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We present a new numerical technique to discover a new solution of Singular Nonlinear Volterra Integral Equations (SNVIE). The
considered technique utilizes the Hybrid Orthonormal Bernstein and Block-Pulse functions wavelet method (HOBW) to solve the
weakly SNVIE including Abel’s equations. We acquire theHOBW implementationmatrix of the integration to derive the procedure
of solving these kind integral equations. The explained technique is delineated with two numerical cases to demonstrate the benefit
of the technique used by us. At last, the exchange uncovers the way that the strategy utilized here is basic in usage.

1. Introduction

In the current literature, there are many different appli-
cations of SNVIE in various areas, such as mathematical
physics, electrochemistry, scattering theory, heat conduction,
semiconductors, population dynamics, and fluid flow [1,
2]. Numerical strategies for the SNVIE are spline colloca-
tion methods [3], Newton–Cotes methods [4], extrapolation
algorithm [5], and Hermite-collocation method [6]. The
most popular methods for talking about the such equations
are introduced, such as homotopy asymptotic method [7],
Nyström interpolant method [8], Mesh method [9], Tau
method [10], Laplace transform [11], orthonormal Bernstein,
and block-pulse functions [12–17].

Wavelet theory is a moderately new and considered
as a rising territory in the field of applied science and
engineering. Wavelets allow the accurate representation of a
lot of functions. The wavelet technique is a new numerical
technique utilized for dissolving the fractional equations.

SNVIE has numerous applications in different zones, for
example, semiconductors’ mathematical chemistry, chemical
reactions, physics, scattering theory, electrochemistry, seis-
mology, metallurgy, fluid flow, and population dynamics [2,
18–20].

In 1823, Niels Henrik Abel derived the equation𝑓 (𝑥) + ∫𝑥
0

𝑢𝑡(𝑥 − 𝑡)0.5 𝑑𝑡 = 0, (1)

where 𝑢(𝑡) is an unknown function and 𝑓(𝑥) is a given
function. This equation is an example of a nonhomogeneous
Volterra equation of first kind with weak singularity. Abel
obtained this equation while studying themotion of a particle
on a smooth curve lying on a vertical plane. The physical
depiction of this condition is given in [21] as pursues. Abel
thought about the issue in traditional mechanics, which is
that of deciding the time a molecule brings to slide openly
down a smooth settled bend in a vertical xy-plane (in
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Figure 1), from any settled point (𝑋, 𝑌) on the bend to its
absolute bottom (the starting point 0). If𝑚means the mass of
the molecule and 𝑥𝑝(𝑦) signifies the condition of the smooth
bend where 𝑥 is a differentiable function of 𝑦, at that point we
acquire the vitality protection condition as12𝑚V2 + 𝑚𝑔𝑦 = 𝑚𝑔𝑌, (2)

where V is the speed of the molecule at the position (𝑥, 𝑦) at
time 𝑡, if the molecule tumbles from rest at time 𝑡 = 0 from
the point (𝑥, 𝑦), and 𝑔 represents acceleration due to gravity.
The connection (2) can be expressed as𝑑𝑠𝑑𝑡 = − [2𝑔(𝑌 − 𝑦]1/2 (3)

by utilizing the arc-length 𝑠(𝑡), estimated from the starting
point to the point(𝑥, 𝑦), where a less sign has been utilized in
the square root since 𝑠 diminishes with time 𝑡 amid the fall of
the molecule. Using the formula𝑑𝑠𝑑𝑦 = [1 + 𝑝󸀠2 (𝑦)]0.5 (4)

we can compose𝑑𝑦𝑑𝑡 = 𝑑𝑦𝑑𝑠 𝑑𝑠𝑑𝑡 = −[2𝑔 (𝑌 − 𝑦)1 + 𝑝󸀠2 (𝑦)]0.5 (5)

By integrating both sides of (5), we obtain∫0
𝑌
[ 1 + 𝑝󸀠2 (𝑦)2𝑔 (𝑌 − 𝑦)0.5]𝑑𝑦 = −∫𝑇0 𝑑𝑦 = −𝑇, (6)

where 𝑇 is the total time of fall of the particle, from the point(𝑥, 𝑦) to the origin (0, 0).Therefore, we have∫𝑌
0

𝑢 (𝑦)(𝑌 − 𝑦)0.5 𝑑𝑦 = 𝑇 = 𝑓 (𝑌) ,
𝑢 (𝑦) = [1 + 𝑝󸀠2 (𝑦)2𝑔 ]0.5 ,0 < 𝑌 < 𝑎

(7)

where 𝑓(0) = 0. In this way, we can find that the time
of descent of the particle, T, can be resolved totally by
utilizing the recipe (7), if the state of the curve 𝑥 𝑝(𝑦), and
consequently the function 𝑢(𝑦) is known. On the off chance
that we consider, on the other hand, the issue of assurance
of the state of the bend, when the time of fall 𝑇 is known,
which is the historic Abel’s problem, then the relation (7) is
an integral equation for the unknown function 𝑢(𝑦), which is
known as Abel’s integral equation.

