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In this paper, we study the diversity of interaction solutions of a shallow water wave equation, the generalized Hirota–Satsuma–Ito
(gHSI) equation. Using the Hirota direct method, we establish a general theory for the diversity of interaction solutions, which can
be applied to generate many important solutions, such as lumps and lump-soliton solutions. �is is an interesting feature of this
research. In addition, we prove this newmodel is integrable in Painlevé sense. Finally, the diversity of interactive wave solutions of
the gHSI is graphically displayed by selecting speci�c parameters. All the obtained results can be applied to the research of
�uid dynamics.

1. Introduction

�e Hirota method played an important role in solving
partial di�erential equations [1]. And, we can solve the
corresponding Hirota bilinear equations using many e�-
cient techniques, for example, applying the Wronskian
technique [2, 3], we can get positons and complexitons [4].
And, if we take a long wave limit, the lumps, which are
locally rationalized along all spacial directions, can be ob-
tained [5–8]. Since the interaction solutions among di�erent
classes of solutions can describe more diverse nonlinear
phenomena [3], studying interaction solutions is a hot topic
for the researchers of mathematical physics [9–16]. Partic-
ularly, the interactions between the lumps and kinks [17, 18].

A lot of useful references can be found in [19–27]. Reference
[1] presented a shallow water wave equation as follows:

ut � uxxt + 3uut − 3uxvt − ux,

vx � − u,
(1)

of which the Hirota bilinear form is

DtD
3
x − DtDx − D2

x( )f · f � 0, (2)

via the transformation u � 2(lnf)xx. �is kind of trans-
formations is an important part of Bell polynomial theory of
partial di�erential equations [21].

In this study, we will investigate the diversity of a (2 + 1)-
dimensional generalized HSI equation that reads
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gHSI ≔ utt + uxxxt + 6uxut + 3uuxt − 3uxxvt

+ βuxt + uyt + αuxx � 0,

vx � − u,

(3)

which has the following Hirota bilinear form:

D2
t + DtD

3
x + βDtDx + DtDy + αD2

x􏼐 􏼑f · f � 0, (4)

through the transformation u � 2(lnf)xx. 2e parameters
α, β≠ 0 are all real constant and Dx, Dt, andDy are Hirota
derivatives [1] which are

Dm
x Dn

yDk
t f · g􏼐 􏼑(x, y, t) �

z

zx
−

z

zx′
􏼠 􏼡

m
z

zy
−

z

zy′
􏼠 􏼡

n
z

zt
−

z

zt′
􏼠 􏼡

k􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x�x′,y�y′ ,t�t′
, (5)

with integers m, n, k≥ 0.
We will establish the general theory of interaction

solutions of equation (3) so that we can build a general
method to find the interaction solutions between lumps
and other types of solutions of the (2 + 1)-dimensional
gHSI equation by using the Hirota direct approach. Lump
solutions and interaction solutions are presented to show
diverse nonlinear phenomena. In Section 2, we derive the
general approach for finding lumps and interaction so-
lutions. Some applications are presented in Section 3 to
illustrate obtained method in Section 2. In the meantime,
the diversity of the interaction solutions of the gHSI
equation is illustrated vividly by some graphs. In Section 4,
the gHSI equation (3) showed that it is integrable in
Painlevé sense. Finally, some remarks will be given in the
conclusion part.

2. Diversity of Interaction Solutions

2ere are many ways to find solutions, for example, the
symmetry method, the Hirota direct method, and the
generalized bilinear method [21–26]. In this section, we will
apply the Hirota direct method to establish the theory for the
diversity of interaction solutions of the (2 + 1)-dimensional
gHSI equation (3). Hence, the combined solutions of the HSI
equation can be found efficiently.

Assume that the (2 + 1)-dimensional general bilinear
equation be as follows:

P Dx, Dy, Dt􏼐 􏼑(f · f) � 0, (6)

where P(x, y, t) is a polynomial of even degree and satisfies
P(0, 0, 0) � 0. Let

f � G + 􏽘
n

i�1
die

ηi( 􏼁 ,

ηi � aix + biy + cit,

(7)

where G � G(x, y, t) is a function of x, y, and t and di′s are
all real constant to be determined. Moreover, we assume

(1) ηi, ηi + ηj ≠ 0 and ηi, ηj+k are all distinct for all
i, j, k � 1, . . . , n.

