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ABSTRACT 

 

Transition metals, such as iron (Fe), zinc (Zn) and cadmium (Cd), are found at just trace amounts within 

the global oceans yet are vital for many biological functions of phytoplankton. As a result, these metals 

influence the ocean’s efficacy for carbon sequestration. Atmospheric dust is the primary input of Fe to 

various surface waters and may also supply Zn and Cd to oligotrophic surface waters. Here, I present Fe, 

Zn, and Cd isotope data from the US North Pacific GEOTRACES Section GP15 (Alaska-Tahiti) from the 

low-dust season (Sept. – Nov. 2018). Using this data and aerosol enrichment factors, I show that aerosol 

Fe, Zn, and Cd are sourced primarily from Asian dust for northern deployments (52 to 32°N), while for 

southern deployments (20°N to 20°S) they are sourced from a mixture of Asian dust and natural, wildfire, 

and anthropogenic aerosols from North America. An important finding of this study is that both GP15 data 

and Fe deposition modelling from the CAM6-QFED model confirms an isotopically heavy aerosol Fe 

source to the North Pacific (which spans the full range of particle sizes), which I attribute to soil being 

entrained during wildfires and possibly Fe sourced from shipping. Soluble aerosol Fe is light (-1.28 to 

+0.02‰) in both Northern and Southern deployments, strongly indicative of anthropogenic combustion Fe. 

A two-component isotope mixing model calculates that 0.5-7% of bulk aerosol and 12-81% of soluble 

aerosol Fe in the North are anthropogenic, but the model breaks down in the South because at least three 

sources contribute to Southern deployments. For Zn and Cd, the whole GP15 section is dominated by non-

crustal sources, reflected by light isotopic compositions (bulk Zn: -0.29 to +0.01‰; soluble Zn: -0.35 to 

+0.09‰; soluble Cd: -1.91 to -0.07‰) and enrichment factors (Zn: 32-693; Cd: 263-10775). Northern 

deployments indicate the presence of a large proportion of highly soluble, anthropogenic Zn, while southern 

deployments are lighter and more enriched in Zn, attributed to wildfires. In contrast, Cd exhibited no 

latitudinal trends, indicating a consistent source of anthropogenic Cd throughout the year. Although there 
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is potential evidence of Fe and Cd aerosol influence on surface waters, the influence of Zn aerosols is not 

seen. Overall, this work highlights the utility of transition metal isotope tracers as powerful emerging tools 

for teasing apart distinct sources contributing to atmospheric aerosols, as well as the need to include 

additional sources such as wildfire and shipping with distinct isotopic signatures into models.
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CHAPTER ONE: 

INTRODUCTION 

 

1.1 Trace Metals and Oceanic Primary Productivity  

In the oceans, primary productivity has traditionally been thought to be governed by light, nutrient 

availability, and the stoichiometric ratio between the major nutrients, carbon, nitrate, and phosphate, known 

as the Redfield Ratio (Redfield, 1934). However, many transition metals such as iron (Fe), manganese 

(Mn), zinc (Zn), copper (Cu), cobalt (Co), and nickel (Ni) are also vital to cellular processes of 

photosynthetic organisms, acting as centers for many enzymatic reactions (Morel and Saito, 2014). Some 

transition metals, such as Cd and Cu, can also be toxic to phytoplankton at high concentrations (Brand et 

al., 1986). These transition ‘trace’ metals exist in extremely low dissolved concentrations in seawater, 

ranging from pico- (pmol kg-1) to nanomolar (nmol kg-1), meaning that these micronutrients can act to limit 

growth (Morel et al., 2003; Arrigo, 2005; Saito et al., 2008). For example, dissolved Fe concentrations are 

found at levels that are 100 times deficient for photosynthesis in some surface waters (Moore et al., 2013). 

In fact, the availability of Fe, as well as other metals, limits primary productivity over much of the surface 

oceans in two main ways: 1) in some areas low Fe concentrations cause primary productivity (chlorophyll-

a concentrations) to be lower than expected and thus macronutrients such as nitrate and phosphate to be 

underutilized (Martin and Fitzwater 1988; Boyd et al., 2007). These Fe-deficient areas are designated as 

high-nutrient, low-chlorophyll (HNLC) regions, and generally result from a depleted supply of upwelled 

dissolved Fe relative to nitrate and phosphate, or a lack of any significant external Fe source (Moore et al., 

2002). In oligotrophic surface waters limited by nitrate, dissolved Fe may stimulate primary production via 

nitrogen uptake by diazotrophs (Graziano et al., 1996; Moore et al., 2008; Moore et al., 2013). Overall, Fe 

availability is thought to limit primary production over ~30% of the surface oceans (Moore et al., 2013). 
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As such, the distributions of Fe and other trace metals in the ocean are key to controlling patterns of 

productivity, ecosystem composition, and CO2 sequestration within the oceans.  

Due to the extremely low concentrations of trace metals in the oceans, accurate measurements are 

challenging to obtain, especially given the potential for contamination during collection and sampling. The 

first accurate trace metal measurements were made in the 1970s (Boyle, 1976; Bruland et al., 1979), yet 

measurements remained sparse until the late 2000s (Anderson et al., 2014). However, pioneering progress 

in trace metal and organic ligand exploration during that time laid the groundwork for many present-day 

investigations (e.g., Boyle et al., 1977; Bruland et al., 1978; Landing and Bruland, 1987; Martin et al., 

1990; Sedwick et al., 1997; de Baar et al., 1995; de Baar et al., 2005). Since 2010, the ongoing international 

‘GEOTRACES’ program has revolutionized the field in terms of data availability and breadth (Mawji et 

al., 2015; Schlitzer et al., 2018; Schlitzer et al., 2021). GEOTRACES is an international program comprised 

of scientists from over 30 countries undertaking global measurements of oceanic trace elements and their 

isotopes (TEIs; Anderson et al., 2014). GEOTRACES’ primary goal is to recognize and quantify fluxes 

and processes influencing the distributions of TEIs (Fig. A1; Jeandel et al., 2006; Anderson et al., 2014). 

 

1.2 Marine Fe and Fe Isotope Cycling 

Dissolved Fe (<0.2 µm) is an essential micronutrient required for a variety of biochemical processes 

within marine autotrophs, such as photosynthesis and nitrogen fixation by diazotrophs (Geider and La 

Roche, 1994; Moore et al., 2001; Moore et al., 2013). In surface waters, dissolved Fe uptake stimulates 

photosynthesis and phytoplankton growth, and Fe is returned to the dissolved phase at depth as organic 

matter sinks and decomposes (Geider and La Roche 1994; Morel and Price 2003). Scavenging and ligand 

complexation are additional components to the oceanic Fe cycle, in which dissolved Fe adsorbs to sinking 

particles and chelates with organic complexes, respectively (Rue and Bruland, 1995; Wu et al., 2001; Boyd 

and Ellwood, 2010; Tagliabue et al., 2017). Dissolved Fe is found at vanishingly-low concentrations in the 

oceans due to the low solubility of Fe(III)(OH)3(s), the dominant inorganic Fe species (Fe’) in seawater at 

pH 8 (Byrne and Kester 1976; Hudson et al., 1991; Millero et al., 1995). Thus, most free Fe (Fe2+ or Fe3+) 
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in the ocean precipitates upon addition to seawater, with Fe only maintained above ~0.01-0.1 nmol kg-1 by 

complexation to organic ligands (Sunda, 1989; Hudson et al., 1991; Millero et al., 1995). As a result, >99% 

of the ‘dissolved’ Fe pool is thought to exist as ligand-bound Fe (Gledhill and van den Berg, 1994; Rue and 

Bruland, 1995; van den Berg, 1995; Wu and Luther, 1995).  

Dissolved Fe concentrations vary from <0.05 to ~3 nmol kg-1 in the open ocean but can be found 

at 10 to 100+ nmol kg-1 near Fe sources (e.g., Martin et al., 1989; Achterberg et al., 2001; Von Damm et 

al., 1985; Schlitzer et al., 2018). The primary oceanic Fe sources are atmospheric deposition, hydrothermal 

venting, and reduction of Fe(III) in marine sediments (Boyd and Ellwood, 2010; Tagliabue et al., 2014). 

While hydrothermal vents and marine sediments are considered ‘natural’ sources of Fe to the ocean, 

atmospheric dust can include both natural and ‘anthropogenic’ or human-derived Fe (Sedwick et al., 2007; 

Sholkovitz et al., 2009; Ito and Shi, 2016). Natural Fe aerosols are produced from the weathering of Fe-

bearing minerals, while anthropogenic Fe is sourced through a variety of processes including biofuel 

combustion, biomass burning, and fossil fuel combustion (Sedwick et al., 2007; Sholkovitz et al., 2009; Ito 

and Shi, 2016). Hydrothermal vent fluids supply large quantities of dissolved Fe to the ocean, but most of 

it is removed near the vent through oxide and sulfide precipitation (German, 1991; Field and Sherrell, 2000). 

However, recent work has shown that a small amount of dissolved Fe can persist over large distances, 

possibly in the form of microparticle FeS and organic complexes (Toner et al., 2009; Yucel et al., 2011; 

Fitzsimmons et al., 2014; Resing et al., 2015; Conway and John 2014; Saito et al., 2013; Klunder et al., 

2012). Marine sediments can supply Fe through two different pathways: reductive dissolution (RD) and 

non-reductive dissolution (NRD; Froelich et al., 1979; Homoky et al., 2013; Radic et al., 2011; Jeandel et 

al., 2011; Elrod et al., 2004; Severmann et al., 2010). Dissolved Fe can be found at high concentrations 

near sediment sources, but concentrations decrease away from the source as dissolved Fe is quickly 

scavenged or lost to precipitation (Fitzsimmons et al., 2014; Resing et al., 2015; Conway and John 2014; 

Saito et al., 2013; Klunder et al., 2012). Due to rapid scavenging, Fe from hydrothermal vents and deep 

ocean sediments is generally less likely to reach the upper ocean than aerosol Fe, and thus, is less likely to 

affect oceanic productivity.  
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Dissolved Fe stable isotope ratios (δ56Fe), expressed relative to the international IRMM-014 

standard, have been used to further investigate Fe sources to as well as internal cycling within the global 

ocean (e.g., Severmann et al., 2004; Radic et al., 2011; John et al., 2012; Homoky et al., 2013; Conway 

and John, 2014; Ellwood et al., 2015). Provided sufficient information about the isotopic endmembers of 

the sources is available and that the source signatures are not overprinted by fractionation associated with 

internal cycling processes, a two-component isotope mixing equation can be used to place constraints on 

the relative abundance of two Fe sources to a sample (e.g., Conway and John, 2014, Equation 1). In fact, 

each of the three natural sources of Fe to the oceans now have a reasonably-well constrained range of 

isotopic signatures (Fig. 1), making dissolved δ56Fe measurements a potentially powerful parameter to 

calculate the relative importance of distinct Fe sources, specifically aerosols, to the ocean (Conway and 

John, 2014). 

 

��������	
� = 
������� � ∗ ����������� �� + 
������� � ∗ ����������� �� 

�ℎ���: ������� � +  ������� � = 1 

 

The ‘lithogenic’ δ56Fe signature of continental crust, ocean crust and marine sediments is +0.1‰. 

(Beard et al., 2003; Poitrasson et al., 2006). For aerosols, natural dust produced from the weathering and 

erosion of continental crust has a crustal composition of +0.1‰, while the source materials of anthropogenic 

Fe aerosols (combustion of fossil fuel, biomass, or biofuels) have been characterized with a δ56Fe range of 

-4.7 to +0.8‰ (Waeles et al., 2007; Kurisu et al., 2012; Mead et al., 2013; Kurisu et al., 2016a; Conway et 

al., 2019; Kurisu et al., 2019). Iron isotope analyses have shown that marine aerosols collected in situ over 

the ocean can exhibit a light δ56Fe signature, which may be used to determine the presence of, or constrain 

the relative contribution of, anthropogenic Fe in marine aerosols (Mead et al., 2013; Kurisu et al., 2016b; 

Conway et al., 2019). Most recently, the presence of isotopically light dissolved δ56Fe in surface North 

Pacific waters has been attributed to delivery of light anthropogenic aerosol Fe (Pinedo-González et al., 

2020). Dissolved Fe inputs from marine sediments are now thought to have two different δ56Fe signatures 

Eq. 1 
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because of the two distinct dissolution pathways, RD and NRD (summarized by Homoky et al. 2021). The 

δ56Fe endmember signature of dissolved Fe2+ in sedimentary porewaters by RD has been determined to be 

-3.3 to -0.3‰, due to a strong Fe(II)-Fe(III) redox control on Fe isotope fractionation (Berquist and Boyle, 

2006; Severmann et al., 2006; Homoky et al., 2009; Severmann et al., 2010; Homoky et al., 2013; Klar et 

al., 2017; Henkel et al., 2018). This form of sedimentary. Fe release dominates only under low-oxygen 

conditions such as shallow continental margins (Homoky et al., 2021). The more-recently proposed NRD 

(Radic et al., 2011) is thought to consist of a release of ‘colloidal’ dissolved Fe(III) with a lithogenic δ56Fe 

signature (+0.1‰) that dominates Fe release in the ocean interior (Homoky et al., 2013; Homoky et al., 

2021). Biological uptake by phytoplankton and/or complexation with organic ligands have been suggested 

to drive heavy Fe signatures found within surface waters, but this remains poorly understood (Radic et al., 

2011; Conway and John, 2014; Ellwood et al., 2015; Ellwood et al., 2020; Sieber et al., 2021). 

The δ56Fe signature of hydrothermal vent fluids ranges from -0.7 to -0.1‰ (Sharma et al., 2001; 

Beard et al., 2003; Severmann et al., 2004; Rouxel et al., 2008; Bennett et al., 2009; Rouxel et al., 2016; 

Lough et al., 2017; Nasemann et al., 2018; Rouxel et al., 2018). However, this primary hydrothermal 

isotopic signature may be altered through oxide and sulfide precipitation, microparticulate FeS transport, 

dissolved-particulate exchange, and organic complexation as the plume is transported away from the vent, 

leading to distal hydrothermal δ56Fe signatures of -2.4 to +1.5‰ (Bennett et al., 2008; Toner et al., 2009; 

Yucel et al., 2011; Sander and Koschinsky, 2011; Ellwood et al., 2015; Lough et al., 2017; Fitzsimmons et 

al., 2017).  

 

1.3 Marine Zn and Zn Isotope Cycling 

Zinc is used by marine autotrophs as a cofactor in a variety of cellular mechanisms such as carbonic 

anhydrase formation and phosphate acquisition (e.g., Morel et al., 1994). Dissolved Zn concentrations vary 

over several orders of magnitude in the ocean ranging from ~0.01 to 10 nmol kg-1 (Schlitzer et al., 2018). 

Dissolved Zn exhibits a nutrient-like distribution within the water column where uptake causes depleted 

concentrations at the surface, and regeneration leads to elevated concentrations at depth (Bruland, 1980; 
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Martin et al., 1989). Concentration profiles of dissolved Zn have been shown to exhibit a close correlation 

with dissolved silicate concentration profiles (Bruland et al., 1978; Bruland, 1980) leading to a near-linear 

global Zn-Si correlation (Vance et al., 2017), but the exact processes for the close association between the 

two elements are still under debate. Recently, a three-dimensional approach, combining biological uptake, 

regeneration, and scavenging (a one-dimensional view) with water mass mixing shows that biological 

uptake of Zn in the Southern Ocean, coupled with global circulation dynamics are likely the primary control 

on the distribution of Zn throughout the global oceans (Zhao et al., 2014; Vance et al., 2017, Weber et al., 

2018; Sieber et al., 2020). In this 3D view, the global Zn-Si correlation arises from processes assigning pre-

formed signatures to water masses in the Southern Ocean Hub (Vance et al., 2017; Sieber et al. 2020), that 

are then advected around the global oceans, and is perhaps combined with reversible scavenging of Zn to 

organic matter (Weber et al., 2018).  

Atmospheric deposition, hydrothermal vents, sediments, and rivers are external sources of Zn to 

the ocean (Fig. 2; Conway and John, 2014; Little et al., 2014; Lemaitre et al., 2020), and carbonate 

sediments, euxinic organic-rich sediments, and Fe-Mn crusts act as oceanic sinks for dissolved Zn (Little 

et al., 2016; Vance et al., 2016). Crustal ‘lithogenic’ δ66Zn is +0.20 to +0.34‰, relative to the international 

JMC-Lyon isotope standard (Fig. 2; Maréchal et al., 2000; Archer and Vance, 2004; Chapman et al., 2006; 

John et al., 2007; Little et al., 2014). In the deep ocean, however, dissolved Zn is both isotopically 

homogenous and heavier than the crust, with a dissolved δ66Zn signature of ~+0.5‰ (Bermin et al., 2006; 

Andersen et al., 2011; Boyle et al., 2012; Conway et al., 2013; Zhao et al., 2014; Conway and John, 2014; 

Samanta et al., 2017; John et al., 2018; Wang et al., 2019). Set against this homogenous background, Zn 

sources and biogeochemical cycling mechanisms may impart distinctive isotopic signatures that may be 

used to trace these sources and processes within the water column.  

Lighter dissolved δ66Zn signatures can be observed in the deep ocean when waters are influenced 

by the input of dissolved Zn from sources such as marine sediments (e.g., Conway and John, 2014; John et 

al. 2018; Lemaitre et al., 2020). While Zn supplied from hydrothermal vents has a δ66Zn signature close 

+0.24‰ (Fig. 2; Conway and John, 2014; Lemaitre et al., 2020), Zn released from sediments has a distinctly 
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light δ66Zn range of -0.5 to -0.8‰ (Fig. 2; Conway and John 2014; Homoky et al., 2013; Little et al., 2014). 

Surface waters exhibit variable δ66Zn signatures, from -1.0 to +1.0‰, and this has been attributed to 

competing processes of biological uptake, regeneration, and scavenging (Conway and John, 2014; John and 

Conway, 2014; Samanta et al., 2018), with regeneration thought to release light Zn (Vance et al., 2019). 

Most recently, deposition of aerosol Zn or release of sedimentary Zn has been invoked to explain light Zn 

in surface waters (Figure 3; Liao et al., 2020; Lemaitre et al., 2020), although surface sources need to be 

further constrained; aerosol Zn over the Atlantic Ocean has been observed to have a δ66Zn composition of 

+0.1 to +0.5‰, while riverine Zn ranges from -0.1 to +1.0‰ (Fig. 2; Little et al., 2014).  

 

1.4 Marine Cd and Cd Isotope Cycling 

In the ocean, dissolved Cd is found at concentrations from <1 pmol kg-1 to 1.1 nmol kg-1 (Bruland 

1980; Schlitzer et al., 2018). Perhaps surprisingly, since it is toxic for organisms at high concentrations, Cd 

is found within the cells of a variety of phytoplankton (Boyle et al., 1976; Bruland et al., 1978; Brand et 

al., 1986; Sunda and Huntsman, 1996; Horner et al., 2013). While a biological function for Cd in 

phytoplankton remains unclear, research has shown that Cd can substitute for Zn in carbonic anhydrase 

under certain conditions (Price and Morel, 1990; Lane and Morel, 2000). Other studies have suggested that 

Cd may be accidentally taken up into phytoplankton cells (Horner et al., 2013). In either case, dissolved Cd 

concentrations exhibit a nutrient-like one-dimensional profile in the ocean, and a global correlation with 

phosphate (Bruland, 1983), although there is some complexity known as ‘the kink’ (de Baar et al., 1994; 

Cullen et al., 2006). Classically, the ‘the kink’ is where the slope of the Cd:PO4 breaks and loses linearity. 

Like Zn, this pattern of dissolved Cd has traditionally been interpreted in a largely one-dimensional view. 