Themost general form of Abel’s integral equation is given
by∫𝑥
0

𝑢 (𝑡)[ℎ (𝑥) − ℎ (𝑡)]𝛼 𝑑𝑡 = 𝑓 (𝑥) ,𝑥 > 0, 𝑓 (0) = 0, 0 < 𝛼 < 1, (8)
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Figure 1: Abel’s problem.

where ℎ(𝑥) is a monotonically expanding function. We have
picked it as ℎ(𝑥). Also, a general form of SVIE of second kind
is given as𝑢 (𝑥) = 𝑓 (𝑥) + 𝜆∫𝑥

0

𝑢 (𝑡)(𝑥 − 𝑡)𝛼 𝑑𝑡, 0 < 𝛼 < 1, (9)

where 𝑓(𝑥) is in 𝐿2(𝑅) on the interim 𝑡 ≤ 𝑇, 0 ≤ 𝑥 and 𝜆 is a
steady parameter.

We utilize the HOBW method for determining the
approximation solution of SNVIE of the shape given by𝑦 (𝑥) = 𝑓 (𝑥) + 𝜆∫𝑥

𝑎

𝑘 (𝑥, 𝑡) 𝐹 (𝑦 (𝑡))(𝑥 − 𝑡)1−𝛼 𝑑𝑡, 0 ≤ 𝑥 ≤ 1. (10)

where 𝑓(𝑥), 𝑘(𝑥, 𝑡) are continuous functions, while 0 < 𝛼 <1 and 𝑦(𝑥) is the unknown function to be determined.
This paper is organized as follows. Initially the basic

formulation of the HOBW method and some properties of
HOBW are defined in Section 2. In Section 3, we determine
the HOBW implementation matrix of integration. While in
Section 4, we summarize the process of dissolving weakly
singular-Volterra integral equations based on the HOBW
implementation matrix method. In Section 5, we consider
two examples which demonstrate the validity of this method.
Finally, the concluding remarks are demonstrated.

2. The HOBW Method and Operational Matrix
of the Integration

2.1. Wavelets and the HOBW Method. Wavelets constitute a
group of functions constructed from dilation and translation
of a single function 𝜓(𝑥) called the mother wavelet. In which
parameter of dilation 𝑎 and parameter of translation 𝑏 vary
continuously.𝜓𝑎,𝑏 (𝑡) = |𝑎|−1/2 𝜓(𝑡 − 𝑏𝑎 ) , 𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 0 (11)
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By letting 𝑎 and 𝑏 be discrete values such as 𝑎 = 𝑎0−𝑘, 𝑏 =𝑛𝑏0𝑎0−𝑘, 𝑎0 > 1, 𝑏0 > 0,
where 𝑛 and 𝑘 are positive integers, we attain the family

of discrete wavelets:𝜓𝑘,𝑛 (𝑡) = 󵄨󵄨󵄨󵄨𝑎0󵄨󵄨󵄨󵄨𝑘/2 𝜓 (𝑎0𝑘𝑡 − 𝑛𝑏0) , 𝑛, 𝑘 ∈ 𝑍+ (12)

Then we see that 𝜓𝑘,𝑛(𝑡) forms a wavelet basis for 𝐿2(𝑅). In
particular, when 𝑎0 = 2, 𝑏0 = 1, then 𝜓𝑘,𝑛(𝑡) forms an ortho-
normal basis. Here, 𝐻𝑂𝐵𝑊𝑖,𝑗(𝑡) = 𝐻𝑂𝐵𝑊(𝑘, 𝑖, 𝑗, 𝑡) involves
four arguments, 𝑖 = 1, . . . , 2𝑘−1, 𝑘 is to be any positive integer,𝑗 is the degree of the Bernstein polynomials, and 𝑡 is the
normalized time.𝐻𝑂𝐵𝑊𝑖,𝑗(𝑡) are defined on [0, 1) as [12, 13]

𝐻𝑂𝐵𝑊𝑖,𝑗 (𝑡) = {{{{{{{2
(𝑘−1)/2(𝑛𝑗) (2𝑘−1𝑥 − 𝑖 + 1)𝑗 (1 − (2𝑘−1𝑥 − 𝑖 + 1))𝑛−𝑗 𝑖 − 12𝑘−1 ≤ 𝑡 < 𝑖2𝑘−10 𝑜𝑡ℎ𝑒𝑟𝑒𝑤𝑖𝑠𝑒 (13)

where 𝑖 = 1, 2, . . . , 2𝑘−1, 𝑗 = 0, 1, . . . ,𝑀 − 1 and 𝑘 is a
positive integer. Thus, we attain our new basis as {HOBW1,0,
HOBW1,1, . . . ,HOBW2𝑘−1 ,𝑀−1} and any function is truncated
with them.