(2) G is a positive polynomial and di ≥ 0 and
H � 􏽐n

i�1(die
ηi ) with ηi � aix + biy + cit. According

to the Hirota derivatives, we obtain

P Dx, Dy, Dt􏼐 􏼑(f · f) � P Dx, Dy, Dt􏼐 􏼑(G · G)

+ P Dx, Dy, Dt􏼐 􏼑(G · H)

+ P Dx, Dy, Dt􏼐 􏼑(H · H),

P Dx, Dy, Dt􏼐 􏼑 eηi · eηi( 􏼁 � 0,

P Dx, Dy, Dt􏼐 􏼑 eηj · eηk( 􏼁 � P aj − ak, bj − bk, cj − ck􏼐 􏼑eηj+ηk ,

(8)

which implies that (8) can be rewritten as follows:

P Dx, Dy, Dt􏼐 􏼑(f · f) � P Dx, Dy, Dt􏼐 􏼑(G · G)

+ 2􏽘
n

i�1
diP Dx, Dy, Dt􏼐 􏼑 G · eηi( 􏼁􏼐 􏼑

+ 2 􏽘
1≤j<k<n

djdkP Dx, Dy, Dt􏼐 􏼑 eηj+ηk( 􏼁􏼐 􏼑.

(9)

Hence, if

P Dx, Dy, Dt􏼐 􏼑 G · eηi( 􏼁 � 0, i � 1, . . . , n,

P Dx, Dy, Dt􏼐 􏼑 eηj · eηk( 􏼁 � 0,
(10)

where i, j, k � 1, . . . , n and j≠ k, then f is a solution of
equation (6) if and only ifG is also a solution of equation (6).
2erefore, using the transformations u � 2(lnf)x or
u � 2(lnf)xx, we can get the interact solutions: lump-sol-
iion solutions of the gHSI equation (3).

Remark. (1) If we further let

f � g2 + h2 + d + kel, (11)

where

g � a1x + a2y + a3t + a4,

h � b1x + b2y + b3t + b4,

l � c1x + c2y + c3t,

(12)

and d, k≥ 0, then f is a solution of equation (6) if and
only if g2 + h2 + d is also a solution of equation (6)
under the condition
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P Dx, Dy, Dt􏼐 􏼑 g2 + h2 + d􏼐 􏼑 · el􏼐 􏼑 � 0. (13)

(2) If G � g2 + h2 + d is a solution of equation (6), then
we have

(i) u � 2(lnG)x or u � 2(lnG)xx is a lump solution
(ii) Moreover, if k> 0, then u � 2(lnf)x or

u � 2(lnf)xx is a lump-soliton solution if and
only if

P Dx, Dy, Dt􏼐 􏼑 G · el􏼐 􏼑 � 0. (14)

3. Application to ShallowWaterWave Equation

3.1. Lump Solution of the gHSI Equation. Firstly, we consider
the lump solutions of equation (4). We suppose that

G � g2 + h2 + d � a1x + a2y + a3t + a4( 􏼁2

+ b1x + b2y + b3t + b4( 􏼁2 + d,
(15)

where g and h are linearly independent and d> 0. 2e
parameters ai′s are obtained via the direct computation as
follows:

d � −
3a1 a2

1 + b21􏼐 􏼑
2
a3

b21 a2
1 − b21􏼐 􏼑α

,

a2 �
− αa2

1 + αb21 − βa1a3 − a2
3

a3
,

b2 �
− b1 βa2

1 − βb21 + 2a1a3􏼐 􏼑
a2
1 − b21

,

b3 �
2a3b1a1

a2
1 − b21

,

(16)

where α, β≠ 0. 2en, we can get the lump solution of
equation (3) as

u �
4 a2

1 + b21􏼐 􏼑f − 2 a1g + b1h( 􏼁 2􏼐 􏼑
f2 , (17)

with αa1a3 < 0 and a2
1 − b21 ≠ 0. It is observed that, at any

given time t, the extremum points can be obtained by direct
computation, from which the traveling speeds, along x-di-
rection and y-direction, and the changes of waveform can be
obtained. 2e amplitude of u is also attained. We also noted
that the lump wave is analytic in the XY-plane if and only if
d> 0. Moreover, it is easy to find the aforementioned lump
solution u⟶ 0 if and only if the sum of squares
g2 + h2⟶∞, or equivalently, x2 + y2⟶∞ at any given
time.2e evolution profile, density plot, and contour plots of
solution (15) with specific parameters are shown in Figure 1,
from which we can see that the waveforms of (15) change
only a little bit at different time.