However, recent work has highlighted the role of biological and physical processes in the Southern Ocean, 

together with ocean circulation and mixing of water masses with different preformed Cd:PO4 ratios, in 

setting the global distribution of Cd and its correlation with PO4 in the oceans (Abouchami et al., 2014; 

Middag et al., 2018; Sieber et al., 2019a; Sieber et al., 2019b).  
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Dissolved Cd isotope ratios, denoted as δ114Cd and expressed relative to the NIST SRM-3108 

isotope standard, exhibit a homogenous isotope signature of +0.2 to +0.3‰ in all deep waters of the global 

oceans besides North Atlantic Deep Water (+0.4 to +0.5‰; e.g., Ripperger and Rehkämper, 2007; 

Ripperger et al., 2007; Xue et al., 2013; Abouchami et al., 2014; Janssen et al., 2014; Conway and John, 

2015; Conway and John, 2015; John et al., 2018; Sieber et al. 2019a). Like δ66Zn, this deep ocean δ114Cd 

signature is heavier than the lithogenic δ114Cd signature, (-0.04‰; Fig. 3; e.g., Schmitt et al., 2009; 

Abouchami et al., 2013). Cadmium isotope values in the surface oceans are generally elevated (up to +2‰), 

due to the preferential uptake of light Cd by phytoplankton (Lacan et al., 2006; Ripperger et al., 2007; 

Wombacher et al., 2008; Schmitt et al., 2009). In contrast to dissolved δ66Zn, δ114Cd are less homogenous 

at intermediate depths throughout different basins, varying from +0.3 up to +0.5‰ (Bruland, 1980; Xue et 

al., 2013; Yang et al., 2014; Janssen et al., 2014; Conway and John, 2015; Sieber 2019a). As with dissolved 

Cd concentrations, the three-dimensional view also postulates that Southern Ocean processes and 

subsequent ocean mixing causes the homogenous Cd isotope signatures found at depth, and the elevated 

and non-uniform Cd isotope values at intermediate depths (Xue et al., 2013; Abouchami et al., 2014; Sieber 

et al., 2019a, b). Differences in intermediate waters Cd signatures are caused by preferential biological 

uptake of light Cd isotopes in the Southern Ocean that leave the water heavy are incorporated into 

Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) and are subsequently 

advected to lower latitudes (Abouchami et al., 2014; Sieber et al., 2019b).  Cd aerosol concentrations are 

much lower than the intermediate and deep-water sources supplying surface waters, as such, Cd aerosol 

deposition typically has little influence on isotopic signature of surface waters.  

Cd is sourced naturally to the ocean by rivers and atmospheric aerosols (Morel and Malcolm, 2004), 

and is removed from the ocean when it is buried beneath the sediment-water interface in porewaters with 

low oxygen and sulfidic conditions (Rosenthal et al., 1995; Van Geen et al., 1995). Cadmium may also be 

removed from the water column during sulfide precipitation when sinking organic matter respires in oxygen 

minimum zones though this has remained controversial (Al-Farawati and van den Berg, 1999; Janssen et 

al., 2014). The role of hydrothermal systems in the Cd cycle remains poorly constrained, but they may also 
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act as a sink (Janssen et al., 2014; Conway et al., 2015). Natural input fluxes of Cd to the ocean from rivers 

and aerosols have been found to be similar in magnitude but are not very well constrained (Morel and 

Malcolm, 2004). Anthropogenic sources such as Pb-Zn ore smelting, Zn mining, waste incineration, and 

coal combustion, produce Cd aerosols that may also supply Cd to the surface of the ocean (Nriagu and 

Pacyna, 1988; Pacyna and Pacyna, 2001; Pacyna et al., 2009; Cheng et al., 2014; Bridgestock et al., 2017). 

While naturally sourced Cd aerosols have an isotopic range from -0.08‰ to +0.05‰, anthropogenic Cd 

aerosols occupy a range of -1.6‰ to +0.8‰ (Fig. 3; Schmitt et al., 2009; Rehkämper et al., 2012; 

Bridgestock et al., 2017). On a first approximation, the long residence time of Cd in seawater (Hayes et al., 

2019) and the relatively small input of Cd from sources means that, in contrast to δ56Fe or δ66Zn, Cd addition 

is unlikely to strongly influence dissolved δ114Cd profiles. However, Cd concentrations are lowest in surface 

waters (<1 pmol kg-1), so Cd addition by aerosols could influence surface δ114Cd in some areas such as 

oligotrophic gyres. Further, aerosol δ114Cd is significantly lighter than surface water dissolved δ114Cd 

compositions, and thus could prove valuable for tracking Cd aerosol contributions to surface waters (George 

et al., 2019). In fact, this addition of Cd from dust and aerosols has been invoked to explain light surface 

Cd compositions in both the North and South Pacific (George et al., 2019; Sieber, in review).  

 

1.5 Tracing Anthropogenic and Lithogenic Trace Metals in Aerosols 

Anthropogenic trace metal aerosols were initially thought to be an insignificant source of nutrients 

for oceanic primary productivity compared to their natural counterpart, but recent work has shown they can 

be an important source of Fe and other trace metals to the ocean (e.g., Sedwick et al., 2007; Sholkovitz et 

al., 2009; Ito and Shi, 2016; Conway et al., 2019). Anthropogenically-sourced trace metals were first 

identified in aerosol samples by using enrichment factors or aerosol solubilities (e.g., Sedwick et al., 2007; 

Sholkovitz et al., 2009; Shelley et al., 2015; Buck et al., 2019). Enrichment factors (EF) compare the ratio 

of a trace metal (TM) to a naturally-sourced element such as aluminum (Al) or titanium (Ti; Marsay et al., 

2021) in an aerosol sample to the TM:Al or (TM:Ti) ratio of Upper Continental Crust (UCC) to determine 

if a trace metal is influenced by an anthropogenic component (Equation 2). An EF greater than one signifies 
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that the sample contains anthropogenic trace metals (e.g., Shelley et al., 2015). The natural endmember of 

elements like Fe, Mn, Nd, and Sn typically overwhelms the bulk phase and so these elements on average 

have EFs near 1 while elements such as Cd, Co, Ni, Pb, V, and Zn are more susceptible to anthropogenic 

influence and often display much larger EFs. 

 

�� =  !"# $%& '���	
�!"# $%& '())
* 

 

Trace metal ‘solubility’ in aerosols is operationally defined, usually as the ratio between the 

‘soluble’ or dissolvable trace metals from an aerosol sample and the trace metals in a “bulk” aerosol sample 

(Equation 3). ‘Bulk’ samples represent the total mass of trace metals in each aerosol sample following total 

digestion with HF and HNO3, while ‘soluble’ trace metals are obtained following one of a number of 

leaching procedures designed to simulate aerosol deposition and solubilization.  
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Natural desert dust contains relatively insoluble Fe oxyhydroxides, while Fe from anthropogenic 

aerosols is much more soluble (e.g., Guieu et al., 2005; Chuang et al., 2005; Sedwick et al., 2007; Luo et 

al., 2008; Sholkovitz et al., 2009; Ito and Shi, 2016). As such, it has been suggested that the presence of 

anthropogenic aerosol Fe may be shown by solubility measurements (e.g., Sedwick et al., 2005). For 

example, solubility measurements on dust collected in Bermuda showed that solubility was low (~1%) 

during the Saharan summer dust season but increased up to 16% during the winter (Sedwick et al., 2007; 

Sholkovitz et al., 2012). These high Fe solubilities during winter were attributed to the influence of fossil 

fuel combustion from the east coast of North America during the low Saharan dust season (Sedwick et al., 

2007; Sholkovitz et al., 2012). In this way, dust arriving from Bermuda can be thought of as a two-

Eq. 3 

Eq. 2 
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component binary mixing of high-loading low-solubility Saharan dust, and low-loading high-solubility 

anthropogenic aerosols (Sedwick et al., 2005; Sedwick et al., 2007; Sholkovitz et al., 2012).  

Another tool to assess aerosol sources are HYSPLIT model back trajectories; these are provided 

by the National Oceanic and Atmospheric Administration (NOAA) to backtrack the transport of air 

masses at various altitudes to a location over a set time interval 

(https://www.ready.noaa.gov/HYSPLIT.php). By generating back trajectories of air masses based on 

latitude, longitude, and time of sample collection, HYSPLIT models have been used previously to establish 

where air masses carrying TM aerosols originated to assess if a sample has been influenced by 

anthropogenic inputs (e.g., Buck et al., 2006; Shelley et al., 2015; Marsay et al., 2021).  

However, while back-trajectories, EF, and solubility have all proven useful in highlighting the 

importance of anthropogenic components of aerosols, these approaches have limitations. For example, 

enrichment factors are less suited for tracing anthropogenic Fe when most of the bulk phase is natural dust 

(e.g., Chester et al., 1993; Shelley et al., 2015). Additionally, the presence of high EFs for anthropogenic 

elements such as Pb, V, or Ni does not provide direct information about the co-presence or amount of 

anthropogenic Fe. For solubility, factors other than the presence of anthropogenically sourced metals can 

be influential (Glaccum and Prospero, 1980; Baker and Jickells, 2006; Sedwick et al., 2007; Journet et al., 

2008; Buck 2010; Trapp et al., 2010). For example, aerosol Fe solubility can significantly vary as aerosols 

are transported from their source (Trapp et al., 2010, Jickells et al., 2016), likely related to differences in 

mineralogy, grain size, or loading (Baker and Jickells, 2006; Journet et al., 2008; Trapp et al., 2010; 

Conway et al., 2015). Additionally, cloud-particle interactions due to pH changes, deposition type (wet or 

dry), photochemistry, and organic complexation have also been suggested to affect solubility (Duce and 

Tindale, 1991; Duce et al., 1991; Jickells and Spokes, 2001; Ussher et al., 2004; Jickells et al., 2005; 

Mahowald et al., 2008; Baker and Croot, 2010; Breitbarth et al., 2010). Lastly, high solubilities (~40%) 

have been measured in last glacial maximum (LGM) aerosols, showing that high Fe ‘solubility’ is not 

always indicative of anthropogenic Fe (Conway et al., 2015). 
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As described in Section 1.2, recent work has shown that stable isotopes can be a useful tool to 

distinguish natural and anthropogenic Fe contributions in atmospheric aerosols. Distinct isotopic end 

members have been used to fingerprint the relative contributions of natural dust and anthropogenically-

sourced North Atlantic aerosols using a simple two-component mixing model shown in Equation 1 (e.g., 

Conway et al., 2019). The fractions fSource 1 and fSource 2 can be solved for in Equation 1 by assigning isotopic 

endmembers for natural and anthropogenic trace metal aerosols (δ56FeSource 1 as natural and δ56FeSource 2 as 

anthropogenic, respectively) and measuring the δ56Fe composition of a sample. While natural Saharan dust 

has a well-established δ56Fe crustal signature (+0.1‰), the δ56Fe signature of anthropogenic aerosols has 

only been constrained recently (Beard et al., 2003; Waeles et al., 2007; Conway et al., 2019). Initial 

measurements showed that combustion products likely carry slightly heavy isotopic signatures, seemingly 

excluding anthropogenic processes as the source of light Fe in aerosols (Mead et al., 2013). However, 

further research by Kurisu et al. (2016a, b) showed that products of fossil fuel combustion can have δ56Fe 

signatures ranging from -3 to +0.3‰, with the δ56Fe signature of the aerosols dependent on the size of the 

emitted particles; large particles (>1.1 μm) exhibited isotope values from 0 to +0.3‰ and small particles 

(<1.1 μm) had values between -3 and 0‰. Kurisu et al. (2016a) hypothesized that the overwhelming 

abundance of coarse particles near sources causes the overall δ56Fe signatures of combustion aerosols to be 

equivalent to the δ56Fe of gasoline (+0.3‰). However, many large combustion particles likely fall near their 

source, and thus, do not contribute to the Fe load deposited to the open oceans as much as their smaller 

counterparts. The smaller particles that persist further are isotopically lighter, leading to a distal light δ56Fe 

signature for combustion aerosols over the open ocean (as observed by Conway et al., 2019). Consistent 

with this idea, and based on observations in the North Atlantic, Conway et al. (2019) carried out source 

apportionment using a δ56Fe endmember of -1.6‰ for anthropogenic aerosol Fe and an endmember of 

+0.1‰ for natural dust aerosol.  

Like Fe, aerosol Zn and Cd can be sourced naturally in the form of lithogenic dust or from 

anthropogenic processes such as fossil fuel combustion and biomass burning, with EFs as a useful indicator 

of their presence (Chester et al., 1993; Shelley et al., 2015). Natural and anthropogenic Zn and Cd aerosols 
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may also have distinct isotope signatures, although Cd and Zn aerosol isotopic signatures remain poorly 

constrained. Potential anthropogenic Zn aerosol sources such as steel production, mining, and vehicle 

exhaust have signatures of -1.1 to -0.1‰ (Gioia et al., 2008). Marine Zn aerosols influenced by Saharan 

dust from the North Atlantic have a δ66Zn signature of +0.2 to +0.5‰ (Little et al., 2014). Gioia et al. 

(2008) found urban aerosols collected near industrial hotspots in Brazil had a δ66Zn range of -1.1 to -0.1‰. 

For Cd, although anthropogenic aerosols have been estimated to account for ~85% of the total Cd aerosol 

deposition to the oceans (Morel and Malcolm, 2004), knowledge of aerosol Cd isotopic signatures remains 

limited to a single study (Bridgestock et al., 2017). However, this study does point to the utility of this 

parameter – with natural Cd produced from volcanoes, lithogenic dust, and rivers having a δ114Cd signature 

of -0.08 to +0.05‰, and anthropogenic sources of aerosol Cd with a lighter δ114Cd signature of -1.6 to -

0.1‰ (Bridgestock et al., 2017). Thus, both δ66Zn and δ114Cd may be useful tracers for anthropogenic 

aerosols given more data. 

 

1.6 Global Dust Deposition Models and Modelling Aerosol Iron Isotopes 

Numerous global dust deposition models, forced by observations, have been developed to forecast 

and hindcast atmospheric Fe deposition to the oceans (e.g., Fung et al., 2000; Hand et al., 2004; Moore et 

al., 2004; Parekh et al., 2004; Luo et al., 2005; Jickells et al., 2005; Luo et al., 2008; Mahowald et al., 

2008; Tagliabue et al., 2009; Okin et al., 2011; Hamilton et al., 2019). However, to constrain outputs, these 

models require knowledge of the form, solubility, and magnitude of natural and anthropogenic dust sources, 

as well as atmospheric processes to constrain outputs. Recently, the isotopic composition of aerosol Fe was 

used together with dust deposition modeling to refine source and process parametrization in dust models; 

Conway et al. (2019) compared δ56Fe data from GEOTRACES aerosols in the North Atlantic and output 

from the Community Atmosphere Model (CAM4; Scanza et al., 2018). The isotope-informed comparison 

showed that refinements of the CAM4 model simulation were needed to reproduce the North Atlantic 

observations, namely reduction of dust source solubilization and an overall increase in anthropogenic Fe 

source emissions by 5x. This example highlights the utility of Fe isotopes as a direct tracer for 
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anthropogenic Fe, but also for better parameterizing model outputs. Most recently, Kurisu et al. (2021) 

carried out a similar data-model informed exercise in the North Pacific using the IMPACT model. 

 

1.7 North Pacific Setting and Atmospheric Circulation  

Deposition fluxes of Fe in the North Pacific Ocean have been previously calculated and estimated 

from field observations and global deposition models attempting to constrain global Fe fluxes to the surface 

ocean from dust (e.g., Ginoux et al., 2001; Zender et al., 2003; Jickells et al., 2005; Buck et al., 2006; Buck 

et al., 2013; Matsui et al., 2018; Conway et al., 2019; Ito et al., 2019). Dust supplied to the Eastern North 

Pacific Ocean can be simplified as a combination of Asian and Alaskan dust. Natural Asian dust Fe 

originates primarily from the Chinese Loess Plateau, and anthropogenic Asian Fe aerosols result from 

anthropogenic processes occurring in countries on the eastern flank of Asia (Buck et al., 2006; Buck et al., 

2013; Kurisu et al., 2016a: Kurisu et al., 2016b). Alaskan Dust is primarily composed of natural ferric 

oxides and glacial flour sourced from the Alaska Range and may be influenced by down-wind 

anthropogenic processes such as fossil fuel and biomass combustion (Schroth et al., 2009: Crusius et al., 

2011). Over the North Pacific, air masses come from the western coast of Asia and travel eastward across 

the North Pacific before contacting North America (Fig. 4; Martin et al., 2002). Two major features exist 

in the atmospheric circulation (Asian Outflow) of the North Pacific Ocean (Fig. 4). The first major feature 

of the Asian Outflow air masses originates at ~40oN on the eastern coast of Asia and moves eastward across 

the North Pacific Ocean and across North America. The other carries air masses from East Asia (~15oN) 

northeast to ~35oN before traveling south along the west coast of North America. The air masses are then 

deflected at the equator and travel southwest (Martin et al., 2002). Additionally, there are two minor air 

mass features: 1) runs along the coast of Baja California and is deflected west at the equator and 2) 

originates in northwestern South America and travels west (Martin et al., 2002; Fig. 4).  

Prior work on North Pacific aerosols shows dust deposition to surface waters is highly variable 

throughout the year with peak dust fluxes from March to May when climatic conditions favor dust events, 

and considerably lower the rest of the year (June to February) as indicated by field observations and aerosol 
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optical depth (AOD) imagery from MODIS (Fig 5; Parrington et al., 1983; Buck et al., 2006; Fischer et al., 

2009; Buck et al., 2013; Pinedo-Gonzalez et al., 2020). Model results often disagree with each other during 

attempts to constrain total dust fluxes to the oceans, especially in the North Pacific where model estimations 

range from 8 Tg yr-1 to 28 Tg yr-1 due to the spatial and seasonal variability of dust fluxes (Ginoux et al., 

2001; Zender et al., 2003; Jickells et al., 2005). In addition to modelled uncertainty of total Fe deposition, 

the large range of Fe solubility observed in aerosols in the North Pacific (<1% to >50%) compounds Fe 

flux uncertainty, meaning that models struggle to produce agreeable outcomes of the amount of soluble Fe 

supplied to North Pacific surface waters when compared to observations (Buck et al., 2006; Buck et al., 

2013).  

The presence of anthropogenically derived Fe in aerosols presents another mode of uncertainty in 

global climate models simulating dust fluxes. Recent studies have aimed to constrain the presence of 

anthropogenic Fe (e.g., Ito et al., 2013; Matsui et al., 2018; Ito, 2019; Conway et al., 2019; Pinedo-Gonzalez 

et al., 2020; Rathod et al., 2020) and have led to an increase in the modeled amount of soluble Fe deposition 

to the surface oceans. Conway et al. (2019) informed the global CAM4 Fe deposition model with δ56Fe 

data from aerosols collected over the North Atlantic Ocean and estimated that more than 40% of the Fe 

supplied to the surface of the North Pacific Ocean is anthropogenically derived compared to the ~0-10% 

abundance the base simulation exhibited (Fig. 6; Conway et al., 2019). Additionally, the overall amount of 

soluble anthropogenic Fe deposition increased from ~0-150 μg m-2 yr-1 to 500 μg m-2 yr-1 to various regions 

of the North Pacific (Conway et al., 2019). However, the model results from Conway et al. (2019) are 

forced only with isotope observations from North Atlantic aerosols, and so, data are needed from other 

regions to test both this approach and their findings. Recently, Kurisu et al. (2021) measured δ56Fe in size-

fractionated (coarse: >2.5 μm; fine: <2.5 μm) open ocean North Pacific aerosols and found that the coarse 

particles were dominantly natural Fe (δ56Fe ranging from 0.0 to +0.4‰), and fine particles were all 

isotopically light (δ56Fe -2.2 to -0.5‰). By correlating the light δ56Fe with elevated V and Pb EFs, they 

showed the light Fe found in fine fraction samples was due to the presence of combustion Fe (Kurisu et al., 

2021). Additionally, by pairing North Pacific size-fractionated aerosol contributions and δ56Fe data with 
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predicted aerosol δ56Fe output from the IMPACT atmospheric transport model. Kurisu et al. (2021) recently 

found δ56Fe values measured in aerosol particles in agreement with model δ56Fe output (informed by size-

fractionated data) for fine particles near East Asia; however, the model had trouble producing coarse (>2.5 

μm) combustion aerosol δ56Fe over the open ocean (Kurisu et al., 2021). 

 

1.8 Thesis Overview 

In this thesis, I present concentration and isotope data of bulk and soluble Fe, Zn, and Cd in 

atmospheric aerosols, as well as Fe concentrations and isotopic compositions in size-fractionated 

atmospheric aerosols collected during the US GEOTRACES Pacific Meridional Transect (GP15) from 

Alaska-Tahiti in the North Pacific. First, I compare these data with other aerosol parameters such as EFs in 

order to assess the source (and variability in source and composition) of North Pacific aerosols. Using 

literature constrained endmembers, a two-component model is then attempted to calculate the 

proportionality of natural and anthropogenic Fe. Second, binned size-fractionated aerosol Fe concentrations 

and δ56Fe, in conjunction with bulk aerosol δ56Fe, are used to assess how the δ56Fe of aerosols changes 

between size classes and to provide further insight into aerosol Fe sources. Then, by combining GP15 size-

fractionated aerosol δ56Fe data with published data in the region, I investigate the variability in Fe sources 

to the whole North Pacific. Third, GP15 bulk and soluble Fe concentrations and δ56Fe are compared to 

atmospheric deposition modelling (QFED output from the CAM6 model) to assess if the model is capturing 

Fe deposition during the low dust season of the North Pacific, and to test ideas about different atmospheric 

Fe sources to the GP15 section. Last, soluble aerosol signatures are compared with GP15 surface water 

concentrations and isotope compositions to evaluate if Fe, Zn, or Cd aerosols impart their signature in the 

surface ocean in this region during the low-dust season.  
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Figure 1. Fe Isotopic Signatures of Potential Oceanic Sources. The crust has an average δ56Fe signature of +0.09 

(range: -0.01 to +0.19‰), and its mean is represented by the dashed line. Data from Beard et al. (2003); Poitrasson et 

al. (2006); Severmann et al. (2010); Radic et al. (2011); John and Adkins (2012); Homoky et al. (2013); Staubwasser 

et al. (2013); Conway and John (2014); Ellwood et al. (2015); Chever et al. (2014); Labutut et al. (2014); Mead et al. 