The𝐻𝑂𝐵𝑊detect orthonormal basis is given by(𝐻𝑂𝐵𝑊𝑖𝑗 (𝑥) ,𝐻𝑂𝐵𝑊𝑖/𝑗/ (𝑥)) = {{{1 (𝑖, 𝑗) = (𝑖/, 𝑗/)0 (𝑖, 𝑗) ̸= (𝑖/, 𝑗/) (14)

where (⋅, ⋅) is called the inner product in 𝐿2[0, 1).The HOBW
has compact support [(𝑖 − 1)/2𝑘−1, 𝑖/2𝑘−1], 𝑖 = 1, . . . , 2𝑘−1.
2.2. Function Approximation by Using the HOBW Functions.
Any function 𝑦(𝑡), which is integrable in [0, 1), is truncated
by using the HOBWmethod as follows:𝑦 (𝑡) = ∞∑

𝑖=1

∞∑
𝑗=0

𝑐𝑖𝑗𝐻𝑂𝐵𝑊𝑖𝑗 (𝑡) ,𝑖 = 1, 2, . . . ,∞, 𝑗 = 0, 1, 2, . . . ,∞, 𝑡 ∈ [0, 1) , (15)

where the HOBW coefficients 𝑐𝑖𝑗 can be calculated as given
below: 𝑐𝑖𝑗 = (𝑦 (𝑡) ,HOBW𝑖𝑗 (𝑡))(HOBW𝑖𝑗 (𝑡) ,HOBW𝑖𝑗 (𝑡)) (16)

We approximate 𝑦(𝑡) by a truncated series as follows:𝑦 (𝑡) = 2𝑘−1∑
𝑖=1

𝑀−1∑
𝑗=0

𝑐𝑖𝑗𝐻𝑂𝐵𝑊𝑖𝑗 (𝑡) = 𝐶𝑇HOBW (𝑡) (17)

where HOBW(𝑡) and 𝐶 are 2𝑘−1𝑀× 1 vectors given by

HOBW (𝑡) = [HOBW10,HOBW11, . . . ,HOBW1(𝑀−1),
HOBW20,HOBW21, . . . ,HOBW2(𝑀−1), . . . ,
HOBW2𝑘−10, . . . ,HOBW2𝑘−1(𝑀−1)]𝑇 . (18)

and𝐶 = [𝑐10, 𝑐11, . . . , 𝑐1(𝑀−1), 𝑐20, 𝑐21, . . . , 𝑐2(𝑀−1), . . . , 𝑐2𝑘−10, . . . ,𝑐2𝑘−1(𝑀−1)]𝑇 . (19)

We define the HOBWmatrix Φ2𝑘−1𝑀×2𝑘−1𝑀 as follows:Φ2𝑘−1𝑀×2𝑘−1𝑀 = [HOBW( 12 ⋅ 2𝑘−1𝑀) ,
HOBW( 32 ⋅ 2𝑘−1𝑀) , . . . ,
HOBW(((2 ⋅ 2𝑘−1𝑀) − 1)2 ⋅ 2𝑘−1𝑀 )] ,

(20)

The series in (17) contains an infinite number of terms for a
smooth function 𝑦(𝑡). Therefore, we have𝐶𝑇 ⟨HOBW (𝑡) ,HOBW (𝑡)⟩ = ⟨𝑦 (𝑡) ,HOBW (𝑡)⟩ (21)

so that 𝐶 = 𝐷−1 ⟨𝑦 (𝑡) ,HOBW (𝑡)⟩ , (22)

where 𝐷 = ⟨HOBW (𝑡) ,HOBW (𝑡)⟩ , (23)= ∫1
0
HOBW (𝑡) .HOBW𝑇 (𝑡) 𝑑𝑡 (24)

=(𝐷1 0 ⋅ ⋅ ⋅ 00 𝐷2 ⋅ ⋅ ⋅ 0... d 00 0 ⋅ ⋅ ⋅ 𝐷𝑀) (25)

Then, by using (14), 𝐷𝑖 (𝑖 = 1, 2, . . . , 2𝑘−1) is defined as
follows:(𝐷𝑛)𝑖+1,𝑗+1 = ∫𝑖/2𝑘−1

(𝑖−1)/2𝑘−1
HOBW𝑖,𝑛 (2𝑘−1𝑡 − 𝑖 + 1)⋅HOBW𝑗,𝑛 (2𝑘−1𝑡 − 𝑖 + 1) 𝑑𝑡 (26)

(𝐷𝑛)𝑖+1,𝑗+1 = 12𝑘−1 ∫10 HOBW𝑖,𝑛 (𝑡)HOBW𝑗,𝑛 (𝑡) 𝑑𝑡 (27)

(𝐷𝑛)𝑖+1,𝑗+1 = ( 𝑛𝑖 ) ( 𝑛𝑗 )2𝑘−1 (2𝑛 + 1) ( 2𝑛𝑖+𝑗 ) (28)
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We can also approximate the function 𝑘(𝑥, 𝑡) ∈ 𝐿[0, 1] as
follows:

𝑘 (𝑥, 𝑡) ≈ HOBW𝑇 (𝑥)𝐾HOBW (𝑡) , (29)

where𝐾 is an 2𝑘−1𝑀×2𝑘−1𝑀matrix that we attain as follows:

𝐾 = 𝐷−1 ⟨HOBW (𝑥) ⟨𝑘 (𝑥, 𝑡) ,HOBW (𝑡)⟩⟩𝐷−1 (30)

2.3. Multiplication of the Hybrid Functions. We can evaluate
HOBW(2𝑘−1𝑀×1)(𝑡)HOBW𝑇(2𝑘−1𝑀×1)(𝑡) for VIE of the second
kind via the HOBW functions as detailed below.

