In a nutshell, our proposed analytical model can

be implemented to any one of the eleven sectors of S&P 500, and any specific company of a

sector, for a particular time period to monitor the profit pattern.
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Chapter 8: A Real Data Driven Analytical Model to Predict Happiness

Journal Article : “A Real Data-Driven Analytical Model to Predict Happiness,” by

Aditya Chakraborty & Chris P. Tsokos, Sch J Phys Math Stat, 2021 Mar 8(3): 45-61.CC-

BY-NC 2021 by Copyright Holder. Used with Permission

8.1 Introduction

When we think about Happiness in modern life, we might be referring to the feeling we

get after the first lick of a delectable ice cream cone or when spending quality time with

some of our wonderful friends. This way of thinking about Happiness as satisfaction or

amusement suggests that it is a subjective, emotional state, susceptible to the moment-to-

moment experience that we are having.

Even though feeling good is a part of Happiness, some old lines of thought have defined

Happiness more extensively. Specifically, Aristotle believed that the ultimate goal of human

life was a notion of ancient Greeks called eudaimonia. The word is often translated as Hap-

piness, but more likely means ”human flourishing” or ”a good life.” Being happy is not only

associated with personal well-being but also with productivity on a large scale. Studies have

been performed to understand the association between Happiness and productivity[9]. A

happy mind is also associated with sound mental health. Health and Happiness are essential

and possibly related to the pursuits of mankind. Sound health may play a vital role in

determining the Happiness or, morbidness/sickness may cause unhappiness. Conversely, a

feeling of Happiness may strengthen health conditions[103]. Numerous studies on Happiness

has been done by social researchers concentrating on psychological and social causal and

cognitive factors of Happiness. For instance, Happiness is routinely keep under surveillance
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in sociological surveys[95], and levels of Happiness have been connected to individual per-

sonality and idiosyncrasy[41], living conditions, dignity and morale , love, democracy [103]

[104] [21] [49], and also with brain activity of specific individual[53]. Some studies have

investigated Happiness concerning health in a widespread population. In an epidemiolog-

ical study of Finnish men, it has been found that life satisfaction (measured through four

items assessing whether life is interesting, happy, easy, or lonely) predicts lower mortality[83],

but the specific contribution of Happiness was not reported. In the medical literature, the

Happiness is often considered a contributing factor of good mental health. For instance,

the mental health scale embedded in the Short Form-36 (SF-36) questionnaire includes an

item on Happiness, [13], one item from the Bradburn scale of well-being asks whether the

respondent is ‘depressed or very unhappy’ [17], and the validity of the Happiness-Depression

scale was tested against a mental health questionnaire[136]. Some studies also found that

the effect of the nationality of levels of Happiness may capture the impact of cultural in-

tegration on people’s well-being[103]. Using an international cross-section of 28 countries,

researchers have found a highly significant impact of democracy on the subjective well-being

of people[44]. Thus, Happiness and democracy, as one would expect, are highly correlated.

In general, personal Happiness and well-being seem to the principal objective of human

life. Throughout history, the virtue of Happiness has been considered as the ultimate end of

temporal existence. Aristotle’s ancient view about Happiness was ”Happiness is so impor-

tant, it transcends all other temporal considerations”. Aristotle’s prescription for spending

a good life was to exercise virtues like being kind, humble, wise, and honest in our actions

consistently. In other words, accomplishing different physical and emotional needs, is the

recipe for a happy life.

From our study, we found Finland being number one, followed by Denmark. The U.S is

fifth and Romania being 54th. The proposed model offers other useful information on the

subject area. Our analytical model has been validated and tested to be of high quality, and

our prediction of happiness is with a high degree of accuracy.
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While we build the analytical model, we have the national average of happiness score as the

response variable; hence, we proceed to develop an analytical model containing significant

risk factors and other significant interactions. The proposed non-linear statistical model

is based on several assumptions, such as linearity, multicollinearity, homoscedasticity, and

different assumptions concerning statistical methodology. The dataset shows that some

of the risk factors are highly correlated, as shown in Figure 8.3. The parameters of the

models become difficult to interpret under the influence of multicollinearity. The parameters

also become very unstable when independent variables are highly correlated, which leads to

over-fitting the model. Moreover, we use different penalization regression methods: Ridge

Regression (L2), Lasso Regression (L1), and Elastic net (EN) [130]. These machine-learning

techniques are vastly used in applied sciences to address several ill-factors of the model

(such as over-fitting) . Our proposed statistical model is useful in predicting individuals’

Happiness, given the values of the significant risk factors. Also, we ranked the risk factors in

accordance with their percentage of contribution to the happiness score. The validation and

quality of our proposed analytical model have been statistically evaluated using R square

(R2), R square adjusted (R2
adj), Mean absolute deviation (MAD), root mean square error

(RMSE), and residual analysis. The advantages of using this model has been discussed

in the conclusion section. To the best of our knowledge, no such statistical model has

been developed under the proposed logical structure to predict Happiness for developing

countries. Therefore, searching for an proper data-driven analytical model in the prediction

of Happiness is important.

8.2 Methodology

8.2.1 The Data

The World Happiness Report is a landmark survey of the state of global happiness that

ranks descriptively 156 countries by how happy their citizens perceive themselves to be. The

data has been obtained from the World Happiness Report 2019 website[64], where they used
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the Gallup Poll to get the answers to specific questions. The data has been collected for

a total of 156 countries from 2005 to 2018. However, in our study, we only considered the

data of developed countries(sorted based on the human development index[HDI]) in the

world. Individuals were asked specific questions, and as a result of their response as a whole,

a score was produced, which is termed as the national average. In our data, the average

scores of the developed countries from 2005 to 2018 were tabulated. One of the main goals

of our study is to understand what attributable variables significantly affect the happiness

of an individual. We have eleven attributable variables and the Ladder (which is also called

subjective well being [SWB] or happiness score as a measure of response. For example,

let there be an imaginary ladder, with steps numbered from 0 at the bottom

to 10 at the top. The top of the ladder represents the best possible life, and

the bottom of the ladder represents the worst possible life of an individual. On

which step of the ladder is an individual standing currently is reported. This

measure is also referred to as the Cantril life ladder or just life ladder in our

analysis.

The attributable variables (risk factors) that the data was collected on are given below.

The descriptions of the risk factors are the same as provided in the world happiness report

2019.

• LOG GDP(X1)(Log GDP): Per-capita gross domestic product(in logarithmic scale)

in purchasing power parity(PPP).

• SOC SUPPORT(X2)(Social Support): This variable is defined as is the national

average of the binary responses (either 0 or 1) to the GWP question ”If you were in

trouble, do you have relatives or friends you can count on to help you whenever you
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need them, or not?”

• LIFE EXPECT(X3)(Life Expectancy): Healthy life expectancies at birth are based

on the data extracted from the World Health Organization’s (WHO) Global Health

Observatory data repository.

• FREEDOM(X4): Freedom to make life choices is the national average of responses

to the GWP question ”Are you satisfied or dissatisfied with your freedom to choose

what you do with your life?”

• Generosity(X5): Generosity is the residual of regressing national average of response

to the GWP question ”Have you donated money to a charity in the past month?” on

GDP per capita.

• PER CORR(X6)(Perception of Corruption): The measure is the national average of

the survey responses to two questions in the GWP: ”Is corruption widespread through-

out the government or not” and ”Is corruption widespread within businesses or not?”

The overall perception is just the average of the two 0-or-1 responses.

• POS AFFECT(X7)(Positive Affect): Positive affect is defined as the average of three

positive affect measures in GWP. These are happiness, laughter, and enjoyment in the

Gallup World Poll.

• NEG AFFECT(X8)(Negative Affect): Negative affect is defined as the average of

three negative affect measures in GWP. These are worry, sadness, and anger, respec-
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tively.

• CONF GOV(X9)(Confidence in Government): How much trust and confidence does

one have in government when it comes to handling [International problems/Domestic

problems] – a great deal, a fair amount, not very much or none at all?

• DEM QUALITY(X10): Democratic quality is the National average of the first two

dimensions of World Governance Index (WGI)[78] namely,voice and Accountability

and Political Stability and Absence of Violence/Terrorism.

• DEL QUALITY(X11):Delivery quality is the National average of the last two dimen-

sions of World Governance Index (WGI) namely, Government Effectiveness, Regula-

tory Quality, Rule of Law and Control of Corruption.

The definitions of the above-mentioned measures under DEM QUALITY and

DEL QUALITY (which are also the six dimensions of the World Governance Quality In-

dex (WGI) are as follows:

1. Voice and Accountability: Voice and accountability captures perceptions of the

extent to which a country’s citizens are able to participate in selecting their government, as

well as freedom of expression, freedom of association, and a free media.

2. Political Stability and Absence of Violence/Terrorism: Political Stability and

Absence of Violence/Terrorism measures perceptions of the likelihood of political instability

and/or politically motivated violence, including terrorism.
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3. Government Effectiveness: Government effectiveness captures perceptions of the

quality of public services, the quality of the civil service as the degree of its independence

from political pressures, the quality of policy formulation and implementation, and the cred-

ibility of the government’s commitment to such policies.

4. Regulatory Quality: Regulatory quality captures perceptions of the ability of the

government to formulate and implement sound policies and regulations that permit and pro-

mote private sector development.

5. Rule of Law : Rule of law captures perceptions of the extent to which government

agents have confidence in and abide by the rules of society, and in particular the quality of

contract enforcement, property rights, the police, and the courts, as well as the likelihood of

crime and violence.