(2013); Fitzsimmons et al. (2016); Klar et al. (2017); Klar et al. (2018); Homoky et al. (2021). 
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Figure 2. Zn Isotopic Signatures of Potential Oceanic Sources. The crust has an average δ66Zn signature of +0.27 

(range: +0.20 to +0.34‰), and its mean is represented by the dashed lines. Data sourced from Maréchal et al. (2000); 

Archer and Vance (2004); Chapman et al. (2006); Bermin et al. (2006); John et al. (2007); Andersen et al., (2011); 

Boyle et al. (2012); Homoky et al. (2013); Conway et al. (2013); Zhao et al. (2014); Conway and John, (2014); Little 

et al. (2014); Samanta et al. (2017); John et al. (2018); Wang et al. (2019) ; Lemaitre et al. (2020).  
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Figure 3. Cd Isotopic Signatures of Potential Oceanic Sources. The crust has a δ114Cd signature of -0.04‰ and is 

represented by the dashed line. Data sourced from Abouchami et al. (2014); Bridgestock et al. (2017); George et al. 

(2019). 
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Figure 4. Generalized North Pacific Atmospheric Circulation (reproduced from Martin et al., 2002)  
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Figure 5. North Pacific Dust Seasonality. Seasonal trends based on total aerosol Al (modified from Parrington et 

al., 1983).  
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Figure 6. Dust Deposition Model Output from Conway et al. (2019). Model Comparison Original CAM4 base 

simulation of A) soluble Fe deposition and C) % anthropogenic soluble Fe compared to isotope informed CAM4 

simulation of B) soluble Fe deposition and D) % anthropogenic soluble Fe. Isotope informed simulation was 

performed by increasing anthropogenic Fe emissions by five times and decreasing dust solubility from 25 to 10%. 

(reproduced from Conway et al. 2019). 
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CHAPTER TWO: 

METHODS 

 

2.1 Sample Overview 

A total of 23 bulk aerosol filter and 12 size-fractionated aerosol filter deployments were collected 

by collaborators from the University of Georgia (UGA) onboard the R/V Roger Revelle as part of the US 

GEOTRACES GP15 section cruise from Alaska to Tahiti (Fig. 7; September to November 2018; Marsay 

et al., 2022). Aerosol filters were leached onboard or digested back on shore at UGA by collaborators 

(Marsay and Buck) to provide ‘soluble’ or ‘total’ samples for this project. Here, ‘soluble’ samples denote 

the soluble fraction or dissolvable amount of trace metals from a given aerosol upon instantaneous leaching 

of an aerosol-laden filter with ultrapure water (UPW) and filtration through a 0.2 μm backing filter (Buck 

et al., 2006). Total aerosol samples, also referred to as ‘bulk’ samples, denote the total amount of trace 

metals collected, obtained following digestion of the aerosol-laden filter with HF-HNO3 (Marsay et al., 

2022). A detailed overview of the sample collection procedure is provided in Section 2.2. 

Following processing, samples from 12 deployments were made available for this project (one 

UPW and two bulk digest samples per deployment), and two bulk and two soluble ‘blank’ samples were 

provided for blank correction (with clean and undeployed filters processed through the methods below). 

Bulk samples were measured at USF for total Fe and Zn concentrations and isotope ratios and Cd 

concentrations to complement total Fe and Zn concentrations measured on separate bulk filter digests at 

UGA. UPW leaches were measured for soluble Fe, Zn, and Cd concentrations and isotope ratios at USF. 

Size-fractionated (based on particle size cut-off) bulk digests (80) were also supplied for total Fe 

concentration and isotopic analysis (12 size-fractionated deployments with six filter stages each, five stage 

filter blanks, and three backing filter blanks).  
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2.2 Shipboard Sample Collection and Primary Processing (Buck and Marsay, UGA) 

Aerosol samples were collected by collaborators during GEOTRACES GP15 aboard R/V Roger 

Revelle (September 15th – November 25th, 2018) onto filters using five Tisch Environmental high-volume 

samplers, following published methods (Marsay et al., 2022). A Campbell Scientific CR800 data-logger, 

anemometer, and wind vane was used to maintain constrained sampling conditions (Marsay et al., 2022); 

the samplers only collected samples when there was a relative wind speed of >0.5-1 ms-1 and direction of 

± 60o with respect to the bow of the ship sustained for at least five minutes. To avoid contamination from 

sea spray and ship exhaust, the samplers were deployed above the ship deck and forward of the smokestack 

at the bow. Aerosols were collected onto 12 acid-cleaned 47-mm diameter Whatman 41 ashless cellulose 

filters inserted in the sampler during each deployment (Marsay et al., 2022). Clean and undeployed 

Whatman 41 ashless cellulose filters were either digested or leached to provide bulk and soluble blanks, 

respectively. Soluble, bulk, and size-fractionated aerosol samples for this work were then further processed 

under clean conditions using one of three chemical procedures prior to analysis.  

1) Soluble metals. Aerosol-laden filters were leached shipboard to collect leachate samples for 

‘soluble’ trace metals following Buck et al., (2006; 2010; 2013) using ultrapure water (Procedure 1). The 

leachate samples (soluble) were collected “instantaneously” by placing a 47 mm diameter Whatman 41 

ashless cellulose filter containing aerosols on a Nalgene polysulfone filter holder attached to a vacuum 

pump and passing 100 mL of UHP water through the filter in approximately 10 seconds. Following 

collection, double distilled conc. HNO3 was added to acidify the solution to approximately 0.024 M HNO3, 

and samples were stored for at least a year prior to analysis.  

2) Total metals. Back on shore, aerosol-laden 47-mm diameter Whatman-41 cellulose fiber filters 

were digested at UGA to provide bulk ‘total’ samples (Procedure 2) with three heating and dry-down steps. 

Heating of solutions was carried out overnight while evaporations occurred the following day. First, a filter 

is transferred to a 15 mL PFA beaker and heated at 140oC in 1 mL of double distilled concentrated HNO3 

(Buck et al., 2013; Marsay et al., 2021). Next, the resulting filter ‘residue’ was digested overnight in 500 

μL of double distilled concentrated HNO3, 100 μL concentrated HF, and 100 μL of concentrated H2O2 at 
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140oC. Lastly, the solution was digested in 500 μL of double distilled concentrated HNO3 allowed to dry-

down on a hotplate (Buck et al., 2013; Marsay et al., 2021). Digest samples were then redissolved in 1 mL 

of double distilled HNO3.  

3) Size-fractionated total metals. Size-fractionated aerosol samples were collected on five 

Whatman 41 cellulose ester stage filters and one Whatman 41 cellulose fiber backing filter during 12 

deployments using a Tisch Environmental, Inc High Volume Cascade Multi-Stage Particulate Size 

Fractionator Impactor (Series 230) set to collect 1.2 m3 air per minute (Tisch Environmental, Inc, 2004; 

Gurganus et al., 2015). The impactors collect the size-fractionated aerosols onto one of five stage filters or 

backing filter. Exact size partitioning of each size filter requires additional analytical techniques outside the 

scope of this work, but the size cut offs for each stage can be estimated as: stage one (>7.2 μm), stage two 

(3.0-7.2 μm), stage three (1.5-3.0 μm), stage four (0.95-1.5 μm), stage five (0.49-0.95 μm), and backing 

filter (<0.49 μm) (Tisch Environmental, Inc, 2004; Gurganus et al., 2015). Stage and backing filters were 

portioned into nine (stage 1) or ten (stages 2-5 and backing filter) strips and were processed in the same 

manner as bulk aerosol digests (Procedure 2). Briefly, two stage filter strips (one for backing filter) were 

digested in a series of HNO3, HF-HNO3-H2O2, and HNO3 overnight dry-downs heated to 140oC in a Teflon 

beaker. After digestion, the samples were dried down before being redissolved in 13 mL of 2% HNO3.  

 

2.3 Trace Metal Concentration and Isotope Analysis (USF) 

2.3.1 USF Clean Lab Procedures  

Clean lab work was performed in an ISO Class 5 laminar flow hood inside of an ISO Class 6 lab 

space at USF CMS. Ultrapure water (UPW) was used from a Thermo Scientific Barnstead GenPure (18.2 

MΩ) water purification system. All nitric (HNO3) and hydrochloric (HCl) acids used were distilled in-house 

from trace-metal grade acid, using Savillex DST-1000 Acid Purification Systems. Other reagents used 

during clean lab chemistry were ultrapure Fisher Optima Grade. Cleaning procedures for plasticware in the 

lab were performed following Conway et al. (2013) and are only described briefly here. Low density 

polyethylene (LDPE) plasticware was cleaned by immersing in a weak Citrad detergent solution overnight, 
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thorough rinsing with UPW, immersion in 1M HCl for at least a week, and then copious rinsing with UPW. 

New SavillexTM or Nalgene Teflon PFA, FEP, and PFTE plastic equipment were cleaned with sequential 

soaking in 7M HNO3, 6 M HCl, 2% HNO3, and 3 M HNO3 at 150°C. Re-used Teflon plasticware was 

cleaned overnight at 150°C using 3M HNO3. Whatman polycarbonate Nucleopore (8 µm pore size) filters 

were cleaned with 6M HCl for a week and stored in a weak HNO3 solution.  

 

2.3.2 Chemical Methods 

To measure trace metal isotope ratios in seawater by MC-ICPMS, the metals of interest require 

purification from both the sea salt matrix and any interfering elements (see Table A1). This was achieved 

here using a two-stage extraction and purification method (Conway et al., 2013; Sieber et al., 2019, 

described in detail below. For soluble aerosol samples with larger sample volumes, both steps were used, 

while for digested bulk and size-fractionated aerosol samples, only the purification step was necessary. 

 

2.3.2.1 Trace Metal Extraction Procedure (Nobias-PA1) 

To prepare soluble aerosol samples for trace metal extraction, Fe, Zn, and Cd double spikes were 

added to each acidified sample in a sample:spike ratio of 1:2, 1:1, and 1:1, respectively, based on initial 

concentration measurements performed at UGA. Additionally, 1 mL of 10 mM hydrogen peroxide per liter 

of UPW was added and samples were left overnight to equilibrate. Subsequently, ~0.8 g (2.5 mL) of Nobias 

PA-1 resin was added and shaken on a shaker table for ~2 hours to allow Fe to adhere to the resin. To 

extract Zn and Cd, a 5 M ammonium acetate buffer solution and 11 M NH4OH, was added to adjust the pH 

of the sample to 6.2 ( ± 0.3) and shaken again for ~2 hours. The resin was then filtered from the UPW 

matrix using a PFA filter rig-vacuum and Whatman polycarbonate Nucleopore (8 µm pore size) filter. To 

remove any remaining salt ions, the resin was rinsed with ~150-200 mL of UPW. Subsequently, trace metals 

were eluted using ~30 mL of 3 M HNO3, collected in a 30 mL Savillex PFA beaker and dried down at 

~180°C.  
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2.3.2.2 Trace Metal Micro-Column Purification Procedure (AGMP-1) 

For total and size-fractionated digested samples, aliquots were pipetted into 7 mL PFA beakers, 

spiked with double spikes as above, and evaporated to dryness. For soluble samples, dried down samples 

were taken from the previous step (Section 2.2.2.1). To ensure digestion of any organic material in the 

samples, 180 µL of 15 M HNO3 and 20 µL of conc. H2O2 were added, the samples refluxed at 180°C for 

1-2 hours and dried down again. The samples were then redissolved in 200 µL of a 7 M HCl + 0.001% 

H2O2 solution for microcolumn purification with AGMP-1 anion-exchange resin (Bio-Rad), following 

Sieber et al. (2019a). For this, inhouse PTFE micro-columns were filled with ~20 µL of acid cleaned 

AGMP-1 resin, pretreated with four aliquots of 250 µL of 7 M HCl + 0.001% H2O2, and then rinsed with 

five aliquots of 60 µL of UPW. The columns were conditioned with 200 µL 7 M HCL + 0.001% H2O2 prior 

to sample loading. Ni, Cu, and any remaining salts were eluted in 7 aliquots of 60 µL 7 M HCl + 0.001% 

H2O2, which was discarded. Following this, 6 aliquots of 60 µL 1 M HCl were added to the columns to 

elute Fe from the resin and collected into 7 mL PFA beakers. Next, 6 60 µL aliquots of 2 M HNO3 + 0.1 M 

HBr were added to the columns and collected in 7 mL PFA beakers for Zn. Subsequently, 6 60 µL aliquots 

of 2 M HNO3 were added to elute the Cd into separate 7 mL PFA beakers. The Fe, Zn, and Cd samples 

were dried down before being redissolved in 2% v/v HNO3 for MC-ICP-MS analysis.  

 

2.3.3 Double Spike Technique 

Double spike mixtures contain an unnatural isotopic ratio and are prepared by dissolution of two 

enriched isotope ‘spikes’ (in our case either 57Fe-58Fe, 64Zn-67Zn, or 111Cd-113Cd). Addition of double spike 

prior to processing allows to correct for any fractionation that may occur during chemical processing, as 

well as instrumental mass bias during measurement on the Neptune MC-ICPMS (Bermin et al., 2006). 

Double spike calculations are completed using a data reduction method based on the iterative approach of 

Siebert et al. (2001). Additionally, the use of double spike technique allows for accurate concentration 

measurements via the isotope dilution technique, simultaneously with isotope analyses.  
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2.3.4 MC-ICPMS Analytical Methods 

 Analyses of stable Fe, Zn, and Cd isotope ratios were performed on a Thermo Scientific Neptune 

MC-ICP-MS in the Tampa Bay Plasma Facility at USF CMS, using previously published methods (Conway 

et al., 2013; Sieber et al., 2019a; Sieber et al., 2021). Fe was measured in ‘high’ resolution, and Zn and Cd 

in ‘low’ resolution mode. Samples were introduced via a ~100 uL per min ESI PFA-ST nebulizer, and 

either an Apex-Ω (Fe, Zn) or Apex-Q desolvator (Cd). The cones, ‘cup-configuration,’ and the major 

interferences on each isotope (isobaric and polyatomic) are listed for each element in Table A1. A 

measurement of blank 2% HNO3 dilution acid is made before every sample and standard, and used as an 

on-peak blank correction, and isotope voltages are mathematically corrected for isobaric interferences using 

natural abundances (Table A1). 

For all three elements, delta notation is used (Equations 4-6), and ratios are expressed relative to 

international isotope standards (IRMM-14 for δ56Fe; JMC-Lyon for δ66Zn, and NIST SRM-3108 for 

δ114Cd); during each analytical session on the Neptune, isotopic ‘zero’ standards (δ56Fe: IRMM-014; δ66Zn: 

JMC-Lyon; δ114Cd: NIST SRM-3108) are measured before and after every five sample measurements 

(Conway et al., 2013), and data expressed relative to these. A secondary isotopic standard (δ56Fe: NIST-

3126a; δ66Zn: AA-ETH; δ114Cd: BAM-1012) is measured with each block of 5 samples in order to assess 

accuracy and external precision (discussed further in next section).  

It is important to assess uncertainty (precision and accuracy) of any measurements made. Typically, 

the amount of sample required for isotope analyses of low concentration marine samples means that 

replicate isotope analyses are not possible. Therefore, instead of using replicates to assess analytical 

precision, the long term 2SD of the mean isotope ratio obtained from the secondary standard reference 

solutions is used to assess precision of MC-ICPMS analysis. For Fe, this is the NIST-3126a standard (δ56Fe: 

+0.36 ± 0.05‰, n = 524, runs = 37). For Zn, AA-ETH is the standard (δ66Zn: +0.27 ± 0.03‰, n = 147, runs 

= 10). For Cd, this is the BAM-1012 standard (δ114Cd: -1.32 ± 0.06‰, n=172, runs = 8). The mean δ56Fe 

value for NIST-3126a at USF is in good agreement with previous measurements of +0.32 ± 0.02‰ made 

by Conway et al. (2013). Similarly, δ66Zn and δ114Cd values for AA-ETH and BAM-1012 agree with 
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published compositions of +0.28 ± 0.02‰ and -1.33 ± 0.04‰, respectively (Abouchami et al., 2013; Archer 

et al., 2017). For sample data, we use these values as a conservative estimate of precision for each isotope 

system, except if the internal 2SE of analysis is larger, and then this value is used. 

Trace metal concentrations were calculated by isotope dilution; Conway et al. (2013) previously 

assessed the uncertainty of this method as 2%, and we apply the same uncertainty here. Uncertainty on Fe 

concentration measurements with this analytical method at USF has also been confirmed at ~2% for all 

three elements (Sieber et al., 2019; Summers, 2020).  
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2.4 Elemental and Isotopic Calculations from Neptune ICPMS Data 

2.4.1 Trace Metals in Complete (Bulk and Soluble) and Size-fractionated Aerosols 

Following calculation of Fe, Zn and Cd concentration in each analyzed ‘blank’ or total or soluble 

aerosol sample aliquot, this concentration must be converted to a mass of each metal in the original aerosol 

sample processed. This calculation was carried out using Equation 7: 

 

Eq. 5 

Eq. 6 

Eq. 4 
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Where [TM]aliquot and Volumealiquot are the concentration and volume of the aerosol aliquot 

measured at USF, and Volumetotal is the total volume the original aerosol sample was digested or leached 

into. Each total and soluble sample was then blank corrected with their respective blank (with blank mass 

similarly calculated using Eq 7), using Equation 8: 

 

e%YLf S,��. "�YZ� #�0Y% +Y[\%� #Y]] 
L^� = "#���	
� − "#3
�R4 

 

Where the blank for soluble samples was defined as the average of two USF measured blank filter 

leaches (Fe: 59 ng; Zn: 5.6 ng), and the blank for total samples was defined as the average of two USF 

blank filter digestions (Fe: 4.2 ng). For total and soluble Zn samples and soluble Cd samples, blanks were 

very low, and constituted a small amount (<10%) of Zn and Cd; accordingly, these parameters were not 

blank corrected (Marsay, pers. Comm.). Blank-corrected masses were then converted from ng to picomoles 

and divided by the total volume (m3) of air used for sample collection during each GP15 deployment to 

provide a soluble and bulk atmospheric concentration for each metal from each deployment (Atmospheric 

[TM]) in pmol m-3 using Equation 9): 
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Metal masses in size-fractionated digested aerosol samples were also calculated using Eq. 7, and 

then blank corrected and scaled to the full filter using the ratio of total number of filter strips to the number 

of filter strips that were digested (Equation 10.). Ratios of 9:2, 10:2, and 10:1 were used for stage one, 

stages two to five, and backing filter, respectively. The blank for size-fractionated stage filter concentration 

Eq. 7 

Eq. 8 

Eq. 9 
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and isotope measurements is defined as the average of five blank stage filter digests (Fe: 82.3 ng), and the 

blank for backing filter aerosols is defined as the average of three blank backing filter digestions (Fe: 87.9 

ng). Blank corrected size fractionated calculations were done separately for USF and UGA data, and the 

reported values are the average of USF and UGA measurements. The masses were then converted to 

atmospheric aerosol concentrations using Equation 9:  

 

e%YLf S,��. "# 
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2.4.2 Aerosol Trace Metal Isotope Compositions 

Trace metal isotopic compositions of bulk total (Fe and Zn), soluble (Fe, Zn, and Cd) and size-

fractionated (Fe) samples were measured as described in Section 2.3.4. These compositions were then blank 

corrected using the measured isotopic composition of aerosol blanks and the relative masses of samples and 

blanks via equation 11: 

 

δTM
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The blank compositions for total δ56Fe and δ66Zn measurements was defined as the average of two 

blank filter digestions (Fe: +0.39 ± 0.05‰; Zn: -0.06 ± 0.05‰), and the Fe blank for soluble aerosol δ56Fe 

was defined as the average of two blank filter leaches (Fe: +0.23 ± 0.09‰ ng). As with concentration 

calculations, soluble Zn and soluble Cd blank concentrations constituted only a small amount (<10%) of 

Zn and Cd and were also below detection for isotopic ratio measurement, so were not used to correct δ66Zn 

and δ114Cd. Unfortunately, bulk δ114Cd data were compromised by a Sn interference, and so total δ114Cd are 

not presented. Total size-fractionated Fe samples were corrected similarly to total and soluble Fe samples 

for blank isotopic composition; stages one to five samples were corrected using the average Fe 

Eq. 10 

Eq. 11 
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concentrations and δ56Fe of five clean and unused stage filters, and the backing filters were corrected using 

the average concentrations and δ56Fe of three clean and undeployed backing filters.  