Let the product of HOBW(2𝑘−1𝑀×1)(𝑡) and
HOBW𝑇(2𝑘−1𝑀×1)(𝑡) be given by

HOBW(2𝑘−1𝑀×1) (𝑡)HOBW𝑇(2𝑘−1𝑀×1) (𝑡)≅ 𝑀(2𝑘−1𝑀×2𝑘−1𝑀) (𝑡) (31)

where

𝑀(2𝑘−1𝑀×2𝑘−1𝑀) (𝑡)
= [[[[[[[[[[

HOBW10 (𝑡)HOBW10 (𝑡) HOBW10 (𝑡)HOBW20 (𝑡) ⋅ ⋅ ⋅ HOBW10 (𝑡)HOBW2𝑘−1 ,𝑀 (𝑡)
HOBW20 (𝑡)HOBW10 (𝑡) HOBW20 (𝑡)HOBW20 (𝑡) ⋅ ⋅ ⋅ HOBW20 (𝑡)HOBW2𝑘−1 ,𝑀 (𝑡)
HOBW30 (𝑡)HOBW10 (𝑡) HOBW30 (𝑡)HOBW20 (𝑡) ⋅ ⋅ ⋅ HOBW30 (𝑡)HOBW2𝑘−1 ,𝑀 (𝑡)... ... ⋅ ⋅ ⋅ ...

HOBW2𝑘−1 ,𝑀 (𝑡)HOBW10 (𝑡) HOBW2𝑘−1 ,𝑀 (𝑡)HOBW20 (𝑡) ⋅ ⋅ ⋅ HOBW2𝑘−1 ,𝑀 (𝑡)HOBW2𝑘−1 ,𝑀 (𝑡)
]]]]]]]]]]

(32)

With the recursive formulas, we calculate 𝑀(2𝑘−1𝑀×2𝑘−1𝑀)(𝑡)
for any 𝑘 and𝑀.

Thematrix𝑀(2𝑘−1𝑀×2𝑘−1𝑀)(𝑡) in (23) satisfies the following
relation: 𝑀(2𝑘−1𝑀×2𝑘−1𝑀) (𝑡) 𝑐(2𝑘−1𝑀×1)

= 𝐶(2𝑘−1𝑀×2𝑘−1𝑀)HOBW(2𝑘−1𝑀×1) (𝑡)
(33)

where 𝑐(2𝑘−1𝑀) is defined in (33) and 𝐶(2𝑘−1𝑀×2𝑘−1𝑀) is the
matrix coefficient. We consider the case when 𝑘 = 3 and𝑀 = 4. Thus, we have

𝑀(16)×16) (𝑡) = [[[[[[[[[[
HOBW10 (𝑡)HOBW10 (𝑡) HOBW10 (𝑡)HOBH20 (𝑡) ⋅ ⋅ ⋅ HOBW10 (𝑡)HOBW43 (𝑡)
HOBW20 (𝑡)HOBW10 (𝑡) HOBW20 (𝑡)HOBH20 (𝑡) ⋅ ⋅ ⋅ HOBW20 (𝑡)HOBW43 (𝑡)
HOBW30 (𝑡)HOBW10 (𝑡) HOBW30 (𝑡)HOBH20 (𝑡) ⋅ ⋅ ⋅ HOBW30 (𝑡)HOBW43 (𝑡)... ... ⋅ ⋅ ⋅ ...
HOBW43 (𝑡)HOBW10 (𝑡) HOBW43 (𝑡) 𝑂𝐵𝐻20 (𝑡) ⋅ ⋅ ⋅ HOBW43 (𝑡)HOBW43 (𝑡)

]]]]]]]]]]
(34)

The coefficient matrix 𝐶(2𝑘−1𝑀×2𝑘−1𝑀) in (33) is determined by

𝐶(2𝑘−1𝑀×2𝑘−1𝑀) = [[[[[[
𝐶0 0 0 00 𝐶1 0 00 0 𝐶2 00 0 0 𝐶3

]]]]]] (35)

where 𝐶𝑖, 𝑖 = 0, 1, 2, 3 are 4 × 4matrices given by
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𝐶𝑖((2𝑘−1𝑀×2𝑘−1𝑀)) =
[[[[[[[[[[[[[[[[[[[[[[[[[

73c1i + 523c2i 1116c1i + 311c2i 322c1i + 516c2i −319 c1i + 119c2i− 1103c3i − 7201c4i + 521c3i + 1101c4i − 144c3i + 1103c4i + 3209c3i − 3209c4i22144c1i + 123c2i 2223c1i + 14123c2i 419c1i + 213c2i −123 c1i + 119c2i− 17143c3i − 13209c4i +1547c3i + 2175c4i − 281c3i + 2147c4i + 1190c3i − 3105c4i914c1i + 719c2i 2425c1i + 711c2i 415c1i + 24132c2i −19142 c1i + 319c2i− 13132c3i − 11120c4i + 734c3i + 3107c4i − 571c3i + 3107c4i + 3201c3i − 3208c4i1113c1i + 120c2i 2223c1i + 1327c2i 723c1i + 213c2i −323 c1i + 325c2i− 3103c3i − 1209c4i + 737c3i + 2103c4i − 190c3i + 3103c4i + 1213c3i − 1201c4i

]]]]]]]]]]]]]]]]]]]]]]]]]

(36)

3. HOBW Operational Matrix

Firstly, we review some basic definitions of fractional calculus
[22–24], which are required for establishing our results.