6. Control of Corruption : Control of corruption captures perceptions of the extent

to which public power is exercised for private gain, including both petty and grand forms of

corruption, as well as ”capture” of the state by elites and private interests.

From Figure 8.1 below, we see that there are some missing observations in the data set.

However, the proportion of missing values is small; we used predictive mean matching

(pmm) algorithm to perform multiple imputation to our dataset. Predictive mean matching

(PMM) is a useful technique to perform multiple imputation [110] for missing data points

in a plausible manner, especially for imputing quantitative variables that are not normally

distributed.

While the development of proposed analytical model to predict happiness score as a

function of several risk factors, one of the most important assumptions is the normality

of response (dependent variable). That is, the response variable Ladder should follow the
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Gaussian probability distribution. The mid-values of happiness score seem to be reasonably

straight, but the ends are skewed to a certain degree, as can be seen from the Q-Q plot

shown by Figure 8.3.

Figure 8.1: Showing The Distribution Of Missing Values in Happiness Data

Figure 8.2: Q-Q Plot Of The Response Ladder
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Figure 8.3: Correlation Matrix of The Attributable Variables

We have also shown through goodness-of-fit test (Shapiro-Wilk normality test, p-value

= 5.565 × 10−10) that the response Ladder does not follow the normal probability distri-

bution. Thus, the Q-Q plot supports that the national average of happiness scores, do not

follow the Gaussian probability distribution. The correlation plot of of the risk factors is

shown in Figure 8.2.3, where negative correlations are presented in red and positive cor-

relations in blue color. The color intensity and the degree of relationship between each

pair of risk factors are proportional to the correlation coefficients. From the following cor-

relation matrix in Figure 8.4, we see that there are strong positive associations between
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the variables LIFE EXPECT and DEL QUALITY, Generosity, and DEL QUALITY and

DEM QUALITY and DEL QUALITY. Also, there is a strong negative association between

the variables LOG GDP and PER CORR and PER CORR and CONF GOV. Thus, we

would implement some regularization techniques such as Ridge Regression (L1), Lasso Re-

gression (L2), and Elastic net regressions to take into account the over-fitting issue and

compare their performance in terms of RMSE and MAE.

8.2.2 Development of Statistical Model

We now start developing the non-linear analytical model, which is driven by the national

average of happiness score as a function of the eleven risk factors and all possible interactions,

as discussed previously. The general structure of our non-linear model with all possible

interactions and additive error structure, is given by:

Ladder = β0 +
∑
i

αixi +
∑
j

γjkj + ϵ , (8.1)

where β0 is the intercept term of the model, αi is the coefficient of ith individual risk

factor xi, γj is the coefficient of jth interaction term kj and ϵ is the random error term of the

model, that follows a normal distribution with zero mean and constant variance.

One of the main suppositions to develop the above model is that the response variable

should follow the Gaussian probability distribution. As we have shown above, the dependent

variable Ladder does not follow the Gaussian probability distribution initially. Therefore, we

utilize a non-linear transformation to filter our happiness data so that it follows the normal

probability distribution. We used Johnson transformation for our response, which is given

by:

z = γ + δln
(

x−ϵ
λ+ϵ−x

)
, ϵ < x < ϵ+ λ
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and

TLadder = −0.43 + 0.87ln
( x− 4.2

3.72 + 4.2− x

)
. (8.2)

Here, T Ladder denotes the new response variable(transformed) after the use of Johnson

SU transformation to our old response. We now estimate the coefficients (weights) of the

risk factors for the processed data in equation 8.2. To develop our analytical model, we

initially proceed with the full statistical model, including all eleven risk factors and ten

possible interactions between each pair. Thus, initially, we start structuring our model with(
n
k

)
= 55(n = 11, k = 2) terms that include the primary contribution of the risk factors and

every possible interactions.

As we began with the full statistical model (fifty-five terms), as mentioned, we have

applied the backward elimination method to identify the most significant contributions of

both the individual attributable variables and interactions by eliminating the less important

risk factors gradually.

Furthermore, backward elimination is deemed one of the best traditional methods for a

set of feature vectors to encounter the problem of overfitting and carry out feature selection.

Though, the statistical estimation method of our data analysis has indicated that only

seven out of the eleven risk factors significantly contribute and twenty-eight interaction

terms, we can not omit the risk factors that are not significant, and simultaneously include

any risk factor interacting with it in the model.

Thus, the best proposed statistical model with all risk factors and significant interactions

that estimates the average happiness score accurately are eleven risk factor individually, and

the twenty-eight interaction term, which is given by:
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̂TLadder =



−0.45 + 0.42X1 + .12exp(X2) + .04X3 + .27X4+

.16X5 + .03exp(−X6) + .12exp(X7)− .07X8 + .03X9

−.07X10 − .1X11 − .17X1X3 + .14X1X4 − .13X1X5+

.27X1X6 − .03X1X7 − .11X1X8 + .22X1X11 − .1X2X5

+.19X2X6 + .14X2X8 + .22X2X9 + .16X2X10 + .15X2X11+

.07X3X7 − .06X3X10 − .43X4X6 − 0.19X4X8 − 0.29X4X9+

0.10X4X10 − 0.30X4X11 + 0.18X5X6 + 0.11X5X9 − .2X5X10+

.32X5X11 − .02X6X11 + 0.1X7X8 + 0.1X7X9 + 0.1X8X11

(8.3)

The ̂TLadder can be computed from equation (3) and is based on the Johnson transformation[106]

of the data. We now proceed to utilize the anti-transformation on equation (8.3) to estimate

the actual estimate national average of happiness score L̂adder as follows:

L̂adder = 4.2 +
3.72

1 + exp
( ̂TLadder+0.43

0.87
)

. (8.4)

The proposed analytical model will assist social scientists and economists acknowledge

how the happiness score changes when any of the eleven risk factors is varied by keeping the

other risk factors fixed at the same time.

Likewise, with the variation of significant interaction. Anyone, interested to know the

optimum levels of the risk factors at which the happiness score is maximized, can do the

same by using any analytical optimization technique.

We now illustrate the percentage of contributions of the risk factors and the interactions

to the happiness score as shown below in Table 8.1.
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Table 8.1: Ranking of Individual Risk Factors and the Interactions With Respect to The
Percentage of Contribution to The Response

Rank Risk Factors Contr.(%)

1 LOG GDP 7.15

2 FREEDOM ∩ PER CORR 5.58

3 LOG GDP ∩ PER CORR 5.00

4 FREEDOM 4.94

5 EXP (POS AFFECT ) 4.63

6 FREEDOM ∩ CONF GOV 4.46

7 FREEDOM ∩NEG AFFECT 4.13

8 CONF GOV ∩ SOC SUPPORT 3.89

9 NEG AFFECT ∩ SOC SUPPORT 3.72

10 GENEROSITY 3.72

11 FREEDOM ∩DEL QUALITY 3.59

12 GENEROSITY ∩DEL QUALITY 3.45

13 EXP (SOC SUPPORT ) 3.30

14 GENEROSITY ∩DEM QUALITY 3.16

15 LOG GDP ∩DEL QUALITY 2.96

16 PER CORR ∩ SOC SUPPORT 2.87

17 LOG GDP ∩ LIFE EXPECT 2.55

18 POS AFFECT ∩NEG AFFECT 2.45

19 LOG GDP ∩NEG AFFECT 2.44

20 CONF GOV ∩ POS AFFECT 2.38

To evaluate the quality of the proposed analytical model , we use both the coefficient

of determination, R2, and adjusted R2, which are the basic criteria to evaluate the model

performance. The sum of squares due to regression(SSR) is the squared sum of the differences
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between the predicted response and the mean response. It captures the observed variability

of the model. The sum of squared errors (SSE), also termed as the residual sum of squares,

is the variation that remains unexplained. We always try to minimize this error in a model

The total sum of squares (SST) = SSE + SSR. R2, the coefficient of determination, is defined

as the proportion of the total response variation that is explained by the proposed model,

and it measures how well the regression process approximates the real data points. Thus,

R2 is given by

R2 = SSR
SST = 1− SSE

SST .

However, R2 itself does not consider the number of variables in the model. Also, there is

the problem of the increasing R2 with addition of variables in the model. To address these

issues, we have the adjusted R2, which considers the number of parameters and is given by

R2
adj = 1−

[
(1−R2)(n−1)

n−k−1

]
,

where n is the number sample data points, and k is the number of independent risk factors

used in the model, excluding the constant. For our final statistical model, the R squared is

88.8%, and R squared adjusted is 87.8%. Both R squared and R squared adjusted are very

high and very close to each other. That is, the developed statistical model explains 88.8% of

the variation in the response variable, a very high-quality model. Similarly, the risk factor

that we included in the model, along with the relevant interactions, estimates almost 89%

of the total variation in the happiness score.

8.2.3 Verifying Model Assumptions

Once the statistical model has been developed, it is necessary to check the model as-

sumptions (if any). In our case, we have proposed a multiple non-linear regression model,

which is very useful and conveys to us accurately some important information on the subject

matter. However, multiple linear regression has some important assumptions which must
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be satisfied with the correctness of the proposed model. In this section, we will verify the

important model assumptions.

8.2.3.1 Mean Residual should be Close to Zero

When one performs multiple linear regression (or any other type of regression analysis),

one obtains a linear function that best fits the data. The entire data points usually don’t

fall exactly on this regression plane, but they are scattered around it. The residual(error)ϵ̂

is defined as:

ϵ̂ = residual = observed value-predicted value = y − ŷ ,

where y and ŷ are the observed and predicted response. ê is the estimated residual error from

the linear fit. The sum of the residuals equals zero, assuming that the regression function

is actually the “best fit.”In our case, the mean residual is −1.56 ∗ 10−18, implying that it is

almost zero. Figure 8.4 below illustrates the behavior of the residual estimator.