 

2.4.3 Trace Metal Operational Solubility and Enrichment Factor Calculations 

An average operational solubility for each element for each GP15 deployment was calculated three 

times using one soluble concentration from leaching one discrete filter (USF) and three total concentrations 

from digests of three discreet filters (2 USF and 1 measured at UGA; Equation 3) per deployment. This 

provides some estimate of variability in solubility between filters, assessed by calculating the standard 

deviation between the three solubilities. Enrichment factors for odd deployment GP15 aerosols (Equation 

2) are taken from Marsay et al., (2022), and shown in the supplementary Fig. A2 (Marsay et al., 2022).  

 

2.4.4 Total and Coarse and Fine Binned Size-fractionated Fe Calculations 

A weighted mean δ56Fe signature of all size fractions in a size-fractionated aerosol deployment was 

calculated to compare with the representative bulk deployment δ56Fe composition (Equation 12). Here, 

δ56Fei denotes the isotopic composition for a filter stage and Stage [Fe]i denotes the respective Fe 

concentration for that filter stage.  
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Using Equation 12, size fractions were binned to generate ‘coarse’ and ‘fine’ aerosol mean 

compositions. This was done in two different ways, based on earlier studies: 1) defining ‘coarse’ particles 

as >3 μm (stages 1-3) and fine as <3.0 μm (stages four to backing filter); and 2) defining ‘large particles as 

>0.95 μm (stages 1-4) and ‘small’ particles as <0.95 μm (stage five and backing filter). The first 

(coarse/fine) was done here to make our measurements comparable to existing δ56Fe size fractionation 

studies in the North Pacific (e.g., Kurisu et al., 2021), which used 2.5 μm as their size cutoff (3.0 μm is the 

Eq. 12 
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nearest cutoff available for GP15 size-fractionated aerosol samples). However, previous work has also 

shown that a 1 μm as size cutoff may be a more effective size partitioning between natural and 

anthropogenic Fe aerosols (Kurisu et al., 2016), and so we also calculated the second size-fraction definition 

(small/large) to provide further insight into Fe source along GP15. We also recommend that this second 

definition is calculated routinely going forward.  
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CHAPTER THREE: 

RESULTS  

 

Please note: GP15 aerosol total and soluble Cd concentrations and soluble δ114Cd from this work are also 

available in Sieber et al. (in review); other data are presented here for the first time. 

 

3.1 GP15 Atmospheric Setting 

GP15 provided the opportunity to assess the atmospheric deposition of Fe, Zn, and Cd to the North 

Pacific Ocean during the low-dust season (Marsay et al., 2022). Three-day HYSPLIT back-trajectory 

models were used to observe if characteristics of GP15 aerosol deployments (Fig. 7) could be related to 

distinct air masses coming from the coasts of East Asia or North and South America; however, there were 

no apparent air masses that had interacted with land recently (Marsay et al., 2022). At the longer scale, ten-

day back trajectories for the dates and locations of each deployment show that deployments 1 and 3 were 

influenced by air masses that had interacted with the Alaskan coast, while other northern deployments (5-

11) were influenced by air masses travelling from the west originating in East Asia, and southern 

deployments (13-23) by air masses from the east from North and South America (Marsay et al., 2022). It is 

worth noting, however, that the uncertainty of back-trajectories significantly increases as the hindcast 

period increases (Buck, pers. comm.; Marsay, pers. comm.). Based on the general atmospheric circulation 

in the North Pacific (Fig. 4) and 10-day HYSPLIT models (Figs A3-5), we divide GP15 deployments into 

margin (deployments 1 and 3), northern (52°N to 32°N; deployments 5, 7, 9 and 11), and southern (20°N 

to 20°S; deployments 13, 15, 17, 19, 21, and 23; see Section 1.7) for interpretation. Additional GP15 

metadata is provided in Appendix A (Table A2). We note that margin and northern deployments, referenced 

in this thesis, correspond to “North Pacific” deployments from Marsay et al. (2021), and that our southern 
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deployments correspond with their “equatorial Pacific” deployments. Additionally, while deployments are 

referenced as deployment 1, 3, 5, etc. throughout this thesis, deployments are referenced as Aer1, Aer3, 

Aer5, etc. in Marsay et al. (2021). 

 

3.2 USF and UGA GP15 Total Aerosol Comparisons 

 Bulk digests of three discrete filters from each deployment were measured at USF (two filters) or 

UGA (one filter; Marsay et al., 2022), allowing us to assess variability of concentrations obtained from the 

same aerosol deployments, as well as compare datasets between the two laboratories. Iron and Zn show 

broad agreement between labs and filters, with Fe showing excellent agreement between the three filters, 

and Zn showing more variability between filters (Fig. 8). This likely reflects more variability between 

aerosol filter loading for Zn than Fe, rather than analytical issues. Overall, total GP15 Fe concentrations 

ranged from 14.1 to 157 pmol m-3 (USF) and 10.7 to 144 pmol m-3 (UGA), total GP15 Zn concentrations 

ranged from 3.40 to 16.5 pmol m-3 (USF) and 4.30 to 18.7 pmol m-3 (UGA), and total GP15 Cd 

concentrations ranged from 0.10 to 0.27 pmol m-3 (USF) and 0.01 to 0.24 pmol m-3 (UGA). Given the broad 

overall agreement between labs, we regard the average of the three discrete filters as providing the most 

representative value for each total concentration measurement for Fe and Zn, and for representing 

variability during calculation of elemental solubilities. Thus, total Fe and Zn concentrations used in this 

study represent the average of USF and UGA measurements (Table 2). Uncertainty on total concentrations 

is expressed as the standard deviation from the three separately digested filters (data from Marsay et al., 

2022 and this study). Total Cd data from UGA was not available for comparison at the time of writing, and 

so the average (and standard deviation) of the two USF Cd measurements is used here instead. Enrichment 

factors are taken directly from UGA data (Marsay et al., 2022). 
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3.3 GP15 Aerosol Fe, Zn, and Cd Concentrations, Solubilities and Enrichment Factors 

GP15 bulk and soluble aerosol Fe, Zn, and Cd concentrations are displayed in Fig. 9 and data are 

also tabulated in Table 2. GP15 solubilities are shown in Fig. 10 and Table 3 while Fig. 11 and 12 displays 

Fe EFs compared to Mn, Zn, and Ni EFs and Zn EFs compared to Mn and Ni EFs, respectively.  

Fe. GP15 Total aerosol Fe concentrations range from 13.0 to 152 pmol m-3, while soluble Fe 

concentrations range from 0.3 to 7.0 pmol m-3 (Fig. 9), leading to Fe solubilities from 0.80-11.3% (Fig. 10). 

Total aerosol Fe concentrations are higher for northern deployments (52°N to 32°N) than for the southern 

(20°N to 20°S) and margin deployments (Fig. 9). This dichotomy agrees with previous observations in the 

North Pacific which found the highest bulk Fe concentrations between 50°N and 20°N (Buck et al., 2006; 

Buck et al., 2013). Soluble Fe concentrations exhibit a similar pattern, with higher concentrations at 

northern and margin deployments (3 to 15 pmol m-3), and the highest values at deployments 1, 5, and 9 (15, 

10, and 11 pmol m-3; Fig. 9). Iron solubility is highest at the margin deployments (7-11%) and follows a 

general decrease over the rest of the deployments (5 to 1%; Fig. 10) but does not correlate with either total 

or soluble Fe concentrations. 

Notably, aerosol Fe concentrations measured along GP15 during September to November 2018 are 

among the lowest observed for bulk and soluble aerosols over the North Pacific Ocean; for example, bulk 

Fe measured on the CLIVAR-CO2 P16 leg, also along 152oW from January to March, ranged from 23 to 

2350 pmol m-3 while soluble Fe ranged from 0.7 to 343 pmol m-3 (Buck et al., 2013). The fourth 

Intergovernmental Oceanographic Contaminant Baseline Survey (IOC) along 170oN observed bulk values 

of 257 to 4932 pmol m-3 and soluble values of 1 to 148 pmol m-3 (Buck et al., 2006). This difference with 

previous study can be attributed to the time of sampling, with the main Asian dust peak occurring outside 

our sampling dates (Buck et al., 2006; Buck et al., 2013). 

Enrichment factors were not calculated by Marsay et al. (2022) for deployments 1 and 3 as Ti 

concentrations were below the detection limit. Other EFs are shown in Fig A2. Iron EFs do not show any 

clear enrichments in Fe with values ranging from 0.9 to 3 (c.f. natural <10; Buck et al., 2019; Perron et al., 

2022), although southern deployments Fe EFs are slightly elevated (1.29 to 3.11) in comparison to northern 
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deployments (<2; Fig. 11). While total and soluble Fe concentrations and solubility also do not correlate 

with Fe, Zn, Cd, Al, V, Mn, Ni, or Pb EFs, there are distinct relationships between the EFs of some elements; 

the ‘natural tracer’ Mn EFs are crustal in the northern deployments, and slightly elevated in the South (in 

comparison to the North), with Mn EFs correlating well with Fe, especially in the South (Fig. 11). Further, 

of the possible anthropogenic tracers, Zn and Ni are elevated in the northern deployments, and also well-

correlated with Fe EFs, again especially in the South (Fig. 11). 

Zn. Bulk and soluble Zn concentrations range from 3.9 to 17.2 pmol m-3 and 1.6 to 8.0 pmol m-3, 

respectively, and are variable throughout the transect with no meridional concentration gradient or clear 

difference between northern and southern deployments (Fig. 9). Additionally, bulk and soluble Zn 

concentrations show no correlations with Zn solubility. Calculated Zn solubility spans a significantly larger 

range than Fe solubility with a minimum of 34% and maximum of 112% (Fig. 10) and does not show a 

systematic trend along GP15 or between regions. Elevated Zn solubilities are likely indicative of the 

presence of non-crustal Zn. Notably, deployments 1, 15, and 19 have solubilities ≥100% (Fig. 9); however, 

all of these are within error of 100%, and thus are most likely the result of variability in Zn loading between 

filters from the same deployments. As such, apparent calculated solubilities >100% highlight the variability 

in aerosol Zn between filters but are also likely indicative of a large fraction of anthropogenically-produced 

(expected to be more highly soluble) Zn.  

Zinc EFs are highly elevated throughout GP15 ranging from 32 to 693, where >10 is anthropogenic, 

and are also strong indicators of non-crustal Zn. Total and soluble Zn concentrations and Zn solubility do 

not correlate or show any clear relationships with Zn, Fe, Cd, Al, V, Mn, Ni, or Pb EFs. However, Zn EFs 

do exhibit good correlations with Fe, Mn, and Ni EFs (Figs. 11 and 12) as well as show distinctions between 

regions; northern deployments (other than deployment 11) group together at the lowest (yet still 

significantly enriched over crustal) Zn and Ni EFs, while southern deployments exhibit higher Zn EFs that 

increase with increasing Ni, Fe, and Mn EFs (Figs. 11 and 12).  

Cd. Cadmium bulk concentrations range from 0.01 to 0.27 pmol m-3 and soluble concentrations 

range from 0.01 to 0.11 pmol m-3 (Fig 9). Both bulk and soluble Cd concentrations are variable with no 
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clear trends along the transect. Cadmium solubility ranges from 24 to 175%, with only deployment 19 

exhibiting solubility >100%, and exhibits a similar general trend as Zn solubility throughout the transect 

(Fig. 10). Cadmium EFs, ranging from 263 to 10774, are highly enriched throughout GP15 but do not show 

correlations with bulk and soluble aerosol Cd concentrations or solubility. Unlike Zn and Fe, there is no 

dichotomy between northern and southern deployments Cd EFs, nor clear relationships with other EFs. 

 

3.4 Trace Metal Isotopic Compositions of GP15 Bulk and Soluble Aerosols 

GP15 δ56Fe, δ66Zn, and δ114Cd from bulk and soluble GP15 aerosols are displayed in Fig. 13 and 

data are also tabulated in Table 4. 

Fe. Total aerosol GP15 δ56Fe values range from -0.03 to +0.41‰ throughout the transect with 

deployments 15 and 21 exhibiting the highest δ56Fe (+0.32 and +0.41‰; Fig. 13). While this range is 

broadly similar to the expected UCC range (-0.01 to +0.19‰), it extends beyond the crustal range, with 

subtle differences between regions: margin and southern deployments have δ56Fe values that are close to or 

elevated beyond (up to +0.4‰) the maximum δ56Fe signature of the UCC (+0.19‰), and northern 

deployments are at or slightly below (-0.03 to +0.07‰) the minimum δ56Fe of the UCC (-0.01‰; Beard et 

al., 2003; Gong et al., 2016). This dichotomy is also observed when comparing total aerosol δ56Fe with EFs 

– there are broad relationships between total δ56Fe and Fe, Al, Mn, Ni, and Zn EFs (Figs 14 and A6). 

Notably, a striking relationship is observed between δ56Fe and Al EFs with the heavier total δ56Fe of 

southern deployments corresponding to elevated Al EFs, while the lighter δ56Fe of northern deployments 

correspond to crustal Al EFs and show non-natural V EFs (Fig. 14). For soluble aerosol Fe, most (9 out of 

11) samples exhibit δ56Fe values (-1.28 to -0.14‰) lower than crustal isotope signatures, with just 

deployment 1 and 21 having crustal values (+0.02 to +0.18‰). However, there are no clear relationships 

between soluble δ56Fe and the EFs of any elements. 

Zn. Total and soluble δ66Zn values both generally decrease from north to south over the course of 

the transect, except for deployment 17, with values from -0.29 to +0.01‰ and -0.35 to +0.19‰, respectively 

(Fig. 13). All bulk and soluble GP15 deployment exhibit lower δ66Zn than previously recorded in crustal 
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Zn aerosols (+0.20 to +0.34‰; Little et al., 2014), with a mean of -0.11 ± 0.11‰ and -0.17 ± 0.15‰ for 

total and soluble aerosols, respectively. Total and soluble δ66Zn do not show clear relationships with Fe, V, 

and Mn EFs (Fig. A7); however, the southward decrease in soluble δ66Zn is also concurrent with a general 

increase in Zn EF (Fig. 15), suggesting an increasing input of light Zn through the section.  

Cd. Soluble δ114Cd are generally isotopically lighter than the crust (-0.04‰; Fig. 3; e.g., Schmitt et 

al., 2009), with values ranging from -0.07‰ to -1.91‰, and is highly indicative of an anthropogenic 

contribution throughout GP15. In contrast to Fe and Zn, however, δ114Cd compositions are highly variable 

along the transect and exhibit no apparent trends (Fig. 13).  

 

3.5 Size-fractionated Bulk Fe Concentrations and Isotopes 

A total of 12 size fractioned samples were collected during GP15, either during single aerosol 

deployments or spanning multiple deployments to get enough sample mass (3, 4, 5/6, 7/8, 9/10, 11/12, 

13/14, 15/16, 17/18, 19/20, 21/22/23, and 23). GP15 bulk Fe concentrations and δ56Fe are compared to 

GP15 total size-fractionated concentrations and δ56Fe in Figure 16. Iron concentrations (average of USF 

and UGA measurements) and δ56Fe are shown for each filter stage of each size-fractionated deployment 

(Fig. 17; Tables 5 and 6). 

 

3.5.1 Comparison of Total ‘Bulk’ and Size-fractionated Aerosols  

The overall composition (weighted mean of all stages) of the size-fractionated aerosols should 

correspond to the bulk aerosol loading for each GP15 aerosol deployment, allowing both to be used in our 

interpretation of sources to each deployment. Here, we assess the agreement/variability (Fig 16) of the two 

approaches for sampling bulk Fe and δ56Fe for the deployments where we received size-fractionated 

aerosols (12 deployments). One caveat in this approach is that since the size-fractionated deployments span 

multiple standard aerosol deployments, we had to use the most relevant bulk deployment for comparison 

(or average where possible). 
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Overall, we find that while the weighted means of size-fractionated total Fe concentrations agree 

broadly with bulk Fe concentrations, the weight means systematically exhibit lower concentrations (16.3 to 

116.9 pmol m-3) than the bulk Fe samples (13.0 to 152 pmol m-3). This offset could result from natural 

variability in sampling. Additionally, differences between total size-fractionated and bulk Fe concentrations 

and δ56Fe could arise from different sampling methods for each sample type. Similar filters were used for 

both samples, but the type of impactor and the collected air volumes were different (see Section 2.2), 

possibly missing or biasing certain particle sizes. Nevertheless, the weighted mean of the size-fractionated 

total δ56Fe agree within error with bulk total δ56Fe samples, suggesting that both sampling methods are 

capturing aerosols of overall near-identical isotopic (and presumably source) compositions (Fig. 16).  

 

3.5.2 Total Fe Concentrations and δ56Fe Composition by Filter Stage 

Figure 17 displays Fe concentrations and δ56Fe of size-fractionated Fe aerosol samples grouped 

into northern, southern, and margin deployments, and the data is also tabulated in Tables 5 and 6. 

Concentrations throughout the various filter stages are generally higher for northern deployments (2.7 to 

35.3 pmol m-3) and the margin deployments (1.4 to 49.4 pmol m-3) than southern deployments (0.9 to 19.6 

pmol m-3, Fig. 17), reflecting higher loading in the bulk phase in the North (Section 3.3). Overall, no distinct 

particle size range (or stage) dominates aerosol Fe throughout GP15, and while concentrations are higher 

for northern deployments, partitioning across stages does not show systematic differences between northern 

and southern deployments. There is a general decrease in δ56Fe in the size-fractionated aerosols from stages 

1 (>7.2 μm, +0.21 ± 0.28‰) to 5 (0.49-0.95 μm, -0.27 ± 0.28‰), corresponding to decreasing particle size, 

followed by a slight increase to +0.01 ± 0.28‰ in the smallest size-fraction collected in the backing filter 

(<0.49 μm; Table 6). In more detail, Stages 1 to 3 (>7.2 to 1.5 µm) δ56Fe are variable throughout the transect 

(-0.29 to +0.37‰) and all but one (deployment 4, stage 1) are crustal or notably heavier. Stage 4 filters 

(0.95-1.5 µm) are also crustal or slightly heavier (-0.01 to +0.25‰), but deployments 3, 11/12, and 19/20 

are only just within error (0.05‰) of the lightest end of the crustal range (-0.03‰, -0.02‰, and -0.04‰, 
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respectively). Stage 5 (0.49 to 0.95 μm) shows the largest variation among stages, ranging from -0.57 to 

+0.28‰, and the backing filters (<0.49 μm) range from -0.33 to +0.38‰. However, the large variation in 

the fine fraction (<3 μm) may reflect different Fe sources as northern deployments’ stage 5 and backing 

filters carry light Fe, while southern deployments exhibit crustal or elevated δ56Fe. 

 

3.5.3 GP15 δ56Fe Composition Subdivided by Binned Particle Size 

 A clearer picture of variability in δ56Fe composition related to particle size emerges when binning 

the size-fractionated data into operationally defined coarse and fine fractions (Fig. 19). Isotope 

compositions of coarse particles (>3 μm; filter stages 1 and 2) range from +0.01 to +0.33‰, similar to bulk 

aerosol δ56Fe (-0.03 to +0.41‰), reflecting the fact that bulk GP15 aerosols are dominated by coarse 

particles (Fig. 17). Fine particle δ56Fe (<3 μm; stage 3 to backing filter) are also variable, but reach lower 

values, ranging from -0.50‰ to +0.30‰ (Fig. 19; Table 7). Light Fe in the fine fraction is strongly 

indicative of the presence of anthropogenic Fe particles (Kurisu et al., 2021). However, it is worth noting 

that the fine fraction isotope compositions do not reach values as low as soluble δ56Fe (-1.28 to +0.02‰) 

for corresponding deployments, and in fact, some fine size samples are crustal or isotopically heavy. This 

difference between fine particle digests and soluble Fe likely reflects the fact that soluble aerosol δ56Fe is 

heavily influenced by highly soluble anthropogenic Fe, and less by insoluble dust Fe, while fine particles 

include a contribution of fine dust particles. As such, perhaps not unexpectedly, there is no clear dichotomy 

of natural and anthropogenic Fe between the coarse and fine fractions. 

However, based on work by Kurisu et al. (2016), a binning threshold of 1 μm may better capture 

the anthropogenic Fe in the small particles compared to a 3 μm cutoff. As such, we also assessed GP15 data 

using a threshold of 0.95 μm for the binning method by dividing filters into ‘large’ and ‘small’ size particles 

as close as we can to sizes >1 μm and <1 μm, respectively (Fig. 19). On doing this, large particles (filter 

stages 1 – 4) have a slightly tighter range of δ56Fe (+0.02 to +0.27‰) than coarse, while small particles 

occupy a similar range overall to fine (stage 5 and backing filter, -0.44 to +0.34‰; Fig. 19 and Table 8). 