Definition 1. TheRiemann–Liouville fractional integral oper-
ator 𝐼 of order 𝛼, of a function 𝑓 ∈ 𝐶V, V ≥ −1, is defined as
follows:(𝐼𝛼𝑓) (𝑡)

= {{{ 1Γ (𝛼) ∫𝑡0 (𝑡 − 𝜏)𝛼−1 𝑓 (𝜏) 𝑑𝜏, 𝛼 > 0, 𝑡 > 0,𝑓 (𝑡) , 𝛼 = 0 (37)

The block-pulse functions (BPFs), an𝑚-set of BPFs on [0, 1),
are defined by

𝑏𝑖 (𝑡) = {{{1, 𝑖𝑚 < 𝑡 < 𝑖 + 1𝑚 ,0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, (38)

where 𝑖 = 0, 1, 2, . . . , 𝑚 − 1. The BPFs have the orthogonal
properties as follows:

𝑏𝑖 (𝑡) 𝑏𝑗 (𝑡) = {{{0, 𝑖 ̸= 𝑗,𝑏𝑖 (𝑡) , 𝑖 = 𝑗, (39)

and ∫1
0
𝑏𝑖 (𝜏) 𝑏𝑗 (𝜏) = {{{0, 𝑖 ̸= 𝑗,1, 𝑖 = 𝑗, (40)

Every function 𝑓(𝑡) which is integrable in [0, 1) can be
truncated with the aid of BPFs series as𝑓 (𝑡) ≈ 𝑚−1∑

𝑖=0

𝑓𝑖𝑏𝑖 (𝑡) = 𝐹𝑇𝐵𝑚 (𝑡) , (41)

where 𝐹 = [𝑓0, 𝑓1, . . . , 𝑓𝑚−1]𝑇, 𝐵𝑚(𝑡) = [𝑏0, 𝑏1, . . . , 𝑏𝑚−1]𝑇.

Using the disjointness of BPFs and thematrix of𝐵𝑚 (𝑡) can
be gotten by

𝐵𝑚 (𝑡) 𝐵𝑇𝑚 (𝑡) = [[[[[[
𝑏0 (𝑡) 0𝑏1 (𝑡)

d0 𝑏𝑚−1 (𝑡)
]]]]]] (42)

Equation (41) implies that the HOBW method can be trun-
cated into an𝑚-set BPFs as follows:𝐻𝑂𝐵𝑊2𝑘−1𝑀 = Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑡) . (43)

The block-pulse implementation matrix of the fractional
integration 𝐹𝛼 has been given in [14] as follows:(𝐼𝛼𝐵2𝑘−1𝑀) (𝑡) ≈ 𝐹𝛼𝐵2𝑘−1𝑀 (𝑡) (44)

where𝐹𝛼
= 1(2𝑘−1𝑀)𝛼 1Γ (𝛼 + 2)

[[[[[[[[[[[[[

1 𝜁1 𝜁2 𝜁3 ⋅ ⋅ ⋅ 𝜁𝑚󸀠−10 1 𝜁1 𝜁2 ⋅ ⋅ ⋅ 𝜁𝑚󸀠−20 0 1 𝜁1 ⋅ ⋅ ⋅ 𝜁𝑚󸀠−3... ... ... ... ... ...0 0 ⋅ ⋅ ⋅ 0 1 𝜁10 0 0 ⋅ ⋅ ⋅ 0 1
]]]]]]]]]]]]]

(45)

𝜁𝑘 = (𝑘 + 1)𝛼+1 − (2𝑘)𝛼+1 + (𝑘 − 1)𝛼+1 . (46)

At 𝛼 = 1, 𝐹𝛼 is BPF’s implementation matrix of integration.
Let (𝐼𝛼𝜓2𝑘−1𝑀) (𝑡) ≈ P𝛼2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑡) (47)
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where the matrix P𝛼
2𝑘−1𝑀×2𝑘−1𝑀

is called the HOBW imple-
mentation matrix of fractional integration [2, 17]. Using (43)
and (44), we have

(𝐼𝛼𝜓2𝑘−1𝑀) (𝑡) ≈ (𝐼𝛼Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀) (𝑡)= Φ2𝑘−1𝑀×2𝑘−1𝑀 (𝐼𝛼𝐵2𝑘−1𝑀) (𝑡)= Φ2𝑘−1𝑀×2𝑘−1𝑀𝐹𝛼𝐵2𝑘−1𝑀 (𝑡) . (48)