Figure 8.4: Fitted Vs. Residual Plot
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8.2.3.2 Homoscedasticity of residuals

One of the main assumptions of the linear regression model is the homoscedasticity of

the residuals or equal variance. That is, V ar(ê) = σ2 which is constant. From the above

Figure 8.4, we see that residuals vary as the fitted values increase. It seems that the pattern

is more or less uniform, which is shown by the red line. There is no increasing or decreasing

trend. Hence, the assumption of the constant variance of the residuals has been satisfied.

Breusch-Pagan Test: Breusch-Pagan (BPG) test is used to test for heteroskedas-

ticity of the error terms in a regression model. We obtained a p-value of .35173 by testing

the null hypothesis of constant error variance against the alternative that the error variance

changes with the level of the response (fitted values) or with a linear combination of predic-

tors. Hence, we have significant reason to believe the error variance is constant.

Figure 8.5: Normality of Studentized Residual(sresid) Plot
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8.2.3.3 Normality of residual

One important assumption of linear regression is normality of residual. From Figure 8.6,

and Figure 8.7, we see that the studentized residual follows a normal pattern.

Figure 8.6: Q-Q Plot of Studentized Residuals

8.2.3.4 No auto-correlation between the residuals

We proceed to test the auto-correlation between the error terms of our model. The cor-

relation between two error terms is defined as,

corr(êi, êj) =


0, if i ̸= j.

1, if i = j.

(8.5)

where êi and êj are the ith and jth error terms in the model.

The following Figure 8.7 shows the autocorrelation of the residuals vs. lag plot. The X-

axis corresponds to the lags of the residuals. The first line to the left shows the correlation
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of residuals with itself (Lag0); therefore, it will always be equal to 1. If the residuals were

not auto-correlated, the correlation (Y-axis) from the immediate next line onwards would

drop to a near-zero value below the dashed blue line (significance level). Hence, there is no

auto-correlation between residuals in our model.

Figure 8.7: Showing The Auto-Correlation Plot of Residuals

RUN TEST: Also, we can verify the no auto-correlation case of the residuals by Run

test (Wald, A. and Wolfowitz, J. (1940)[135]. Runs test examines the randomness of a nu-

meric sequence by studying the frequency of runs. We obtained a p-value of 0.9264, which

implies that we fail to reject the null hypothesis that residuals are random. Hence, there is

no pattern.

Durbin-Watson test: The Durbin Watson Test[137] is a measure of auto-correlation

(also called serial correlation) in residuals from the regression analysis. Auto-correlation is

the similarity of a time series over successive time intervals. It can underestimate the stan-

dard error and can cause one to believe that the predictors are significant when they are not.

The Durbin–Watson test statistic is used to detect the presence of autocorrelation at lag 1

in the residuals (also termed as prediction errors) in regression analysis. The test statistic
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for this test is given by:

DW =
∑T

t=2

(
êt− ˆet−1

)2

∑T
t=2 êt

2 ,

where êt and ˆet−1 are the residuals at time points t and t− 1, respectively.

A rule of thumb is that the test statistic values in the range of 1.5 to 2.5 are relatively

normal. Values outside of this range could be a cause for concern. Field(2009) suggests that

values under 1 or more than 3 are a definite cause for concern. The value we obtained for

the test statistic is 1.89 with a p-value of .109, implying that there is insufficient sample

evidence to reject the null hypothesis that the true auto-correlation in zero.

5. The regressors and the residuals are nor correlated: We calculated the Pear-

son’s product-moment correlation coefficient between each regressor and the residuals. As

expected, every time we obtained an insignificant p-value implying that the true correlation

is zero.

We further studied the fact that if there are other statistical models that give better useful

results than the proposed nonlinear regression model. Thus, we developed some penalized

regression models and compared those with our proposed model. These models are given in

the following section.

8.3 Penalized Regression Models

Penalized regression methods have proven to be a high-yielding area of research in statis-

tics and data sciences. The key idea is to add a ’penalty’ to regression to encourage desirable

behavior in the model. Often this is done to reduce variability in estimating the parameters.

While developing the proposed statistical model for happiness, we used OLS, the ordinary
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least square technique to obtain an approximate estimate of the coefficients (weights) of the

attributable variables. To address the multicollinearity problem (since in our data set, some

variables are strongly correlated), the Regularization methods are used. Since these meth-

ods are based on adding the regularization parameters( lambda and alpha) to the regression

coefficients of the individual risk factors, these the model generalizes the data and prevents

over-fitting. To further illustrate our proposed model’s quality, we will discuss three machine

learning regularization methods and our proposed non-linear analytical model.

8.3.1 Ridge Regression

For multiple linear regression, the ordinary least squares fitting procedure of the coeffi-

cient estimates(weights) β1, β2, .......βp that minimizes the cost function RSS (Residual Sum

Of Squares), is given by,

RSS =
∑n

i=1

(
yi − β0 −

∑p
j=1 βjxij

)2

.

Ridge regression is very similar to least square regression, except that the ridge coefficients

are estimated by minimizing a slightly different quantity. In particular, ridge regression

coefficient estimates β̂R are the values that minimizes the following function:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2
+ λ

p∑
i=1

βj
2 , (8.6)

where λ ≥ 0 is a tuning parameter (sometimes called a penalty parameter that controls

the strength of the penalty term in ridge regression) to be determined via cross validation.

8.3.2 LASSO (Least Absolute Shrinkage and Selection Operator) Regression

The LASSO regression model appends an absolute value of magnitude of a coefficient as

penalty term to the loss function that is given by:
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n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ

p∑
i=1

| βj | . (8.7)

Comparing (8.6) to (8.7), we see that the LASSO and Ridge regression have similar

formulations. The only difference is that the β2
j term in the ridge regression penalty in (6)

has been replaced by | βj | in the LASSO penalty (6). In statistical literature, the LASSO

uses an L1 penalty where the Ridge uses L2 penalty.

8.3.3 Elastic Net

Elastic Net regression model is the combination of Ridge and LASSO regression methods.

The loss function of elastic net model can be defined by:

n∑
i=1

(
yi − β0 −

p∑
j=1

βjxij

)2

+ λ
[
(1− α)

p∑
i=1

βj
2 + α

p∑
i=1

| βj |
]

. (8.8)

However, in the above equations (8.6, 8.7, and 8.8) the constructions of the three models

will be the same structure as our proposed model in equation (1) with only the coefficient

estimation will be different because of the randomness in selecting the training data set.

8.4 Comparison among different Models

We now proceed to compare the performance of the proposed model with the other three

models using the following two matrices.

8.4.1 Root Mean Squared Error (RMSE)

After each repetition of the cross-validation, the model assessment metric RMSE is com-

puted, which is given by:

RMSE =

√∑n
i=1

(
yi−ŷi

)2

n ,

where yi and ŷi are the observed and predicted responses.
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8.4.2 Mean Absolute Deviation (MAE)

The MAE measures the average magnitude of the errors in a set of forecasts, without

considering their direction which is given by

MAE =
∑n

i=1|yi−ŷi|
n ,

where yi and ŷi are the observed and predicted responses.

While comparing the proposed model with the three regularization methods Ridge,

LASSO, and Elastic Net, we have found that our proposed analytical model performs bet-

ter in terms of validations matrices RMSE and MAE, as described above. Table 8.2 below

provides multiple comparisons among the different models in terms of training and testing

accuracy.

Table 8.2: Comparison Among Different Models in terms of RMSE and MAE

Table of Comparison

RMSE MAE

Training Testing Training Testing

Proposed Model .31 .43 .24 .31

RIDGE .38 .5 .3 .35

LASSO .36 .52 .27 .37

EN .36 .52 .29 .37

From the above Table 8.2, we see that our proposed nonlinear statistical model gives

minimum testing error in terms of RMSE and MAE when compared with the penalized

regression models. Thus, our analytical model outperforms the other three models for our

happiness data.
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Figure 8.8: Brief Illustration Of Repeated Ten Fold Cross Validation

8.5 Validation and Prediction Accuracy of The Proposed Model

We developed our analytical model on 80% training data and validated the model based

on 20% testing data. In the testing data (validation data), the test error is the average

error that occurs from using the analytical method to predict the response on a new set of

observations. That is a measurement that was not used in training the method. The test

error gives an idea about the consistency of the analytical model. Moreover, we performed

repeated ten-fold repeated cross-validation (10 times) for our validation testing. The primary

objective is that we will use 10-fold cross-validation, then we repeated cross-validation ten

times, where each of the repetition folds are split differently. In 10-fold cross-validation, the

training set is divided into ten equal subsets. One of the subsets is taken as the testing set

in turn, and (10-1) = 9 subsets are taken as a training set in the proposed model. The error

mean square error E1 is computed for the held out set. This procedure is repeated ten times;

each time, a different group of observations is treated as a validation set. This process results
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in 10 estimates of the test error, Ei, i = 1, . . . 10. The average error of each set throughout

the cross-validation process is termed as a cross-validated error. The following Figure 8.8,

illustrates briefly the idea of 10 fold repeated cross-validation, where Ei, i = 1, . . . 10 is the

mean square error (MSE) in each iteration and ACVE is the average cross-validated error.

Now we employ the following three methods to illustrate the prediction accuracy of the

proposed model.