Notably, however, there are distinct differences between northern and southern deployments; in the 
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northern deployments, small particles (<1 μm) are systematically ~2x lighter than fine particles (<3 μm), 

and more similar to ‘soluble’ δ56Fe, while at margin and southern deployments, there is no systematic 

difference (Fig. 19). This suggests that the small/large definition may be more effectively separating light 

anthropogenic Fe from other sources than the fine/coarse threshold (at least in Asian dust), with the ‘small’ 

definition capturing fewer dust particles than the ‘fine’. Thus, for future studies we recommend using a 

threshold near 1 μm, as initially suggested by Kurisu et al. (2016), to provide a better partitioning between 

natural dust and anthropogenic Fe aerosols. 
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Figure 7. US GEOTRACES GP15 Aerosol Deployment Location Map. For each aerosol deployment 

corresponding 3-day air mass back trajectories (determined using HYSPLIT) are shown in red. Gray arrows represent 

the atmospheric circulation based on Martin et al. (2002). Bulk and soluble samples were collected during 

deployments 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 23, and size-fractionated samples were collected during 

deployments 3, 4, 5/6, 7/8, 9/10, 11/12, 13/14, 15/16, 17/18, 19/20, 21/22/23, and 23. (modified from Marsay et al., 

2021). 
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Figure 8. UGA and USF GP15 Total Aerosol Fe and Zn Concentration Intercomparison. GP15 bulk A) Fe 

concentrations and B) Zn concentrations. Black ciricles represent one USF bulk filter compared to one UGA bulk 

filter, and the yellow circles represent a second USF bulk filter compared to the same UGA bulk filter.  
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Figure 9: GP15 Total and Soluble Aerosol Trace Metal Concentrations. A) Fe, B) Zn, and C) Cd. Total 

concentrations are black circles and soluble are green. Error bars on total concentrations represent the standard 

deviation of the average of 2 USF filters and one UGA filter measurements and are shown where larger than the points. 
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Figure 10: GP15 Aerosol Trace Metal Aerosol Solubilities. A) Fe, B) Zn, and C) Cd. Error bars are defined as the 

standard deviation between 3 discreet Fe and Zn and 2 Cd discreet solubility calculations and are shown where larger 

than the points. 
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Figure 11. GP15 aerosol Fe EF Comparison with Mn, Zn, and Ni Enrichment Factors. Northern (black circles) 

and southern (red circles) deployments Zn EFs compared to A) Mn EF, B) Zn EF C) Ni EF. Lines represent the 

correlation (R2) between the Fe and other TM EF of southern deployments. EFs are taken from Marsay et al. (2022) 

and are calculated using Eq. 2.  
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Figure 12. GP15 Aerosol Zn Comparison with Mn and Ni Enrichment Factors. Northern (black circles) and 

southern (red circles) deployments Zn EF compared to A) Mn EFs, B) Ni EFs, and C) Al EFs. Lines represent the 

correlation (R2) between the Fe and other TM EFs of southern deployments. EFs are taken from Marsay et al. (2022) 

and are calculated using Eq. 2. 
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Figure 13. GP15 Aerosol Total and Soluble Trace Metal Isotope Ratios. A) Total (black circles) and soluble (green 

circles) δ56Fe by deployment. The gray bar depicts the δ56Fe range of crustal aerosols, -0.01 to +0.19‰ (Beard et al. 

2003; Gong et al., 2016). B) Total (black circles) and soluble (green circles) δ66Zn by deployment. The grey bar depicts 

the δ66Zn range of crustal aerosols, +0.27 to +0.34‰ (Little et al., 2014). C) Soluble (green circles) δ114Cd by 

deployment. The grey bar depicts the δ114Cd range of crustal aerosols, -0.1 to +0.05‰ (Bridgestock et al., 2017).
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Figure 14. Comparison of Total and Soluble GP15 Aerosol δ56Fe with Aerosol Enrichment Factors. Northern (black circles) and southern (red circles) 

deployment’s A) total δ56Fe vs. Fe EF, B) soluble δ56Fe vs Fe EF, and bulk δ56Fe compared to C) V EF and D) Al EF. The gray bar depicts the crustal aerosol δ56Fe 

range (-0.01 to +0.19‰; Beard et al. 2003; Gong et al., 2016). Dashed circles represent approximate fields of northern and southern aerosols. EFs are from Marsay 

et al. 2022.
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Figure 15. Comparison of Total and Soluble GP15 Aerosol δ66Zn with Aerosol Enrichment Factors. Northern 

(black circles) and southern (red circles) deployments A) total δ66Zn, and B) soluble δ66Zn vs Zn EF, and C) total 

δ66Zn compared to Ni EF. The crustal δ66Zn range is from +0.20 to +0.34‰ but does not intersect with the plots (Little 

et al. (2014). EFs are from Marsay et al. 2022.
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Figure 16. GP15 Total and Size-fractionated Weighted Total Fe Concentration and δ56Fe Comparison. A) Total 

Fe concentrations compared to size-fractionated Fe concentrations, and B) total δ56Fe compared to weighted total size-

fractionated δ56Fe. Error bars represent the analytical error for bulk δ56Fe (x-axis) and the propagated error for the 

total size-fractionated δ56Fe (y-axis).  
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Figure 17. GP15 Size-fractionated Aerosol Fe Concentrations and δ56Fe by Filter Stage. A-B) Northern 

deployments; C-D) southern deployments; E-F) margin deployments. The gray bars depict the crustal δ56Fe range (-

0.01 to +0.19‰; Beard et al., 2003; Gong et al., 2016.). For clarity, error bars on δ56Fe are not shown, but errors are 

typically 0.05‰ (see Table 3 for detail). 
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Figure 18. GP15 Coarse/Fine (3 μm) and Large/Small (0.95 μm) Total Aerosol Concentrations. A) coarse (dark green) and fine (light green) size-fractionated 

Fe concentrations using a threshold of 3 μm and B) large (dark blue) and small (light blue) size-fractionated Fe concentrations using a threshold of 0.95 μm.  
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Figure 19. GP15 Coarse/Fine (3 μm) and Large/Small (0.95 μm) Total Aerosol δ56Fe. A) coarse (dark green) and fine (light green) size-fractionated δ56Fe using 

a threshold of 3 μm and B) large (dark blue) and small (light blue) size-fractionated δ56Fe using a threshold of 0.95 μm. Note the x-axis intersects at the average 

crustal δ56Fe value of +0.09‰. For clarity, error bars on δ56Fe are not shown, but propagated errors are shown in Tables 6-7. 
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Table 1. GP15 Aerosol Soluble and Bulk Trace Metal Concentrations. Bulk Fe and Zn concentrations are calculated as the average of three discreet filters 

(with SD) while Cd was calculated using only two.  

Deployment 

Soluble Fe 

Conc. 

(pmol m-3) 

Bulk Fe 

Conc. 

(pmol m-3) 

Soluble Zn 

Conc. 

(pmol m-3) 

Bulk Zn 

Conc. 

(pmol m-3) 

Soluble Cd 

Conc. 

(pmol m-3) 

Bulk Cd 

Conc. 

(pmol m-3) 

1 3.7 35.6 ± 14.5 8.0 7.7 ± 2.0 0.02 0.06 

3 0.9 13.0 ± 2.8 1.6 3.9 ± 1.0 0.01 0.01 

5 7.0 152.4 ± 10.4 6.5 9.2 ± 2.5 0.04 0.05 

7 4.2 146.3 ± 3.5 4.4 6.8 ± 1.1 0.06 0.25 

9 1.9 108.7 ± 10.7 2.6 8.0 ± 2.0 0.01 0.03 

11 1.3 37.0 ± 3.0 2.1 4.8 ± 0.7 0.01 0.03 

13 0.5 48.3 ± 5.3 4.6 8.9 ± 1.0 0.02 0.04 

15 0.3 42.5 ± 10.9 7.9 8.4 ± 2.5 0.10 0.10 

17 0.4 22.0 ± 5.8 1.6 4.0 ± 0.7 0.03 0.09 

19 0.7 38.9 ± 3.0 5.4 5.6 ± 2.8 0.02 0.01 

21 0.9 40.8 ± 12.0 4.9 11.7 ± 5.6 0.01 0.02 

23 n.d. 64.3 ± 17.1 n.d. 17.2 ± 3.3 n.d. 0.11 
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Table 2. GP15 Aerosol Trace Metal Solubility. Errors are standard deviation of solubilities calculated using three different bulk filter digests (two filters for Cd). 

Deployment 
Fe Solubility 

(%) 

Zn Solubility 

(%) 

Cd Solubility 

(%) 

1 11.4 ± 4.0 109.0 ± 30.8 24.2 ± 12.8 

3 6.8 ± 1.4 43.2 ± 11.4 64.2 ± 0.0 

5 4.6 ± 0.3 73.2 ± 17.4 81.8 ± 27.0 

7 2.9 ± 0.1 66.5 ± 10.5 25.9 ± 28.3 

9 1.8 ± 0.2 34.2 ± 8.7 40.8 ± 3.9 

11 3.6 ± 0.3 44.1 ± 6.0 32.0 ± 0.0 

13 1.0 ± 0.1 51.8 ± 5.7 58.4 ± 15.1 

15 0.8 ± 0.2 99.4 ± 25.6 99.6 ± 165.4 

17 2.0 ± 0.5 39.6 ± 6.6 32.6 ± 6.3 

19 1.9 ± 0.2 111.9 ± 44.6 175.7 ± 0.0 

21 2.2 ± 0.7 49.4 ± 22.7 54.9 ± 4.8 
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Table 3. GP15 Aerosol Soluble and Bulk Trace Metal Isotope Ratios.  

Deployment 
Soluble δ56Fe 

(‰) 

Bulk 

δ56Fe 

(‰) 

Soluble δ66Zn 

(‰) 

Bulk 

δ66Zn 

(‰) 

Soluble 

δ114Cd 

(‰) 

1 +0.25 ± 0.05 +0.24 ± 0.05 -0.23 ± 0.03 +0.01 ± 0.03 -0.67 ± 0.59 

3 -0.14 ± 0.05 +0.18 ± 0.05 +0.19 ± 0.05 -0.02 ± 0.03 n.d. 

5 -0.45 ± 0.05 -0.03 ± 0.05 -0.01 ± 0.03 0.0 ± 0.03 -0.31 ± 0.14 

7 -0.60 ± 0.05 +0.03 ± 0.05 +0.00 ± 0.03 -0.06 ± 0.03 -0.33 ± 0.15 

9 -0.53 ± 0.06 +0.05 ± 0.05 -0.13 ± 0.03 -0.07 ± 0.03 -0.52 ± 0.43 

11 -1.28 ± 0.06 +0.07 ± 0.05 -0.18 ± 0.03 -0.12 ± 0.13 -1.05 ± 0.40 

13 -0.27 ± 0.13 +0.19 ± 0.05 -0.13 ± 0.03 -0.12 ± 0.07 -1.08 ± 0.26 

15 -0.54 ± 0.09 +0.41 ± 0.06 -0.25 ± 0.03 -0.15 ± 0.03 -0.19 ± 0.12 

17 -0.40 ± 0.09 +0.22 ± 0.05 +0.09 ± 0.03 -0.02 ± 0.05 -0.38 ± 0.19 

19 -0.71 ± 0.08 +0.15 ± 0.05 -0.33 ± 0.03 -0.12 ±0.03 -0.07 ± 0.25 

21 +0.02 ± 0.10 +0.32 ± 0.05 -0.35 ± 0.04 -0.29 ± 0.03 -1.91 ± 0.39 

23 n.d. +0.21 ± 0.05 n.d. -0.13 ± 0.03 n.d. 
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Table 4. Fe Concentrations from Each Filter Stage for Size-fractionated GP15 Aerosols. Values are calculated as an average of USF and UGA measurements. 

Stage filters were corrected with the average of UGA and USF stage filter blank measurements, and backing filters were blank corrected with the average of UGA 

and USF backing filter blanks.  

Deployment 
Stage 1 

(pmol m-3) 

Stage 2 

(pmol m-3) 

Stage 3 

(pmol m-3) 

Stage 4 

(pmol m-3) 

Stage 5 

(pmol m-3) 

BF 

(pmol m-3) 

3 1.4 2.4 1.6 1.2 1.1 49.4 

4 0.9 1.8 2.2 4.6 3.6 3.2 

5/6 10.4 35.4 26.8 20.8 9.8 13.9 

7/8 7.0 30.1 24.6 18.5 6.1 5.9 

9/10 6.2 18.5 15.3 15.5 8.3 11.1 

11/12 3.0 5.6 5.2 4.7 2.8 5.8 

13/14 19.6 10.9 4.9 4.3 2.8 9.3 

15/16 3.6 2.8 1.6 1.3 0.9 3.2 

17/18 2.7 5.6 3.3 2.8 1.6 5.6 

19/20 2.5 4.6 2.6 2.0 1.2 5.2 

21/22/23 4.6 4.6 2.9 2.4 1.7 10.0 

23 4.6 3.8 3.0 3.2 2.1 7.5 

Average 5.2 10.1 7.6 6.6 3.4 10.0 
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Table 5. GP15 δ56Fe (‰) for Each Filter Stage for Size-fractionated Aerosol Samples. Isotope ratios from stage filters were blank corrected using measured 

stage filter blank ratios and backing filter isotope ratios were corrected with backing blank ratios. Both stage and backing filter. The last row is the weighted mean 

δ56Fe for each stage along with its propagated error. 

Deployment 
Stage 1 

(‰) 

Stage 2 

(‰) 

Stage 3 

(‰) 

Stage 4 

(‰) 

Stage 5 

(‰) 

BF 

(‰) 

3 +0.26 ± 0.05 +0.20 ± 0.05 +0.12 ± 0.05 -0.03 ± 0.05 0.00 ± 0.05 +0.04 ± 0.05 

4 -0.29 ± 0.05 +0.15 ± 0.05 +0.09 ± 0.06 +0.12 ± 0.05 +0.09 ± 0.05 +0.05 ± 0.05 

5/6 +0.06 ± 0.05 +0.03 ± 0.05 +0.02 ± 0.05 -0.01 ± 0.05 -0.57 ± 0.05 -0.26 ± 0.05 

7/8 +0.19 ± 0.05 +0.09 ± 0.05 +0.04 ± 0.05 +0.03 ± 0.05 -0.40 ± 0.05 -0.33 ± 0.05 

9/10 +0.16 ± 0.05 +0.38 ± 0.05 +0.15 ± 0.05 +0.05 ± 0.05 -0.26 ± 0.05 -0.24 ± 0.05 

11/12 +0.12 ± 0.08 +0.13 ± 0.05 +0.11 ± 0.05 -0.02 ± 0.05 -0.50 ± 0.05 -0.13 ± 0.05 

13/14 +0.31 ± 0.05 +0.21 ± 0.05 +0.20 ± 0.05 +0.13 ± 0.05 -0.05 ± 0.05 +0.11 ± 0.05 

15/16 +0.29 ± 0.05 +0.29 ± 0.05 +0.30 ± 0.05 +0.12 ± 0.05 +0.28 ± 0.06 +0.38 ± 0.05 

17/18 +0.21 ± 0.05 +0.15 ± 0.05 +0.08 ± 0.05 +0.16 ± 0.05 -0.13 ± 0.05 +0.11 ± 0.05 

19/20 +0.19 ± 0.05 +0.37 ± 0.05 +0.08 ± 0.05 -0.04 ± 0.05 +0.10 ± 0.05 +0.10 ± 0.05 

21/22/23 +0.21 ± 0.05 +0.28 ± 0.05 +0.30 ± 0.05 +0.21 ± 0.05 +0.11 ± 0.05 +0.32 ± 0.05 

23 +0.23 ± 0.05 +0.36 ± 0.05 +0.19 ± 0.06 +0.25 ± 0.06 +0.14 ± 0.05 +0.17 ± 0.05 

Weighted Mean +0.21 ± 0.28 +0.18 ± 0.28 +0.09 ± 0.28 +0.05 ± 0.28 -0.28 ± 0.28 0.00 ± 0.28 
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Table 6. GP15 Aerosol Coarse (>3 μm) and Fine (<3 μm) Fe concentrations. 

 

 

 

 

 

Deployment Coarse Fraction Fine Fraction 

3 +0.22 ± 0.07‰ +0.04 ± 0.10‰ 

4 +0.01 ± 0.07‰ +0.09 ± 0.11‰ 

5/6 +0.04 ± 0.07‰ -0.13 ± 0.10‰ 

7/8 +0.11 ± 0.07‰ -0.05 ± 0.10‰ 

9/10 +0.33 ± 0.07‰ -0.03 ± 0.10‰ 

11/12 +0.13 ± 0.09‰ -0.09 ± 0.10‰ 

13/14 +0.27 ± 0.07‰ +0.11 ± 0.10‰ 

15/16 +0.29 ± 0.07‰ +0.30 ± 0.10‰ 

17/18 +0.17 ± 0.07‰ +0.08 ± 0.10‰ 

19/20 +0.31 ± 0.07‰ +0.07 ± 0.10‰ 

21/22/23 +0.24 ± 0.07‰ +0.28 ± 0.10‰ 

23 +0.13 ± 0.07‰ +0.13 ± 0.11‰ 
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Table 7. GP15 aerosol Large (>0.95 μm) and Small (<0.95 μm) δ56Fe. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Deployment Large Fraction Small Fraction 

3 +0.15 ± 0.10‰ +0.04 ± 0.07‰ 

4 +0.08 ± 0.11‰ +0.07 ± 0.07‰ 

5/6 +0.02 ± 0.10‰ -0.39 ± 0.07‰ 

7/8 +0.07 ± 0.10‰ -0.36 ± 0.07‰ 

9/10 +0.20 ± 0.10‰ -0.25 ± 0.07‰ 

11/12 +0.08 ± 0.10‰ -0.25 ± 0.07‰ 

13/14 +0.25 ± 0.10‰ +0.07 ± 0.07‰ 

15/16 +0.27 ± 0.10‰ +0.36 ± 0.07‰ 

17/18 +0.15 ± 0.10‰ +0.06 ±0 .07‰ 

19/20 +0.20 ± 0.10‰ +0.10 ± 0.07‰ 

21/22/23 +0.25 ± 0.10‰ +0.29 ± 0.07‰ 

23 +0.26 ± 0.10‰ +0.16 ± 0.07‰ 



  63

 

 

 

 

CHAPTER FOUR: 

DISCUSSION 

 

GP15 deployments are discussed in the context of Fe, Zn, and Cd isotope compositions together 

with elemental concentrations, solubilities, and enrichment factors, to assess the relative importance of 

possible sources supplying atmospheric TMs to the North Pacific Ocean. For Fe, two-component mixing 

models and global deposition modeling (CAM6-QFED) are used to estimate and verify the proportions of 

major Fe sources supplying Fe to each GP15 aerosol deployment. GP15 aerosol size-fractionated aerosol 

data is combined with data from Kurisu et al. (2021) to provide a more complete picture of size-fractionated 

North Pacific Fe aerosols and asses different binning methods used for coarse and fine size-fractionated Fe 

aerosols. Lastly, soluble aerosol δ56Fe, δ66Zn, and δ114Cd are compared with GP15 surface seawater 

dissolved trace metal isotope compositions to assess any impact of aerosols on North Pacific surface isotope 

distributions. 

 

4.1 Fe Source Apportionment to Northern, Southern, and Margin Deployments 

4.1.1 Asian Anthropogenics and Dust Sources Supply Fe to the Northern Deployments 

Bulk Fe concentrations for northern deployments between 52°N and 32°N are the highest among 

GP15 bulk deployments (37 to 152 pmol m-3), consistent with previous observations in the North Pacific 

that show elevated Fe concentrations between 23°N and 52°N (Buck et al., 2006 and 2013). Although 

concentrations observed during the CLIVAR-CO2 P16 and fourth IOC cruises during the high dust season 

were orders of magnitude higher than GP15 during the low dust season, the overall trend between the 

cruises is similar (Buck et al., 2006 2013). Buck et al., (2013) attribute elevated Fe concentrations at these 

latitudes to the supply of aerosols originating from Asia (Fig. 4; Martin et al., 2002). Aerosols originating 
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from the eastern coast of Asia are likely to be a combination of natural dust and anthropogenic Fe (Huang 

et al., 2010). Soluble concentrations show a similar trend as bulk deployments and are also elevated due to 

the influence of Asian dust (1.3 to 7 pmol m-3).  