3.2. Interaction Solutions of the gHSI Equation. In this part,
we will find some lump-soliton solutions of the gHSI
equation (3). Assume f � g + h + d + kel with g, h, d, and k
defined as in equation (11). By the logarithm transformation
u � 2(lnf)xx, we get the lump-soliton solution as

u � 2
fxxf − f2

x

f2 . (18)

By theories in Section 2, we can find the solution of all
the parameters as follows:

a1 � −
3b3c

2
1

2α
,

a2 � −
− 9αb1c

4
1 − 9βb3c

4
1 + 4α2b1

6αc21
,

a3 �
2αb1
3c21

,

c3 � −
2α
3c1

,

b2 � −
− 9b3c

4
1 + 4αβb1 + 4αb3

4α
,

d � 0,

b4 �
3a4b3c

2
1

2αb1
,

c2 �
3c41 − 6βc21 + 4α

6c1
,

(19)

which yields the following functions:

g � −
3b3c

2
1

2α
x −

− 9αb1c
4
1 − 9βb3c

4
1 + 4α2b1

6αc21
y +

2αb1
3c21

t + a4,

h � b1x −
− 9b3c

4
1 + 4αβb1 + 4αb3

4α
y + b3t + b4,

kel � c1x +
3c41 − 6βc21 + 4α

6c1
y −

2α
3c1

t.

(20)

2erefore, we can get the function f � g2 + h2 + d + kel

which implies that the lump-soliton solution of the gHSI
equation is also obtained by equation (20). We can also get
the extremum points by direct computation in Maple, which
play an important role in studying the wave equations, for
example, the velocities, along x-direction and y-direction,
the amplitude of u, and the changes of waveform can be
obtained via the extremum points. We also found that the
lump wave is analytic in the XY-plane if and only if c1 ≠ 0
and b1 ≠ 0. 2e aforementioned lump-soliton solution is an
interactive solution; hence, during the collision, they interact
like fusion and fission phenomenon in physics. At first, the
energy of the lump wave is stronger than the stripe wave
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described by the exponential function, but finally the lump
wave are gradually swallowed by the stripe soliton, which
implies that its energy is also transferred to the stripe soliton
completely. 2ey become one soliton. 2e evolution profiles
and contour plots of solution (20) with specific parameters
are shown in Figure 2, from which we observed that the
intersect solution (20) of the gHSI equation change greatly at
different time.

4. Painlevé Analysis

It is well known that Painlevé analysis is a very powerful tool
for finding the integrable model from given nonlinear
equations [27]. Using the WTC-Kruskal approach, we firstly
analyze the leading order to the negative integer α, then
determine the resonant points, and finally obtain the

compatibility conditions, which must be completely satisfied
for all the positive resonant points. Baldwin et al. presented
two packages in Mathematica based on the WTC approach
and Kruskal’s simplification.

Applying the aforementioned packages in Mathematica
to test the integrability of the (2 + 1)-dimensional gHSI
equation (3), we find five resonant points j � − 1, 1, 4, 5, 6. In
all the cases, equation (3) does pass the Painlevé test. It is
noted that the presence of soliton solutions can indicate the
integrability of the tested equation. But, this is not enough
since it should be supported by the Painlevé test, or the Lax
pair of the examined equation or other approaches. In this
study, we formally obtained lump solutions and lump-sol-
iton solutions of the gHSI equation (3) and showed that it
passed the Painlevé test, which implies that it is an integrable
equation in Painlevé sense.
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Figure 1: 3D plots, density plots, and contour plots of lump wave solution (19) with the specific parameters
a1 � 2, a3 � 1, a4 � 1, b1 � 1, b3 � 1, b4 � 1, α � − 1, and β � 2. (a), (d), and (g) are for t � − 2; (b), (e), and (h) are for t � 0; (c), (f ), and (i) are
for t � 6.
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5. Conclusions

In this research, we introduced a shallow water wave
equation, the gHSI equation (3), and established the theory
of its diversity of interactions, the lump solution, and lump-
soliton solutions. All the computations are performed in
Maple using the Hirota bilinear equations. Moreover, we
proved that this gHSI equation (3) is Painlevé integrable.
During the study, we found that the waveforms of (20) are
completely different if we select different values of α and β.
For example, if we choose α � − 2, the waveform has a
unique peak at the maximum point.

2e research of the diversity of interaction actions is an
interesting and hot topic in mathematical physics since we
can get a lot of useful solutions for the physical research.
Hence, we will continue studying other interaction solu-
tions, such as the interactions between the periodic function

solutions and the hyperbolic function solutions. In addition,
we hope that we can find whether equation (3) is integrable
in Liouville sense or not.

In the meantime, this introduced shallow water equation
has some applications in physics research. For example, it
can be used to describe the flow under a pressure surface
(sometimes a free surface) in a fluid, which implies that it can
be applied to the research on the fluid dynamics.

Data Availability

2e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 2: 3D plots, density plots, and contour plots of lump wave solution (20) with the specific parameters
k � 1, a4 � 1, b1 � 1, b3 � 1, b4 � 1, c[1] � 1, α � 1, and β � 2. (a), (d), and (g) are for t � − 5; (b), (e), and (h) are for t � 0; (c), (f ), and (i) are
for t � 6.
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