8.5.1 Min-Max Accuracy

Min-Max-Accuracy is the average of the ratio of minimum value between the actual ob-

servation and predicted observation and maximum between actual observation and predicted

observation. Mathematically, it can be expressed as follows:

Min−Max− Accuracy = mean
[
min(yi,ŷi)
max(yi,ŷi)

]
,

where yi and ŷi are the observed and predicted response.

It gives an idea about how far the model’s prediction is off on an average. For a perfect

model, this measure is 1.This can be taken as the accuracy of the proposed model. For our

developed model, the Min-Max accuracy is 96.2%, which is quite impressive.

8.5.2 Correlation Accuracy

A simple correlation between the original observations and predicted observations can be

used as a form of accuracy measure. A greater correlation accuracy implies that the original

and predicted observations have analogous directional movement, i.e., when the original

observations increase, the predicted observations also increase and vice-versa. We obtained

a correlation accuracy of 90.5% in the test data, which implies that our statistical model is

of high quality and should be useful for applied predictive analysis for real data.

Table 8.3 below provides the two measures of prediction accuracy for our proposed model.
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Table 8.3: Prediction Accuracy for the Proposed Model

Min-Max-Accuracy Correlation Accuracy

96.2% 90.5%

Thus, the above two methods attest to the high quality of our proposed model.

8.6 Discussions

After obtaining the significant risk factors along with their significant interactions, we

rank them with respect to the percent of contribution to the happiness scores for the develop-

ing countries as shown in Table 8.1. The risk variable that has the largest contribution to the

happiness score is the variable LOG GDP which contributes 7.15% of the total variation

to the happiness score. The next largest contribution is the combined effect of freedom and

perception of corruption with a 5.58% contribution. Numbers 3, 4, and 5 are the combined

interaction effect of LOG GDP, FREEDOM, and exp(POS AFFECT) with a contribution

of 5%, 4.94%, and 4.63%, respectively. Hence, adding these risk factors up, we see that they

explain almost 89% of the total variability in the national average happiness score for all

developing countries. We can address the usefulness and importance of the proposed model

in the subject area in five important categories.

These categories are given below.

1. We have identified and tested the individual attributable variables(risk factors) respon-

sible for the change in happiness score across all the developed countries.

2. we have identified the significant interactions that influence the happiness score in our

model.

3. we have ranked the individual risk factors and interactions as a percentage of con-

tribution for the the response of the national average of happiness score (Ladder) or

subjective well-being (SWB).
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4. We can obtain excellent predictions of happiness of individuals given the values of the

attributable variables from our analytical model with a high degree of accuracy.

5. Any particular country might use our non-linear statistical model to work on specific

risk factors to increase their happiness score. For example, one can work on the variable

SOC SUPPORT (X2) if the value for a particular year is not satisfactory and work

on other important aspects to increase the value so that the happiness score can be

increased.

We have also ranked all the developed countries based on the predicted happiness

score of the most recent observations (data) available for the year 2019. The following

Table 8.4, illustrates the ranking of the countries.

It is interesting to note that Finland and Denmark possess the top happiness scores while

the United States is fifth. Also, studies[44] has shown a significant influence of democracy

on an individuals’ subjective well-being (happiness). Finland and Denmark falling into the

category of the top democratic countries of the world also validate the fact.

8.7 Conclusion

We have developed a real data-driven analytical model that very accurately identifies the

following very useful findings concerning the happiness of the society of developed countries

in the world:

• Identifies the significant attributable variables (risk factors) that drives the degree of

happiness.

• Identifies the significant interactions of the risk factors that contribute to the degree

of happiness.

• We rank the individual and interactions of the risk factors with respect to their per-

centage of contribution to the degree of happiness.
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• The developed analytical model predicts the degree of happiness very accurately for a

given response to a set of questions.

• The developed model can be used strategically to increase the degree of happiness by

working with the identified risk factors.

• Furthermore, one can perform surface response analysis to identify the target values

of the risk factors so as to be, say, 95 percent sure that we will maximize the degree of

happiness based on the identified values.

The developed analytical model has been evaluated by several statistical methods that in-

clude the R2 and R2
adjusted that attest to its high quality. The risk factor LOG GDP is

the highest contributor to the happiness score contributing 7.15%, while DEL QUALITY

contributes the least with 1.31% to the response. The findings of our study suggest that

economists and other social scientists might need to pay more attention to emotional well-

being as a causal force. Also, since individual happiness in an organization has a positive

correlation with productivity, our proposed statistical model can be used for firms’ promotion

policies, and they may be useful for managers and human resources professionals. Human

resource managers can use our model to predict the individual happiness score by using

the questionnaire (Appendix B) . It will help the company to identify those individuals

who need to be rewarded and those who need to improve their happiness score. Identifying

those individuals are essential for the company as happiness is correlated with an increase

in productivity. Our proposed statistical model is also highly useful for decision making and

strategic planning on controlling the factors responsible for causing people to be unhappy

and depressed. Finally, since happiness is the most crucial aspect of human life that we seek,

controlling the most critical risk factors that significantly contribute to the happiness are

essential to control the crime rate of a country, as there is a negative correlation between

the individual country’s happiness score(Ladder) and crime rate.
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Table 8.4: Ranking of Developed Countries based on Predicted Happiness Score

Rank Country Score

1 Finland 7.67

2 Denmark 7.55

3 Sweden 7.54

4 Iceland 7.38

5 United States 7.35

6 Canada 7.29

7 Ireland 7.17

8 Switzerland 7.16

9 United Kingdom 7.09

10 Germany 7.03

11 Malta 6.98

12 Luxembourg 6.96

13 Oman 6.96

14 Estonia 6.92

15 Singapore 6.89

16 Qatar 6.82

17 France 6.76

18 Uruguay 6.73

19 Slovenia 6.62

20 Malaysia 6.61

21 United Arab Emirates 6.56

22 Saudi Arabia 6.54

23 Netherlands 6.53

24 Argentina 6.51

25 Australia 6.51

26 Austria 6.51

27 Bahrain 6.51

Rank Country Score

28 Belarus 6.51

29 Belgium 6.51

30 Czech Republic 6.46

31 Norway 6.43

32 Israel 6.38

33 Lithuania 6.35

34 Chile 6.34

35 Spain 6.31

36 Slovakia 6.24

37 Japan 6.24

38 Hungary 6.14

39 Poland 6.12

40 New-Zealand 6.11

41 Cyprus 6.09

42 Italy 6.06

43 Kazakhstan 6.05

44 Russia 5.99

45 South Korea 5.94

46 Kuwait 5.70

47 Turkey 5.60

48 Croatia 5.55

49 Portugal 5.45

50 Montenegro 5.38

51 Latvia 5.35

52 Bulgaria 5.34

53 Greece 5.20

54 Romania 5.04
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Chapter 9: A Real Data-Driven Clustering Approach For Countries based on

Happiness Score

Journal Article : “A Real Data-Driven Clustering Approach for Countries Based on

Happiness Score,” by Aditya Chakraborty & Chris P. Tsokos, Amfiteatru Economic, 23

(Special Issue No. 15), pp. 1031-1045, CC-BY-NC 2021 by Copyright Holder. Used with

Permission

9.1 Introduction

In machine learning and data science literature, Clustering is the task of dividing the

observations (data points) into several categories in such a way that data points falling into

one group are being dissimilar than the data points falling to the other groups such that the

variation within a group is minimized and the variation between the groups is maximized.

It falls under the class of unsupervised learning techniques. It is primarily a tool to classify

individuals on the basis of similarity and dissimilarity between them.

Our present study utilizes the world happiness data of 156 countries collected by the Gallup

World Poll. Our study proposes the most accurate (if not the best) clustering algorithm with

a very high degree of accuracy to classify different countries of the world based on several

economic and social indicators. The most appropriate clustering algorithm has been selected

based on different statistical methods. We also proceed to rank the top ten countries in each

of three clusters according to their happiness score. The three leading countries in terms

of happiness from cluster 1 (medium happiness), cluster 2 (high happiness), and cluster 3

(low happiness) are Oman, Denmark, and Guyana, respectively, followed by United Arab

Emirates, Finland, and Pakistan. Finally, we use four popular machine learning classification
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algorithms to validate our cluster-based algorithms and obtained very consistent results with

high accuracy. Richard Easterlin (1974) was the first economist to make prominent use of

happiness data when he reported that despite increases in personal income over time, people

were not reporting an increasing level of happiness[43]. Being happy not only is associated

with personal well being but also with the productivity at a large scale Throughout history,

it has been seen as the ultimate end of temporal existence. Recently, social researchers

are prone to use sophisticated machine learning techniques in applied sciences [28] [26] to

answer specific types of questions regarding happiness of individuals and socio-economic

conditions of a country as a whole. Chakraborty & Tsokos [27] developed a data-driven

analytical model with high performance to predict the happiness of the developed countries

based on different social and economic indicators. Yarkoni & Westfall [142] reviewed some

of the basic concepts and methods of statistical machine learning and provides instances

where these concepts have been implemented to perform important applied psychological

research that focuses on predictive research questions. They also recommended that an

increased focus on prediction, rather than descriptive explanation, might lead us to greater

understanding on the unknown parameter of interest. Chaipornkaew & Prexawanprasut

[25] developed a machine learning prediction model for human happiness using four popular

methods, namely KNN, Multi-Layer Perceptron, Näıve Bayes, and Decision Tree. Their

proposed model suggested that the Decision Tree with Random Over-sampler technique is

the best prediction algorithm for the analyzed data.

Our main goal of the study is the following:

1. To perform different types of explanatory analysis clustering is a great tool. But it is

necessary to check the quality of the data set, that is to verify if the data is clusterable or

not.We plan to check if there is any random pattern in the data before performing clustering.