While aerosol Fe concentrations, solubilities, and EFs do not clearly pick out the presence of 

anthropogenic Fe in northern deployments, bulk, soluble, and size-fractionated δ56Fe demonstrate the 

presence of anthropogenic Fe. Bulk δ56Fe (-0.03 to +0.07‰) are light or crustal, near the minimum of the 

observed range of natural aerosols (-0.01‰), hinting at an anthropogenic influence at northern GP15 

deployments (Fig. 13). The presence of anthropogenic Fe can be distinguished more clearly in the fine 

particles (-0.39 to -0.25‰), and even more clearly in the small particles compared to near-crustal signatures 

in larger particles (Fig. 19). Lastly, the presence of anthropogenic Fe at northern deployments is evident in 

soluble δ56Fe (-1.28 to -0.45‰) and falls within the previous observed range of anthropogenic aerosols 

produced from combustion (-4.7 to -0.3‰; Kurisu et al., 2016a; Kurisu et al., 2016b; Conway et al., 2019; 

Kurisu et al., 2021). Overall, the data is supportive of northern deployments comprising of a mix of natural 

dust and anthropogenic Fe, with natural dust likely dominating the bulk phase and coarse/large particles, 

and anthropogenic Fe dominating the soluble phase and small particles. Elevated V (combustion tracer) and 

Ni and Zn EFs help confirm the presence of anthropogenic components in the northern deployments (Fig. 

11), while Fe and Mn EFs are dominated by natural dust. As such, we conclude that Fe signatures at northern 

deployments are dominated by Asian dust that is a combination of natural Chinese loess and anthropogenic 

combustion Fe from the eastern coast of Asia. However, Alaskan dust sources can be ruled out as 3- and 

10-day HYSPLITs show air masses did not interact with the Alaskan mainland. 

In principle, a two-component mixing model can be used as a first order estimate of the proportions 

of two sources supplying Fe to a sample, in this case GP15 aerosols. It should be noted, however, there are 

some important caveats to this approach. First, it simplifies the calculation to only two sources when there 

potentially could be a mix of multiple sources with different δ56Fe signatures, and so only works if two 

sources dominate. Second, it requires well constrained endmembers, and third, it assumes no further 

isotopic fractionation of source signatures with transport. Previous studies such as Conway et al. (2019) 
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and Kurisu et al. (2021) were able to constrain the sources of aerosol Fe to the North Atlantic and Northwest 

Pacific Oceans by modelling aerosols as a mixture of natural dust and anthropogenic combustion Fe, either 

by assuming wildfire to be negligible or to have the same isotopic signature as anthropogenic combustion.                 

 These modelling approaches used data-informed fixed isotope endmember compositions; Conway 

et al. (2019) set natural and anthropogenic endmembers (including wildfire derived Fe) δ56Fe at +0.09‰ 

and -1.60‰, respectively, while Kurisu et al., (2021) used +0.09‰ for natural Fe and a range of North 

Pacific anthropogenic Fe (with an average of -4.3‰). North Atlantic soluble anthropogenic (including 

wildfire-derived) δ56Fe was constrained at -1.60‰ based on the lightest observed value near industrial 

hotspots along the coast of North America and Europe and observations showing fossil fuel combustion 

and biomass burning can produce δ56Fe as light as -1.60‰ (Conway et al., 2019), while Kurisu used a 

lighter endmember based on their work on combustion source signatures and aerosol data (Kurisu et al., 

2021). Since δ56Fe and EF relationships indicate the northern GP15 deployments are dominated by just two 

major sources, a two-component mixing model can also be used here as a first order estimate of aerosol 

source proportions.  

Based on bulk and soluble δ56Fe and EFs, the northern deployments were modelled as a mix of 

anthropogenic combustion and natural dust. Using the anthropogenic endmembers provided by Conway et 

al. (2019) and Kurisu et al. (2021) of -1.6‰ and -4.3‰, respectively, the range of relative proportions of 

natural and anthropogenic Fe calculated for GP15 bulk and soluble samples using two-component mixing 

are provided in Table 9 and 10, respectively. Northern deployment bulk Fe ranged from 0.5 to 7% 

anthropogenic combustion Fe and 93-99.5% natural dust Fe (Table 9). This is similar to, but slightly 

elevated from, the negligible anthropogenic Fe amount that Kurisu et al. (2021) calculated for bulk 

Northeast Pacific Aerosols, perhaps because their samples were dominated by crustal dust, something 

which could vary seasonally and with location. Using the same endmember range for combustion as for 

bulk aerosols (-1.6‰ and -4.3‰), northern deployment soluble Fe ranged from 12 to 81% anthropogenic 

and 19 to 88% natural Fe, reflecting the more-soluble nature of combustion Fe than dust Fe, and the 

advantage of using the soluble phase to identify and constrain anthropogenic Fe (Ito et al., 2016; Ito et al., 
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2019). A model output from Conway et al. (2019; Fig. 6) predicted that anthropogenic Fe contributes 20 to 

40% of the annual soluble Fe in the North Pacific in the region of northern GP15 deployments. The 

proportion of soluble anthropogenic Fe calculated for GP15 northern deployments is broadly similar to this 

prediction (12-40%), and broadly similar to the 10-20% Fe calculated by the IMPACT model in Kurisu et 

al. (2021). Notably, however, one sample reaches as high as 81%, which could suggest the model is 

underestimating the significance of anthropogenic Fe in the North Pacific. Overall, though, the two-

component mixing model suggests that Conway et al. (2019) modelling scenario is doing a good job of 

capturing broad source apportionment in the North Pacific based on the large isotopic range of 

anthropogenic Fe aerosols, at least in the low dust season. More field data from around the globe, 

specifically the North Pacific, is required to do a more in depth and accurate seasonal or annual comparison. 

 

4.1.2 Which Atmospheric Sources Supply Fe to the Southern Deployments? 

Bulk aerosol Fe concentrations of southern deployments (between 20°N and 20°S) are lower than 

northern deployments (20 to 64 pmol m-3; Fig. 8) consistent with previous observations south of 20°N 

(Buck et al., 2013); Asian dust is the dominant source to the North Pacific Ocean, and Buck et al. (2013) 

attribute a decrease in bulk Fe concentrations to the increased distance from the source of Asian dust as 

well as limited major dust sources south of 20°N (Ding et al., 2001; Sec. 4.1). Additionally, most Asian 

dust particles are expected to be deposited closer to the source, thus, it would be expected that northern 

deployments have higher Fe deposition than southern deployments (Martin et al., 2002; Kurisu et al., 2021).  

In contrast to the northern deployments, the bulk δ56Fe of southern deployments are heavier than 

crustal (+0.19 to +0.41‰; Fig. 13), indicating Fe contributed by a source that is heavier than natural dust, 

perhaps from the coast of North America. Further, size-fractionated δ56Fe do not show clear evidence of 

light δ56Fe in small particles, suggesting that a) heavy Fe is present across different particle sizes, and b) 

there is no clear indication of anthropogenic combustion Fe. Additionally, and unlike northern deployments, 

V EFs are not elevated in the south, further indicating the lack of combustion sources in the south (Fig 11). 

Although Fe, Mn, and Al EFs are again all close to crustal in southern deployments (as in the northern), 
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there is a remarkable correlation between bulk δ56Fe and Al EFs as well as elevated Fe and Mn EFs relative 

to northern deployments in these aerosols (Figs 11 and 14). All of these suggest the presence of a different 

non-dust and non-combustion source supplying heavy Fe (and Al and Mn) in the south.  

A major question then, is: what is this source of heavy Fe? One option is wildfire, which has 

typically been assumed to supply isotopically light Fe in prior studies (Mead et al., 2014; Conway et al., 

2019; Kurisu et al., 2021), and a second could be shipping emissions (also assumed to be light in prior 

modelling). In fact, GP15 sailed from September to November of 2018 which corresponds with the peak 

wildfire season on the North American west coast. General North Pacific atmospheric circulation and 10-

day HYSPLIT models (Fig. S6) also indicate southern deployments were influenced by air masses that had 

traveled along or passed over the western coast of North America where NASA MODIS images show 

wildfires occurring (NASA Goddard Space Flight Center, 2022). By contrast, shipping emissions are 

expected to be less at the southern deployments than the northern (see Section 4.4.2 and 4.4.3). Therefore, 

the heavy Fe in southern bulk Fe aerosols could originate from a yet to be constrained wildfire source. 

Previous studies have suggested that Fe taken up into plants is isotopically light (-1.6 to -0.3‰; 

Guelke and von Blankenburg 2007; Guelke-Stelling and von Blankenburg, 2012), and thus, wildfire was 

initially considered to produce isotopically light Fe (Mead et al., 2014; Conway et al., 2014). Recently, 

however, Hamilton et al. (2022) showed that up to 64% of the Fe found in aerosols derived from wildfires 

is derived from the pyro-convective entrainment of soils, echoing similar work showing that Fe and δ56Fe 

released from biomass burning events are likely strongly influenced by soil particles (Kurisu and Takahashi 

et al., 2019). While Kurisu and Takahashi could not definitively constrain the δ56Fe signature of biomass 

due to a high combustion background in their aerosols, and assumed soil to be near-crustal, they did show 

that bulk and soluble aerosol δ56Fe were up to 0.75‰ heavier during a distinct biomass burning event 

compared to immediately before and after (Kurisu and Takahashi et al., 2019). In fact, the global δ56Fe of 

soils is variable, ranging from -0.5 to +0.95‰ (Johnson et al., 2020), but soils such as laterites, andosols, 

and podzols, found along the west coast of North America exhibit δ56Fe from +0.20 to +0.95‰ suggesting 
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they could be the source of heavy Fe to GP15 (Fantle and DePaolo, 2004, Emmanuel et al., 2005, 

Wiederhold et al., 2007, Thompson et al., 2007, Akerman et al., 2014; Johnson et al., 2020). 

Iron, Mn, Zn, and Ni and lithogenic metals such as Ti and Al are all found in soils or biomass, and 

as such, wildfires can be a large source of TMs in atmospheric aerosols (Marschner et al., 1993; Cempel 

and Nikel 2005; Poonkothai and Vijayavathi 2012; Kurisu et al., 2019; Perron et al., 2020). For example, 

Kurisu and Takahashi (2019) also showed that TMs (e.g., Ti, Zn, Al, and Fe) were elevated during a biomass 

burning event compared to the combustion background and Schlosser et al. (2017) showed elements such 

as Fe, Al, Mn, and Zn to be elevated in Western US wildfire events, which they attributed to soil 

entrainment. Most recently, Perron et al. (2022) showed around two-fold increases in Fe, Mn, and Al 

aerosol loading from biomass burning in Western Australia. Although Fe EFs remain near-crustal in 

southern deployments, they are elevated compared to the north and are well correlated with Mn, Zn, Ni, 

and Al EFs, all showing a concurrent increase as Fe EFs increase (Fig. 11). This pattern is consistent with 

Fe, Mn, and Al being sourced to southern aerosols from North American wildfires entraining soil and plant 

debris. Furthermore, a range of studies have now shown that bulk biomass-burning derived aerosol Fe is 

likely to have low Fe solubilities, likely due to the proportion of entrained soil (2-6%; Paris et al., 2010; 

Winton et al., 2016; Kurisu and Takahashi 2019; Perron et al., 2022); this observation is consistent with 

the relatively-low solubilities of the GP15 southern deployments (1-2%), which indicate the heavy Fe is 

not especially soluble compared to combustion Fe.  

Taken together, GP15 bulk δ56Fe and EFs suggest that Fe derived from wildfires via pyro-

convective entrainment of isotopically heavy Fe from soils found along the coast of North America can 

explain the heavy δ56Fe in the bulk deployments of the southern portion of GP15. Thus, we suggest that for 

southern deployments, a mixture of Asian dust carrying natural dust, combustion Fe, and entrained wildfire 

Fe from North American airmasses are the sources of Fe to the bulk phase. We note that while a source of 

heavy Fe was not considered by Conway et al. (2019) in their Atlantic mixing models, there is in fact prior 

evidence for unexplained heavier-than-crustal Fe in atmospherics aerosols collected near to Portugal and 

Papa New Guinea (Conway et al., 2019; Labutut et al., 2014), and in particles collected over the eastern 
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North Pacific (Kurisu et al., 2021). Although northern and southern deployments show a clear difference 

in Fe sources to the bulk phase, southern deployments show soluble δ56Fe that is similar to northern 

deployments (-0.27 to +0.02‰) As with northern deployments, this light Fe is likely indicative of 

anthropogenic combustion that continues to show up in the soluble phase more prominently due to elevated 

solubility. However, we do note that since the δ56Fe signature of biomass has been shown to be light, and 

the biomass-derived Fe may be more soluble than soil-derived Fe, so the light isotopic signatures in the 

soluble phase of the southern deployments could be a sourced from a combination of anthropogenic 

combustion and biomass Fe from wildfires.  

Overall, a range of evidence including δ56Fe and EF relationships indicates there are more than two 

distinct sources supplying Fe to southern deployments in the bulk and possibly in the soluble phase. The 

GP15 δ56Fe data, combined with literature data, also suggests that wildfire-derived Fe has a different 

isotopic signature to combustion Fe. As such, a two-component mixing model cannot be used to estimate 

source proportions, and a more complex three of four component model cannot be used without further 

constraints since this would require an additional parameter that directly scales with the Fe source. The 

implications of this are that globally, source attribution using δ56Fe is likely to be more complex than 

previous studies have suggested, unless in regions where only two dominant sources can be isolated, or 

global deposition models are used to inform other variables. 

 

4.1.3 Margin Deployments Fe  

 Deployment 1 was collected off the coast of Seattle east of the GP15 transect with airmasses coming 

from the west and circling the Gulf of Alaska, and deployment 3 was collected nearshore of Alaska with 

airmasses also circling the Gulf of Alaska. Margin deployment Fe concentrations are significantly lower 

than those of northern deployments, but similar to southern deployments (13 to 36 pmol m-3 Fig. 9). While 

deployment 1 is south of the northern boundary of 52°N previously observed by Buck et al. (2013) during 

the CLIVAR-CO2 P16 cruise, the lower concentrations of deployment 1 are a result of the deployment 

being located further downwind and further along the transport pathway from the source region of Asian 
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dust. Deployment 1 has an elevated soluble Fe concentration and may be the result of point source addition 

of a soluble anthropogenic Fe from the coast of North America. The bulk δ56Fe of margin deployments are 

crustal (Fig. 12) and are near the upper UCC bound (+0.19‰; Beard et al., 2003; Gong et al., 2016) which 

indicate natural dust is dominant. Margin deployments soluble δ56Fe is heavy at deployment 1 (+0.25‰) 

and is indicative of a source supplying isotopically heavy Fe, which could be wildfires. The soluble δ56Fe 

of deployment 3 is light (-0.14‰) and suggests a relatively large contribution of anthropogenic or biomass 

Fe to the soluble phase. A lack of enrichment factor data for deployments 1 and 3 make it difficult to look 

more deeply into possible additional sources influencing the bulk and soluble Fe phases.  

 

4.2 Fe Aerosol Addition to Surface Waters during GP15 

Recently, Pinedo-Gonzalez et al. (2020) found elevated Fe concentrations in the surface of the 

North Pacific that they argued correlated with an increase in surface Pb concentrations during the high dust 

season (May) and attributed both to the input of anthropogenic aerosols. Here, we compare surface water 

sections for dissolved δ56Fe from GP15 seawater samples (Sieber, pers. comm.) to aerosol δ56Fe from GP15 

aerosol deployments to observe if aerosols δ56Fe signatures are influencing surface ocean δ56Fe.  

North Pacific surface seawater data from the top 50 m of GP15 was used for comparison, chosen 

to most closely match mixed layer depths during the cruise (up to 90 m but typically less than 50m; Rian 

et al., in review) and seawater sample locations were matched to generate ranges for either northern (32 to 

52°N) or Southern (20°S to 20°N) deployments, avoiding stations deemed to be influenced by Fe sources 

on the Alaskan Margin or Hawaii (based on Conway, pers. comm). This comparison generally shows the 

δ56Fe in surface waters (+0.05 to +1.95‰) to be isotopically heavier than the soluble δ56Fe from GP15 

aerosols (-1.28 to +0.25‰). By deployments, northern stations surface seawater δ56Fe ranges from +0.15 

to +1.78‰, while soluble aerosols range from -1.28 to –0.45‰. Southern deployment surface seawater 

δ56Fe ranges from -0.30 to +1.95‰, while soluble aerosols range from -0.71 to +0.02‰. Thus, unlike 

Pinedo-Gonzalez et al. (2020) we do not see clear evidence of dust or combustion aerosol Fe addition 

influencing the primary Fe isotopic signature of GP15 surface seawater, which is consistent with the very 
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low dissolved Fe concentrations measured in GP15 mixed layers across both aerosol deployment ranges 

(0.05-0.26 nmol kg-1). However, we do note that the lightest surface seawater values on both deployments 

correspond to the highest dissolved Fe concentrations (~0.23 nmol kg-1) suggesting possible limited 

evidence of aerosol addition of Fe to surface waters in these locations. 

A lack of light dissolved δ56Fe from aerosol Fe addition to the surface is not surprising as it was 

also absent in the dusty North Atlantic (Conway and John, 2014). This is most likely due to internal cycling 

processes, such as uptake, organic complexation, and precipitation that add, remove, and fractionate Fe 

derived from aerosols in surface waters (Conway and John, 2014; König et al., 2021). Any influence of Fe 

aerosols to the North Pacific may be even more diluted by fractionation of Fe in surface waters in the low 

dust season when Fe addition is low and Fe-limitation and uptake become more important. Further, if the 

signal of biomass-derived aerosol Fe is heavy, this would not drive surface seawater towards lower δ56Fe 

values. Overall, more data and modelling are likely needed (e.g., König et al., 2022) to determine whether 

the light Fe observed by Pinedo-Gonzalez et al. (2020) is from aerosols or from elsewhere. 

 

4.3 Fe Trends Across North Pacific Ocean 

Kurisu et al. (2021) published size-fractionated data from the Western and Central North Pacific 

that compliments the GP15 size-fractionated data. To provide a basin-scale description of Fe aerosols over 

the North Pacific, size-fractionated δ56Fe data (coarse: >2.5 μm; fine: <2.5 μm) from Kurisu et al. (2021) 

is shown together with GP15 size-fractionated δ56Fe data (coarse: >3.0 μm; fine: <3.0 μm) in Figure 20. 

Taken together, total, coarse and, fine size-fraction δ56Fe from both studies display similar latitudinal and 

longitudinal trends throughout the North Pacific which are consistent with the atmospheric circulation of 

the North Pacific. The lightest bulk aerosols are seen closest to Asia (-0.91 to -0.07‰) and continue to be 

the among the lightest eastward throughout the Asian dust band (20°N and 52°N), in both datasets from 

Kurisu et al. (2021; (-0.91 to +0.39‰) and GP15 (-0.06 to +0.08‰; Fig. 20). The same trend holds for the 

coarse and fine fractions within the Asian dust band, with δ56Fe being lightest near the coast of Asia and 

becoming heavier farther east: coarse size-fractionated δ56Fe near Asia are (-0.24 to +0.37‰) and (+0.04 
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to +0.33‰) towards North America, and fine fraction δ56Fe is (-2.16 to -0.1‰) near Asia and (-0.13 to -

0.03‰) farther east at GP15 deployments. Fine fraction δ56Fe is lighter than the coarse fraction throughout 

the Asian dust band of North Pacific, indicating the consistent presence of anthropogenic aerosols. 

However, GP15 deployments show slightly heavier δ56Fe than data from Kurisu et al. (2021), perhaps due 

to the slight difference in binning, a different mix of dust sources in Asia during different seasons, or 

dilution of Asian dust with Alaskan or other possible Fe sources due east. 

South of the Asian dust band, total, coarse, and fine δ56Fe all become heavier (+0.09 to +0.42) as 

air masses are deflected to the south along the coast of North America and west across the open ocean, and 

each fraction’s δ56Fe ranges continue to increase as air masses travel back towards Asia along the equator. 

Furthermore, the fractionation between coarse and fine particles is lost. Once air masses reach the east and 

take a southward trajectory along North America, they pick up additional Fe along the coast from sources 

such as Alaskan and American dust, wildfires, and anthropogenic activity, and the dominance of Asian 

(dust and combustion) is lessened. Size-fractionated data from Kurisu et al. (2021) shows that the elevated 

δ56Fe values observed in the south of GP15 are carried eastward across the equator back towards Asia 

suggesting a large-scale influence of wildfire derived Fe to the region. Overall, the size-fractionated δ56Fe 

data Kurisu et al. (2021) accentuates the findings of Asian dust to the northern deployments and North 

American and Asian dust to the southern deployments. While all phases of the size fractionated δ56Fe show 

the lightest isotopes within Asian dust (northern deployments) as the result of anthropogenic Fe addition, 

they are much heavier at the southern deployments as the result of wildfire (soil) Fe addition.   

 

4.4 Fe Deposition Models for Source Attribution  

Based on observational GP15 data, we suggest Asian dust (which is a combination of crustal and 

anthropogenic Fe) dominates northern deployments. Southern deployments are a mixture of Asian dust and 

North American crustal, wildfire, and anthropogenic sources influence the South. As noted earlier (Section 

4.1.1 and 4.1.2), simple isotopic mixing models lack suitable constraints to test these assertions or constrain 

multiple sources. However, global Fe deposition models provide us with further opportunity to investigate 
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aerosol Fe sources and test assertions – specifically whether the heavy endmember in the bulk phase is 

indeed wildfire, and whether our interpretations of sources to GP15 can be validated. 