From (38) and (39) we can get

P𝛼2𝑘−1𝑀×2𝑘−1𝑀𝜓2𝑘−1𝑀 (𝑡)= P𝛼2𝑘−1𝑀×2𝑘−1𝑀Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑡)= Φ2𝑘−1𝑀×2𝑘−1𝑀𝐹𝛼𝐵2𝑘−1𝑀 (𝑡) (49)

Then the matrix is P𝛼
2𝑘−1𝑀×2𝑘−1𝑀

given by𝑃𝛼2𝑘−1𝑀×2𝑘−1𝑀 = Φ2𝑘−1𝑀×2𝑘−1𝑀𝐹𝛼Φ−12𝑘−1𝑀×2𝑘−1𝑀 (50)

For example, when 𝛼 = 0.5,M = 2, and 𝑘 = 3, the operational
matrix of the fractional integration P𝛼

2𝑘−1𝑀×2𝑘−1𝑀
is expressed

as follows:

P0.58×8 =
[[[[[[[[[[[[[[[[[[

0.19343 0.2579 0.1725 0.10262 0.10856 0.08539 0.08608 0.07330−0.0645 0.5158 0 0 0 0 0 00 0 0.19344 0.25792 0.17247 0.10262 0.10856 0.085390 0 −0.04299 0.34389 0.24862 0.09946 0.12097 0.090770 0 0 0 0.19344 0.25792 0.17247 0.102620 0 0 0 −0.04299 0.34389 0.24864 0.099460 0 0 0 0 0 0.19344 0.257920 0 0 0 0 0 −0.04299 0.34389

]]]]]]]]]]]]]]]]]]
(51)

4. Solution of Nonlinear Volterra Integral
Equations via the HOBW Method

Consider the following integral equation:

𝑦 (𝑥) = 𝑓 (𝑥) + 𝜆∫𝑥
0
(
𝑘 (𝑥, 𝑡) (𝑦 (𝑡))𝑞(𝑥 − 𝑡)1−𝛼 𝑑𝑡, 0 ≤ 𝑥 ≤ 1, (52)𝑦 (𝑥) ≈ 𝑌𝑇𝐻𝑂𝐵𝑊(𝑥) ≈ 𝑌𝑇Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑥)𝑘 (𝑥, 𝑡) ≈ 𝐻𝑂𝐵𝑊𝑇 (𝑥)𝐾𝐻𝑂𝐵𝑊(𝑡)≈ (Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑥))𝑇⋅ 𝐾Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑡)𝑓 (𝑥) ≈ 𝐹𝑇𝐻𝑂𝐵𝑊(𝑥) ≈ 𝐹𝑇Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑥)

(53)

where𝐾 is 2𝑘−1𝑀× 2𝑘−1𝑀matrix with𝐾 = (𝐻𝑂𝐵𝑊(𝑥) , (𝑘 (𝑥, 𝑡) , 𝐻𝑂𝐵𝑊(𝑡))) . (54)

The functions 𝑦𝑞(𝑥) can be truncated into the HOBB func-
tions as 𝑦2 (𝑡) = [𝑌𝑇HOBW (𝑡)]2= 𝑌𝑇HOBW (𝑡)HOBW (𝑡)𝑇 𝑌= HOBW (𝑡)𝑇 𝑌̃𝑌

𝑦3 (𝑡) = 𝑌𝑇HOBW (𝑡) [𝑌𝑇HOBW (𝑡)]2= 𝑌𝑇HOBW (𝑡)HOBW (𝑡)𝑇 𝑌̃𝑌= HOBW (𝑡)𝑇 𝑌̃𝑌̃𝑌= (Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑡))𝑇 (𝑌̃)2 𝑌𝑦𝑞 (𝑡) = HOBW (𝑡)𝑇 (𝑌̃)𝑞−1 𝑌= (Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑡))𝑇 (𝑌̃)𝑞−1 𝑌
(55)

Therefore, upon substituting into (52), we get𝑌𝑇𝐻𝑂𝐵𝑊(𝑥) = 𝐹𝑇𝐻𝑂𝐵𝑊(𝑥) + 𝜆∫𝑥
0
(𝑥 − 𝑡)𝛼−1⋅ 𝐻𝑂𝐵𝑊𝑇 (𝑥)𝐾𝐻𝑂𝐵𝑊(𝑡)HOBW (𝑡)𝑇 (𝑌̃)𝑞−1⋅ 𝑌 𝑑𝑡 (56)

𝑌𝑇𝐻𝑂𝐵𝑊(𝑥) = 𝐹𝑇𝐻𝑂𝐵𝑊(𝑥) + 𝜆𝐻𝑂𝐵𝑊𝑇 (𝑥)⋅ 𝐾∫𝑥
0
(𝑥 − 𝑡)𝛼−1𝐻𝑂𝐵𝑊(𝑡)HOBW (𝑡)𝑇 (𝑌̃)𝑞−1 𝑌𝑑𝑡 (57)

where∫𝑥
0
(𝑥 − 𝑡)𝛼−1HOBW (𝑡)HOBW𝑇 (𝑡) (𝑌̃)𝑞−1 𝑌𝑑𝑡= ∫𝑥
0
(𝑥 − 𝑡)𝛼−1 ((𝑌̃)𝑞−1 𝑌)HOBW (𝑡) 𝑑𝑡
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Table 1: Maximum absolute errors at different values of 𝑘 and𝑀 for Example 1 via HOBW.