2. We want to develop an appropriate clustering algorithm by implementing different

algorithms to choose from which will classify similar observation (countries) with high level

of accuracy based on the indicators.
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3. After selection of the accurate clustering algorithm, we proceed to perform analysis of

individual clusters to choose the indicators which are most influential.

4.We rank top ten countries based on happiness score in each cluster.

5. For validation purpose of our clustering, we perform machine learning classification

with four very popular classification algorithms.

6. Finally, for an overall picture, we plan to create a global map to show the position

of clusters in the map. It provides an overall idea about the happiness and also other socio

-economic conditions related to happiness of individual countries. Then, we proceed to com-

pare the cluster map with Figure 9.1, where we have world map based on happiness scores.

In the following figure, the light pink indicates the countries with the highest happiness

scores. These countries include the United States of America and Australia. On the con-

trary, red indicates the countries with the least happiness score. We see that the countries

with the least happiness scores are some countries in Africa and Asia. The world map has

been produced based on our real happiness data.

Figure 9.1: World Map Showing the Happiness Scores (LADDER) Of Different Countries
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9.2 The Data

The description of the data has been provided in Chapter 9.

9.3 Investigating clustering pattern

Before performing any kind of cluster analysis, it is primitive to check if the data we are

trying to analyze is clusterable. Analysis of non-clusterable data might produce misleading

results if we proceed with clustering of the data.

9.3.1 Hopkin’s Method

One important approach for testing clustering tendency is by using Hopkins statistic. The

statistic computes the clustering pattern by computing the probability that a given data set

is generated by a uniform distribution. More specifically, it tests the spatial randomness

of the data. The problem of testing for clustering tendency can also be described as the

problem of testing for spatial randomness[10]. The algorithm for computation of Hopkins

statistic as follows.

1. Uniformly sample from u1, u2, ...., un of a data set D

2. For each point ui ∈ D, find it’s nearest neighbor UJ and evaluate di = dist(ui, uj).

3. Generate a simulated data set (randomD) drawn from a random uniform distribution

with n points (v1, ..., vn) and the same variation as the original data set D.

4. For each point vi ∈ randomD, find it’s nearest neighbor vj in D and calculate the

distance ki = dist(vi, vj)

5. Calculate the Hopkins statistic (H)(defined below) as the mean nearest neighbor

distance in the random data set divided by the sum of the mean nearest neighbor distances

in the real and across the simulated data set.
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H =

∑n
i=1 ki∑n

i=1 ki +
∑n

i=1 di
(9.1)

A value of H statistic close to 0.5 means that
∑n

i=1 ki and
∑n

i=1 di are close to each other,

and thus the data D is uniformly distributed. The null and the alternative hypotheses of

the test are stated as follows:

Null hypothesis: The data set D is distributed uniformly (no meaningful clusters)

Alternative hypothesis: The data set D is not uniformly distributed (i.e., contains

meaningful clusters)

If the value of H is close to 0, then we can say that there exists sufficient sample evidence

to reject the null hypothesis and conclude that the data set D is significantly clusterable.

Performing the testing problem, we have found that our happiness data is excellent for

clustering (the H value = 0.27 from (1), far below the threshold 0.5).

9.3.2 Visual method

It is a good practice to express the data pictorially for getting a visual representation for

the clustering assessment. The technique of deciding whether clusters are present as a step

prior to actual clustering is called the assessing of clustering tendency. The visual assessment

of cluster tendency (VAT) algorithm (Bezdek and Hathaway, 2002)[14] is the following.

1. At first, the dissimilarity (DM) matrix between the objects in the data set using the

Euclidean distance measure is constructed.

2. The DM is then constructed so that identical objects are adjacent to each other. in

this process, an ordered dissimilarity matrix (ODM) is produced.

3. The ODM is then displayed as an ordered dissimilarity image (ODI), which is the

visual output of VAT.
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Figure 9.2: Showing The Clustering Tendency Of Happiness Data. Red: High Similarity ,
Blue: Low Similarity

For the visual evaluation of clustering tendency, dissimilarity matrix between observations

has been constructed. In the above Figure 9.2, the color level is proportional to the value

of the dissimilarity between observations: pure red if dist(xi, xj) = 0 and pure blue if

dist(xi, xj) = 1.

Objects belonging to the same cluster are displayed in consecutive order. The dissimilarity

matrix image in Figure 2 confirms that there is a clustering pattern in the happiness data.

9.4 Optimal number of clusters

Deciding the optimal number of clusters for a set of data is a basic challenge in clustering,

such as k-means, k-medoids (PAM), and hierarchical clustering, which requires the user to

select the number of clusters k to be determined. The method of selecting the number of

clusters is somehow subjective and also dependent upon using the techniques for computing

similarities and the parameters used for partitioning. However, are almost thirty methods

(indices, see [29]) to decide the optimum number of clusters; the most popular methods
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include elbow method, silhouette methods, Hartigan and Gap Statistic method.

Elbow Method: The concept behind partitioning methods, such as k-means clustering,

is to define clusters in such a way that the total intra-cluster variation [or total within-cluster

sum of square (WSS)] is minimized. The total WSS is a measurement of the compactness of

the clustering, and it is desired to be as minimal as possible. In the Elbow method plot, the

total WSS is a function of the number of clusters. The number of clusters should be selected

in such a way so that adding another cluster doesn’t improve total WSS.

Figure 9.3: Elbow Method Showing The Optimum Number Of Clusters

However, the elbow method is a little bit subjective; we see from the above figure that

the optimum number of clusters might be 4 as the elbow is approximately at 4.

Average silhouette method: This is a graphical display method suggested for par-

titioning techniques[109]. In the silhouette plot, each cluster is exhibited by a silhouette,

which is based on the comparison of its tightness and separation. This silhouette represents
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the objects falling within their clusters and also the objects falling somewhere in between

clusters. The whole clustering is displayed by incorporating the silhouettes into a unique

plot, which allows understanding the relative quality of the clusters and an overview of the

data configuration. The average silhouette width can be used to evaluate the validity of

clustering and can be implemented to select an ‘appropriate’ number of clusters.

Figure 9.4: Average silhouette plot showing the optimum number of clusters

The above picture suggests that optimum number of clusters might be 2 by Average

silhouette method approach.

Hartigan’s Method: Hartigan’s method[127] for k-means clustering is based on the

following greedy heuristic: select a point, and optimally reassign it. This algorithm essen-

tially compares the ratio of the within-cluster sum of squares for clustering with k clusters

and one with k + 1 clusters, accounting for the number of rows and clusters. If the number

is greater than 10, then one might take k + 1 as an optimum number of clusters.
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Figure 9.5: Hartigan’s Plot Showing The Optimum Number of Clusters

From the above graph, we see that there are five complete joins if we join the blue points

distinctly. Hence, this method suggests taking five clusters into account.

Gap Statistics: The gap statistic [62], published by R. Tibshirani, G. Walther, and T.

Hastie (Standford University, 2001), might be applied to any data clustering technique. For

different values of the cluster number k, the gap statistic gives a comparison between the to-

tal within intra-cluster variation with their expected values under null reference distribution

of the data. The estimate of the optimal clusters is the value that maximizes the gap statistic

(the value that yields the largest gap statistic), which implies that the clustering structure

is significantly different from the random uniform distribution of points. The algorithm[77]

works as follow:

1. The observed data is clustered, varying the number of clusters from k = 1, ..., kmax

and the corresponding total within intra-cluster variation Wk is calculated.
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2. Afterwards, B reference data sets with a random uniform distribution are generated.

Each of these reference data sets is clustered with varying number of clusters k = 1, ..., kmax,

and the corresponding total within intra-cluster variation Wkb is computed.

3. The estimated gap statistic as the deviation of the observedWk value from its expected

value Wkb under the null hypothesis: Gap(k) = 1
B

∑B
b=1 logW

∗
kb − logWk is computed. Also

the standard deviation of the statistics is computed.

4. Select the minimum value of k such that the gap statistic is within one standard

deviation of the gap at k + 1 : Gap(k) ≥ Gap(k + 1)− sk+1.

Figure 9.6: Gap Statistic Plot showing the optimum number of clusters

In the above Figure 9.6, Gap statistic vs. the number of cluster plot is based on 50

bootstrap samples shows that the algorithm selects number eight as an optimum cluster.
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The ultimate cluster choice based on different Clustering validity indices:

Several clustering algorithms[29] lead to different clusters of data. Moreover, even for the

same algorithm, selecting different parameters or the presentation order of data objects may

hugely influence the final clustering partitions. Thus, practical evaluation standards and cri-

teria are critically essential to achieve desired clustering outcomes. At the same time, these

evaluations also furnish some significant intuitions on how many clusters are inherent in the

data. In fact, in most real-life clustering scenarios, the user faces the problem of choosing

the number of clusters or partitions in the underlying data. There are several Clustering

validity indices in the literature. All these clustering validity indices combine information

about intra-cluster compactness and inter-cluster isolation, as well as other factors, such as

geometric or statistical properties of the data, the number of data objects, and dissimilarity

or similarity measurements.

By selecting the standard euclidean distance measure, we found the following result based

on several Clustering validity indices.