 Model-predicted soluble and total Fe concentrations in air for grid cells from the atmospheric dust 

deposition CAM6 model within the National Center for Atmospheric Research Community Earth System 

Model (CESM), using the Quick Fire Emissions Dataset (QFED) were produced by collaborators (Hamilton 

and Mahowald, pers. comm.), and matched to the latitude, longitude, date, and time of the GP15 aerosol 

deployments (Scanza et al., 2018; Hamilton et al., 2020a; Hamilton et al., 2020b). As well as providing 

simulated total and soluble aerosol Fe concentrations to a grid cell, the CAM6 Fe deposition model with 

QFED allows separation of both soluble and total Fe into distinct sources of natural, wildfire, and 

anthropogenic Fe (coal, oil, biomass, fossil fuel combustion, and smelting Fe; Scanza et al., 2018; Hamilton 

et al., 2019 Hamilton et al., 2020a; Rathod et al., 2020). Then, by assigning a fixed Fe isotopic endmember 

to each source in the model output, the weighted-average Fe isotopic composition of the modeled aerosol 

in each grid cell can be calculated (as done for CAM4 by Conway et al., 2019) for comparison with GP15 

aerosol isotopic compositions. The model match or mismatch can then help inform understanding of the Fe 

sources in GP15 aerosols, as well as informing where models may need refinement. 

In order to predict model-derived δ56Fe isotopic compositions, suitable δ56Fe endmembers for Fe 

sources must be chosen. Conway et al. (2019) used endmembers for wildfire, anthropogenic, and dust 

sources in the Atlantic (Tables 11 and 12), but these likely require refinement or updating to include sources 

which are likely different in the Pacific (e.g., heavy wildfire and shipping). For example, Conway et al. 

(2019) assigned the wildfire endmember for the CAM4 output to -1.60‰ due to the preferential uptake of 

light Fe by biomass (and for simplicity to match combustion), but as I have shown in Section 4.1.2, wildfire 

Fe to the Pacific is heavy and dominated by soils. Relevant to GP15, δ56Fe in soils along the west coast of 

North America where wildfires are present from July to November have been observed to range from +0.25 

to +0.95‰, revealing that the wildfire endmember used in Conway et al. (2019) needs to be updated to 

better represent the fire contribution over the North Pacific.  
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Shipping could be an additional source of heavy Fe to aerosols as since gasoline and coarse-

combustion particles are +0.35‰ (Kurisu et al., 2016) and the δ56Fe signature of oil fly ash standards (from 

burning fuel oil range from +0.1 to +0.5‰ (Mead et al., 2014). As such, if heavy fuel oil is burnt by ships 

with less effective fractionation than from transport of distal combustion (e.g., if coarse and fine particles 

make it to aerosol collection from shipping), then this heavy signal could be transferred. One thing is clear, 

however, the North Pacific δ56Fe shows a heavy wildfire Fe source that was not included in previous 

modelling. Our size-fractionated data for southern GP15 deployments shows that this heavy wildfire Fe is 

present over the full range of particle sizes from <0.5 to >8 µm, not just coarse particles (Figs 17-18), 

inconsistent with the suggestion of the heavy Fe coming simply from long distance (or shipping-derived) 

coarse ‘heavy’ combustion particles. 

Here, we carried out a range of simulations using CAM6 QFED model deposition output matched 

to GP15 bulk and soluble aerosol deployments, changing model endmembers to test various scenarios by 

how well model data matched observations (Figs 22-23; Tables 10-11) via sum of the squares of misfits 

(Table 12). The first scenarios (termed QFED-B1 and QFED-S1 for bulk and soluble respectively) were set 

with endmembers to match the endmembers chosen by Conway et al. (2019) for the Atlantic but used in 

their global CAM4 isotope-informed deposition modelling (see Tables 10-11 for values). Later scenarios 

kept the natural dust δ56Fe endmember the same (at +0.09‰), and varied the fire, anthropogenic, and/or 

shipping δ56Fe endmembers (Tables 10-11). 

 

4.4.1 QFED-B1 and QFED-S1: Original Model and GP15 Observations 

 The first aspect of observation-model comparison was to compare the modelled bulk and soluble 

Fe ‘concentrations’ from CAM6-QFED with their respective GP15 Fe concentrations. Overall, the model 

overestimates both bulk and soluble concentrations compared to observations (Fig. 21), with the bulk 

showing a better match (~50% of points are similar) than the soluble (most points are overestimated by the 

model). This finding suggests the model has too high a flux of both soluble and total Fe aerosol to the region 
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during the low dust season, which may have a significant impact on how well the model can capture the 

predicted isotope ratios, especially if one or more source in particular is over-represented.  

When comparing the bulk and soluble GP15 δ56Fe observations with QFED-B1 and QFED-S1, the 

model generally predicts lighter isotope compositions than observed (Figs 22 and 23). The mismatch 

between model and observational δ56Fe is the greatest for the southern deployments in the bulk phase while 

the margin deployments have the worst fit in the soluble phase. Overall, GP15 bulk and soluble δ56Fe finds 

wildfires are a heavy source of Fe to aerosols, as such, the difference between the model and observations 

also indicate that a heavy wildfire endmember is needed. The fit between model and observational bulk and 

soluble data is quantified by a sum of the squares of misfit calculation (Table 12). QFED-1 has a bulk and 

soluble δ56Fe sum of squares of misfit with GP15 observations of 3.92 and 7.53 respectively that will be 

compared with subsequent bulk and soluble δ56Fe model scenarios. The sum of squares of misfit calculation 

was carried out by squaring the difference between model and GP15 δ56Fe for each deployment and then 

summing the squared values of all deployments.  

 

4.4.2 QFED Updated Isotope Endmember Simulations  

 We then carried out four more CAM6-QFED simulation scenarios to investigate if this model-

observation mismatch of bulk and soluble δ56Fe could be explained and verify a heavy wildfire Fe 

endmember, or if it could be improved by reasonable changes to other endmembers based on the findings 

of GP15 (Figs 22-24). 

 

4.4.2.1 Adding a Heavy Endmember: Wildfire vs. Shipping?  

The combined North Pacific bulk δ56Fe dataset mandates a need for a heavy aerosol Fe source. 

There are two plausible options for a heavy source to the bulk phase, wildfire-derived or shipping-derived 

Fe. In the original scenario QFED-B1, both sources are set to -1.6‰ (Section 4.4.1). Here, we tested the 

impact of changing these endmembers in several ways: QFED-B2 (heavy Fe from wildfire), QFED-B3 

(heavy Fe from shipping), QFED-B4 (heavy Fe from both). Scenarios QFED-B2, B3, and B4 thus allow us 
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to investigate the possible influence of a heavy wildfire and/or shipping endmember(s) on model-predicted 

North Pacific bulk aerosol δ56Fe (Fig. 22). To do this, since shipping is not separated from other combustion 

in the CAM6 QFED output, a separate model run was conducted without shipping (Hamilton, pers. comm), 

and then shipping calculated as the difference between combustion Fe in the two runs. An updated Fe 

wildfire endmember of +0.70‰ was chosen based on GP15 Fe data, possible soil sources in N. America, 

and recent studies signifying the importance of wildfires (discussed in Section 4.1.2) for QFED-B2 (Table 

10; Fig. 22B). The shipping endmember was updated to +0.35‰ for the QFED-B3 simulation based on 

expectation of the isotopic signature of coarse anthropogenic particle signatures as discussed above (Table 

10; Fig. 22C). The QFED-B4 simulation has wildfire Fe set to +0.70‰ and shipping Fe set to +0.35‰ (Fig. 

22D).  

Each simulation, QFED-B2, B3, and B4, is a significant improvement from the original QFED-B1 

simulation (Table 12; Fig. 22). However, while QFED-B2 and B3 both improve the sum of the squares of 

misfits to a similar degree, a heavy wildfire endmember (+0.70‰) drastically improves the fit for southern 

deployments but only nominally for the northern and margin deployments, and vice versa, a heavy shipping 

endmember (+0.35‰) leads to great improvement for northern and margin deployments but has little effect 

on the fit of southern deployments (Table 10; Fig. 22). As the model estimates, this is a result of there being 

more shipping Fe in North and more wildfire Fe in the South and can also be corroborated by elevated V 

EFs as the result of oil combustion in the North (Marsay et al., 2021). Thus, both independently updated 

endmember simulations only improve the fit for certain northern, margin, or southern deployment types; as 

such, these simulations suggest both sources must be heavy to best explain North Pacific data. This 

assumption is borne out by QFED-B4 providing the best fit among simulations (Fig. 22; Table 12). 

QFED-B4 provides the best fit from all four the simulations, but we note the model still predicts 

lighter δ56Fe than observations; this could reflect our original conclusion that combustion Fe is being 

overestimated in the model, or it could suggest that the endmember choices for fire and shipping are too 

light (Fig. 23). To address this question, a final QFED-B5 simulation was conducted to produce the best fit 

by increasing the wildfire and shipping endmembers to values that obtain the minimum sum of the square 
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of misfits (+2.00‰ and +2.50‰). However, both these endmembers are unrealistic and heavier than any 

natural or anthropogenic Fe source to aerosols (Table 10; Table 12). Thus, we conclude that the misfit 

between model and observations is likely driven by bulk anthropogenic combustion Fe concentrations being 

overestimated, causing the contribution of anthropogenic Fe to be too large. The model may also not be 

accurately capturing proportions between sources. 

Overall, the model-data comparison reinforces our findings that wildfire is the heavy Fe source to 

GP15 aerosols, but also suggests an additional source of heavy Fe that appears to be shipping. The fit 

improves most in the northern and southern deployments, consistent with our conclusions of dust and 

combustion dominating the northern GP15 deployments and a mix of sources contributing to southern 

deployments (Section 4.4.2). Furthermore, it shows the need for an additional source of heavy Fe from 

shipping, especially at stations within the Asian dust band that are not affected by wildfires.  

 

4.4.2.2 Insights from Bulk δ56Fe Comparison for a Soluble δ56Fe Comparison 

The CAM6-QFED simulations also output soluble Fe concentrations. Assuming no isotopic 

fractionation during dissolution (Conway et al., 2019), we can compare our findings from the bulk aerosol 

data-model comparisons with soluble comparisons. As commented previously, QFED-S1 shows that the 

model is predicting soluble aerosol δ56Fe signatures which are too light (Fig. 24A). QFED-S2 was thus 

parametrized based on the QFED-B4 wildfire (+0.70‰) and shipping (+0.35‰) endmembers that provide 

the best (and most realistic) fit for bulk aerosols (Fig 24B). QFED-S2 improves the comparison, providing 

a much better fit than the original QFED-S1 (Fig. 24A; Table 12); however, now, the model predicts soluble 

δ56Fe that is overall heavier than observations (Fig. 23). This suggests that the same endmember signatures 

cannot explain the soluble Fe phase (or that wildfire or shipping Fe solubility is overestimated). However, 

as we have discussed in Section 4.4.2, there may be an ‘effective’ isotopic fractionation of wildfire-derived 

Fe if plant Fe is more soluble than soil Fe, and plant Fe is isotopically light. Varying the fire endmembers 

within realistic ranges could help address if this could be the case. For shipping, although the size-
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fractionated GP15 data seem inconsistent with shipping having different signatures in each phase, it is also 

worth investigating if lighter soluble Fe could improve fits. 

The wildfire and shipping endmembers were thus independently altered to lower values in QFED-

S3 and S4, respectively, to observe if one source might provide light Fe to the soluble phase (Table 11; Fig. 

24). QFED-S3 was updated to a biomass Fe signature of -1.60‰ (Table 11). This change may improve the 

model-observation match with GP15 southern deployments (Fig 24), although they are now too light. 

However, because of the negligible contribution of wildfires to the northern and margin deployments, the 

fit shows little improvement to these deployments with the QFED-S3 simulation. Reflective of the fact that 

shipping is more important to the North than the South in the model, the QFED-S4 simulation with a light 

shipping endmember (-1.60‰) only significantly improves the fits for the northern and margin 

deployments, while four out of five of the southern deployments remain too heavy and the margin 

deployments are much too light in the QFED-S4 simulation (Fig. 24). Like the bulk comparison δ56Fe both 

model iterations (QFED-S3 and S4) indicate that the soluble shipping endmember is important to the 

northern deployments and the soluble wildfire shipping endmember is important to the southern 

deployments.   

Thus, to improve the model-observation match, an endmember that significantly influences each 

deployment must be lowered to improve the fit between the model and observations, or the model source 

breakdown is incorrect. The remaining endmember that could be lighter and improve the fit is the 

anthropogenic endmember, since the δ56Fe of natural Fe is very well constrained. While such a lighter 

endmember cannot work in the bulk phase (Fig. 22), we know that anthropogenic combustion shows 

isotopic fractionation between particle sizes, and it may be that the lighter, smaller particles are more soluble 

than the overall combustion aerosol. As such, the soluble signature could be lighter than the bulk. To test 

this, a QFED-SA simulation was carried out with a lighter anthropogenic source endmember (-4.30‰) 

based on Kurisu et al. (2021; Table 11; Fig. 23). In fact, the QFED-SA simulation does provide the best 

overall fit between model predictions because it improves the fit among all deployment types (Fig. 23; 

Table 11), but we acknowledge that this value may be representative of the source signature while the -
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1.60‰ used by Conway et al. 2019 is a more accurate value for anthropogenic aerosols over the open ocean. 

Thus, while more work is clearly needed to constrain aerosol δ56Fe endmembers in order to conclusively 

address some of these questions, our final soluble simulation is consistent with the model broadly capturing 

sources in the North Pacific when both soluble anthropogenic Fe and soluble wildfire Fe are both lighter 

than in their respective bulk phase (Table 11; Table 12; Fig. 23). Alternatively, we note the model estimates 

wildfire Fe solubilities from 11-73%, but that recent work found coarse wildfire Fe to be relatively insoluble 

(2-6%; discussed in Section 4.4.2; Hamilton et al., 2019). Therefore, while this is outside the scope of this 

thesis, if the CAM6-QFED model could have parameters adjusted to fix the aspects which result in 

overestimation of wildfire Fe solubility, then this could also result in a lower contribution of the heavy 

wildfire-derived Fe component that would provide a better fit to observations and reduce/eliminate the need 

for different endmembers in bulk and soluble phases. 

 

4.5 Atmospheric Sources of Zn to GP15 and Their Impact on Surface Seawater 

Although bulk Zn aerosol data for the North Pacific are very scarce, but one previous study along 

160°W from the summer reported a mean concentration of 90 pmol m-3 (Furutani et al., 2010), almost an 

order of magnitude higher than the bulk Zn concentrations on GP15 (3.9 to 17.2 pmol m-3). This limited 

comparison suggests that that bulk Zn broadly follows Fe, with an increase in the high dust season and 

decrease in the low dust season; as such this pattern is likely driven by changes to the amount of Asian dust 

over the basin (Ding et al., 2001; Buck et al., 2013). In terms of natural or anthropogenic sources in Asian 

dust, Zn solubilities are very high along the GP15 section (34-112%) and show similar variation as Zn 

aerosols from the coast of Taiwan that ranged from 1 to 85% (Hsu et al., 2005), indicative of a dominant 

contribution of highly soluble anthropogenic Zn. Elevated Zn EFs (32 to 693) and isotopically light δ66Zn 

throughout the transect support this suggestion, indicating that the whole GP15 section is dominated by 

non-crustal Zn (expected to be +0.20 to +0.34‰; Little et al., 2014). 

As with Fe, there are distinctions between the northern and southern GP15 deployments that may 

provide insight into aerosol Zn sources. The southern deployments have the highest EFs (systematically 
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>200), and also show strong correlations with Fe, Mn, and Ni EFs (Fig. 12). In contrast, the northern 

deployments have Zn EFs <200. There is no clear dichotomy in Zn concentrations, Zn solubility, or δ66Zn 

between northern and southern deployments. However, bulk and soluble δ66Zn generally decrease, Zn EFs 

increase, and Zn solubilities decrease in the south. These patterns do suggest a strong anthropogenic Zn 

signal in Asian Dust as well as a relatively small natural Zn component. However, the extremely high Zn 

EFs in the South strongly suggest that, like Fe, additional Zn is picked up as air masses are carried along 

the North American coast.  

Based on our analysis of Fe sources (Section 4.1.1 and 4.1.2), possible Zn sources along the coast 

of western North America might be expected to be wildfires and/or anthropogenic pollution. The question 

then arises as to whether the isotopically light aerosol Zn is sourced from anthropogenic 

combustion/activity, or wildfires, or both. Limited literature data exist to establish a wildfire endmember 

for δ66Zn. Plants preferentially take up light Zn (-0.56 to -0.26‰), while pyro-convective entrainment of 

soil Zn would be expected to add a heavy isotopic signature (+0.2 to +0.5‰; Weiss et al., 2007; Jouvin et 

al., 2012; Smolder et al., 2013; Caldelas and Weiss 2017). As with Fe, we would expect wildfire Zn to be 

a mixture of soil and plant Zn, with studies of biomass burning showing evidence of aerosol to be enriched 

in Zn, possibly attributed to soil entrainment (Schlosser et al., 2017; Kurisu and Takashi, 2019). However, 

given that the Zn content of soil is typically much lower than Fe (Soil has ~66-55,000x less Zn than Fe; 

Bodek et al., 1988; Lindsay, 1972), the different ratio of plant to soil Zn (plants have ~2-6x less Zn than 

Fe; Timperly et al. (1973) likely leads to a wildfire endmember δ66Zn that is more strongly dominated by 

plants and thus isotopically light. It is also possible that North American anthropogenic Zn could be a source 

of light Zn and elevated Zn EFs, but the EFs of apparent wildfire soil tracers (Al, Mn, and Fe) are well 

correlated with Zn EFs in southern deployments and thus suggest the decrease in bulk and soluble δ66Zn is 

due to the addition of wildfire-sourced Zn (Figs. 11 and 12; Perron et al., 2020). Additionally, we note that 

the southern deployments generally show lighter δ66Zn and larger Δδ66Znbulk-soluble (the difference between 

bulk and soluble δ66Zn) than in the North, supporting a different Zn source in the South and perhaps further 

indication of soil-derived Zn in the bulk phase and plant-derived Zn in the soluble phase (Fig. 13). However, 
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we also note that Perron et al. (2022) showed that biomass burning also picked up V and Pb in Western 

Australia, which they concluded came from contaminated soil. As such, it is also possible that light Zn 

comes from anthropogenic contributions to soils and wildfire in our study, although V EFs show no 

enrichment in the South (Fig. 15). While we suggest the decrease in δ66Zn and increase in EFs in the 

southern deployments are a result of the addition of wildfire and anthropogenic Zn, we do note that Marsay 

et al. 2021 attributed the increase of EFs to the southern deployments as a result of a winnowing effect of 

coarse mineral dust rather than addition of wildfire and anthropogenic aerosols. However, we do not 

observe a decrease in Zn concentrations as a result of mineral dust winnowing and size-fractionated Fe does 

not show a preferential loss or absence of coarse particles. Overall, we suggest that the concomitant increase 

of EFs of Ni and Zn with Al, Fe, and Mn in GP15 aerosols, coupled to the decrease in soluble δ66Zn in 

southern deployments is driven by the addition of light Zn aerosol relating to wildfires and anthropogenic 

sources along the coast of North America (Gioia et al., 2008). 

In North Pacific surface seawater, δ66Zn have been shown to be dynamic, with isotopically light 

anomalies reported in the shallow subsurface due to regeneration and/or scavenging events (Vance et al., 

(2019); Sieber et al., in prep.). As such, we only compare GP15 aerosol δ66Zn with the very-surface (2 m 

tow-fish) dissolved δ66Zn here, with seawater data from Sieber et al. (in prep.) again matched to aerosol 

deployment latitudes. Soluble aerosol δ66Zn is lighter (-0.29 to +0.01‰) from all GP15 deployments than 

surface dissolved δ66Zn (+0.20 to +0.60‰; Fig. A8), and so it appears that Zn aerosols do not directly 

impart their isotopic signature to the surface of the North Pacific Ocean, at least during the low dust season. 

This may reflect the fact that bulk deposition of Zn to non-ITCZ samples (12 ± 7 nmol m-2 day-1) are much 

lower than Fe (96 ± 68 nmol m-2 day-1; Marsay et al., 2021), while surface dissolved Zn concentrations 

(0.02-0.75 nmol kg-1) are similar to or much higher than surface dissolved Fe concentrations (0.05-0.26 

nmol kg-) in the region (Sieber, pers. comm.); as such, upwelling supply likely dominates the dissolved Zn 

cycle. Overall, as with δ56Fe aerosols, there is no clear impact of aerosol Zn on surface dissolved δ66Zn 

along GP15, although aerosol input of isotopically light Zn could contribute to the low upper ocean δ66Zn 

as has been suggested for the Atlantic (Lemaitre et al., 2021). Conclusions about aerosol Zn input for GP15 
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differ from that of Liao et al. (2021) who used a mass balance to argue that sinking particles in the South 

China Sea were composed of up to 64% anthropogenic Zn during April to October and November to March. 