K M=8 M=16 M=32
4 4.21 × 10−6 4.10 × 10−10 6.06 × 10−11
5 3.71 × 10−7 1.37 × 10−12 2.92 × 10−12
6 4.82 × 10−8 3.27 × 10−13 3.51 × 10−14

Table 2: The comparison among HOBW, exact, and Chebyshev solutions for Example 2.𝑥𝑖 HOBW Exact Solution Absolute error Of HOBW Absolute error Of Chebyshev base at 𝑛 = 8𝑘 = 8, 𝑀 = 8 𝑘 = 8, 𝑀 = 8
0.1 0.6309573449 0.6309573445 4 × 10−10 1.4 × 10−5
0.2 0.7247796642 0.7247796637 5 × 10−10 2.1 × 10−5
0.3 0.7860030896 0.7860030856 4 × 10−9 3.5 × 10−5
0.4 0.8325532052 0.8325532074 2.2 × 10−9 5.5 × 10−5
0.5 0.8705505674 0.8705505633 4.1 × 10−9 2.4 × 10−5
0.6 0.9028804552 0.9028804514 3.8 × 10−9 4.4 × 10−5
0.7 0.9311499137 0.9311499151 1.4 × 10−9 5.2 × 10−5
0.8 0.9563524927 0.9563524998 7.1 × 10−9 7.1 × 10−5
0.9 0.9791483643 0.9791483624 1.9 × 10−9 6.9 × 10−5

= Γ (𝛼) ((𝑌̃)𝑞−1 𝑌) 𝐼𝛼𝐵2𝑘−1𝑀 (𝑥)= Γ (𝛼) ((𝑌̃)𝑞−1 𝑌)𝐹𝛼𝐵2𝑘−1𝑀 (𝑥)
(58)

With the aid of the previous equations, (52) becomes𝑌𝑇Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑥)= 𝐹𝑇Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑥)+ 𝜆Γ (𝛼) ((𝑌̃)𝑞−1 𝑌)𝐹𝛼Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀 (𝑥) (59)

where𝐻𝑂𝐵𝑊(𝑥) ≈ Φ2𝑘−1𝑀×2𝑘−1𝑀𝐵2𝑘−1𝑀(𝑥).
To compute the unknown HOBW coefficients, we use the

collocation points as follows:𝑡𝑖 = 2𝑖 − 12𝑘−1𝑀, 𝑖 = 1, 2, . . . , 2𝑘−1𝑀 (60)

From (60), we have a system of 2𝑘−1𝑀 nonlinear equations
with 2𝑘−1𝑀 unknowns. Newton iteration method is used for
completing the solution of the resulting nonlinear system, to
get the unknown vectors𝑌. So, the approximated results 𝑦(𝑥)
can be calculated as𝑦 (𝑥) = 𝑌2𝑘−1𝑀×1𝑇𝐻𝑂𝐵𝑊2𝑘−1𝑀×1 (𝑥) . (61)

5. Numerical Examples

We use the demonstrated technique in this article for finding
the numerical results of fourweakly singular-Volterra integral
equations.

Example 1. Consider the generalized Abel’s integral equation
[21]. 𝑢 (𝑥) = 𝑥2 + 1615𝑥5/2 − ∫𝑥0 𝑢 (𝑡)√(𝑥 − 𝑡) 𝑑𝑡, (62)

The exact solution is 𝑢(𝑥) = 𝑥2.
The outcomes demonstrate the high exactness and the

effectiveness of the technique. This outcome can be effort-
lessly confirmed that the strategy yields the desired accuracy
only in a few values of 𝑘 and𝑀.The results of this example at
different values of k and M are presented in Table 1.

Example 2. Consider the following WSVIE:𝑢 (𝑥) = 𝜋𝑥5 csc(𝜋5 ) + 𝑥1/5 − ∫𝑥0 𝑢 (𝑡)(𝑥 − 𝑡)0.2 𝑑𝑡, (63)

The exact solution is 𝑢(𝑥) = 5√𝑥.
Table 2 likewise checks all favorable circumstances of the

strategy examined in the past examinations. It ought to be
noticed that the HOBW additionally effortlessly composes
PC code. This is another vital trademark for the numerical
calculation. These actualities delineate the HOBW strategy
as a quick, dependable, legitimate, and useful asset for
understanding WSVIEs.