Table 9.1: Comparison Among Several Clustering Validity Indices Based on Majority votes

Result showing the outputs based on Clustering validity indices

5 proposed 2 as the best number of clusters
12 proposed 3 as the best number of clusters

2 proposed 6 as the best number of clusters
4 proposed 10 as the best number of clusters

9.5 Selecting the best Clustering Algorithm

Selecting the best clustering algorithm can be a tough call for a research scientist. One

of the rudimentary challenges of clustering is how to evaluate results without any supple-

mentary knowledge beforehand. A usual approach for the evaluation of clustering results

is to use validity indexes. Clustering validity approaches can use two criteria[108]: Exter-
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nal criteria (evaluate the result with respect to a pre-specified structure), internal criteria

(evaluate the result with respect to information intrinsic to the data alone). Hence, different

types of indexes are used to solve different types of problems, and index selection depends on

the kind of available information. Here, we will be using two types of clustering validation

techniques, say stability criteria and internal criteria.

9.5.1 Internal Measures

It is based on intrinsic information in the data to assess the quality of the clustering.

Internal measures include the connectivity, the silhouette coefficient, and the Dunn index

(information intrinsic to the data). In order to perform internal validation, we selected mea-

sures that reflect the compactness, connectedness and separation of the clustering partitions.

Connectedness talks about the extent to which observations are placed into the identical

cluster as their nearest neighbors in the data space. It is measured by connectivity [Handl

et al., 2005]. Compactness assesses cluster homogeneity via the intra-cluster variance, while

separation measures the degree of disconnection between clusters by computing the distance

between cluster centroids. Since compactness and separation demonstrate opposing trends,

popular methods combine the two measures into a single score. The Dunn Index and Silhou-

ette Width [Rousseeuw,1987] are both examples of non-linear combinations of compactness

and separation[115].

9.5.1.1 Connectivity

Let N denote the total number of observations to be clustered. Define nni(j) as the jth

nearest neighbor of observation i, and let xi,nni(j) be zero if i and j are in the same cluster

and 1/j otherwise. Then, for a particular clustering partition C = {C1, ....., CK} of the N

observations into K disjoint clusters, the connectivity is defined as
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Conn(C) =
N∑
i=1

l∑
J=1

xi,nni(j)

where l is user-specified. The connectivity has a value between zero and ∞ and should be

minimized.

9.5.1.2 Silhouette Width

The Silhouette Width is the average of each observation’s Silhouette value. The Silhou-

ette value measures the degree of confidence in the clustering assignment of a particular

observation, with well-clustered observations having values near 1 and poorly clustered ob-

servations having values near -1. For observation i, it is defined as

S(i) = bi−ai
max(bi,ai)

where ai is the average distance between i and all other observations in the same cluster

a(i) = 1
n(C(I)−1)

∑
j ̸=j∈C(i) d(i, j)

The Silhouette Width S(i) which lies in the interval [−1, 1] should be maximized.

9.5.1.3 Dunn Index

The Dunn Index is the ratio of the smallest distance between observations not in the

same cluster to the largest intra-cluster distance. It is computed as

D(C) =
minCk,C1∈C,Ck ̸=C1

(
mini∈Ck,j∈C1

{dist(i,j)}
)

maxCm∈C{diam(Cm)}
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where diam(Cm) is the maximum distance between observations in cluster Cm.The Dunn

Index has a value between zero and ∞, and should be maximized.

9.5.2 Stability Measures

It is a special sort of internal measure criteria, which assess the uniformity in a clustering

mechanism by comparing it with the clusters obtained after each column is removed, one at

a time. There are four measures that fall into the stability measure. In all of these cases,

the average is taken over all the deleted columns, and all measures must be minimized. Let

N and M denote the total number of observations (rows) in a data set and the total number

of columns, respectively, which are assumed to be numeric. We define the four measures

following.

9.5.2.1 Average Proportion of Non-overlap (APN)

The APN [111] measures the average proportion of observations not placed in the same

cluster by clustering based on the full data and clustering based on the data with a single

column removed. Let Ci,0 represent the cluster containing observation i using the original

clustering (based on all available data), and Ci,l represent the cluster containing observation

i where the clustering is based on the dataset with column i removed. Then, with the total

number of clusters set to K, the APN measure is defined as

APN(C) = 1
MN

∑N
i=1

∑M
l=1

(
1− n(Ci,l∩Ci,0)

n(Ci,0)

)
,

The APN lies within the interval [0, 1], with values close to zero corresponds to highly

consistent clustering results.
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9.5.2.2 Average Distance (AD)

The AD [71] measure computes the average distance between observations placed in the

same cluster by clustering based on the full data and clustering based on the data with a

single column removed. It is defined as

APN(C) = 1
MN

∑N
i=1

∑M
l=1

1
n(Ci,0)n(Ci,l)

[∑
i∈Ci,0,j∈Ci,l

{
dist(i, j)

}]
,

The AD has a value between zero and ∞, and smaller values are preferred.

9.5.2.3 Average Distance between Means (ADM)

The ADM [40] measure calculates the average distance between cluster centers for obser-

vations that are placed in the identical cluster by clustering depending on the full data and

clustering based on the data with a single column removed. It is defined as

ADM(C) = 1
MN

∑N
i=1

∑M
l=1 dist(xCi,l, xCi,0) ,

where xCi,0 is the mean of the observations in the cluster which contain observation i, when

clustering is based on the full data, and xCi,l ‘ is similarly defined. Usually, ADM only uses

the Euclidean distance. It also can take values between zero and ∞ and again smaller values

are preferred.

9.5.2.4 Figure of Merit (FOM)

The FOM [54] measures the average intra-cluster variance of the observations in the

deleted column, where the clustering is based on the remaining (undeleted) samples. This

estimates the mean error using predictions based on the cluster average. For a particular
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left-out column l, the FOM is

FOM(l, C) =
√

1
K

∑K
k=1

∑
i∈CK(l) dist(xi,l, xCk(i)) .

The FOM values can range between zero and infinity and smaller values are preferred. For

the selection of the most accurate clustering algorithm, we compared among three popular

clustering algorithm, namely k-means, hierarchical, and PAM, and we selected the stability

as our measure of choosing the most appropriate clustering algorithm as it gives a robust

result throughout the four above mentioned stability measures. The following Table 9.5.1

illustrates that k-means have been chosen by the four stability measures as an optimal

algorithm.

Table 9.2: Comparison Four Stability Measures To Choose Appropriate Clustering
Algorithm

Measure Score Algorithm

APN .063 kmeans
AD 3.326 kmeans
ADM .3 kmeans
FOM .765 kmeans

9.6 K-means Clustering

The fundamental concept behind k-means clustering consists of defining clusters so that

the total intra-cluster variation (known as a total within-cluster variation) is minimized.

There are several k-means algorithms available. However, the most frequently used algorithm

is the Hartigan-Wong algorithm (1979). It is defined as the total within-cluster variation as

the sum of squared Euclidean distances between the items and the corresponding centroid:

W (Ck) =
∑

xi∈Ck
(xi − µk)

2 ,
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where xi is the observation belonging to the cluster Ck and µk is the mean value of the

points assigned to the cluster Ck. Each observation xi is assigned to a given cluster such

that the sum of squares (SS) distance of the observation to their assigned cluster centers µk

is a minimal. We define the total within-cluster variation as follows:

TV ariation =
∑K

k=1W (Ck) =
∑K

k=1

∑
xi∈Ck

(xi − µk)
2 ,

where K is the total number of clusters. The total within-cluster sum of square measures

the compactness (i.e goodness) of the clustering and we want it to be as small as possible.

The K-means algorithm can be summarized as follows:

• At first, the number of clusters (k) to be specified by the researcher.

• Randomly k objects are selected from the data set as the initial cluster centers or

means.

• Each observation is assigned to their closest centroid, based on the Euclidean distance

between the object and the centroid.

• For each of the k clusters, the cluster centroid is updated, and the new mean values

are calculated of all the data points in the cluster. The centoid of a kth cluster is a

vector of length p that contains the means of all of the variables for the observations

in the kth cluster, where p is the number of variables.

• The total within sum of square is then iteratively minimized. That is, iterating steps 3

and 4 until the cluster assignments stop changing or the maximum number of iterations

is reached.

The following Figure 9.7, gives a schematic diagram of K-means algorithm.
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Figure 9.7: Flowchart of K-Means Algorithm
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One of the goals of our study to investigate which countries fall into similar groups

(clusters) based on the happiness data. After we have selected the number of clusters and

the appropriate clustering algorithm, we are in a position to perform the k-means clustering

with clusters 3 (that is, group the data into three clusters/subgroups).

We see that our clustering resulted in 3 clusters with sizes 55, 69, and 26, respectively.

The following figure projects the multi-dimensional data into three clusters that are formed

as a result of k-means clustering.

Figure 9.8: Showing The Three Clusters Obtained By k-means Clustering

The above Figure 9.8 provides a multidimensional scaling using principal component anal-

ysis (PCA), and the data was plotted based on the first two principal components. From the

figure, we can see that the algorithm did a good job of clustering the data points. We can

also plot the three clusters obtained by the k-means algorithm to investigate the behaviors

of happiness throughout all three clusters.
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Figure 9.9: Showing The Distribution of Happiness Throughout Three Clusters

Figure 9.10: Showing The Distribution of Indicators Throughout Three Clusters

From the above Figure 9.9, we notice that countries falling within cluster 2 happens to

be happiest among the three, followed by cluster 1 and cluster 3. Most probably, cluster 2

contains the most developed and democratic countries of the world, and cluster 3 contains
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most of the underdeveloped and developing, and less democratic countries. It seems Cluster

2 contains most of the developing countries followed by Cluster 1 and Cluster 3.

After implementing the k-means algorithm, we have computed the cluster means for all

eleven indicators. We can plot the cluster means for all eleven indicators throughout the

three clusters to compare how each attributable variable (indicators) behaves in these three

clusters.