This discrepancy is likely due to the proximity of the site studied by Liao et al. (2021) to sources of 

anthropogenic Zn, as particles are more likely to be deposited near the source rather than the open ocean. 

Furthermore, Liao et al. (2021) were studying the particulate phase in which an anthropogenic source 

signature might be better conserved than in surface waters. 

 

4.6 Atmospheric Sources of Cd to GP15 and Their Impact on Surface Seawater 

Bulk and soluble Cd concentrations are variable along the transect, with no obvious trends (Fig. 9). 

Consistent with this, there are no clear divisions between northern and southern deployments, nor a 

distinguishable influence of Asian dust in the northern deployments. Our GP15 bulk Cd concentrations 

compare well to those reported for anthropogenically-influenced East Asian air masses during the spring 

from Patterson and Duce (1990), which also showed great variability (0.01 to 0.53 pmol m-3). However, 

those measurements by Patterson and Duce (1990) were from aerosols collected during the high dust 

season. Thus, in contrast to Fe and Zn, Cd aerosol deposition may be relatively constant throughout the 

year rather than strongly peaking during the spring and waning during the fall.  

Soluble δ114Cd exhibit significantly lower than crustal values (-1.91 to -0.07; Fig. 14) and together 

with elevated Cd EFs (263 to 10775; Fig. 25) throughout the entirety of the transect indicate that 

anthropogenic combustion Cd dominates aerosols in the North Pacific (Nriagu and Pacyna, 1988; Pacyna 

and Pacyna, 2001; Pacyna et al., 2009). However, GP15 aerosol δ114Cd show no obvious relationship with 

GP15 aerosol EFs of Fe, Zn, Mn, Ni, Pb, and Al, elements that also reflect variable contributions from 

anthropogenic activities. In the North Pacific, this is likely because other metals are sourced from a mixture 

of anthropogenic combustion, wildfire/soil and crustal dust, while Cd almost originates from anthropogenic 

combustion because Cd is simply so low in natural dust (average: 200 ng g-1) and soil (average: 360 ng g-

1; Kubier et al., 2019). While atmospheric δ114Cd data is very limited, we can compare GP15 data with 

aerosol δ114Cd data from the tropical Atlantic (-0.19 to +0.19‰; Bridgestock et al., 2017). Similar to Zn 
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aerosols, Cd aerosols are isotopically heavier in the Atlantic and lighter in the Pacific (Little et al. and 

others; Section 4.5). This difference is most likely due to dominant anthropogenic supply of Cd in the 

Pacific from large anthropogenic hotspots on the coasts of East Asia and the west coast of North America 

compared to the tropical Atlantic where the large Saharan Dust plumes dominate (Kandler and Scheuvens, 

2019; Ginoux et al., 2012).  

Unlike for surface δ56Fe and δ66Zn (Section 4.2 and 4.5), Cd aerosols may potentially affect surface 

water dissolved δ114Cd in the North Pacific, principally because surface dissolved Cd concentrations (top 

50 m) are vanishingly low in the gyres of the region (Fig. A8). For northern deployments, dissolved Cd 

concentrations from the top 50m are 1-424 pmol kg-1 with δ114Cd of +0.7 to +1.2‰ (Sieber et al., in review), 

indicative of the dominance of biological uptake driving surface Cd isotope compositions (Sieber et al., in 

review). At southern deployments, however, dissolved Cd is even lower (0.4 to 10 pmol kg-1), and δ114Cd 

range from -0.1 to +0.8‰ (Sieber et al., in review), suggesting a possible impact of Cd aerosol to these 

locations. Previously, George et al. (2019) and Sieber et al. (2019) suggested that the addition of 

anthropogenic Cd may be causing lower than expected δ114Cd in Cd-depleted surface waters in the 

Southwest Pacific, and a similar effect can be invoked here; for GP15. Sieber et al. (in review) argued that 

surface waters in gyres along the transect deviate from an open system model and have lower than expected 

δ114Cd. As soluble δ114Cd aerosols are dominated by anthropogenic Cd with values ranging from -1.91 to -

0.07‰, the addition of even a small amount of anthropogenic Cd aerosols could explain the lower-than-

expected δ114Cd observed in surface waters in the North Pacific (Sieber et al., in review). The apparent lack 

of strong seasonality in aerosol Cd concentrations could mean that a consistent source of light, 

anthropogenic Cd helps set surface δ114Cd in the North Pacific gyres. 
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Figure 20. North Pacific Size-fractionated Aerosol δ56Fe Compilation (GP15 and Kurisu et al. (2021)). 

Comparison of A) coarse size fraction δ56Fe from GP15 (>3.0 μm) and Kurisu et al. (2021) (>2.5 μm), B) fine size 

fraction δ56Fe from GP15 (<3.0 μm) and Kurisu et al. (2021) (<2.5 μm) and C)) total δ56Fe from GP15 and Kurisu 

et al. (2021.  

 

A 
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Figure 21. GP15 Aerosol Observation and CAM6-QFED Deposition Model Predicted Comparison. A) bulk and 

B) soluble concentrations. 
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Figure 22. Comparisons of Bulk δ56Fe from GP15 Aerosols and CAM6-QFEDB Output Scenarios. A) QFED-B1 B) QFED-B2 C) QFED-B3 D) QFED-B4. 
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Figure 23. Optimal Bulk and Soluble δ56Fe Endmember QFED and GP15 Comparison. A) QFED-B4 and B) QFED-SA. 
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Figure 24. Comparisons of Soluble δ56Fe from GP15 Aerosols and CAM6-QFEDS Output Scenarios. A) QFED-S1 B) QFED-S2 C) QFED-S3 D) QFED-S4. 
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Figure 25. GP15 Cd Enrichment Factors. Note the log scale. 
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Table 8. Northern Bulk Deployment Two-Component Mixing. Proportion of each source (dust and anthropogenic 

activity) to bulk GP15 deployments based on endmembers from Conway et al. (2019), Beard et al. (2003), Gong et 

al., (2016). Endmembers: Natural (+0.09‰) and Anthropogenic (-1.6 and -4.3‰).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deployment % Natural Fe % Anthropogenic Fe 

5 93-97 3-7 

7 97-99 1-3 

9 98-99 1-2 

11 99-99.5 0.5-1 
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Table 9. Northern Soluble Deployment Two-Component Mixing. Proportion of each source (dust and 

anthropogenic activity) to soluble GP15 deployments based on endmembers from Beard et al. (2003), Gong et al., 

(2016) Conway et al. (2019), and Kurisu et al. (2021). Endmembers: Natural (+0.09‰) and Anthropogenic (-1.6 and 

-4.3‰). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deployment % Natural Fe % Anthropogenic Fe 

5 68-88 12-32 

7 59-84 16-41 

9 63-86 14-37 

11 19-69 31-81 
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Table 10. QFED Simulation Bulk Endmembers. QFED-B1 endmembers derived from Conway et al., (2019). 

QFED-B2 endmembers derived from Conway et al. (2019) and Kurisu and Takahashi (2019). QFED-B3 endmembers 

derived from Conway et al. (2019) and Kurisu et al. (2016). QFED-B4 endmembers derived from Conway et al., 

(2019), Kurisu et al. (2016), and Kurisu and Takahashi (2019).  

δ56Fe Endmembers QFED-B1 QFED-B2 QFED-B3 QFED-B4 QFED-B5 

Dust +0.09‰ +0.09‰ +0.09‰ +0.09‰ +0.09‰ 

Fire -1.60‰ +0.70‰ -1.60‰ +0.70‰ +2.00‰ 

Anthropogenic -1.60‰ -1.60‰ -1.60‰ -1.60‰ -1.60‰ 

Shipping -1.60‰ -1.60‰ +0.35‰ +0.35‰ +2.50‰ 
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Table 11. QFED Simulation Soluble Endmembers. QFED-1 endmembers derived from Conway et al., (2019). 

QFED-B2 endmembers derived from Conway et al. (2019) and Kurisu and Takahashi (2019). QFED-B3 endmembers 

derived from Conway et al. (2019) and Kurisu et al. (2016). QFED-B4 endmembers derived from Conway et al., 

(2019), Kurisu et al. (2016), and Kurisu and Takahashi (2019).  

δ56Fe Endmembers QFED-S1 QFED-S2 QFED-S3 QFED-S4 QFED-SA 

Dust +0.09‰ +0.09‰ +0.09‰ +0.09‰ +0.09‰ 

Fire -1.60‰ +0.70‰ +0.70‰ -1.60‰ +0.70‰ 

Anthropogenic -1.60‰ -1.60‰ -1.60‰ -1.60‰ -4.30‰ 

Shipping -1.60‰ +0.35‰ -1.60‰ +0.35‰ +0.35‰ 
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Table 12. QFED-1, 2, 3, and 4 Sum of the Squares of Misfits (SSM). 

Simulation Bulk SSM Soluble SSM 

QFED-1 3.9 7.5 

QFED-2 1.6 2.5 

QFED-3 2.9 2.9 

QFED-4 0.9 4.5 

QFED-5/A 0.2 1.1 
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CHAPTER FIVE: 

CONCLUSIONS AND FUTURE WORK 

 

5.2 Conclusions 

GP15 aerosol trace metals are sourced from a mixture of natural dust and anthropogenic aerosols 

from East Asia and natural dust, wildfire aerosols, and anthropogenic aerosols from the coast of North 

America, with Asian dust dominating the northern deployments and a mix of sources dominating the 

southern deployments (Fig. 26). 

Fe. Northern and southern aerosol deployments display stark contrasts between bulk and size-

fractionated δ56Fe as well as other parameters (i.e., concentrations, solubility, and enrichment factors) due 

the different and distinct mix of sources supplying Fe to them. While northern deployments bulk δ56Fe are 

crustal, an isotopically light fine fraction and elevated V and Ni EFs indicate the influence of anthropogenic 

activities on Asian dust. In contrast, isotopically heavy bulk δ56Fe of the southern deployments paired with 

the EFs of soil (Mn and Al) and biomass (Zn and Ni) tracers indicate that natural, wildfire, and 

anthropogenic Fe from North America are sources of Fe to the bulk. However, both northern and southern 

soluble δ56Fe are similar and significantly lighter than crustal Fe revealing that anthropogenic Fe is a 

significant component of soluble Fe throughout North Pacific aerosols. Indeed, a two-component mixing 

model for northern deployments shows that up to 81% of soluble Fe could is anthropogenic but less than 

7% of bulk Fe. However, a two-component model is unable to capture southern deployments as they receive 

Fe from at least three sources. Furthermore, refining the CAM6-QFED wildfire and shipping δ56Fe 

endmembers verifies the heavy sources are wildfire and shipping Fe to the North Pacific. Lastly, the 

influence of aerosol Fe on surface waters may be evident at the corresponding northern 

deployments/stations where soluble aerosols are isotopically light while surface waters are the lightest of 
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the transect. In general aerosol δ56Fe are not simply reflected in the dissolved phase in seawater, precluding 

the use of this tracer for calculation of aerosol input directly. 

Zn. Like Fe, bulk and soluble δ66Zn also show a dichotomy between northern and southern 

deployment Zn sources: both bulk and soluble δ66Zn are light but generally become lighter southwards. 

While Zn at northern deployments is dominated by Asian dust (natural and anthropogenic), we suggest that 

southern deployments additionally contain dust, wildfire (soil, plant) and anthropogenic Zn from North 

America. The similarity between (and little variability within) the average isotopic composition of bulk and 

soluble GP15 aerosols (-0.11 ± 0.11‰ and --0.17 ± 0.15‰) suggests that we can establish a robust estimate 

of the isotopic signature of Zn to the North Pacific. However, as soluble aerosol Zn deposition is an order 

of magnitude less than soluble aerosol Fe, dissolved Zn in North Pacific surface waters are maintained at 

similar concentrations as Fe, and the impact of aerosol Zn is not observed in the surface of the North Pacific. 

While soluble aerosol Zn supply is deposited to the surface of the North Pacific, any dissolved δ66Zn 

signature is modified by surface processes and upwelling Zn so that aerosol δ66Zn is not discernible in the 

surface. 

Cd. Soluble δ114Cd are light throughout GP15 and Cd EFs are elevated but show no relationships 

with TM EFs. The light isotope compositions in combination with the absence of correlations with EFs are 

indicative of a consistent and dominant supply of anthropogenic Cd to North Pacific aerosols. While various 

TM EFs show distinctions between the northern and southern deployments as a result of different sources, 

Cd EFs are elevated along the entire transect. Cd concentrations from GP15 are similar to a previous Cd 

aerosol concentration study in the North Pacific during the high dust season and highlight the possibility of 

an anthropogenic Cd source to the North Pacific that is constant throughout the year and far more dominant 

than natural Cd.  

 

5.2 Future Work 

 Fe. While Fe sources can be attributed to the northern and southern deployments, the supply of 

additional and isotopically unconstrained sources from Alaska, such as glacial flour or volcanism, 
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complicates the interpretation of which sources are supplying Fe to the margin deployments and more 

generally to the wider near-shore region. Although model comparison with GP15 δ56Fe data shows the 

importance of heavy Fe from wildfire and shipping in the North Pacific, the bulk δ56Fe fit remains lighter 

than observations. This is a consequence of bulk anthropogenic Fe being overestimated in the model, and 

perhaps refining the model could further improve the fit. The model also predicts wildfire Fe to have 

solubilities from 11 to 73%, but recent work has found bulk and soluble wildfire Fe to have solubilities 

lower than that (Hamilton et al., 2019), and thus may not be as important in the soluble phase as for the 

bulk. As such, further work can be done to adjust solubility of wildfire-derived Fe and identify how this 

influences the fit between model and observations.  

Zn and Cd. While recent studies have investigated the range of δ56Fe of wildfires and the partitioning 

between soil and biomass, little to no work has been done to characterize δ66Zn from wildfires or the ratio 

of soil to biomass Zn. Having a constraint on wildfire δ66Zn along with relationships with EFs could 

potentially provide a good constraint to differentiate wildfire Zn from anthropogenic Zn. For Cd, while 

there are several studies identifying δ114Cd produced from various anthropogenic processes, work on 

atmospheric Cd aerosols remains very limited. However, based on GP15 data, δ114Cd can be used as a tracer 

of anthropogenic Cd in atmospheric aerosols, and therefore, further work can and should be done to 

constrain the range of anthropogenic Cd in atmospheric aerosols around the globe to advance this tracer. 
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Figure 26. Idealized Schematic of North Pacific Low-dust Season Aerosol Sources based on GP15. (map modified from 

https://www.freeworldmaps.net/ocean/pacific/, and general circulation derived from Martin et al., 2002).
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APPENDIX A: SUPPLEMENTAL FIGURES AND TABLES 

 

Figure A1. GEOTRACES Interfaces and Internal Cycling. GEOTRACES investigates the internal cycling of trace 

elements and their isotopes (TEIs) in the ocean (red boxes) and how TEIs are exchanged across various interfaces 

(blue boxes) (from Anderson et al., 2014). 
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Figure A2. Average northern and southern Enrichment Factors. Northern deployments are black bars and 

southern deployments are gray. EFs are from Marsay et al. 2022. 
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Figure A3. Northern Deployment HYSPLITs. Northern deployments are influenced by air masses that have either 

come from west or had been spinning over the open ocean. A) Deployment 5 B) Deployment 7 C) Deployment 9 and 

D) Deployment 11. 
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Figure A4. Southern Deployment HYSPLITs. Southern deployments are influenced by airmasses that have passed followed the North American coast or have 

come from the east. A) Deployment 13 B) Deployment 15 C) Deployment 17 and D) Deployment 19 E) Deployment 21 F) Deployment 23.
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Figure A5. Margin Deployment HYSPLITs. Margin deployments are characterized by airmasses that had come 

from the west from the direction of Alaska. A) Deployment 1 B) Deployment 3. 
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Figure A6. Bulk δ56Fe Comparison with Zn and Ni Enrichment Factors. Northern (black circles) and southern 

(red circles) GP15 bulk δ56Fe (‰) compared to A) Ni, B) Zn EFs. EFs are calculated using Eq. 2. 
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Figure A7. Bulk δ66Zn Comparison with Fe, V, and Mn EFs. Northern (black circles) and southern (red circles) 

deployment’s A) Fe EFs B) V EFs and C) Mn EFs compared to δ66Zn. The range of crustal δ66Zn is +0.27 to +0.34‰ 

(Little et al., 2014). EFs are calculated using Eq. 2. 
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Figure A8. GP15 surface water (top 150 m. A) δ56Fe B) δ66Zn C) δ114Cd. Reproduced from Sieber (pers. comm) 

and Sieber et al., (in review). 
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Table A1. Faraday Cup Configuration for Fe, Zn, and Cd using Thermo Neptune MC-ICPMS. Abundances are shown in brackets. Isobaric interferences 

shown below element/isotope. Major polyatomic interferences for Fe: ArO+, ArN, ArOH+; Zn: Ba2+, ArN2, ArSi+; and Cd: MoO+. 

Cones and intro 

system 

Faraday 

cup  
L4 L3 L2 L1 C H1 H2 H3 H4 

Fe (HR) 

Jet and X 

Apex Omega 

Isotope  
52Cr 

(83.8%) 
 

54Fe 

(5.85%) 

56Fe 

(91.8%) 

57Fe 

(2.12%) 

58Fe 

(0.28%) 

 
60Ni 

(26.2%) 

Isobaric 

Int. 
   

54Cr 

(2.37%) 

  
58Ni 

(68.1%) 
  

Zn (LR)  

H and H 

Apex Omega 

Isotope   

62Ni 

(3.63%) 

63Cu 

(69.2%) 

64Zn 

(49.1%) 

65Cu  

(30.1%) 

66Zn 

(27.7%) 

67Zn 

(4.0%) 

68Zn 

(18.5%) 

Isobaric 

Int. 

    

64Ni 
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Cd (LR) 
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Apex Q 

Isotope  
111Cd 
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112Cd 

(24.1%) 

113Cd 
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114Cd 

(28.7%) 

115In 

(95.7%) 

116Cd 

(7.49%) 

117Sn 

(7.68%) 

118Sn 

(24.2%) 
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Int. 
  

112Sn 

(0.97%) 

113In 

(4.29%) 

114Sn 

(0.66%) 

115Sn 

(0.34%) 

116Sn 

(14.5%) 
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Table A2. GP15 Aerosol Deployment Locations. 

Deployment 

Type 

Aerosol 

Deployment 

Start 

Date 

Latitude 

(°N) 
Longitude 

(°W) 
End 

Date 

Latitude 

(°N) 
Longitude 

(°W) 

Air 

Volume 

(m3) 

Margin 1 9/21/18 50.01 129.04 9/21/18 52.10 125.29 120.9 

 3 9/28/18 55.08 155.72 9/30/18 54.66 155.17 170.1 

Northern 5 10/2/18 52.00 152.00 10/4/18 47.00 152.00 280.8 

 7 10/7/18 44.50 152.00 10/9/18 42.00 152.00 189.0 

 9 10/10/18 37.00 152.00 10/12/18 34.50 152.00 229.1 

 11 10/15/18 32.00 152.00 10/17/18 37.00 152.00 256.9 

Southern 13 10/25/18 18.75 154.90 10/28/18 17.50 152.00 178.0 

 15 10/30/18 11.00 152.00 11/3/18 6.59 152.00 244.4 

 17 11/5/18 4.99 152.00 11/8/18 1.91 152.00 270.4 

 19 11/10/18 -1.12 152.00 11/13/18 -5.00 152.00 238.1 

 21 11/15/18 -10.50 152.00 11/19/18 -15.00 152.00 264.4 

 23 11/22/18 -20.00 152.00 11/23/18 -19.20 151.24 153.1 
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APPENDIX B: PERMISSIONS 

 
Copyright information for Figure 4 modified from “Long-range transport of Asian outflow to the 

equatorial Pacific” by Martin et al. (2002). Journal of Geophysical Research: Atmospheres, 107(D2), 

PEM-5.  
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Copyright information for Figure 5 modified from “Asian Dust: Seasonal Transport to the Hawaiian 

Islands” by Parrington et al. (1983). Science, 220 (4593): 195-197. 
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Copyright information for Figure 6 modified from “Conway, Tim M., et al. "Tracing and constraining 

anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes.” by Conway et al. 

(2019). Nature Communications, 10(1), 1-10. 
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Copyright information for Figure 7 modified from “Bulk Aerosol Trace Element Concentrations and 

Deposition Fluxes During the U.S. GEOTRACES GP15 Pacific Meridional Transect.” by Marsay et al. 

(2022). Global Biogeochemical Cycles, 36(2). 
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Copyright information for Figure A1 modified from “GEOTRACES: changing the way we explore ocean 

chemistry.” by Andersen et al. (2014). Oceanography 27.1, 50-61. 
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