Example 3. Consider the singular kernel Volterra integral
equation [25]:𝑦 (𝑥) = 𝑓 (𝑥) + ∫𝑥

0

𝑥𝑡(𝑥 − 𝑡)0.5 𝑦2 (𝑡) 𝑑𝑡𝑓 (𝑥) = 𝑥3 − 4096𝑥17/26435 (64)
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Table 3: The comparison among HOBW, exact, and SCW solutions for Example 3.𝑥𝑖 HOBW Exact Solution Absolute error Of HOBW Absolute error Of SCW at𝑘 = 4, 𝑀 = 2 𝑘 = 4, 𝑀 = 2 𝑘 = 4, 𝑀 = 2
0.1 0.0010010729 0.001 1.0729 × 10−6 9.6679 × 10−5
0.2 0.0080011451 0.008 1.145146 × 10−6 4.7192 × 10−4
0.3 0.0269910936 0.027 8.9064 × 10−6 7.6218 × 10−4
0.4 0.0639790239 0.064 2.0976 × 10−5 5.2959 × 10−4
0.5 0.1246774895 0.125 3.2251 × 10−4 4.7042 × 10−3
0.6 0.2157735888 0.216 2.2641 × 10−4 4.3467 × 10−4
0.7 0.3416681741 0.343 1.3318 × 10−3 2.7024 × 10−5
0.8 0.5074658635 0.512 4.5341 × 10−3 5.0051 × 10−5
0.9 0.7139664754 0.729 1.5033 × 10−3 7.3236 × 10−3

Table 4: The comparison among HOBW, analytic, and SCW solutions for Example 4.𝑥𝑖 Absolute error of HOBW Absolute error of SCW at Absolute error of HOBW Absolute error of SCW at𝑘 = 4, 𝑀 = 2 𝑘 = 4, 𝑀 = 2 𝑘 = 5, 𝑀 = 2 𝑘 = 5,𝑀 = 2
0.1 4.1161 × 10−4 6.8039 × 10−3 2.413 × 10−4 1.4565 × 10−3
0.2 7.0253 × 10−4 1.4873 × 10−3 3.6508 × 10−5 1.8367 × 10−4
0.3 2.1435 × 10−4 5.2635 × 10−4 1.1701 × 10−5 1.2211 × 10−4
0.4 5.1621 × 10−5 2.7043 × 10−4 2.1061 × 10−4 6.8020 × 10−5
0.5 9.7003 × 10−5 8.2247 × 10−4 7.2708 × 10−5 2.2140 × 10−4
0.6 6.4325 × 10−4 1.6089 × 10−4 1.1578 × 10−6 2.6100 × 10−5
0.7 1.3045 × 10−4 7.3143 × 10−5 1.0186 × 10−6 2.9370 × 10−5
0.8 3.1324 × 10−3 4.6887 × 10−5 9.4106 × 10−4 2.4144 × 10−6
0.9 4.0371 × 10−3 7.3699 × 10−5 1.0512 × 10−4 8.3715 × 10−6
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Numerical solution

Figure 2: Comparison of numerical solutions and exact solution of
Example 1 for 𝑘 = 4,𝑀 = 2.

The analytic solution of (49) can be detected in [18] as 𝑦(𝑥) =𝑥3.
The comparison among the 𝐻𝑂𝐵𝑊 solution and the

second Chebyshev wavelet (SCW) solution is shown in
Table 3 for 𝑘 = 4 and𝑀 = 2, which confirms that the𝐻𝑂𝐵𝑊
method gives almost the closer loose as the analytic solution.
Figure 2 shows the comparison among the HOBW solution

and the analytic one for 𝑡 ∈ [0, 1). Better approximation is
expected by the values of 𝑘 and𝑀 as in Table 2.

Example 4. Consider the nonlinear Volterra integral equa-
tion with singular kernel [25]:𝑦 (𝑥) = 𝑓 (𝑥) + ∫𝑥

0

𝑦4 (𝑡)(𝑥 − 𝑡)0.5 𝑑𝑡𝑓 (𝑥) = √𝑥15 (15 − 16𝑥2) (65)

with the exact solution 𝑦(𝑥) = √𝑥.
The comparison among the HOBW solution and the

analytic solution for 𝑡 ∈ [0, 1) is shown inTable 4 and Figure 3
for 𝑘 = 4 and𝑀 = 2 and confirms that the HOBW method
gives almost the same solution as the analytic method. Better
approximation is expected by choosing higher values of 𝑘 and𝑀.

6. Conclusion

In this investigation, the combination of orthonormal Bern-
stein, block-pulse functions, and wavelets is applied for
resolving SNVIE.Themain purpose of ourmethod is to com-
bine the orthonormal Bernstein and block-pulse functions
wavelet method with the definition of the Riemann–Liouville
fractional integral with the singular integral. The method
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x
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Figure 3: Results of Example 4 for k = 4,M = 2.

depends on reducing the considered system to a set of
nonlinear algebraic equations. The generated system just
needs sampling of functions and no integration. Wavelets as
orthogonal systems have different resolution capability for
truncating functions by the increasing of dilation parameter𝑘 that can give a good truncation for integral equations
without using a polynomial solution. The considered method
has its efficiency and simplicity. The matrices D and P are
sparse; hence theCPU time and the computermemorywill be
reduced and at the same time the solution remains accurate.
We also noted that when the degree of HOBW is increased,
the errors will be decreased to smaller values. When the
values of 𝑘 and𝑀 are higher, we get more accurate solutions
for the given problems.
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