As the above Figure 9.10 illustrates, we notice that each average values of the indicators

in cluster 2 are higher than that of cluster 1 and cluster 3 except NEG AFFECT (X8),

PER COR (X6) and CONF GOV (X9). On the other hand, every average numerical

measure of indicators in cluster 3 is worse than that of cluster 2 and cluster 1 except Gen-

erosity (X5) and CONF GOV (X9). By studying the graphs, We see an almost opposite

pattern between cluster 2 and cluster 3. For example, we see the variable SOC SUPPORT

(X2) in cluster 3 has been placed into a completely opposite position when compared to clus-

ter 2. By visualizing the pattern, we might tell that most developed countries are placed into

cluster 2, and most underdeveloped countries are classified into cluster 3. Cluster 1 behaves

pretty averagely when compared with cluster 2 and cluster 3.

Figure 9.11: Showing The Distribution of Each Indicators Individually For Three Clusters
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However, those countries classified into cluster 1 have the lowest average Generosity

(X5) values which need to be further analyzed. Also, it seems that there must be some

correlation between cluster 1 and cluster 2 as they show a parallel trend for most of the

indicators.

For a better understanding, we can visualize the variability of three clusters with respect

to each indicators.

From Figure 9.11, we can obtain some very interesting facts about each indicators factor

in each cluster. We see that countries belonging to cluster 3 has especially significantly

low measures for indicators LIFE EXP (Life Expectancy),SOC SUPPORT (Social

Support), and LOG GDP (logarithm of GDP). Since we got an idea from Figure 9.6.3

and Figure that underdeveloped countries belong to cluster 3, they can expect to have low

GDP and life expectancy. One striking fact that these countries also have very low scores for

social support(X2) which means that on an average the citizens of those countries does not

feel to get support from their relative, friends or Governments when they are in trouble. One

interesting fact to notice that, however, there is not much difference among the Generosity

(X5) within the three clusters; some countries in cluster 3 outperforms some countries in

cluster 2 when it comes to Generosity (X5).

Also, the countries belonging to cluster 1 and cluster 3 happen to have almost the same

average measures of perception of corruption (X6).

One of the most important consequences of the clustering aspect is that we can rank the

different countries in the world in each cluster based on happiness score. Since there is a

positive correlation between happiness and democracy, by knowing the name of the happiest

countries in the cluster, we might able to guess their socio-economic status.

Table 9.3 below shows the top 10 countries in cluster 3 based on happiness score.

It is important to note that, the top three countries, with respect to happiness in cluster

3 are Guyana, Pakistan, and Nigeria, respectively.
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Table 9.3: Ranking Of Countries In Cluster 3 Based On Happiness Score

Country Rank

Guyana 1

Pakistan 2

Nigeria .3

Laos 4

South Africa 5

Djibouti 6

Ghana 7

Namibia 8

Mozambique 9

Zambia 10

Table 9.4: Ranking Of Countries In Cluster 2 Based On Happiness Score

Country Rank

Denmark 1

Finland 2

Norway 3

Netherlands 4

Canada 5

Iceland 6

Sweden 7

New Zealand 8

Australia 9

Austria 10
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The Table 9.4 below shows the top 10 countries in cluster 2 based on happiness score.

Similarly, the Table 9.5 below shows the top 10 countries in cluster 1 based on happiness

score.

Table 9.5: Ranking Of Countries In Cluster 1 Based On Happiness Score

Country Rank

Oman 1

United Arab Emirates 2

Mexico 3

Brazil 4

Qatar 5

Saudi Arabia 6

Argentina 7

Kuwait 8

Colombia 9

Trinidad and Tobago 10

We have similarly listed the countries based on every three clusters based on the eleven

indicators. A more detailed socioeconomic condition of the countries might be assessed out

of it. Howell & Howell[68] has shown that there is a positive correlation with the subjec-

tive well-being (SWB) economic status of a country. We can further study how economic

status correlates with the eleven indicators and which are the most important contributes

to the economy of a country. In the next section, we briefly discuss some machine learning

classification techniques to validate the performance of our clustering algorithm.
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9.7 Validation of Clustering Algorithm

After clustering the observations into three clusters, the next important thing is to assess

the validity of the clustering algorithm. To assess the performance of our k-means clustering

algorithm, we have used four machine learning classification algorithm to see how well

the data has been clustered with a high degree of accuracy. We chose Decision Tree

RPART, Decision Tree C5.0, Random Forest , and Extreme Gradient Boosted

Tree (xgbTree) classification algorithms for checking cluster validity. The reason behind

selecting these two classification algorithms is that they have no distributional assumptions

and are also very popular supervised algorithms that happen to work well with a large amount

of data. If we get high classification accuracy by these two methods, we can conclude that

the k-means clustering method we have implemented here is one of the good if not the best

clustering algorithm for the data we have.

9.7.1 Decision Tree

In the literature of statistical data mining, decision trees [107] play a vital role in decision

analysis. Tree-based learning algorithms are deemed to be one of the finest and frequently

used supervised learning methodologies. Tree-based methods boost the predictive perfor-

mance of the models with a high degree of accuracy and ease of interpretation. Unlike linear

models, they address non-linear relationships quite perfectly. These models are flexible at

solving any kind of data-driven decision-making problem. (classification or regression).

9.7.1.1 Recursive Partitioning And Regression Trees (RPART)

The RPART algorithm [128] works by splitting the data set recursively, which means

that the subsets that arise from a split are further split until a predetermined termination

criterion is reached. At each step, the split is done based on the independent variable that

results in the largest possible reduction in the heterogeneity of the dependent (predicted)

variable.
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9.7.1.2 The C5.0 Decision Tree Algorithm

While there are numerous implementations of decision trees, one of the most widely

known algorithms is the C5.0 [99] [100]. This algorithm was proposed by computer scientist

J. Ross Quinlan as a modified version of his prior algorithm, C4.5, which itself is an improve-

ment over his Iterative Dichotomiser 3 (ID3) algorithm. The C5.0 algorithm has become

the industry standard for producing decision trees since it performs satisfactorily for most

types of complex real-life data-driven problems. Compared to more advanced and sophisti-

cated machine learning models (e.g., Neural Networks and Support Vector Machines), the

decision trees under the C5.0 algorithm generally perform nearly as well but are much easier

to understand and deploy.

9.7.2 Random Forest

Random forest or decision tree forest is an ensemble-based method that focuses only on

ensembles of decision trees. This method was proposed by Leo Breiman and Adele Cutler [18]

and combines the base principles of bagging with random feature selection to add additional

diversity to the decision tree models. After the ensemble of trees (the forest) is formed, the

model uses a vote to combine the trees’ predictions. Random forests combine versatility and

power into a single machine learning approach. As the ensemble uses only a small, random

portion of the full feature set, random forests can handle extremely large data sets, where

the so-called ”curse of dimensionality” might cause other models to fail.

9.7.3 Extreme Gradient Boosted Tree (xgbTree)

Like Random Forests, Gradient Boosting [50] [96] is an ensemble learner which creates an

ultimate model depending on a set of independent models. Usually, the performance of these

individual models is low, and they are prone to overfit the data when implemented solely.

However, combining many such low-performing models in an ensemble, in an iterative way,

usually leads to an overall much improved and accurate result. In boosting, the individual
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models are built sequentially by putting more weight on instances with wrong predictions

and high errors. The main logic behind this is that instances, which are hard to predict

correctly (“difficult” cases) are targeted during the learning process so that the model learns

from past mistakes. When we train each ensemble on a subset of the training set, we also call

this Stochastic Gradient Boosting, which can help improve the performance of our model.

Extreme Gradient Boosting (XGBoost) [31] is a more sophisticated implementation of the

Gradient Boosting algorithm, which uses more hyper-parameters to find the best tree model

by employing a number of useful adjustments to prevent overfitting and make the model

exceptionally successful, particularly with structured data.

In the following section, we will evaluate the performance of the above-stated classification

algorithms to access the quality of our k-means clustering algorithm.

9.8 Evaluation Of The Classification Algorithms

After we implement the four popular machine learning classification algorithms to judge

the performance of our k-means clustering algorithm, it is important to check and evaluate

the performance of the classification algorithms in terms of evaluation matrices. We will

access the quality of the classification algorithms based on the following two evaluation

matrices.

9.8.1 Accuracy

Accuracy is one of the most widely used metric for evaluating classification models.

Conventionally, multi-class accuracy is defined as the average number of correct predictions

as follows.

Accuracy = 1
N

∑|G|
K=1

∑
x:g(x)=k

(
g(x) = ĝ(x)

)
,

where G is the number of classes, g(x) and ĝ(x) are the classifier and estimated value of

the classifier respectively and I(.) is an indicator function which takes the value 1 if the
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classes match and 0 otherwise.

9.8.2 Cohen’s Kappa

Cohen’s Kappa or Kappa statistic is a very useful metric in machine learning when we

deal with a multi-class classification problem. Basically, it suggests how better the desired

classifier performs over the performance of a random classifier that simply makes arbitrary

guesses according to the frequency of each class. Always Cohen’s kappa [133] is less than or

equal to 1 and values zero or less, implies that the classifier is not useful. It is defined as

follows.

κ = p0−pe
1−pe

= 1− 1−p0
1−pe

,

where p0 is the observed accuracy, the number of instances that were classified correctly

and pe is the expected accuracy, the accuracy that any random classifier would be expected

to achieve based on the confusion matrix.

It is very interesting to note that we got very high accuracy and Kappa(κ) values using

the four machine learning classification algorithm implying the great performance of our

k-means algorithm.

The following Table 9.6 illustrates the values of accuracy and Kappa(κ) generated by the

four classification algorithm.

Table 9.6: Comparing The Performance Of Different Classification Methods

Method Accuracy Kappa

Rpart 96.6 94.7

C5.0 97.3 95.9

Random Forest 97.8 96.5

xgbTree 99.7 99.1
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From the above Table 9.6, we see that the classification is pretty good and consistent with

respect to accuracy and kappa measure based on the four popular classification algorithm.

The following Figure 9.12 shows a visual comparison of the four different classification

methods based on accuracy and kappa.

It shows that the extreme gradient boosted tree performs the best, followed by random

forest, decision tree C5.0, and decision tree RPART. For the first three algorithms, we see

the median accuracy and kappa measures are pretty indistinguishable.

Figure 9.12: Visual representation of four classification methods in terms of accuracy and
kappa

9.9 Contribution and Conclusion

By implementing appropriate clustering algorithm to our happiness data, we have suc-

cessfully accomplished all the goals introduced in section 1.

• We have shown statistically and visually that there is a meaningful clustering pattern

in our happiness data.
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• We have implemented different methodologies to select an optimal number of clusters

as three and the most appropriate clustering algorithm as k-means.

• We have compared the happiness scores for different clusters and have done some

exploratory data analysis to understand which indicators contribute the most to each

cluster.

• We have ranked top ten countries in each of three clusters according to their happiness

score. The three leading countries in terms of happiness from cluster 1, cluster 2, and

cluster 3 are Oman, Denmark and Guyana respectively, followed by United Arab

Emirates, Finland, and Pakistan.

• For validation purpose of our clustering algorithm, we have selected four popular ma-

chine learning classification algorithms to compare with. We got outstanding classifica-

tion accuracy, which was also pretty consistent throughout the four methods implying

that our cluster has been instrumental.

• The following Figure 9.13 shows that our clustering has been very useful if we compare

it with Figure 9.1 in section 9.1. As we have guessed earlier, the happiest countries are

those which fall into cluster 2 (green), followed by cluster 1 (red) and cluster 3 (blue).

Figure 9.13: Showing The Distribution Of Three Clusters In World Map
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The way we have ranked that countries in different clusters by happiness score, one

can rank the countries based on all indicators. This will provide tremendous amount of

information about the economic condition of individual countries and also at the same time

those countries with low score would be able to understand on which indicators they are

supposed to be working on.

One might also try different types of clustering algorithms such as PAM (Partition Around

Medoids), Hierarchical clustering, etc., and can also evaluate their accuracy by using different

classification algorithms. It would also be interesting to investigate the performance of

dimension reduction techniques as PCA (Principal Component Analysis), PLS (Partial Least

Square) and Factor Analysis techniques to use the components as potential indicators to

predict happiness score in future.
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Chapter 10: Conclusion and Future Work

10.1 Research on Bayesian Prior Selection Problem

One of the most important aspect of Bayesian analysis to select the probability distribu-

tion of the most appropriate prior. I am interested in performing Empirical Bayesian analysis

by identifying the priors of the parameters via different re-sampling techniques to achieve

this goal. If the probabilistic characteristic of the underlying distribution of the prior is found

to be of multiparameter, Copula methods can be used to obtain the bivariate/multivariate

empirical Bayesian estimates. Finally, we can compare the Empirical Bayesian estimates

with the parametric (MLE/PWM, etc.) and non-parametric (KDE) methods, and perform

sensitivity analysis.

10.2 Research on the clustering time-dependent data using non-parametric

Kernel Density Estimation (KDE) Method

One of my future research goals is to perform research on non-parametric Kernel Density

Estimation (KDE) Method for time-dependent data.

The following describes the research problem related to heart valve stenosis. Stenosis is the

term for a valve that doesn’t open properly. The flaps of a valve thicken, stiffen, or fuse.

As a result, the valve cannot fully open. Thus, the heart has to work harder to pump blood

through the valve, and the body may suffer from a reduced supply of oxygen. We want the

valve fully opened to avoid a stroke heart attack. As a research question, one could ask

what are the risk factors that cause the shrinking of the valve. Doctors can list multiple

risk factors which can cause shrinkage of the valve but if we can get the ECG signal data
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(non-stationary signals) we can build a model where the response variable would be the

diameter of the artery. For example, a person goes to a cardiologist with a cardiac problem.

The doctor might do a stress test to see how well his heart handles physical activity. Some

heart disorders are easier to find when the heart is hard at work. During a stress test, the

heart will be checked while he exercises on a treadmill (walking, jogging, and running) or

stationary bicycle. If someone is having trouble completing the stress test in a specified

period, it may mean there is reduced blood flow to his heart. Reduced blood flow can

be caused by several different heart conditions, some of which are very serious. During

the stress test, different signals correspond to different diseases (which can be obtained in

different stages, for example walking, jogging, and running or stationary). For example, a

normal signal implies a person has a normal heart and no potential indication of coronary

heart disease. A different signal might indicate disease A, another signal might indicate

disease B, another signal might indicate A and B both (interaction), and so on. Given these

non-stationary signals, we can perform a cluster analysis. If a signal falls in any particular

cluster, it indicates that a person has a certain disease(s). In the absence of real data, if

possible, a time-dependent simulation can be done, and the analysis can be performed.

10.3 Work on statistical methods for High Dimensional data

High-dimensional statistics is concerned with data sets in which the number of features is

equal to or greater than the number of observations. Because classical theory and method-

ology can fail in surprising and unexpected ways, data sets of this type present a variety of

new challenges, which is one of my future research goals.

10.4 Developing a highly accurate clustering algorithm based on the demands

of the clients

Based on the most significant financial indicators that we have identified via analytical

modeling, my future goal is to develop a clustering algorithm that can categorize every
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healthcare stocks of S&P 500 based on any specific criteria of a customer/client (for example,

high dividend, low beta risk, and high price to earnings (PE) ratio.)
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classifier using boosting algorithm. Indones. J. Electr. Eng. Comput. Sci, 14(3):1298–

1304.

[73] Jiang, W. (2002). On weak base hypotheses and their implications for boosting regres-

sion and classification. The Annals of Statistics, 30(1):51–73.

[74] Johnson, N. L. (1949). Bivariate distributions based on simple translation systems.

Biometrika, 36(3/4):297–304.

[75] Kahng, S. E., Benayahu, Y., Wagner, D., and Rothe, N. (2008). Sexual reproduction in

the invasive octocoral carijoa riisei in hawaii. Bulletin of Marine Science, 82(1):1–17.

[76] Kalbfleisch, J. D. and Prentice, R. L. (2011). The statistical analysis of failure time

data. John Wiley & Sons.

[77] Kassambara, A. (2017). Practical guide to cluster analysis in R: Unsupervised machine

learning, volume 1. Sthda.

[78] Kaufmann, D., Kraay, A., and Mastruzzi, M. (2010). Response to â€˜what do the
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SURVEY QUESTIONNAIRE 
 

Based on who is requesting the information for an individual that is associated with any 

Government, Company, Organization, Educational Institutions, etc.  

 

 GDP(X1): Per-capita gross domestic product of the country the individual resides (given 

information) 

 

Social Support(X2): If you were in trouble, do you have relatives or close friends, you can 

count on to help you whenever you need them? A)YES               B)NO 

 

Life Expectancy(X3): From the attached graph, identify your life expectancy.            Years. 

 

Freedom(X4): Are you satisfied with your freedom to choose what you do with your life?  

                         A) YES           B) NO  

 

Generosity(X5): Have you donated money to a charity in the past month? A) YES,    B) No. 

If the answer is YES, then how much? 

 

Corruption Perception(X6): Is corruption widespread throughout your government, your 

company, or your organization? A) YES            B) NO 

 

Positive Affect(X7): Happiness, laughter, and enjoyment.  

 

7.1. On a scale of 1 to 10, how happy were you for the last five days? 

7.2. On a scale of 1 to 10, how much did you laugh for the last five days? 

7.3. On a scale of 1 to 10, how much did you enjoy for the last five days? 

 

Negative Affect(X8): Worry, Sadness, and anger, respectively. 

 

      8.1. On a scale of 1 to 10, how worried were you for the last five days? 

      8.2. On a scale of 1 to 10, how sad were you for the previous five days? 

      8.3. On a scale of 1 to 10, how angry were you for the last five days? 

 

 Confidence in Government(X9): In your government, company, or organization, etc. how 

much trust and confidence do you have when it comes to handling [International 

problems/Domestic problems]? 

 

A) A great deal                  B) A fair amount             

C) not very much               D) none at all  

 

Democratic Quality (X10):  

 

10.1. On a scale of 1 to 10, how likely do you think that the country's citizens can participate 

in selecting their government, enjoy Freedom of expression, Freedom of association, and 

unprejudiced media coverage? 

 

 



 

10.2. On a scale of 1 to 10, how likely you think people suffer consequences of political 

instability and politically motivated violence, including terrorism? 

 

 
 

Delivery Quality(X11): 

 

11.1. On a scale of 1 to 10, how likely do you think that your 

company/organization/government has maintained the quality of public services, the quality 

of the civil service, the quality of policy formulation and implementation, and the credibility 

of such policies? 

 
 

11.2. On a scale of 1 to 10, how likely do you think that your 

company/organization/government can formulate and implement sound policies and 

regulations that permit and promote private sector development? 

 
 

11.3. On a scale of 1 to 10, how likely do you think that your 

company/organization/government agents and law enforcement agencies have confidence in 

the government and abide by society's rules? 

 
 

11.4. On a scale of 1 to 10, to what extent you think that public power is exercised for private 

gain, including both petty and grand forms of corruption by the elites for their individual 

interests? 
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